
 

 

 

 

 

 

POLITECNICO DI MILANO 

DEPARTMENT OF ELECTRONICS, INFORMATION AND BIOENGINEERING 

DOCTORAL PROGRAM IN INFORMATION TECHNOLOGY 

 

DATA ANALYSIS AND MODELS  

FOR LONG-DISTANCE BIRD MIGRATION 

from correlations on ring recoveries to machine learning on geolocator 

measurements 

 

Doctoral Dissertation of: 

Mattia Pancerasa 

 

Advisor: 

Prof. Renato Casagrandi 

Co-Advisor: 

Prof. Roberto Ambrosini 

Tutor: 

Prof. Andrea Castelletti 

The Chair of the Doctoral Program: 

Prof. Barbara Pernici 

 





 

I 

 

Abstract 

Climate is one of the fundamental shapers of ecosystems, thus its ongoing changes deeply 

influence the behavior, distribution and dynamics of plant and animal populations. 

Migratory birds are among the species most affected by this phenomenon, as they need 

to fine-tune their phenology according to the climatic conditions of their breeding and 

wintering areas. To investigate how and to what extent alterations of climate regimes may 

determine key changes in the movement ecology of migratory birds, a detailed knowledge 

of their staging sites, a trustable reconstruction of their migration routes and of the time 

schedules of their journeys is very necessary. The classic methods for studying migration, 

such as bird ringing, can now be complemented by new technologies, such as GPS loggers 

or light level geolocators, that allow to record proxies of organisms’ positions throughout 

their routes.  

Focusing on a model species, the barn swallow (Hirundo rustica), in this work we first 

developed a method to investigate the occurrence of climatic connections between the 

African wintering and European breeding areas of this migratory passerine bird: 

surprisingly significant correlations between the average temperatures in the wintering 

and breeding locations of individuals emerged at the precise weeks of individuals’ spring 

migration. Correlations have high significance only in the proximity of barn swallow 

wintering sites and if the temperature series refer to the precise weeks of migration. 

Second, we reconstructed migratory routes of 88 barn swallows using the measurements 

provided by light level geolocators, verifying the repeatability of the estimation method 

we used. The results obtained allowed us to identify four groups of individuals, as well 

as a possible effect of the year of migration on many indicators of the migration schedules 

obtained from the reconstructed routes. Third, using the routes data as reconstructed in 

the second research step, we have automated a long manual phase of data pre-processing 

by implementing filters based on Machine Learning algorithms. The migratory routes 

reconstructed using the automated pre-processing are completely comparable with those 

obtained from the manual selection of geolocator data. The work confirms that models 

based on data gathered with ICT devices may be helpful tools to let us gain insights on 

the influence of environmental and climate changes on species and ecosystems 

connectivity.  
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1 INTRODUCTION 

1.1 Migratory birds and the climate change: a strong bond  

Birds have always provided ideas and opportunities for humans to understand the 

mechanisms through which nature works. The extraordinary biodiversity of the 

Galapagos avifauna was for Charles Darwin one of the major sources of inspiration for a 

milestone of biology and modern science such as the theory of species evolution (Darwin, 

1859). In the large family of birds, migratory species are followed with particular interest 

for their ability to adapt their behavior to the changes in the environment in which they 

live (Newton, 2007), with purpose of investigating how the species evolve or modify their 

strategies as a result of the changes they experience. 

Moreover, like many other migratory animals, birds play an ecologically relevant role 

throughout the biosphere, transporting each year significant amounts of nutrients, energy 

and other organisms (including parasites and pathogens) and forming part of the trophic 

chains of different areas of the planet (Bauer and Hoye, 2014). These ecological links are 

today at risks: many long distance migratory species have for years been subject to a 

strong population decline (Sanderson et al., 2006) mainly due to impacts caused by 

human activity such as habitat alteration, pollution and illegal killing (Berthold, 2001). 

Climate change worsens this situation, mainly acting on the mechanisms used by 

migratory species to decide the spatio-temporal dynamics of their long journeys (Cotton, 

2003).  
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Migratory birds have for years been a valuable source of biological information for the 

study of the impacts of climate change on a large scale: they are highly mobile animals, 

relatively easy to find and recognize (Møller et al., 2010). The numerous campaigns of 

observation and monitoring of their reproduction areas allowed to detect the variation of 

the arrival dates of many species (Gordo, 2007), providing one of the first signs of the 

sensitivity of biological mechanisms towards the complex abiotic and biotic changes 

induced by anthropogenic climatic changes. This peculiarity has made them a model for 

the study of the impacts of climate change on the phenology of plants and animals, 

elevating them to the role of 'winged sentinels' of climate change (Wormworth and 

Sekercioglu, 2011). It is therefore important to know which cues can influence the 

migration of these individuals, for example by acting on their departure and stopover 

decisions during their trips. 

Until now, these studies have been carried out exploiting information of bird capture or 

recovery locations, as information on the places they visited during the migration was 

scant. Only in recent years, new technologies have been developed to track directly or 

indirectly the movement of these species (Bridge et al., 2011). The science of geolocation 

of moving objects has reached remarkable goals, allowing people to know precisely and 

send to anyone their position on the planet through devices weighing a few tens of grams 

and with a reduced cost (i.e. any smartphone with a GPS sensor). Unfortunately, even 

today, we cannot adopt a similar approach for most species of migratory birds, because 

they are simply unable to successfully complete their journeys of hundreds or thousands 

of kilometers even carrying a simple GPS data logger weighing 2.5g (Bridge et al., 2011).  

Currently this problem is overcome by less precise but lighter devices: light-level 

geolocators. A light level geolocator records the light intensity experienced by the bird 

throughout the period in which it is applied (usually for a round trip migration). Once 

recovered, it is possible to estimate the route traveled by the bird through the combination 

of physical models based on astronomical equations (Meeus, 1991) and statistical analysis 

of uncertainty filtering. 

Thanks to the use of geolocators, in recent years it has been possible to obtain important 

information on the phenology and behavior of individuals even of small-sized species 

(e.g. Winkler et al., 2017). The integration of these data with the information obtained 

from the classical methods of ornithological studies is a very active field of research, 
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which may lead to the clarification of several scientific issues still open, including the 

relevance of the climate and its changes on the migration process. 

1.2 Thesis structure 

In this thesis we developed and applied data analysis and modeling procedures to study 

the whole migration of a focal species, which is a long-distance migrator: the barn 

swallow (Hirundo rustica). Some basic information on the biology and migration of this 

species are provided in Par. 1.3. 

In Chapter 2, we look for the presence of climate signals between the breeding and 

wintering areas of the barn swallow during the focal period of spring migration. We 

focused our attention on one of the most relevant environmental variables, the 

temperature, calculating the correlation between the average monthly temperature of the 

wintering and breeding areas close to the dates of departure and arrival of the barn 

swallows. The significance of the obtained results was investigated by means of 

randomization tests and temporal sensitivity analyzes. This chapter is elaborated from the 

work published in  Pancerasa et al. (2018). 

With the aim to go beyond the mere information provided by the departure and arrival 

positions, in Chapter 3 we reconstructed the migratory routes of 88 Italian and Swiss barn 

swallows from the measurements of light level geolocators. This is one of the first studies 

able to reconstruct the whole migration paths for a relatively large number of individuals 

of a small-size species. After verifying the reliability of the software used to reconstruct 

the routes, we selected some summary indicators of the migration at the individual level 

and analyzed the variability of the individual routes by means of linear models. 

Finally, since one of the critical phases of the preprocessing of light level geolocator 

measurements is a time-consuming manual classification procedure, we used the data 

obtained in Chapter 3 to develop machine learning algorithms able to automate this 

process. Chapter 4 describes this work, also illustrating a repeatability analysis of the 

different classification methods and verifying the reliability of the results by comparing 

the routes generated by the automated procedure with those obtained by manual selection. 
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Finally, Chapter 5 summarizes the main findings of this thesis and draws some 

conclusions on the research topics covered. 

1.3 Focus species: the barn swallow (Hirundo rustica) 

The barn swallow is a small (length: 17-19 cm; wing-span 32-34 cm) migratory bird, 

belonging to the order Passeriforms. The distribution of its breeding range covers the 

whole temperate zone of the Northern Hemisphere, with the only exception of one 

population of the American subspecies (Hirundo rustica erythrogaster), which, during 

the ‘80s, has started reproducing in the north of Argentina (Winkler et al., 2017). The 

barn swallow feeds exclusively on insects, capturing them in flight (Turner, 2006). It was 

described as a species by Linnaeus in his 'Systema Naturae' in 1758, named Hirundo 

rustica (literally "swallow of the countryside"). In fact, it nests semi-colonially in 

artificial structures located in rural areas, preferably near hayfields and farms with 

diversified crops. 

For this reason, from the second half of the last century, the barn swallow have been 

subjected to the impact of the changes in the agricultural sector, where the trend of large 

lots of intensive monocultures (with the consequent loss of biodiversity) and significant 

changes in the agricultural buildings has been imposed. (Donald et al., 2001; Donald et 

al., 2006). Concomitantly, the availability of insects and places to build the nest has 

declined for the barn swallow, a phenomenon that has led to the decline of many of 

European populations (Møller, 1994; Ambrosini et al., 2002; Turner, 2006). 

With the exception of some southern Spanish populations, the barn swallows that breed 

in Europe start in autumn a long migration to reach their wintering areas. The first arrivals 

in Western and Equatorial sub-Saharan Africa are registered from the end of September, 

but the peak is reached in the first days of December, due to the slowness of the younger 

individuals (those born in the previous months) at their first trip. The last individuals 

reach their wintering areas at the beginning of January. The swallows can travel for up to 

300 km per day, covering the distance between Scandinavia and South Africa in a month 

(Møller, 1994). Most annual mortality of this species occurs during migration and winter; 

in particular, in the wintering areas, precipitation acts indirectly on the survival of the 

barn swallows influencing their foraging (Møller, 1994). Spring migration begins earlier 

for populations reproducing in northern Europe, but the peak of arrivals at the breeding 
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grounds is recorded between March and April, except in the northernmost regions. Males 

usually arrive before females at the breeding colonies, in order to find a suitable breeding 

site and start the construction of a nest. Young individuals (less than one year old) usually 

arrive after adults. When a young swallow returns to the breeding areas, it tends settle to 

a breeding colony different than its birthplace (the dispersal phenomenon), but dispersal 

differ between males and females. Usually, males disperse less than females and tend to 

return to their native colony in larger number, especially if it was a high-quality breeding 

site (with many hay fields and food-rich habitats) (Møller, 1994). Females, on the other 

hand, exhibit higher dispersion propensity (with a 98% probability of dispersion). This 

probably allows them to maximize their reproductive success and to avoid breeding with 

consanguineous individuals. The average dispersal distance of females from the native 

colony is 10 km, while that of males is only 5 km (Turner, 2006).  

 

Figure 1.1: Map of the breeding (yellow), wintering (blue) and permanent presence (green) areas of the 

European barn swallows. Source: birdlife.org
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2 ANALYSIS OF CLIMATIC 

CUES FOR LONG DISTANCE 

BIRD MIGRATION 

2.1 Introduction 

In natural populations, organisms are expected to do the right thing at roughly the right 

place and time, under the limits set by their physiological and behavioral constraints, 

because natural selection strongly penalizes the individuals that do not appropriately 

match their activities to current environmental conditions (see e.g. Visser and Both, 2005; 

Møller et al., 2008). For example, plants budding and flowering at the wrong time, and 

animals breeding or migrating at the wrong place and time suffer severe reproduction and 

viability costs (Stenseth and Mysterud, 2002; Both et al., 2006; Parmesan, 2006; Saino et 

al., 2009).  

Organisms have evolved to track cyclical changes in ecological conditions, that typically 

occur with circannual periodicity, by exploiting environmental cues, like change in 

photoperiod, that announce forthcoming ecological changes (Berthold, 1996; Gwinner, 

1996; Coppack and Both, 2003). While seasonal ecological changes occur predictably, 

fluctuations of major ecological factors that heavily impact on most organisms, like 

temperature or precipitations, over shorter time frames may occur rather unpredictably. 

The need to accommodate such fluctuations is the apparent evolutionary reason why 

many organisms have retained some level of temporal flexibility in the time schedule of 
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their activities (‘phenology’). For example, birds at temperate latitudes adaptively time 

their breeding in spring according to photoperiod (Gwinner, 1996), but they also show 

the ability to adjust the exact time of breeding according to the current weather conditions, 

that may vary unpredictably among sites and years (Both, 2010; Gunnarsson and 

Tómasson, 2011). Plants and non-migratory animals can directly sense the progress of 

seasonal variation in local ecological conditions and flexibly adjust their physiological 

state and behavior according to environmental cues to prepare to the next shift in life-

stage (Williams et al., 2014; Ensminge et al., 2015; Jones and Gilbert, 2016). Unless 

sudden, abrupt changes in ecological factors occur, this affords them an opportunity of 

fine-tuning their life-cycle according to the current extrinsic conditions and retain (fairly) 

appropriate phenology.  

On the other hand, migratory animals that periodically move over large distances, 

alternating between breeding and non-breeding areas, have no direct clue as to the 

conditions that they will experience along their migration journey and at destination, 

weeks to months later. Migrants are therefore considered to be particularly susceptible to 

environmental uncertainty and thus, for example, to the negative effects of human-driven, 

rapid climate change, including advancement of spring phenology at temperate latitudes 

(Walther et al., 2002; Parmesan and Yohe, 2003; Parmesan, 2006; Rubolini et al., 2007; 

Robinson et al., 2009) and increased frequency of extreme meteorological events (Meehl 

et al., 2000; Parmesan et al., 2000; Walther et al., 2002; Bertacchi et al., 2016). The 

fitness advantages of appropriate timing of life-history events, however, is expected to 

select for the ability to capitalize on any environmental cue that allows to buffer the 

negative effects of environmental unpredictability on individual performance. Migratory 

animals may thus be expected to exploit any association that may exist between the 

ecological conditions during one stage of their annual life-cycle (e.g. staging in the non-

breeding area, or wintering) with the conditions that they will later experience en route, 

during subsequent migration, or at destination (Przybylo et al., 2000; Møller et al., 2004).  

At one extreme, it may even be expected that, in order to appropriately tune their decisions 

on timing of migration and arrival to the breeding sites, migrants choose as wintering 

areas those where the most accurate information on future conditions at destination can 

be gathered. This may partly contribute to the migratory connectivity that migratory birds 

exhibit, whereby individuals that breed in the same geographical region also tend to share 
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the same wintering area (Ambrosini et al., 2009; Fraser et al., 2012; Cormier et al., 2013; 

Hahn et al., 2013; Knick et al., 2014; Finch et al., 2015; Ambrosini et al., 2016, but see 

Finch et al., 2017). In addition, this may explain why migrants display some ability of 

tuning their arrival time according to the contingent weather conditions at destination, 

despite they cannot directly sense them (Cotton, 2003; Gordo et al., 2005). However, the 

hypothesis that migrants have the opportunity of making decisions on their migration 

schedule based on expected conditions at destination and that the location of their 

wintering staging areas depends, at least partly, on the extent of information that they can 

gather on the ecological conditions they will experience at the other end of their migration 

journey, has been explored only very sparsely (Gordo, 2007).  

Saino and Ambrosini (2008) investigated the presence of correlations between the 

monthly average temperatures of macro-areas in sub-Saharan Africa and Europe in the 

focal period of spring migration, finding that the climatic conditions of the former 

negatively predicted the latter ones within a temporal range of a couple of months. To the 

best of our knowledge, no study of this type has ever tested these climatic connections at 

a finer spatial scale, for example by using migratory birds ringing data. The next section 

provides a brief introduction to this data source, in order to better understand its potential. 

2.1.1 Ringing data 

Bird ringing consists in applying a small aluminum or plastic tag to the leg or to the wing 

of captured birds (Figure 2.1a). This tag is marked with an identification code, which 

allow identifying the marked individual at any re-encounters. Tags are designed and 

applied specifically for not affecting the behavior, survival and reproductive success of 

the marked individual. During ringing, some ecological data related to the marked bird as 

sex and an estimate of age are also usually recorded, whenever they can be assessed 

observing the bird in the field, as well as some indicators of its physiological status such 

as the feather conditions and the amount of subcutaneous fat. Usually the birds are caught 

directly in their nest (especially if newborns) or through the use of mist nets (Figure 2.1b), 

which facilitated the simultaneous capture of many individuals and species (Møller et al., 

2010). 
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Figure 2.1: (a) A barn swallow with a metal ring on its left leg. (b) A barn swallow trapped in a mist net. 

The ringing of migratory birds was the first study method historically used to try 

identifying where these species moved during the winter seasons. Since the beginning of 

the last century, several national European and North American associations of 

ornithologists have launched scientific ringing campaigns (Møller et al., 2010), 

subsequently converging their data into transnational databases such as those managed 

by the European Union for Bird Ringing (EURING, euring.org), the North American 

Banding Council (NABC, nabanding.net) and the South African Bird Ringing Unit 

(SAFRING, safring.adu.org.za). This simple method has allowed studying the behavior, 

the phenology and the response to the anthropic pressures of entire populations and 

species (Fiedler et al., 2004). However, ringing data are affected by a problem of large 

spatial and temporal heterogeneity of sampling effort that some analysis try to correct 

(Korner-Nievergelt et al., 2010; Nadal et al., 2018). 

Given their practicality, affordability and availability at large spatial and temporal scales, 

ringing data are still one of the main sources of information for scientific ornithological 

studies, particularly for those focused on the identification of the breeding and wintering 

areas (e.g. Frederiksen et al., 2018; Nadal et al., 2018), migratory connectivity 

(Ambrosini et al., 2009), departure and arrival from migration (Ambrosini et al., 2014) 

and exploitation of possible environmental cues to adjust migration phenology (this 

thesis). 

2.1.2 Focus of the present analysis 

In this work, we used information for a uniquely large set of data on ringed barn swallows 

to test if correlations exist between temperatures in the wintering sites south of the Sahara 
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Desert just before the start of northward spring migration and the temperatures at their 

individual breeding sites at the time of spring arrival from migration, several weeks later. 

We focus on temperature because this is the main driver of the progress of spring 

ecological events relevant to barn swallow ecology and breeding biology (Turner, 2006). 

Second, we test the prediction that temperatures at the sites where barn swallows spend 

their wintering period in Africa are correlated with those recorded at the breeding sites 

weeks later, when migration is completed, as expected under the hypothesis that 

individual barn swallows choose their wintering areas also depending on the level of 

temperature-connectivity with the breeding sites. Finally, we checked the persistence of 

these signals throughout the previous century, so as to check the possible impact of 

climate change on these ecological connections. 

To perform our analyses, we relied on the information from ringing data for 270 barn 

swallows that were captured during breeding in Europe and were later recovered during 

wintering in Africa, or vice versa, during the period 1930–2009. For each individual, we 

estimated the putative departure time from Africa when spring migration started 

according to information from a recent geolocator study (which will be presented and 

more extensively used in Cap. 3) and from bird monitoring, and spring arrival time to the 

breeding site in Europe according to a model of the progress of spring arrival of barn 

swallows.  

2.2 Materials and methods 

2.2.1 Barn swallow ringing data 

Ring recoveries were obtained from the EURING (du Feu et al., 2016) and SAFRING 

(Underhill and Oately, 1994) databanks. Out of the 73610 records in the original datasets, 

we selected the only 270 individuals ringed and re-encountered (i.e. recaptured alive or 

found dead, in any circumstance, ‘ring re-encounters’ hereafter) during stationary periods 

in the breeding (North Africa and Europe, simply ‘Europe’ hereafter, as 99.6% of the 

records of breeding individuals used in this study occurred in Europe) and the wintering 

grounds (Africa). In particular, those periods are December-February in Africa (south of 

the Sahara Desert) and June-July in Europe and North Africa (see the study of Ambrosini 

et al., 2009 for a similar approach). Selected ring re-encounters spanned 1930–2009 and 
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were within 34.46°N–65.07 °N and 4.53°W–59.67°E in the breeding grounds and within 

7.75°N–34.45 °S and 7.92°W–35.00°E in the wintering grounds. 

 

Figure 2.2: Spatial and temporal distribution of ringing data used in the correlation analysis. (a) 

Geographical displacement of wintering (orange) and breeding (green) positions. (b) Histogram of 

individuals year of recovery in Europe. 

As it is well known in the ornithological literature, ringing data show high spatial and 

temporal heterogeneity (Thomson et al., 2003) and, no exceptions, our dataset is also 

subject to this same problem, as shown in Figure 2.2. However, as there is no reliable 

data regarding ringing sampling effort nor proxies, we didn’t try to correct the ringing 

dataset. Rather, as our goal was not to build a spatio-temporal model of the migration 

process, we retained all the samplings, because the relevant information for the present 

study is the geographical location of the breeding and the wintering sites of the single 

individuals, which is clearly well represented by its ringing and recovery locations.  

2.2.2 Departure and arrival dates of spring migration 

We first estimated the arrival dates from spring migration in each breeding location 

according to Ambrosini et al. (2014), which reports a map of estimated arrival dates of 

the first 15% of barn swallows in Europe and North Africa (10°W–26°E, 26°N–66°N, 

resolution 4°×4°, latitude × longitude) based on an analysis of ringing data spanning 
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1908–2008. We estimated the arrival date at each breeding location by ordinary kriging 

with a stable variogram model (sensu Wackernagel, 1995) of estimated arrival dates at 

each cell as identified in Ambrosini et al. (2014). The kriging algorithm was used also to 

extrapolate the arrival dates of barn swallows ringed or recovered in Europe outside the 

area covered by that study (i.e. to the east of 26°E, n = 88 individuals). However, to reduce 

uncertainty in the estimated arrival dates for these latter individuals, we used their median 

estimated arrival date (7 May = i.e. Julian date 125) as the arrival date of all the 

individuals breeding to the east of 26°E.  

At present, we are aware of no model allowing an estimation of departure dates from each 

African location. Preliminary analysis of the correlations showed the presence of two 

clear groups in the wintering areas, a division similar to those obtained through a 

geographical clustering by Ambrosini, Møller and Saino (2009) in an analysis of the 

migratory connectivity on barn swallows ringing data (see Par. 2.3.1). We have therefore 

selected for each cluster a departure date based on information available from studies of 

barn swallows that wintered in the same geographical areas. For all barn swallows 

wintering south of 7°S (the parallel that geographically divided the two clusters) , we used 

the mean departure date from South Africa as reported in Altwegg et al. (2012) (10 

February = 41st day of the year). For all barn swallows wintering north of 7°S, we selected 

the mean departure dates reported in Liechti et al. (2015) (2 March = 61st day of the year). 

Since in both the studies the variability around these dates was of the order of half a dozen 

of days, we checked the robustness of this choice with a temporal sensitivity analysis 

described in Par. 2.2.5. 

2.2.3 Large-scale, long term temperature data 

To test for correlations between temperatures in the wintering and breeding locations of 

each individual in the focal period of spring migration, we used temperature data obtained 

from the atmospheric reanalysis ERA20C of the European Centre for Medium-Range 

Weather Forecasts (Poli et al., 2016). The ERA20C dataset was chosen for two reasons. 

First, because instrumentally recorded temperature data are not available with adequate 

resolution (neither in space nor in time) for our whole study areas, particularly in Africa. 

Second, because among the different global reanalyzes currently available, ERA20C is 
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the one with the finest spatial horizontal resolution (approximately 125 km) for the period 

1900–2010.  

Operatively, we selected the 2-metre temperature data (which represent an estimate of air 

temperature measured by meteorological stations, usually located 2 meters above the 

ground) at 6 hours intervals over a 1° × 1° geographical grid and calculated mean daily 

temperatures at each node. Then, we computed mean daily temperatures at the two exact 

coordinates where each barn swallow was ringed or recovered by spatial bilinear 

interpolation. In this way, we could obtain a time series of mean daily temperatures from 

1900 to 2010 for the exact geographical positions where each barn swallow was ringed 

and re-encountered. From each time series, as detailed below, we extracted a short-term 

time series 𝜏𝐸,𝑡  [𝜏𝐴,𝑡] by selecting temperatures that are relevant to spring migration in 

Europe [Africa] in the 30-years interval ending with the year of recovery in Europe. We 

opted for a 30-years timespan in analyzing temperatures, in accordance with suggestions 

by the World Meteorological Organization1, because we wanted to work over temporal 

windows that are relevant to climatic rather than meteorological conditions. In order to 

smooth daily fluctuations and obtain temperature conditions of year t which are relevant 

to influence departure of barn swallows from Africa (𝜃𝐴,𝑡) and their arrival to Europe 

(𝜃𝐸,𝑡), we averaged all temperatures within the 30 days centered, respectively, on the 

specific departure and arrival dates described above. Thus, two migratory-relevant 

temperature series, computed over a climatic suitable and consistent temporal horizon, 

were assigned to each individual: one for the African location, 𝜏𝐴,𝑡 =

[𝜃𝐴,𝑡, 𝜃𝐴,𝑡−1, … , 𝜃𝐴,𝑡−29] and one for the European location 𝜏𝐸,𝑡 =

[𝜃𝐸,𝑡, 𝜃𝐸,𝑡−1, … , 𝜃𝐸,𝑡−29]. 

                                                 

 

 

 

 

1 For more information: www.wmo.int/pages/prog/wcp/ccl/faq/faq_doc_en.html 
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2.2.4 Position randomization 

Continental-scale randomization 

To test for climatic correlations between breeding and wintering locations of individual 

barn swallows, we first calculated the partial correlation coefficient (𝑟𝑝𝑎𝑟) between 𝜏𝐴,𝑡 

and 𝜏𝐸,𝑡 at African and European actual locations, i.e. the locations retrieved from the 

ringing data, while controlling for the effect of year. Partial correlation enabled us to 

control for the effects of long term temporal trend in temperature data (e.g. climate 

change), and is computed as:  

𝑟𝑋𝑌∙𝑍 =
𝑟𝑋𝑌 − 𝑟𝑋𝑍 𝑟𝑍𝑌

√1 − 𝑟𝑋𝑍
2  √1 − 𝑟𝑍𝑌

2
 

In our case 𝑋 = 𝜏𝐴,𝑡, 𝑌 = 𝜏𝐸,𝑡 while as 𝑍 we used an integer vector from 1 to 30, 

representing the time index for each value of 𝜏𝐴,𝑡 and 𝜏𝐸,𝑡. 

To verify the significance of the analysis it is not possible to rely on typical statistical 

tests (e.g. a binomial test of the number of significant correlations found on the total 

number of individuals) as the used samples (i.e. the series 𝜏𝐴,𝑡 and 𝜏𝐸,𝑡 for each individual) 

are not independent, due to the spatial and temporal correlation in temperature for 

swallows sampled in nearby periods and/or locations. 

To assess whether partial correlation coefficients were significant at a broad (i.e. 

continental) spatial scale, we then computed the same partial correlation coefficients for 

all individuals by holding the European location and year fixed and using 361 additional 

positions in Africa. The African additional positions used for this broad spatial scale 

simulation were distributed according to a 2° × 2° regular grid (south of 15 °N) whose 

nodes did not occur neither on the sea nor in desert areas (see exemplificative cyan dots 

in Figure 2.3). Desert locations were identified as those where the average daily Total 

Precipitation (as retrieved from ERA20C reanalyzes) was lower than 0.65mm over the 

period 1900–2010 (Marshak, 2009). The absolute values of the 362 partial correlation 

coefficients (one between the actual wintering and breeding locations plus 361 for the 

simulations over the entire sub-Saharan Africa) calculated for each barn swallow were 

then listed in decreasing order of magnitude, thus obtaining the rank of the value for the 

correlation between the actual wintering and breeding positions. 
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Figure 2.3: Exemplificative representation of randomization tests used to evaluate the strength of the 

correlations between the African and the European temperatures relevant to barn swallow migration and 

their correlation peaks. Cyan dots are some of the 361 nodes of the sub-Saharan Africa subcontinent grid 

(2°×2°) used to perform the broad scale simulation test. The circular yellow area (radius of 1000 km) is 

where we randomly extracted (with a uniform probability distribution) the locations alternative to the focal 

barn swallow wintering location (orange center) to perform the local scale randomization test (ocean and 

desert areas are excluded). The wind rose-like radial grid surrounding a hypothetical barn swallow 

wintering location (green) used in our simulation to search for correlation peaks: filled green squares are 

for locations where 𝑟𝑝𝑎𝑟  between 𝜏𝐴,𝑡 and 𝜏𝐸,𝑡 was computed, white filled squares were discarded locations. 

Local-scale randomization 

A second type of spatial randomization test was then performed to check the robustness 

of our results at a finer (say ‘local’) geographical scale. To this end, we assessed whether 

the number of significant partial correlations was larger than those arising from a null 

model where the positions of barn swallows in Africa were randomly selected 999 times 

within a distance of 1000 km around the true wintering position, while avoiding points 

located on the sea or in desert areas (see for example the portion of the yellow circle in 

Figure 2.3). It is worth noticing that there is an important asymmetry in the relationships 

between recorded locations of barn swallows captured (or found) in Europe and in Africa. 

While the home range radius of individuals in the European breeding grounds is of about 

1 kilometer (Ambrosini et al., 2002), in the African wintering areas it can be as large as 

hundreds of kilometers (Turner, 2006).  

It is therefore important to explore whether there are any structured spatial patterns of 

partial correlations surrounding the actual location where the barn swallow has been 
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found in Africa, e.g. the location is close to a correlation peak. To investigate this 

possibility, we computed the partial correlation coefficients between 𝜏𝐴,𝑡 and 𝜏𝐸,𝑡 also for 

a set of points that were homogeneously distributed in the region surrounding the 

wintering position. To this end, we built a radial grid of points (fled green squares in 

Figure 2.3) centered on each of the barn swallow locations. Nodes of every grid were 

placed at 45° to one another (starting from the north), at distances of 100–1000 km (at 

100 km intervals) from the central position (green dot in Figure 2.3). Grid nodes located 

on the sea or in desert areas (see ‘Continental scale randomization’) were disregarded 

(open squares in Figure 2.3). For each barn swallow, at each grid node we calculated the 

partial correlation between the local temperatures and those at the European breeding 

location and recorded the distance from the grid center of the node where correlation was 

significant and strongest (the correlation peak). 

2.2.5 Temporal sensitivity analysis 

Since there is some uncertainty on the exact period of migration of each individual, we 

also analyzed the sensitivity of the number of significant correlations to changes in the 

dates of both departure from Africa and arrival to Europe. This was done by advancing 

or delaying of at most 15 days (with steps of 5 days) the dates of departure and/or arrival 

over which 𝜏𝐴,𝑡 and 𝜏𝐸,𝑡 were computed, recording the number of partial correlations that 

occurred each time. 

Finally, we verified the presence of partial correlations throughout the period covered by 

ERA-20C (1900-2010), repeating the same steps described in Par. 2.2.3 for each year 

since 1929 (right extreme of the first 30-year time window on the atmospheric reanalysis 

time span) to 2010. 

2.3 Results and discussion 

2.3.1 Correlation analysis at the continental scale 

Our broad-scale simulation test suggested that a large fraction of the individuals did 

strongly select wintering locations where the temperature correlations were stronger: 

indeed, for 59 (21.8%) individuals, the absolute value of the partial correlation 

coefficients with temperatures in their European breeding locations was higher (i.e. 
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within the top 10%) for the actual wintering locations than for the 361 alternative 

locations of this broad-scale simulation test (Figure 2.4a). This percentage is well above 

the 10% (dashed line in Figure 2.4a) that would be a priori expected if selection did not 

occur. 

Also, for 61 (22.6%) individuals, pre-migration temperature in the African wintering 

location (𝜏𝐴,𝑡) was found to explain at least 10% of the variance in temperature at the 

breeding site in Europe (𝜏𝐸,𝑡). The locations of these 61 individuals were clearly separated 

in two geographical clusters in Africa (Figure 2.4b), whose latitudes were either North of 

7°S (cluster N) or South of 18°S (cluster S). Interestingly, the partial correlation 

coefficients between 𝜏𝐴,𝑡 and 𝜏𝐸,𝑡 were opposite in sign for either geographic clusters for 

almost all barn swallows (>95%): 18 out of 19 barn swallows whose wintering location 

was in Western and Central equatorial Africa (cluster N, Figure 2.4c) exhibited positive 

temperature correlations (mean 0.373, standard deviation 0.056) with the relevant 

temperature time series at their breeding locations in Western Europe, and 40 out of 42 

barn swallows wintering in Southern Africa (cluster S, Figure 2.4d) showed negative 

temperature correlations (mean −0.407, standard deviation 0.064) with their breeding 

sites in Eastern Europe.  
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Figure 2.4: Continental scale analysis of correlations between temperatures at departure of barn swallows 

from Africa and at their arrival in Europe. (a) Ranking of partial correlations coefficients between 

temperatures at departure time from Africa (𝜏𝐴,𝑡) and at arrival time in Europe (𝜏𝐸,𝑡). Climatic series in the 

actual African locations are contrasted to alternative locations in the whole sub-Saharan African 

subcontinent (see broad scale simulation test in Methods). the dashed line is the expected distribution if no 

site selection occurred (complete random process). (b) Geographical locations of the 61 barn swallows for 

which 𝜏𝐴,𝑡 explained at least 10% of the variance of 𝜏𝐸,𝑡. Circles identify individuals that winter either north 

of 7°S (cluster N) while dots those that winter south of 18°S (cluster S). Colors code the sign of the partial 
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correlation coefficient between 𝜏𝐴,𝑡 and 𝜏𝐸,𝑡 (red for positive and blue for negative partial correlation). Dot 

size is proportional to the number of individuals found at any location. (c) Scatterplot of temperature 

anomalies in breeding vs wintering areas for individuals of cluster N whose migratory relevant temperature 

conditions in Africa explain more than 10% of variance of their European equivalent. Data referring to the 

same individual are denoted by a unique color: each circle represents the values of wintering and breeding 

temperatures anomalies for the focal individual in one of the 30-years of climatic reference for it. (d) As 

(c), but for cluster S. 

It is noticeable that the correlations identified at departure sites were highly time-specific. 

Indeed, by repeating the same analysis shown in Figure 2.4c,d under the hypothesis of a 

six weeks delayed migration, we found no significant correlations and much lower signals 

(Figure 2.5).  

 

Figure 2.5: (a) same as Figure 2.4c, but after moving departure date 6 weeks later. (b) Same as Figure 2.4d, 

but after moving departure date 6 weeks later. 

Our crude clustering based on latitude of barn swallows wintering locations alone is 

almost identical to the one proposed by Ambrosini et al.(2009), which was based on 

migratory connectivity using a k-medoids algorithm (Kaufman and Rousseeuw, 1987) on 

distance matrices computed on ringing data of barn swallows captured both in Europe 

and Africa. We thus found that the clustering based on geographical locations is almost 

indistinguishable from a specific climatic partitioning based on the signs of partial 

correlation coefficients between temperatures at departures and arrivals for our migratory 

species. These results are compatible with the idea that there might be climatic guidance 
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to site selection for the long-distance migrating barn swallows breeding in different 

European regions. For this reason, in subsequent analyzes, we focused only on positive 

correlations for cluster N and negative ones for cluster S. For the sake of clarity, we 

specify that we retained all the 270 individuals selected in Par. 2.2.1 in each of the spatial 

randomization and temporal sensitivity analysis of the subsequent paragraphs. 

Temperature correlations between the wintering and the breeding sites may also 

contribute to the mechanism by which migratory birds are responding to climate change 

effects. Several trans-Saharan migratory species are advancing the time of spring arrival 

to the breeding sites in Europe and this has been attributed to the advantages of keeping 

track of rapid advances in spring phenological events that occur in Europe. If current 

climate change is preserving the existing patterns of spatio-temporal correlations between 

temperatures in sub-Saharan Africa and in Europe, we may expect that these correlations 

would boost the process of adjustment of migration phenology to current climate change. 

On the other hand, disruption of temperature correlations would hinder adjustment 

adaptive adjustment of migration phenology with negative effects on populations of long-

distance migrants. 

2.3.2 Correlation peak at the local scale 

The interpretation that choice of the wintering location was guided by climatic signals is 

reinforced by the analysis of statistical significance of the correlation between 

temperatures in wintering and breeding locations at the local geographical scale. The 

number of individuals showing a one-tailed statistically significant correlation between 

𝜏𝐴,𝑡  and 𝜏𝐸,𝑡 exceeded that expected by chance alone (binomial test for the deviation of 

the proportion of significant correlations from 0.05: p < 0.00001 in both clusters). 

Because spatial autocorrelation of temperature may violate the binomial test assumption 

of independence of the observations, we ran the local-scale randomization test. At each 

of 999 replications, we randomly extracted one position within 1000 km of the wintering 

site of each individual and calculated the partial correlation between temperatures at the 

random African position (𝜏𝐴,𝑡 𝑟𝑎𝑛𝑑) and temperatures at the breeding site (𝜏𝐸,𝑡). The 

number of significant correlations between 𝜏𝐴,𝑡 and 𝜏𝐸,𝑡 computed at actual wintering 

positions (18, 26.9% for cluster N and 42, 20.7% for cluster S) was larger than the number 
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of correlations between 𝜏𝐴,𝑡 rand and 𝜏𝐸,𝑡 for all the 999 replications (Figure 2.6, number 

of significant correlations from randomization: cluster N: mean±SD: 7.28±2.08, range: 

1–13; cluster S: 27.45±3.79, range 17–39).  

 

Figure 2.6: Boxplot of the number of significant correlations measured from local randomizations. Red and 

blue dots show the numbers obtained by using actual wintering positions. Cluster N has 67 individuals, 

while cluster S has 203. 

Hence, the temperature correlations with the breeding location appeared to be consistently 

stronger for the actual wintering location than for other random locations within the same 

African region.  

In the analysis of correlation peaks, the frequency distribution of the distances from the 

center of the grid (i.e. the wintering site)  used to search for the peak showed that a 

remarkable proportion of them (27.27% for cluster N; 32.29% for cluster S) was located 

within 200 km of the wintering site (red bars in Figure 2.7), a distance that is of the same 

order of magnitude of the individual home range of barn swallows during wintering in 

Africa (Turner, 2006). To test if the frequency distribution of correlation peaks resulted 

from spatial autocorrelation of temperatures (i.e. from a pure climatic process), rather 

than from site selection, we re-ran the same analysis 999 times by centering the grids at 

each run on a random position in Africa within 1000 km from actual location as in the 
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local scale randomization described in Methods. In both clusters N and S, the observed 

frequency distributions markedly differed from those obtained by randomizations (grey 

bars in Figure 2.7). Indeed, the frequency distribution for the actual wintering locations 

(red or blue bars in Figure 2.7) have  a mode rather close to the actual wintering position 

(ca. 200 km), whereas the frequency distribution from the randomized locations (grey 

bars) increased with distance, with local maxima around 800 km in cluster N (Figure 2.7a) 

or 600 km in cluster S (Figure 2.7b). 

 

Figure 2.7: Frequency distributions of the distances of the correlation peak between temperatures relevant 

to migration from Africa to Europe and (red or blue bars) the actual wintering locations of barn swallows, 

or (grey bars) the randomly generated positions in Africa (local scale randomization) in either cluster N (a, 

red) or cluster S (b, blue). 

To compare these patterns with a null random case, we analyzed the results of the 999 

local-scale randomizations of Figure 2.7 and counted the number of times when the 

fraction of correlation peaks occurring within 200 km was higher at the actual locations 

of barn swallows (red or blue bars) than at random ones (grey bars). The result was 

unequivocal: this occurred 992 times in cluster N (99.2%, Figure 2.7a) and always (999 

times) in cluster S (100%, Figure 2.7b).  
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Figure 2.8: Barplots of the 999 percentages of peaks within 200 km from the randomized wintering positions 

for (a) cluster N or (b) cluster S. The red lines indicate the result obtained using the actual wintering 

positions.  

If the correlation peaks had been randomly distributed around the center of our grid, the 

probability of finding correlation peaks within a distance of 200 km would have been 

around 4% (i.e. the ratio between the areas of two circles with radius 200 and 1000 km, 

respectively). The fact that the frequency distributions of correlation peaks obtained for 

the actual wintering sites markedly differed from those obtained for the locally 

randomized positions in both clusters strongly supports the idea that the two processes 

have different nature and that, also at a local geographical scale, barn swallows may 

choose as wintering locations those where temperatures have stronger correlation with 

temperatures in the breeding locations. 

This result should be interpreted as an indirect test of the actual effect of temperature 

correlations between the wintering and the breeding sites on migration and wintering 

strategies. If such correlations are influential on life-history decisions is still an open 

research question. It could be expected that the sites where individual birds choose to 

spend their non-breeding season are non-randomly located with respect to their 

temperature correlations with the breeding sites. Wintering sites of individual barn 

swallows in sub-Saharan Africa have larger temperature correlations with the breeding 

site than with other locations in Africa. This pattern held both at the subcontinental scale 
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of sub-Saharan Africa and at a local geographical scale (i.e. within 1000 km from the 

actual wintering location). This might indeed suggest that the choice of the wintering 

location partly functions to maximize the information on annual conditions at the 

breeding site that is available before the start of migration. 

2.3.3 Temporal robustness 

To assess the robustness of these patterns of correlation with respect to the choice of the 

reference time periods assumed for departure from Africa and arrival to Europe we shifted 

these periods by a maximum of 15 days in both directions (back and forth), in steps of 

five days. A maximum of significant correlations clearly emerged for the time periods 

that we used in the analyses above, especially for cluster N (Figure 2.9a). We remark that 

such periods considered to be relevant for migration were chosen purely on the basis of 

information currently available on the actual phenology of barn swallow migration (see 

Par. 2.2.2).  

 

Figure 2.9: Temporal sensitivity analysis. (a) The number of significant positive partial correlations for 

barn swallows in cluster N at different temporal shifts (positive meaning delay) of the departure date from 

Africa (x-axis) and the arrival date in Europe (y-axis). (b) Sensitivity of significant correlations between 

𝜏𝐴,𝑡 and 𝜏𝐸,𝑡 to temporal shifts of the departure date using actual positions in Africa (red circles) or 999 

local randomized positions (gray squares). Dotted gray lines indicate the 25–75 percentiles. 

The most important axis of variation in our temporal sensitivity analysis is the shifting of 

departure date from Africa, because it is known with less accuracy than time of arrival to 
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Europe. While holding the time of arrival to Europe constant (time shift on the y−axis=0 

in Figure 2.9a), but shifting the departure time from Africa, the number of significant 

correlations between 𝜏𝐴,𝑡 and 𝜏𝐸,𝑡 in the actual wintering sites markedly outnumbered that 

obtained from 999 local scale randomizations of positions (Figure 2.9b). Interestingly, 

the maximum number of significant correlations was achieved exactly for the chosen 

departure period (i.e. for temporal shift in Africa equal to 0). The result obtained in cluster 

S was weaker and showed that there might be a slight increase of partial correlations with 

increasing shifts of the period of departure from Africa (Figure 2.10). However, we stress 

that arrival dates to Europe are known with lower precision for cluster N than or cluster 

S, as we used the median arrival date for all those individuals breeding outside the area 

covered by the study of Ambrosini et al. (2014). 

 

Figure 2.10: Number of significant negative partial correlations for barn swallows in cluster S for different 

temporal shifts (positive meaning delay) of the departure date from Africa (x-axis) and the arrival date in 

Europe (y-axis). 

A temporal sensitivity analysis of the obtained results can be performed on a different 

temporal scale, not related to the uncertainty of the exact timing of spring migration, 

rather to the persistence of climatic correlations over decades (Figure 2.11). As for the 

robustness of the reference year (i.e. the last of the 30-year time window used to calculate 

the partial correlation between 𝜏𝐴,𝑡 and 𝜏𝐸,𝑡), the value of the partial correlation coefficient 

of the cluster N individuals with a significant partial correlation in their actual reference 

year remains substantially positive throughout the whole analysis period (Figure 2.11a), 

in some cases with significant values for many years. Cluster S presents a similar 



Results and discussion 

27 

 

 

situation, even though many positive, yet not significant, partial correlations occurred in 

recent years (Figure 2.11b). 

The individual trends of the partial correlation of cluster S are visually highly temporary 

correlated between them. This is mainly caused by the greater proximity of the wintering 

areas of these individuals (Figure 2.4b) and the synchronicity of their temperature 

conditions in Europe, also due to the choice of a unique arrival date for ringing data 

located east of 26°E (as explained in Par. 2.2.2 at page 12). It is noteworthy that the period 

of maximum correlation intensity between those areas falls in the years in which the barn 

swallows have actually been found. 

 

Figure 2.11: (a) Temporal trends of partial correlation coefficient of the significant individuals of cluster 

N. x-axis represent the last year of the 30-years window used to calculate the partial correlations (i.e. 

reference year). Each line represents the trend for a single individual. Dots show the partial correlation 

values calculated in their actual reference years. Continuous black lines mark one-tailed significance levels. 

(b) same as (a) but for cluster S. 

Also the individuals characterized in our first analysis by not significant correlations 

present here a result in line with the barn swallows with a significant one. In particular, 
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we found a series of moderately positive partial correlations between 1965 and 1990 for 

the cluster N and a good number of significant negative partial correlations between 1955 

and 1980 for the cluster S (Figure 2.12). In recent years there has been a clear shift 

towards negative partial correlations for cluster N and a balanced situation of low partial 

correlations for cluster S. From this result, , which might have important implications in 

terms of ecological success of our migratory species, it is still however difficult to 

hypothesize a possible influence of climate change on climate connectivity between the 

wintering and breeding areas of the barn swallows, because of the small number of recent 

individuals found both in Africa and in Europe compared to those that had been identified 

fifty years ago (see Figure 2.2b). 

 

Figure 2.12: Temporal trends of partial correlation coefficient of not significant individuals of (a) cluster N 

or (b) cluster S. x-axis represent the last year of the 30-years window used to calculate the partial 

correlations (i.e. reference year). Each line represents the trend of correlation value for a single individual. 

Dots show the partial correlation values calculated in their actual reference years. Continuous black lines 

mark one-tailed significance levels. (b) same as (a) but for cluster S. 

Figure 2.12a shows also a high number of negative partial correlations in the cluster N 

before 1950. This has to be balanced with the great uncertainty of the ERA-20C outputs 

in the first half of the 1900s, in particular considering the limited availability of 

measurements available in Sub-Saharan and Equatorial Africa in that time (Poli et al., 
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2016). Furthermore, the only data of barn swallow positions that are available in those 

years show a significant positive partial correlation (Figure 2.11a). 

Figure 2.13 summarizes the results shown in the previous parts, showing the number of 

significant partial correlations combined with the number of individuals sampled at the 

change of the reference year. In line with previous results, the N cluster is characterized 

by a strong predominance of positive correlations throughout the second half of the last 

century (Figure 2.13a). Starting from the year 2000, there is a sign reversal in significant 

partial correlations. This result is in line with the analysis shown in (Saino and Ambrosini, 

2008) that found significant negative partial correlations by investigating at large scale 

the monthly average temperature ranges related to spring migration between sub-Saharan 

Africa and Europe.  

 

Figure 2.13: Trend of the number of significant positive partial correlations (red line) and negative (blue 

line) of the cluster N (panel a, 67 individuals) and cluster S (panel b, 203 individuals). x-axis represent the 

last year of the 30-year-old window used to calculate the partial correlations (i.e. reference year).  

However, the number of barn swallows belonging to the N cluster is not sufficient to 

identify any link between the presence of correlations along the last century and the actual 

presence of individuals in the analyzed locations. The S cluster instead provides this 
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possibility: Figure 2.13b shows a co-occurrence, albeit with a shift of a decade, between 

the high number of significant negative partial correlations in the 60s and 70s and the 

actual presence of individuals in the sampled areas. 

2.4 Conclusions 

Understanding the influence of past and current on bird migration is a crucial first step 

towards the ambitious goal for predicting possible impacts of climate change on these 

species. The timing of spring migration is a critical point of their phenology: a too early 

arrival would catapult them into an environment with still unfavorable ecological 

conditions for breeding, while excessive delays would not allow birds to take advantage 

of the resource peaks that emerge in this season. Migratory birds regulate first the timing 

of their journey in their wintering areas, delaying or anticipating the departure. However, 

the environmental mechanisms that determine this variability are not yet clear.  

Using a long-distance migratory species for which considerable information on wintering 

areas exist, here we speculated that cues may exist that allow individuals to adjust their 

timing of departure from the wintering site. This requires that correlations exist between 

the ecological conditions at departure and conditions at destination around the expected 

time of arrival, several weeks later and thousands of kilometers ahead. The first 

implication of the present analyses is that for our reference species Hirundo rustica 

correlations do indeed exist, suggesting that migratory barn swallows may actually have 

some information on the temperatures at destination while they are still on their wintering 

grounds. The sign of the correlations found geographically divides the individuals 

analyzed in a similar way to a clustering produced from breeding and wintering positions. 

We have also found that the barn swallows wintering locations occur more frequently in 

areas where the climatic connection with their reproduction areas is greater. The 

randomization tests of the wintering positions have shown that this result is true both on 

a local and continental scale. Temperature connections are also robust temporally: the 

greatest number of significant correlations in the N cluster occurs exactly in the starting 

and arrival dates reported by other ornithological studies, while the S cluster has a high 

number of significant correlations even in a wider dates interval. By varying the reference 

year of the single individuals, we have shown that the highest number of captures and 

recoveries in the S cluster occurred in the decades characterized by maximum climate 
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connectivity. The present results on the barn swallow are therefore particularly relevant 

to the interpretation of the effects of large-scale climatic correlations on the expression 

and evolution of migration behavior and migratory connectivity of widely distributed 

species, for which differential climatic connections between parts of the wintering and 

breeding ranges can occur.
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3 ESTIMATE OF BARN 

SWALLOW MIGRATORY 

ROUTES FROM LIGHT LEVEL 

GEOLOCATORS 

3.1 Introduction 

In a regime where notable environmental changes occur at the global scale, as the one 

characterizing our recent decades, it becomes particularly important to understand if and 

how the movement pattern of long-distance dispersing species may be affected. Not 

surprisingly, then, the tracking of migratory animals is a very active field of biological 

studies (Wikelski et al., 2007; Robinson et al., 2010; Tomkiewicz et al., 2010; Guilford 

et al., 2011; Cooke et al., 2013; Teague O’Mara et al., 2014). Knowing the positions 

visited and the routes traveled by migratory organisms is in fact a crucial information to 

design management policies oriented for example toward species conservation (Cooke, 

2008; Hays et al., 2014) or the protection against disease spread (Gilbert et al., 2010). 

This research field is particularly challenging and very interdisciplinary, because it 

requires the integration of knowledge coming from biology and environmental science 

with that coming from the information technology sector of engineering. The continuous 

development of new hardware devices –which permit to monitor, record and sometimes 

transmit the position of individuals, over long time and large space extensions – opens 
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novel research perspectives that must be accompanied by analogously advanced ways of 

interpreting the newly available data through proper modelling tools and software 

techniques. 

Migratory birds are ideal model taxa for enhancing the current research in the field, since 

an incredible variety of movement patterns is offered to investigation: every year, billions 

of individuals belonging to several species make unbelievable journeys, timely occurring 

in the right seasons, and head for weeks for hundreds or thousands of kilometers, 

sometimes at inter-continental scales, toward wintering or breeding areas. Some of these 

movements can be tracked with high-precision systems, such as GPS or other satellite 

receivers. The necessary equipment can however be too heavy to be carried by individuals 

of small species (like the barn swallow), for which every single gram of added weight can 

make a huge difference in terms of success or failure of their migration event and their 

survival (Barron et al., 2010). However, these species can be tracked through the use of 

another type of device: light level geolocators. 

3.1.1 Light level geolocators 

Light-level geolocators (from now geolocators), called also geologgers, are currently the 

smallest devices from which it is possible to obtain data that can be used to estimate the 

routes made by long distance migratory birds (Bridge et al., 2011). Thanks to their small 

size, they could be carried by the majority of birds, including most of passerines, although 

with some impact on the survival and reproduction of tagged individuals (Scandolara et 

al., 2014). 
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Figure 3.1: Frequency distribution of bird body masses (histogram and blue fitted continuous distribution, 

in grams) in relation to possible devices that can be carried by them and that use various tracking 

technologies. Minimum bird sizes for each technology are represented according to the 5%-body-weight 

rule: a threshold recommended by Barron et al. (2010) . Source: Bridge et al. (2011). 

The simplest models of geolocators consist of a small battery, a detector of solar 

irradiance and an accurate real-time clock and allow to record the two information at 

regular time intervals, usually for a period ranging from 6 months to 5 years2. Most 

geolocator models do not transmit data, so they must then be recovered to download the 

recorded data, which implies that the individual that has been equipped with the 

instrument must be recaptured. Data must then be analyzed after recapture using 

appropriate software that can pre-filter them for treatment and estimate the positions of 

the bird carrying the geolocator based on day length and sunrise/sunset times (as detailed 

                                                 

 

 

 

 

2 For more information on the variety of models and characteristics of geolocators, see: 

www.migratoryconnectivityproject.org/manufacturers 
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below at Par. 3.2.2). The price of such devices usually does not exceed 100 USD, making 

economically feasible the study of individual migration at the population level. 

Compared to heavier and more expensive tags like GPS, the main disadvantage of 

geolocators is that it is needed to recapture the individuals on which they are applied, 

making this technology unsuitable for species characterized by large dispersal. Also, and 

technically more limiting, their accuracy estimating the position of the individual is 

several orders of magnitude lower than that provided by satellite tags: on average 50 

kilometers in longitude and 200 kilometers in latitude (Phillips et al., 2004) versus a few 

meters or submeters. 

A technical complication while studying species that migrate near equinoxes, like in our 

case, is that it is particularly difficult to estimate the latitude based on the duration of the 

day, because it is almost the same at each latitude on the planet. Latitude estimation is 

more difficult also near the equator, where the duration of the day varies very few even 

with latitudinal shifts of several hundred kilometers (Hill, 1994), and at the polar latitudes 

during the solstices, due to the lack of twilight events (polar night and midnight sun). A 

further complication in the estimation process is due to the noise of the light measurement 

close to twilight events, whose definition must be as accurate as possible (see Par. 3.2.2). 

On the other hand, however, many applications for which it is interesting the study of 

migratory birds do not need high spatial and fine temporal resolution of the surveys. Even 

today, migratory routes and wintering areas of entire populations or even of some species 

are still ignored or known only with great approximation (Robinson et al., 2010; Bridge 

et al., 2011). The estimated positions that can be reconstructed thanks to geolocators do 

provide useful information such as the identification of stationary areas and periods of 

migratory individual (Liechti et al., 2015) and the analysis of the general features of 

migration routes (Briedis et al., 2018).  

Despite the above mentioned possibly strong limitations, geolocators are currently the 

only technology able to track the migration of species whose weight is in a range between 

10 and 50 grams (e.g. the barn swallow): only major innovations in battery technology, 

which are the heaviest component of satellite tags (Bridge et al., 2011), could lead to 

geolocator obsolescence. 
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3.1.2 Geolocator data analysis 

The increasing popularity of the use of geolocator for the study of animal migration has 

led in recent years to the development of different software for the analysis of their 

measurements, such as Ukfsst (Lam et al., 2008), Trip Estimation (Sumner et al., 

2009), Trackit (Lam et al., 2010), GeoLight (Lisovski and Hahn, 2012), probGLS 

(Merkel et al., 2016) and FLightR (Rakhimberdiev et al., 2017). The process of 

reconstructing animals’ paths is usually divided into two phases: 

1) the estimation of the bird visited locations (from the light data obtained via the 

geolocator);   

2) the filtering process of such estimates, that could be implemented as post hoc 

smoother or as a filter in a Bayesian analytical framework. 

Phase 1 can be performed using the threshold method (Hill and Braun, 2001) or the 

template-fit approach (Ekstrom, 2004). The threshold method requires an exact definition 

of sunrise and sunset times, determined using a constant and predefined light intensity 

threshold. The estimate of the latitude is then made starting from the duration of the day 

(or night), while the longitude can be estimated thanks to the timing of solar noon (or 

midnight). The threshold method is still widely used, but its estimates may be very biased 

due to two main factors. One is the presence of noise in light levels measurements 

(because of weather conditions or the specific environmental settings where the bird is 

temporarily located). The other is that migratory animals can have also large movements 

between a twilight event and the subsequent one (Lisovski et al., 2012). In contrast, the 

template-fit method is based on an empirically derived relationship between the solar 

angle above the horizon at a certain latitude and the measurement of light intensity 

(Ekstrom, 2007), using many light measurements close to twilight events. Repeated 

measurements are used to decrease the influence of noisy light data as we will show in 

the next Par. 3.1.3. In contrast, the template-fit method is based on an empirical 

relationship between the solar angle above the horizon at a certain latitude and the 

measurement of light intensity, using different light measurements close to twilight events 

to decrease the influence of shading effects (Ekstrom, 2007). More details about the 

template-fit method are provided in Par. 3.1.3. 
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Phase 2 is based on the reconstruction of the path of the individual through a Hidden 

Markov Model, specifically designed according to the ecological migratory behavior of 

the taxon under study. The migration performed by birds is usually characterized by 

prolonged sedentary periods (i.e. breeding and wintering), interspersed with long 

movements with few changes of direction, but with sporadic stationary periods of 

refueling (Newton, 2007). Between the above mentioned software used to elaborate 

geolocator derived data, FLightR R package is currently the only one that implements 

a specific model for migratory birds, The model uses behavioral functions to describe a 

bird as belonging to either sedentary or migrating species, and offers the possibility to 

edit behavioral parameters for the species under study such as, for example, the minimum 

and maximum distances from the sea within which an individual can fly or have a 

stationary period. 

3.1.3 A glance at FLightR  

Despite its recent publication, FlightR has been already used in a dozen studies dealing 

with migratory birds route estimates (e.g. Kardynal and Hobson, 2017; Winkler et al., 

2017; Brlík et al., 2018; Kramer et al., 2018; Mu et al., 2018; Witynski and Bonter, 

2018)and we decided to use it also in the present study to analyze quite a large geolocator 

dataset (described below at Par. 3.2.1). We provide here a moderately detailed description 

of its functioning (Figure 3.2), as we will discuss some of its functionalities in Par. 3.2.3. 

For a complete description the interested reader can refer to (Rakhimberdiev et al., 2015). 
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Figure 3.2: Sketch of solar geolocation principles and FLightR method of analysis. A solar geolocator 

(shown in black on bird’s back) records light levels and times (example raw data in the lower panel). When 

the animal moves, its position is unobserved (hidden), but it can be estimated by the pattern of light changes 

measured at twilight. FLightR combine a physical (observation) model about how light levels change 

with position and time with some basic knowledge of the patterns of movement between twilights 

(movement model) along with all previous and subsequent positions in a hidden Markov model framework. 

Then, using the particle filter, FLightR arrive at the most likely position and movement for each twilight. 

Source: Rakhimberdiev et al. (2015) 

Physical observation model 

Starting from an input file (later explained in Par. 3.2.2), FLightR recovers for each 

twilight event 𝑖 a set of light measurements 𝑗. Then the algorithm uses standard 

astronomical equations (Meeus, 1991) to link the coordinates 𝜶 of a potential twilight 

location 𝑘 at time 𝜏𝑖𝑗 to solar angle relative to horizon (𝜃𝑖𝑗): 

 𝜃𝑖𝑗 = 𝑙(𝜶𝒌, 𝜏𝑖𝑗) (1) 
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The physical observation model used by FLightR is elaborated from the template-fit 

method of Ekstrom (2007) and express the relationship between the aforementioned solar 

angle and the light reaching Earth surface (Surface Light: 𝑆𝐿𝑖𝑗): 

 𝑙𝑜𝑔(𝑆𝐿𝑖𝑗) = 𝑓(𝜃𝑖𝑗) + 𝐾𝑖 + 𝜀𝑖𝑗;      𝜀𝑖𝑗 ∈ 𝑁𝑜𝑟𝑚(0, 𝜎𝑖) (2) 

with: 

 𝑓(𝜃𝑖𝑗) = −𝑢(𝜃)2 − 𝑙𝑜𝑔 (𝑒𝑟𝑓𝑐(𝑢(𝜃))) ;      𝑢(𝜃) = 21.5 × 𝑠𝑖𝑛(𝜃) (3) 

where 𝑒𝑟𝑓𝑐 is the complementary error function and 𝐾𝑖 is the attenuation (or cloudiness) 

variable of twilight i, that has to be estimated. FLightR assumes that the solar light 

reaching the Earth surface has an exponential relationship with the expected light 

measured by the geolocator (𝐸𝐿𝑀𝑖𝑗):  

 𝑙𝑜𝑔(𝐸𝐿𝑀𝑖𝑗) = 𝐼 + 𝑆 × 𝑙𝑜𝑔(𝑆𝐿𝑖𝑗) (4) 

where tag intercept 𝐼 and tag slope 𝑆 are specific for each individual device. In addition, 

FLightR assumes that observed light measured by the geolocator is related to the 

expected light measured by another exponential relationship: 

 𝑙𝑜𝑔(𝑂𝐿𝑀𝑖𝑗) = 𝛽𝑖 + 𝑍𝑖 × 𝑙𝑜𝑔(𝐸𝐿𝑀𝑖𝑗) + 𝐸𝑖𝑗;   𝐸𝑖𝑗 ∈ 𝑁𝑜𝑟𝑚(𝜇𝑖, 𝜎𝑖)  (5) 

Parameter 𝛽𝑖 is related to the behavior of the bird and the local weather/orography 

conditions at the twilight 𝑖.  

The slope 𝑍𝑖 varies both with twilight and with geographical position of the 

measurements. FLightR requires a calibration dataset of the light sensor at a known 

location in order to separate the 𝑍𝑖 variability in time and space. The calibration algorithm 

assumes that, at a known location, 𝑍𝑖 has a log-normal distribution with parameters 𝑍𝑐𝑎𝑙𝑖𝑏 

and 𝜎𝑐𝑎𝑙𝑖𝑏, which are estimated using measurements of a couple of days from the known 

location. Then, to evaluate likelihood of the tag presence at an unknown location 𝑘, using 

equation 5, FLightR estimates local slope 𝑧̂𝑖𝑘 and its uncertainty 𝜎𝑧̂𝑖𝑘
. Then, the 

software builds a joint probability of  𝑧̂𝑖𝑘, 𝜎𝑧̂𝑖𝑘
 and the calibration parameters 𝑍𝑐𝑎𝑙𝑖𝑏 and 
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𝜎𝑐𝑎𝑙𝑖𝑏 and uses this result as the likelihood of occurrence of the bird at location 𝑘 during 

the twilight 𝑖 (see Rakhimberdiev et al. 2015 for details). 

Movement model 

FLightR movement model was designed specifically for migratory birds. For the 

specific behavior of the species at hand, the model is requested to describe movement 

patterns where the individual is primarily sedentary for long periods (up to 6 months) the 

bird rapidly migrates between breeding and wintering locations within quite a short time 

period (usually 1-2 weeks). It should also possibly identify the short stationary periods 

that may occur during migration, where the birds refuel for a few days before continuing 

their journey. 

The implemented movement model is a simplified ‘double’ model (Morales et al., 2004; 

McClintock et al., 2012) with just two behavioral state: ‘Sedentary’ and ‘Migrating’. In 

the context of these two states, the simulated bird position is initialized at a defined 

location 𝜶0 and then updated through the following procedure: 

 𝜶𝒊+𝟏 = {
𝜶𝒊 + 𝒅𝒊,            𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑖

𝜶𝒊,             𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝𝑖
 (6) 

The movement 𝒅𝒊 follows an uncorrelated random walk with a distribution based on bird 

behavior described as: 

 𝒅𝒊 = [
𝑆𝑖 × 𝑐𝑜𝑠(𝛷𝑖)

𝑆𝑖 × 𝑠𝑖𝑛(𝛷𝑖)
] (7) 

Where 𝑆𝑖 is the length of the movement step and 𝛷𝑖 is movement direction. Both these 

two values are sampled from the following distributions: 

 𝛷𝑖 ~ 𝑣𝑜𝑛𝑀𝑖𝑠𝑒𝑠(𝜑, 𝜅) (8) 

 𝑆𝑖 ~ 𝑡𝑟𝑢𝑛𝑐𝑁𝑜𝑟𝑚(𝜇, 𝜎, 𝑎, 𝑏) (9) 

FLightR sets default values for parameters 𝑎 at 45 km and for parameter 𝑏 to 1500 km, 

which respectively represent in this case the minimum and the maximum travelled 

distances by the simulated bird when its state is ‘Migrating’ and are kept fixed for the 

whole simulation process. Parameters 𝜑 and 𝑘 in the von Mises distribution reflect the 

direction of migration and its concentration, while the parameters of the truncated normal 
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distribution shape the distribution of inter-twilight flight distances. Figure 3.3 show the 

Probability Density Function of von Mises and truncated normal. FLightR allows to set 

the values of parameters 𝑎, 𝑏 and 𝑘. 

 

Figure 3.3: (a) Probability Density Function of von Mises distribution with 𝜑 = 0 and 𝑘 = 1 (red), 𝜑 = 0 

and 𝑘 = 4 (blue), 𝜑 = 2 and 𝑘 = 1 (green). (b) Probability Density Function of truncated normal 

distribution with a = 45 and 𝑏 = 1500, varying μ = 100 and σ = 100 (red), μ = 500 and σ = 100 (blue), 

μ = 500 and σ = 200 (green). 

This movement model could be run with or without a behavioral mask which defines the 

maximum and the minimum distances at which the bird could stay or flight on seas and 

oceans. Hence, birds may fly over water, but cannot switch to sedentary state in this 

habitat. 

Bayesian estimation with particle filter 

The uncorrelated random walk designed in the movement model has five unobserved 

variables at each time step. Due to the presence of non-Gaussian noise, FLightR uses a 

particle filter (Reini, 1996) to compute their posterior distribution, simulating movement 

model on discretized positions on a 50 km node distance grid within the defined 

geographical range. The algorithm adopted by FLightR is based on the one proposed 

by Doucet et al. (2000) as expanded by Andersen et al. (2007).  

At the initialization phase, the algorithm creates a high number (FLightR default 

setting: 1 million) of particles (i.e. georeferenced points) at the actual release location. 

Then the position of each particle is updated through the movement model, computing 

the particle-specific likelihood value associated to the twilight event retrieved from the 

physical observation model (i.e. properly filtered data). At each temporal step, all 
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particles are assigned with a weight that is computed as the product between all previous 

likelihoods and the current likelihood. Then they are resampled proportionally to the 

weights, to remove particles that are in unlikely positions according to the light 

measurements by replacing them with more copies of the most likely ones. This procedure 

is repeated over the subsequent steps. Behavioral mask (if defined) is applied in the 

weight computation phase, setting to zero the likelihood of a particle that violates one of 

its assumptions. 

To avoid degeneracy problem, which often occurs in long particle filter runs (Van Der 

Merwe et al., 2001), FLightR applies a method called block sampling (Doucet et al., 

2006), which uses as weight for particles resampling the product of the particle likelihood 

at the actual position and at the 𝑛 (default: 90) previous steps. Following the approach 

used by Andersen et al. (2007), FLightR allows to include in the simulation the 

information on the recapture location (i.e. the last available twilight position): the last 𝑛 

states of the particles are resampled with weights proportional to a normally distributed 

probability density function with mean position placed at the recapture point coordinates 

and standard deviation (SD) to be given as a measure of precision (FLightR default is 

25 km). 

At the end of its run, the particle filter provides a way to get a numerical estimate of the 

central tendency and of the associated uncertainty of the route travelled by the bird 

without making any assumption on the data distribution (‘non-parametric’ estimate). This 

could be done through the calculation of appropriate statistics (e.g. mean, mode, standard 

deviation and percentiles) on the state of the particles at each time step.  

One of the major drawbacks about trajectories reconstructed by FLightR is in that the 

particle filter cannot properly deal with outliers (Arulampalam et al., 2007). This effect 

results to be particularly evident in all cases where  FLightR estimates are based on 

noisy and ‘shadowed’ twilight events occur, i.e. data characterized by big differences in 

sunrise/sunset hours with respect to those of the nearby days and/or data whose light curve 

following/preceding the twilight event has a  shape that is qualitatively different  from 

those commonly measured during undisturbed events (Figure 3.4). 
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Figure 3.4: An example of a light curve at a natural clear sunrise (solid, green), at a shadowed sunrise 

(dotted, light blue) and at a fast sunrise (dashed, pink). This last pattern is typically registered when the bird 

exits a cavity after the actual sunrise. 

Although FLightR has a feature to analyze and remove possible outliers in the estimated 

positions, the authors of the software recommend operating a careful selection of twilight 

events before proceeding with the whole procedure. This pre-filtering phase of the 

analysis is carried out manually, relying on specific R packages, such as TwGeos 

(Wotherspoon et al., 2016), for an help in data display and visualization; details are shown 

in Par. 3.2.2. 

3.1.4 Focus of the present analysis 

Using the procedure outlined above, in this work we reconstructed the migratory routes 

of 88 individual barn swallows, belonging to three different breeding areas in Southern 

Switzerland and Northern Italy, equipped with miniaturized light-level geolocators during 

two consecutive annual cycles (2010-2011 and 2011-2012). These data have already been 

partly analyzed and results of such analyses were published in Scandolara et al. (2014) 

and Liechti et al. (2015). However, those papers dealt only with estimates of the timing 

of migration and of wintering staging grounds, because no attempt were made to 

reconstruct the routes followed by each individual.  

The identification of routes followed by individuals, other than very interesting per se, is 

also preliminary to study whether migration paths vary according to some biological 
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features of animals (such as for instance their sex or age) and/or are subject to inter-annual 

variation, as it may be the case if the routes are strongly affected by contingent condition 

(such as for instance, weather).  

As already shown in Par. 3.1.3, FLightR provides an estimate of the migratory routes 

performed by individuals through a particle filter. Also, as mentioned earlier, barn 

swallow migration occurs close to the equinoxes, when latitude can be estimated only 

with very wide approximation based on light variation curves. In such dates, then, the 

estimated latitude tends to be strongly dependent on movement priors, with the risk of 

making the particle path in those days quite similar to a random walk. In this case, the 

mean position of particles could no longer provide a reliable estimate of the bird location, 

being strongly dependent on the particular random extraction performed by the algorithm 

for the specific twilight event. 

Given these premises on the possible strong role played by uncertain priors, before using 

migration routes reconstructed with FLightR for any ecological inference, we need as 

a first step of our analysis to verify the reliability of FLightR estimates. We therefore 

performed a repeatability analysis on a sample of 20 individuals, running the algorithm 

ten times on the pre-filtered geolocator data of each individual and comparing the results 

of the different runs in terms of i) variation between each position estimate, and ii) 

differences between the overall traveled routes. For this analysis, we used the mean 

position of particles at each time step of FLightR as an indicator of the estimated 

position of an individual at a given time.  

After having verified the reliability of the procedure for reconstructing migration routes, 

we then proceed with routes reconstruction. Thanks to the large number of data available, 

it was then possible for us to perform some regression analyzes by comparing seasonal 

differences in migration routes of individuals (i.e. spring vs autumn paths) from different 

breeding areas and according sex and year of migration.  



Estimate of barn swallow migratory routes from light level geolocators 

46 

 

3.2 Materials and methods 

3.2.1 Geolocators deployment 

Geolocators were applied to and recovered from three different barn swallows 

populations: one in southern Switzerland (Magadino, hereafter N area; coordinates of the 

approximate center and approximate elevation: 46°09′N, 8°55′E, 211 m a.s.l.) and two in 

northern Italy (Piedmont, hereafter SW area, 45°33′N, 8°44′E, 160 m a.s.l.; Lombardy, 

hereafter SE area, 45°19′N, 9°40′E, 60 m a.s.l.; Figure 3.5), during a time span of three 

years (2010-2012). Full details on breeding areas, field procedure, and the number and 

type of geolocators deployed are reported in Scandolara et al. (2014) and Liechti et al. 

(2015). 

 

Figure 3.5: Geographical position of the three study areas (shaded polygons) (N – Magadino, Switzerland; 

SW – Piedmont, Italy; SE – Lombardy, Italy). Inset: position of the three barn swallows populations (in 

black) within Europe. Source: Liechti et al. (2015). 

In addition to what was reported in those studies, 33 further geolocators in the SE study 

area were deployed in 2012. However, only four of them reported full migration routes, 

which were reconstructed here using FLightR, but excluded from subsequent analyses 

because of the very low sample size for that study year. The present analyses are therefore 

based on information on a sample of individuals that slightly differ from that used in 

Liechti et al. (2015).  
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The geolocator models applied were SOI-GDL2.103 (for 2010 individuals) and SOI-

GDL2.11 (for 2011 individuals), which measure the light intensity every minute, 

recording its average value every five minutes. Light values may take integer values from 

0 (full dark) to 64 (maximum detectable light intensity). 

The total number of geolocators analyzed is 88, 22 of which (equal to 25% of the total) 

did not record light data for the entire non-breeding season. The data recorded, however, 

were sufficient to reconstruct all the fall migration tracks and to individualize the 

wintering positions. Table 3.1 shows sample size for each year and by population of 

origin. 

 

Population of origin 2010 migration 2011 migration Total 

SW 22 (15) 9 (9) 31 (24) 

SE 3 (3) 13 (11) 16 (14) 

N 31 (19) 10 (9) 41 (28) 

Total 56 (37) 32 (29) 88 (66) 

Table 3.1: Number of geolocators recovered by year of migration and by population of origin. In brackets 

is the number of geolocators with a complete set of light measurements for the full (spring + autumn) 

migration. 

3.2.2 Geolocator pre-processing 

As seen in Par. 3.1.3, FLightR uses light curves at twilight events to provide an estimate 

of the geographical location of the individual at that time. It is therefore necessary to 

                                                 

 

 

 

 

3 Geolocators were provided by the Swiss Ornithological Institute: www.vogelwarte.ch/indirect-

trackinggeolocator.html 
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identify sunrise and sunset times from the raw light data recorded by the geolocator in 

each day. As anticipated above, some of the light measurements provided by geolocators 

may be affected by shading due to meteorological or environmental conditions (e.g. due 

topography, vegetation or buildings) that the bird has experienced (Lisovski et al., 2012). 

This phenomenon can affect both the information used by FLightR to compute the 

likelihood of the particles position at each twilight event.  

The light curve of a shadowed geolocator shows a shorter daylight than that of a 

geolocator under optimal light conditions, which strongly affects the identification of 

sunrise and sunset times. In addition, brightness values measured nearby shadowed 

twilights show a different pattern compared to non-obscured twilights (Figure 3.4). If 

FLightR is run on light curves that include shadow events during twilights, it would 

provide highly biased positions estimates, and therefore completely distorted routes (see 

the example shown in Figure 3.6).  

 

Figure 3.6: FLightR route estimate from uninterpreted geolocator measurement (purple, raw data for the 

barn swallow ID: 5PD, belonging to the SE population) compared with the same route estimated after the 

twilight selection process (black). Dots indicate particles mean positions at each twilight. 

We made the identification of non-obscured twilight events and the consequent selection 

assisted by TwGeos (Wotherspoon et al., 2016) R package. TwGeos operates in four 

steps. 



Materials and methods 

49 

 

 

For each individual, we selected the period of the year in which the geolocator was 

actually carried by the bird (see Figure 3.7), eliminating the eventual light values 

registered before and after that interval (geolocators cannot be turned on or off, but are 

active from when the battery is installed to when it is removed). 

 

Figure 3.7: TwGeos step 1: selection of the correct time span of geolocator measurements. Light 

measurements are shown on a gray scale (white: maximum measurable luminosity, black: no light 

detected).  Red bar shows the selected interval for the subsequent steps. The red bar indicates the interval 

selected on the geolocator data. Full dark values after the beginning of May correspond to a period when 

the geolocator was still activated, but put in a box after its recollection from the bird. 

By clicking on any night point of the graph, TwGeos automatically identifies the sunrise 

and sunset events corresponding to that day (Figure 3.8), associating to each of them the 

(linearly interpolated) time in which the light curve crosses a set threshold before or after 

a night (automatically identified by TwGeos).  

We set this threshold to the minimum value of light detection (1 on 64). 

 



Estimate of barn swallow migratory routes from light level geolocators 

50 

 

 

Figure 3.8: TwGeos step 2: identification of twilight events. Orange and blue dots represent suggested 

sunrises and sunsets respectively. 

In the phase 3, it is possible to manually enter sunrise and sunset events not automatically 

identified in the previous phase 2. This operation is necessary when there are long series 

of missing data in the luminosity measurements (e.g. the geolocator no longer records any 

light value for at least a whole day), because TwGeos fails to detected the twilight events 

before or after prolonged periods of failure of the geolocator light sensor. 

Finally, in the phase 4 TwGeos provides the possibility to review one by one all the 

identified twilight events, in order to manually eliminate the shadowed ones. As 

previously written in this paragraph, this step is crucial for the successful recostruction of 

migration routes with FLightR. Luckly, TwGeos is programmed to facilitate and speed 

up this task as much as possible, showing to the user, in addition to the variation of the 

inter-twilights light measurements (i.e. the light patterns in between different days, see 

Figure 3.9a), the trend of the intra-twilight light curve (i.e. the light patterns within a 

specific day in between sunrise and sunset, see Figure 3.9b), and the possibility of 

contrasting the latter to those of the previous and the following days. In phase 4, many of 

the twilight events that occurred before migration departure (or after migration return) are 

usually deleted, as light patterns close to these events are very disturbed by bird 

movements inside and outside areas surrounding nesting places. Indeed, barn swallows 

are strictly synanthropic during the breeding season, and nest almost exclusively in 

buildings, particuarly barns and cattle sheds, which can clearly “shadow” light curves 

(Turner, 2006). 



Materials and methods 

51 

 

 

 

Figure 3.9: TwGeos step 4. (a) inter-twilight light and hour variation of one individual of the SE population 

(geolocator ID: 5PC). Gray dots represent twilight events that have been discarded after manual processing 

by an expert; (b) intra-twilight light variation for 31 December 2012 sunset (black line), the day before 

(green line) and the day after (purple line). Twilight selection was made by the expert by evaluating the 

light curve near to (~ 40 min) the twilight event (vertical red line). This sunset was kept by the expert since 

it has a pretty smooth decrease in light intensity through time within the day, while the previous one (green 

line) is obscured (with a sudden decrease followed by a revamping) and was removed. The purple sunset is 

a borderline case (we kept it in our selection). 

For each geolocator, we therefore created a TAGS file (the standard input format for 

FlightR, containing the light measurements and the classified twilights events) 

applying the twGeos2TAGS function to the file of classified sunsets and the corresponding 

light measurements of the device.   
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3.2.3 FLightR data analysis 

Each TAGS file was loaded by FLightR using the get.tags.data function and for each 

individual the installation and removal dates of the geolocator were assigned as starting 

and ending simulation days. Tag-specific information about the sensitivity of the light-

sensor, requested by FLightR were set using the log.light.borders function to values of 

[1.2; 4] and log.irradiance.borders to [-2; 2]. Each input was then processed through the 

following procedure. 

Calibration 

Since FLightR estimates positions on the bases of luminosity values, it is important to 

provide it with calibration data, i.e. reference ground-truth values for mapping measured 

light intensity into geolocator registered scores (from 1 to 64). Each geolocator applied 

in 2011 was provided with its own calibration data. These measurements were obtained 

by leaving each device to the side of a building near the Swiss Ornithological Institute in 

Sempach (CH), at the coordinates (47.128203° N; 8.19224° E) for at least three days 

between June 2011 and July 2011. Such data were used to calibrate the geolocators with 

the make.calibration FLightR function. In particular, the variance of the Observed 

Light Measurements log-slope σcalib (see Par. 3.1.3 at page 40) was set to 0.3, a value 

larger than that observed during calibration, but more representative of the conditions 

experienced by the instrument during the migratory routes. In fact, the measurements 

taken during the calibration period were very clean as the instrument was in a position 

with almost no shadowing.  

Calibration data were instead not available for geolocators used in 2010, but it has been 

demonstrated that the data measured by SOI 2.10 and SOI 2.11 geolocator models (used 

for this research) are consistent between instruments (Meier et al., 2018). Therefore, for 

all 2010 devices we therefore used the calibration data of another geolocator applied in 

2011 to one individual of the N population (ID: 3MY). 

Likelihood estimation and particle filter run 

Using the make.grid function, we set the boundaries of the spatial extent of the FLightR 

simulation to [-20° E; 40° E] in longitude and to [-35° N; 55° N] in latitude. This spatial 

range includes all historical records of barn swallows breeding in Italy and Switzerland 
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(Ambrosini et al., 2009). Since barn swallow stationary periods cannot occur in open 

water, we imposed a behavioral mask with a maximum allowed distance of 50 km from 

the coast during stationary periods and of 300 km for migration periods. This latter setting 

allowed including almost all the Mediterranean basin in the analysis, which is reasonable 

as the barn swallows, like several passerines, migrate on a wide front across this sea 

(Ambrosini et al., 2014). 

We then estimated the likelihood of grid positions at each twilight event by providing the 

function make.prerun.object with the light data processed by TwGeos, the results of the 

calibration procedure, the specifications of the spatial extent and the location of 

application and removal of the geolocator from the individual. 

Finally, we launched simulations of the particle filter, using one million particles per 

geolocator (per simulation run) and allowing the use of the information on recapture 

location (know.last = TRUE, precision.sd = 25). 

Estimated routes check  

We then obtained an estimate of the migratory routes performed by the 88 analyzed 

individuals, expressed as a set of statistics (e.g. mean, median, mode, 1st and 3rd 

quartiles) of the positions of the particles at each not discarded twilight event. To visually 

inspected each single route, we plot its mean positions at each twilight event on a 

geographical map, identifying possible outliers (e.g. positions that deviate significantly 

from the direction followed by the individual during migration up to that moment and in 

the following). We then double-checked light curves of twilights events associated to 

possible outliers, and, if we found that they could be shadowed twilights that were 

undetected during the preliminary checks, we further inspected and deleted them. 

3.2.4 Repeatability analysis 

To assess repeatability of different sessions of FLightR on the same classified twilight 

data, we ran 10 times the particle filter procedure of 20 different TAGS files and their 

correspondent posterior probability distributions, obtaining 10 repetitions of 20 individual 

migratory routes. To get an estimate of variation of mean positions among FLightR 

runs, we computed the standard deviation (both for latitude and longitude) between the 
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particles mean position at every single twilight event of the 20 repeated analyses of the 

same geolocator. The mean value of such standard deviations calculated among all 

individuals can be considered as a measure of inter-repetition variability in position and 

therefore as a measure of repeatability of positions estimates by FLightR (Figure 3.10a). 

It is interesting to compare such inter-individual variation with another quantity that we 

refer to as inter-particles variability and defined as follows. First, we computed for each 

run the time series of standard deviations of particles positions at each twilight. Second, 

we averaged such quantities between runs of the same geolocator and, third, between 

geolocators (see Figure 3.10b). Note that all the runs from the same geolocator have 

identical twilight series (because they were runs on the same light data with the same set 

of discarded or non-discarded twilights), while runs on different geolocators do not, 

because i) departures from wintering areas and arrivals to  breeding colonies are not 

synchronous between individuals  and ii) the twilights removal due to shadowing occurs 

erratically for each geolocator.  

We also checked the consistency of the whole routes estimated by different FLightR 

runs by calculating an appropriate overall distance among them (see below). We 

computed the distance both between the ten repeated runs of FLightR from the same 

geolocator (intra-geolocator) and routes from different individuals (inter-geolocator). We 

then used a Mantel test (Sokal and Rohlf, 1995) to assess whether the distances between 

paths repeatedly reconstructed by FlightR for the same individual were significantly 

shorter than those between routes reconstructed for different individuals. The Mantel test 

is a statistical test of correlation between two matrices, commonly used in ecological 

research to test the relationship between a distance matrix (in our case reporting the 

geographical distances between estimated paths) and another distance matrix or an 

explanatory variable (in our case a binary variable indicating whether the two paths were 

estimated from the same geolocator or not). The significance of the correlation between 

the two matrices is then assessed with a randomization procedure whereby some rows 

and column of the two matrices are randomly shuffled and the Pearson correlation 

coefficient is calculated after each permutation. The significance of the test is the 

proportion of such permutations that have a lower correlation coefficient than the one 

computed for the actual (observed) matrices. 
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Figure 3.10: Schematic representation of the procedure used to create the time series from the 10 runs of 

FLightR on 20 different geolocators. The results of each run are represented as vectors along the time (vertical) 

dimension defined by twilight day-of-the-year. Each non-deleted twilight event is represented by its abstract set 

of particle positions. a) Intra-geolocator variation: for each twilight of each run, we calculated the mean position 

of the particles, then we computed the standard deviation within the 10 runs of each geolocator and then averaged 

the results within different geolocators (all those for which data were available for that twilight). b) Intra-run 

variation: for each twilight of each run we computed standard deviation between particle positions, then we 

averaged the results between runs and geolocators. Deleted twilights are treated as missing values while 

averaging between different geolocators. Twilights included in less than four geolocators were discarded. 
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Select a proper distance metric for comparing two spatiotemporal paths, such as migratory 

routes, is far from being easy. For the sake of simplicity, we decided to compare only the 

spatial dimension of the migration routes (i.e. the ‘paths’, as indicated in Ranacher and 

Tzavella, 2014) or the ‘trajectories’if we use the jargon of automation theory), ignoring 

the temporal dynamics of the migration process. This means that if two hypothetical 

individuals followed the same two routes, but traveled in different periods or at different 

speeds, we considered the two routes as identical. This is tenable since the focus of our 

current analysis is the reliability of the path reconstruction by FLightR, without making 

inference on barn swallow migration ecology, which can be investigated only after having 

assessed the reliability of the procedure followed to reconstruct migration routes.  

Selecting a metric to evaluate path distance measure was not a trivial task either. After, 

having explored many possibilities (see e.g. the recent review by Ranacher and Tzavella, 

2014) we adapted to geographical distances the One-Way-Distance (OWD) metric by Lin 

and Su (2005). In details, we computed OWD between route 𝜋𝐴 and route 𝜋𝐵 as follows:  

• we divided both routes in downward (𝜋𝐴,𝑑𝑜𝑤𝑛, 𝜋𝐵,𝑑𝑜𝑤𝑛) and upward (𝜋𝐴,𝑢𝑝, 𝜋𝐵,𝑢𝑝) 

parts, using as separation point for each of the two its minimum mean latitude 

reached by particles as rconstructed by FlightR.  This corresponded to the 

wintering grounds in the large majority of the cases; 

• we then calculated the distance between the two routes in the downard direction 

(𝑑𝐴𝐵,𝑑𝑜𝑤𝑛) as the sum of great circle distances between all mean positions of 

𝜋𝐴,𝑑𝑜𝑤𝑛 and their “corresponding” positions in 𝜋𝐵,𝑑𝑜𝑤𝑛, dividing the result by the 

total length of 𝜋𝐴,𝑑𝑜𝑤𝑛. Corresponding positions are those locations in both paths 

that are closest in a geographical sense (i.e. have minimum great circle distance); 

• we the calculated 𝑑𝐵𝐴,𝑑𝑜𝑤𝑛 using the same procedure as in the previous point, but 

swapping 𝜋𝐴,𝑑𝑜𝑤𝑛 and 𝜋𝐵,𝑑𝑜𝑤𝑛; 

• we computed 𝑂𝑊𝐷𝑑𝑜𝑤𝑛 as 𝑑𝐴𝐵,𝑑𝑜𝑤𝑛 + 𝑑𝐵𝐴,𝑑𝑜𝑤𝑛; 

• we computed OWDup with the same procedure, but using 𝜋𝐴,𝑢𝑝 and 𝜋𝐵,𝑢𝑝; 

• we finally obtained the One-Way-Distance as 𝑂𝑊𝐷𝑑𝑜𝑤𝑛 + 𝑂𝑊𝐷𝑢𝑝. 
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3.2.5 Routes analysis 

Using FLightR estimated mean positions for each geolocator, we analyzed the 

migratory routes at a large scale, comparing seasonal differences in migration routes 

within individuals as well their variation between breeding areas, years and sex classes. 

We selected a set of variables for describing the entire migratory process of the barn 

swallows (Table 3.2). 

Variable 

name 
Description Source 

Sex Sex of the barn swallow (male or female) 
Liechti et al. 

2015 

Year Year of the fall migration (2010 or 2011) 
Liechti et al. 

2015 

Pop Breeding population of the barn swallow (N, SW or SE) 
Liechti et al. 

2015 

DepBC 
Departure date (day-of-the-year) from breeding colony, visually 

determined by inspecting individual light curves 

Liechti et al. 

2015 

DevLon* 

Position index of the route, expressed as the longitude of the location 

which had the maximum deviation from 9°E, a meridian that is 

approximately the average longitude of the three breeding origin 

areas 

Present 

study 

Det* 

Computed as 
M−G

G
 , where M is the actual length of the migration path 

of the individual and G is the great circle distance between the 

breeding colony and wintering site 

Present 

study 

Stat* Total duration of stationary periods during the migration path 
Liechti et al. 

2015 

Speed* 

Migration speed, derived as total length of migration path divided by 

total duration of migration. The latter is computed as the time 

difference between departure and arrival to which it is further 

subtracted the total duration of stationary periods that occurred during 

the route 

Liechti et al. 

2015 + 

present 

study 
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LatWG Latitude of the wintering ground 
Present 

study 

LonWG Longitude of the wintering ground 
Present 

study 

ArrWG 

Arrival to the wintering ground, selected as the first date when 

FLightR mean position was within a distance (chosen to be 50 km, 

see main text) from the mode of the wintering position estimated by 

FLightR 

Present 

study 

ArrBC 
Arrival date to the breeding colony, visually identified by inspecting 

individual light curves 

Liechti et al. 

2015 

Table 3.2: Variables used in the analysis of the migration of the barn swallows described in Par. 3.2.1. The 

asterisk next to the name of a variable indicates that the variable has been calculated both for fall (F) and 

spring (S) migration.  

Although it is possible to derive from FLightR an estimation of the time intervals of 

stationary periods (through which it is also possible to identify arrival and departure dates 

from the wintering ground), we preferred here to retrieve this information using the 

method applied in Liechti et al. (2015), in which they were obtained by direct observation 

of intra-day light variations and the rate of change in sunrise and sunset times. We 

retrieved wintering locations from their median positions estimated by FLightR with 

the function stationary.migration.summary: these results were very similar to those 

estimated by the method of Liechti et al. (2015) (based on GeoLight R package) 

(Pearson correlation coefficient: 𝑟𝑙𝑎𝑡=0.975, 𝑟𝑙𝑜𝑛=0.989; average ± standard deviation of 

differences: lat=1.77±1.75, lon=0.30±0.71). However, it was not possible to get precise 

dates of arrival and departure for wintering periods, as the stationary.migration.summary 

function is significantly influenced by the choice made during twilight events selection. 

Liechti et al. (2015) estimated the date of the first stationary period south of the Sahara, 

but not the date of arrival at the wintering location. We obtained such information here 

using the date of the first twilight event whose average position was within a threshold of 

50 km from the position of the wintering ground. Unfortunately, the (average particles) 

positions of four individuals were never within 50 km of their respective estimated 

wintering location. For these individuals we increased the aforementioned distance 

threshold by steps of 50km, reaching a maximum distance of 300 km with one of them.  
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The identified variables were then sequentially analyzed by linear regression models, 

eventually centering (i.e. subtracting the mean of the group) explanatory variables by sex, 

age or population to reduce collinearity among predictors entered simultaneously in the 

same regression model. For instance, as later shown in Par. 3.3.2 as latitude of wintering 

ground differs between years, we computed the difference between the wintering latitudes 

in a year and the average of the wintering latitudes of the same year and we used this 

difference in the analyzes that included both wintering latitude and year. 

3.3 Results and discussion 

As indicated in Par. 3.2.1, of the 88 analyzed barn swallows geolocators, 22 (25%) 

presented an incomplete series of light measurements, nevertheless including enough data 

to estimate at least the autumn migration route and the position of the wintering location. 

The sample of 20 barn swallows for FLightR repeatability analysis was chosen among 

the 66 geolocators with complete routes. 

The estimated migratory routes (analysed as FLightR particles mean positions) are 

shown in Figure 3.11. Each line corresponds to an individual, while colours identify the 

population of origin of the barn swallows (Blue: SW, Orange: SE, Yellow: N). Four 

individuals reached during their migration the southern part of Africa, an unusual 

destination for Italian and Swiss barn swallows. These southern wintering locations are 

more typical of individuals breeding in Britain or Scandinavia, but were identified also in 

the analysis made by Liechti et al. (2015). 

At the best of our knowledge it is the first time that it is possible to obtain the estimate of 

the migratory routes for such a high number of European passerine birds. It would be 

difficult to analyze the migration patterns at the population level in statistical terms, 

taking into account the uncertainty associated to each position of each individual. 

Therefore, before going deeper with further considerations about the routes, it is 

necessary to investigate the reliability of this result, analyzing the repeatability and the 

uncertainty of the FLightR estimates. 



Estimate of barn swallow migratory routes from light level geolocators 

60 

 

 

Figure 3.11: Reconstruction of the 88 fall (66 spring) barn swallow routes estimated using FLightR. Each 

line connects mean positions of a single individual at each twilight. Color refers to population of origin 

(Blue: SW, Orange: SE, Yellow: N). 
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3.3.1 Inter-repetition variability vs inter-particle variability 

Figure 3.12 shows the global averages (both inter-repetitions and inter-geolocators; 

continuous lines) of (mean particles) positions in latitude (a) and longitude (b), contoured 

by the geolocators averages of inter-repetition variability (i.e. the inter-repetition standard 

deviation between particles mean positions; colored area) and inter-particle variability 

(i.e. inter-particle standard deviation averaged on each repetition and on each geolocator; 

dotted lines). An its careful observation reveals some incongruences:  the average position 

is never perfectly stationary, even during the wintering period; mean latitude can decrease 

during spring migration; final average position does not correspond exactly to starting 

position (i.e. the breeding colony). These facts are mainly caused by the different number 

of geolocators (i.e. the sample size) used to estimate the average position at each twilight. 

Indeed, some twilights recorded by some geolocators may have been excluded because 

shadowed. To generate the two plots in Figure 3.12, we discarded twilight events 

contained in three or less geolocators, replacing them with the linear interpolation of 

neighboring values. We applied a moving average of 10 twilight events to the global 

average position (continuous line) to smooth out high frequency oscillations due to the 

different number of the sample for each twilight event. 

In line with the known problems of geolocators inaccuracy (see Par. 3.1.1), FLightR 

results show greater uncertainty in latitude estimation, where the inter-particle variability 

(dotted lines) reach 4.5° near the autumn equinox (black vertical line on the left). This 

uncertainty is smaller (less than 1°) during barn swallows staging periods (July-August: 

birds are still in their breeding colonies; end of October – middle January: birds are in 

their wintering grounds), growing significantly during migration movements, where the 

proximity to the dates of the equinoxes becomes also relevant. The figure, however, 

shows that this uncertainty is relatively small with respect to the large latitudinal range 

covered by barn swallows through their migratory journeys.  
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Figure 3.12: (a) Plot of FLightR average variability on estimated average latitude over time. Continuous line 

represents particles mean latitude computed at each twilight event averaged on all the repetitions of all the 

geolocators, smoothed with a 10 twilights mobile window. Dotted lines show FLightR inter-particles 

variability (standard deviation of particles latitude → mean between the different repetitions of the same 

geolocator → mean between the different geolocators). Colored area represents FLightR inter-repetition 

variability (mean of particles latitude → standard deviation between the different repetitions of the same 

geolocator → mean between the different geolocators). Data are temporally aligned to twilight date and time as 

shown in Figure 3.10. (b) Same as (a), but for FLightR longitude estimate. 
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The inter-particle variability in longitudes (Figure 3.12b, dotted lines) have a smaller 

range, remaining lower than 0.5° during the residential periods and reaching a peak of 

almost 1.5° at the end of spring migration. As with latitude, the inter-particle variability 

is of an order of magnitude lower than the average variation of the positions during the 

annual migration cycle (continuous line). 

The inter-repetition variability (colored areas) is always less than or equal to the inter-

particle variability (dotted lines), both in latitude and longitude. The only exception is 

represented by the first twilights of July, where a single run of the analyses of one 

geolocator estimated a departure date for fall migration five days earlier than that 

estimated in the other repetitions, resulting in five positions very far from those of all the 

other runs of the same geolocator. The migration route estimated in this particular 

repetition, however, was substantially consistent with the general migration pattern of all 

the others during the rest of migration. 

The analysis at the level of the whole migratory paths indicated that different estimates 

from the migration routes of the same individuals were significantly more similar (i.e are 

at a shorted OWD to one another) than those from different individuals (mean ± SD inter-

geolocator OWD: 24.46±11.96, intra-geolocator: 3.44±2.34; Mantel test: rM = -0.350, p 

< 0.001, number of permutations: 999), as also clearly shown in Figure 3.13. 

 

Figure 3.13: Boxplot of One-Way-Distances measured between routes estimated by FLightR from 

different individuals (Inter-geolocator) and between repeated estimates of routes of the same individual 

(Intra-geolocator). 
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From these analyzes it emerges that FLightR variability (both inter-particles and inter-

repetitions) remains in a rather small range with respect to the scale of the movements 

performed by the barns swallow during their migration. In addition, the mean particle 

position obtained from a single run of analysis is a consistent estimator of the mean 

position that could be obtained with different runs on the same data. This suggests that 

any improvement in the precision of estimated positions could be obtained by running 

FLightR with a higher number of particles (e.g.: 107 instead of 106) during the filtering 

process rather than replicating the whole analysis with a lower number of run and then 

averaging the positions obtained at each run. 

3.3.2 Analysis of migration routes 

Migration routes and within individual variation 

The migratory routes showed that barn swallows of our populations generally tend to  

migrate along a clockwise loop pattern, with many individuals that shifted from the 

central Afro-Palearctic flyway (roughly corresponding to Tunisia, east Algeria, Niger) 

during fall migration to the western Afro-Palearctic flyway (roughly corresponding to 

Mali, Mauritania, Morocco, west Algeria) during spring migration. Indeed, in terms of 

maximum longitude deviations from our focal meridian at 9°E positions visited by 

individuals during fall migration were significantly shifted westwards than those of spring 

migration (DevLonF vs DevLonS paired samples t-test: t65 = -4.388, p < 0.001). Also, a 

characteristic of fall migration is that individuals followed a more direct north-south 

direction with respect to spring migration, as clearly indicated by a significantly lower 

detour index (DetF vs DetS, paired samples t-test: t65 = -3.882, p < 0.001). 

The seasonal longitude shift clearly emerges even visually from of Figure 3.14 which 

details the temporal variation of the inter-geolocator average both for latitude and 

longitude, divided by population of origin (colors) and by year of migration (line style). 

The phenomenon of westwards shifts is much more intense in the migration cycle started 

in 2010 (continuous lines), and it seems to be consistent between the North, South East 

and South West groups, since there are no statistically significant variations between the 

different populations of origin.  
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Figure 3.14: Time variations of the inter-individual mean latitudes and longitudes, derived from FLightR 

mean particle positions. Solid and dotted lines represent geolocators deployed in 2010 and 2011, 

respectively. Twilight events of all the geolocators are temporally aligned according to their date and time, 

in the same way we did to align data in the repeatability analysis in Par. 3.2.4. To perform the calculations 

using the same number of individuals at each twilight event, we used the position of the last available 

twilight as a proxy of position of an individual at any possibly deleted twilight. The number of individuals 

for each combination of year and population is summarized in Table 3.1, at page 47. 

Interestingly, the index of the position of migration routes (DevLon) showed a clearly 

bimodal distribution both during fall and spring migration (Figure 3.15a). Individuals 

seem not to follow consistently routes to the east or the west of 9°E during fall and spring 

migration (χ21 = 2.082, p = 0.149, N = 66 individuals), and position indices were 

positively correlated (r = 0.316, p = 0.010). This occurred because many individuals 

approximately followed the same routes during fall and spring migration (41 dots, i.e. 

62%, in the down-left and up-right quadrant in Figure 3.15b) while others shifted from a 

central to an eastern route (7 dots, 11% in the up-left quadrant) or from an eastern to a 

central one (down-right quadrant). 
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Figure 3.15: (a) Index of longitude of migration routes calculated as the longitude of the position that 

deviated most from the focal longitude 9 °E  Orange bars represent fall migration, green bars spring 

migration. The vertical dashed line indicates 9 °E. (b) Position indices of fall and spring migration routes 

of the same individuals, indicated as the longitude of each route that differed most from 9 °E. 

Figure 3.16 provides a schematic representation of the migration routes followed by 

individuals of each of the four groups of Figure 3.15. A multinomial test showed that the 

frequency distribution of individuals classified into the different routes differed among 

breeding population (LR-test: χ26 = 13.714, p = 0.033), with more individuals that 

consistently followed central routes in both fall and spring migrations in the SE and N 

populations, but not between years or sexes (χ23 ≤ 0.001, p ≥ 0.999).  
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Figure 3.16: Schematic representation of the four groups of migration routes. Orange lines represent mean 

longitudes calculated for each belt of 5° latitude during fall migration and the orange polygon one standard 

deviation in longitude around that mean. Green lines and polygons represent the mean longitude and one 

standard deviation around it during spring migration. Dashed red line represents the focal 9°E meridian. 
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Fall migration 

Departure time from the breeding colony differed between sexes and years but not 

between populations (Table 3.3). In particular, males departed on average 3 days later 

than females, while individuals tracked in 2011 departed on average 4 days earlier respect 

to 2010 individuals .We therefore centered departure time from the breeding colony to 

the mean value of each year by sex group, so that values of this variable reflect the 

deviation of departure date of an individual from its group and added this variable to 

regression model of maximum deviation in longitude from 9°E. This latter variable, 

however, did not significantly vary according to any predictor. Similarly, detour index 

did not vary according to the same set of predictors.  

In contrast, the total duration of stationary periods before the arrival to the final wintering 

location decreased with departure date from the breeding colony, indicating that 

individuals that departed later (with respect to their year by sex group) spent less time in 

stationary sites. This result held also when we repeated the analyses excluding the four 

individuals with a wintering residence area in southern Africa (other details not shown). 

In addition, total duration of the stationary periods did not differ between individuals that 

reached southern Africa and those that spent the wintering season in central Africa (t-test: 

t3.372 = -0.520, p = 0.635). 

Speed of fall migration (excluding stationary periods) did not change according to any 

predictor, and this was true also for excluded individuals that reached southern Africa 

(details not shown). Indeed, migration speed did not either differ between individuals that 

reached southern Africa and those that spent the wintering season in central Africa (t-test: 

t4.367 = -0.861, p = 0.434).  

In contrast, and interestingly, latitude and longitude of the wintering grounds did 

significantly differ between years only (Table 3.3), both including and excluding the four 

individuals that reached the southern of Africa (details not shown). We therefore centered 

latitude and longitude of the wintering residence areas by year and entered this variable 

in the analysis of the date of arrival to the wintering residence areas. This latter analysis 

indicated that the arrival date strongly depended on departure date from the breeding 

colony and on the length of stationary periods during fall migration. All these results did 

not change excluding from the analysis the four individuals that reached southern Africa. 
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 Indeed, their arrival date to the wintering ground did not differ significantly from that of 

the individuals that ended their migration at more northern latitudes (t-test: t3.628 = -0.527, 

p = 0.629). 

 

 F DF P Least-square means (SE) 

Departure from the breeding colony (DepBC)  

 Sex 5.001 1,81 0.028 M: 251.11 (0.85) F: 247.97 (1.21) 

 Year 9.742 1,81 0.002 A: 251.95 (1.00) B: 247.13 (1.17) 

 Population 0.047 2,81 0.954 SE: 234.31 (1.67) SW: 249.85 (1.21) N: 249.50 (1.05) 

Maximum deviation in longitude from 9° E during fall migration (devLonF) 

 Sex 0.421 1,80 0.518 M: -0.987 (1.417) F: -2.513 (2.019) 

 Year 0.827 1,80 0.366 A: -2.922 (1.675) B: -0.579 (1.958) 

 Population 0.716 2,80 0.420 SE: 0.824 (2.789) SW: -3.070 (2.027) N: -3.004 (1.753) 

 cDepBC 0.190 1,80 0.664 Coef: -0.081 (0.186) 

Detour index during fall migration (DetF) 

 Sex 1.358 1,80 0.247 M: 0.221 (0.017) F: 0.254 (0.025) 

 Year 0.562 1,80 0.456 A: 0.226 (0.020) B: 0.249 (0.024) 

 Population 0.380 2,80 0.685 SE: 0.225 (0.034) SW: 0.233 (0.025) N: 0.254 (0.021) 

 cDepBC 2.652 1,80 0.107 Coef: -0.003 (0.002) 

Total duration of stationary periods before arrival to the wintering grounds (StatF) 

 Sex 0.091 1,79 0.764 M: 39.524 (4.482) F: 41.524 (6.397) 

 Year 0.332 1,79 0.566 A: 42.746 (5.285) B: 38.048 (6.192) 

 Population 1.719 2,79 0.186 SE: 31.597 (8.795) SW: 39.489 (6.392) N: 49.745 (5.563) 

 c-DepBC 7.041 1,79  0.010 Coef: -1.578 (0.595) 

 DetF 3.771 1,79 0.056  Coef: 56.140 (28.908) 

Fall migration speed (SpeedF) 

 Sex 0.271 1,78 0.604 M: 258.937 (15.253) F: 245.753 (21.662) 

 Year 0.061 1,78 0.805 A: 255.766 (17.888) B: 248.924 (21.056) 

 Population 0.148 2,78 0.862 SE: 255.559 (30.106)  SW: 257.718 (21.675)  N: 243.758 (18.978) 

 c-DepBC 0.059 1,78  0.808 Coef: -0.511 (2.100) 

 DetF 1.225 1,78 0.268  Coef: -111.723 (100.137) 

 StatF 1.946 1,78 0.167 Coef: 0.531 (0.381) 
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Latitude of the wintering ground 

 Sex 1.094 1,77 0.299 M: 2.903 (1.058) F: 4.742 (1.503) 

 Year 7.107 1,77 0.009 A: 6.378 (1.240) B: 1.267 (1.460) 

 Population 0.980 2,77 0.387 SE: 2.514 (2.087) SW: 5.532 (1.503) N: 3.421 (1.318) 

 c-DepBC 0.334 1,77 0.565 Coef: -0.084 (0.146) 

 DetourF 0.864 1,77 0.355  Coef: 6.507 (6.998) 

 c-StatF 0.011 1,77 0.916 Coef: -0.003 (0.027) 

 SpeedF 0.193 1,77 0.662 Coef: -0.003 (0.008) 

Longitude of the wintering ground  

 Sex 0.667 1,77 0.417 M: 13.900 (0.765) F: 12.862 (1.086) 

 Year 5.745 1,77 0.019 A: 11.721 (0.897) B: 15.042 (1.055) 

 Population 0.527 2,77 0.592 SE: 14.465 (1.509) SW: 12.537 (1.086) N: 13.142 (0.953) 

 c-DepBC 0.024 1,77 0.876 Coef: 0.016 (0.105) 

 DetourF 3.049 1,77 0.085  Coef: -8.831 (5.058) 

 c- StatF 3.089 1,77 0.083 Coef: 0.034 (0.019) 

 SpeedF 0.015 1,77 0.903 Coef: 0.001 (0.006) 

Arrival date to the wintering ground (ArrWG) 

 Sex 3.926 1,75 0.051 M: 321.466 (0.595) F: 319.501 (0.844) 

 Year 1.721 1,75 0.194 A: 321.187 (0.694) B: 319.780 (0.817) 

 Population 0.369 2,75 0.693 SE: 320.949 (1.172) SW: 320.602 (0.849) N: 319.900 (0.738) 

 c-DepBC 154.547 1,75 < 0.001 Coef: 1.016 (0.082) 

 DetourF 13.044 1,75 < 0.001  Coef: 14.418 (3.992) 

 c-StatF 4148.266 1,75 < 0.001 Coef: 0.988 (0.015) 

 c-LatWG 40.770 1,75 < 0.001 Coef: -0.478 (0.075) 

 c-LonWG 0.020 1,75 0.888 Coef: 0.015 (0.104) 

 SpeedPost 261.500 1,75 < 0.001 Coef: -0.071 (0.004) 

Table 3.3: Post-breeding migration. Different letters indicate significant (P < 0.05) pairwise differences at 

post-hoc tests. 

Spring migration 

Interestingly, departure time from the wintering location at spring is related to the arrival 

date in Africa in the previous fall (Table 3.4). More precisely, individuals that arrived 

later to the wintering ground from fall migration, also tended to depart later. In fact, the 

regression coefficient for this variable also differed significantly from one (t80 = -5.391, 

p < 0.001), indicating that individuals that arrive late from fall migration tend to spend 
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less time in the wintering ground. These results did not change when the analyzed data 

did not include the four individuals that reached southern Africa (details not shown), also 

because their departure date from the wintering ground did not differ from those of the 

other individuals (t-test: t3.628 = -0.527, p = 0.629).  

Maximum deviation in longitude from 9° E during spring migration significantly differed 

between years, with individuals following more western routes in 2011 than in 2012. In 

addition, individuals that have eastern wintering grounds tended to follow more eastern 

routes during spring migration, independently of the between-years difference in the 

average position of the wintering grounds. These results held also excluding the four 

individuals that spent the boreal winter in southern Africa, which had more easterly 

wintering grounds than those that spent the boreal winter at more northerly latitudes 

(mean longitudes ± SE were respectively 22.863 ± 2.530°E and 13.095 ± 0.605°E; t3.353 

= -3.755, p = 0.027), but followed routes than did not deviate from 9 °E more than those 

of the other individuals (t3.129 = -1.766, p = 0.172). However, the analyses that excluded 

these individuals, revealed also significant differences in route position between 

populations (F1,54 = 4.233, p = 0.020), with individuals breeding in the SE area migrating 

along more eastern routes than those from the other areas (t ≤ -2.652, p ≤ 0.027 at post 

hoc tests). It is worth noticing that the longitudinal difference between the SE and the SW 

or N areas is lower than 2 degrees, thus is very negligible compared to the longitudinal 

distance between the eastern routes emerged during migration. In addition, this analysis 

also revealed a significant increase in maximum deviation from 9° E with latitude of the 

wintering ground (Coef: 0.959 ± 0.368 SE, F1,54 = 6.665, p = 0.013). In contrast, the detour 

index did not change according to any variable, and this was true also excluding the four 

individuals that reached southern Africa (details not shown).  

The total duration of the stationary periods during the spring migration changed with 

departure date from the wintering ground and also with its longitude. This result did not 

change also excluding the four individuals that reached southern Africa (details not 

shown). In particular, individuals that departed later from Africa tended to stopover less. 

The regression coefficient also did not differ much from -1 (t57 = -1.122, p = 0.267), 

implying that each delay of one day in the departure from the wintering ground 

determines on average a reduction of approximately one day in the time spent at stopover 



Estimate of barn swallow migratory routes from light level geolocators 

72 

 

sites during spring migration. In addition, individuals that spent the boreal winter in more 

eastern wintering locations (that chose a more eastern spring migration routes as we said) 

also tended to stopover less.  

Spring migration speed changed according to i) departure date from the wintering ground, 

ii) length of the detour of the spring migration route, and iii) time spent at stopover sites. 

In particular, individuals that departed later and spent more time at stopover sites, 

migrated faster, while those that made longer detours tended to migrate slower. These 

results held also when we excluded the four individuals that reached southern Africa. 

However, this analysis revealed also a significant relationship between migration speed 

and latitude of the wintering location, with individuals breeding to more northern latitudes 

that also tended to migrate faster (Coef: 16.028 ± 6.637 SE, F1,51 = 5.831, p = 0.019).  

Arrival date to the European breeding colony from African wintering sites did not differ 

between sexes nor with the breeding areas, but it was earlier in 2011 than in 2012. In 

addition, individuals that departed later from wintering sites, made longer detours and 

spent more time at stopover sites also arrived later, while those that migrated faster and 

had wintering grounds located more at north arrived earlier to the breeding grounds, 

independently of the difference between years in the average position of the wintering 

grounds. The regression coefficients associated to departure date and time at stopover 

sites, however, also not differed from one (t54 ≤ -3.000, p ≤ 0.004), implying that, any 

delay of one day in departure from the breeding colony and any day spent in stopover 

areas determines a delay of less than one day in the arrival to the breeding colony. In other 

words, our results suggest that individuals compensate for later departure or longer 

stopover by accelerating migration progression. These results also held when we excluded 

in the analyses the four individuals with wintering grounds in southern Africa (details not 

shown). 
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 F DF P Least-square means (SE) 

Departure from the wintering ground (DepWG)  

 Sex 0.338 1,80 0.653 M: 388.877 (4.633) F: 393.459 (6.739) 

 Year 1.924 1,80 0.169 A: 385.308 (5.547) B: 397.029 (6.383) 

 Population 0.450 2,80 0.639 SE: 386.817 (9.158) SW: 290.351 (6.689) N: 396.297 (5.583) 

 ArrSRA 10.969 1,80 0.001 Coef: 0.380 (0.115) 

 c-LatSRA 0.000 1,80 0.993 Coef: 0.005 (0.588) 

 c-LonSRA 2.651 1,80 0.107 Coef: 1.293 (0.794) 

Maximum deviation in longitude from 9° E during spring migration (devLonS) 

 Sex 0.001 1,58 0.981 M: -7.009 (1.514) F: -7.075 (2.2356) 

 Year 9.940 1,58 0.003 A: -11.130 (1.833) B: -2.953 (1.899) 

 Population 2.821 2,58 0.068 SE: -2.044 (2.749) SW: -9.334 (2.137) N: -9.747 (1.928) 

 DepWG 0.040 1,58 0.850 Coef: 0.010 (0.052) 

 c-LatWG 0.121 1,58 0.730 Coef:- 0.062 (0.178) 

 c-LonWG 10.140 1,58 0.002 Coef: 0.899 (0.282) 

Detour index during autumn migration (DetF) 

 Sex 0.379 1,58 0.540 M: 0.359 (0.032) F: 0.324 (0.047) 

 Year 1.131 1,58 0.292 A: 0.370 (0.039) B: 0.313 (0.040) 

 Population 1.060 2,58 0.353 SE: 0.278 (0.058) SW: 0.381 (0.045) N: 0.365 (0.041) 

 DepWG 0.250 1,58 0.620 Coef: 0.001 (0.001) 

 c-LatWG 0.604 1,58 0.440 Coef: 0.003 (0.004) 

 c-LonWG 0.702 1,58 0.406 Coef: -0.005 (0.006) 

Total duration of stationary periods during spring migration (StatS) 

 Sex 0.338 1,57 0.563 M: 38.892 (2.401) F: 41.404 (3.565) 

 Year 3.604 1,57 0.063 A: 36.205 (2.909) B: 44.091 (3.053) 

 Population 0.885 2,57 0.418 SE: 38.863 (4.440) SW: 38.037 (3.396) N: 43.544 (3.059) 

 DepWG 124.136 1,57 < 0.001 Coef: -0.908 (0.082) 

 c-LatWG 0.470 1,57 0.496 Coef: -0.195 (0.284) 

 c-LonWG 4.932 1,57 0.030 Coef: -1.001 (0.451) 

 DetF 0.051 1,57 0.822  Coef: -2.238 (9.910) 
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Spring migration speed (SpeedF) 

 Sex 2.093 1,55 0.154 M: 327.909 (23.497) F: 264.293 (35.799) 

 Year 0.014 1,55 0.906 A: 298.550 (28.483) B: 293.652 (30.042) 

 Population 1.359 2,55 0.266 SE: 325.483 (42.652)   SW: 312.310 (32.693)    N: 250.511 (31.767) 

 DepWG 11.560 1,55 0.001 Coef: 6.323 (1.860) 

 c-LatSRA 3.355 1,55 0.072 Coef: 5.016 (2.738) 

 c-LonSRA 0.218 1,55 0.642 Coef: 2.166 (4.634) 

 DetS 9.393 1,55 0.003  Coef: -293.200 (95.669) 

 StatS 15.166 1,55 < 0.001 Coef: 6.523 (1.675) 

Arrival date to the breeding colony 

 Sex 0.518 1,54 0.475 M: 470.108 (0.752) F: 469.088 (1.145) 

 Year 17.123 1,54 < 0.001 A: 466.900 (0.902) B: 472.296 (0.952) 

 Population 0.152 2,54 0.859 SE: 469.095 (1.354) SW: 470.030 (1.036) N: 469.670 (1.030) 

 DepWG 147.841 1,54 < 0.001 Coef: 0.788 (0.065) 

 c-LatWG 29.384 1,54 < 0.001 Coef: -0.484 (0.089) 

 c-LonWG 1.041 1,54 0.312 Coef: 0.150 (0.147) 

 DetS 61.417 1,54 < 0.001 Coef: 25.687 (3.278) 

 StatS 187.331 1,54 < 0.001 Coef: 0.820 (0.060) 

 SpeedS 43.378 1,54 < 0.001 Coef: -0.028 (0.004) 

Table 3.4: Pre-breeding migration. Different letters indicate significant (P < 0.05) pairwise differences at 

post-hoc tests. 

3.4 Conclusions 

The present work allowed for the first time to reconstruct the migration routes of a large 

set (88 individuals) of barn swallows. Knowing the routes traveled by migratory birds is 

important information for ornithological and ecological studies. For centuries scholars 

have been able to observe these species in their areas of reproduction or wintering, 

without having any chance of inspecting in detail their migratory movements. The 

technological innovations of the last two decades have instead made it possible to install 

new IT devices directly on individuals, even in cases of light passerine birds like Hirundo 

rustica, obtaining the first reconstructions of the routes. The only tags that can be carried 

by most migratory species are geolocators, which only provide a proxy of birds’ positions. 

As clarified step by step in this thesis chapter, reconstructing the routes traveled by the 
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birds from light measurements is a complex procedure, which requires the expert-guided 

use of dedicated modeling and statistical frameworks. 

In this chapter we have reconstructed the migratory routes of 88 swallows, studied over 

two years and by three different populations. We used FLightR software, testing the 

consistency of the estimated positions on multiple repetitions of the analysis on the same 

inputs by the means of a repeatability analysis. The results are consistent with each other 

and with a previous study that identified the stationary periods of the studied individuals. 

The reconstruction of the routes made it possible to analyze the migration patterns of the 

barn swallows under examination, identifying four different groups of migrants according 

to the route taken during their autumn and spring trips. Regression analysis on route 

indices revealed that the year of migration has a significant effect on wintering grounds 

location and spring route westward deviation, while there is less influence from the 

population or sex of the individual.  This result could suggest a possible influence of the 

meteorological conditions encountered by the birds on their routes.
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4 AUTOMATIC TWILIGHT 

SELECTION BY MACHINE 

LEARNING TECHNIQUES 

4.1 Introduction 

As seen in Chapter 3, FLightR bases routes estimation procedure on light values 

measured by the geolocators around twilight events. Each recorded twilight event that 

shows unnatural temporal variation of light levels around twilight (e.g. too abrupt changes 

of luminosity in short periods of time or non-monotonical changes of luminosity nearby 

darkness situations at twilights) need to be manually removed by an expert operating a 

visual selection. If this operation was not performed correctly, the reconstruction of the 

routes would be strongly influenced by shadowed twilight events, which are responsible 

of producing a highly distorted estimate of the geographical positions (see again Figure 

3.6 at page 48). 

To track the geographic locations visited by a single bird along its annual migration path, 

the manual selection described in Par. 3.2.2 at page 47 required for the study cases of the 

present thesis the unassisted visual inspection of at least 600 twilight events per 

individual, that is around fifty thousand data: quite a cumbersome and time consuming 

task. That is why some R packages have been developed to partially assist the user during 

this procedure. We described in Par. 3.2.2 software TwGeos, that automatically identifies 



Automatic twilight selection by machine learning techniques 

78 

 

twilight events using a threshold method and easily displays light variations occurring 

during all sunrises or sunsets. Despite the help provided by TWGeos, the manual selection 

further needed to pre-process raw data remains quite a slow and delicate operation. On 

average, an entire day of work of an expert user is required to visually classify the twilight 

events of few geolocators. The expert  discriminates between noisy (shadowed) and 

natural twilight events by inspecting two different patterns:  the variation of light intensity 

values after sunrise/before sunset as measured by the geolocators at the focal day i, and 

the smoothness of the day by day variation of dawns and sunsets hours around day i. 

Reformulating the problem from a statistical learning point of view, the identification of 

valid twilight events can be interpreted as a binary classification task (keep datum vs 

discard datum) from a set of numerical variables (‘features’).  

In order to obtain a substantial training dataset, we used here the above described more 

than one hundred geolocators tracks of barn swallows during fall and spring migration, 

resulting in the identification and manually classifying about 40’000 twilight events. 

Thanks to such an abundance of data, we could therefore apply, in addition to standard 

linear classifiers as Logistic Regression (LR), machine learning classification algorithms 

such as Random Forest (RF) and Deep Neural Network (DNN). From geolocator light 

measurements and the hours of the previously identified twilight events we build the 

features used as inputs by the classifiers. Finally, we tested the reliability of algorithms 

predictions by estimating from their classification output the migration route traveled by 

four target individuals, comparing them to the one originated from the expert selected 

twilights. 

4.2 Materials and Methods 

4.2.1 Processing of geolocators data 

We relied on 65 SOI-GDL2.10 and 43 SOI-GDL2.11 geolocators data (Swiss 

Ornithological Inst., www.vogelwarte.ch/indirect-trackinggeolocator.html), the large 

majority of which were used in the ornithological study of Liechti et al. (2015) and in the 

work presented in Chapter 3. In the previous chapter we did not analyze all this dataset 

because some geolocators presented insufficient light data to estimate at least the fall 

migration route (5 individuals) or because the equipped barn swallows will be subjects of 

other ornithological studies not treated in this thesis (15 individuals). 
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SOI-GDL geolocators detect the light intensity every minute and store its average 

measure every five minutes by assigning an integer value on a scale between 0 (full dark) 

and 64 (maximum detectable luminosity). Each geolocator in the dataset registered an 

average of 381±144 twilight events, providing a total amount of 39572 twilight events. 

Using the same procedure explained in Par. 3.2.2, we used TwGeos R package to pre-

process raw data, manually inspecting every suggested twilight event by labeling with 1 

(= discard) those that showed light curves that were too different from the 'natural' ones 

(i.e. those that would be measured if the geolocator was placed in an open air location at 

the same geographical position, see again Figure 3.4) and/or whose timing differed in an 

inconsistent way from that of the corresponding events occurred the days before or after 

the focal date. As we noticed that the classification of certain twilights could be somewhat 

uncertain even for an expert (i.e. the light curve shows an intermediate pattern between 

the natural variation of accepted twilights and the luminosity increases of shadowed 

events) we re-classified the twilight events registered by the geolocators of four 

individuals of 2012 migration (the only ones of this year, see Par. 3.2.1), using them as 

target cases. The twilight events of these geolocators were not used in any phase of the 

ML algorithms construction (training, validation and test). We used the target set of 

twilight data only to test the repeatability of the expert classification and the ones 

performed by the ML algorithms by assessing the values of Interclass Correlation 

Coefficient (Shrout and Fleiss, 1979), usually defined, in the framework of random 

effects models, as the proportion of the total variance accounted for by differences among 

groups (aka classes, in statistical terminology): 

𝐼𝐶𝐶 =
𝜎𝐺

2

𝜎𝐺
2 + 𝜎𝑅

2 

where 𝜎𝐺
2 is the between-group variance and 𝜎𝑅

2 is the residual variance of the model. 

Repeatability can be interpreted as the expected within-group correlation among 

measurements (Sokal and Rohlf, 1995). In our case, the response variable is the binary 

twilight selection (‘keep’ = 0, ‘discard’ = 1, as labeled in TAGS file format, see Par. 

3.2.2), while the geolocator ID and the twilight event ID are inserted as nested random 

effects (twilightID nested within geolocatorID). We computed ICC values from a 
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generalized linear mixed model assuming a binomial data distribution with logit link 

function, built with lme4 R package (Bates et al., 2015). 

4.2.2 Features selection 

The above described manual classification of thousands of twilight events evidenced that 

the predominant part of expert’s choice was based on shapes of light curves in the close 

proximity to every single twilight event. Therefore, we selected as first relevant features 

for our machine learning algorithm the eight light measurements of each geolocator 

(intra-twilights luminosity measurements) either following sunrise or preceding sunset. 

For the large majority of twilight events, it was often sufficient for the expert to inspect 

the plot of such eight values in order to discriminate between reliable (natural) and 

unreliable (shadowed) data. A regular variation of intra-twilights light intensity is a 

necessary, yet not sufficient condition for accepting the recorded datum: some dusks and 

dawns had in fact to be more closely evaluated by the expert, who contrasted their timings 

to those recorded in nearby days (Figure 4.1). 

 

Figure 4.1: Light measurements of a light level geolocator visualized using TwGeos R package. x-axis 

represents date of the year, y-axis the hour of the day. Values on the gray scale represent light intensity 

measured by the geolocator. Orange and blue dots show the timing of twilights (sunrises and sunsets hours) 

as identified by TwGeos. We highlighted a late sunrise (yellow point) and an early sunset (cerulean point), 

and three probable phases of barn swallow annual phenological cycle: fall migration (yellow rectangle), 

spring migration (green rectangle) and the spring stay at the breeding colony (purple rectangle). 

As additional input variables for our classifier, we therefore added the exact timing of all 

twilight events occurring in a nine-day window surrounding the focal event (i.e. day i ± 
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4 days). Finally, to help the algorithm capturing the procedure used by the expert in the 

classification process, we added the following other four input variables that qualify 

different properties of the twilight hours:  

1) the time difference between the twilight timing of the focal day 𝑖 and the 

average twilight timings of top 50% of earliest sunrises/latest sunsets in a 

mobile window of nine days centered at day 𝑖 (i.e., focal day ± 4 days). 

The aim of this variable is to identify the twilight events that occur at very 

different times from neighbors (generally late sunrises and early sunsets, 

see Figure 4.1); 

2) same as 1), but with the average twilight timing computed over a mobile 

window of 19 days (i.e., focal day ± 9 days) to identify outliers on a wider 

time span;  

3) the standard deviation of night duration on a mobile window of 9 days 

(i.e., focal day ± 4 days). This variable was selected to easily identify the 

twilight events of the periods in which a bird was at its breeding colony, 

because pattern of sunrise and sunset times is very variable in that period 

(see again Figure 4.1) due to the shadowing caused by the buildings where 

the barn swallows rest during the night. During manual classification 

procedure we discarded many of these twilight events; 

4) the residual of a linear regression on twilight timings (either sunrises or 

sunsets) on a mobile window of 9 days (i.e., focal day ± 4 days). In this 

way, it is possible to identify outliers during the migration periods, where 

the sunrise and sunset times change considerably, but regularly, from one 

day to another (see again Figure 4.1). 

4.2.3 Machine learning classifiers 

Following the traditional machine learning terminology, the task we are dealing with is a 

supervised learning problem, more precisely a binary classification. It consists basically 

in splitting the elements of a given set (twilights, in this case) into two groups based on 

characteristics of the features of each element. The algorithms used to train classifiers 

require a dataset where each sample is qualified by its features and is already categorized. 
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Starting from these data, supervised learning techniques may allow to train a model 

predicting which group each twilight belongs to. 

First, we implemented a Logistic Regression (hereafter LR), a simple classifier which 

takes a decision on the basis of a value resulting from a linear combination of the features 

(Cox, 1958). From a visual point of view, a linear classifier simply splits the high-

dimensional feature space with a hyperplane and the classification of each sample is based 

on the positioning of its features relative to a linear decision boundary. Because of their 

simplicity and roughness, linear classifiers are nowadays mainly used as benchmark for 

a fair comparison with other, more articulated models. 

Next, we introduced two more advanced non-linear machine learning models which allow 

to efficiently deal with problems where classes are not linearly separable: a Random 

Forest (hereafter RF; Ho, 1995) and a Deep Neural Network (hereafter DNN; Bengio, 

2009).  

The RF is an ensemble of classification trees: each tree is an algorithm that performs a 

recursive partition of the feature space, here performed by a Boolean test on a single 

variable at each node. As a direct consequence, the feature space in each tree is separated 

by orthogonal hyperplanes, which results in box-like decision (Biau and Scornet, 2015). 

Each classification tree is made on a random subset (both on instances and features) of 

the training dataset. The algorithm that build the tree operates with a top-down procedure, 

choosing at each step the variable that performs the best split of the data by the means of 

an evaluation function. In particular, we implemented the RF using the Gini impurity as 

evaluation function1. Finally, the RF performs the classification on each single item 

selecting the most recurrent class in trees decisions (Figure 4.2). 

                                                 

 

 

 

 

1 The algorithm of a classification tree computes Gini impurity for each partitions split (‘leaf’). Given a set 

of objects of different classes, Gini impurity is defined as the probability of obtaining two objects of 

different classes by a random sample on the set (i.e. the probability of sampling a discarded and a kept 

twilight event from the same leaf). The Gini impurity value for the whole tree is obtained by averaging 

leaves impurities, weighted by the number of objects of each leaf. 



Materials and Methods 

83 

 

 

 

Figure 4.2: A schematic representation of a classification random forest. (a) Each decision tree is built upon 

a random bootstrap sample of the training data (green and red colors indicate two different classes). (b) The 

random forest classifies each new instance by tacking the most voted output by the N trees of the algorithm. 

Source: Machado et al., (2015) 

Conversely, a neural network is a connected structure of single nodes (called ‘neurons’) 

divided in one input layer (where each neuron represents a single feature of the dataset), 

one output layer (where each neuron is a feature of the result) and a certain quantity of 

intermediate layers (called ‘hidden layers’). The value of each neuron of layer 𝑖 is 

obtained by applying a nonlinear function (usually a sigmoid or a rectifier linear unit) to 

the weighted average of the neurons of layer 𝑖 − 1. Each layer 𝑖 is linked to layer 𝑖 +  1 

by a 𝑝 × 𝑞 matrix of weights, where 𝑞 is the number of neurons in the 𝑖 layer, while 𝑞 is 

the number of neurons of the layer 𝑖 +  1. The weights matrices are the parameters of the 

neural network (Figure 4.3). In the case of classification neural networks, the output layer 

contains many neurons as the number of classes and the choice is made on the class 

associated to the neuron with the higher output. 
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Figure 4.3: A schematic representation of a generic fully connected neural network with two hidden layers 

(respectively with 5 and 7 neurons). In this case the input dataset has N instances and 4 features (i.e. the 

input layer has 4 neurons, represented by the nodes of the network), while the output is made by 3 variables. 

Each node performs a nonlinear transformation of the weighted average of the features of the previous 

layer. Arrows represent the input and the output features of the weighted averages and are described as 

weight matrices (W).  Source: www.datasciencecentral.com 

With reference to the structure of our neural classifier, we did not use only dense layers 

(i.e. hidden layers where each node is connected with all the nodes of the subsequent 

layer), but we also explored and tested different alternative architectures. In particular, 

we added to the fully connected structure some convolutional layers which process by 1D 

nonlinear filters each of the three time series features of the specific twilight (i.e. the eight 

after sunrise/pre-sunset light measurements and the two series of the timing of the nine 

sunrises and sunsets around the specific twilight event), since they turned out to be 

efficient in dealing with time series for other problems (LeCun and Bengio, 1995). The 
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convolutional filters2 extract multiple new features, whose definition is optimized during 

the training process. These new features, together with the four combined features 

selected by the expert, are given as input to the last fully connected layers of the DNN 

which finally performs the classification (Figure 4.4). The dimension of each vector 

during feature selection is regulated by a Max Pooling process, which applicates a 

piecewise maximum operator at the output of the convolutional filters. At the end of the 

whole structure, the Softmax activation function normalizes to 1 the values of output layer. 

Softmax activation function transforms a 𝑛 dimensional vector of arbitrary real values 

(𝑞𝑖) to a 𝑛 dimensional vector of real values 𝑝𝑖, each ranging in the interval (0,1) and with 

sum equal to 1: 

𝑝𝑖 =
𝑒𝑞𝑖

∑ 𝑒𝑞𝑗𝑛
𝑗=1

 

 As opposed to other normalization and maximum functions, Softmax has the nice 

properties to be differentiable (helping the DNN training process) and to react differently 

with clear or imprecise inputs, giving more importance (i.e. higher probability) to the 

neuron with the maximum value when many other neurons of the network had been 

activated by a clear input.  

Due to the large amount of data available, we decided to randomly split the entire dataset 

into three sets, for training (70%), cross-validation (15%) and test (15%), respectively. 

The cross-validation dataset was used to select the best parametrization of each model 

(e.g. the maximum number of splits of the random forest or the number of hidden layers 

                                                 

 

 

 

 

2 Regarding the neural network framework, a convolution operation is an element wise matrix (or vector) 

multiplication operation, performed between the input data and another matrix (or vector) called filter or 

kernel. It is usually used to perform feature extraction for images classification. For other information, we 

suggest Goodfellow et al. (2016). 
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of the neural network), while the test set was devoted to compare the performances of the 

resulting models of each class (LR, RF and the different architectures of the DNN). 

 

Figure 4.4: Schematic structure of the Deep Neural Network used in our study. A first part of feature 

extraction is performed on the input variables. The three time series (green vectors: light curve at twilight 

event, sunrise time of nearby days, sunset time of nearby days) are processed with 1D convolutional filters 

and then by a fully connected neural network (black dots: neurons). The four expert defined features (4 

cerulean single inputs) are not processed with convolutional filters and are directly submitted to the fully 

connected structure. 

We did not adopt more advanced model validation techniques such as k-fold or leave-

one-out cross-validation, as we didn’t notice any overfitting problem during each phase 

of the work. While we didn’t use any precaution to train LR and RF (the former has a 
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very low number of parameters compared to the task complexity, the latter is an algorithm 

that is very unlike to overfit if a sufficient number of trees is used; Hastie et al., 2009), 

we used an early stopping criterion and a regularization for the same procedure in DNN. 

Early stopping prevents overfitting by interrupting the iterative DNN training process if 

the performance on the cross-validation dataset is decreasing; regularization takes into 

account the number of parameters used by the algorithm, adding a value proportional to 

their sum to the model objective function. 

We implemented and trained all ML algorithms using the Python packages scikit-

learn (Pedregosa et al., 2012) and Keras (Chollet, 2015). We balanced sensitivity and 

specificity of the result (i.e. we constrained the confusion matrix to have almost the same 

percentage of true positives and true negatives) by adding and regulating a class weight3. 

This was operatively performed by setting the class_weight attribute of each ML 

algorithm as ‘balanced’. 

4.2.4 Estimate and comparison of migratory routes 

As in the previous chapter, we used FLightR R package to estimate the migratory tracks 

of the four target individuals cited before (see Par. 4.2.1). Binding the geolocators 

measurements with the output of the different twilight classifying methods, for each 

method and for each individual we generated a TAGS file, used as input in the FLightR 

analysis. The resulting paths (Logistic Regression: LR; Random Forest: RF; Deep Neural 

Network: DNN; second expert classification: EXP2) were compared to the ones obtained 

                                                 

 

 

 

 

3 In the case of binary classification, the weight assigned to the classes is a parameter α within the loss 

function (e.g. for logistic regression: 𝐿𝑜𝑠𝑠 = ∑ 𝛼(𝑦𝑖 ∙ log 𝑦̂𝑖) + (1 − 𝛼)(1 − 𝑦𝑖) log(1 − 𝑦̂𝑖)𝑖 . Note that 

imposing a class weight that guarantees the balance between the classes is equivalent to set the classification 

threshold in order to make equal the sensitivity and the specificity. 
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from the first manual classification (EXP1), both visually and using the One-Way-

Distance metric (see Par. 3.2.4). 

4.3 Results and discussion 

4.3.1 Bias and variance trade-off 

Figure 4.5 shows the confusion matrix for the three Machine Learning models used in 

this study and described above, i.e. Logistic Regression (LR), Random Forest (RF) and 

Deep Neural Network (DNN). As the performances obtained in the three phases of the 

model calibration (training, validation and test) are nearly the same, we can conclude that 

we avoided overfitting (i.e. ‘high variance’). The RF and the DNN have significantly 

higher performances compared to the simpler LR classifier, but they perform similarly to 

each other.  

 

Figure 4.5: Confusion matrix of the three classifier approaches: Logistic Regression (LR, blue), Random 

Forest (RF, orange) and Deep Neural Network (DNN, yellow). Performances are showed for training 

(light), validation (medium) and test (dark) sets. Ground truth is referred to the first expert classification 

(EXP1). 
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The absence of overfitting, however, does not guarantee per se that a model would 

perform similarly to a human expert. Figure 4.6 compares the performances of the ML 

algorithms on the classification of the target individuals with the results that we obtained 

in the second manual classification (performed by the same human expert who classified 

data for training ML algorithms). It can be noted that the selectivity (true negative/ground 

truth negative) of the RF and the DNN is comparable with that of a human classifier, 

while the recall (true positive/ground truth positive) of the two algorithms is slightly lower 

than that of the expert. Even in terms of overall accuracy the Logistic Regression (LR: 

74.3) performs sensibly worse than the other two classifiers (RF: 87.6; DNN: 88.4), which 

in turn have a slightly lower score respect our expert driven classification (EXP2: 90.7).  

 

Figure 4.6: Comparison of classifications performed by our Machine Learning algorithms (Logistic 

Regression, blue; Random Forest, orange; Deep Neural Network, yellow) and a human expert (EXP2, gray) 

on the twilight data of the target individuals. The ground thrut is referred to the first expert classification 

(EXP1). 

This result, however, highlights the remarks we have reported in Par. 4.2.1 inherently to 

the difficulty in making a univocal decision for all twilight events: the same expert in 
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9.3% of cases provided during the second classification (EXP2 a different classification 

than the one given in the previous one (EXP1).  

Regarding the repeatability of the classifiers, Table 4.1 shows the Intraclass Correlation 

Coefficients calculated from the results of the different classification methods. The value 

of the ICC between all the methods is pretty high (ICCALL vs ALL = 0.82), suggesting a 

generally good consistency between the models we built to classify twilight events and 

the expert. First of all, the expert classification is the most consistent, as shown by the 

ICC between his two classifications (ICCEXP1 vs EXP2 = 0.87). Among the other methods, 

RF and DNN have similar performance and overperform LR. We can therefore state that 

both classification procedures operated by the expert and by ML algorithms are 

repeatable. The ICC at the geolocator level was never higher than 0.0114, implying that 

the classification of the twilight events did not depend from the features of individual 

geolocators or of the barn swallows that carried it (i.e. it did not occur, for instance, that 

twilight events from one geolocator were consistently better than those of another). This 

means that the classification of twilight events is almost independent from the geolocator, 

which also explains why the ICC and the confusion matrix gave almost the same results. 

This result was not strictly predictable as, in principle, individual barn swallows may 

differ in their behavior during twilight events (e.g. staying in more shaded or more 

exposed environments), which may affect the light curves on which classification process 

is based. 

Comparison ICCtwilightID nested in geolocatorID ICCgeolocatorID 

ALL vs ALL 0.8243 0.0114 

EXP1 vs LR 0.5416 0.0111 

EXP1 vs RF 0.8256 0.0092 

EXP1 vs DNN 0.8400 0.0109 

EXP1 vs EXP2 0.8693 0.0074 

Table 4.1: Intraclass Correlation Coefficient values computed for all classification types (ALL vs ALL) 

and for each separate comparison with the first manual selection (EXP1). The second column shows ICC 

values at the level if the twilight event identifier (nested within geolocator); the third column indicates ICC 

values at the level of the geolocator identifier. 
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4.3.2 Track comparison 

Beyond comparing performances of our ML algorithms in terms of mere classification of 

twilight events, what is key for our problem is to assess whether ML can provide a pre-

filtering of twilights data which is reliable enough as to allow a plausible reconstruction 

of the migration routes of animals based on properly treated light data of the geolocators. 

Figure 4.7 shows a representative trajectory of one of the target individuals generated by 

FLightR (displayed as average latitude and average longitude at each twilight). The 

trajectory is estimated starting from the classification operated by the Machine Learning 

algorithms and by the expert. The path obtained from twilights classified by the LR 

clearly presents estimation errors, somehow suggesting that this method may be not 

suitable for safely automating light curves selection (as the high bias in classification 

performance would preventively suggest). The routes generated from the classification of 

the RF and the DNN are instead very similar to those obtained using the expert 

classifications. We obtained similar results also for the other three target individuals (their 

estimated migratory paths are shown in the Appendix). 
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Figure 4.7: Migration paths estimated for one of the 4 target individuals using FLightR software with 

twilight events classified by differents methods: Logistic Regression (LR, blue), Random Forest (RF, 

orange), Deep Neural Network (DNN, yellow) and expert classification (EXP, gray). Filled polygons refer 

to first expert classification (orange: fall migration, green: spring migration; boundaries are obtained as 

mean ± standard deviation of ten repetitions of FLightR on EXP1 classification). 

The inconsistencies observed between the paths obtained from the RF, DNN, EXP1 and 

EXP2 classifications are of the same order of magnitude as FLightR inter-repetition 

variability on the same twilights of the same the geolocator (see Par. 3.3.1 at page 62). 

This could be seen also from Table 4.2, which shows the values of the One Way Distance 

(defined in Par. 3.2.4 at page 56) calculated by comparing the routes obtained from the 

classification made by the Logistic Regression, the Random Forest, the Neural Network 

and the second manual classification with the paths estimated through the first manual 

classification. 
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OWD 

Path length 
(103km) 

Computation 
time (s) 

Classification Mean Std. Dev. Mean Std. Dev. Mean Std.Dev. 

LR 4.53 1.97 15.3 2.89 <0.001 <0.001 

RF 3.68 1.32 11.4 1.22 2.041 0.348 

DNN 2.85 1.14 11.1 0.96 15.804 4.872 

EXP2 3.40 1.60 11.1 1.10 >1200 >60 

 

Table 4.2: comparison of One Way Distance metric computed on the four test individuals between the 

routes generated by first expert classification (EXP1) and the other classification methods: Logistic 

Regression (LR), Random Forest (RF), Deep Neural Network (DNN) and our second manual classification 

(EXP2). 

A mixed effect ANOVA of OWD revealed significant differences according to 

classification types (F3,9 = 6.04, p = 0.015). Post-hoc tests indicated that OWD of LR was 

significantly larger than that of EXP2 and DNN (t9 ≥ 2.79, p ≤ 0.021) and marginally not 

significantly larger than RF (t9 = 2.10, p = 0.065). Mixed effect ANOVA test excluding 

LR showed a marginally not significant difference between the means of the other three 

classification methods (F2,6 = 4.02, p = 0.078). It can also be noted that the average length 

of the routes estimated from the sunsets classified by RF is much greater than that of the 

routes obtained starting from the selections made with the other methods. 

4.4 Conclusions 

In this chapter we aimed to automate the long manual twilight selection phase that 

precedes the estimation of the migratory routes in geolocator data analysis. Using a 

dataset of almost 40,000 expert classified twilight events, we built and calibrated three 

different Machine Learning algorithms, selecting predictor features that summarize the 

information processed by the human classifier during his choice. 

The performances of complex algorithms such as Random Forests and Deep Neural 

Networks can be compared with those of the human classifier, both in classification 

scores, repeatability and in resulting routes estimated by FLightR software. Conversely, 

a simpler technique such as Logistic Regression is not able to correctly classify the 
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twilights events, causing highly biased outputs in the subsequent phase of route 

estimation.  

For the geolocator models used and for the species analyzed in this study it is therefore 

possible to automate the twilight events classification procedure and obtain reliable 

results in the prediction of migration routes. Further twilight measurements from other 

geolocator models and / or from different species may be useful for a large-scale 

extension of this automatic procedure in the field of migratory paths reconstruction by 

light measurements. 

In this context, the DNN may have a remarkable advantage with respect to the RF. The 

dataset of geolocator measurements are usually composed by just a limited number of 

classified samples, as manual twilight selection is a long time consuming task. In 

principle, the training process would have to be repeated from scratch, but the small 

number of records would probably turn out to be insufficient to properly calibrate 

complex classifiers. A DNN can take advantage of what it learned from bigger dataset, 

such as the one considered in this paper, thanks to a learning technique known as fine-

tuning. The parameters of the front layers, which extract general features, are kept. 

Conversely, the parameters of the final layers, more task specific, are re-trained on the 

new dataset. The same process cannot be applied to a RF, which need to be trained again 

from scratch on the new data. Thus, while the two algorithms have comparable 

performances, the DNN has a greater flexibility in dealing with new tasks, maintaining 

the knowledge extracted from previous datasets.
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5 CONCLUSION 

Migratory birds provide a valuable source of data and information for the study of the 

impacts of climate change on ecological systems. These species have been monitored for 

more than a century, but only thanks to technological developments in recent years it has 

begun to be possible to precisely identify their migratory routes. 

The first objective of this thesis was to use ringing data of one of the most studied and 

known species of migratory birds, the barn swallow, to investigate the possible presence 

of climatic connections between its wintering and breeding areas in the focal period of 

spring migration. We found the presence of significant correlations between average 

temperatures in Africa and in Europe close to the dates of departure and arrival. This 

climatic signal was stronger in the actual wintering positions of the barn swallows, both 

at local and continental scale. This result could lead to hypothesize a possible selection 

of wintering locations based on the climatic connections present with individuals 

breeding areas. We also analyzed the temporal robustness of the correlations by varying 

the dates of departure and arrival of the barn swallows, noting that the period when these 

birds do migrate coincides with the stronger climate connectivity. Finally, we have 

investigated whether climatic connections between wintering and breeding areas are 

stable through time, by repeating the calculation of climatic connectivity while shifting 

the reference year of each individual throughout the time period with available climatic 

data and found that the most barn swallow were catches in South Africa in the period with 

the largest number of significant temperature correlations.  
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In the second part of this thesis, we reconstructed the migratory routes of 88 Italian and 

Swiss barn swallows from light level geolocator measures, providing for the first time 

valuable ecological information on a large sample of small migratory birds. We verified 

the reliability of a software dedicated to the reconstruction of migratory routes, showing 

how its results could be used in a large-scale analysis of the routes traveled by these birds. 

From the reconstructed routes, we saw that the barn swallow populations under study 

adopted different migration strategies, which could be classified in four main types, 

depending on the propensity of individuals to travel through western routes during the 

autumn and spring routes. We have therefore analyzed every step of the migration of the 

reconstructed routes, highlighting the possible carry-over effects of one migratory stage 

on the following ones. In addition, we identified significant differences in the location of 

the wintering grounds between the two years in which this study was carried out, 

consistently to what was already observed by Liechti et al. (2015),which used the same 

geolocator data to identify the wintering grounds of these individuals with a different 

procedure. This result could be a starting point to investigate the possible influence of 

local weather conditions on barn swallow migration.  

Finally, we have automated a time-consuming manual procedure of the pre-processing of 

geolocator data: the classification of twilight events based on the light curves associated 

with them. To achieve this goal, we have implemented three machine learning algorithms, 

thanks to the amount of data available as a result of the 88 routes reconstruction. The 

classification performance of two of these methods was comparable with those of an 

expert human classifier. We tested the reliability of the results of the automatic 

classification, obtaining a reconstruction of the migratory routes very similar to that 

provided by the manual selection of the twilight events. This procedure could lead to the 

complete automation of the light level geolocator analysis process, thus allowing to 

quickly put in us large amount of data already collected on a wide array of species. 

All the analyzes here presented are completely extensible to other species of migratory 

birds. They provide a contribution to the definition of possible methodologies for 

investigating the climatic cues used by birds to calibrate their migration and for the 

reconstruction and the study of individual migratory routes from geolocator data.



 

97 

 

APPENDIX 

 

Figure A.1: Migration paths estimated for the second of the four target individuals using FLightR 

software with twilight events classified by differents methods: Logistic Regression (LR, blue), Random 

Forest (RF, orange), Deep Neural Network (DNN, yellow) and expert classification (EXP, gray). Filled 

polygons refer to first expert classification (orange: fall migration, green: spring migration; boundaries are 

obtained as mean ± standard deviation of ten repetitions of FLightR on EXP1 classification). 
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Figure A.2: Migration paths estimated for the third of the four target individuals using FLightR software 

to twilight events classified by differents methods: Logistic Regression (LR, blue), Random Forest (RF, 

orange), Deep Neural Network (DNN, yellow) and expert classification (EXP, gray). Filled polygons refer 

to first expert classification (orange: fall migration, green: spring migration; boundaries are obtained as 

mean ± standard deviation of ten repetitions of FLightR on EXP1 classification). 
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Figure A.3: Migration paths estimated for the last of the four target individuals using FLightR software 

with twilight events classified by differents methods: Logistic Regression (LR, blue), Random Forest (RF, 

orange), Deep Neural Network (DNN, yellow) and expert classification (EXP, gray). Filled polygons refer 

to first expert classification (orange: fall migration, green: spring migration; boundaries are obtained as 

mean ± standard deviation of ten repetitions of FLightR on EXP1 classification).
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