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Abstract

The numerical simulation of Fluid-Structure Interaction (FSI) problems is
a topic of great relevance because of the wide range of applications in many
engineering fields. In this thesis, a partitioned fully explicit and fully La-
grangian Finite Element Method (FEM) for FSI problems is presented. A
novel explicit version of the Lagrangian Particle Finite Element Method
(PFEM) is employed for the fluid modelling. A distinctive feature of the
proposed FSI strategy is that the solid domain is modelled using the explicit
FEM of the commercial software SIMULIA Abaqus/Explicit from Dassault
Systèmes. This allows to perform simulations with an advanced descrip-
tion on the structural domain, including advanced structural material mod-
els and contact interactions. The structure-to-fluid coupling is performed
through the SIMULIA built-in Co-Simulation engine and it is based on a
technique derived by the Domain Decomposition methods. The method
ensures strong coupling and stability of the partitioned solver, retaining
at the same time an overall system of fully decoupled explicit equations.
Moreover, it allows for the use of different time integration steps and non-
conforming meshes in the two subdomains. The fully explicit nature of the
coupled solver is appealing for large-scale engineering problems character-
ized by fast dynamics or high degree of non-linearity. The fully Lagrangian
description is particularly effective in the simulation of FSI problems with
free surface flows and large structural displacements, since the fluid bound-
aries are automatically defined by the position of the mesh nodes with no
need for interface tracking algorithms.

A novel technique is proposed to simplify the imposition in Lagrangian
methods of non-homogeneous boundary conditions which are of practical
interest in several engineering applications, e.g., inflow/outflow conditions,
fluid slip at boundary walls and symmetry surfaces. The method is based on
a mixed Lagrangian-Eulerian description, which introduces fixed Eulerian
nodes only on the boundaries where non homogeneous conditions have to
be applied, leading to a simple and computationally convenient implemen-
tation.
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A novel efficient runtime mesh smoothing algorithm for explicit La-
grangian PFEM simulations is proposed. The conditional stability of ex-
plicit time integration schemes requires the use of small time increments,
proportional to the size of the element in the mesh with the worst geo-
metrical quality. On the other hand, in the 3D framework the Delaunay
tessellation employed in the PFEM loses some of its optimality properties
holding in 2D, so that badly shaped tetrahedra are frequently added in the
triangulation. This leads to unacceptably small stable time step size for ex-
plicit solvers. The novel mesh smoothing technique is able to correct overly
distorted elements at an acceptable computational cost, so that it can be
applied runtime in the frequent remeshing framework of the PFEM. More in
general, it could be conveniently applied to regularize the mesh and improve
the solution of other Lagrangian methods. This is achieved exploiting an
elastic analogy that allows for the use of the same explicit and parallelizable
architecture of the fluid solver.

After an extensive validation of the proposed PFEM-FEM FSI approach
against analytical, experimental and numerical results presented in the liter-
ature, the real engineering application of the automotive airbag deployment
is addressed, showing the great potentialities of the fully explicit and La-
grangian approach in this class of challenging industrial problems.
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1 Introduction

1.1 Motivations

Fluid-Structure Interaction (FSI) problems is a general definition for all
the phenomena involving some deformable structures interacting with a
surrounding fluid. A wide class of engineering problems, ranging from civil
to naval and offshore engineering, from biomedical to aerospace industries,
are concerned with FSI [10–15].

In civil engineering, examples of FSI applications are the interaction of
a dam with the water in its reservoir or the sloshing of a fluid inside a tank,
for instance caused by seismic excitation, the dynamic load of tsunami-like
waves on coastal structures or offshore platforms (Figure 1.1-a,b). More-
over, the evaluation of wind excitations on bridges or tall buildings is getting
increasingly important as the design is moving towards the use of new ma-
terials and/or complex and slender structures (Figure 1.1-c).

Biomedical engineering FSI applications involve the interaction between
air and lungs, or the blood flow in the cardiovascular system, possibly in-
volving artificial blood pumps, stents or valves, with complex models which
need to be patient-specific (Figure 1.1-d).

Many other FSI examples are related to mechanical engineering appli-
cations, for example the study of wind turbines, the vibrations of aircraft
wings, or their impact with water in the case of water-landing, the hy-
droplaning phenomenon which reduces the safety performances of a vehicle
tyre when rolling on a wet road, or the flow around a ship hull (Figure 1.1-
e). Another challenging application that will be addressed in this work is
the automotive airbag deployment, characterized by a complex interaction
between the gas inside the chamber and the airbag fabric, as well as the
airbag interaction with the vehicle passenger (Figure 1.1-f).

Despite the strong research interest in the FSI in the last decades, the
majority of these applications remain a challenging topic because of the
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complexity of the involved phenomena: analytical approaches are limited
by simplified considerations, while the experimental testing might be costly,
time consuming and in some cases even unfeasible. This justifies the contin-
uous search for efficient numerical methods for FSI simulations: the possi-
bility to have a robust and accurate numerical tool in the designing process
is of major importance because it can improve the final result in terms of
safety, reliability, durability, efficiency and cost.

1.2 Main features of the present approach

There are many different approaches to FSI problems in the literature, which
can have advantages and drawbacks according to the peculiarities of the
considered application. In this work an Explicit Partitioned Lagrangian
Finite Element Method has been developed for FSI problems. An explicit
version of the Lagrangian Particle Finite Element Method (PFEM) is used
for the fluid side, while the commercial software Abaqus/Explicit, based
on standard Lagrangian Finite Element Method (FEM), is used for the
structural side. Let us now provide a brief overview on the main peculiarities
of such a method, that will be described in details in the following chapters.

Lagrangian description In continuum mechanics, the description of mo-
tion can be set in the Eulerian or Lagrangian frameworks. In the former,
the observer studies the motion focusing on a fixed control volume through
which the continuum moves. In the latter, the observer describes the motion
following the material points of the continuum. In the Finite Element con-
text, the choice of one of these kinematics frameworks leads to advantages
and drawbacks that will be described in details in Chapter 2 depending on
the considered case. The main consequence is that in Eulerian FEM the
computational grid discretizes the control volume and it is fixed in time,
while in Lagrangian FEM the nodes of the mesh are “attached” to the ma-
terial points following their motion. The Lagrangian approaches are typical
of structural mechanics, while in fluid mechanics the Eulerian approach
is usually preferred, because a Lagrangian mesh, which follows the fluid
particles motion quickly undergoes unacceptable distortion. However, the
Lagrangian description can be very effective in FSI problems involving free
surface flows, breaking waves or with structures undergoing large displace-
ments, because the fluid boundaries are naturally defined by the position of
the mesh nodes, with no need for interface tracking algorithms.

The Particle Finite Element Method (PFEM) employed in the present
work for fluid modelling is a Lagrangian method which exploits the develop-
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(a) (b) (c)

(d) (e) (f)

Figure 1.1: FSI problems are relevant in a wide range of engineering applications.
(a-b)Wave loads on coastal structures and off-shore platforms. (c)
Wind excitation of slender structures: the well-known case of Takoma
bridge (USA), which collapsed in 1940. (d) Computational FSI model
of a human hearth. (e) Interaction of wind and waves with a sail boat.
(e) Crash test: interaction of the airbag with a human dummy.

ment in the past decades of fast and effective triangulation algorithms, such
as the Delaunay tessellation. Therefore, a Lagrangian description can be
employed, overcoming the problem of mesh distortion with the generation
of new meshes every time the current one is too distorted. Consequently,
the present coupled FSI method has a fully Lagrangian description both on
the fluid and structural sides.

Partitioned FSI solver The computational approaches to FSI can be in
general divided into monolithic and partitioned approaches. In the mono-
lithic schemes the governing equations for the structure and the fluid are
solved in a unique system. On the contrary partitioned schemes solve sep-
arately the governing equations for the fluid and structure subdomains,
coupling them together through the exchange of interface conditions at the
fluid-structure interface.
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The main advantage of the monolithic approach is the preservation of
accuracy and stability because the exchange of interface conditions is im-
plicitly included in the solution of the global system of equations. On the
other hand, it requires the development of a specific software, not allowing
the reuse of existing ones for the fluid and the structure. Moreover, for real
engineering problems, it must be underlined that the unified solution of a
large system of equations coming from two different physical domains leads
to numerical difficulties that can limit its applications.

Partitioned procedures can overcome these limits, since the fluid and
structure domains are solved separately and then coupled via interface con-
ditions. This allows for the reuse of existing codes for the physical subdo-
mains (code modularity), solving systems of equations of smaller dimension
and better conditioned than in the case of monolithic schemes. However,
depending on the employed coupling scheme which may asynchronously en-
force the interface conditions, the partitioned approaches may suffer of lack
of accuracy, non-optimal convergence rate and numerical instabilities.

In the present work, a partitioned approach based on the Gravouil and
Combescure (GC) algorithm is employed. This algorithm preserves the sta-
bility of the solvers of each sub-problem and it ensures strong coupling be-
tweeen fluid and structure through the synchronous imposition of interface
conditions, leading to a robust and accurate coupled solver. Moreover, the
partitioned nature has allowed the choice of coupling with the commercial
software Abaqus/Explicit for the structural domain, allowing to introduce
all its advanced features in the analyses, such as the wide library of material
constitutive relations and finite elements and the possibility to include crack
propagation and contact interactions.

Explicit Time Integration One of the novel aspects of the present ap-
proach is represented by the use of an explicit time integration both on
the fluid and structural subdomains. There are many advantages in the
adoption of an explicit dynamics approach. First of all, the solution of
the time step problem does not require iterations nor presents convergence
problems; secondly the computational burden increases more slowly with
the number of degrees of freedom than with implicit solvers. Moreover, it
is straightforwardly parallelizable, easily providing high speed-up on multi-
core platforms. On the other hand, explicit time integration is known to be
only conditionally stable, therefore requiring very small time steps. How-
ever, there are several large scale engineering applications where the time
step is intrinsically small, for example because of a fast dynamics or high
level of non-linearity. In such applications, the fully explicit solver presented
in this work can be an appealing choice.
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The presented main features of the method become particularly impor-
tant for the industrial application that will be here addressed, namely the
deployment of automotive airbags. This phenomenon is characterized by a
very fast dynamics (only few tenths of milliseconds for the full deployment)
with complex processes of interaction between the gas inside the chamber,
the airbag fabric material and the vehicle passengers, which lead to high
level of non-linearity. These things considered, in this application there is
no doubt that an explicit solver is preferable. At the same time, the large
changes in the structural configurations of the airbag from the empty folded
initial position to the fully inflated one can underline the effectiveness of a
fully Lagrangian approach. Finally, the choice of a partitioned approach
may be advantageous for the possibility to reuse existing advanced soft-
ware (Abaqus/Explicit), thus including in the analysis advanced modelling
features.

1.3 Outline

Besides this Introduction, which wanted to briefly highlight the most rele-
vant features and motivations of the present method, this thesis is structured
in the following chapters. Let us remark that some of these chapters have
been developed on the basis of the papers reported in brackets, which have
been published during the PhD programme.

� Chapter 2 introduces the mathematical setting for the fluid modeling.
The Navier-Stokes equations under the hypothesis of weakly compress-
ible fluids are presented describing their space and time discretization,
as well as the adopted stabilization strategy [16].

� Chapter 3 presents the general aspects of the explicit version of the
Particle Finite Element Method employed in the present work for the
fluid modeling under the hypothesis of weakly compressible flow. The
2D version of such code has been developed by the author during his
Master thesis at Politecnico di Milano and it has been the starting
point of the PhD research project. Several 2D examples are reported
as a validation of the method [16].

� Chapter 4 presents the coupling algorithm to address FSI problems,
namely the Gravouil and Combescure algorithm, as well as some two-
dimensional examples to test the accuracy of the 2D PFEM-FEM
coupled approach [17].
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� Chapter 5 describes a novel strategy for the implementation of non-
homogeneous boundary conditions in Lagrangian approaches. This is
based on a mixed formulation which introduces fixed Eulerian nodes
at the boundary and allows to naturally simulate relevant situations
such as: inlet/outlet cross sections, fluid slip at boundary walls and
symmetry conditions [18].

� Chapter 6 presents the generalization of the explicit PFEM approach
to the 3D framework, where the management of the mesh distortion
becomes a major issue. This has led to the development of a novel
mesh smoothing technique. Experimental and numerical tests taken
from the literature are used for the validation of the 3D PFEM-FEM
FSI approach [19].

� Chapter 7 presents the application of the proposed method on a real
industrial application, namely the process of deployment of vehicles
airbags and their interaction with obstacles which simulate the pres-
ence of human passengers.

� Chapter 8 is dedicated to an overall summary of the work, its conclu-
sions and future developments
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2.1 The Navier Stokes Equations

The Navier-Stokes Equations (NSE) are a system of partial differential equa-
tions describing the motion of a viscous fluid. In the most general form, they
represent the mathematical formulation of three physical principles which
govern the fluid behaviour, namely the momentum conservation principle,
the mass conservation principle and the energy conservation principle. In
particular, in the present work only isothermal conditions are addressed, so
that only the first two principles are employed to describe the motion of the
fluid.

Let us consider a fluid domain Ωt
f ⊂ Rd moving in the time interval

[0, T ], being d = 2, 3 the space dimension. In the initial (and reference)
configuration Ω0

f , the position of any material point is indicated with X.
The corresponding position of the same material point in the current con-
figuration Ωt

f at time t is defined as x = χ(X, t), where χ represents the

mapping from the initial to the current configuration, i.e. the motion (1).

Introducing the fluid velocity vf = vf (x, t), the Cauchy stress tensor
σσσf = σσσf (x, t), the density ρf (x, t) and the external body forces per unit
mass bf = bf (x, t), the momentum and mass conservation of the fluid
domain Ωt

f for a compressible fluid are expressed by:

ρf
Dvf
Dt

= ∇x ·σσσf + ρfbf in Ωt
f × [0, T ] (2.1)

Dpf
Dt

+Kf∇x ·vf = 0 in Ωt
f × [0, T ] (2.2)

(1)In the following, the subscript letter f is used for all the quantities defined on the
fluid domain, while the subscript s will be used for the ones defined on the structural
domain.
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where Kf is the fluid bulk modulus, ∇x represents the gradient operator

with respect to the current configuration and the derivative D〈•〉
Dt is the

total derivative with respect to time. A suitable set of initial and boundary
conditions must be provided to obtain a well-posed problem:

vf (X, t = 0) = v0
f in Ω0

f (2.3)

vf (x, t) = ṽf (x, t) on ΓtD,f × [0, T ] (2.4)

σσσf ·nf = hf (x, t) on ΓtN,f × [0, T ] (2.5)

ρf (X, t = 0) = ρ0
f in Ω0

f (2.6)

where v0
f , ṽf ,hf , ρ

0
f are assigned functions, nf is the outward normal to

the boundary Γtf = ∂Ωt
f , which is divided into two non-overlapping subsets

ΓtD,f and ΓtN,f , such that ΓtD,f ∪ ΓtN,f = Γtf and ΓtD,f ∩ ΓtN,f = ∅.

2.1.1 Kinematic description

Depending on which configuration is chosen to impose the Equations (2.1)-
(2.2), two different approaches are defined: Eulerian and Lagrangian. In
the Eulerian (or spatial) approach the fluid properties and state variables
are a function of the current configuration x and time t within the defined
domain Ωt

f . On the other hand, in the Lagrangian (or material) approach,
the fluid properties and state variables are observed following the evolution
of the single particles: they are function of the reference configuration X
and time t, so that the equations are written with respect to the reference
domain Ω0

f .

From the Finite Element point of view, in the Eulerian approach the
problem is solved on a fixed computational grid (mesh) through which the
material moves; on the contrary Lagrangian methods are based on a mesh
that moves according to the material velocity.

The Lagrangian formulation is the natural approach for Computational
Structural Dynamics, while the Eulerian one is classically used in Compu-
tational Fluid Dynamics (CFD). The main reason is related to the large
domain deformation which occurs in phenomena involving fluids (e.g. tur-
bolent flows) which cannot be treated in standard Lagrangian approaches
without proper techniques to deal with mesh deterioration. It must be un-
derlined that Eulerian methods are the optimal choice for channel flows
(e.g. flow in pipes or vessels) or open domains (e.g. flow past an aircraft
wing). However, they do not provide any natural way for treating transient
dynamics free surface flows or FSI cases with structure undergoing large
displacements, where the shape of the computational domain is continu-
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ously evolving. In such cases Lagrangian approaches, combined with proper
techniques to overcome the mesh distortion, can be an efficient choice.

The formulation of the Navier Stokes Equations (2.1)-(2.2) is influenced
by the choice of the kinematic description in the definition of the total
derivative. Considering a generic field variable h = h (x, t), the Eulerian
derivation rule for the total derivative leads to:

Dh

Dt
=
dh

dt
+ vf ·∇xh (2.7)

where the first term is called local derivative, while the second one is the
convective term related to the spatial variation of h. The convective term
is a source of non-linearity in the Eulerian formulation.

On the contrary, in a Lagrangian description the convective term disap-
pears because the observer follows the material point motion, namely the
total time derivative is equal to the local time derivative. In contrast to the
Eulerian description, the non-linearity in Lagrangian Navier Stokes Equa-
tions is related to the large displacements in the current configuration with
respect to the initial reference configuration.

This work focuses on Lagrangian approaches because they are partic-
ularly suited for phenomena involving rapid domain evolution. More in
details, instead of a standard Total Lagrangian approach (TL), the Up-
dated Lagrangian formulation (UL) is employed. The UL formulation im-
plies that the reference configuration is updated at every time step and the
space derivatives and integrals are computed with respect to the spatial
coordinates, so that the non-linearity is given by the fact that the equa-
tions are integrated over an unknown domain. The TL formulation could
be embraced equivalently. More specifically, in the PFEM framework here
considered, characterized by a frequent change in the mesh connectivities
(Chapter 3), the TL approach would imply an update of the reference con-
figuration at every mesh change.

2.1.2 Weakly compressible fluids

Another major difference in the formulation of the Navier-Stokes Equations
is related to assumption of the fluid incompressibility. In many relevant
applications of Computational Fluid Dynamics the hypothesis of incom-
pressible fluid is adopted, due to its high volumetric stiffness, leading to a
constant density field. Equation (2.2) then is simply given by:

∇x ·vf = 0 in Ωt
f × [0, T ] (2.8)

However, it must be underlined that a small amount of compressibility exists
in all the cases idealized as incompressible. In many practical circumstances,
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considering this small compressibility can be a convenient choice for prob-
lems that would be classified as of incompressible flow. Such an assumption
is referred to as weakly compressible fluid hypothesis.

The physical difference between incompressible and compressible fluids
is in the propagation of dilational waves (or sound waves). In an incom-
pressible medium, the speed of dilational waves tends to infinity, while in
compressible bodies the sound waves speed has a finite value. This is re-
flected also in the nature of the system of equations: hyperbolic-parabolic for
the compressible case and elliptic-parabolic for the incompressible one [20].

Compressibility effects can be characterized by the Mach number (Ma)
defined as the ratio between the magnitude of the fluid velocity |vf | and
the speed of sound in the fluid cf :

Ma =
|vf |
cf

(2.9)

being the dilational wave speed cf related to the fluid bulk modulus Kf by
the following definition:

Kf = ρfc
2
f (2.10)

The incompressible limit is obtained for a Mach number equal to zero. For
Mach numbers much smaller than one (i.e. for small values of the fluid
velocities or large values of the fluid bulk modulus) the weakly compressible
equations asymptotically approach the incompressible Navier-Stokes equa-
tions. Consequently, for suitable small Mach numbers, the weakly compress-
ible model well approximates the incompressible limit. This justifies the fact
that a compressible solver is used to solve boundary value problems with
incompressible fluids [21]. The real benefit of weakly compressible solvers
versus incompressible ones is the possibility to avoid the use of a Poisson
solver. Indeed, in the incompressible formulation, the continuity equation
represents a constraint on velocity, which, combined with the momentum
conservation equation, leads to a Poisson-like equation for pressure. This
may lead to numerical issues that will be discussed more in details in Sec-
tion 2.5. Moreover, in the weakly compressible framework, it is possible to
use an explicit time integration that has proved to be robust and very fast
for complex hydrodynamic problems [22,23].

In the compressible framework, an equation of state is necessary to link
pressure and density. Following [24,25], in this work the equation Tait equa-
tion is used [26, 27]. When a fluid is modeled with a Tait’s equation, the
energy equation becomes decoupled from mass and momentum conserva-
tions [25], and, considering an isothermal flow, it can be neglected.
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2.2 Lagrangian NSE for weakly compressible fluids

Let us now consider the Updated Lagrangian version of the Navier-Stokes
Equations (2.1))-(2.2) for weakly compressible fluids:

ρf
dvf
dt

= ∇x ·σσσf + ρfbf in Ωt
f × [0, T ] (2.11)

dpf
dt

+Kf∇x ·vf = 0 in Ωt
f × [0, T ] (2.12)

Initial and boundary conditions (2.3)-(2.6) must be provided. The Cauchy
stress tensor σσσf can be decomposed into isotropic and deviatoric parts:

σσσf = −pfI + τττ f (2.13)

where pf = pf (x, t) is the pressure field, I is the identity tensor and τττ f is the
deviatoric stress tensor. Furthermore, for Newtonian and non-Newtonian
fluids the deviatoric stress τττ f is generally related to the deviatoric strain
rate ε̇εεf by the following constitutive relation:

τττ f = 2µf (ε̇εεf )ε̇εεf (2.14)

where µf (ε̇εεf ) is the fluid viscosity and ε̇εεf = ε̇εεf (x, t) is defined as:

ε̇εεf =
1

2

(
∇xvf +∇xvTf

)
− 1

3
(∇x ·vf )I (2.15)

Newtonian fluids are defined by a constant viscosity, namely µf (ε̇εεf ) = µf =
const.

2.2.1 Equation of state

In the compressible framework, an equation of state which relates pressure
pf and density ρf is necessary to complete the problem definition. In partic-
ular, in the present work, barotropic flows without dependence on temper-
ature are considered; consequently, as suggested in [24,25], a modified Tait
equation of state is used. This empirical relation, originally proposed for
water, has proved to represent accurately the behavior of a wide variety of
other liquids, gases and solids under high pressures [26]. As reported in [28],
Tait’s equation can be related to Murnaghan’s Equation of state, derived
in [29, 30] from an integrated linear theory of finite strains for solids un-
der high pressures. In such conditions, the Murnaghan’s Equation of state
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can be derived assuming a linear dependence of the bulk modulus Kf with
respect to the pressure pf :

Kf (pf ) = K0,f +K ′0,fpf (2.16)

where K0,f is the bulk modulus of the material at the reference pressure p0,f

(e.g. atmospheric pressure) and K ′0,f is the slope of the linear dependence.
The definition of the bulk modulus (at constant temperature) reads:

Kf (pf ) = ρf

(
∂pf
∂ρf

)
T=const

(2.17)

Equating the two above formula and integrating the results, one gets to the
Murnaghan’s Equation of state:

p(ρ) = p0 +
K0,f

K ′0,f

[(
ρf
ρf,0

)K′0,f
− 1

]
(2.18)

which is equivalent to the expression of the Tait’s Equation of state. Exper-
imental tests have shown that the linear dependence of the bulk modulus
on pressure with a value of K ′0,f = 7 is accurate enough to reproduce the
behaviour of a wide class of solids and fluids in a range of pressure which is
much larger than the ones which arise in the applications here considered.
Remarkably, K ′0,f = 7 is the same value commonly suggested by the empir-
ical Tait’s Equation for that parameter, which in that framework is some-
times interpreted as equivalent to the specific heat ratio of the fluid [24,25].

2.3 Space discretization

A standard Galerkin approach has been followed for the space discretization
of Equations (2.11)-(2.12). Let Sv denote the space of admissible functions
for the velocity variables and Sv0 the corresponding space of admissible func-
tions with homogeneous boundary conditions, while let Sp be the space of
admissible functions for density and pressure [31], namely:

Sv = {vf ∈ H1(Ωt
f ) |vf = ṽf on ΓtD,f}

Sv0 = {vf ∈ H1(Ωt
f ) |vf = 0 on ΓtD,f}

Sp = L2
(
Ωt
f

)
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2.3.1 Momentum conservation

The weak form of the momentum equation (2.11) is obtained by using a
vector test function wf ∈ Sv0 and integrating over the domain Ωt

f :∫
Ωt

f

wf · ρf
dvf
dt

dΩ =

∫
Ωt

f

wf · (∇x ·σσσf + ρfbf ) dΩ+

−
∫

Γt
N,f

wf · ((τττ f − pfI) ·n− hf ) dΓ ∀wf ∈ Sv0 (2.19)

Then, applying the Green formula and using the decomposition of the stress
tensor (2.13), as well as the constitutive relation (2.14), the following ex-
pression can be obtained:∫

Ωt
f

wf · ρf
dvf
dt

dΩ =

∫
Ωt

f

pf (∇x ·wf ) dΩ+

−
∫

Ωt
f

2µf∇xwf : ε̇εεf dΩ +

∫
Ωt

f

wf · ρfbfdΩ+

+

∫
Γt
N,f

wf ·hf dΓ ∀wf ∈ Sv0 (2.20)

Let us introduce a discrete approximation of the spaces Sv, Sv0 , S
p through

the spaces Svh ∈ Sv, Sv0,h ∈ Sv0 , Sph ∈ S
p. A standard isoparametric finite

element discretization of the velocity, pressure and density fields leads to
the following interpolations:

vhf (x, t) = Nv
f (x)Vf (t) (2.21)

phf (x, t) = Np
f (x)Pf (t) (2.22)

ρhf (x, t) = Nρ
f (x)Rf (t) (2.23)

where Nv
f , Np

f and Nρ
f are the matrix of shape functions for velocity and

the vectors of shape functions for pressure and density, respectively; Vf is
the vector of nodal velocities, Pf is the vector of nodal pressures and Rf

the vector of nodal densities. For incompressible materials, the spaces of
interpolation Svh and Sph cannot be arbitrarily selected, but they need to
satisfy the so called LBB (Ladyzhenskaya-Babuška-Brezzi) discrete inf-sup
condition [32,33]:

inf
qh∈Sp

h

sup
vh∈Sv

h

∫
Ωt

f
qh∇x ·vhdΩ

||vh||Sh
||q||Qh

≥ β > 0 (2.24)
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where β is a positive constant independent from the mesh size h. Fur-
thermore, the peculiarities of the PFEM method, described in Chapter 3,
require the choice of linear interpolations both for velocities and pressures
(as well as for densities which are directly connected to pressures by the
EOS). Therefore, the same linear shape functions for the three unknown
fields are used and linear triangles (in 2D) and tetrahedra (in 3D) are con-
sidered in the PFEM approach. Equal order of interpolation for velocity
and pressure does not satisfy the LBB condition, so that a stabilization
technique need to be added, as it will be discussed in Section 2.5.

Substituting (2.21)-(2.23) in (2.20) one obtains:

Mf
dVf

dt
= −Kµ,fVf + DT

f Pf + Fext,f = −Fint,f + Fext,f = Ff (2.25)

The mass matrix Mf is defined as:

Mf =

∫
Ωt

f

ρfN
v T
f Nv

fdΩ (2.26)

The viscous matrix Kµ,f and the discrete gradient operator matrix Df of
the volumetric term are computed as:

Kµ,f =

∫
Ωt

f

BTddevB dΩ

Df =

∫
Ωt

f

BTmNp
f dΩ

In the previous expressions, the vector m is defined as m = [1 1 1 0 0 0]T ,
while B is the matrix containing the shape functions derivatives which can
be divided in nn nodal blocks (e.g. nn = 4 for linear tetrahedra):

B = [B1, . . . ,Bnn ] (2.27)

being each nodal block Bi a (3× 6) matrix defined as:

BT
i =



∂Nv
i

∂x 0 0

0
∂Nv

i
∂y 0

0 0
∂Nv

i
∂z

∂Nv
i

∂y
∂Nv

i
∂x 0

0
∂Nv

i
∂z

∂Nv
i

∂y
∂Nv

i
∂z 0

∂Nv
i

∂x


(2.28)
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The ddev matrix contains the material viscous properties of the considered
fluid. For a Newtonian fluid it is given by:

ddev = µf



4/3 2/3 2/3 0 0 0
2/3 4/3 2/3 0 0 0
2/3 2/3 4/3 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (2.29)

Finally the vector of external forces Fext,f is defined as:

Fext,f =

∫
Ωt

f

ρfN
vT
f bf dΩ +

∫
Γt
N,f

NvT
f hf dΓ (2.30)

It must be underlined that an explicit integration scheme is employed in the
present method (see Section 2.4), so that no global matrices are assembled.
The viscous term Kµ,fVf and the volumetric one DT

f Pf are computed
at the element level and then directly assembled on the global vector of
internal forces Fint,f . Finally, let us remark that in practice the vector of
nodal resultant forces Ff is directly computed as the difference between the
internal and the external ones.

2.3.2 Mass conservation and Equation of State

The weak form of the mass equation (2.12) is obtained by using a test
function qf ∈ Sp and integrating over the domain Ωt

f :∫
Ωt

f

qf
dpf
dt

dΩ +

∫
Ωt

f

Kfqf (∇x ·vf ) dΩ = 0 ∀ q ∈ Sp (2.31)

following the Galerkin isoparametric discretization used for the momentum
equation and introducing the interpolations (2.21)-(2.23), one can get to:

Mρ
dPf

dt
+KfDfVf = 0 (2.32)

where the volume-like matrix Mρ is defined as:

Mρ =

∫
Ωt

f

NpT
f Np

f dΩ (2.33)

Alternatively, the mass conservation can be also enforced starting from
the following strong expression [22,23]:

ρf (x, t)J(x, t) = ρf (X, 0) = ρ0(X) (2.34)
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where J(x, t) = det F(x, t) is the determinant of the deformation gradient
F. Multiplying equation (2.34) by a test function qf ∈ Sp and integrating
over the domain Ω0

f , the following weak form is obtained:∫
Ω0

f

qf ρf (x, t)J(x, t) dΩ0 =

∫
Ω0

f

qf ρ0(X) dΩ0 ∀ q ∈ Sp (2.35)

Noting that J(x, t)dΩ0 = dΩ, the previous equation can be written as:∫
Ωt

f

qf ρf (x, t)dΩ =

∫
Ω0

f

qf ρ0(X) dΩ0 ∀ q ∈ Sp (2.36)

Moreover, let us introduce the space discretization (2.21)-(2.23), leading to:

MρRf = F0
ρ (2.37)

where F0
ρ is defined as the product between Mρ and Rf computed on the

reference configuration:

F0
ρ = M0

ρR
0
f (2.38)

The two versions of the mass conservation equation (2.32),(2.37) have been
employed in the present work. Equation (2.37) has the advantage of showing
no time derivatives, which avoids any further approximation introduced
by the time integration scheme, so that it has been in general preferred.
Nonetheless, let us underline that in all the numerical simulations where
the two equations (2.32),(2.37) have been tested, no significant difference in
the results has been reported. Moreover, in Chapter 5 Equation (2.32) has
been preferred because it can be easily cast in a mixed Lagrangian-Eulerian
formulation adding the convective term to the pressure time derivative.

To conclude the space discretization, the equation of state (2.18) ex-
presses a pointwise relation between nodal pressure and density. Depending
on the use of Equation (2.32) or (2.37), i.e. depending on which variable
has been computed from the continuity equation (pressure or density), on
the j-th node one can compute the unknown variable solving for Pf,j or Rf,j
the following relation:

Pf,j = Pf,0 +
K0,f

K ′0,f

[(
Rf,j
Rf,0

)K′0,f
− 1

]
(2.39)

where Pf,0 and Rf,0 are the reference values of pressure and density, respec-
tively.
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2.4 Explicit time discretization

Let us consider a generic subdivision of the time interval [0, T ] in N time
steps ∆tn such that T =

∑N−1
n=0 ∆tn+1. The Central Difference Scheme

(CDS) can be derived considering the general Newmark’s method with β = 0
and γ = 1/2 [34,35].

Defining the vector of nodal accelerations Af , at the beginning of the
generic time step ∆tn+1 = tn+1− tn the CDS computes a mid-step velocity

V
n+1/2
f starting from the accelerations of the previous time step:

V
n+ 1

2
f = Vn

f +
1

2
An
f∆tn+1 (2.40)

These velocities are used to compute the displacements Uf and update the
nodes positions:

Un+1
f = Un

f + V
n+ 1

2
f ∆tn+1 (2.41)

Once the configuration at tn+1 is known, the mass conservation is enforced
to obtain the new nodal densities Rn+1

f :

Mn+1
ρ Rn+1

f = F0
ρ (2.42)

and the equation of state is used to compute the nodal pressures:

Pn+1
f,j = Pf,0 +

K0,f

K ′0,f

(Rn+1
f,j

Rf,0

)K′0,f
− 1

 (2.43)

Then, with the updated state of the system, the nodal resultant force vector
Fn+1
f is assembled and the momentum equation is solved to compute the

new accelerations An+1
f :

An+1
f = (Mn+1

f )−1Fn+1
f (2.44)

Finally, if necessary, the velocity vector at the end of the step can be com-
puted

Vn+1
f = V

n+ 1
2

f +
1

2
An+1
f ∆tn+1 (2.45)

Remark 1. If the continuity equation (2.32) is employed, Equation (2.42)
is replaced by an explicit step to compute the new nodal pressure Pn+1

f :

Mn
ρ

Pn+1
f −Pn

f

∆tn+1
+KfD

n
fV

n
f = 0 (2.46)



18 Mathematical modelling of fluid

while the EOS (2.43) is inverted to compute the nodal density Rn+1
f :

Rn+1
f,j = Rf,0

[
K ′0,f
K0,f

(
Pn+1
f,j − Pf,0

)
+ 1

](1/K′0,f)

(2.47)

As usual in explicit approaches, the mass matrices Mn+1
f and Mn+1

ρ are
lumped obtaining a global system of fully decoupled equations that can be
solved explicitly node-by-node, thus no system of equations has to be solved.
Explicit solvers are very appealing for non-linear problems which may suffer
of numerical issues of convergence in the solution of the system of governing
equations. Another advantage is related to the fact that the computational
burden of explicit solvers increases more slowly with the number of degrees
of freedom than with implicit solvers. Moreover, their system of decoupled
equations is straightforwardly parallelizable, easily providing high speed-up
on multi-core platforms. On the other hand, the CDS is only conditionally
stable and the choice of the time step size is governed by the CFL (Courant,
Friedrichs, Lewy) stability condition [36]. Therefore, an adaptive time step
is used in the present method and the stable ∆tn+1 is computed at every
step as:

∆tn+1 = CN min
e

(
he
c̃e

)
(2.48)

In the previous expression, CN is a safety parameter, c̃e has the dimension
of a velocity and it is the maximum between the actual fluid velocity in the
e-th element and the speed of dilational waves cf,e depending on the fluid
bulk modulus Kf and the elemental density (Relation (2.10)). Finally, he
is a characteristic size of the e-th element in the current configuration. In
particular, in the present method the radius rine of the element incircle (in
2D) or element insphere (in 3D) is adopted, namely he = rine . Therefore,
the mesh quality strongly influences the efficiency of an explicit solver. This
may be an issue, especially in the 3D framework, as it will be addressed in
details in Chapter 6. The stable time step of explicit solvers is generally
much smaller than the time step employed in implicit solvers, which are usu-
ally unconditionally stable. However, there are many relevant engineering
applications involving fast dynamics or high degree of non-linearity, where
the time step is intrinsically small for accuracy or convergence reasons. For
those cases the adoption of an explicit solver can be an efficient choice.

Finally, let us remark that in all the examples here considered, besides
the airbag deployment applications presented in Chapter 7, the speed of
dilational waves cf is much greater than the fluid velocity. In such cases, a
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standard procedure to increase the stable time step size in weakly compress-
ible flows is to use a reduced value of cf by means of the introduction of
a slight compressibility, i.e. a smaller bulk modulus Kf . This can be done
without affecting the global behaviour of the fluid if the Mach number, com-
puted with the reduced value of cf , is much smaller than one [24,37]. Con-
sequently, a reduced value of cf in the examples here presented is employed,
depending on the expected fluid velocity in each example. Nevertheless,
the reported density variations due to this additional small compressibility
are smaller than 0.1%. On the contrary, this strategy is not employed in
the airbag deployment simulations of Chapter 7, where however the fluid
velocity is the relevant term to determine the stable time step size.

2.5 Pressure stabilization

In the present section let us address the mass equation in the form (2.32), in
order to cast the following description in the framework of mixed velocity-
pressure formulation which is commonly adopted in the literature of stabi-
lization methods. Nevertheless, all the following considerations have been
applied in the present method also to the mass conservation (2.37).

2.5.1 Instability issues

The finite element solution of Navier-Stokes equations for incompressible
and weakly-compressible materials can suffer of numerical instabilities which
may arise from two sources. The first one is related to the convective term
in the momentum equation, which may lead to spurious oscillation of the ve-
locity field, especially for high values of the Reynolds number, and requires
proper stabilization procedures [31]. As previously commented, the absence
of the convective term is among the advantages of a fully Lagrangian descrip-
tion and this source of instability does not appear in the present method.
The second source of instability arises for incompressible materials when the
choice of the spaces for the interpolation of velocity and pressure does not
fulfill the LBB inf-sup condition (2.24) [33], leading to spurious oscillations
in the pressure field.

As already anticipated, the PFEM approach described in Chapter 3
is based on a frequent use of re-triangulation of the domain, to avoid an
excessive mesh distortion caused by the Lagrangian description for the fluid
flow. To avoid expensive interpolations to be performed at every change of
the mesh, all the variables are stored at the nodes which are located to the
vertices of the finite elements. Therefore only linear shape functions can
be used for velocity, pressure and density. This choice does not satisfy the
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LBB inf-sup condition (2.24) and a stabilization technique is needed.

First of all, it must be noted that the condition (2.24) is related, strictly
speaking, only to the fully incompressible formulation and the compressible
materials suffer of equivalent issues when tending to the incompressible
limit, i.e. for high values of the bulk modulus Kf . In the incompressible
framework, the continuity equation (2.8) represents a constraint on velocity
and combined with momentum conservation leads to a Poisson-like equation
for pressure. The study of the conditions which ensure a unique solution
of the consequent algebraic system of discretized equations leads to the
stability requirement (2.24) [33].

2.5.2 Stabilization methods

Considering the previous remarks on the causes of the stability issues, the
basic idea behind several well-known stabilization methods is to slightly
modify the continuity equation with additional terms, relaxing the incom-
pressibility constraint. Among them, let us recall the Laplacian pressure
stabilization [38], which adds to the weak form of the continuity equation
a term proportional to the Laplacian of the pressure field. The Galerkin
least squares method [39] adds a least squares form to the Galerkin formu-
lation. The Finite Increment Calculus (FIC) [40,41] adds terms which come
from considering the governing equations in a space-time domain of finite
incremental size, instead of infinitesimal size as it is usually done.

Finally, let us enter more into the details of the Direct Pressure Stabi-
lization (DPS) [42, 43], which is here related to the adopted stabilization
strategy. The DPS stabilizes an equal velocity-pressure interpolation pair
through the application to the pressure field of a L2 projection operator Π
onto an interpolation space of lower order S̃ph, and through an additional
term to the weak form (2.31) of the continuity equation:

∫
Ωt

f

qhf
dphf
dt

dΩ +

∫
Ωt

f

Kfq
h
f

(
∇x ·v

h
f

)
dΩ+

−
∫

Ωf

(
qhf −Πqhf

)(
phf −Πphf

)
dΩ = 0 ∀ qhf ∈ Sph (2.49)

The projector operator Π is defined by the following expression:∫
Ωf

qhf

(
Πphf − phf

)
dΩ = 0 ∀qhf ∈ S

p
h (2.50)

Combining the two last expressions one can find the final form of the stabi-
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lizing term added in the mass equation:

−
∫

Ωf

(
qhf p

h
f −ΠqhfΠphf

)
dΩ (2.51)

Let us consider for the sake of simplicity the case of 2D linear triangles.
The projector operator applied to the linear pressure by the DPS leads to
a discrete pressure field which is element-by-element piece-wise constant:

Πphf = ÑpPf (2.52)

being the vector Ñp given by Ñp = [1/3; 1/3; 1/3]. Applying the spatial
discretization (2.22), (2.52) to (2.51), one can find that the additional term
required by the DPS in the continuity equation is computed on each element
e as:

−SDPSf,e Pf,e (2.53)

where the matrix SDPSf,e is defined as [42,44]:

SDPSf,e =

∫
Ωt

f,e

(
NpT
f Np

f − ÑpT
f Ñp

f

)
dΩ =

Ae
36

 2 −1 −1
−1 2 −1
−1 −1 2

 (2.54)

2.5.3 Stabilization of the present method

It is interesting to observe that the weakly compressible formulation leads
itself to the avoidance of the Poisson-like solver, as the continuity equation
(2.32) together with the EOS (2.18) allow to relate the pressure to the
velocity field and have to some extent a stabilizing effect. Nonetheless,
this effect is not enough in the majority of the applications of the weakly
compressible framework, which tend to the incompressible case using a high
value of the bulk modulus Kf .

In the present work, the stabilization is obtained through a modification
of Equation (2.46). For the sake of clarity, in the following this strategy
will be referred to as Consistent-Lumped Stabilization (CLS), because it
introduces the use of both the consistent and lumped version of Mn

ρ [45].
More in details, the CLS requires the use of the lumped matrix Mn

ρ when it

is multiplied by the vector of unknown pressures Pn+1
f , while its consistent

version is used when multiplied by Pn
f . Equation (2.46) can be thus modified

in:

Ml,n
ρ Pn+1

f = Mc,n
ρ Pn

f −∆tn+1KfD
n
fV

n
f (2.55)
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where the apices c, l are introduced to highlight the choice of a lumped
or consistent matrix. The lumped matrix on the left side of the equation
is somehow mandatory to retain a system of decoupled equations for the
explicit solver involving no matrix inversion. On the other hand, instead of
using a lumped matrix also on the right side, the consistent one is employed
and this discrepancy has a stabilizing effect.

To better understand the reason of this stabilizing effect, let us define P̃f

the vector of nodal pressures computed adopting the CLS on the mass con-
servation and Pf the corresponding one computed with the non-stabilized
one (i.e. adopting a lumped matrix on both sides of (2.55)). The two vectors
of nodal pressures are computed as:

Ml,n
ρ Pn+1

f = Ml,n
ρ Pn

f −∆tn+1KfD
n
fV

n
f (2.56)

Ml,n
ρ P̃n+1

f = Mc,n
ρ Pn

f −∆tn+1KfD
n
fV

n
f (2.57)

With a trivial substitution, one can get to:

Ml,n
ρ Pn+1

f = Ml,n
ρ P̃n+1

f −
(
Mc,n

ρ −Ml,n
ρ

)
Pn
f (2.58)

which highlights the additional stabilizing term introduced in the mass con-
servation (2.32) by the CLS. The operator Mc,n

ρ −Ml,n
ρ is an approximation

of the discretized Laplacian operator (the exact equivalence can be shown in
1D), so that one can relate the CLS strategy to the stabilizing approaches
adopting the pressure laplacian described in Section 2.5.2.

Furthermore, the Equation (2.58) allows to show that for linear triangles
and tetrahedra the stabilizing term added to the continuity equation by
the CLS is equivalent to the one stemming from to the Direct Pressure
Stabilization (DPS), defined in (2.54). Indeed, computing the difference

of the consistent-lumped matrices Mc,n
ρ −Ml,n

ρ one obtains the following
additional term for linear triangles, computed at the element level:

SPFEMf,e Pn
f = −

(
Mc,n

ρ −Ml,n
ρ

)
Pn
f =

Ae
12

 2 −1 −1
−1 2 −1
−1 −1 2

Pn
f (2.59)

The comparison of (2.54) with (2.59) shows a substantial equivalence in
between the DPS and the CLS here employed, besides the different scalar
factor at the denominators. This equivalence explains the reason of the
stabilizing effect of the CLS strategy.

It is important to remark that the additional term related to the CLS
does not introduce any variation to the global mass, which can be an issue
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of stabilizing methods. On the other hand, this small perturbation to the
exact continuity equation has a diffusive effect, as it can be related to a
discrete Laplacian operator. This inconsistency however tends to zero as
the element size h→ 0, when the consistent and lumped matrices coincide,
so that better results are obtained refining the mesh, following the spirit of
FE.

Finally, let us remark that the stabilizing effect of the CLS can be applied
also when the mass conservation is imposed through the Equation (2.42).
In such case, the stabilized version of the equation is obtained computing
F̃0
ρ using a consistent matrix Mc,0

ρ , while the lumped Ml,n+1
ρ is employed

on the left side of the equation, to retain a diagonal matrix to be inverted,
namely:

Ml,n+1
ρ Rn+1

f = F̃0
ρ = Mc,0

ρ R0
f (2.60)
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3 An explicit Lagrangian FEM
for free-surface fluid flows

3.1 Numerical methods for free surface flows

Many numerical methods have been proposed in the literature to simulate
fluid flow problems in the presence of evolving free-surfaces. Following the
kinematics frameworks introduced in Section 2.1.1, they can be classified in
Eulerian and Lagrangian. Additionally, the ones that employ a combination
of the two kinematics descriptions are referred to as Arbitrary Eulerian
Lagrangian (ALE) methods.

Eulerian methods As previously underlined, the typical approach in
fluid-mechanics is the Eulerian one: among the Eulerian numerical methods,
the most used ones are the Finite Difference Method, the Finite Element
Method and the Finite Volume Method. Each of these approaches has been
successfully used in a wide range of fluid dynamics applications, since the
fixed computational grid (mesh) allows to avoid problems of large distortions
of the fluid flow. On the other hand, a fixed mesh does not allow a natural
treatment of problems where the fluid boundary varies significantly during
the analysis, namely free surface flows or FSI problems with structures
undergoing large displacements. Moreover, when the nonlinear convective
term is dominant, numerical oscillations may arise in the standard Galerkin
formulation.

Several strategies have been introduced to track the fluid boundary vari-
ation in Eulerian formulations. Some of them are listed below. The Marker
and Cell Method (MAC) has been firstly introduced in [46]. This approach
combines a fixed Eulerian mesh with a set of massless particles moving ac-
cording to the velocity computed on the cells to detect which region of the
grid are occupied by the fluid. The markers indicate which fluid phase the
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cell belongs to, i.e. a cell with no marker particles is considered to contain
no fluid, while a cell with marker particles lying adjacent to an empty cell,
is called as a surface cell. The MAC method is able to reproduce complex
phenomena such as wave breaking. On the other hand, it can be compu-
tationally expensive, especially in 3D geometries. This is due to the large
number of marker particles to be introduced in addition to the solution of
the fluid governing equations, as well as to the fact that usually such parti-
cles need to be redistributed during the analysis since they can concentrate
in some region and be sparse in some others [47–49].

In the Volume of Fluid Method (VOF) [50], a scalar function is defined
as the ratio of the fluid volume to the total volume of the computational cell.
Solving the transport equation for the filled fraction function on each control
volume, one can follow the evolution of the free surface. Cells with values
between zero and one contain a free surface and the normal direction to the
boundary is defined by the gradient of the scalar function. Such an approach
is able to reproduce complex free surfaces behaviour and wave breaking more
efficiently than the MAC method. However, the free surface profile may be
not sharply defined, but smeared over one to three cells, similarly to what
happens in shocks simulations for compressible flows [47]. Several variants
of this approach have been proposed in the literature [24, 51–53], and it is
widely used in real engineering problems.

Another strategy is represented by the Level Set Method, described in
[49]. This approach is employed in many engineering fields to detect sharp
discontinuities that are not conforming to the mesh. The idea is to define
a smooth function, which is usually taken as the signed distance to the
interface, so that it has positive values inside the fluid domain, negative
values outside and null value at the interface. To capture the free-surface
one can find the set of points where the function vanishes, while its motion
can be analysed by convecting its values with the velocity field [48]. The
advantage with respect to the VOF is that the function is smooth across the
interface, while the volume fraction in VOF is discontinuous there. Different
techniques have been proposed to avoid oscillations and numerical diffusion
of the results at the interface [54,55]. Finally it must be noted that several
hybrid strategies have been presented, combining for example the Level-Set
and the VOF [56,57].

Despite the large diffusion of such ad hoc strategies for the detection of
the free surface, the Eulerian approaches may suffer of problems related to
an accurate and sharp definition of the free surface in complex phenomena
such as breaking waves with splashes and reconnecting interfaces. For this
reason, other approaches adopting a fully Lagrangian or an ALE description
have been developed.



3.1 Numerical methods for free surface flows 27

Arbitrary Lagrangian Eulerian methods The ALE methods have
been developed to combine the advantages of the Eulerian and Lagrangian
descriptions [58–62]. According to this idea, the nodes of the computational
mesh may be moved within the continuum in a Lagrangian fashion, or be
held fixed in an Eulerian manner, or be moved in some arbitrarily specified
way to give a continuous rezoning capability. Thus, the movement of the
fluid particles is decoupled from the one of the mesh nodes. A convective
term is present as in the Eulerian approach, but depending on the relative
velocity between material points and mesh nodes. Effectively, the ALE de-
scription can be considered as a general framework in which one can find
the Eulerian and Lagrangian ones as particular cases: they can be obtained
from the ALE formulation setting to zero the grid-nodes velocities or the
grid-nodes to fluid particles relative velocities, respectively. The ALE ap-
proach has been extensively used to solve free surface fluid and FSI problems
with the Finite Element Method. The ALE formulation usually prescribes a
fully Lagrangian formulation on a layer along the moving boundaries, while
a mixed transition zone separates it from an Eulerian fixed description in
the central zone. This is in principle very effective because it exploits the
Lagrangian capacity to track the fluid boundary motion and, far from it,
the Eulerian one to minimize mesh-distortion. However, the main short-
coming of this technique is that it is essentially limited to geometries where
the material flow is relatively predictable and where the fluid boundaries
movement is rather limited. For example, it does not allow for new free
surfaces creation or merging, without introducing remeshing.

On the contrary, the present work focuses on the most general situa-
tion where the motion of the fluid boundaries can be very large and un-
predictable, with complex phenomena such as breaking waves, interface
merging and splashes. In such a situation, the ALE needs to prescribe a
Lagrangian description for a large part of the domain and introduce remesh-
ing. Moreover it has to face all the additional efforts to treat the convective
terms.

Lagrangian methods When a purely Lagrangian framework is consid-
ered, one can avoid the problems related to the free surface tracking and
the non linearities of the convective term. The Navier-Stokes Equations are
written in the material coordinates so that no convection is present and the
fluid free surface is naturally defined by the position of material points. On
the other hand, a computational mesh attached to fluid nodes quickly un-
dergoes large distortions. For this reason, one can define two main types of
Lagrangian approaches: the meshless approaches and the mesh based ones
which involve remeshing.
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The meshless or mesh-free approaches eliminate the dependence on a
computational grid (at least partially) by describing the computational do-
main through a set of particles without mesh constraints, and establishing
a system of algebraic equations for the whole problem domain based on
particle-derived shape functions. Among meshless methods, let us recall
some of the most used ones, such as the Smooth Particle Hydrodynamics
method (SPH), the Material Point Method (MPM) and the Element Free
Galerkin Method (EFGM). Smooth Particle Hydrodynamics (SPH) was for-
mulated for the first time independently in [63, 64] for astrophysical prob-
lems. Each particle refers to a geometric position in the fluid domain and
stores hydrodynamic properties such as mass, momentum, density, viscos-
ity. Moreover, these discrete physical variables are smoothed over the fluid
domain as a summation on neighbour particles. More in details, they are
interpolated from the value on each particle using a Gaussian or spline ker-
nel function which is different from zero only on a localized support domain
defined through the characteristic length associated to each particle [65–68].
The governing equations are solved in their strong form. Despite all the ad-
vantages of exploiting a Lagrangian mesh-free approach, SPH methods have
difficulties in enforcing essential boundary condition, penetration problems
between continua when high speed or impact occurs and they need the in-
troduction of artificial viscosity to avoid unstable solutions [69]. As well as
SPH, the Element Free Galerkin Method (EFGM) represents the domain as
a discrete set of particles. On the other hand, EFGM differs from the SPH in
discretizing the governing equations in their weak form. The interpolating
functions are constructed using the moving least square approximation, gen-
erated at each nodal point and different from zero over the associated local
support domain [70]. Moreover, EFGM prescribes the use of a background
grid for the integration of the system matrices. The main shortcomings of
the EFGM are related to the imposition of boundary conditions, as in the
SPH method, and to its computational cost, which can be high especially
because of the matrix integration step [71].

The Material Point Method (MPM) is a particle method, proposed for
the first time in [46] for the solution of fluid flow problems under large de-
formations and initially known as the Particle In Cell (PIC) method. It
combines the Lagrangian representation of the domain as a set of parti-
cle, the so-called material points, with a background computational mesh.
All the physical properties and state variables are stored at the particle
level [72, 73]. The fixed Eulerian background mesh carry no permanent
information and it is employed to solve the governing equations and to de-
termine incremental displacements and strains at the material points. Thus,
at the beginning of each time step the information are transferred from the
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material points to the background mesh, while at the end of the time step
the solution is mapped from the background mesh back to the material
points. With respect to the previous particle methods, the MPM has the
additional advantage of an easy implementation of the boundary condition,
as in standard FEM. Among its shortcomings, it may be expensive both in
terms of storage requirements and computing time because of the informa-
tion transfer from the material points to cell nodes and vice versa at each
time step [74].

The Lagrangian mesh-based FEM approach has been rarely employed
for the solution of fluid flows before the rise of strategies to treat the mesh
distortion [75]. In [76] a mesh re-zoning technique was applied to model
solitary wave propagation, with an applicability range limited to small evo-
lution of the free-surface. An adaptive remeshing based on the advancing
front algorithm was introduced in [77] to reproduce stronger free surface
variations, but it was not able to model complete wave breaking including
surface merging and splashes. More recently, the Particle Finite Element
Method (PFEM) has been firstly introduced in [78], based on a continu-
ous re-triangulation of the domain whenever the mesh gets too distorted.
In [79, 80], a different version of the PFEM, namely the PFEM-2 has been
introduced, which is based on a hybrid spatial discretization including a
cloud of Lagrangian particles and a fixed background Eulerian mesh. This
method has demonstrated its effectiveness in a wide range of applications,
especially in convective dominant problems [81].

The present work employs a novel explicit version of the PFEM for the
fluid domain, which is described in details the present chapter.

Finally, another approach which can be considered beyond this classi-
fication is the Lattice Boltzmann method (LBM) [82, 83]. LBM is widely
used for standard CFD problems and it has been extended also to free sur-
face flow. It is outside the classification criteria here considered because, in
contrast with classical CFD approaches, which deal with the macroscopic
Navier-Stokes equations, the LBM regards CFD problems at the micro-
scopic scale. The primary variable is the particle distribution function,
which specifies the probability to encounter a particle at given position and
time. The macroscopic variables such as velocity and pressure are obtained
by evaluating the hydrodynamic moments of the particle distribution func-
tion. The evolution of the particles distribution function is described by the
Boltzmann equation. Such equation relates the time evolution and spatial
variation of a collection of molecules to a collisional operator that describes
the interaction of the molecules. At the limit of a dense distribution of
particles, the macroscopic Navier-Stokes Equations are recovered [84]. Con-
sequently, LBM provides stable and efficient numerical calculations for the
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macroscopic behaviour of fluids, although describing the fluid in a micro-
scopic way, given that you have the computational power to have a proper
amount of particles. Furthermore, the term Lattice is related to the required
background computational grid which need to be regular. For this reason,
when dealing with free surface flows, it has to be coupled with the aforemen-
tioned strategies to capture the fluid interfaces in Eulerian approaches such
as the VOF [85,86]. The main difficulties when using the LBM are related to
the complex nature of the collisional integral operator and to the previoulsy
commented problems of accuracy and sharpness of the free surface profile
when interface capturing algorithms are employed. Moreover, despite the
architecture of the algorithm is suitable for an efficient parallization which
allows for the introduction of the required large number of particles [87],
when it is coupled with strategies to deal with free surface flows or with
other solvers for FSI problems, a performance drop is observed [85].

3.2 The Particle Finite Element Method (PFEM)

The Particle Finite Element Method (PFEM) is a mesh-based Lagrangian
approach particularly suitable for problems characterized by severe changing
in the domain topology. It was firstly introduced to model free surface flows
[78,88] and subsequently it showed its potentialities in the simulation of FSI
problems [1, 89–91], granular flows [92–94], multiphase materials flows [95],
forming processes [96], thermal coupled problems [97,98], transport, erosion
and sedimentation in fluids [99].

The PFEM can be basically summarized as a standard Lagrangian FEM
combined with an efficient algorithm for the re-triangulation of the domain
which is frequently performed runtime during the analysis to ensure a proper
quality of the spatial discretization. The fluid motion is followed by the
mesh nodes (particles) according to the governing equations in a Lagrangian
fashion. All the physical properties and variables are stored at the node
level so that no information is stored at the element level. Whenever the
Lagrangian motion of the nodes leads to an overly distorted mesh, such
mesh is deleted, retaining its nodes with all the nodal information. A new
mesh is then generated redefining the element connectivities starting from
the same set of nodes. Having no data stored at the element integration
points or at nodes along the element sides permits the use of remeshing
without information loss or necessity of mapping between the old and new
meshes which can be computationally expensive. At every time step, once
the domain mesh is identified, the integral form of the governing equations
are solved as in a standard FEM. The Lagrangian description together with
the remeshing algorithm are particularly effective to track the fast evolution
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of free surfaces involving breaking waves or splashes.

In the following part of this chapter, all the main features of the method
will be described in details, together with the discussion of numerical results
to highlight advantages and drawbacks of this approach.

3.2.1 Mesh generation algorithm

The regeneration of the mesh is the key feature of the PFEM. In the PFEM
literature this process is referred to as “remeshing”, “triangulation” or “tes-
sellation”. It must be underlined that it involves only changes in the nodal
connectivities (and thus in the elements), while the position of the nodes
themselves is preserved. The effectiveness of the PFEM is based on the fast
and accurate generation of a mesh. The algorithm must be fast, since it is
performed very frequently during the analysis. At the same time it must
be accurate, in order to track the fast evolution of the fluid boundaries and
solve the integral governing equations on the correct domain. Moreover, in
the present novel PFEM version based on an explicit integration scheme,
an additional requirement to the remeshing algorithm arises: the quality of
the mesh must ensure a reasonable stable time step size (Equation (2.48))
for the overall efficiency of the explicit solver. This can be particularly de-
manding especially in the 3D framework. A novel technique to ensure all
these requirements have been developed and presented in Chapter 6.

In the PFEM the remeshing procedure is performed through the com-
bination of the Delaunay tessellation and the Alpha-Shape Method.

3.2.1.1 Delaunay Triangulation

To better understand the geometrical features of the Delaunay tessellation,
let us first introduce the definition of the Voronoi diagram and Voronoi
cells. Given a set of N points Pi in Rd (i = 1, . . . , N ; d = 2, 3), the Voronoi
diagram is the partition of Rd in N convex regions Vi, called Voronoi cells.
For the sake of clarity, let us now focus on the two dimensional case (d = 2).
Each Voronoi cell is associate to one node ni and defined as the locus of
points x ∈ R2 such that:

d(x, Pi) ≤ d(x, Pj) ∀i 6= j (3.1)

where d(x, Pi) = ‖x − x(Pi)‖ is the Eucledian distance (Figure 3.1). It is
worth noting that each side of a Voronoi cells belongs to two regions Vi
and Vj , consequently it is the locus of points equidistant to Pi and Pj (the
axis of the segment PiPj). Furthermore, each vertex of theVoronoi diagram
belongs to three region Vi, Vj , Vk and for this reason it is equidistant to
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Figure 3.1: Voronoi cells (dashed black line) and Delaunay triangulation (solid
red line). Every triangle circumcircle (dashed blue line) does not
include any other points of the set.

the three points Pi, P j, Pk, namely, it is the center of the circumference
passing through the three points.

The Delaunay triangulation is the dual of the Voronoi diagram. It can be
constructed joining the points whose Voronoi cells have a common bound-
ary (Figure 3.1). This implies that the Delaunay tessellation generates a
mesh of triangles (2D) and tetrahedra (3D) representing the least convex
hull enclosing an arbitrary set of points, i.e. the convex figure of minimum
area which encloses all the points of the set. A defining property of the re-
sulting mesh is that none of its vertices lay inside any triangle’s circumcircle
(in 2D) or tetrahedron circumsphere (in 3D). In the 2D framework, the De-
launay triangulation guarantees a lot of remarkable optimal properties such
as the minimization of the maximum radius of an element circumcircle and
maximization of the minimum angle among all the elements. On the other
hand, the 3D Delaunay algorithm loses some of the optimal properties of
its 2D counterpart. Unfortunately, this has important consequences on the
possible presence of bad quality tetrahedra in the mesh, which will be ad-
dressed in details in Chapter 6.

3.2.1.2 Alpha-shape algorithm

In a Lagrangian framework the external boundary Γtf = ∂Ωt
f and the current

volume Ωt
f are defined by the position of the material particles. In the

PFEM approach it is necessary to determine the new boundaries every
time a new mesh is generated. The Delaunay Triangulation generates the
convex hull of a given set of points. This in general does not coincide with
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(a) t1: set of nodes (b) t1: Delaunay mesh (c) t1: Alpha-shape applica-
tion

(d) t2: set of nodes (e) t2: Delaunay mesh (f) t2: Alpha-shape applica-
tion

Figure 3.2: Mesh generation algorithm at two different instants t1 (a, b, c) and t2

(d, e, f). (a, d) Initial set of nodes. (b, e) Delaunay mesh representing
the convex hull of the set of particles, with many unphysical distorted
elements (grey). (c, f) Removal of the distorted elements through
Alpha-shape algorithm. The inactive boundary ghost nodes (white
dots) are not included into the governing equations.

the definition of the real fluid domain, which could have concave parts and
cavities that cannot be detected by the algorithm, as depicted in Figure 3.2-
b,e. To recover the physical domain boundaries, the Alpha-shape method
is employed [100, 101]. This method is based on the observation that the
unphysical elements which do not belong to the real fluid domain are in
general the most distorted ones, because they connect particles that are far
one from the other (Figure 3.2-b). Consequently, a geometrical index of
distortion αe is defined for each element e as:

αe =
Re

hmean
(3.2)

where Re is the radius of the circumcircle (or circumsphere in 3D) to the
considered element and hmean is a characteristic mesh size, for example in
the present version the average of the minimum element side among all the
elements of the initial mesh. A threshold value ᾱ for this distortion index is
defined in order to remove from the Delaunay mesh all the elements which
have a larger distortion index, namely the elements characterized by:

αe ≥ ᾱ ⇐⇒ Re ≥ ᾱhmean (3.3)
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Clearly, one of the keypoints for the correct result of the method is the
proper definition of the distortion limit ᾱ. Different values of ᾱ can lead
to different configurations. If ᾱ is too large, one is not having the proper
resolution to track the fluid domain profile and one can recover, at the limit
case, the Delaunay mesh. On the other hand, if ᾱ is too small, too many ele-
ments are removed and one may lose the smoothness of the fluid boundaries
or create unphysical holes inside the domain. In the version of the PFEM
here presented, two values of ᾱ are considered, taking advantage of the in-
formation about the fluid boundaries coming from the previous mesh. Every
node belonging to the fluid boundary has a flag identifier. When a new mesh
is generated, elements including nodes which belonged to the boundaries of
the previous mesh are checked with a smaller limit ᾱbound = 1.3, to have the
proper resolution on the boundary surface. Conversely, elements including
only internal nodes of the previous mesh are checked with a bigger limit
ᾱint = 2, to avoid the creation of unphysical voids and cavities inside the
fluid bulk.

It must be underlined that the Alpha-shape method can introduce ac-
curacy errors on the results of the analysis. The local changes of topology
related to the insertion/removal of elements may globally alter the mass
conservation, introduce local inaccuracies in the representation of the free
surfaces and also local perturbations of the equilibrium reached at the pre-
vious time steps [102]. Nevertheless, it must be noted that the errors in
the boundary definition are proportional to mesh size h and can be reduced
down to the desired accuracy by refining the mesh [101]. Moreover, it has
been verified in [103] that, if the limit distortion ᾱ is chosen around the
value of ᾱ = 1.2, the variation on the numerical results is negligible.

Finally, it is important to underline that the Alpha-shape method is also
able to naturally model fluid particles/elements separating from the bulk,
or the contact between flows and structures in FSI problems. The FSI ap-
plication is described in details in Section 4.3.5. For the fluid separation,
let us consider Figure 3.3-a: if a particle of the free surface belongs to a
triangle which is overly distorted, the criterion expressed by the Relation
(3.3) removes such element. The particle, with all the information saved at
the node level, separates from the bulk and starts to move according to its
initial velocity and the gravity field (Figure 3.3-b). In the opposite case of a
separated particle that has approached enough the fluid free surface bound-
ary (Figure 3.3-c), the triangle generated by a new Delaunay tessellation is
not removed and the particle is again merged with the fluid bulk (Figure
3.3-d).
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(a) (b)

(c) (d)

Figure 3.3: (a)-(b) The overly distorted element on the free surface is removed
and one particle (white) separates from the bulk starting to move
according to its velocity and the gravity field. (c)-(d) A particle
approaching the bulk is incorporated when the connecting triangle is
not removed.

3.2.1.3 Mesh Improving Tools

The combined action of the Alpha-shape method and the Delaunay trian-
gulation alone cannot ensure a good quality of the mesh throughout the
analysis duration. The motion of the fluid nodes can lead to regions with
nodes concentration or dispersion, or more in general to nodal distributions
which inevitably lead to mesh with bad quality elements. As previously
commented, such a situation may affect the accuracy and the effectiveness
of the solver, which becomes crucial especially in the 3D framework, because
of the poorer properties ensured by 3D Delaunay tessellation. Besides the
novel mesh regularization algorithm described in Chapter 6, other algo-
rithms that are standard in the PFEM framework for the improvement of
nodal distribution are here addressed. Such algorithms are based on quality
checks on the current mesh and the subsequent following actions performed
on the regions requiring to be improved:

� A new node is inserted in the centroid of elements whose area exceeds
a threshold value (Figure 3.4);

� A node is removed from the mesh if it is too close to the neighbour
ones (Figure 3.5);
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Figure 3.4: Mesh improvements: a new node (red) is inserted in the centroid of
elements whose area exceeds a threshold value.

Figure 3.5: Mesh improvements: a node (red) too close to the neighbour ones is
removed.

� A node too close to the neighbour ones is re-located at the centroid
of the patch of elements sharing that node (Figure 3.6);

It must be underlined that the first two types of improvements need to be
followed by a remeshing, while the third one does not alter the mesh con-
nectivities. Moreover, the third node re-location is usually referred to as
Laplacian Smoothing in the literature [104]. It is computationally inexpen-
sive and quite effective in the 2D framework. However, there is no general
guarantee of an improvement in the quality of the mesh and, especially in
3D, it can lead to mesh deterioration or even inverted elements [104–106].
Finally, let us remark that each of the aforementioned controls is related to
predefined threshold quality values defined as functions of the characteristic
mesh size hmean: the frequency and the influence of these algorithms can
be varied by the user considering the required mesh homogeneity.

3.2.2 Boundary Conditions

A peculiar feature of the PFEM is the way in which the boundary condi-
tions are identified. This is done through a set of nodes distributed on the
boundary walls, that will be referred to as ghost nodes. The ghost nodes are
characterized by assigned material properties and assigned velocity which
forces them to remain fixed on the boundary (e.g. zero velocity for fixed
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Figure 3.6: Mesh improvements: a node (red) too close to the neighbour ones is
re-located at the centroid of the highlighted patch.

boundaries), otherwise the definition of the boundary itself would be lost.
For example, in Figure 3.2 one can find a set of particles laying on the
boundary walls where a zero velocity is imposed in order to define the lim-
its of the computational domain. Let us remark that such set of ghost nodes
covers all the boundary walls that can be possibly involved in the fluid flow,
even if they are not initially in contact (e.g. the vertical wall in Figure 3.2).
After the Alpha-shape algorithm, if a ghost boundary node is included in
any element of the mesh, then its degrees of freedom are considered in the
governing equations and it will be referred to as wet ghost node (red dots
in Figure 3.2-c). Otherwise, the ghost node is inactive and not included in
the solution of the governing equations (white dots in Figure 3.2-c).

This strategy is able to optimize the effectiveness of the Alpha-shape al-
gorithm to deal with contact between complex and evolving surfaces. How-
ever, it is not easy to be employed in general cases where non-homogeneous
conditions are imposed at the boundary walls. Such cases are addressed in
details in Chapter 5 with the use of a novel strategy which employs a mixed
Lagrangian-Eulerian description at the fluid boundary.

3.2.3 Mass conservation

It is well known that a crucial issue of numerical methods for incompress-
ible (and weakly compressible) fluids is the mass conservation. There are in
general two possible sources of mass variations when a free surface flow is
modelled through the PFEM [103]. The first one is related to the numerical
treatment of the incompressible/weakly compressible Navier-Stokes equa-
tions and it mainly depends on the stabilization procedure employed in the
method. This is a common issue for numerical methods which use the weak
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(a) (b)

Figure 3.7: Mass variations on a coarse mesh for a fluid drop falling on an empty
box.

form of the mass conservation [107]: it is more evident in the Lagrangian
framework but it is experienced also in Eulerian and ALE approaches. It
must be highlighted that the present version of the weakly compressible
PFEM employs the CLS stabilization strategy presented in Section 2.5.3,
which allows to consistently impose the global mass conservation equation,
so that no mass variation is introduced by the numerical solution of the
governing equations.

The second source of mass variation is instead peculiar of the PFEM
and in particular of its remeshing procedure combined with the boundary
representation strategy. At every remeshing step the connectivities are re-
generated, in general with the creation of new elements and the removal of
some others. This affects the mass balance and it is more pronounced at the
free surface and at the boundary walls. Indeed, if a fluid particle approaches
the boundary, new elements are created and inactive ghost boundary nodes
can be activated into wet ghost nodes: consequently they become involved
into the total mass computation determining a mass variation. Therefore,
problems showing a big change in the number of wet boundary nodes during
the simulation are intrinsically prone to mass variation. Let us consider the
example depicted in Figure 3.7: a drop of fluid is falling onto an empty box.
The drop is schematically discretized by 12 particles which initially form
a mesh of 14 elements (Figure 3.7-a). The choice of a very coarse mesh is
aimed to magnify the mass variation issue and make it more visible. The
box walls are initially represented by a set of inactive ghost nodes (white
dots in Figure 3.7-a). Let us assume now that the fluid hits the bottom
of the box and the particles spread over its walls as shown in Figure 3.7-b.
In this configuration, a large amount of ghost nodes are activated and be-
come wet nodes (red dots in Figure 3.7-b) and they can participate to the
creation of a greater number of elements. Therefore the mesh turns to 28 el-
ements, so that the mass is doubled. Nonetheless, one should note that this



3.3 Solution Scheme 39

represents a limit pathological case where the fluid is initially completely
detached from the boundaries and a very coarse mesh is employed.

In [103] a detailed study of this type of mass variation has been pre-
sented. More in particular, the mass variation related to the PFEM remesh-
ing is strongly dependent on the value of ᾱ and the mesh size. It has been
verified that in a range of values of ᾱ around ᾱ = 1.2 the differences in the
numerical results are negligible. Moreover, it is important to underline that
such perturbations can be controlled and reduced refining the mesh size.
This is particularly important for the reliability of the PFEM, confirming
that the method works in the spirit of the FE, obtaining better results when
the mesh size is reduced.

3.3 Solution Scheme

The PFEM solution procedure is summarized in Algorithm 1. At the begin-
ning of every time step of the dynamic analysis, a check on the distortion of
the fluid mesh is performed. If the mesh employed in the previous time step
is too distorted, all the connectivities are erased, retaining the set of mesh
nodes storing of the fluid information. Starting from that cloud of points,
the Delaunay triangulation generates a new convex mesh with good quality
elements. The detection of the new fluid boundaries is performed with the
Alpha-shape method. If necessary, further improvements on the mesh qual-
ity can be performed at this stage with the algorithms described in Section
3.2.1.3 (or the one presented in Chapter 6). Once a proper discretization
of the fluid domain is recovered, a standard FE Central Difference Scheme
step is performed in order to update the physical variables and the position
of the nodes to conclude the time step. As it has been already commented,
the explicit integration scheme leads to an easily parallelizable algorithm.
In the present version, the elemental assemblying operations and the fol-
lowing solution of the global system of decoupled equations are executed in
parallel on multiple threads with shared memory.

3.4 Numerical examples

3.4.1 Free Sloshing

Let us consider the sloshing problem presented in [108]. The geometry is
depicted in Figure 3.8. In a rigid tank of width 2A = 2m, an inviscid
fluid is characterized by the density ρf = 1000kg/m3. Considering the
slow dynamics of the present example, a conservative choice for the reduced
value of the dilational wave speed is cf = 100m/s (see Section 2.4), leading
to a fluid bulk modulus of Kf = 1.0 106Pa. The fluid domain has an
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Algorithm 1 Explicit PFEM: Solution scheme

for n = 0, ..., N − 1 do
check mesh distortion
if mesh too distorted then

generate new mesh
identify boundaries
mesh improving algorithms

end if
estimate the new stable ∆tn+1 from eq. (2.48)

Mid-step velocity update V
n+ 1

2
f : eq. (2.40)

Displacement update Un+1
f : eq. (2.41)

Compute density Rn+1
f : eq.(2.60)

Compute pressure Pn+1
f : eq.(2.43)

Compute acceleration An+1
f : eq. (2.44)

End-step velocity update Vn+1
f : eq. (2.45)

end for

Figure 3.8: Free Sloshing. Geometry of the problem
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Figure 3.9: Free sloshing. (a)Analytical solutions H1(A, t) and H2(A, t) for the
time history of the elevation of the midpoint of the free surface derived
in [108]. (b)Comparison of the second order analytical solution with
the results obtained with the present method (with the finest mesh).

initially prescribed free surface elevation H(x, t = 0) with respect to the
tank bottom:

H(x, t = 0) = A+ a cos [k (x+ λ/2)] (3.4)

where a = 0.1A is the amplitude of the wave, k = 2π
λ is the wave number

and λ = 2 m is the wave length. The subsequent free surface oscillations
of the fluid in the tank are addressed. More in details, the time history of
the free surface elevation at the center of the tank H(A, t) is considered.
In [108], the analytical solution of non-linear water wave equations up to
the second order is derived using the Stokes perturbation expansion. The
obtained analytical solution for H(A, t) is the sum of a linear term H1 and
a second order term H2:

H1(A, t) = A− a cos (ω2t) (3.5)

H2(A, t) =
1

8g

[
2 (ω2a)2 cos (2ω2t)

]
+

+
1

8g

[(
a

ωe

)2 (
k2

2g
2 + ω4

2 −
(
k2

2g
2 + 3ω4

2

)
cos (ω4t)

)]
(3.6)

where ωm =
√
kmg tanh (kmA) and km = mπ/λ, with m = 2, 4. In the case

of small waves amplitude the linear term is predominant and sufficient to
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Figure 3.10: Free sloshing. (a)Time history of the elevation H(A, t) of the
midpoint of the free surface: comparison of different mesh sizes.
(b)Averaged error with respect to the analytical solution for differ-
ent mesh sizes.

describe the phenomenon represented by harmonic oscillations with constant
peaks. In the case here considered, the wave amplitude of a = 0.1A leads
to non linear effects and non constant peaks of the oscillations are captured
by the second order theory (Figure 3.9-a). Different spatial discretizations
have been considered. Figure 3.10-a shows the results for three meshes
characterized by an average element size of h1 = 0.1m, h2 = 0.05m and
h3 = 0.01m, leading to mesh of approximately 0.45k, 1.8k and 46k elements,
respectively. The average stable time steps computed with the stability
Relation (2.48) on the three meshes are equal to ∆t = 1.2 10−4s, ∆t =
7.5 10−5s, ∆t = 1.2 10−5s, respectively. The results of the best mesh h3

are compared with the analytical results in Figure 3.9-b, showing a very
good agreement both in terms of oscillations amplitude and frequency. A
possible error definition is the following averaged error errhi with respect
to the analytical solution, which takes into account the evolution of the free
surface in time. It is computed on each mesh hi as:

errhi =
1

N

N∑
n=1

|Hex(A, tn)−Hnum
hi

(A, tn)| /Hex(A, tn) (3.7)

whereN is the number of time steps of the time discretization. The averaged
error for all the considered meshes are plotted in a log-log graph in Figure
3.10-b, showing a decrease in the magnitude which is more than linear with
the average mesh size h.
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Figure 3.11: Free sloshing. Time evolution of the mass variation during the anal-
ysis with different mesh sizes. (a)With remeshing. (b) Without
remeshing: results until the mesh distortion stops the analyses.

Let us now consider the mass variations introduced in the present version
of the PFEM by the remeshing procedure. Figure 3.11-a represents the time
evolution of the total fluid mass variation with respect to the initial mass
for the different employed meshes. As described in Section 3.2.3, one can
observe oscillations in the total fluid mass that are related to the free surface
oscillations and the consequent variations in the number of wet boundary
nodes. When the crests of the wave are at the tank sides, the number of wet
boundary ghost nodes included in the triangulation increases leading to an
increase in the fluid mass. These mass variations are intrinsic in the PFEM
method. They are acceptable because they can be controlled and reduced
refining the mesh, as it can be observed in Figure 3.11-a, where on the finest
mesh the maximum variation is less than 0.5%. Finally, Figure 3.11-b shows
the mass variation lines for analyses performed using the same meshes and
disabling the remeshing procedure. After approximately 1.8s the meshes get
too distorted and the analyses stop. However, it is interesting to underline
that the mass curves for all the three considered meshes are perfectly aligned
showing no mass variation, representing a proof that the only source of mass
variation in the present method is given by the remeshing procedure.

3.4.2 Drop fall

In this example, the free fall of a disk of water and its impact onto a wa-
ter basin at rest is considered [24]. The geometry of the problem is de-
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Figure 3.12: Fall of a water drop. Geometry of the problem

picted in Figure 3.12. The Newtonian fluid is characterized by density
ρf = 1000kg/m3 and viscosity µf = 10−3Pa s, while the adoption of
the reduced value of the dilational wave speed cf = 150m/s leads to the
bulk modulus Kf = 2.25 107Pa. The fluid domain is discretized with a
mesh of average element size h = 0.003m leading to approximately 27k el-
ements. The average stable time step during the analysis is then equal to
∆t = 4.63 10−6s.

The impact of the sphere with the water at rest leads to the formation
of two jets on either side of the initial disk. Then the gap generated by
the fall of the disk is progressively filled up with the formation of a new
water jet at the middle of the box. Figure 3.13 shows the snapshots of
the numerical results obtained with the present method compared with the
corresponding ones presented in [24], where an ALE finite volume scheme
is employed solving the equations in a Lagrangian form and then mapping
the solutions back on the original mesh. The comparison shows a good
agreement between the two approaches. Moreover, one can observe that
the expected symmetry is well-conserved throughout the analysis. For a
more quantitative comparison, Figure 3.14 superimposes the free surface
profiles of the results at two different instants of the analysis, confirming
the good matching of the results obtained with the present method and
the ones presented in [24]. In Figure 3.15 the time evolution of the total
fluid mass variation is plotted for different meshes. Also in this example the
mass oscillations can be related to the variation in the number of the wet
boundary nodes due to the oscillations of the water level at the two lateral
walls. One can note that the mass variations are small and decrease with
the mesh refinement, leading to a maximum variation of 1.81% on the finer
mesh.



3.4 Numerical examples 45

(a) t=0.177 s (b) t=0.194 s

(c) t=0.229 s (d) t=0.290 s

(e) t=0.349 s (f) t=0.545 s

(g) t=0.618 s (h) t=0.859 s

Figure 3.13: Fall of a water drop. Snapshots at different time instants. Com-
parison of the results presented in [24] (left) and the ones obtained
with the present method (right)
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ALE [24] 
Pres. Meth.

(a) t = 0.229s

ALE [24] 
Pres. Meth.

(b) t = 0.618s

Figure 3.14: Fall of a water drop. Free surface profiles comparison at two time
instants.
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mesh size: 0.01 m 
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Figure 3.15: Fall of a water drop. Time evolution of the mass variation during
the analysis with different mesh sizes.
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Figure 3.16: Dam collapse on rigid obstacle. Geometry of the problem

3.4.3 Dam collapse with rigid obstacle

The simulation of the experimental dam break presented in [109] is here
addressed. The experimental setting is depicted in Figure 3.16: on the left
side of the domain, a column of water is sustained by a rigid wall which
simulates the presence of a dam. As the experiment starts, the wall is
quickly removed, leaving the water flow in the tank under the effect of
gravity. The flow impinges against a rigid obstacle located in the middle
of the box, with the consequent formation of a long wave hitting the right
wall. The constitutive parameters of the water used in the simulation are:
density ρf = 1000 kg/m3, viscosity µf = 10−3Pa s and bulk modulus
Kf = 2.25 107Pa (i.e. a reduced sound speed of cf = 150m/s is employed).
The problem is solved with a mesh of approximately 65k elements and an
average time step size of 6.25 · 10−7 s.

Figure 3.17 shows some snapshots of the simulation at synchronized
instants with the experimental ones presented in [109] and numerical ones
in [24], showing a substantial agreement with the results presented in the lit-
erature. For a more quantitative comparison, Figure 3.18 compares the free
surface profiles of the present method with the experimental ones of [109]
and the numerical ones of [24] at two different instants. One can note
a higher elevation of the experimental water column with respect to the
numerical results at the first stage of the analysis (Figure 3.18-a). Such
difference has been reported also by other numerical results in the litera-
ture [110, 111] and can be explained by the initial raise of the gate at the
beginning of the problem (as noted in [24]). This procedure is modeled as
a boundary condition on the fluid velocity that is instantaneously released,
while in the experiment it takes a short but finite interval of time, delay-
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(a) t=0.129 s

(b) t=0.258 s

(c) t=0.387 s

(d) t=0.516 s

Figure 3.17: Dam collapse on a rigid obstacle. Snapshots at different instants.
Comparison of the experimental results presented in [109] (left), the
numerical ones presented in [24] (center) and the ones obtained with
the present method (right)



3.4 Numerical examples 49

ing the fall of the water column. Consequently, this difference affects the
first stages of the simulation and all the numerical approaches show a com-
mon lower profile with respect to the experimental one. Furthermore, in
Figure 3.18-a one can note a good matching between the numerical results
and a better representation of the experimental wave crest obtained with
the present method. Conversely, in Figure 3.18-b the wave profile of the
present method is slightly lower than the experimental one. This may be
related to the missing effect of the air entrapped below the water wave. In-
deed, no air phase is included in the present approach, while it is modelled
in [24].

Due to its complex dynamics, the present test is a relevant case for test-
ing the possible influence of the lower dilational wave speed cf which is
usually employed in weakly compressible approaches (Section 2.4). Let us
consider the maximum fluid velocity reported in the simulation, which can
be conservatively assumed equal to: max |vf | = 10m/s. Then, the choice in
the reference solution of a reduced dilational wave speed cf = 150m/s (i.e.
a reduced bulk modulus of Kf = 2.25 107Pa) leads to a Mach number of
Ma = 0.0667 (computed through Equation (2.9)). Two additional analyses
have been performed, employing a dilational wave speed of cf = 100m/s
and cf = 1500m/s, respectively. More in particular, the former leads to a
Mach number of Ma = 0.1 which is usually considered as the limit case for
the representation of an incompressible flow; while the latter is the real value
for the dilational wave speed in water (i.e. a bulk modulus of 2.25 109Pa).
The results of the three analyses are basically overlapping throughout the
simulation, confirming that a Mach number below the value of Ma = 0.1
ensures a good approximation of an incompressible flow by a weakly com-
pressible one. For the sake of brevity, the free surface profiles at one time
instant (t = 0.258s) for the three analyses are compared in Figure 3.19-a,
showing that the results are perfectly matching.

Finally, Figure 3.19-b represents the time evolution of the total fluid
mass variation for different meshes. Larger variations with respect to the
previous examples are observed, especially after t = 0.5s. However, this
was expected and it is related to the impact of the long wave with the right
tank wall, with a large variation of the wet ghost boundary nodes and the
involved complex phenomena of fluid jets and splashes. Furthermore, once
again such mass variations can be reduced refining the mesh size, leading to
the maximum mass variation obtained on the finer mesh of 6.01% at the end
of the analysis (while before the impact with the tank wall the maximum
variation is less than 2.44%). Consequently, one can observe that also in
this case with a complex dynamics and fast and strong free surface changes,
the method provides accurate results and acceptable mass variations.
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Exp. [109] 
ALE [24] 
Pres. Meth.

(a) t = 0.258s

Exp. [109] 
ALE [24] 
Pres. Meth.

(b) t = 0.387s

Figure 3.18: Dam collapse with rigid obstacle. Free surface profiles comparison
at two time instants.
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Figure 3.19: Dam collapse with rigid obstacle. (a) Free surface profiles compari-
son varying the bulk modulus of the fluid Kf through the dilational
wave speed ce. (b) Time evolution of the mass variation during the
analysis with different mesh sizes.



4 Partitioned PFEM-FEM Fluid
Structure Interaction

4.1 Numerical methods for Fluid-Structure Interaction (FSI) prob-
lems

A FSI problem is defined by the fluid governing equations, the structure
governing equations and the kinematic and static conditions trasmitted ac-
cross the fluid-structure interface. Many different approaches have been
presented to tackle the challenges related to the multidisciplinary nature of
these problems. The main classifications of these methods are based on the
way of enforcing the interface condition between the fluid and the struc-
ture, the way of solving the coupled system of governing equations and the
kinematics setting adopted to write such equations.

Weak and Strong Coupling A first classification is based on how the
static and kinematic coupling conditions are exchanged at the interface be-
tween the fluid and the structure [112]. An algorithm is defined as weakly
(or loosely) coupled if the static and kinematic continuities are not exactly
satisfied at each time step, otherwise a strongly coupled algorithm is ob-
tained. The asyncronous imposition of static and kinematic conditions of
weakly coupled schemes may lead to lack of accuracy and numerical energy
generation at the fluid-structure interface, which has to be controlled in or-
der to guarantee stability. Despite the weak coupling has been successfully
used in aeroelasticity and in many other complex FSI applications [112], it
is widely reported in the literature [113–119] that such algorithms provide
unstable solutions under certain problem settings. Typically, this happens
in FSI problems involving slender structures and incompressible fluid, with
the structure to fluid density ratio close to one, irrespectively of the time-
step size. Such conditions lead to numerical issues related to the so called
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added mass effect [95,113,116,120] and are generally treated with strongly
coupled schemes. Nonetheless, it is important to underline that the added
mass effect can lead to numerical problems such as a slow or complete lack
of convergence also in strongly coupled schemes [95,112].

Monolithic and partitioned Secondly, solution techniques to FSI prob-
lems can be divided into two categories depending on the way of solv-
ing the system of governing equations [117]: the monolithic approaches
[115, 121, 122] and the partitioned ones [123, 124]. In the former, the whole
problem is treated as a unique entity and the fluid and solid equations are
solved simultaneously. The main advantage of this approach is the preser-
vation of accuracy and stability because of the natural strong coupling: the
exchange of interface conditions is implicitly included in the solution of the
global system of equations. On the other hand this approach requires the
development of a specific software, not allowing for the reuse of existing
software for the fluid and structural domains. Moreover, for real engineer-
ing problems, it must be underlined that the unified solution of a large
system of equations coming from two different physical domains leads to
numerical difficulties that can limit its applications. By contrast, in par-
titioned approaches, the fluid and structural equations are solved indepen-
dently and coupled through the exchange of kinematic and static interface
conditions. Partitioned methods can provide strong coupling, for example
through subiterations or predictor/corrector techniques, or weak coupling
otherwise. Among the advantages of the partitioned approach, let us remark
the possibility to reuse of existing codes for the physical subdomains (code
modularity) and the possibility to solve the resulting systems of equations
of smaller dimensions and better conditioned than in the case of monolithic
schemes. On the other hand, the possible rise of numerical issues requires
a proper choice of the interface coupling algorithm, depending on the tar-
geted applications, to ensure accuracy, stability and efficiency of the coupled
solver.

Eulerian and Lagrangian Finally, as it has been remarked for fluid nu-
merical methods in Section 2.1.1, also the FSI algorithms can be classified
according to the Eulerian or Lagrangian kinematic framework used for the
governing equations both in the structural and fluid domains. As it hap-
pens in free surface flows, in complex FSI problems with large structural
displacements the fluid structure interface needs to be tracked in Eulerian
approaches or it is directly defined by the position of the boundary particles
in Lagrangian ones. When a heterogeneous domain constituted by a fluid
and a structural part is analyzed, one can apply fully Eulerian [125, 126]
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or fully Lagrangian approaches [1, 89, 124, 127], where the whole domain
is analysed within a unified framework. On the other hand, there are
approaches which combine two different formulations for the two subdo-
mains. For example, the Coupled Eulerian-Lagrangian [128, 129] and the
Immersed Boundary Method [130, 131] employ two overlapping grids with
a Lagrangian mesh for the structure moving on a fixed Eulerian mesh for
the fluid. The former, computes the fluid volume fraction for each eulerian
cell and then evaluates the fluid surface which interacts with the structure
with standard contact algorithms. The latter instead treats the interac-
tion interpolating the variables at the fluid structure interface from the two
non conforming discretizations. Conversely, in the Arbitrary Lagrangian-
Eulerian Method [132, 133] one can use the two kinematic settings in the
fluid and structure domains. One of the most common strategy is to adopt
a standard Lagrangian formulation for the structure and an ALE formu-
lation for the fluid, whose mesh is Lagrangian at fluid structure interface
to follow the structural motion and deforms in a standard ALE fashion
elsewhere [134].

According to these classifications, the PFEM-FEM FSI approach here
presented is partitioned with strong coupling and fully Lagrangian. In this
partitioned scheme, the interface coupling is provided by the Gravouil and
Combescure (GC) algorithm [135]. The technique has its roots in the Do-
main Decomposition Methods [136] and it ensures a strong coupling and the
stability of the interaction algorithm. It allows to use different time steps
sizes and non-conforming meshes in the different subdomains. When con-
forming meshes across the interface are used, the global system of governing
equation is fully decoupled, resulting in a fully explicit coupled solver. Con-
versely, if non-conforming meshes are employed, a small linear system of
equations has to be solved on the interface. However, it must be underlined
that such system is small (it involves only the interface nodes) and narrow
banded.

Moreover, the coupled FSI solver is fully Lagrangian, based on the
PFEM for the fluid domain, and the standard Finite Element Method
(FEM) provided by the commercial software Abaqus/Explicit for the struc-
tural domain. Consequently, the fluid-structure interface is automatically
and accurately tracked by the mesh nodes, with no need for ad hoc interface
capturing algorithms.

4.2 FSI problem setting and structural governing equations

Let us consider a continuum domain Ωt evolving in the time interval [0, T ].
The domain is constituted by two non-overlapping subdomains: a fluid
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Figure 4.1: FSI Problem setting

one, Ωt
f and a structural one, Ωt

s. Let us define the subdomains bound-

aries Γti = ∂Ωt
i, with i = f, s. The fluid-structure interface is given by

ΓtFSI = ∂Ωt
f ∩ ∂Ωt

s. For each subdomain boundary, one can introduce

two additional partitions ΓtD,i and ΓtN,i referring to Dirichlet and Neumann
boundary conditions, respectively, such that (see Figure 4.1):

ΓtD,i ∪ ΓtN,i ∪ ΓtFSI = Γti

ΓtD,i ∩ ΓtN,i = ∅
ΓtD,i ∩ ΓtFSI = ∅
ΓtN,i ∩ ΓtFSI = ∅

In the following, we will denote with ui = ui(x, t), vi = vi(x, t), ai =
ai(x, t), σσσi = σσσi(x, t) and bi = bi(x, t) the displacement, velocity, accelera-
tion, Cauchy stress and body force fields (being i = f, s) respectively. The
fluid subdomain is modelled with the Explicit PFEM approach described in
Chapter 3. On the other hand, the solid subdomain is analyzed using the
off-the-shelf commercial code Abaqus/Explicit [137]. This allows to exploit
all the advanced features of Abaqus/Explicit (e.g. the wide library of mate-
rial constitutive relations and the possibility to include in the model crack
propagation and contact interactions) and therefore it opens the way to the
simulation of FSI problems with advanced structural modeling features. In
this section, the general formulation of the initial-boundary value problem
for the dynamic analysis of structures is addressed, in order to introduce all
the variables that are used in the algorithm for FSI problems described in
Section 4.3.

4.2.1 Structural Governing equations

The strong form of the governing equations for the structural domain con-
sists of the momentum conservation, together with proper initial and bound-
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ary conditions:

ρs
dvs
dt

= ∇x ·σσσs + ρsbs in Ωt
s (4.1)

vs(x, t = 0) = v0,s in Ω0
s (4.2)

us(x, t) = ũ on ΓtD,s (4.3)

σσσs ·ns = hs(x, t) on ΓtN,s (4.4)

where u0,s, v0,s, ūs, hs are assigned functions and ns is the outward normal
to the boundary Γts.

4.2.2 Space and time discretization

Following the same Galerkin approach used for the discretization of the
fluid equations in Chapter 2, let us introduce W u the space of admissible
functions for the displacement field together with the corresponding space
W u

0 of of functions satisfying homogeneous boundary conditions:

W u = {us ∈ H1(Ωt
s) |us = ũs on ΓtD,s}

W u
0 = {us ∈ H1(Ωt

s) |us = 0 on ΓtD,s}

The weak form of equation (4.1) is obtained using a vector test function
ws ∈W u

0 and integrating over the domain Ωt
s:∫

Ωt
s

ws · ρs
dvs
dt

dΩ = −
∫

Ωt
s

σσσs : ∇xws dΩ +

+

∫
Ωt

s

ws · ρsbsdΩ +

∫
Γt
N,s

ws ·hs dΓ ∀ws ∈W u
0 (4.5)

Furthermore, let us replace the continuous spaces W u and W u
0 with the

discrete spaces W u
h ∈ W u, W u

h,0 ∈ W u
0 containing piecewise polynomial

functions defined on the individual elements. The unknown fields can be
replaced by the standard discretizations:

us(x, t) = Nu
s (x)Us(t) (4.6)

vs(x, t) = Nu
s (x)Vs(t) (4.7)

as(x, t) = Nu
s (x)As(t) (4.8)

(4.9)

where Nu
s denotes the matrix of the shape functions and Us(t), Vs(t) and

As(t) indicate the vectors of nodal displacement, velocities and accelera-
tions, varying in time. Substituting into the weak form (4.5), one obtains
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the semi-discretized system of governing equations:

Ms
dVs

dt
= Fext,s − Fint,s = Fs (4.10)

where Ms is the structural mass matrix, Fext,s, Fint,s, Fs are the vectors of
external and internal forces and of their resultant, respectively.
The time integration scheme implemented in Abaqus/Explicit is the Central
Difference Scheme already discussed in Section 2.4. Focusing on a time step
∆tn+1 = tn+1 − tn, the solution is computed through the steps that are
summarized in Algorithm 2.

Algorithm 2 Explicit FEM: Central Difference Solution Scheme

for n = 0, ..., N − 1 do
estimate the new stable ∆tn+1

Mid-step velocity update V
n+ 1

2
s = Vn

s + An
s

∆t
2

n+1

Displacement update Un+1
s = Un

s + V
n+ 1

2
s ∆tn+1

Internal forces update: material integration at Gauss Points
Compute acceleration An+1

s = M−1
s Fn+1

s

End-step velocity update Vn+1
s = V

n+ 1
2

s + An+1
s

∆t
2

n+1

end for

4.3 Coupling with the GC domain decomposition approach

The so-called GC method (Gravouil-Combescure [135,138]) is chosen in the
present work to couple the fluid and structural domains, since it allows
the implementation of different integration time steps in the different sub-
domains, as well as nonconforming meshes at the fluid-structure interface.
The GC algorithm is a Domain Decomposition Method for non overlap-
ping domains which was initially introduced for structural dynamics by
Gravouil and Combescure [135], starting from the general frame of FETI
techniques [136]; later it has been extended to FSI problems, for example
in [124] and [139]. According to the GC algorithm, the fluid and structural
domain are solved independently, as if there was no interaction between
them. The two separated analyses are then synchronized by considering
a system of constraint equations at the fluid-structure interface. This can
be done imposing the continuity of the velocities through the definition
of interface tractions. The tractions play the role of Lagrange multipliers
and are then applied as natural boundary conditions to correct the solu-
tions of the two subdomains. Therefore, the GC method can be defined
as a predictor/corrector algorithm which ensures the strong coupling of
the partitioned approach. The SIMULIA Co-Simulation Services (CSS) is
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a software component for run-time coupling of simulation tools, including
Dassault Systèmes simulation solvers and third-party simulation software
for multi- and multi-scale simulations [137]. Specialized coupling schemes
such as the GC coupling scheme can be implement using the CSS, which
go beyond the standard explicit (e.g. Gauss-Seidel) and implicit-iterative
coupling schemes. In the present work, the CSS have been used to cou-
ple Abaqus/Explicit with the explicit PFEM code presented in Chapter 3
through the GC algorithm. For the sake of clarity, the method is first pre-
sented in the case of equal time integration step size in the two subdomains.

The key idea behind the algorithm is to split the kinematic solution of
each subdomain into two terms, respectively denoted as free and link solu-
tions. The former is related to the free motion of each subdomain as if they
were not interacting with each other; the latter evaluates the correction of
the first solution, applying boundary tractions that play the role of Lagrange
multipliers for the imposition of a kinematic constraint at the fluid-solid in-
terface. The weak form of the governing equations of the coupled system is
given by:

� the weak form of the momentum equation for the fluid subdomain∫
Ωt

f

wf · ρf
dvf
dt

dΩ = −
∫

Ωt
f

σσσf : ∇xwfdΩ +

∫
Ωt

f

wf · ρfbfdΩ

−
∫

Γt
FSI

λ · (gf − gs) dΓ ∀wf ∈ Sv0 (4.11)

� the weak form of the momentum equation for the structure subdo-
main:∫

Ωt
s

ws · ρs
dvs
dt

dΩ = −
∫

Ωt
s

σσσs : ∇xwsdΩ +

∫
Ωt

s

ws · ρsbsdΩ+

+

∫
Γt
N,s

ws ·hs dΓ +

∫
Γt
FSI

λ · (gf − gs) dΓ ∀ws ∈W u
0 (4.12)

� the additional kinematic constraint at the fluid-structure interface:∫
Γt
FSI

λ · (gf − gs)dΩ = 0 ∀λ (4.13)

In the previous expressions gi is the kinematic variable to be constrained at
the interface (displacement, velocity or acceleration), while λ is the corre-
sponding Lagrange multipliers vector, having the dimensions of a traction.
As it will be empahsized in Section 4.3.4, the optimal choice for the in-
teraction problem here considered is to enforce the constraint in terms of
velocities, i.e. gi = vi.



58 Partitioned PFEM-FEM FSI

Figure 4.2: Dissimilar nested meshes at the fluid-structure interface. The kine-
matic constraint is enforced at the interface nodes of the finer mesh
(red dots), thus structural velocities are interpolated on the interme-
diate nodes along the element sides (black crosses)

4.3.1 Spatial discretization

Since the requirements for mesh resolution can be very different in the
fluid and structure subdomains, the possibility of adopting non conforming
meshes at the fluid-structure interface is being taken advantage of. Fol-
lowing the approach in [140], the kinematic constraint is imposed at all
the interface nodes. In other words, focusing on the more general case of
dissimilar nested meshes, the constraint equations are enforced at all the
nodes of the finer mesh on the fluid-structure interface (Figure 4.2). This
choice represents the application, for nested meshes, of the strategy pro-
posed in [140, 141]. Those works remark that this is the optimal strategy
for first-order finite elements. It avoids locking problems and provides a
perfect bonding, ensuring no additional numerical variation of energy at
the interface. For rhe sake of simplicity, let us now consider the case of a
smaller mesh size on the fluid side. Recalling equations (2.21)-(2.23), one
can introduce the standard finite element spatial discretization also for the
Lagrange multipliers:

λh(x, t) =
∑
l

Nλ
l (x)Λl(t) (4.14)

being l the number of the finer mesh nodes at the fluid-structure interface
where the multipliers are defined. Substituting (4.14) in the continuous
form of the kinematic constraint (4.13), one gets:

∫
Γt
FSI

(∑
l

Nλ
l Λl

)T ∑
k

Nv
kVf,k −

∑
j

Nu
jVs,j

 dΓ = 0 (4.15)
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which leads to the discretized equation [140]:

CfVf −CsVs = 0 (4.16)

In the case of conforming meshes, both Ci matrices are boolean and extract
the interface nodal variables from the global vector of variables, in other
words:

Ci (dimΓFSI×dimΩi) : Ωi → ΓFSI

Vi,ΓFSI
= CiVi i = f, s

In the case of non conforming meshes, as depicted in Figure 4.2, the Ci

matrices have an equal number of rows. More specifically, in the considered
case of a smaller mesh size on the fluid side, the matrix Cf is a boolean
matrix, while Cs has coefficients that not only extract the interface nodal
velocities, but also interpolate velocities on the intermediate points along
the structural element sides (denoted with black crosses in Figure 4.2).
More specifically, Ci contains terms of the form Ci,jk =

∫
ΓFSI

Nλ
j N

v
i,k dΓ

that extract/interpolate the contribution of the k-th degree of freedom of
domain i to the j-th continuity equation [140].
Although not necessary in the context of this work, it is worth underly-
ing that this procedure can be easily extended to the case of completely
dissimilar meshes and multiple interfaces between fluid and structure, i.e.
considering the case of ΓFSI =

⋃ni
j=1 ΓFSI,j , where ni is the number of

different interfaces.

4.3.2 Time discretization

The integration schemes introduced in Sections 2.4 and 4.2.2 are used for the
governing equations of the fluid and solid subdomains, whilst the interface
constraint conditions are enforced at the time tn+1 for each time step. The
system of fully discretized equations for the coupled FSI problem in the case
of same time step is then given by:

MfA
n+1
f + CT

f Λn+1 = Fn+1
f in Ωn+1

f (4.17)

Mn+1
ρ Rn+1

f = F̃0
ρ in Ωn+1

f (4.18)

Pn+1
f = Kf/K

′
0,f ((Rn+1

f /R0,f )K
′
0,f − I) in Ωn+1

f (4.19)

MsA
n+1
s −CT

s Λn+1 = Fn+1
s in Ωn+1

s (4.20)

CfV
n+1
f = CsV

n+1
s on Γn+1

FSI (4.21)

Applying the aforementioned kinematic splitting on the system (4.17)-(4.21),
one can subdivide the set of governing equations in the following steps.
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After the solution of equations (4.18)-(4.19) necessary to compute vector
Fn+1
f , the free solution on the two subdomains leads to:

MfA
n+1
free,f = Fn+1

f in Ωn+1
f (4.22)

MsA
n+1
free,s = Fn+1

s in Ωn+1
s (4.23)

while the link solution is a straightforward efficient solve of a decoupled
system of equations of size equal to the number of degrees of freedom on
the fluid structure interface:

MfA
n+1
link,f = −CT

f Λn+1 on Γn+1
FSI (4.24)

MsA
n+1
link,s = CT

s Λn+1 on Γn+1
FSI (4.25)

The overall acceleration is finally obtained as An+1
i = An+1

free,i +An+1
link,i.

Let us now focus on the interface constraint which is necessary to compute
the Lagrange multipliers. Applying a condensation procedure on the link
problem (for a detailed description see [135,140]) one can get the following
system of interface constrain equations:

HΛn+1 = CfV
n+1
f,free −CsV

n+1
s,free on Γn+1

FSI (4.26)

where the so-called condensation matrix H is defined as:

H = CfM
−1
f CT

f

∆t

2

n+1

+ CsM
−1
s CT

s

∆t

2

n+1

(4.27)

It is worth noticing that in the approach here presented, which couples two
explicit codes, and in the case of conforming meshes at the interface, the
condensation matrix H is a square diagonal matrix. Therefore also the
kinematic constraint equations become a system of decoupled equations,
leading to a fully explicit coupled solver. On the other hand, in the case
of non conforming meshes, matrix H is not diagonal. Consequently, in this
latter case, the computation of Lagrange multipliers requires the solution of
a linear system. However, this system has small dimensions, since its size is
proportional only to the number of degrees of freedom of the fluid structure
interface, and a very narrow band of the order of the ratio between the sizes
of the element on the two interface sides.

4.3.3 Different time step in the fluid and solid phase (subcycling)

As previously mentioned in Sections 2.4 and 4.2.2, one of the main issues
when dealing with explicit integration schemes is represented by the stable
time step size which can compromise the efficiency of the solver. Recalling
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that the stable time step depends on the mesh size and the material prop-
erties (Equation (2.48)), it is crucial for the efficiency of a method which
involves different material domains, to have the possibility of adopting dif-
ferent integration time steps on each domain (i.e. performing the so-called
subcycling).
The subcycling in the context of the GC method has been introduced
in [135]. Let us consider the case in which the fluid domain Ωt

f has a

smaller stable time step ∆tm+1
f = tm+1− tm, while the solid domain Ωt

s has

a larger time step ∆tn+1
s = tn+1− tn =

∑M−1
m=0 ∆tm+1

f , M being the number
of smaller time steps included in the larger one. Following the approach
of [135], the interface constraint equations are solved at each time step of
the finer time discretization, introducing a linear time interpolation to com-
pute the value of the variables coming from the solid subdomain, which has
a larger time step. The linear time interpolation for a generic variable c
from two known instants tn, tn+1 to the instant tm is given by:

cm = cn
(
tn+1 − tm

tn+1 − tn

)
+ cn+1

(
tm − tn

tn+1 − tn

)
(4.28)

Performing this linear interpolation, let us consider the governing equations
of the coupled problem in the case of subcycling (see also Algorithm 3).
The free problem reads ∀n ∈ {0, .., N − 1} :

Mn+1
s An+1

free,s = Fn+1
s in Ωn+1

s (4.29)

Mm+1
ρ Rm+1

f = F̃0
ρ in Ωm+1

f , ∀m ∈ {0, ..,M − 1} (4.30)

Pm+1
f =

Kf

K ′0,f

(Rm+1
f

R0,f

)K′0,f
− I

 in Ωm+1
f ,∀m ∈ {0, ..,M − 1} (4.31)

MfA
m+1
free,f = Fm+1

f in Ωm+1
f , ∀m ∈ {0, ..,M − 1} (4.32)

The interface constraint equations become ∀n ∈ {0, .., N − 1}:(
CfM

−1
f CT

f

∆t

2

m+1

+ CsM
−1
s CT

s

∆t

2

n+1)
Λm+1 = CfV

m+1
f,free −CsV

m+1
s,free

on Γm+1
FSI , ∀m ∈ {0, ..,M − 1}

(4.33)
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The link problem is ∀n ∈ {0, .., N − 1}:

MsA
n+1
link,s = Λn+1 on Γn+1

FSI (4.34)

MfA
m+1
link,f = −Λm+1 on Γm+1

FSI , ∀m ∈ {0, ..,M − 1} (4.35)

Finally, the total accelerations are obtained as sum between free and link
solutions ∀n ∈ {0, .., N − 1}:

An+1
s = An+1

free,s + An+1
link,s in Ωn+1

s (4.36)

Am+1
f = Am+1

free,f + Am+1
link,f in Ωm+1

f , ∀m ∈ {0, ..,M − 1} (4.37)

4.3.4 Coupling algorithm stability

When partitioned schemes are employed for FSI problems, it is essential
to check possible spurious numerical energy variations at the interface due
to the coupling algorithm, as numerical energy generation at the coupling
interface can be a source of instability. In [135], it has been proven that
the optimal choice of kinematic constraint to be enforced in the GC method
is the velocity constraint. In fact, imposing the velocity continuity at the
fluid-structure interface, one obtains zero numerical energy variation at the
interface when the same time step size is used in the two subdomains, and a
numerical energy variation which is strictly dissipative in the case of subcy-
cling. Therefore one can state that the GC is a stable algorithm because no
energy is generated at the interface and, consequently, the coupled problem
preserves the stability of each individual subdomain.

4.3.5 Fluid-Structure coupled solution scheme

To summarize the main steps of the PFEM-FEM FSI solution scheme, let us
consider the general case of FSI problems where the structure is not com-
pletely surrounded by the fluid and the interaction interface may change
(or vanish) during the fluid flow. In such cases an algorithm for contact de-
tection is required. Nevertheless, the PFEM Alpha-shape (Section 3.2.1.2)
combined with its strategy to represent the boundaries (Section 3.2.2) allow
for a natural inclusion of such feature in the simulations. A set of ghost
boundary nodes is superimposed to the structure surfaces. Unlike the fixed
rigid boundary walls case addressed in Section 3.2.2, in FSI problems the
ghost nodes are constrained to follow the structural surfaces along their
movements/deformations. With this strategy to define the computational
domain, let us consider two generic time steps of the analysis (Figure 4.3),
that are referred to as CASE-A and CASE-B. The solution scheme of the
present method involves the following steps:
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Scheme of PFEM-FEM FSI scheme [1]. CASE-A: a)Fluid as a set
of particles, structure as a mesh of quadrilateral elements with ghost
fluid nodes at its surfaces. (b) Delaunay Triangulation. (c) Appli-
cation of Alpha-shape method which leads to a decoupled analysis.
(d)-(f) Same as (a)-(c). (f) Delaunay Triangulation and Alpha-shape
method lead to a coupled analysis.

� Starting from the cloud of fluid nodes (CASE-A: Figure 4.3-a; CASE-
B: Figure 4.3-d) the Delaunay Triangulation of the fluid domain is
performed (CASE-A: Figure 4.3-b; CASE-B: Figure 4.3-e).

� The Alpha-shape method removes the non-physical elements, if any
(CASE-A: Figure 4.3-c; CASE-B: Figure 4.3-e).

� Check if the fluid is in contact with the structure, i.e. if at least one
of the ghost particles belongs to the fluid mesh:

– CASE-A: if the fluid and the structure are not in contact, a
decoupled analysis is performed following Algorithms 1 and 2
separately;

– CASE-B: if the fluid and structure are in contact, the coupled
analysis described in this Section and summarized in Algorithm
3 is performed.

Remark : The case of finer space-time discretization on the fluid side has
been presented. Depending on the application, the other choice could be
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Algorithm 3 Fluid-Structure coupled problem:
GC Solution Scheme

for n = 0, ..., N − 1 do
structure mid-step velocity update
structure displacement update
free structure solution: (4.29)
for m = 0, ...,M − 1 do

fluid mid-step velocity update
fluid displacement update
fluid mass conservation eq. solution: (4.30)
fluid eq. of state solution: (4.31)
free fluid momentum eq.s solution: (4.32)
interpolation of structural nodal velocities: (4.28)
interface constraint: (4.33)
link fluid solution: (4.35)
fluid total acceleration computation: (4.37)
update m = m+ 1

end for
link structure solution: (4.34)
structure total acceleration computation: (4.36)
update n = n+ 1

end for

preferable but the generalization of the formulation to the other case is
straightforward.

4.4 Numerical examples

4.4.1 1D shock pressure wave propagation

A first validation of the present method is obtained considering the 1D
problem depicted in Figure 4.4-a. The results of the proposed method are
compared with analytical and numerical results presented in [118] using a
staggered ALE SPH-FEM coupling. A linear elastic beam clamped at its left
end is coupled with a closed rigid tube containing water and fixed at its right
end. The initial lengths of the beam and the water tube are Ls = Lf = 1m,
their height is h = 0.1m. The water parameters chosen for this example
are: reference density ρf,0 = 1000kg/m3, viscosity µf = 0Pa · s and wave
propagation speed cf = 1500m/s. As far as the solid beam is concerned,
two different analyses will be performed: a first one with a linear elastic
material, and a second one with a bilinear elasto-plastic behaviour. The
corresponding parameters are: reference density ρs = 2700kg/m3, elastic
stiffness modulus Eel = 67.5GPa, yield stress σ0 = 6.75MPa and tangent
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Figure 4.4: 1D shock pressure wave propagation. Geometry of the problem.

modulus Epl = 6.75GPa after the yielding point. Conforming meshes of 60k
linear triangles and 25k 4-nodes quadrilateral elements are used for the fluid
and the beam, respectively, leading to a fluid-structure interface discretized
by 51 matching nodes on both sides. Consequently, the average stable time
steps are ∆tf = 1.91 10−7s for the fluid domain and ∆ts = 3.83 10−7s for
the structural one.

The initial condition consists of the imposition of a pressure jump on
the fluid: p0 = 0Pa for x < 0.2Lf and p0 = 2 107Pa for x ≥ 0.2Lf .
As the analysis starts the wave propagation in the two subdomains can
be observed. The results for the elastic material are presented in terms of
velocity and pressure fields profiles at a fixed instant. In Figure 4.5, the
profiles are compared with the analytical solution provided in [118] at the
instants t = 5 10−5s and t = 2.35 10−4s, showing a very good agreement
and proving the capability of the model to reproduce shock pressure waves
propagation through the fluid-structure interface.
Figure 4.6 shows the same profiles at t = 2.35 10−4s for the case of a bi-linear
elasto-plastic beam. One can observe that, as the pressure wave impacts
the beam right edge, two distinct waves propagate through the solid: one
elastic and one plastic, being the former faster than the latter. The results
are compared with the numerical solution presented in [118] and also in this
case a good agreement is obtained.

4.4.2 Breaking dam flow through an elastic gate

The example presented in [127] is considered in order to compare the pro-
posed method with experimental and numerical results obtained with a
monolithic Lagrangian SPH method. The geometry is shown in Figure 4.7-
a: a column of water is initially confined between two vertical walls. The
right wall is rigid, while the other has an upper rigid part and a lower de-
formable one made of rubber. The water column is 0.1m wide (B) and
0.14m high (H), while the gate is 0.005m thick (s) and 0.079m high(L).
The rubber gate is clamped at its upper side and initially kept fixed by
an external rigid support, so that the water is initially in hydrostatic equi-



66 Partitioned PFEM-FEM FSI

−1 −0.5 0 0.5 1
−8

−6

−4

−2

0

x [m]

V
el

o
ci

ty
 [

m
/s

]

(a) t = 5 · 10−5 s

−1 −0.5 0 0.5 1
−0.5

0.5

1.5

2.5
x 10

7

x [m]

P
re

ss
u

re
 [

P
a]

(b) t = 5 · 10−5 s

−1 −0.5 0 0.5 1
−8

−6

−4

−2

0

x [m]

V
el

o
ci

ty
 [

m
/s

]

(c) t = 2.35 · 10−4 s
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Figure 4.5: 1D shock pressure wave propagation. Velocity and Pressure fields in
the elastic material case at different instants.
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Figure 4.6: 1D shock pressure wave propagation. Velocity and Pressure fields in
the elasto-plastic bilinear case material case at t = 2.35 · 10−4 s.
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Figure 4.7: Breaking dam flow through an elastic gate. (a) Geometry of the
problem. (b) Tensile experimental test on rubber gate material and
linear elastic approximation [2].

librium. At the beginning of the analysis, the support is instantaneously
removed and the gate starts deforming under the pressure of water flowing
underneath. In [127], an SPH method has been used to model both the
structural and fluid parts and the results have been compared with the ex-
perimental ones.

In this example, it has been noticed that an accurate description of the
fluid flow below the deformable gate requires a smaller mesh size than the
one necessary for the structure. Consequently, a mesh of 47k linear tri-
angles of average size of 8.0 10−4m is used to model the fluid side, while
a mesh of 138 4-nodes plane strain quadrilateral elements of average size
of 1.6 10−3m is used to model the deformable gate. The interface is thus
discretized by 47 nodes on the structure side and 93 nodes on the fluid one
(each structural element side is overlapped to 2 fluid element sides). The
material parameters for the water are: reference density ρf,0 = 1000kg/m3

and viscosity µf = 0.001Pa · s, while for the wave propagation speed the
reduced value of cf = 350 m/s is used. Consequently, the average stable
time step on the fluid domain is ∆tf = 1 10−7s while on the structural side
it is ∆ts = 1 10−5s.

Figure 4.7-b shows the experimental results of the tensile tests carried
out on the rubber material and presented in [2]. One can observe that the
behavior is highly non linear. As stated in [124] and [2], a linear elastic
analysis using the tangent to the stress-strain curve at the origin (Figure
4.7-b) would underestimate the gate deflection, since it would predict a
larger stiffness in the large deformation regime. Therefore the Mooney-
Rivlin hyperelastic model implemented in Abaqus/Explicit, together with
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(a) t = 0.025 s (b) t = 0.075 s (c) t = 0.1 s

(d) t = 0.12 s (e) t = 0.2 s (f) t = 0.4 s

Figure 4.8: Breaking dam flow through an elastic gate. Snapshots of the simula-
tion at different time instants.

the geometrical non-linearity option, are used for the rubber gate, using
as input the set of experimental tensile test data. The remaining rubber
material parameters are taken from [127]: density ρs = 1100kg/m3 and
Poisson coefficient νs = 0.4. Figure 4.8 shows different snapshots of the
simulation, while in Figure 4.9 the horizontal and vertical displacement of
the lower tip of the elastic gate (point A in Figure 4.7-a) are compared
with the experimental and numerical ones presented in [127]. The results
depicted in Figure 4.9 show good agreement with the experimental ones,
both in terms of the peak value of the displacements and of their final
values.

4.4.3 Breaking dam flow over an elastic obstacle

The following example was originally proposed by [110, 142] and then it
became a common FSI test case presented in literature with various ap-
proaches, for example in [122, 124, 143]. The example is similar to the one
presented in Section 3.4.3, but the rigid obstacle is replaced by an elastic one
clamped on its lower edge at the middle of the tank. The geometry of the
problem is showed in Figure 4.10 and the following geometrical parameters
have been used: L = 0.146m, h = 0.08m and s = 0.012m. The material pa-
rameters used for the water are the same as in the previous example, while
the ones for the linear elastic solid material are taken from [142]: density
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Figure 4.9: Breaking dam flow through an elastic gate. Evolution in time of the
horizontal and vertical displacements of the gate tip.

Figure 4.10: Breaking dam flow over an elastic obstacle. Geometry of the prob-
lem.
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(a) t = 0.15 s (b) t = 0.25 s (c) t = 0.35 s

(d) t = 0.57 s (e) t = 0.67 s (f) t = 1.0 s

Figure 4.11: Breaking dam flow over an elastic obstacle. Snapshots of the simu-
lation at different time instants.

ρs = 2700kg/m3, Young modulus Es = 1MPa and Poisson ratio νs = 0.
The fluid domain is discretized using 6.5k linear triangular elements of aver-
age size of 0.002m, while the structural domain has 60 4-nodes quadrilateral
elements of average size of 0.004m. The interface is thus discretized by 44
nodes on the structure side and 87 nodes on the fluid one (each structural
element side is overlapped to 2 fluid element sides).

Figure 4.11 represents some snapshots of the results at different time
steps. At the beginning of the analysis, the rigid wall sustaining the column
of water in hydrostatic equilibrium is instantaneously removed. The water
flows in the tank due to gravity and it impacts the elastic obstacle (Figure

PFEM Unified Formul. [110] 
FEM [142]
PFEM Incompr.−FEM [143] 
PFEM Unified Formul. [122] 
Pres. Meth. 2D
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Figure 4.12: Breaking dam flow over an elastic obstacle. Evolution in time of the
horizontal displacement of the tip of the obstacle.
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Figure 4.13: Filling of an elastic container. (a) Geometry of the problem. (b)
Evolution in time of the vertical displacement of the bottom point
of the elastic container.

4.11-a), with the creation of a long wave (Figure 4.11-b). After the impact
with the right rigid wall of the tank (Figure 4.11-c), the flow goes back
along the bottom and impacts again the elastic obstacle on its right side
while the obstacle oscillates (Figure 4.11-d,e,f). The time history of the
horizontal displacement of the left upper corner of the elastic obstacle is
plotted in Figure 4.12, together with the results presented in [110,122,142,
143]. Up to 0.5 s the displacement is qualitatively and quantitatively in good
agreement with the reference solutions. More specifically, it is important
to note that the first displacement peak is accurately reproduced, which
proves the capability of the model to represent the impact of a mass of fluid
with a flexible structure and its deformation. After that, in the following
oscillations some discrepancies arise and accumulate during time because of
the complex dynamics involving breaking waves and splashes.

4.4.4 Filling of an elastic container

The example here addressed is taken from [122] where a monolithic uni-
fied Lagrangian PFEM is employed. This problem is a further test for the
present method on simulations of complex fluid-structure coupling and large
displacements of the structure. The geometry is depicted in Figure 4.13-a,
while table 4.1 shows the problem data.
A viscous fluid is initially in hydrostatic equilibrium in a funnel-shape rigid
container. As the analysis starts, the bottom wall of the container is in-
stantaneously removed, leaving the fluid drop under the gravity load onto
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a thin and highly deformable elastic membrane. The snapshots in Figure
4.14 show the initial stretch of the elastic membrane due to the impact, and
the following oscillations.
For a quantitative comparison with the numerical results presented in [122],
where a monolithic version of the PFEM has been used for both the fluid
and the membrane, Figure 4.13-b shows the evolution in time of the ver-
tical displacement of the lowest point of the elastic structure: once again,
the agreement between the two curves can be considered very satisfactory,
also in view of the high level of complexity of the oscillations after the fluid
drop.

Geometry

h 2.5 m
H 3.75 m
R 2.25 m
b 1.3 m
B 4.87 m
s 0.2 m

Fluid

Density 1000 kg/m3

Viscosity 50 Pa · s
Bulk Modulus 1.75 · 107 Pa

# Linear Triangular Elements 28165
# Ghost Nodes at Fluid-Structure Interface 581

Average stable ∆t 4 · 10−6 s

Structure

Density 20 kg/m3

Young Modulus 2.1 · 107 Pa
Poisson ratio 0.3

# Linear Triangular Elements 1308
# Ghost Nodes at Fluid-Structure Interface 291

Average Stable ∆t 8.6 · 10−6 s

Table 4.1: Filling of an elastic container. Geometry and materials parameters.
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(a) t = 0.92 s (b) t = 1.04 s (c) t = 1.20 s

(d) t = 1.50 s (e) t = 2.00 s (f) t = 2.80 s

(g) t = 3.50 s (h) t = 3.80 s (i) t = 10.0 s

Figure 4.14: Filling of an elastic container. Snapshots of the simulation at dif-
ferent time instants.
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5 Lagrangian-Eulerian enforce-
ment of non-homogeneous BC

5.1 Introduction

In the fluid mechanics framework, a wide range of different boundary con-
ditions can be employed in the solution of the Navier-Stokes equations,
including the no-slip and free surface conditions already addressed in Chap-
ter 3, but also inflow/outflow conditions, slip and symmetry. Following the
general definition introduced in [144], in fluid mechanics the fluid domain
boundaries can be divided into real or fictitious boundaries. The former
is represented by physical limits of the fluid domain where velocities or
tractions can be defined (e.g. boundary walls, free surfaces). The latter is
related to the fact that very frequently in fluid mechanics there are problems
involving open domains (e.g. the flow past an aircraft wing or a bridge pile)
or closed channel flows (e.g. flows in pipes). In such problems the bound-
aries are simply limits of the computational domain and they are therefore
fictitious. Among them, relevant cases are represented by the inflow and
outflow boundaries, which are fictitious sections of the computational do-
main where a velocity or traction profiles can be imposed describing the
state of the fluid particles entering/exiting the computational domain [144].

Among the family of real boundaries, a particular case is represented
by the slip boundary conditions. More in details, while the no-slip bound-
ary condition between the fluid and a basal surface or a confining wall is
macroscopically accepted in most cases of fluid dynamics [145,146], there are
several applications involving fluids or fluid-like flows on solid surfaces where
this condition is not realistic [147, 148]. Relative fluid-wall slip can be ob-
served in many industrial applications such as polymer extrusion [149–151],
or in applications involving granular flows, such as debris flows or silos dis-
charge [152–154]. Navier slip boundary conditions define a linear correlation
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between the slip velocity and the basal tangential stress, through a param-
eter summarizing the interaction between the fluid and the wall surface.
This parameter controls the amount of slip at the wall surface, which can
range from the no-slip condition with maximum tangential stress, to free
slip with zero tangential stress. More realistic slip laws take into account
the fact that, in general, slip occurs only when a critical threshold on the
tangential stress is exceeded (see e.g. [94]).

Another example of fictitious boundaries is represented by the symme-
try boundary conditions. In three-dimensional engineering applications, the
size of the numerical model often creates difficulties due to the computa-
tional cost. It is then of primary importance to exploit possible symmetries
in the problem geometry. The boundary conditions on symmetry planes can
be viewed as a special case of the slip conditions discussed above, where pen-
etration of the material particles through the symmetry plane is prevented,
while free slip is allowed in directions tangent to the symmetry plane.

As previously underlined, the PFEM and more in general the Lagrangian
methods are particularly effective in problems characterized by the presence
of moving boundaries, free surfaces and moving fluid-structure interfaces,
since their evolution is naturally tracked by the motion of the fluid nodes
with no need for ad hoc algorithms (Section 3.1). On the contrary, the
PFEM strategy to model the fluid boundary walls, i.e. the ghost nodes
described in Section 3.2.2, requires complex implementations in many other
typical CFD problems where non-homogeneous boundary conditions are in-
volved, such as the previously mentioned inflow, outflow, slip and symmetry
conditions [155,156]. Let us consider a generic example of inflow condition
represented in Figure 5.1. When a velocity profile is imposed on the ghost
nodes lying on a boundary (see Figure 5.1-a), their Lagrangian motion leads
to the loss of the boundary definition (see Figure 5.1-b). The same issue
arises in all the non-homogeneous boundary conditions e.g. slip and sym-
metry.

This problem arises in all the fully Lagrangian methods. In SPH meth-
ods, the inflow issue is usually dealt with by attaching an inflow zone up-
stream of the computational domain. All the particles in the inlet zone
maintain their characteristics to meet the imposed boundary condition at
the entrance [157,158]. This technique should include the possibility to in-
sert new particles in the inflow region and to remove particles at an outflow
boundary [157,158]. The drawbacks of this approach are the difficult a-priori
definition of the inflow region dimension and the increased computing time
due the larger computational domain. Furthermore, the interpolation pro-
cedure, which is at the basis of the SPH scheme, makes the implementation
of this kind of boundary conditions rather difficult [158] and instability of
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(a) time tn (b) time tn+1

Figure 5.1: Example of the inflow and outflow boundary conditions in a Lagra-
gian framework.

the inflow particles can occur [159]. A detailed discussion of inflow boundary
conditions in SPH and ISPH (Incompressible Smoothed Particle Hydrody-
namics) methods can be found in [159].

Also in the Material Point Method (MPM) inflow and outflow are usu-
ally modeled with a large reservoir to supply the domain of interest with
material points [160]. Very recently, a technique to use only one layer of
elements in the inflow/outflow region has been presented in [161]. On the
contrary, the non-homogeneous boundary conditions are easily treated with
Eulerian approaches, because the nodes are kept fixed and they do not move
according to the fluid velocity.

To combine the complementary capabilities of Lagrangian and Eulerian
approaches to model the wide range of boundary condition in fluid mechan-
ics, in this chapter a novel technique to impose non-homogeneous boundary
conditions in a PFEM Lagrangian framework is proposed, based on a mixed
Lagrangian-Eulerian (LE) description of the mesh nodes kinematics. All the
internal and free surface mesh nodes are treated as Lagrangian while the
mesh nodes on non-free boundaries are treated as Eulerian. The fluid ve-
locity at the Eulerian nodes can be different from zero without altering the
geometric definition of the boundary because of their Lagrangian motion.
Furthermore, the presence of Eulerian boundary nodes greatly simplifies the
implementation of slip laws, even for models which are more realistic than
the linear Navier condition here considered.

5.2 LE Balance equations: strong and weak form

Let us now recall the Navier-Stokes Equations (2.1)-(2.2) to cast them in
a more general Lagrangian-Eulerian framework. Applying the Eulerian
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derivation rule (2.7) to the total time derivative, one gets to:

ρf

[
dvf
t

+ (cf ·∇x) vf

]
= ∇x ·σσσf + ρfbf in Ωt

f × [0, T ] (5.1)[
dpf
dt

+ (cf ·∇x) pf

]
+Kf (∇x ·vf ) = 0 in Ωt

f × [0, T ] (5.2)

where cf = cf (x, t) is the convective velocity defined as:

cf (x, t) = vf (x, t)− rf (x, t) (5.3)

rf (x, t) denoting the mesh velocity. These equations are the same as in
the Arbitrary Lagrangian Eulerian (ALE) formulations [31], in which the
Eulerian and Lagrangian ones are obtained as special cases setting cf = vf
or cf = 0, respectively.

The weak forms of Equations (5.1) and (5.2) can be obtained adopting
the same approach described in Section 2.3, namely introducing a vector
test function wf ∈ Sv0 , a scalar test function qf ∈ Sp and integrating over
the domain Ωt

f :∫
Ωt

f

wf · ρf

[
dvf
dt

+ (cf ·∇x) vf

]
dΩ =

∫
Ωt

f

pf (∇x ·wf ) dΩ+

−
∫

Ωt
f

2µf∇xwf : ε̇εεf dΩ+

+

∫
Ωt

f

wf · ρfbfdΩ +

∫
Γt
N,f

wf ·hf dΓ ∀wf ∈ Sv0 (5.4)

∫
Ωt

f

qf

[
dpf
dt

+ (cf ·∇x) pf

]
dΩ +

∫
Ωt

f

Kfqf (∇x ·vf ) dΩ = 0 in Ωt
f × [0, T ]

(5.5)

5.3 LE Initial conditions and homogeneous essential boundary
conditions

Let us recall the set of initial and boundary condition already introduced
in Section 2.1. Initial conditions specify the values of velocity and pressure
at the beginning of the analysis:

vf (X, t = 0) = v0
f in Ω0

f (5.6)

pf (X, t = 0) = p0
f in Ω0

f (5.7)
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where v0
f and p0

f are assigned functions.

In the case of homogeneous essential boundary conditions, the boundary
Γtf = ∂Ωt

f is divided into two non-overlapping subsets ΓtD,f and ΓtN,f , such

that ΓtD,f ∪ΓtN,f = Γtf and ΓtD,f ∩ΓtN,f = ∅ and the following conditions can
be imposed:

vf (x, t) = 0 on ΓtD,f × [0, T ] (5.8)

σσσf ·nf = hf (x, t) on ΓtN,f × [0, T ] (5.9)

where hf (x, t) is an assigned function. Let us underline that in this more
general LE framework, the symbol t at exponent of the boundary Γf , is
intended to emphasize the Lagrangian nature of the boundary, evolving
in time together with the particles motion. As a consequence of this, the
natural boundary condition (5.9) has also a Lagrangian nature, meaning
that the tractions hf (x, t) are applied to the evolving free surface ΓtN,f .

The boundary conditions in (5.8) are treated without difficulties in the
PFEM, since the particles on the boundary ΓtD,f cannot move and the

boundary ΓtD,f remains defined throughout the history of motion. On the

other hand, natural boundary conditions of the type in (5.9) when ΓtN,f rep-
resents a free surface are straightforwardly treated in Lagrangian methods
as the PFEM.

5.4 LE Non-homogeneous boundary conditions

5.4.1 Inflow and outflow Eulerian boundary conditions

A relevant class of problems in CFD is related to flow in pipes, channels
or open domains. To reduce the computational effort, these problems are
typically analysed considering only the portion of interest of the domain,
with proper inflow/outflow conditions at the inlet/outlet cross-sections. In
these cases, the boundary conditions are written as:

vf (x, t) = ṽf (x, t) on Γ̄D,f (5.10)

σσσf ·nf = hf (x, t) on Γ̄N,f (5.11)

where ṽf (x, t), hf (x, t) are prescribed functions assuming non-zero values
at the inlet/outlet sections and Γ̄D,f , Γ̄N,f are boundaries fixed in time, typ-
ically coinciding with inlet or outlet sections of the computational domain.

A purely Lagrangian description is not suitable for an efficient modeling
of these boundary conditions, since one would need to consider a greatly en-
larged computational domain with inflow/outflow auxiliary regions. These
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regions have to include all the fluid nodes that, during the simulated time in-
terval, will flow through the considered pipe portion, enlarging enormously
the computational domain. Another difficulty is related to the accurate
imposition of the generic and possibly time-dependent boundary condition
at the inlet cross-section. The particles which flow through the inlet cross-
section are not perfectly aligned on the inlet line (in 2D problems) or plane
(in 3D problems). Consequently, ad hoc interpolation algorithms, which can
introduce inaccuracies and numerical oscillations, are needed.

To overcome this problem, a new strategy is proposed which exploits
the flexibility of the Lagrangian-Eulerian formulation by assuming Eulerian
ghost boundary nodes on Γ̄D,f with convective velocity cf = vf and, hence,
zero mesh velocity rf . On the contrary, all the internal nodes are treated as
Lagrangian, i.e. with a zero convective velocity cf . The way in which the
non-homogeneous Eulerian velocity conditions are enforced on the Eulerian
ghost boundary nodes is straightforward and is qualitatively illustrated in
Figure 5.2. A set of Eulerian ghost nodes is positioned at the inlet cross-

(a) (b) (c)

Figure 5.2: Use of mixed Lagrangian-Eulerian description to model the inflow
condition. (a) A set of Eulerian ghost nodes (red dots) is placed
on the inflow where any time dependent velocity or pressure profile
can be imposed. (b) Consequent motion of neighbor nodes (blue dots)
with enlargement of an element layer. (c) Insertion of nodes (squares)
on the centroids of the large elements.

section (Figure 5.2-a). At these nodes, any time dependent velocity profile
(Dirichlet conditions) or time dependent pressure distribution (Neumann
conditions) can be imposed, with no need for an enlarged computational
domain to define an inflow region. The non-zero velocities or pressures at
the inlet nodes activate the motion of the internal neighbor nodes, causing
the enlargement of the first layer of boundary elements (Figure 5.2-b). When
these elements become too large, a new node is inserted at their centroid
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(Figure 5.2-c). The nodes addition/reallocation is indeed a natural proce-
dure in the PFEM framework (see Section 3.2.1.3). Similarly, regarding the
outflow cross-section, a set of fixed Eulerian nodes can be used to impose
the required conditions on velocity or pressure. When the Lagrangian nodes
during the motion get too close to the Eulerian ones, they are removed from
the mesh. Moreover, in many relevant situations where no particular con-
dition are imposed at the outlet cross-section (i.e. outflow as a standard
free-surface boundary), it not necessary to use Eulerian nodes, but it is suf-
ficient to remove from the mesh the Lagrangian nodes which have passed
the outflow condition, i.e. which are outside the computational domain.
Remarkably, in both cases one can use the removed nodes at the outflow
condition and directly insert them in the first layer of elements at the inlet
cross-section. This creates an efficient management of the mesh, keeping
the number of nodes constant and limiting the computational domain to
the considered channel section.

Remark 2. In the ALE framework, an additional equation is typically
needed to govern the mesh velocity evolution [31]. In the present approach
such equation is not required because the convective velocity will be directly
computed from the boundary conditions on the constrained part of the bound-
ary and will be zero elsewhere.

5.4.2 Slip boundary conditions

Different types of slip conditions can be described by choosing the so called
slip length as an interface parameter [147]. The geometrical interpretation
of the slip length can be appreciated in Figure 5.3, showing a generic dis-
tribution of tangential velocity in the region close to a horizontal wall with
relative slip. The slip length hslip is defined as the distance from the plate to
the point with zero tangential velocity, obtained with a linear extrapolation
of the tangential velocity profile, enforcing the continuity at the wall of the
derivative ∂vx/∂y. The two previously mentioned limit cases of no-slip and
free slip are recovered for hslip = 0 and hslip →∞, respectively. Moreover,
also the case of negative hslip may happen [147] if the no-slip condition
propagates through a small layer of fluid close to the wall.

A new partition of the fluid boundary si introduced, considering three
non overlapping subsets ΓtD,f , ΓtN,f , ΓtS,f such that ΓtD,f ∪ΓtN,f ∪ΓtS,f = Γtf ,

ΓtS,f being the part of the boundary where slip conditions are imposed. On

ΓtD,f and ΓtN,f the standard Dirichlet and Neumann boundary conditions
(5.10)-(5.11) or (5.8)-(5.9) are imposed. Note that even in the cases where
the slip surface is fixed in time, the slip boundary may evolve, as its wet
part may be not constant in time. On the slip boundary ΓtS,f , the relative
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Figure 5.3: Linear Navier slip condition. Different velocity profiles according to
the hslip parameter. h2

slip > h1
slip.

velocity vslip between the fluid and the wall and the tangential interface
tractions vector tf are defined as:

vslip = (I− nf ⊗ nf ) vf tf = (I− nf ⊗ nf ) (σσσfnf ) (5.12)

Then, the linear Navier slip boundary condition prescribes:

vslip = −βsliptf on ΓtS,f (5.13)

together with the through-the-wall no-flux condition:

vf ·nf = 0 on ΓtS,f (5.14)

In the previous expressions, the parameter βslip is defined as βslip = hslip/µf ,
where µf is the fluid dynamic viscosity.

To include the Navier Slip condition in the variational statement (5.4)-
(5.5), the new boundary integral computed on ΓtS,f is added on the right-
hand side of the weak form of the momentum equation (5.4):∫

Γt
S,f

w ·

(
σσσfnf − tf −

1

βslip
vslip

)
dΓ (5.15)

where the test functions w are now required to satisfy the additional con-
dition w ·nf = 0 on ΓtS,f . The first term in the brackets stems from the
Green formula applied to Equation (5.4) and the other terms represent the
imposition of the slip condition (5.13) [94]. Furthermore, substituting the
definition (5.12) of the tangential tractions tf , one can obtain:∫

Γt
S,f

w · (σσσfnf − tf ) dΓ =

∫
Γt
S,f

w · (nf ⊗ nf ) (σσσfnf ) dΓ =

=

∫
Γt
S,f

(w ·nf ) nf ·σσσfnf dΓ = 0 (5.16)
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so that the additional integral to be added on the right-hand side of the
weak form of the momentum equation (5.4) becomes:∫

Γt
S,f

w ·

(
− 1

βslip
vslip

)
dΓ (5.17)

together with the no-flux constraint vf ·nf = 0 on ΓtS,f .

As in the previous case, a set of Eulerian ghost nodes is placed on the
slip surface allowing the imposition of the non-homogeneus velocity profile
given by the slip law.

Remark 3. For the sake of clarity, the simple linear Navier condition is
here considered. A more realistic Navier slip law is presented in [94], taking
into account the fact that usually slip activates only when a critical threshold
of the tangential stress is exceeded. Also in this case, the implementation
of other types of slip laws is facilitated in the mixed Lagrangian-Eulerian
method here considered, thanks to the presence of Eulerian boundary nodes.

5.4.3 Symmetry boundary conditions

The symmetry boundary condition is characterized by zero normal velocity
and zero value of its gradient trough the symmetry plane. For the consid-
ered finite element model, based on linear triangles or tetrahedra, this is
equivalent to enforce a zero velocity component in the direction nf normal
to the symmetry plane ΓtD,Sym:

vf ·nf = 0 on ΓtD,Sym (5.18)

which is identical to condition (5.14) on the slip boundary. As a matter of
fact, the symmetry condition can be seen as equivalent to a slip condition
with infinite slip length, which may lead to the same type of difficulties
already discussed for a purely Lagrangian treatment. In particular, the
non-zero tangential velocities very soon lead to a non-uniform distribution
of ghost boundary nodes on ΓtD,Sym, compromising the geometric definition
of the symmetry plane, or generating overly distorted elements. In contrast,
with the proposed technique, in which the Eulerian ghost boundary nodes
remain fixed, an accurate definition of the symmetry plane is preserved
throughout the analysis. In practice, the symmetry condition consists of
enforcing the constraint (5.18) in strong form, as in the slip case, while
Equation (5.13) reduces to tf = 0 on ΓtD,Sym, which implies that the integral
(5.17) does not appear in the weak form.
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5.5 LE Space and time discretization

Adopting the same approach of Section 2.3, let us introduce the finite el-
ement discretization (2.22)-(2.23) and the additional discretization for the
convective velocity:

chf (x, t) = Nv
f (x)Cf (t) (5.19)

where C is the vector of convective nodal velocities. The semi-discretized
momentum and mass equations can be written as:

Mf
dVf

dt
= −

(
Kµ,f + Kv

c,f

)
Vf + DT

f Pf + Fext,f (5.20)

Mρ
dPf

dt
= −Kp

c,fPf −Kf DfVf (5.21)

where Kv
c and Kp

c contain the convective terms related to the time deriva-
tives of velocity and pressure, while the other matrices are defined in Section
2.3. More in particular, the following definitions hold:

Kv
c,f =

∫
Ωt

f

NvT
f Gv dΩ

Kp
c,f =

∫
Ωt

f

NpT
f Gp dΩ

Let us focus on the 3D case: for every e element of the mesh, the elemental
matrices Gv

e and Gp
e can be defined in terms of nodal blocks:

Gv
e =

[
Gv
e,1, . . . ,G

v
e,nn

]
(5.22)

Gp
e =

[
Gp
e,1, . . . ,G

p
e,nn

]
(5.23)

being nn the number of elemental nodes (i.e. nn = 4 for tetrahedra). Each
Gv
e,i block is a diagonal (3× 3) matrix:

Gv
e,i = diag

[(
CTNvTLi

)
1
,
(
CTNvTLi

)
2
,
(
CTNvTLi

)
3

]
(5.24)

where the following matrix of shape function derivatives is defined:

Li =


∂Nv

i,1

∂x

∂Nv
i,2

∂x

∂Nv
i,3

∂x
∂Nv

i,1

∂y

∂Nv
i,2

∂y

∂Nv
i,3

∂y
∂Nv

i,1

∂z

∂Nv
i,2

∂z

∂Nv
i,3

∂z

 (5.25)
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Finally, each Gv
e,i block is given by a single component:

Gp
e,i = CTNvTLpi (5.26)

where Lpi is introduced:

Lpi =

[
∂Np

i

∂x
,
∂Np

i

∂y
,
∂Np

i

∂z

]T
(5.27)

When present, the Navier slip conditions lead to an additional contribu-
tion to the matrix Kf , namely Kf = Kµ,f +Kv

c,f +KS,f , with KS,f defined
as:

KS,f =

∫
Γt
S,f

QTNvT
f SfN

v
fQ

v dΓ (5.28)

In the previous expression, Q is the orthogonal matrix rotating the velocity
components from the global reference system to the one locally normal to
ΓtS,f and the diagonal matrix Sf is defined as Sf = diag [0, 1/βslip, 1/βslip].
In the present explicit solver the no-flux condition (5.14) is strongly imposed
at the node level.

Let us now introduce the Central Difference Scheme already described in
Section 2.4: for every time step ∆tn+1 of the analysis, the following systems
of fully decoupled equations are solved:

� Update the mid-step velocity: V
n+ 1

2
f = Vn

f + 1
2An

f∆tn+1

� Update the displacement Un+1
f = Un

f + V
n+ 1

2
f ∆tn+1

� Compute pressure field - Eq. (5.21):

Ml
ρP

n+1
f = Mc

ρP
n
f −∆tn+1

[
CfP

n
f +Kf DfV

n+ 1
2

f

]
� Compute the acceleration - Eq. (5.20): An+1

f = (Ml
f )−1Fn+1

f

� Update the velocity (if necessary): Vn+1
f = V

n+ 1
2

f + 1
2An+1

f ∆tn+1

where Fn+1
f is now the right-hand-side of equation (5.20) discretized in

time. The system of fully discretized governing equations is solved using
the Particle-Finite Element Method described in Section 3. Instead of its
classical purely Lagrangian formulation, in the present approach the de-
scribed mixed Lagrangian-Eulerian description of the mesh nodes kinemat-
ics is adopted. All the internal fluid nodes are Lagrangian, i.e. characterized
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by Cn
f = 0, while the ghost nodes employed to define the boundary Γtf are

Eulerian, i.e. characterized by Cn
f = Vn

f . The velocity of the Eulerian ghost
nodes is different from zero without altering the geometric definition of the
boundary, as it would be in the case of a Lagrangian motion.

Depending on the considered Dirichlet ΓtD,f or Neumann ΓtN,f condi-
tions, on the ghost nodes one can easily impose complex and possibly time
dependent distributions of velocity ṽf (x, t) defined in Equation (5.10), or
tractions hf (x, t) defined in Equation (5.11). In the particular case of a no-
slip condition prescribed on the boundary ΓtD,f , the standard Lagrangian
description of the ghost node kinematics is recovered.

From the point of view of the computational effort, it must be underlined
that this choice requires the additional assembly of matrices Kv

c,f and Kp
c,f ,

with standard elemental finite element procedures, only on the elements
which include Eulerian nodes, thus on a small portion of the overall domain.
In all the elements including only internal nodes, or boundary nodes with
homogeneous Dirichlet conditions, these matrices vanish.

Remark 4. In principle, the LE description could be extended to all the
nodes of the fluid domain, with a mesh which moves independent of the fluid
velocity, as in the case of a standard ALE formulation [162]. However, the
ALE mesh movement may not be sufficient to accommodate the complex
evolution of free surface and fluid-structure interfaces typically addressed
by the PFEM approach. To this purpose, the remeshing strategy based on
Lagrangian nodes seems more effective. Furthermore, the choice to introduce
Eulerian nodes on the boundary only where needed, avoids the introduction
of the convective terms on the whole mesh and the need for the additional
ALE equations to govern the velocity of the mesh nodes.

5.6 Numerical examples

5.6.1 Lid-driven cavity flow

Let us consider the Lid-driven cavity flow presented in [3]. Figure 5.4-a
represents the geometry of the problem: a 2D square of side L = 1 m
contains a Newtonian fluid initially at rest, characterized by density ρf,0 =
1000 kg/m3 and dynamic viscosity µf = 1 Pa s. The fluid is discretized
with a mesh of approximately 23 k elements. On the three lower sides (blue
sides in Figure 5.4-a) a no-slip condition is imposed, while on the upper
side (red side in Figure 5.4-a) a unit, purely tangential velocity is imposed,
i.e. vx = V̄ = 1 m/s and vy = 0 m/s. The resulting Reynolds number is
Re = 1000.
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Figure 5.4: Lid-driven cavity flow. (a) Geometry of the problem. (b) Horizontal
and vertical velocity profiles at x/L = 0.5 and y/L = 0.5, respectively.
Comparison with the results in [3]

It should be noted that modeling this boundary condition in a purely
Lagrangian framework is not straightforward: assuming a horizontal La-
grangian motion on the upper boundary, the particles would approach the
right wall creating very distorted elements that can slow down the analysis
and introduce numerical issues in the solver. With the present approach a
line of fixed Eulerian nodes is used to model the upper boundary, on which
the two velocity components can be easily imposed.

For a quantitative validation, let us consider the velocity profile at the
steady state. Figure 5.4-b plots the horizontal and vertical velocity profiles
at two lines passing through the center of the cavity: y/L = 0.5 and x/L =
0.5, respectively. The comparison with the results presented in [3] shows a
good agreement. The gradual development of the vortex inside the cavity
due to the tangential upper velocity can be observed in Figure 5.5, showing
the velocity profile and the related streamlines at different instants of the
analysis.

5.6.2 3D Symmetric Poiseuille flow in a rectangular pipe

The geometry depicted in Figure 5.6 is considered to assess the computa-
tional gain that can be obtained exploiting the problem symmetry in a 3D
case. Let us consider a pipe with rectangular cross section filled with a
Newtonian fluid characterized by density ρf,0 = 0.1 kg/m3 and dynamic
viscosity µf = 0.01 Pa s. The pipe dimensions are l = 1 m, 2b = 0.3 m
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(b) t = 2.5 s (c) t = 5.0 s

(d) t = 10 s (e) t = 50 s

Figure 5.5: Lid-driven cavity flow. Snapshots of velocity streamlines at different
time steps.

and 2h = 0.1 m. The two planes of symmetry p (x = 0.15 m) and q (y = 0
m) are depicted in Figure 5.6-a. No slip boundary conditions are imposed
on the external walls of the pipe. A constant pressure p̃ = 8 Pa is imposed
as Neumann Boundary condition at the fixed Eulerian nodes at the inlet
cross-section, namely at z = 0 m, generating a laminar flow in the pipe.

Two analyses have been performed. The first one considers the whole
pipe without exploiting the symmetry planes. A mesh of approximately
320k tetrahedra is obtained, leading to an overall computational time of
14 hours. The second analysis instead considers the reduced computational
domain depicted in Figure 5.6-b, representing one quarter of the pipe ex-
ploiting the two planes symmetry, i.e. y = 0 m and x = 0.15 m. On the
symmetry planes, fixed Eulerian nodes are employed to impose the absence
of flux across the plane, namely vy = 0 m/s and vx = 0 m/s, respectively. In
particular, on the line of intersection in between the two planes representing
the center of the pipe, only the z component of the velocity can be differ-
ent from zero. The same average element size used for the first analysis is
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(a) (b)

Figure 5.6: 3D Symmetric Poiseuille flow in a rectangular pipe. (a) Geometry of
the pipe with two planes of symmetry. (b) Reduced computational
domain exploiting the symmetry.

also employed on this reduced computational domain, leading to a mesh of
78k elements. The analysis duration is 5 hours and 14 minutes. Figure 5.7
shows a first qualitative comparison between the two analyses: the contour
plot obtained with a double cut of the full-pipe analysis (Figure 5.7-a) is
quantitatively the same to the one obtained with the quarter-pipe analysis
(Figure 5.7-b).

(a) (b)

Figure 5.7: 3D Symmetric Poiseuille flow. Velocity contour plot at the steady
state. (a) Results of the whole pipe analysis: double cut to highlight
the velocity field. (b) Results of the quarter pipe analysis.

The numerical results are validated against the analytical solution con-
sidering the z component of the velocity profile on the mid plane x = 0.15 m
at the steady state. More in details, on a line in the y direction sufficiently
far from the inflow cross-section, the analytical parabolic velocity profile of
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the Poiseuille flow, i.e.

vz(y) =
1

2µf

(
∂pf
∂z

)(
h2 − y2

)
= 400

(
0.052 − y2

) m
s

is recovered.

Figure 5.8 compares the analytical velocity profile with the results ob-
tained with the two numerical analyses. One can note a good agreement of
both analysis with the theoretical solution, and a substantial overlapping
of the numerical curves. However, the second analysis is 2.67 times faster,
a good example of how the symmetry could be exploited for a significant
reduction of the computational cost, which can be crucial, especially in 3D
applications. While this has been easily obtained employing the Eulerian
boundary nodes, a Lagrangian tangential motion of the particles on the
symmetry planes would lead to a non-uniform distribution of the moving
particles on the symmetry planes. This can compromise the boundary geo-
metric definition or lead to distorted elements that can introduce numerical
issues in the solver.
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Figure 5.8: 3D Symmetric Poiseuille flow. Velocity vz(y) profile on the plane
x = 0.15m.

5.6.3 Poiseuille flow with Navier slip at the boundary walls

In this test, a Poiseuille flow with linear Navier slip on the pipe walls is
considered. The results are validated through the comparison with the
analytical solution for the present case provided in [163]. Figure 5.9 illus-
trates the problem geometry. In a 2D pipe of length L = 0.1m and height
2H = 0.01 m, a Newtonian fluid characterized by density ρf,0 = 1 kg/m3

and dynamic viscosity µf = 0.001 Pa s is considered.



5.6 Numerical examples 91

Figure 5.9: Poiseuille flow with Navier slip. Geometry of the problem.

A constant uniform velocity V̄ = 1 m/s is imposed at the inlet sec-
tion, modeled by means of Eulerian boundary nodes with non-homogeneous
Dirichlet conditions. The pipe walls are modeled by means of Eulerian
boundary nodes at which the Navier slip law described in Section 5.4.2
is imposed. In particular three different values of slip length are tested:
h1
slip = 1 · 10−4 m, h2

slip = 5 · 10−3 m and h3
slip = 5 · 10−2 m. A mesh of of

approximately 25 k elements has been used for this test.
The analytical solution for the parabolic velocity profile on a cross-

section sufficiently far from the pipe inlet is [163] :

vx(y) =
px

2µf

(
H2 − y2

)
+
hslip
µf

pxH (5.29)

where px is defined as:

px = V̄

(
H2

3µf
+
hslip
µf

H

)−1

(5.30)

Figure 5.10 shows the comparison of the analytical and numerical results
in terms of normalized velocity profile for the three slip lengths considered.
One can observe that in the three different slip regimes which span from
an almost no-slip condition (h1

slip) to an almost free-slip on the pipe walls

(h3
slip), the numerical results are in good agreement with the theoretical

ones.

5.6.4 Circular Couette flow with slip

A circular Couette flow with Navier slip boundary conditions [4] is consid-
ered to test the validity of the proposed approach with Eulerian nodes in
the case of conditions imposed on curved boundaries, since it has been re-
ported that the no-flux condition (5.14) may lead to the so-called Babuska’s
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Figure 5.10: Poiseuille flow with Navier slip. Velocity profiles with different in-
terface slip lengths hislip.

paradox [164], with the numerical solution not converging to the real one in
the presence of curved boundaries and polygonal finite elements. A weak
imposition of the constraint has been suggested by [94,165] to overcome this
problem. This test confirms that the explicit scheme here employed allows
to implement the constraint in its strong form without any numerical issues.

Figure 5.11: Circular Couette flow with slip. Geometry of the problem.

The problem geometry is illustrated in Figure 5.11. Inside two concentric
circular boundaries of radii R = 1 m and kR = 0.5 m, respectively, a
Newtonian fluid characterized by density ρf,0 = 10 kg/m3 and viscosity
µf = 1 Pa s is initially at rest. The inner circle ΓtD,f is rotating at a
prescribed angular velocity ω̄ = 1 rad/s. This condition is modelled through
fixed Eulerian boundary nodes with non homogeneous Dirichlet condition:

vf = ω̄ × x on ΓtD,f (5.31)

Such condition is strongly imposed on each boundary node of the inner
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circle. On the outer circle ΓtS,f Navier slip conditions with different values
of hslip are imposed exploiting fixed Eulerian nodes. The rotation of the
inner boundary activates a circular laminar flow inside the fluid domain.
Because of the problem symmetry, the radial velocity component vr is zero,
while the analytical solution for the circumferential velocity vθ(r) at the
steady state is derived in [4] as:

vθ(r) =
k2ω̄R

1− k2 + 2B

(
R

r
− r

R

)
(5.32)

where the factor B is defined as B = hslip/kR. Figure 5.12 shows the

Figure 5.12: Circular Couette flow with slip. Contour plot of the velocity field
at the steady state for the case of hslip = 0.5 m.

contour plot of the velocity field at the steady state, highlighting the velocity
vectors which are purely circumferential. For a quantitative validation, the
numerical results in terms of vθ for different values of hslip are compared
with the corresponding analytical solutions in Figure 5.13, showing a perfect
match with the theoretical velocity profile also in the present case of curved
boundaries.

5.6.5 Turek-Hron FSI Benchmark

The well known numerical example presented in [9] is here addressed. This
problem is typically used for validation of Fluid Structure Interaction (FSI)
approaches [81,134,166–168]. The geometry is depicted in Figure 5.14 while
the data are listed in the table in Figure 5.15: a rigid cylinder of radius R
is fixed inside a two-dimensional pipe filled with a Newtonian fluid. An
elastic cantilever beam, modelled through Abaqus/Explicit is clamped to
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Figure 5.13: Circular Couette flow with slip. Comparison between numerical and
theoretical [4] velocity profiles for different values of hslip.

the cylinder. A parabolic velocity profile is imposed at the pipe inlet, with
a gradual amplification to avoid numerical artifacts in the initial transient
part of the analysis:

ṽx(y, t) =

[
1.5V̄

y (2H − y)

H2

]
f(t) (5.33)

where V̄ is a parameter depending on the considered test case and f(t) is
the amplification function defined for the initial velocity increase:

f(t) = (1− cos(πt/2)) /2 if t ≤ 2 s

f(t) = 1 if t > 2 s (5.34)

Figure 5.14: Turek-Hron FSI Benchmark. Geometry of the problem.

The laminar flow generated by the inflow condition makes the beam
start oscillating, with a complex interaction involving vortex shedding and
large structural displacements. The so called ’FSI2’ and ’FSI3’ test cases
presented in [9] with the problem parameters listed in the table in Figure
5.15 are here considered. The latter case is particularly challenging for FSI
solvers, because the combination of the model parameters (mainly the same
value of structural and fluid densities) is responsible for the added mass
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effect (Section 4.1), that can lead to lack of convergence or instabilities for
FSI solvers. None of these numerical issues has been observed with the
present PFEM-FEM FSI method, thanks to the strong coupling provided
by the Gravouil and Combescure algorithm.
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Geometry & Data

L [m] 2.5
2H [m] 0.41
l [m] 0.35
h [m] 0.02
R [m] 0.05

ρf,0 [kg/m3] 1000
µf [Pa s] 1

FSI2 FSI3

ρs [kg/m3] 10000 1000
Es [MPa] 1.4 5.6

νs 0.4 0.4

V̄ [m/s] 1 2

Re 100 200

Figure 5.15: Turek-Hron FSI Benchmark. Left: time hystory of the vertical dis-
placement of the beam tip. Right: parameters of the FSI2 and FSI3
test cases.

In this problem, a purely Lagrangian description would suffer from the
inflow/outflow modelling difficulties described in Section 5.4.1. Introducing
a line of Eulerian ghost nodes to model the inlet cross-section of the pipe
allows to naturally impose the prescribed time-dependent parabolic velocity
profile.

Let us focus on the FSI2 test case: Figure 5.16 represents some snapshots
of the results of the analysis, highlighting the velocity contour plot on the
fluid side. The graph in Figure 5.15 shows the time history of the vertical
displacements of the tip of the elastic beam. One can observe an initial tran-
sient phase with increasing oscillations until a sort of steady state is reached,
with oscillations of constant amplitude and frequency. Similar results have
been obtained for the FSI3 test case. For a quantitative validation, in the
Table 5.1 the amplitude (∆uy) and frequency (fs) of the steady state oscil-
lations are compared with the results presented in the literature [9]. The
comparisons with the reference values show a good agreement for the two
test cases. The small discrepancies in the FSI2 and FSI3 test cases are
smaller or of the same order of magnitude with respect to other published
results [81,166–168].
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(b) t = 5 s (c) t = 6 s

(d) t = 6.88 s (e) t = 7.67 s

(f) t = 8.05 s (g) t = 9 s

Figure 5.16: Turek-Hron FSI Benchmark. Snapshots of fluid velocity contours at
different time steps.

Results

∆uy [m] err. fs[1/s] err. [%]

[9] 0.161 − 2.0 −
FSI2 PFEM 0.1584 1.6% 1.93 3.5%

[9] 0.0687 − 5.3 −
FSI3 PFEM 0.0663 3.5% 5.4 1.8%

Table 5.1: Turek-Hron FSI Benchmark. Results and comparison with [9] in terms
of amplitude ∆uy and frequency fs of the steady state beam tip oscil-
lations.

This example highlights the already commented advantages of the strat-
egy here presented. On the one hand, the Lagrangian framework is partic-
ularly effective for the description of the fast and complex evolution of the
fluid-structure interface. On the other hand, the Eulerian nodes allow to an
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effective and natural enforcement of boundary conditions that are not trivial
in Lagrangian approaches, such as the inflow condition. Finally, it provides
a further validation on the PFEM-FEM FSI coupled approach described in
Chapter 4 on a challenging test case.
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6 Efficient runtime Mesh smooth-
ing for 3D explicit PFEM

6.1 Issue of runtime remeshing in Lagrangian approaches

The PFEM method described in Section 3.2 is characterized by a Galerkin
finite element approach coupled with the frequent runtime use of the Delau-
nay remeshing algorithm to guarantee a high quality of the mesh. Runtime
remeshing in Lagrangian approaches is particularly delicate when an ex-
plicit solver is used. In implicit approaches, an unconditionally stable time
integration allows to use reasonably large time step sizes also in the case of
badly shaped elements. In contrast, in explicit approaches overly distorted
elements would dramatically reduce the stable time step size (Equation
(2.48)) and, therefore, they should be avoided in new meshes generated
during the analysis. It must be underlined that the presence of only one
bad quality tetrahedron is sufficient to strongly decrease the time step size.
This requires a reliable mesh generation strategy, capable to produce regular
meshes and fast enough to be repeatedly used during the simulation. These
two requirements are particularly demanding when dealing with complex
three-dimensional geometries.

Delaunay mesh generators, described in Section 3.2.1.1, have proved to
be robust and versatile and particularly suited for applications involving
frequent remeshing [88,169]. In two-dimensions the Delaunay triangulation
guarantees remarkable optimality properties, such as the minimization of
the maximum radius of an element circumcircle and the maximization of
the minimum angle among all the elements. However, in three-dimensions
it loses some of these properties [170], allowing for badly shaped tetrahedra,
namely the so-called sliver elements. These elements can have dramatic
consequences when an explicit solver is employed, leading to almost vanish-
ing time step sizes. Moreover, it is worthmentioning that such badly shaped
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tetrahedra can be critical also for implicit solvers, leading to ill conditioned
matrices and convergence issues [105,171].

6.2 Delaunay mesh improvements algorithms

Mesh improvement techniques have been proposed in the literature to cir-
cumvent this critical issue with 3D Delaunay tessellation. Algorithms used
to avoid the presence of poorly shaped elements can be classified as either
static or dynamic mesh improvements [105]. Static improvements are con-
ceived to act only on the initial mesh created by the Delaunay triangulation,
modifying it to achieve the highest quality. This is done without limiting the
required computational time, since the mesh will remain the same during
the whole analysis and the time spent for its improvement is always conve-
nient in terms of the overall accuracy and efficiency of the solution. There
are however many engineering applications where the initial mesh must be
modified during the analysis because the domain undergoes large changes in
time, such as structures with large elastic/elastoplastic deformations, free
surface fluid flows or fluid-structure interaction problems. The problem
of maintaining a mesh with a good quality during the whole analysis du-
ration can be called dynamic mesh management, as it may include both
mesh generations and mesh improvements [172, 173]. This can be achieved
by employing a constant mesh to be improved during the analysis when-
ever necessary, or directly generating new meshes whenever the previous
one becomes too distorted. It is important to remark that dynamic mesh
management has completely different requirements with respect to static
mesh improvement. First of all, a key point is to limit its computational
cost, as it is performed repeatedly during the analysis and not just for the
initial mesh. Second, it should introduce as few mesh changes as possible
both to obtain faster algorithms and, more importantly, to reduce the so
called artificial diffusion, which is the numerical error accumulated in the
interpolation of the physical variables whenever the mesh in modified.

Static and dynamic mesh managements usually make use of two cate-
gories of improving techniques: the ones that are based on topology altering
operations and the ones that preserve the topology limiting the mesh modifi-
cation to nodes re-locations, usually called “smoothing” techniques. Typical
actions of the former family are edge or face swapping, local subdivision,
node insertion or deletion, elements merging or splitting [174–176]. On the
other hand, among the smoothing techniques, the most simple and popular
one is the Laplacian smoothing [177], where a node is moved based on the av-
erage position of its neighbouring nodes. This algorithm is computationally
inexpensive and easy to be implemented, but in general there is no guarantee
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of a mesh improvement and, especially in three-dimensions, it can lead to
mesh deterioration or even inverted elements [104–106]. Another family of
smoothing techniques is given by the optimization based algorithms, which
compute the new nodes positions maximizing an objective function based
on a chosen quality measure [178, 179]. Optimization algorithms guarantee
the final improvement of the resulting mesh in the sense of the selected
quality index, but lead to a higher computational complexity and cost.

A different class of smoothing algorithms improves the mesh while it de-
forms during the simulation. This family is based on physical analogies, so
that the mesh nodes move according to physical processes that can be mod-
eled through numerical methods. In the linear spring analogy method [180],
nodes connectivities are replaced by springs which have stiffness inversely
proportional to the connectivity length. Thus, the nodal displacements can
be obtained by solving a system of equilibrium equations based on Hooke’s
law, under prescribed displacements on the mesh boundary. In this way,
starting from an initially optimized mesh undergoing large deformation dur-
ing the analysis, better quality meshes can be recovered. As the possibility
of elements inversion and intersection has been reported, more complex
versions have been developed [181–183]. The family of methods based on
linear elasticity analogy [184,185] is conceptually similar, but instead of in-
troducing springs, it considers a fictitious elastic problem to be solved on
the mesh domain, with elastic parameters which, in its more complex ver-
sions, may depend on the element quality [186, 187]. Nodal displacements
leading to an improved mesh quality can be computed solving the fictitious
elasticity problem under the imposed boundary movements. Though these
algorithms have been reported in the literature to provide good results in
improving a deformed mesh, their application to Lagrangian explicit free-
surface problems is limited, because they need to operate onto an initially
optimized mesh and are not suited for the improvement of a new Delaunay
mesh generated runtime.

6.3 Novel smoothing algorithm for tetrahedral mesh

Among the large variety of mesh improving techniques proposed in the
literature, to the best of the authors’ knowledge there is no strategy able
to fulfil the following key requirements of a 3D explicit method involving
frequent remeshing:

� it has to be computationally inexpensive, as it is performed very fre-
quently during the analysis;

� it has to guarantee the removal of all sliver elements, since the presence
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of just one of them causes a vanishing critical time step size in an
explicit framework;

� it has to introduce as few changes as possible in the position of nodes
in the mesh, in order to limit the artificial diffusion introduced by data
convection to the new nodal positions.

Fulfilling these conditions is particularly demanding because the algorithms
ensuring the sliver removal are usually complex and expensive and conse-
quently they are not applicable in methods with frequent remeshing as the
PFEM. For this reason, a novel efficient mesh smoothing technique has been
developed to remove all the slivers and, hence, to increase the mesh critical
time step. The smoothing step is composed by the application of two succes-
sive algorithms: the first is based on an elastic analogy directly designed to
accomplish the specific requirements of this method, hereafter referred to as
P-Smoothing (Pressure based Smoothing); the second is the implementation
of the sequential version of the Geometric Element Transformation Method
(GETMe) proposed in [106], to overcome few critical situations where the
first algorithm is less effective.

6.4 Elastic analogy based smoothing (P-Smoothing)

The proposed P-Smoothing approach is based on a novel use of the physical
analogy idea characterizing some algorithms described in Section 6.2. More
in details, the mesh deformation is governed by a fictitious elastic problem,
but rather than considering a fictitious body under an imposed boundary
displacement, it considers a body with fixed boundaries and an imposed
distribution of fictitious stresses. These stresses are properly designed to
provide high values of fictitious pressures in the bad quality elements pro-
ducing a movement of their nodes and an improvement of the corresponding
critical time steps. Fictitious elastic problems of this type are defined only
on those portions of the overall domain where the mesh needs to be im-
proved, so that only very small scale elastic problems have to be solved.

6.4.1 Selection of the smoothing domain

Since the stable time step size is governed, through Equation (2.48), by
the minimum element insphere radius rin, the elements quality is measured
based on this geometric property. At the beginning of the algorithm, the
insphere radius rine of each tetrahedron e is computed in terms of the current
value of the element nodal coordinates xe. In particular, let {a, b, c, d}
denote the four tetrahedron nodes and let the (non-unit) normal vector to
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the face having vertices {a, b, c} be defined as:

nabc = (xe,b − xe,a)× (xe,c − xe,a) (6.1)

Then, the element insphere radius can be computed with the following for-
mula:

rine =
6 Ve

|nabc| |nabd| |nacd| |nbcd|
(6.2)

where Ve is the tetrahedron volume and | · | is the standard Euclidean
norm.

Each element insphere is compared with a certain a priori defined target
value r̄in, for example the average of the radii among the mesh elements,
scaled by a tuning parameter a ≤ 1. All the elements which satisfy the
following relation:

rine ≤ a r̄in (6.3)

are classified as “critical” and are selected for improvement. This quality
criterion will automatically include all the sliver elements, as well as some
other very distorted ones that may limit the time step size.

These critical elements, together with a suitable number of their neigh-
bour elements, constitute the portion Ωh

s , hereafter referred to as “smooth-
ing domain”, of the mesh on which the fictitious elastic problem will be
solved . The extension of this portion can be controlled by varying the
threshold for the critical elements selection through the parameter a, or
through the enlargement of the set of the included neighbour element. As a
limit case, one could decide to include the whole fluid domain in the smooth-
ing step. In the present version, a is set to 3% and only a single layer of
neighbour elements is considered, namely all the elements which share at
least one vertex with the critical one (Figure 6.1). This choice leads to a
faster algorithm with few moving nodes, thus reducing the artificial diffu-
sion. The smoothing domain Ωh

s obtained in this way is in general not fully
connected, but consists of a series of patches Ωh

s,P , each one surrounding

one or more than one critical elements (Figure 6.1), i.e. Ωh
s =

⋃
P Ωh

s,P .

The external nodes defining the boundaries of the smoothing domain
∂Ωh

s (white dots in Figure 6.1) are considered fixed, while internal ones, i.e.
the vertices of the critical elements (black dots in Figure 6.1), can move.
Moreover, if one of these latter vertices belongs to the boundary of the
physical fluid domain or to the fluid free-surface, then it will be kept fixed,
i.e. the fluid boundaries are not modified.
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(a) (b)

Figure 6.1: 2D representation of the action of the P-Smoothing. (a) Selection of
the smoothing domain inside the fluid mesh, composed by the critical
elements (red) and the neighbour ones (grey). (b) Left: examples of
the patches composing the non fully-connected smoothing domain,
containing one (A) or more than one (B) critical elements. The ex-
ternal nodes of the patch (white dots) are kept fixed while the moving
nodes are those of the critical element (black dots). Right: results af-
ter the action of the P-Smooothing, with a more regular distribution
of the insphere radii among the elements.

6.4.2 Definition of the P-Smoothing elastic analogy problem

After the tetrahedra in the smoothing domain Ωh
s have been selected, a fic-

titious finite element elastic problem, governed by standard elasticity equa-
tions with a modified volumetric compatibility, is defined with homogeneous
Dirichlet boundary conditions on ∂Ωh

s . Quantities, such as stresses, strains
and time, defined in this fictitious problem, will be denoted by a star.

The equivalent internal nodal forces F∗int for nodes in the smoothing
domain Ωh

s are given by:

F∗int =

∫
Ωh

s

BT [σσσ∗]dΩ =

∫
Ωh

s

BT {2G∗[e∗] +K∗ε∗vI}dΩ (6.4)

where B is the usual finite element small strain compatibility matrix, con-
stant over each tetrahedron and assembled over the elements in the smooth-
ing domain, [σσσ∗] and [e∗] are the column vectors gathering the components
of the fictitious stress σσσ∗ and small deviatoric strain e∗ tensors, ε∗v is a
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suitably defined measure of the volumetric strain and G∗ and K∗ are the
shear and bulk moduli of the fictitious material considered for the smooth-
ing domain: in the examples here presented they are arbitrarily set to a
unit value.

While standard linear compatibility is assumed for the deviatoric strains,
i.e. [e∗] = BdevU∗, U∗ being the vector of nodal displacement in Ωh

s , the
compatible small volumetric strain ε∗v(x) is replaced in (6.4) by ε̃∗v, constant
over each element Ωh

s,e ∈ Ωh
s and defined as

ε̃∗v,e =

(
r̄in

rine

)
(6.5)

where rine is the current value of the element insphere radius and r̄in is the
pre-defined target value. The definition ((6.5)) of the fictitious volumetric
strain ε̃∗v is motivated by the outcome of numerical experiments in Karman
et al. [184] and Yang and Mavriplis [185], where elastic properties inversely
proportional to the element volume are shown to lead to a faster conver-
gence of sliver elements towards the desired shape, avoiding the problem of
element inversion. In fact, looking at the evolution of ε̃∗v with rine shown
in Figure 6.2, one can see that element configurations with rine < r̄in are
highly penalized, generating a high fictitious pressure p∗e = K∗ε̃∗v,e, tending
to infinity for vanishing rine . This prevents the possibility of invalid configu-
rations with inverted elements, which can be a typical problem for Laplacian
smoothing or other linear elasticity approaches. The fictitious pressure gen-
erated in the elements surrounding the sliver element helps avoiding that
the expansion of the sliver is achieved at the cost of an excessive volume
reduction of the surrounding elements. Since the smoothing is always car-
ried out immediately after a Delaunay triangulation, it should also be noted
that the starting mesh cannot contain inverted elements.

Denoting by F̃∗int the internal force vector obtained by replacing ε∗v in
(6.4) with ε̃∗v, the discretized fictitious elastic problem for the smoothing
domain Ωh

s turns out to be governed by the following semi-discretized equa-
tions of motion

M∗A∗ + C∗V∗ + F̃∗int = 0

U∗(0) = 0 in Ωh
s , U∗(t∗) = 0 on ∂Ωh

s

V∗(0) = 0 in Ωh
s , V∗(t∗) = 0 on ∂Ωh

s

(6.6)

where M∗ is a fictitious lumped mass matrix, C∗ is a matrix of fictitious
damping coefficients, A∗ and V∗ are the nodal acceleration and velocity vec-
tors. In the initial configuration of the fictitious problem, at the fictitious
time t∗ = 0, most elements in the smoothing domain have an insphere radius
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Figure 6.2: Relation between the fictitious volumetric strain ε̃∗v,e and the insphere

radius rine .

rine 6= r̄in. Then, from (6.4) and (6.5) one has that F̃∗int(0) 6= 0 and fictitious
nodal accelerations A∗ develop until a new equilibrium configuration, char-
acterized by vanishing A∗ and V∗, is achieved. The nodal positions in this
final configuration are recorded and used to define the improved mesh. The
elements in this new mesh exhibit a more regular distribution of insphere
radii lengths and, consequently, an increased value of the critical time step
size (Figure 6.1).

6.4.3 Solution of the P-Smoothing problem

Problem (6.6) has to be solved on the smoothing domain Ωh
s , whenever a

mesh smoothing is required. To be computationally acceptable and com-
patible with the overall explicit approach, also its numerical solution should
be pursued with a fully explicit and parallelizable solution scheme. To this
purpose, the Adaptive Dynamic Relaxation (ADR) technique [188–191] is
employed. This is an explicit pseudo-dynamic method for the static solu-
tion of structural mechanics problems, where artificial masses and damping
coefficients are introduced into (6.6). The static solution of problem (6.6)
is obtained as the final steady-state response, given by A∗ = 0, at the end
of the transient dynamic analysis of the system. Mass and damping pa-
rameters are chosen so as to accelerate the convergence to the steady-state
response, since the transient solution is not of interest.

The ADR technique has been successfully employed to address highly
nonlinear static problems, because no linear systems have to be solved for
the solution of the equivalent explicit dynamic problem and only vectorial
operations need be performed. Furthermore, it has been proved that, with
proper choices of the dynamic system parameters, the ADR method be-
comes completely equivalent to the implicit Newton-Raphson solution of
the corresponding nonlinear static problem [192], but avoiding any conver-
gence difficulties. The same explicit central difference scheme used for the
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integration of the fluid motion and described in section 2.4 is chosen for the
fictitious problem (6.6). The scheme is however modified in order to min-
imize the computing time, by defining a fictitious time step size ∆t∗ = 1
s [189], constant throughout the fictitious analysis. Rather than adapting
the time step size, stability of the integration is achieved by modifying the
fictitious mass matrix M∗ at each time step.

Assuming a constant fictitious time step ∆t∗, the integration scheme in
(2.40)-(2.41) and (2.44)-(2.45) is applied to the problem (6.6) leading to:

V∗,n+1/2 = (2M∗,n + C∗,n∆t∗)−1 (2M∗,n −C∗,n∆t∗) V∗,n−1/2+ (6.7)

− (2M∗,n + C∗,n∆t∗)−1 2∆t∗
(
F̃∗,nint

)

U∗,n+1 = U∗,n + V∗,n+1/2∆t∗ (6.8)

where M∗,n is a lumped mass matrix. The analysis stops when an acceptable
error in the internal forces balance is reached with vanishing inertia and
viscous forces, corresponding to the achievement of a static solution. More
specifically, convergence is defined as the vanishing of the following norm of
nodal velocities:

ε =
‖
(
Vn+1/2 −Vn−1/2

)
‖

‖Vn−1/2‖
≤ εADRtoll (6.9)

To guarantee optimally fast and stable convergence to the final steady state
condition, the ADR method defines the diagonal entries of the lumped mass
matrix in terms of the tangent stiffness matrix K∗,n [189,191]:

M∗,nii ≥
(∆t∗)2

4

3Ns∑
j=1

|K∗,nij | or M∗,n ≥ (∆t∗)2

4
S∗,n (6.10)

where Ns is the number of nodes in the smoothing domain and S∗,n is
the lumped tangent stiffness matrix, obtained assembling the corresponding
element matrices S∗,ne , where the index e runs over the elements in the
smoothing domain. However, to avoid the expensive numerical evaluation
of the tangent stiffness matrix, matrix S∗,n is replaced by an estimate of the
directional tangent stiffness S̄∗,n at the instant t∗,n, defined in Oakley and
Knight [189] as:

S̄∗,ni =

(
F̃ ∗int

)n
i
−
(
F̃ ∗int

)n−1

i

∆t∗V
∗,n−1/2
i

(6.11)
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To ensure stability of the integration, this substitution requires the intro-
duction of a safety factor β, finally obtaining the following expression:

M∗,n ≥ β (∆t∗)2

4
S̄n,∗ , β >> 1 (6.12)

This choice compromises the optimal convergence to the equilibrium state,
but the time gained avoiding the expensive computation of the full tangent
stiffness matrix K∗,n compensates for the employment of a larger number
of time steps. Furthermore, in view of the high level of nonlinearity in
the internal forces computation, a runtime stability check has also been
introduced, based on the perturbed apparent-frequency error measure [189,
191] defined as:

εstabi =
(∆t∗)2 |A∗,ni −A

∗,n−1
i |

4|U∗,ni − U∗,n−1
i |

(6.13)

where values of εstabi > 1 represent possible unstable conditions that need to
be eliminated with an increase of parameter β. The value of β can be defined
by the user based on computational cost considerations. Considering the
very fast convergence to the equilibrium state obtained with to the ADR
technique, a safe value of β = 10 has been used in the presented examples
without any occurrence of the unstable condition εstabi > 1. Finally, the
ADR method makes use of a mass proportional damping [189], obtaining
the following definition of the damping matrix:

C∗,n = cnM∗,n , cn = 2
√
λn0 (6.14)

where λn0 is defined as:

λn0 =

(
V∗,n−1/2

)T
S̄∗,nV∗,n−1/2(

V∗,n−1/2
)T

M∗,nV∗,n−1/2
. (6.15)

This choice of damping is intended to minimize the oscillations before reach-
ing the steady state, without reducing too much the velocity, which would
delay the reaching of the equilibrium configuration.

The main steps of the P-Smoothing algorithm are summarized in Algo-
rithm 4, while its key features are recalled below.

� It is specifically designed to cure sliver and overly distorted elements
with the goal of an increased critical time step of the explicit solver.

� It can be applied to improve any mesh generated by Delaunay tessel-
lation because it does not need a reference target mesh as other elastic
analogy based algorithms do.
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� It acts only on the portion of the mesh that needs be improved. This
guarantees efficiency and a small number of displaced nodes, thus
reducing artificial diffusion.

� The algorithm exploits the very same structure of the explicit solver
of the PFEM, drastically simplifying the overall solver architecture
and the implementation complexity of the method.

� Thanks to its explicit nature and to the dynamic relaxation method,
it is extremely fast and fully parallelizable, ensuring significant gains
in the critical time step size of the fluid solver at an extremely low cost
(the fictitious analysis of the smoothing domain usually requires only
few dozens of fictitious time steps to converge to to the static solu-
tion). More in details, the fictitious elastic problem is solved in parallel
on the whole smoothing domain using the same parallel procedure de-
scribed in Section 3.3. Both the elemental assembly procedure and the
solution of the system of decoupled nodal equations of the fictitious
problem are distributed on multiple threads with shared memory.

� It acts only on the internal nodes of the fluid domain. The nodes on
the boundary and on the free surfaces are not moved.

Algorithm 4 P-Smoothing

Selection of the smoothing domain Ωh
s (Section 6.4.1)

Initialization n = 0; U∗(0) = 0; V∗(0) = 0
while ε > εADRtoll do

Compute F̃∗,nint from eq. ((6.4))
Compute S̄∗,n from eq. ((6.11))
Compute M∗,n, C∗,n matrices: eqs. ((6.12)), ((6.14))
Solve explicit time-step: eqs. ((6.7))-((6.8))
Compute stability parameters εstabi from eq. ((6.13))
if εstabi > 1 for some i then

increase value of β
end if
Compute ε from ((6.9))
n = n+ 1

end while
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6.5 Geometry based smoothing

One of the aforementioned advantages of the P-Smoothing algorithm, namely
its capacity to preserve domain boundaries, may become also a limitation.
If a sliver appears near the fluid free-surfaces, it may have many of its
nodes constrained to remain fixed and the P-Smoothing may be ineffec-
tive. Nonetheless, this situation of constrained slivers is frequent because
the complex geometry of free-surfaces forces the mesh generator to use dis-
torted tetrahedra. Obviously, this is a crucial issue because a single bad
element can frustrate all the efforts to increase the critical time step.

Figure 6.3: GETMe Approach: Starting from a distorted tetrahedron (in blue)
and displacing all its vertices in the direction normal to their opposite
faces, a more regular tetrahedron is obtained.

At the same time, one should also consider that in a pathological element
such as a sliver, where the four nodes are almost coplanar and the insphere
radius vanishes, even a small correction of nodal positions can lead to orders
of magnitude gained on the critical time step size. Based on these consid-
erations, an additional smoothing technique, called Sequential Geometric
Element Transformation Method (GETMe) and presented in Vartziotis et.
al [106], has been implemented. Its peculiarities will be now only briefly
described. For a more detailed description, refer to Vartziotis et. al [106].

The GETMe approach is based on a regularizing element transformation
consisting on a simple, element based construction that, applied iteratively,
can transform a badly shaped element into a regular one. Let us consider
Figure 6.3 showing a badly shaped tetrahedron T , with its four nodes co-
ordinates listed in the vectors xi, with i = 1, 4. Moreover, let ni represent
the unit vectors that are normal to the tetrahedron faces opposite to the
i-th node and pointing outwards with respect to the tetrahedron. Finally,
a scaling factor σe, depending on the quality of the tetrahedron, is intro-
duced. Then, the new nodes positions of the transformed tetrahedron T ′
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can be computed as:

x′i = xi + σeni i = 1, . . . , 4 (6.16)

where the transformed tetrahedron T ′ has a quality measure that is greater
than the original one T . The choice of the scaling parameter σe becomes
crucial when considering a set of elements linked together, because an im-
proving transformation for one element may result in a quality worsening (or
even in an element inversion) for the surrounding ones. As a consequence,
since this is a purely geometrically driven movement, one can ensure a local
quality increase for the considered element but not a global improvement
for the whole mesh. In the examples here presented, σe is computed as one
tenth of the element mean side.

From the practical point of view, the implemented algorithm consists of a
certain number of iterations, within which the following steps are performed:

� the worst tetrahedron is selected among the whole mesh as the one
with the smallest insphere radius;

� the outwards nodal normals ni and the scaling factor σe are computed
for that tetrahedron. If the nodes belong to the fluid free surface, the
value of σe is reduced in order to introduce only small and acceptable
displacements on the fluid free-surface (in the following examples σe
is three times smaller on such nodes);

� the tentative new nodes positions are computed with Equation ((6.16)).

� the neighbour elements are checked to control possible element inver-
sions or worsening in the global stable time step. If this is the case,
the iteration is repeated with a reduced value of σe. The way of reduc-
ing σe can be controlled by the user. A strong reduction ensures that
inversions or worsening of the surrounding elements are avoided, but
it reduces the effectiveness of the GETMe iteration on the considered
worst tetrahedron. In the examples here presented, in case of element
inversions or worsening, the iteration is repeated with a σe reduced
by 25% ;

� the new position of the tetrahedron nodes is confirmed and saved,
namely xi = x′i

These iterations are repeated until a termination criterion is met. As sug-
gested in Vartziotis et. al [106], the criterion consists in a check on the
improvement of the minimum insphere radius at each iteration k, namely:

(rinmin)k − (rinmin)k−1

(rinmin)k−1
< εGETMe

toll (6.17)
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where (rinmin)k is the minimum inphere radius among all the elements at the
k− th iteration and εGETMe

toll is a given tolerance. Additionally, a maximum
number of iterations is defined. The sequential GETMe has been chosen
because it can work in combination with the P-Smoothing, since it can be
very effective for the critical situations previously mentioned on the con-
strained bad elements. Its geometry based strategy allows to fully control
the magnitude of the nodal displacements, introducing only a small, accept-
able variation of the position of fluid free-surface nodes, that is very effective
for the improvement of the element critical time step. On the other hand,
the sequential GETMe could not be globally effective if employed alone,
because it would require too many iterations to act on all the elements
needing an improvement, leading to an expensive algorithm, not suitable
for PFEM applications. The combined action of P-Smoothing ad GETMe
has proved to be really effective, fully satisfying the requirements discussed
in Section 6.3 for a suitable mesh smoothing method, as it will be shown in
the numerical examples.

6.6 Numerical examples

6.6.1 Cube

Let us consider a simple domain given by a cube of 1 m side. This first ex-
ample only focuses on the smoothing approach, considering how the initial
static mesh is modified by the combined algorithm presented in Section 6.3.
The standard Delaunay triangulation generates the mesh depicted in Figure
6.4, composed by 1159 nodes and 4665 elements. The worst tetrahedra in
the mesh, namely those having the smallest insphere radii, are highlighted
in red. The graph in Figure 6.5(a) plots the stable time step computed on

Figure 6.4: Cube. Standard Delaunay triangulation. The worst tetrahedra are
highlighted in red.

each element of the mesh. One can observe that, despite a mean value of
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Figure 6.5: Cube. Stable time step computed on each mesh element after: (a) De-
launay triangulation, (b) P-Smoothing, (c) P-Smoothing and GETMe
smoothing

1.84 10−4 s, the presence of few very bad tetrahedra leads to a minimum
value of 6.6 10−6 s which is the actual value that would have been used
for an explicit dynamic analysis. Moreover, the histogram on Figure 6.6(a)
shows how many dihedral angles are present for each angle amplitude. The
highlighted smallest and biggest values of 1◦ and 178◦, respectively, prove
the presence of very distorted tetrahedra. The safety parameter of Equation
((6.3)) is set to a = 3%, leading to a smoothing domain involving only 22
nodes and 500 elements. The action of the P-Smoothing on those elements
allows to obtain the situation represented by the graphs in Figures 6.5(b),
6.6(b), while the subsequent action of GETMe smoothing modifies less than
50 elements leading to the graphs in Figures 6.5(c), 6.6(c), respectively. The
combined action of the two smoothing algorithms leads to minimum and
maximum dihedral angles of 11◦ and 162◦ respectively. This is reflected
in the new value of the global minimum stable time step of 5.43 10−5 s,
i.e. more than one order of magnitude greater than the initial value. To
have a comparison with the results obtained with another mesh optimiza-
tion algorithm, the automatic NETGEN algorithm [193] implemented in
the open source software Gmsh [194] has been considered. This software
employs several techniques based on quality optimization, involving both
local nodal smoothing and topology changes. The NETGEN optimization
of the mesh in this test case leads to a global stable time step of 7.9 10−5 s.

Performing the same comparison test on a much finer grid of the same
cube (1.02M elements), similar results are obtained: the stable time step
computed on the mesh generated by the NETGEN algorithm is 7.4 10−6 s,
while the one computed on the mesh obtained with the proposed approach
is 8.02 10−6s. These results have been obtained in 127.1 s by the NETGEN
algorithm, while 13.8 s are required by the presented smoothing procedure
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Figure 6.6: Cube. Histogram of the dihedral angles computed after: (a) Delau-
nay triangulation, (b) P-Smoothing, (c) P-Smoothing and GETMe
smoothing

on the same computer. This is related to the fact that the NETGEN algo-
rithm belongs to the group of static mesh improvement algorithms described
in Section 6.2: they optimize based on more general definitions of quality
measure, but the time required to create a single mesh is not acceptable in
the frequent remeshing framework of the PFEM. In conclusion, while a more
regular set of tetrahedra is obtained with the NETGEN algorithm, the qual-
ity index relevant for an explicit solver, i.e. the minimum stable time step,
is comparable with respect to the one obtained with the proposed approach,
which has a computational cost compatible with the PFEM applications.
Finally, it must be noted that in this simple case with flat boundaries the
problem of constrained critical elements is not present and the results of
the P-Smoothing algorithm are already very positive. However, also in this
case a non-negligible improvement is provided also by the GETMe smooth-
ing, since it acts directly on the worst elements, thus producing a direct
improvement on the stable time step size.

In the following real applications with complex free surfaces, besides
the validation of the PFEM approach, the temporal evolution of the time
step size obtained with the dynamic mesh management will be highlighted,
showing good results and an even more visible complementarity in the action
of the two methods in the combined approach.

6.6.2 Dam break

The classical dam break experimental test [5, 195, 196] is here considered.
The problem has been addressed with both the 2D and 3D versions of the
present PFEM approach. The model geometry is depicted in Figure 6.7,
together with the table providing the geometrical parameters and other
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Fluid Properties

Density ρf 1000 kg/m3

Viscosity µf 10−3 Pa · s
Geometry

L 0.146 m
b 0.175 m

Mesh

n. nodes ∼ 200 k
n. elem. ∼ 750 k

Analysis

Time simulated 1 s
Total analysis 50 h
% Solver 84 %
% Remeshing 6 %
% Smoothing 9 %
n. threads 8

Figure 6.7: Dam Break. Geometry and parameters of the analysis.

data of the analysis. At the left side of the experimental domain, a column
of water is supported by a rigid vertical barrier. At the beginning of the
experiment, the barrier is suddenly removed, leaving the column of water
to flow inside the tank due to gravity. The generated wave impinges against
the opposite wall of the tank and rises up above the initial water column
height, then it falls down creating a second wave which returns towards the
left wall.

Figure 6.8 shows some snapshots of the simulation at synchronised in-
stants with the experimental ones presented in Koshizuka and Oka [5], show-
ing a qualitative good capability of the method to represent this complex
phenomenon involving breaking waves, splashes and strong impacts with
solid boundaries. For a quantitative validation, Figure 6.9 compares the
front position during time of the water wave until the impact with the right
wall. One can observe an overall very good agreement of the results obtained
with the explicit 2D and 3D PFEM approaches with the experimental and
numerical results presented in the literature. However, all the numerical
simulations show a slightly faster front advancement compared to the ex-
perimental one. As it has been commented in previous works [196, 197],
this can be related to the difficulties in the correct modelling of the ini-
tial removal of the vertical wall, which takes a finite amount of time in the
experiment while it is instantaneous in the simulations.

Let us now focus on the effectiveness of the smoothing procedure. Fig-
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(a) Exp. t = 0 s (b) Num. t = 0 s (c) Exp. t = 0.2 s (d) Num. t = 0.2 s

(e) Exp. t = 0.4 s (f) Num. t = 0.4 s (g) Exp. t = 0.6 s (h) Num. t = 0.6 s

(i) Exp. t = 0.8 s (j) Num. t = 0.8 s (k) Exp. t = 1 s (l) Num. t = 1 s

Figure 6.8: Dam Break. Snapshots of the simulation at different time steps com-
pared with the corresponding experimental results at synchronized
instants presented in [5]

ure 6.10 shows the evolution of the time step size during the analysis. Each
point in the graph in Figure 6.10(a) corresponds to the stable time step
computed directly on each mesh generated by Delaunay tessellation, when-
ever the mesh distortion control of the PFEM indicates that a new mesh
is required. Figures 6.10(b)-(c) show the time steps as they are modified
by the action of P-Smoothing and of P-Smoothing combined with GETMe
smoothing, respectively. The comparison shows the excellent performances
of the combined smoothing approach. The meshes generated by Delaunay
tessellation cannot be directly used in an explicit solver, since the conse-
quent time step would lead to an unacceptable computational time. On
the other hand, the P-Smoothing produces almost every time a remark-
able improvement of the time step size (its average value is 30 times bigger
than the average one computed after remeshing), still however presenting
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Figure 6.9: Dam Break. Time evolution of the front wave position.

some circumstances where it is not fully effective due to the aforementioned
situations of constrained tetrahedra. The action of GETMe smoothing is
fully complementary. It provides an additional slight improvement on the
average stable time step and, most importantly, it overcomes all the situa-
tions of inefficiency of the P-Smoothing algorithm, leading to a very large
minimum time step and reducing its variations during the analysis. The
combined action of the two smoothing techniques leads to an average time
step size during the analysis that is almost 200 times larger than the one
which would have been required using the Delaunay mesh directly, while
the minimum time step size is almost 500 times larger. This very large gain
is obtained at a reasonable computational cost, as it can be observed in the
table in Figure 6.7. The computational time spent for the remeshing and
smoothing procedures is 15% of the total duration of the analysis, which
is normal in the PFEM approach, especially in this type of problems with
breaking waves requiring frequent remeshing. This computational efficiency
is mainly related to the property of the combined smoothing algorithms to
act on a small portion of the overall fluid domain and to the effectiveness of
the ADR tecnique described in Section 6.4.3. The safety parameter of Equa-
tion ((6.3)) is set to a = 3%, leading to a smoothing domain that ranges in
between 4.6% and 8% of the total number of elements during the analysis,
because it includes also elements neighbour to the sliver ones. The tolerance
for the termination of the GETMe smoothing iterations in Equation (6.17)
is fixed to the value εGETMe

toll = 10−4, which turns out to force the GETMe
smoothing to stop in the average after 750 iterations. Since the number of
GETMe iterations is equal to the number of modified elements, this value
of the tolerance determines the algorithm to act on approximately 0.1% of
the total number of elements for each smoothing step. Moreover, the ADR
algorithm allows to reach the equilibrium condition of each P-Smoothing
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Figure 6.10: Dam Break: Plot of the stable time step at each remeshing com-
puted after: (a) Delaunay triangulation, (b) P-Smoothing, (c) P-
Smoothing and GETMe smoothing

procedure in less than 20 fictitious explicit steps. The same values of the
safety parameter a and termination criterion tolerance εGETMe

toll are used in
the following examples, and the same data in terms of size of the smoothing
domains and number of ADR steps are recorded.

Finally, a check on the possible influence of the P-Smoothing on the
solution accuracy is performed. A coarse mesh is considered (average of
39.2 k elements during the analysis), in order to run a benchmark analysis
in a reasonable computational time without smoothing and, hence, with a
very small time step. The result obtained with this coarse mesh will be
used as a reference for assessing the effect of the P-Smoothing on the solu-
tion accuracy. Table 6.1 shows a comparison of the fluid front positions at
different time instants, varying the parameter a defined in Equation (6.3).
This parameter controls the size of the smoothing domain and consequently
the influence of the nodal P-Smoothing on the results of the analysis. The
GETMe smoothing has not been considered in this analysis, due to its very
limited action. The results in Table 6.1 suggest that for values of a ≤ 0.05,
typically used in our numerical applications, the smoothing algorithm does
not influence significantly the accuracy of the solution. It must be under-
lined that with such a coarse mesh, variations around 1% are acceptable
because they imply a discrepancy in the front advancement of the order of
the element size, which would be negligible with a finer mesh. Moreover,
it must be noted that the influence on the results increases with the size of
the smoothing domain. This is expected because, as commented in Section
6.2, performing nodal smoothing runtime implies the introduction of errors
due to artificial diffusion. For this reason, the smoothing algorithm should
act only on the critical elements in order to reduce to a minimum the data
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parameter a # el. in Ωt
s posit. at t = 0.2 s posit. at t = 0.24 s

a = 0 0 0.4546 m 0.554 m

a = 0.005 255 0.462 m 0.556 m
% error 1.63 % 0.36 %

a = 0.01 675 0.447 m 0.555 m
% error 1.67 % 0.18 %

a = 0.03 3230 0.454 m 0.553 m
% error 0.13 % 0.18 %

a = 0.04 5246 0.4516 m 0.548 m
% error 0.66 % 1.08 %

a = 0.06 11403 0.446 m 0.529 m
% error 1.89 % 4.51 %

a = 1000 39250 0.43 m 0.518 m
% error 5.41 % 6.5 %

Table 6.1: Dam Break: Comparison of the results on the fluid front position
in time for different values of parameter a for the definition of the
smoothing domain (Equation (6.3)). The second line of each row shows
the relative difference with respect to the benchmark solution with
a = 0, i.e without smoothing.

convection to the new nodal positions.

6.6.3 Dam break with obstacle

The experimental test performed at the Maritime Research Institute Nether-
lands (MARIN) and reproduced numerically with the Volume of Fluid
Method in Kleefsman et al. [198] is here addressed, providing a more com-
plete validation of the method accuracy because of the available detailed
set of experimental measures. It consists of a dam break where, inside the
large tank, a small box is placed to interfere with the collapse of the water
column. The experimental set up geometry is depicted in Figure 6.11, to-
gether with the table providing geometrical parameters and other data of
the simulation. The same values of density and viscosity of the previous
dam break example have been used. The obstacle box was instrumented
with several pressure sensors and, among them, sensors P1 and P3, posi-
tioned on the side of the box facing the column of water at the height of
0.021 m and 0.101 m, are here considered (Figure 6.11). Moreover, probes
measuring the fluid vertical heights were positioned inside the tank. Sensors
H2 and H4, at a distance of 2.228 m and 0.584 m from the tank wall behind
the dam are here considered.
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Geometry

a 1.228 m
b 1.248 m
c 0.744 m
d 0.4 m
e 1. m
s 0.16 m
h 0.55 m

Mesh

n. nodes ∼ 200 k
n. elem. ∼ 850 k

Analysis

Time simulated 6 s
Total analysis 236 h
% Solver 95 %
% Remeshing 3 %
% Smoothing 1.2 %
n. threads 6

Figure 6.11: Dam break with obstacle. Geometry and parameters of the analysis.

Figure 6.14 contains some snapshots of the simulation at different in-
stants, showing the first large wave impacting the obstacle and the subse-
quent oscillating waves. The graphs in Figure 6.12(a)-(b) show the time
evolution of the water height at the points H2 and H4, compared with the
experimental results presented in Kleefsman et al. [198]. One can observe
an overall good agreement with the experimental results. A small overes-
timation of the peak is visible at H2 only in the time interval around 2 s,
i.e. slightly after the first impact with the obstacle, because of the com-
plex dynamics of the originated wave, difficult to be represented correctly
at the H2 sensor, which is very close to the obstacle itself. Moreover, the
graphs depicted in Figure 6.12(c)-(d) show the pressure time evolution at
the probes P1 and P3. Also in this case, despite some spurious oscillations,
typical of the pressure field in the explicit PFEM approach, one can observe
a very good agreement with the experimental curve.

As far as the dynamic mesh management is concerned, the time step
improvements provided by the two smoothing techniques are shown in Fig-
ure 6.13. Once again, the time steps computed at each remeshing, after
the Delaunay triangulation, are very scattered around the average value
during the analysis, showing a mean value ∆tmean = 9.85 10−8 s, but a
minimum value ∆tmin = 2.09 10−10 s. These values are clearly unaccept-
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(b) Water Height at sensor H4
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(c) Water Pressure at sensor P1
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(d) Water Pressure at sensor P3

Figure 6.12: Dam Break with obstacle. Time evolution of water heights and
pressures at different sensors. Comparison between experimental
and numerical results presented in [198] and the numerical results
obtained with the present method.
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Figure 6.13: Dam break with obstacle. Plot of the stable time step at each
remeshing computed after: (a) Delaunay triangulation, (b) P-
Smoothing, (c) P-Smoothing and GETMe smoothing
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able because of the consequent required computational time. The action
of the P-Smoothing leads to a new mean value ∆tmean = 2.41 10−6 s, still
showing some situations where the improvement is less effective, so that the
minimum values are around 10−8 s. The combined action of P-Smoothing
and GETMe smoothing gives an additional improvement on the mean value,
leading to the final ∆tmean = 5.43 10−6 s (almost two orders of magnitude
larger than the corresponding minimum obtained with the Delaunay mesh),
but more remarkably, it effectively cures the critical situations left by the
P-Smoothing, obtaining a final ∆tmin = 9.06 10−7 s (almost four orders of
magnitude greater than the Delaunay mesh minimum) with values tightly
grouped around the mean one. These very satisfying results are obtained
in a reasonable amount of time: only 1.2 % of the overall analysis duration,
as summarized in the table in Figure 6.11.

6.6.4 Water drop fall into a cylindrical reservoir

A water sphere falling into a cylindrical box containing water at rest is
here considered [6]. Figure 6.15 shows the problem geometry, together with
the table listing geometrical and other analysis parameters. Figure 6.16
shows some snapshots of the simulation. After the impact, one can see the
resulting oscillation with the creation of a central jet globally respecting
the cylindrical symmetry. The comparison with the results presented in
the literature [6] shows good agreement in terms of timing and free sur-
face profile. In this analysis, performed with a fine mesh (approximately
1.7 M elements), the results of the smoothing algorithm are particularly
interesting. Figure 6.17 shows how the stable time step is improved at
each remeshing, starting from the one computed directly after the Delau-
nay triangulation in Figure 6.17(a), then the one computed after the action
of P-Smoothing in Figire 6.17(b) and, finally, the results of P-Smoothing
combined with GETMe smoothing in Figure 6.17(c). Once again, one can
notice that the P-Smoothing provides almost every time a remarkable gain
(the mean value during the analysis increases by almost two orders of magni-
tude from 3.5 · 10−8 s to 1.99 · 10−6 s), but still presents some circumstances
where its action is less effective, so that the minimum during the analysis
is 2.58 · 10−8 s. The complementary action of GETMe smoothing fully cor-
rects all the situations where the P-Smoothing is ineffective, leading to a
much larger minimum time step (2.32 · 10−6 s) and reducing a lot its vari-
ability around its mean value of 4.18 · 10−6 s. Furthermore, from the Table
in Figure 6.15 one can see that these results have been obtained at a low
computational cost, (only 3% of the overall computational time). Indeed,
despite the huge number of elements in the mesh at hand, the possibility
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(a) t = 0. s (b) t = 0.4 s

(c) t = 0.6 s (d) t = 0.8 s

(e) t = 1.1 s (f) t = 1.75 s

(g) t = 3.25 s (h) t = 4.0 s

(i) t = 4.25 s (j) t = 5.5 s

Figure 6.14: Dam break with obstacle. Snapshots of the simulation at different
time steps.
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Fluid Properties

Density ρf 1000 kg/m3

Viscosity µf 10−3 Pa · s
Geometry

a 0.1 m

Mesh

n. nodes ∼ 300 k
n. elem. ∼ 1.7 M

Analysis

Time simulated 1 s
Total analysis 89 h
% Solver 95 %
% Remeshing 2 %
% Smoothing 3 %
n. threads 8

Figure 6.15: Water drop fall. Geometry and parameters of the analysis.

to restrict the smoothing action only to the portions containing bad quality
elements allows to obtain a very efficient procedure.

6.6.5 3D Breaking dam flow over an elastic obstacle

A first 3D FSI example is here considered. The problem of breaking dam
flow over an elastic obstacle already addressed in Section 4.4.3 is here ex-
tended to the 3D setting. The geometry and the fluid and structural pa-
rameters are taken from Section 4.4.3 (Figure 4.10) considering an out of
plane thickness of the tank of 0.15m. The choice of an average mesh size
of 4mm leads to a fluid mesh of 440k linear tetrahedra and a structural
mesh of 3.8k 8-nodes continuum brick elements. Figure 6.18 presents some
snapshots of the simulation at different time instants, showing a qualita-
tive realistic representation of the complex dynamics of the problem. The
comparison with the corresponding snapshots in Figure 4.11 shows a good
agreement between the 2D and 3D results. Moreover, Figure 6.19 plots the
time history of the horizontal displacement of the tip of the elastic obstacle.
The numerical results of the 3D analysis are compared with the ones ob-
tained with the same method in the 2D framework and with other methods
presented in the literature. Also this quantitative comparison shows a good
agreement in terms of amplitude and timing of the first peak of deflection of
the elastic obstacle. As already commented in the 2D case, some discrepan-
cies between the different numerical approaches arise and accumulate during
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(a) t = 0.175 s (b) t = 0.175 s (c) t = 0.275 s (d) t = 0.275 s

(e) t = 0.5 s (f) t = 0.5 s (g) t = 0.9 s (h) t = 0.9 s

Figure 6.16: Water drop fall. (b)-(d)-(f)-(h) Snapshots of the simulation of the
present method at different time steps compared with the corre-
sponding ones (a)-(c)-(e)-(g) presented in [6]
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Figure 6.17: Water drop fall. Plot of the stable time step at each remeshing
computed after: (a) Delaunay triangulation, (b) P-Smoothing, (c)
P-Smoothing and GETMe smoothing
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(a) t = 0.15 s (b) t = 0.25 s (c) t = 0.35 s

(d) t = 0.57 s (e) t = 0.67 s (f) t = 1.0 s

Figure 6.18: 3D Breaking dam flow over an elastic obstacle. Snapshots of the
simulation at different time instants.

time in the following oscillations. However, this was expected due to the
complex dynamics of the phenomenon. The results in terms of perfor-
mances of the mesh smoothing algorithm are showed in Figure 6.20. Also
in this case there is a remarkable gain in the values of the stable timestep
size. The mean and minimum values of the time step sizes computed on the
Delaunay mesh are ∆tmean = 3.05 10−8s and ∆tmin = 4.9 10−10s, respec-
tively. After the action of the P-Smoothing algorithm they increase to the
values of ∆tmean = 5.99 10−7s and ∆tmin = 1.44 10−8s, while the GETMe
smoothing leads to the final employed time steps having a mean value of of
∆tmean = 1.45 10−6s and a minimum value of ∆tmin = 2.71 10−7s. The
overall gain is of almost two orders of magnitudes on the mean value and
almost three orders of magnitude on the minimum one. These results are
obtained at the price of spending on the smoothing algorithms only the 8%
of the total 34 h of computing time for this analysis (Table 6.2).

6.6.6 3D Breaking dam flow through an elastic gate

The 2D problem addressed in Section 4.4.2 is here simulated in a 3D frame-
work. The geometry is represented in Figure 4.10, considering an out of
plane tank thickness of 0.1m. Let us underline that this example and
the previous one 6.6.5 are typical 2D problems and a 3D simulation was
not strictly necessary, but it offers a validation of the 3D FSI approach.
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PFEM Unified Formul. [110] 
FEM [142]
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Figure 6.19: 3D Breaking dam flow over an elastic obstacle. Evolution in time
of the horizontal displacement of the tip of the obstacle.
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Figure 6.20: 3D Breaking dam flow over an elastic obstacle. Plot of the stable
time step at each remeshing computed after: (a) Delaunay triangu-
lation, (b) P-Smoothing, (c) P-Smoothing and GETMe smoothing

Analysis

Time simulated 1 s
Total analysis 31 h
% Solver 81 %
% Remeshing 11 %
% Smoothing 8 %
n. threads 8

Table 6.2: 3D Breaking dam flow over an elastic gate. Details of the computing
time of the analysis.
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(a) t = 0.025 s (b) t = 0.075 s (c) t = 0.1 s

(d) t = 0.12 s (e) t = 0.2 s (f) t = 0.4 s

Figure 6.21: 3D Breaking dam flow through an elastic gate. Snapshots of the
simulation at different time instants.

The same geometry and material properties for the fluid and the structure
adopted in Section 4.4.2 are employed. An average mesh size of 0.002m
leads to a mesh of 740k fluid tetrahedra and 10k 8-nodes brick structural
elements. The comparison of the snapshots of the 3D analysis in Figure 6.21
with the corresponding ones of the 2D analysis in Figure 4.8 shows a good
qualitative agreement. A quantitative validation is obtained with the graph
in Figure 6.22, showing how also the 3D analysis has a good prediction of
the experimental time history of the displacement of the bottom edge of
the elastic gate. The mesh smoothing performances are represented in
Figure 6.23, while Table 6.3 summarizes the details of the computing time
of the analysis. Once again, the combined action of the P-Smoothing and
N-Smoothing algorithms leads to an increase of more than one order of mag-
nitude on the mean stable time step (namely, from ∆tmean = 1.16 10−8s
on the Delaunay mesh to ∆tmean = 7.0 10−7s on the smoothed mesh) and
more than two orders of magnitude on the minimum time step (namely,
from ∆tmin = 6.98 10−10s on the Delaunay mesh to ∆tmin = 1.87 10−7s
on the smoothed mesh) with a much reduced variation around the mean
value. This improvement is obtained spending in the smoothing algorithm
only 7.% of the overall computing time of the analysis.
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Figure 6.22: 3D Breaking dam flow through an elastic gate. Evolution in time of
the horizontal and vertical displacements of the gate tip.
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Figure 6.23: 3D Breaking dam flow through an elastic gate. Plot of the stable
time step at each remeshing computed after: (a) Delaunay triangu-
lation, (b) P-Smoothing, (c) P-Smoothing and GETMe smoothing

Analysis

Time simulated 0.4 s
Total analysis 37 h
% Solver 83 %
% Remeshing 10 %
% Smoothing 7 %
n. threads 8

Table 6.3: 3D Breaking dam flow through an elastic gate. Details of the comput-
ing time of the analysis.
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7 Industrial Application: Airbag
deployment

7.1 Introduction

An airbag is a passive automotive safety system built into the steering wheel
and various other strategic locations of a vehicle. In the case of accidents,
these inflatable cushions restrain automobile passengers dissipating their
kinetic energy and thereby reducing the risk of injury.

The design of inflatable restraint system is an engineering problem of
great challenges. Such systems deploy completely in a time frame of 40-50ms
or less. They must be able to handle different scenarios of impacts and the
interaction with different passengers, even in the case of vulnerable ones
such as children. Among these scenarios, the case of the passenger impact
before the airbag is fully inflated must be carefully analyzed. In fact, despite
these safety devices have strongly reduced the car accident fatalities, there
is a potential risk of injury caused by the deploying airbag itself, mainly
related to the case of passengers located within the deployment region be-
fore the full inflation (Figure 7.1-b) [199]. These conditions are usually
referred to as Out-of-Position (OoP) conditions. On the contrary, the so-
called In-Positions (IP) conditions are related to the standard interaction
of the passenger with the fully inflated airbag (Figure 7.1-a) [199]. Conse-
quently, since the early stages of development, airbag technology has been
undergoing continual evolution in terms of design, materials and perfor-
mances. In the designing process the numerical simulation is getting an
increasing importance. Compared with the traditional experiments, the nu-
merical simulation has remarkable advantages in terms of cost, efficiency,
flexibility and amount of data which can be extracted from the analysis.
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(a) (b)

Figure 7.1: (a) In-Position (IP) condition: the passenger impacts the fully in-
flated airbag. (b) Out-of-Position (OoP) condition: the passenger is
located in the region of the airbag deployment during its inflation,
with the high risk of severe injury.

7.2 Simulation approaches

There are mainly two categories of approaches to the airbag simulation in
the automotive safety industry [200]. The first one includes the methods
which adopt the simplifying assumption of neglecting the fluid dynamics
inside the airbag chamber during the inflation process. The second one
includes the methods which model the inner fluid dynamics, leading to a
fully FSI problem. In the first category the most used approach is the
Uniform Pressure Method (UPM) [201], where the inflation is approximated
by a time-varying, spatially-uniform pressure field. More in details, in its
simplest version, a scalar pressure can be computed at every time step of the
analysis starting from the airbag chamber volume and the gas mass inflow
law. Such pressure is then uniformly applied on the airbag to compute
the updated configuration [200]. This simplification leads to very efficient
analyses for IP conditions, because the uniform pressure distribution well
approximates the situation of a fully inflated airbag. On the contrary, during
the inflation process large pressure gradients are present inside the airbag,
violating the UPM assumptions. Consequently, when the OoP condition is
addressed to study the interaction between the passenger and the airbag
during its deployment, the UPM leads to unrealistic results and a full FSI
analysis is required [7,200]. Among the most used FSI numerical approaches
for OoP airbag simulations in the automotive industry, let us recall the ALE
method implemented in the commercial software LS-DYNA, and the CEL
method implemented in Abaqus. Such methods have been briefly introduced
in Section 4.1.

A clear example of the differences between the two types of approaches
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Figure 7.2: Flat airbag deployment. Comparison of the experimental results with
the numerical ones obtained with a UPM approach (green) and an
ALE approach (red) [7]

is represented in Figure 7.2 taken from [7]. Several snapshots at different
time instants of an experimental test involving a flat airbag deployment are
superimposed with the results of two numerical analyses performed with the
UPM approach (green) and ALE method (red). One can observe that at
the final stage of the deployment both numerical results well describe the
experimental configuration. However, during the whole deployment process
the UPM method is not able to reproduce correctly the real dynamics, while
the inclusion of the unsteady fluid-dynamics in the ALE model leads to good
representation of the entire process.

As previously commented in Chapters 1 and 2, many features of the
present PFEM-FEM FSI method make it potentially very effective to ad-
dress the challenging issues of a full FSI simulation of the airbag deploy-
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Figure 7.3: Stages of the airbag deployment.

ment. First of all, due to the extremely fast dynamics and high degree of
non-linearity, it is commonly accepted that these problems need to be ad-
dressed with an explicit solver. Secondly, this phenomenon sees a strong
evolution of the interface between the fluid and the structure. The airbag is
initially empty and folded inside the device housing and then the fluid flow
causes the complex deployment until the completely inflated configuration
(Figure 7.3). Such strong variations of the fluid structure interface can be
naturally tracked by the fully Lagrangian kinematics of the present method.
Finally, a partitioned approach is preferable, since the large number of com-
plex modelling aspects both on the fluid and structural sides would lead to
several issues in the implementation of a unique monolithic solver.

7.3 Inflator and simplifying assumptions

The activation of the airbag deployment occurs when an acceleration sen-
sor in the vehicle detects a severe deceleration related to a car accident.
This triggers a controlled explosion inside the airbag inflator that produces
a large volume of a gas mixture (pyrotechnic inflators). The gas mixture
expands and rapidly inflates the chamber of the airbag, possibly combined
with a pre-compressed inert gas (in hybrid airbags) [199]. Clearly, the re-
sults of the numerical simulations are strongly influenced by the features
of the gas flow, mainly the mass flow rate, the direction of the gas flow
and the time history of gas temperature and composition [7]. Such features
can significantly vary depending on the chosen type of inflator and the ex-
trapolation from experimental tests of the synthetic input data required by
numerical simulations is still under discussion [202,203].

Unfortunately this amount of input data was not available for the sim-
ulations here presented, considering that the works in the literature are
generally omitting relevant information that are confidential for the auto-
motive industry. Consequently, let us remark that the aim of the present
work is limited to show how the proposed PFEM-FEM FSI method may be
employed in this challenging real engineering application with potentially
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effective results. Only qualitative comparisons with the tests presented in
the literature are perfomed. The simplifying assumptions of a normal in-
jection of gas of constant composition and at constant temperature has
been adopted [204, 205]. In the present approach, the constant temper-
ature assumption allows to keep unaltered the fluid mathematical model
described in Chapter 2 neglecting the energy conservation equation. De-
spite the strong influence of such an assumption, the lack of data on the
temperature time history would compromise any further efforts to increase
the consistency with the physical phenomenon through the introduction of
the energy conservation equation.

More in details, the gas is here modelled as a light, inviscid air-like
fluid, so that the fluid density is set to ρ0,f = 1.3kg/m3, the viscosity is
set to µf = 0Pa s and the parameters for the equation of state (2.18)
are: dilation waves propagation speed cf = 340m/s and specific heat ratio
K ′0,f = 1.4. Let us remark that with this choice of fluid parameters and
under the assumption of constant temperature, the EOS (2.18) is basically
equivalent to an isentropic perfect gas law of the type (see [24]):

pf (ρf ) = p0,f

(
ρf
ρ0,f

)K′0,f
(7.1)

Finally, the mass flow rate curve is certainly the most influencing input
data to represent correctly the transient process of airbag deployment [202,
206]. Unfortunately, the curve adopted in the experimental and numerical
tests that will be addressed in Section 7.5 is not provided by the reference
paper [7]. However, from the review of many other works in the literature
a qualitative common behaviour of such curves is observed [202, 205–207]
which show an initial fast, parabolic-like increase of the mass rate with a
following exponential-like decay. In the numerical examples of Section 7.5
the mass flow rate curve depicted in Figure 7.4 has been employed. The
peak value and the timing of the following decay have been calibrated in
order to reproduce an equivalent dynamics in the experiment of Section
7.5.2.

7.4 Fabric behaviour

Airbag fabrics are typically made of plain weave of nylon yarns, being the
warp and fill yarns interlaced in a regular sequence of one-under and one-over
(Figure 7.4). Woven fabrics are characterized by high flexibility allowing
them to fold and conform to a variety of shapes. This structure leads to
a macroscopically heterogeneous, anisotropic material, which can undergo
large deformations and exhibit non-linear behavior. The non-linearity arises
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Figure 7.4: (a) Mass Flow rate curve. (b) Schematical representation of the mi-
crostructure of the fabric as a plain weave of nylon yarns.

from different sources: the non-linear response of the individual yarns, the
exchange of crimp between the fill and the warp yarns as they are stretched,
the contact and friction between the yarns in cross directions and between
the yarns in the same direction [199]. The tensile response in the fill and
warp directions may be coupled due to the aforementioned crimp exchange,
while the compression stiffness is usually neglected. Under in-plane shear
deformation, the fill and warp direction yarns rotate with respect to each
other. The resistance increases with shear deformation as lateral contact is
formed between the yarns in each direction. The bending stiffness is usually
neglected, since the system of fibers are only restricted by friction [137].

Entering into the details of the airbag fabric material is beyond the scope
of this work. This brief description was only aimed to highlight the com-
plexity of the material model. In the present PFEM-FEM FSI approach,
the coupling with a commercial software such as Abaqus/Explicit allows
to introduce in the simulations all its features to obtain the level of com-
plexity required by the airbag problem at hand. More in particular, the
material behaviour *FABRIC, specifically conceived for these kinds of ap-
plications, is employed. Experimental data are required to characterize the
material, namely the response in the two principal directions, as well as the
shear response, under the assumption that they are all independent one to
the others. Consequently the fabric stress response depends only on the
fabric strain in that component. Other features such as rate dependent,
damaged elastic or elastic-plastic behaviours may be added in the material
model. Moreover, advanced algorithms to deal with the complex phenom-
ena of folding and wrinkling are included in the contact modelling of the
simulations here presented (see contact controls assignments in [137]).
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Fabric Material input data

Density ρs 726 kg/m3

Direction 1 Direction 2 Shear

Nom.
Strain

[-]

Nom.
Stress
[MPa]

Nom.
Strain

[-]

Nom.
Stress
[MPa]

Nom.
Strain

[-]

Nom.
Stress
[MPa]

−1 −22.2 −1 −28.1 0 0
−0.9 −17.76 −0.9 −22.48 0.52 4.94
−0.5 −0.0022 −0.5 −0.0028 1.57 54.37

0 0 0 0
0.1 17.76 0.1 22.48

Table 7.1: Input data for the Abaqus *FABRIC material model.

Nevertheless, the lack of data about the experimental tests that are here
addressed led us to the choice of adopting a standard calibration of the set of
parameters of the model, namely the ones provided in the Abaqus Example
Problems Guide [137] for the “Side curtain airbag impactor test”. Only the
standard non-linear elastic behaviour of the *FABRIC model is considered
in the applications here presented, i.e no damage, rate dependent or elastic-
plastic features are included. The input data are summarized in Table 7.1.
Let us remark that, despite the negligible fabric stiffness under compression,
a common strategy is to specify a compressive stiffness after a certain range
of strain, to prevent the collapse of wrinkled elements under compression
(see Abaqus Example Problems Guide in [137]) .

7.5 Numerical simulations

In the present work, two numerical test cases inspired by the experimental
tests presented in [7] are addressed. In both cases, the airbag has an initial
flat configuration on an horizontal plane. These tests have been used in the
literature for the validation of other numerical approaches [8,200]. No folded
configuration is considered in the present work. The folding procedure may
be introduced in the Abaqus software, as it is done in [8]. Nevertheless,
it would introduce some technical issues in the remeshing procedure in the
present version of the PFEM software. Indeed, the use of the Standard
Delaunay triangulation and the Alpha-shape algorithm may not have the
proper resolution in the small gaps between one fold and the other. In
this application, however, characterized by a closed flow inside the airbag
chamber, one could overcome these issues using to the Constrained Delaunay
triangulation, not available in the present version of the proposed PFEM
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(a) (b)

Figure 7.5: Flat airbag deployment. Geometry of the problem

software, where the boundary nodes can be forced and a non-convex mesh
can be obtained.

7.5.1 Flat airbag deployment

The first numerical test considers the deployment of a flat horizontal airbag
with no interaction with any other bodies. The geometry of the problem
is depicted in Figure 7.5. The diameter of the initially circular flat con-
figuration is D2 = 0.6m. More in details, two horizontal fabric layers of
diamater D1 = 0.58m are separated by an initial internal gap of 0.01m,
while the equatorial fold is schematically represented with a corner edge.
The diameter of the circular area representing the inflator is d1 = 0.05m,
while d2 = 0.06m. Finally, a rigid horizontal plate of diameter D3 = 1m is
located at the level of the inflator to represent the supporting plane. The
structural mesh is given by 141k 3-node membrane element (M3D3 in the
Abaqus elements library [137]) with an out-of-plane thickness of 0.4mm.
The fluid parameters are defined in Section 7.3. At the beginning of the
analysis, the fluid mesh fills the small gap inside the airbag chamber with
483k tetrahedral elements. Then, due to the fluid injection it rapidly in-
creases till an average mesh of approximately 700k elements for the inflated
configuration. The mass flow rate employed in the simulation is the one pre-
sented in Figure 7.4. Figures 7.6 shows several snapshots of the simulation
at different time instants, while Figures 7.7 gives an insight on the inner
fluid dynamics with a central cut which shows the contour plot of the fluid
velocity field at the corresponding instants. From the velocity field one can
observe the fact that the hypothesis of a uniform inner pressure adopted in
the UPM approach is clearly not realistic. A real qualitative comparison
with the results shown in Figure 7.2 is compromised by the aforementioned
lack of input data. However, one can observe that the present FSI method
seems to be able to reproduce all the peculiar stages of the inflation process.
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Figure 7.6: Flat airbag deployment. Snapshots of the simulation at several in-
stants: structural output. Sequence from left to right, from top to
bottom.
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Figure 7.7: Flat airbag deployment. Snapshots of the simulation at several in-
stants: fluid output. A middle cut shows the velocity field inside the
airbag chamber. Sequence from left to right, from top to bottom.
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Figure 7.8: Flat airbag deployment. Comparison of numerical results obtained
with the UPM approach in Abaqus (green) and the PFEM-FEM FSI
method here presented (red).

The same test case has been performed in Abaqus/Explicit using the
UPM approach [137]. The same geometry, material parameters and mass-
flow rate curve of an equivalent fluid have been employed. Figure 7.8 shows
the comparison at different time instants of these results with the ones ob-
tained with the PFEM-FEM FSI approach here presented. Similarly to
what have been commented for Figure 7.2 [7], one can see that the UPM
results agrees with the ones of the FSI approach only in the fully inflated
configuration. On the contrary, a completely different behaviour is repro-
duced during the inflation process. This provides a further confirmation
that a full FSI simulation is required to represent the process of deployment
of the airbag and study their interaction with passengers in OoP conditions,
otherwise completely unrealistic results can be obtained.

Finally, Table 7.2 presents the computing time of the present analysis.
An overall process of 0.06s has been simulated with analysis of 101 hours.
One can observe that the computational time spent for the dynamic mesh
management is more than 40% of the total computing time, which is a lot
more than what has been presented in Chapter 6. This however was ex-
pected due to the peculiarities of the phenomenon. With respect to the
previously addressed applications, the very fast dynamics and strong evo-
lution of the fluid domain lead to a reduction of the relative time spent by
the solver (i.e. a smaller number of time steps to cover the overall simu-
lated time period) and an increase of the time spent for the dynamic mesh



142 Industrial Application: Airbag deployment

Computational time

Time simulated 0.06 s
Total analysis 101 h
% Solver 56 %
% Remeshing 30 %
% Smoothing 14 %
n. threads 8

Table 7.2: Flat airbag deployment. Details of the computing time.

management (i.e. much more remeshing during the process). Several mod-
ification to the present version of the PFEM-FEM FSI approach could be
performed to make the dynamic mesh management more effective in this
type of applications. For example, the possibility of exploiting a mixed ALE
kinematic description may be investigated, e.g. introducing a background
mesh to use fixed Eulerian elements inside the airbag chamber and limit the
remeshing procedure only to the layer close to the airbag interface. Fur-
thermore, more efficient versions of the mesh improving tools described in
Section 3.2.1.3 may be developed and optimized for this type of application,
which employs them more frequently than in standard PFEM ones.

7.5.2 Flat airbag deployment against spherical mass

This second numerical example represents a simplified setting of the airbag
impact with a passenger in OoP conditions. The same model of the previous
test case is employed, with an additional rigid hemisphere of diameter B =
0.3m and mass m = 15kg. The mass is initially located in front of the airbag
so that it is impacted and accelerated during its deployment. Once again,
the lack of input data prevents the possibility of a quantitative comparison
with the results presented in [7, 8]. However, the calibration of the mass
rate curve of Figure 7.4 in order to obtain a similar duration of this test
allows to make at least a qualitative link with the literature results. Figure
7.10 shows several snapshots of the experimental test presented in [7], the
corresponding numerical ones obtained with Abaqus CEL method in [8] and
the equivalent stages of the simulation obtained with the present PFEM-
FEM FSI approach. From the comparison it seems that the method is able
to capture all the principal stages of the process: the initial inflation of
the external part of the airbag and the consequent vertical acceleration of
the mass until the full deployment. Moreover, Figure 7.11 shows the time
history of the vertical mass acceleration compared with the literature ones.
The good agreement is of course determined by the proper tuning of the
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(a) (b)

Figure 7.9: Flat airbag deployment against spherical mass. Geometry of the
problem

Computational time

Time simulated 0.06 s
Total analysis 109 h
% Solver 53 %
% Remeshing 31 %
% Smoothing 16 %
n. threads 8

Table 7.3: Flat airbag deployment against spherical mass. Details of the comput-
ing time.

mass flow rate on this example. However, one can state that reasonable
input data extracted from the literature for these type of applications led
to results that are aligned with the ones presented for this specific test.
Finally, Table 7.3 summarize the computing time of the present analysis,
which is equivalent to the previous example presented in Section 7.5.1.

7.5.3 Concluding remarks on the numerical examples

In conclusion, let us underline that the previous numerical examples are
not considered by the author as a validation of the present PFEM-FEM
FSI approach on the airbag process simulation. In the absence of several
input data because of their confidential nature in the automotive industry,
a literature research has been performed to find realistic values to simulate
equivalent phenomena. On the other hand, the results have been interpreted
as a proof of the potentiality of the proposed PFEM-FEM FSI approach to
represent a lot of the challenging features of this phenomenon. The main
future developments for a possible quantitative validation with the required
input data involve:
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Figure 7.10: Flat airbag deployment against spherical mass. Snapshots of the
experimental results presented in [7] (left), the numerical ones in [8]
(center) and the numerical ones of the present PFEM-FEM FSI
method (right).
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Figure 7.11: Flat airbag deployment against spherical mass. Time history of the
acceleration of the impacted mass. Comparison of the experimental
results presented in [7], the numerical ones in [8] and the numerical
ones of the present PFEM-FEM FSI method.

� The introduction of the equation of energy conservation to reproduce
the real thermodynamics of the gas inside the airbag chamber.

� The introduction of the Constrained Delaunay Triangulation, to ad-
dress the initial folded configuration of the real applications.

� The reduction of the computing time spent in the dynamic mesh man-
agement process through the implementation of mesh improving tools
optimized for this type of application. Moreover, the possibility to ex-
ploit mixed ALE formulation may be investigated to limit the remesh-
ing only to the region close to the airbag interface.
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8 Conclusions

This work has been devoted to the development of a numerical tool to ef-
ficiently simulate Fluid-Structure Interaction (FSI) problems involving free
surface flows or structures undergoing large displacements and possibly char-
acterized by fast dynamics and high level of non-linearity. To this purpose,
a partitioned fully explicit Lagrangian Finite Element Method has been pre-
sented. The method is based on a novel explicit version of the Particle Finite
Element Method (PFEM) for the fluid domain and the commercial software
SIMULIA Abaqus/Explicit from Dassault Systèmes for the structural do-
main. The fully Lagrangian kinematic description is particularly effective
for free surface flows and FSI problems with large structural displacements,
i.e., when the fluid boundaries can vary significantly. The boundaries and
interfaces are naturally defined by the position of the mesh nodes, with no
need for ad hoc tracking algorithms. Because of the fully explicit nature
of the coupled solver, which does not require iteration nor present conver-
gence problems, the proposed method can be an efficient choice for real
engineering applications characterized by fast dynamics and/or high degree
of non-linearity, therefore where the time step size is intrinsically small.

The novel aspects and contributions of the present work are summarized
in the following:

� A novel explicit version of the PFEM has been developed, based on
the hypothesis of weakly compressible fluid flow. Several examples
have been presented where the method has been validated against
analytical, experimental and numerical results. The problem of the
mass preservation of the fluid solver has been addressed. It has been
verified that no mass variation is introduced by the employed stabi-
lization method and the mass variations are only related to the PFEM
remeshing procedure. These are intrinsic in the PFEM method and
they can be controlled and reduced refining the mesh size.
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� The explicit PFEM code has been coupled with Abaqus/Explicit through
the Co-Simulation Services embedded in the SIMULIA software. This
allows to perform simulations with an advanced description of the
structural domain, including advanced structural material models and
contact interactions. The Gravouil and Combescure method has been
chosen for the structure-to-fluid coupling. This algorithm, which can
be seen as a predictor/corrector scheme, synchronizes the independent
solutions of the fluid and structure subdomains, ensuring the strong
coupling and the stability of the partitioned approach. The possibility
of different time integration steps and nonconforming meshes in the
two subdomains is implemented.

� A novel technique has been proposed to introduce non-homogeneous
boundary conditions in Lagrangian approaches for fluid flows. Such
conditions are of practical interests in several CFD problems involving,
e.g., inlet/outlet cross-sections, fluid slip at the boundary walls and
symmetry surfaces. The technique is based on a mixed Lagrangian-
Eulerian approach, whereby Eulerian nodes are defined only on those
parts of the boundary where non-homogeneous conditions are defined.
The proposed method is simple, flexible and computationally conve-
nient, since it requires additional computations only for those nodes
belonging to the interested portions of the boundary.

� A novel mesh smoothing approach has been developed to address 3D
fluid problems with the explicit PFEM, where the mesh distortion
management becomes a major issue. This new algorithm is able to
fulfil the opposite requirements of avoiding overly distorted elements,
which would dramatically reduce the time step size of an explicit
solver, and of being fast enough to be applied runtime in the fre-
quent remeshing framework of the PFEM. This is achieved exploiting
an elastic analogy that allows for the use of the same explicit and par-
allelizable architecture of the fluid solver. The smoothing algorithm
could be conveniently applied to regularize the mesh and improve the
solution of other Lagrangian methods.

� To test the proposed approach on a real industrial application, the
simulation of the automotive airbag deployment has been addressed.
Despite the lack of available input data presented in the literature,
the results seem to confirm the good potentialities of the method in
this kind of applications characterized by an extremely fast dynamics
and high level of non-linearity.
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Future Developments

The main possible future developments of the present thesis are listed in
the following:

� Developments aimed to address a wider range of fluids. The introduc-
tion in the fluid solver of the energy conservation equation and other
equations of state will allow to have a more realistic representation of
the fluid behaviour, as well as the possibility to address fluid problems
with thermal coupling. Moreover, the introduction of non-Newtonian
constitutive relations and the generalization of the solver to the case
of multiple fluids can be of interest for many real engineering applica-
tions.

� The optimization of the code subroutines and improvements on the
parallelization architecture can increase the solver efficiency. Further-
more, the implementation on General Purpose GPU (GPGPU) may be
investigated because of the expected good speed-up of explicit solvers.

� The introduction of the Constrained Delaunay Tessellation may im-
prove the capabilities of the remeshing algorithm to deal with geomet-
rically challenging problems such as the simulation of the fully folded
airbag deployment.

� The investigation of an ALE kinematic description in the fluid solver
may be convenient to limit the remeshing frequency in challenging
problems such as the airbag deployment.

� The potentialities of the proposed PFEM-FEM FSI method has to be
further validated and tested on other real engineering applications.
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interaction problems with strong added-mass effect,” Int. J. Numer.
Meth. Engng., vol. 80, pp. 1261–1294, 2009.
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