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Abstract

The communication power associated with visual content makes digital images a powerful
and effective tool to deliver messages, spread ideas, and prove facts.

Smartphones, digital cameras, and camcorders are becoming more affordable every day,
and thus constitute a rapid and convenient way of capturing and sharing photos quickly
and inexpensively. The increasing diversity of brands, models, and devices makes the
creation of new visual contents easier every day, while the ever-growing access to social
network and picture sharing platforms poses a set of challenges, from the diffusion of
illegal content to copyright infringement.

The wide availability and ease of use of image manipulation software makes the process
of altering an image simple and fast. This could severely reduce the trustworthiness of
digital images for users, legal courts, and police investigators. The fake news phenomenon
is a well-known and widespread example of the malicious use of digital pictures and
manipulation software. Modified images done with precision are used to create false
proofs for made-up stories, exploiting the often unquestionable trust with which readers
take in visual content.

In this thesis we face several challenges related to the analysis of digital images. A first
step in assessing image authenticity, and tracing an image back to its origins, consists
in determining which device shot a specific picture. State-of-the-art techniques based
on Photo Response Non-Uniformity (PRNU) prove to be very effective in determining
the specific sensor that shot a picture. However, given the highly increasing number of
devices, a full-range search over all the existing devices is impractical and time consuming.
One of the ways to reduce the search space is to first find the camera model that took
a picture, then test the image under analysis against the devices from the same camera
model. In this thesis we present the first data-driven method designed to learn camera
model features directly from a collection of images, showing how modern deep-learning
techniques based on Convolutional Neural Networks (CNN) can be adapted to multimedia
forensics tasks.

When it comes to a large-scale search of picture-device matches based on PRNU, at
least two challenges arise: time and storage space constraints. To address such challenges,
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the forensics community explored a series of techniques to compress PRNU fingerprints
and residuals. In order to reduce storage space requirements, while lowering the com-
putational complexity, we introduce two techniques to address PRNU compression, by
exploiting classical signal processing analysis and data reduction techniques.
While determining the origin of a digital image is important to solve copyright in-

fringement cases, digital images can be locally altered by adding, removing, or modifying
objects with the goal of changing the semantics of the image. We present how to exploit
the features learned with a CNN trained for camera model identification with the goal
of detecting and localizing tampered regions within an image.
Under both device identification and camera model identification perspectives, we

study a set of possible antiforensics attacks tailored at anonymizing an image to prevent
the correct identification of its origin. This allows us to understand the limitations and
weaknesses of the proposed camera model and device identification techniques.
Finally, we leverage the knowledge and skills acquired in mixing together handcrafted

signal processing and data-driven methods in two different forensics applications: Laser
Printer Attribution and Single versus Double JPEG Detection. In both scenarios the
key to tackle the forensics task at hand is fusing together a proper signal pre-processing
technique with a carefully designed data-driven system.
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1 Introduction

Since the beginning of human history, visual communication has had a primary role in the
diffusion of ideas, concepts, religions, and laws. Rural pictures, stone engravings, paint-
ings, drawings, sculptures, and monuments were the universal language across cultures
to preserve and to hand down moments of history in a way that was accessible to every-
one. In 1839 when photography was invented, the importance of visual content greatly
increased. The fact that human-made machinery could impress a single moment in time
on a film and preserve it possibly forever, made photography the trusted method of con-
serving memories and spreading indisputable facts. This combination of communicative
power and intrinsic trust attributed to photography made images the ideal medium to be
doctored with various intents, ranging from political reasons to marketing purposes. In
most cases, the only way to determine if and how the image content was modified was to
have access to different versions of the image itself, to spot missing, added, or modified
persons, faces, and objects [1].

The digital revolution started in the 2000s made the diffusion and impact of images
on society even more dramatic than it was in the past. Blog posts, tweets, and online
magazine articles are all rapid and inexpensive ways of sharing material with a very
broad audience. This wide and legit diffusion of digital contents has the counter-side
effect of allowing easy access to digital copies of images and videos to malicious actors,
willing to modify, redistribute and change the semantic of multimedia contents. Pictures
protected by copyright can easily be used and distributed without giving credit to their
owners. Well-prepared fake news can be enriched by un-authentic pictures to sway the
public opinion in a more effective way. Moreover, in recent years creating forgeries on
digital images no longer requires advanced technical knowledge, due to the extensive
availability of image processing software suites. The widespread, uncontrolled, and fast
diffusion of possibly modified images through social media, blogs, and websites calls for
the development of accurate and possibly scalable image forensics tools.

Authenticity verification, computer-generated image detection, tampering detection
and localization, and source device identification are just a few examples [2] of the open
topics that researchers from the multimedia forensics community have addressed in the
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1 Introduction

last decade. The scientific community itself is not immune from image forgeries [3],
thus methods to perform automated analyses of image contents are even more necessary
today than in the past. Moreover, the recent introduction of Generative Adversarial
Networks [4] paves the way to a completely new generation of image modifications, in
between computer-generated graphic and handcrafted artifacts, as seen in the well-known
case of Face-Swap [5].

The series of techniques developed in the information and multimedia forensics
field [6–8] to assess the trustworthiness of digital content can be broadly divided into two
categories: active and passive methods. The former requires that at the source side (i.e.
digital camera, smartphone) a watermark is injected or a signature is computed at acquisi-
tion time. Any successive modification of the image will alter the signature or watermark,
thus allowing a forensic investigator, who knows the original watermark/signature, to de-
tect the tampering. The latter family of methods is instead solely based on the analysis
of the content under investigation, without the need of any prior knowledge about the
source. The main idea is to analyze the bitstream and the pixel content of the image
and infer anomalies to extract significant “forensics features” whose behavior is affected
by any intermediate manipulation occurred between the acquisition and the analysis.

Despite the effectiveness of active forensic methods, the majority of multimedia content
spread over the Internet comes from unknown and uncontrolled sources. Reporters willing
to protect their identities against possible prosecutors, malicious content creators, and
criminals not willing to be found are certainly avoiding and possibly erasing any sort
of watermark or signature eventually inserted at acquisition time by the sensing device.
Following these premises, the number of passive techniques willing to exploit intrinsic
signatures embedded in digital contents is constantly expanding, to accommodate the
needs of courts, police officers and investigators willing to trace the origins of contents
under investigation.

Within the set of passive methods, in this thesis we will focus specifically on the family
of passive source identification methods. In particular, image source identification aims
at answering a set of different questions: i) Which camera make/model shot this picture?
ii) Did any of these devices shoot this picture? iii) Did this specific device shoot this
picture?

When examining an image under analysis, a forensic investigator might have hints
about the camera model or even the specific device that shot the picture and want to know
what is the confidence of such a hypothesis. Image source attribution and verification
are approached using data-driven and statistical frameworks, to address camera model
identification and device sensor verification, respectively.
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1.1 Original contributions

The forensics traces used to solve the problem of source attribution can also be used
and adapted to solve other forensics tasks, such as tampering detection and localization.
Local inconsistencies in forensics features extracted from different portions of an image
can be exploited to determine which regions of an image have possibly been modified or
come from a different camera model or from a different device.
Among the problems still open to the practical deployment of forensics systems, large-

scale search over sensor databases [9] poses interesting challenges in the trade-off between
performance and recognition accuracy. A large database system, that possibly has to
store hundreds of thousands of sensor fingerprints, needs an efficient compression method
tailored to the nature of the fingerprints. When it comes to match those fingerprints with
query data, efficient matching algorithms are the key to provide fast and accurate answers
to investigators and scientists. While compression and fast-matching are vital, the cost
in terms of matching accuracy should be the smallest possible.
For both camera and device identification we also face the antiforensics perspective,

developing methods to anonymize contents in such a way that a forensic analyst is no
longer able to correctly detect the origin of an anonymized picture. This allows further
development and refinement of the image source attribution technique at hand, by being
aware of the possible set of anonymization attacks.
The data-driven techniques developed and studied for source attribution problems

are then adapted in other forensics applications, such as laser printer attribution and
recognition of image compression history.
The common question behind passive source identification systems is thus the fol-

lowing: What is the best feature set we can find, for some specific input signal, that
preserves the forensics information of interest while reducing noise and content-related
components?
With a set of data-driven techniques developed ad-hoc for the forensics tasks at hand,

together with more classic handcrafted features and signal processing techniques, in this
thesis we show how to face some of the open challenges in the multimedia forensics field.

1.1 Original contributions

The main contributions of this thesis are related to source identification of digital images
and the application of data-driven approaches in multimedia forensics.
The first part of the thesis is devoted to the problem of camera model identification.

In 2017 we proposed [10] the first method using a Convolutional Neural Network (CNN)
to solve the problem of camera model identification, investigating some of the challenges
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that data-driven methods should face when used for forensics applications. The features
learned by such CNN are then used to detect forged images and localize the tampered
regions [11]. An antiforensics approach attacking CNN for camera model identification
was developed in [12], in order to test the limits and the drawbacks of deep-learning
approaches to camera model identification.
The second part of the thesis tackles the problem of Photo Response Non Unifor-

mity [13] (PRNU) compression. All the digital images acquired with CCD/CMOS matrix
sensors, i.e. those sensors built in DSLR cameras, smartphones, etc., have an embedded
noise fingerprint due to manufacturing imperfections in sensor’s silicon. This character-
istic fingerprint can be properly extracted and used to identify the specific sensor that
acquired a picture. By correlating the extracted noise residual from an image under
investigation with the reference fingerprint extracted from a set of flatfield images ac-
quired with the same sensor, a forensic investigator can easily determine if the the picture
comes from that device or not. When it comes to store or send over a band-limited com-
munication channel either the fingerprint or the residual, the choice of the proper lossy
compression system becomes the key to scale PRNU-based device matching to large scale
scenarios. Two antiforensics attacks are proposed, one based on an inpainting techniques
and the other based on a properly designed double-input autoencoder.
The last part includes two contributions in the multimedia forensics field. The expertise

acquired in the use of Convolutional Neural Networks for forensics purposes, together
with more classical signal processing techniques derived from device identification, are
merged to propose innovative solutions. An improvement to existing single versus double
JPEG compression detectors is proposed by feeding a CNN with handcrafted features
extracted from the raw image. Laser printer attribution is faced with a combination of
CNNs whose inputs are differently pre-procesed versions of the same letters.
In the following, we detail the original contributions for each of the topics.

Camera model identification

The first step in order to determine the origin of an image, is assessing the make and
model of the device that shot the image. This allows to refine the search on a set
of specific devices and to exclude a large set of improbable candidates. Traditionally,
camera model identification was faced by extracting a set of handcrafted features from
the image then fitting a statistical model or a machine learning classifier on top of the
features. One of the main drawbacks of such approaches is the fact that the recognitions
performance quickly drop for image patches smaller than 256 × 256 pixels. In [10] we
present the first Convolutional Neural Network architecture that proves to work on image
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1.1 Original contributions

patches as small as 64× 64 pixels. Given the reduced dimensions, the choice of patches
whose content is textured enough and not saturated proves to be the key to correctly
solve camera attribution. In an extended study presented in [14], we evaluated the need
of proper training, validation, and test protocols when dealing with CNN for camera
model identification. In particular, we show that with such small image patches the
risk of the CNN learning the content of the pictures instead of meaningful forensics
traces is negligible. We also propose a data splitting policy that avoids the CNN to
learn device specific features, by training and testing on different devices from the same
camera models. Moreover, with such a small patch size, we show that there is no need to
resort to deep architectures, as the recognition performance do not improve with respect
to shallow CNN architectures.

Tampering detection and localization

One of the main motivations behind the choice of 64×64 pixels patches for camera model
identification, lies in the fact that being able to correctly recognize the camera model
in small portions of an image opens the way to tampering localization based on camera
model inconsistencies. In [11] we present an iterative clustering method for tampering
detection and localization based on the camera model features extracted thanks to the
CNN presented in [10]. One of the key points of the proposed approach is the use of a
patch quality measure in order to assess “how much a single patch can be trusted”. In
facts, features extracted from dark or saturated patches cannot be trusted as much as
features extracted from textured regions. This observation, together with the definition
of a proper metric to clusterize the feature vectors from the patches, allows to tackle
in a successful way the tampering detection and localization problem when an image is
spliced with a content coming from a different camera model.

Camera model antiforensics

Due to their linear nature, CNNs classifiers are vulnerable to antiforensics attacks, as
shown in [4]. Un-noticeable artifacts can dramatically change the forensics properties of
an image, so that a CNN-based classifier fails in correctly detecting the original camera
model. In [12] we presented a framework to attack a CNN-based camera model classifier.
We show how even deep architectures are affected by this vulnerability. The two used
methods, Fast Gradient Sign Method (FGSM) and Jacobian-based Saliency Map Attack
(JSMA), are able to craft adversarial images without requiring access to the CNN used
to classify the image.
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1 Introduction

PRNU compression

Dealing with a large number device fingerprints for device source identification poses
several practical problems in terms of storage and computational requirements. Bina-
rized gaussian random projections [15] proved to be a very effective method to reduce
the dimensionality of PRNU fingerprints and residuals. In [16] we propose an improved
processing chain composed by decimation, gaussian random projections, ternary quanti-
zation and coding tailored to increase the compression rate while preserving the highest
possible matching accuracy. Exploiting the artifacts generated by JPEG compression
on images, we are able to greatly reduce the required bitrate necessary to store or send
a fingerprint. While the approach presented in [16] focuses on the improvement of the
compression rate, in [17] we proved how a careful choice of a sub-sampling pattern to-
gether with an embedding policy, allows to avoid the use of random projections while
preserving the same compression rate and performance. This allows a reduction to less
than 0.1% in terms of computational complexity.

PRNU applications

One of the applications where PRNU fingerprints are exploited is device authentication.
In [18] we proposed a method to extend the concept of device fingerprint, by embedding
traces from the camera, i.e. PRNU, the accelerometer, the gyroscope and the magne-
tometer to obtain a forensic fingerprint for a smartphone.
PRNU traces can also be exploited in video phylogeny applications [19] to refine the

search for a cluster of video coming from the same source. In facts, a system based solely
on content information will group together videos whose semantic is similar, while for
phylogeny trees reconstruction it is of utmost importance to group together only those
videos that share a common source device.

PRNU antiforensics

As for camera model identification, also when it comes to device identification a set
of existing techniques to anonymize pictures by removing PRNU traces are well known
from the literature [20]. In [21] we propose an inpainting-based solution to camera
anonymization. Every image is sub-sampled to create a set of sub-images. For each
sub-image the missing pixels are reconstructed solving an inverse optimization problem.
Finally the sub-images are merged together to rebuild an image whose pixel values have
all been interpolated. This technique allows to preserve a high image quality while
almost completely removing the traces of PRNU. Another approach in terms of PRNU
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antiforensics is presented in [22]. This represents the first PRNU anonymization approach
carried out with a Convolutional Auto-Encoder. An image and the reference camera
fingerprint are used together in an anonymization loop to create a new version of the
image visually indistinguishable from the original one. Even though an antiforensics-
aware investigator could spot the attack, this technique constitutes a first important
step toward the usage of data-driven methods also in device anonymization.

Data-driven approaches in multimedia forensics

The expertise and the techniques developed in camera and device identification gives us
the tools to cope with other multimedia forensics applications exploiting several data-
driven methods.

The challenging problem of detecting whether a JPEG image has been compressed
one or multiple times is still an open question when it comes to lightly compressed
images. In [23] we propose a single versus double JPEG detection pipeline based on the
idea that pre-processing the image before feeding it to a CNN for classification greatly
improves the recognition performance. In particular, exploiting PRNU residuals and
DCT coefficient histograms as feature maps in input to several CNNs we obtain state-
of-the-art performance when dealing with lightweight JPEG compressed images.

Another forensic application where data-driven method prove to perform at par or
better than the state of the art is laser printer attribution. In [24] we present a CNN-
based system for printer recognition. Documents printed from ten different printers are
classified based on a double fusion scheme. Letters “a”,“e” and “o” are extracted from each
document, pre-processed, then fed to different CNN trained to extract meaningful fea-
tures to the task at hand. The feature vectors extracted for each different pre-processing
policy are concatenated and used together as a single feature for a multi-class ensemble
classifier. Finally, majority voting is used to aggregate at document level the predictions
obtained from each letter.

In the two aforementioned forensics applications the key part of the work is always
mixing the classical signal processing and statistical knowledge with the data-driven tools
provided by the machine learning community. Thanks to this hybrid approach we show
that forensics tasks, traditionally addressed with handcrafted features and statistical
models, can benefit of the availability of large collections of labeled data to improve
recognition performance while preserving robustness.
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1 Introduction

1.2 Outline

In order to ease the reading and present the topics in an organic way, we organize this
thesis in three main chapters.

Chapter 2 presents the methodologies and the results from [10–12, 14]. In Section 2.4
we present the CNN-based method proposed in [10,14] to tackle the camera model iden-
tification problem, discussing the types of architectures, the choice of training data and
the splitting policies to train the CNN in an unbiased way. Section 2.5 introduces the
method presented in [11] to address the detection of tampered images and the localization
of forgeries through an iterative clustering approach based on the features extracted with
the CNN trained for camera model identification. The counter-forensics attack against
CNN-based camera model identification proposed in [12] is presented in Section 2.6.

Chapter 3 introduces the proposed PRNU compression techniques, the antiforensics
attacks and two PRNU-related applications. Section 3.4 describes the projection design
methodology and the compression pipeline introduced in [16,17], explaining the rationale,
the models and evaluating the choice of several parameters. Two PRNU-anonymization
attacks from [21, 22] are introduced in Section 3.5. Two applications of PRNU-based
device identification [18,19] are presented in Section 3.7.

Chapter 4 gives to the reader an overview of two forensics applications where a com-
bination of classical signal processing techniques, handcrafted features and data-driven
methods are fused together to tackle the tasks at hand. Section 4.1 presents the work
published in [23] about single versus douple JPEG compression detection with a com-
bination of CNNs and handcrafted pre-processing operations. Section 4.2 reports the
method proposed for laser printer attribution based on single characters classification.
Exploiting early fusion of differently pre-processed CNN features, and late fusion of scores
from different letters within a single document, we present a pipeline able to correctly
classify printed documents generated by ten different laser printers.

Final considerations and conclusions are drawn in Chapter 5.

1.3 Notation

For the sake of clarity, in the following vectors are given by boldface letters, e.g., x, and
are considered to be column vectors. The ith sample of x is represented by xi. The
Hadamard (sample-wise) product between x and y is denoted by x ◦ y. Matrices are
denoted by bold capital letters, e.g., X, and the i, jth element of X is indicated by a
subindex, e.g., Xi,j . The Hadamard product betweenX and Y is denoted byX◦Y . The
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Table 1.1: Table of symbols
Symbol Description
x column vector
xi ith sample of x
X matrix
Xi,j i, jth element of X
X ◦ Y Hadamard product between X and Y
X ⊗ Y Kronecker product between X and Y
XY matrix multiplication between X and Y
I identity matrix
0 all-zeros matrix
1 all-ones vector

Kronecker product between two matrices X and Y is denoted by X ⊗ Y . The matrix
multiplication betweenX and Y is denoted byXY . Given a matrixX, its column-wise
unwrapped vector is denoted by x. I, 0 and 1 denote the identity matrix, the all-zeros
matrix, and the all-ones vector, respectively. Table 1.1 summarizes the symbols used
afterwards.

1.4 List of included publications

The work presented in this thesis includes original contents from the following peer-
reviewed papers, published by the author in international journals and conferences over
the past four years.

• [10] L. Bondi, L. Baroffio, D. Güera, P. Bestagini, E. J. Delp and S. Tubaro, “First
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in IEEE Signal Processing Letters, vol. 24, no. 3, pp. 259-263, March 2017.

• [14] L. Bondi, D. Güera, L. Baroffio, P. Bestagini, E. J. Delp and S. Tubaro, “A
preliminary study on convolutional neural networks for camera model identifica-
tion”, Electronic Imaging, Media Watermarking, Security, and Forensics 2017, pp.
67-76

• [11] L. Bondi, S. Lameri, D. Güera, P. Bestagini, E. J. Delp and S. Tubaro,
“Tampering Detection and Localization Through Clustering of Camera-Based CNN
Features”, 2017 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Honolulu, HI, 2017, pp. 1855-1864.
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10



2 Methods based on camera model
traces

2.1 Introduction

The rapid proliferation of inexpensive image capturing devices has determined a
widespread diffusion of digital pictures on the web. Due to the increasing availabil-
ity of image acquisition devices and multimedia sharing platforms, photos are becoming
a pervasive part of our daily life. As downloading, copying, forging, and redistributing
digital material is becoming easier over the years, some forms of regulation and authen-
ticity verification have become of urgent necessity. Moreover, the increase in the number
of digital images that are being uploaded and shared online has given rise to unique
privacy and forensic challenges [25].
As sharing any kind of photographs through websites and social media is at everyone’s

hand, verifying the veracity and authenticity of diffused images is far from being an easy
task [1,26]. To this purpose, the forensic community has developed a wide series of tools
to reverse-engineer the history of multimedia objects and assess the trustworthiness of
digital images [6, 7].

Camera model identification

Among the problems tackled by the image forensics community, one that is still under
the spotlight due to its implications in several applications is camera model identification
[1,27–29]. This is, given an image, detect which camera model and brand has been used
to shoot it. Indeed, detecting the camera model used to shot a picture can be crucial
for criminal investigations and trials. This information can be fruitfully exploited for
solving copyright infringement cases, as well as for pointing out the authors of distributed
illicit material (e.g., pedo-pornographic shots). Even when deeper source identification
granularity is needed (i.e., detecting the unique camera instance rather than just the make
and model), camera model identification can be considered an important preliminary
step to narrow down the set of investigated camera instances [29]. Moreover, being
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able the detect the used camera model by analyzing small image patches is a possible
way to expose splicing operations [30] operated between images coming from different
cameras [31,32].

Attribution of a picture to a specific camera model in a blind fashion (i.e., not lever-
aging watermarks introduced at photo inception) is possible exploiting intrinsic artifacts
left at shooting time by the acquisition process. The rationale behind blind state-of-the-
art camera model identification detectors is that each camera model performs peculiar
operations on each image at acquisition time (e.g., different JPEG compression schemes,
proprietary algorithms for CFA demosaicing, etc.). The idea is that each camera model
implements a series of characteristic complex operations at acquisition time, from focus-
ing light rays through lenses, to interpolation of color channels by proprietary demosaicing
filters, to brightness adjustment, and also others. As these operations are non-invertible,
they introduce some unique artifacts on the final image. These artifacts are footprints
that act as an asset to detect the used camera model.

To this purpose, several camera model identification algorithms have been proposed in
the literature. An overview of the state-of-the-art techniques is presented in Section 2.3.

A common aspect of all the existing algorithms is that they rely on manually defined
procedures to expose traces characterizing different camera models. This means that
they rely on some model assumptions made “a priori”. However, recent advancements
established by deep learning techniques in computer vision [33, 34] have shown that
it is possible to improve the accuracy in detection and classification tasks by taking
advantage of great amounts of data in order to learn characteristic features directly
from the data itself. However, only starting from 2012 [35] the availability of fast and
parallel computing devices (in particular GPUs) really made CNNs at researchers’ hands.
AlexNet [35], Network in Network [36] and GoogLeNet [37] are just three examples of
data-driven Deep Learning models that showed impressive accuracy improvements in
image classification and localization tasks over the previously widespread handcrafted
features [38–40]. The use of deep learning techniques for image and video classification
tasks [41–43] has shown that it is also possible to learn characteristic features that model
a problem space directly from the data itself. These methods are known as data-driven,
as they learn directly from data rather than following an analytic model.

Considering that this feature learning paradigm has recently proved fruitful also for
forensics applications [44–48], in Section 2.4 we investigate the use of feature learning
techniques in the camera model identification context. Our objective is to show that it is
possible to use Convolutional Neural Networks (CNNs) to learn discriminant features di-
rectly from the observed known images, rather than relying on hand-crafted descriptors.
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In principle, this enables to possibly capture also characteristic traces left by non-linear
and difficult to model operations during the acquisition pipeline. In particular, we make
use of a CNN to capture camera-specific artifacts in an automated fashion, and Support
Vector Machines (SVMs) for classification. We investigate the behavior of different CNN
architectures to select a proper network for discriminant feature learning on 64× 64× 3

(i.e., height × width × colors) image patches, while keeping computational complexity
at bay. In particular, we compare a series of CNN architectures differing in the number
of convolutional, pooling, fully-connected and rectified linear unit (ReLU) layers. For
each type of architecture, several hyper-parameters choices (kernel size, stride, number
of feature maps, etc.) are examined. Moreover, we focus on the importance of a proper
training protocol, which is essential to make sure that the CNN learns important charac-
teristics (e.g., properties discriminating camera models) rather than biased information
(e.g., the semantic of the captured scenes). To this purpose, strongly inspired by [29],
we consider different amounts of training images, depicting either the same or different
scenes, and show how different training choices affect classification results.

Tampering detection and localization

Among the many techniques developed in the image forensic literature, some are tailored
to the detection of a single trace left by a specific operation on the whole picture (i.e.
tampering detection). Other techniques focus on localizing regions that present traces
of editing (i.e. tampering localization). In Section 2.3.2 we provide a review of state-
of-the-art techniques in tampering detection and localization. In Section 2.5 we address
tampering detection and localization problem for images obtained through splicing of
content originally shot from different camera models. Specifically, we analyze images
in a patch-wise fashion, and aim to detect whether different patches belong to different
camera models (i.e. the image has been forged) exploiting descriptors learned by the
CNN presented in Section 2.4. These descriptors extracted from small image patches are
analyzed by means of an iterative clustering technique to expose regions of an image that
appear to be obtained from different camera models.

Camera model antiforensics

With the introduction of CNNs as detectors for camera model identification, a new vec-
tor for counter-forensic attacks is presented for a malevolent skilled individual. The idea
of counter-forensics was first introduced in [49], where the authors presented the con-
cept of fighting against image forensics with a practical application, namely a method
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for resampling an image without introducing pixel correlations. Before exploring the
vulnerabilities of CNN-based camera model detectors, it is important to note that de-
tectors that rely on hand-crafted features are not immune to similar counter-forensics
attacks. As explained in [50], digital camera fingerprints are vulnerable to forging. In
particular, if an attacker obtains access to images from a given camera, they can esti-
mate its fingerprint and “paste” it into an arbitrary image to make it look as if the image
came from the camera whose fingerprint was stolen. An early attempt to investigate
such counter-forensic methods appeared in [51]. As presented in [52], several machine
learning models, including state-of-the-art CNNs, are vulnerable to adversarial attacks.
This means that these machine learning models mis-classify images that are only slightly
different from correctly classified images. In many cases, an ample collection of models
with different architectures trained on different subsets of the training data mis-classify
the same adversarial example [53]. Although there are techniques such as adversarial
training [52] or defensive distillation [54] that can slightly reduce the incidence of ad-
versarial examples in CNN-based detectors, defending against adversarial examples is
still an on-going challenge in the deep learning community. Adversarial attacks are hard
to defend against because they require machine learning models that produce correct
outputs for every possible input. The imposition of linear behavior when presented with
inputs similar to the training data, though desirable, is precisely the main weakness of
CNNs [53]. Due to the massive amount of possible inputs that a CNN can be presented
with, it is remarkably simple to find adversarial examples that look unmodified to us but
are misclassified by the network. Designing a truly adaptive defense against adversarial
images remains an open problem.

In Section 2.6, we propose a counter-forensic method to subtly change an image to
induce an error in its estimated camera model when analyzed by a CNN-based cam-
era model detector. We test our counter-forensic method, using two well established
adversarial image crafting techniques [53, 55], against an advanced deep learning archi-
tecture [56] carefully trained on a reference camera model dataset. Our results show that
even modern and properly trained CNNs are susceptible to simple adversarial attacks.

2.2 Background

In this section, we provide an overview of the digital images acquisition process, together
with the background on Convolutional Neural Networks (CNNs) and CNN counter-
forensics methods sufficient to understand the rest of the chapter.
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Figure 2.1: Digital image acquisition pipeline. Ray-lights reflected from the scene are focused by the lens on a
Color Filter Array superimposed to a CCD/CMOS sensor. The sensor output is processed and an RBG image is
produced as output.

2.2.1 Digital image acquisition

Digital camera acquisition pipeline is a complex chain of operations typically defined by
the sketch in Figure 2.1. According to this diagram, light rays reflected by the scene are
collected by a lens that focuses the rays on a CCD/CMOS sensor. The nature of the
lens, the focal length, the aperture of the diaphragm modify the light-field that reaches
the sensor, leaving peculiar traces [57]. The sensor itself is a matrix of pixels, whose sizes
are intrinsically not perfectly equal. This makes every pixel have a slightly different gain,
thus embedding in the signal a multiplicative weak noise [13]. On top of the sensor a
Color Filter Array (CFA) is typically used to filter the light that hits every pixel, so that
some of the sensor pixels are just hit by red, green or blue light components. At this
stage, each pixel of the RAW image contains just the color information related to a spe-
cific portion of the electromagnetic spectrum. To generate a full-size RGB image every
pixel is interpolated in the red, green, blue components, with an operation call “demo-
saicing”. This operation leaves traces that are peculiar of the manufacturer-proprietary
algorithm and thus could be used for forensics purposes [27, 58]. Additional operations
as white-balancing, gamma correction and exposure adjustment are part of the camera’s
firmware and contribute at generating the final 8-bit RGB image usually encountered in
digital imaging. A last important step in the post-processing chain is JPEG compression,
to reduce the storage space necessary to store the pictures. As JPEG implementations
are custom-made by camera manufacturers, the traces left by different compression al-
gorithms can be exploited in forensics applications [59].

2.2.2 Convolutional Neural Networks

Deep learning and in particular CNNs recorded amazingly good performance in several
computer vision applications like image classification, face recognition, pedestrian de-
tection and handwriting recognition [33]. A CNN is a complex computational model
partially inspired by the human neural system that consists of a very high number of
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interconnected nodes, or neurons. Connections between nodes have a numeric weight
parameter that can be tuned based on experience, so that the model is able to learn
complex functions. The nodes of the network are organized in multiple stacked layers,
each performing a simple operation on the input. The set of operations in a CNN typically
comprises convolution, intensity normalization, non-linear activation and thresholding,
and local pooling. By minimizing a cost function at the output of the last layer, the
weights of the network (e.g., the values of the layers’ filters) are tuned so that they are
able to capture patterns in the input data and automatically extract distinctive features.
Differently from traditional “handcrafted” feature extraction algorithms, in which the

feature extraction process is driven by human intuitions, in CNNs the feature extraction
process is driven by data. Such complex models are trained resorting to backpropagation,
coupled with an optimization method like gradient descent, and large annotated training
datasets. The first layers of the networks usually learn low-level visual concepts like edges,
simple shapes and color contrast, whereas deeper layers combine such simple information
to identify complex visual patterns. Finally, the last layer consists of a set of data that
are combined to define a given cost function that needs to be minimized. For instance,
in the context of image classification, the last layer is composed of N nodes, where N is
the number of classes, that define a probability distribution over the N visual category.
That is, the value of a given node pi, i = 1, . . . , N belonging to the last layer represents
the probability of the input image to belong to the visual class ci. Depending on user
choices, it is possible to select the class maximizing pi as classification result, or to use all
pi values as feature vector to train an external classification tool (e.g., a Support Vector
Machine).
To train a CNN model for a specific image classification task we need:

1. to define the metaparameters of the CNN, i.e., the sequence of operations to be per-
formed, the number of layers, the number and shape of the filters in convolutional
layers, etc;

2. to define a proper cost function being minimized during the training process;

3. to prepare a (possibly large) dataset of training and test images, annotated with
labels according to the specific tasks.

Figure 2.2 reports a minimalistic example of a small CNN architecture depicting some
of the commonly used layers. To better understand the role of each one of them, in
the following we report a description of the most common building blocks, called layers.
Each layer Li takes as input either an Hi ×Wi × Pi feature map or a feature vector of
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Figure 2.2: Simple CNN architecture consisting of commonly used layers. A small color image patch is processed
through convolutional, max pooling, fully-connected and ReLU layers. Finally, SoftMax is applied to obtain a
feature vector.

size Pi and produces as output either an Hi+1 ×Wi+1 × Pi+1 feature map or a feature
vector of size Pi+1. Layer types used in the following are:

• Convolutional layer Performs convolution, with stride Sh and Sw along first two
axes, between input feature maps and a set of Pi+1 filters with size Kh ×Kw ×Pi.
Output feature maps have size Hi+1 = bHi−Kh+1

Sh
c, Wi+1 = bWi−Kw+1

Sw
c and Pi+1.

• Max-pooling layer Performs maximum element extraction, with stride Sh and
Sw along first two axes, from a neighborhood of size Kh ×Kw over each 2D slice
of input feature map. Output feature maps have size Hi+1 = dHi−Kh+1

Sh
e, Wi+1 =

dWi−Kw+1
Sw

e and Pi+1 = Pi.

• Fully-connected layer Performs dot multiplication between input feature vector
(or flattened feature maps) and a weights matrix with Pi+1 rows and Pi (or Hi ·
Wi · Pi) columns. Output feature vector has Pi+1 elements.

• ReLU layer Performs element-wise non linear activation. Given a single neuron
x, it is transformed in a single neuron y with y = max(0, x).

• Softmax layer Turns an input feature vector to a vector with the same number
of elements summing to 1. Given an input vector x with Pi neurons xj i ∈ [1, Pi],
each input neuron produces a corresponding output neuron yj = exj∑k=Pi

k=1 exk
.

In a CNN, the weights of the convolutional and the fully-connected layers are learned
using backpropagation [34] coupled with an optimization method such as gradient descent
[60] and the use of large annotated training datasets. A loss functions is defined between
the predicted and the expected output, giving rise to a prediction error and gradients to
update the weights. The set of training samples is usually split into mini-batches [61]. For
each mini-batch the predictions for each sample are first computed (forward phase), then
the gradients with respect to the loss function are averaged to update the filters’ weights
(backward phase). This forward/backward process on a mini-batch is called “iteration”.
The use of mini-batches allows to fit the computation into the available memory, while
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averaging over training samples to approximate an ideal gradient descent method that
would require the knowledge of all the gradients from all the samples in the dataset.
Training data are usually split into a training set and a validation set. The former

is used to drive the gradient descent method to update the filters’ weights. The latter
is used to compute the loss over a set of samples unknown to the training process, so
to estimate the behavior of unseen data. Typically, the update of the filters is repeated
multiple times across the training dataset. Each pass over a dataset is called “epoch”.
The training process is stopped when the loss computed on the validation set reaches its
minimum. As discussed later, the choice of a proper train/validation/test split protocol
can be very relevant for scientific purposes.

2.2.3 Deep learning in multimedia forensics

CNNs have been successfully used in recent years for many image recognition and clas-
sification tasks [33] and there are also many works which use CNN for applications of
staganalysis, e.g. [48,62–64]. However, only recently, some works have started to explore
CNNs for multimedia forensic applications.
One of the first works using CNNs for multimedia forensics is [45]. In this paper, the

authors developed a detector for median-filtered images, whose capability of working on
small 64× 64 patches enabled its use also for tampering localization. In developing this
algorithm, authors showed the importance of applying a pre-processing filtering step to
images, in order to better expose forgery traces in a residual domain. The used CNN
architecture is composed by only four convolutional layers and fewer inner-products,
nonetheless providing very accurate results.
Based on the aforementioned works, it is worth noting how CNNs for multimedia foren-

sics typically requires just a few layers to achieve promising results, being shallower than
CNNs used for artificial intelligent and computer vision applications. This is probably
due to the fact that the considered forensic classification tasks can be efficiently solved
also using simple statistical model. This means that they do not need a very high ab-
straction capability, which proves essential for complex tasks like object recognition, in
which the underlying model (i.e., human brain behavior) is particularly hard to describe.

2.2.4 Deep learning antiforensics

In [52] Szegedy et al. discovered that deep neural networks are prone to mis-classify
with high confidence images contaminated with hardly perceptible perturbations. As an
example, let us pick an image of a flower that is correctly classified by several neural
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networks trained for object recognition. All the trained models, each one representing a
different architecture, correctly classify the flower with very high confidence. If a specific
low-power noise-like signal is added to the picture, all the trained models mis-classify the
flower into a different category.

Two families of attacks are tailored to deep learning antiforensics. Targeted attacks
aim at fooling a deep-learning model by having the model predict a specific target label
for the adversarial image. Untargeted attacks are instead tailored to have the trained
network mis-classify the input, regardless of the output label.

In the following, we present an untargeted technique presented by Goodfellow et al.
in [53] known as Fast Gradient Sign Method(FGSM), and a targeted attack from Paper-
note et al. [55], namely Jacobian-Based Saliency Map Attack(JSMA).

Fast Gradient Sign Method

In [53], the fast gradient sign method was introduced for generating adversarial examples
using the derivative of the loss function of the CNN with respect to the input feature
vector. Given an input feature vector (e.g. an image), FGSM perturbs each feature in
the direction of the gradient by magnitude ε, where ε is a parameter that determines
the perturbation size. For a network with loss J(Θ, x, y), where Θ represents the CNN
predictions for an input x and y is the correct label of x, the adversarial example is
generated as

x∗ = x+ εsign(∇xJ(Θ,x, y)) (2.1)

With small ε, it is possible to generate adversarial images that are consistently mis-
classified by CNNs trained on popular image classification datasets with a high success
rate [53].

Jacobian-Based Saliency Map Attack

In [55], an iterative method for targeted misclassification was proposed. By exploiting
the forward derivative of a CNN, it is possible to find an adversarial perturbation that
will force the network to misclassify into a specific target class. For an input x and a
convolutional neural network C, the output for class j is denoted Cj(x). To achieve an
output of target class t, Ct(x) must be increased while the probabilities Cj(x) of all other
classes j 6= t decrease, until t = arg maxj Cj(x). This is accomplished by exploiting the
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adversarial saliency map, which is defined as

s(x, t)i =

0 if ∂Ct(x)
∂xi

< 0 or
∑

j 6=t
∂Cj(x)
∂xi

> 0

(∂Ct(x)
∂xi

)|∑j 6=t
∂Cj(x)
∂xi
| otherwise

(2.2)

for an input feature i. As we work with images, in our case each input feature i corre-
sponds to a pixel i in the image input x. Starting with a normal sample x, we locate
the pair of pixels {i, j} that maximize s(x, t)i + s(x, t)j , and perturb each pixel by a
constant offset ε. This process is repeated iteratively until the target misclassification
is achieved. This method can effectively produce dataset examples that are correctly
classified by human subjects but misclassified into a specific target class by a CNN with
a high confidence.

2.3 State of the art

In this section we introduce the state of the art related to the topics presented in this
chapter. In Section 2.3.1 we provide an overview of camera model identification sys-
tems, while Section 2.3.2 is devoted to tampering detection and localization methods.
Finally Section 2.3.3 presents antiforensics techniques designed to attack camera model
identification systems.

2.3.1 Camera model identification

In the last 15 years a number of systems were proposed to solve the problem of camera
model identification. In the following we provide an overview of the most relevant ones.
Some of the methods heavily rely on some prior model assumptions on the image acqui-
sition pipeline, while other extract more general statistics as features set. Most of the
methods proposed in the literature exploit some kind of machine-learning algorithm to
classify or identify the camera models at hand.
In 2004 Kharrazi et al. [27] proposed a set of features to characterize camera models

by extracting first, second and possibly higher order statistics from an image. The base
assumption is that the Color Filter Array (CFA) configuration and color processing and
transformations are unique to each camera manufacturer and model. The set of proposed
features includes: i) the average pixel value for the color planes; ii) a measure of the
correlation between the color planes; iii) a measure of the correlation between nearby
pixels on each color plane; iv) the ratio of energy between R,G,B channels; v) the mean
of Wavelet decomposition detail bands; vi) Image Quality Metrics as from [65]. The set
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of 34 features extracted from each image are than used together with a Support Vector
Machine (SVM) to classify the images coming from 5 different camera models.

Expanding the work in [27], in [58] Bayram et al. proposed to use interpolation traces
as a feature for camera model identification. By exploiting the probability map and the
weighting coefficients introduced in [66], Bayram et al. consider separately smooth and
non-smooth areas of the image and apply a sequential forward floating search schema to
the probability map magnitude spectrum, in order to select the best features from the
given set of spatial frequency components. The selected features are then fed to an SVM
classifier trained for camera model identification.

A completely different approach was followed by Choi et al. in [57]. The observation
that radial lens distortions could serve as fingerprints for every camera model led the
authors to propose a lens radial distortion estimation scheme based on Devernay’s straight
line method. The method exploits the fundamental property that the projection of every
straight line in space onto a pinhole camera is a straight line. The parameters obtained
from from aberration measurements are then used to train and test a SVM classifier.

In 2008 Filler et al. [28] studied the possibility of extracting meaningful features for
camera model identification starting from the PRNU residual extracted from the image.
The features are designed to reflect differences in the CFA demosaicing algorithm, and
sensor signal transfer. 9 features are collected from the first 3 centralized sample statis-
tical moments of the residual, for each color channel. The normalized cross-correlation
between color channels is computed to get other 4 features after Principal Components
Analysis (PCA). Residual block-wisez covariance and cyclic normalized autocorrelation
of systematic errors of the in-camera post-processing algorithm in each row give rise to
other 12 features. The collected features are then concatenated and used in a classifica-
tion scheme powered by a SVM.

Cao et al. [67] proposed a framework to reversely classify the demosaiced samples into
several categories. This allows to estimate the demosaicing formula for each category
based on correlation models which can detect both intra and cross-channel demosaicing
correlations. An Expectation-Maximization (EM) approach is used to solve the ambi-
guities of the demosaicing axes. A set of features is then computed based on the 16
demosaicing categories and the demosaicing reconstruction errors. Sequential features
search is applied before feeding the best features to a Probabilistic-SVM classifier.

Xu et al. [68] proposed to use features derived from uniform gray-scale invariant local
binary patterns (LBP). Considering 8-neighbor binary co-occurrence, three groups of
59 local binary patterns are extracted from the spatial domain of red and green color
channels, together with their corresponding prediction errors. The 1st-level diagonal
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wavelet sub-bands of the prediction errors are extracted and used as features at the
input of a multi-class SVM.
In [69] Milani et al. proposed the idea of eigenalgorithms to exploit the CFA interpo-

lation differences for camera model identification. The idea behind the eigenalgorithm
is to re-interpolate the image with a set of distinctive strategies, then correlate the ob-
tained re-interpolated images with the original one. The image under analyses is the
characterized in a “space of strategies”. This representation is used as a feature vector to
feed an SVM classifier.
Thai et al. [70] design a statistical test for the camera model identification problem.

The approach is based on a noise model for natural raw image characterized by only
two parameters, which are considered as unique fingerprint to identify camera models.
The problem is cast in the framework of hypothesis testing theory. Two generalized
Likelihood Ratio Tests are designed to deal with the unknown model parameters
The introduction of rich models for steganalysis [71] based on co-occurrences inspired

the authors of [72–74] to define a series of low-level features extracted from noise-based
signals computed starting from the image under investigation.
Chen et al. [72] build a rich model on top of a series of 4 camera’s demosaicing al-

gorithms. An image is demosaiced based on the 4 models and the demosaicing error is
computed for each demosaicing strategy. For every demosaicing error, 343 co-occurrences
are computed with quantization and truncation as from [71]. A random forest of binary
classifiers is trained on top of the 1372 features, where each base learner (Fisher Linear
Discriminator) learns from a subset of training samples and features. Similarly, Marra et
al. [73] exploit horizontal and vertical high-pass filtered versions of the image to propose
a set of co-occurrences then selected via Principal Components Analysis. The projected
features are fed to an SVM classifier. Tuama et al. [74] computed co-occurrences from
the PRNU residual extracted from the image. Together with color dependencies and
conditional probabilities across color channels of the extracted PRNU residual a total of
72 features is collected and fed to an SVM classifier.
A more comprehensive overview over camera model identification systems can be found

in [29].

2.3.2 Tampering detection and localization

Image tampering detection and localization techniques have been developed over time
by a number of researchers focusing on copy-move forgeries, splice forgeries, inpaint-
ing, image-wise adjustments (resizing, histogram equalization, cropping, etc.) and many
more. Following the survey presented by Zampoglou et al. [75], we provide an overview
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of the literature methods against which our algorithm will be compared. Specifically,
we focus on algorithms that do not need any prior information (e.g. JPEG header, ad-
ditional inputs such as reference PRNUs, etc.), and follow the naming convention used
in [75] and the derived toolbox.

ADQ1 Aligned Double Quantization detection, developed by Lin et al. in [76] aims
at discovering the absence of double JPEG compression traces in tampered 8× 8 image
blocks. Posterior probabilities for each block being possibly tampered are generated
through voting among discrete cosine transform (DCT) coefficients histograms collected
for all blocks in the image.

BLK Due to its nature, JPEG compression introduces 8 × 8 periodic artifacts on
images that can be highlighted thanks to Block Artifact Grids (BAG) technique from Li
et al. [77]. Detecting disturbances in the BAG allows to find traces of image cropping
(grid misalignment), painted regions, copy-move portions.

CFA1 At acquisition time, color images undergo Color Filter Array (CFA) interpo-
lation due to the nature of acquisition process. Detecting anomalies in the statistics
of CFA interpolation patters allows Ferrara et al. [78] to build a tampering localization
system. A mixture of Gaussian distributions is estimated from all the 2× 2 blocks of the
image, resulting in a fine-grained tamper probability map.

CFA2 By estimating CFA patterns within four common Bayer patterns, Dirik and
Memon [79] show that if none of the candidate patterns fits sufficiently better than
the other in a neighborhood, it is likely that tampering occurred. In fact, weak traces of
interpolation left by the de-mosaicing algorithm are hidden by typical splicing operations
like resizing and rotations.

DCT Inconsistencies in JPEG DCT coefficients histograms are detected in [80] by first
estimating the quantization matrix from trusted image blocks, then evaluating suspicious
areas with a blocking artifact measure (BAM).

ELA Error Level Analysis [81] aims to detect parts of the image that have undergone
fewer JPEG compressions than the rest of the image. It works by intentionally re-saving
the image at a known error rate and then computing the difference between the original
and the re-compressed image. Local minima in image difference indicate original regions,
whereas local maximums are symptoms of image tampering.

GHO JPEG Ghosts detection by Farid [82] is an effective technique to identify parts
of the image that were previously compressed with smaller quality factors. The method
is based on finding local minimum in the sum of squared differences between the image
under analysis and its re-compressed version with varying quality factors.

NOI1 Mahdian et al. [83] build their tampering detector upon the hypothesis that
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usually Gaussian noise is added to tampered regions with the goal of deceiving classical
image tampering detection algorithms. Modeling the local image noise variance through
wavelet filtering, a segmentation method based on homogeneous noise levels is used to
provide an estimate of the tampered regions within an image.
NOI4 A statistical framework aimed at fusing several sources of information about

image tampering is presented by Fontani et al. [84]. Information provided by different
forensic tools yields to a global judgment about the authenticity of an image. Outcomes
from several JPEG-based algorithms are modeled and fused using Dempster–Shafer The-
ory of Evidence, being capable of handling uncertain answers and lack of knowledge about
prior probabilities.
Among the works on tampering detection and localization, Cozzolino et al. [85] propose

a method based on discretized high frequency components statistics to localize tamper-
ing. Local co-occurrence map of quantized and truncated high-frequency components
of the image are used to fit a two-class model via Expectation-Maximization. The base
assumption is that spliced area will have different characteristics from the rest of the
image. The method is further refined in [86], where an auto-encoder network is used to
learn the characteristics of the background in order to highlight, as reconstruction errors,
the portions of the image that have been spliced. In [87] the same authors leverage the
co-occurrences of high-frequency residuals to train a Long Short-Term Memory (LSTM)
neural network capable of detecting video forgeries due to the insertion of objects from
different scenes.

2.3.3 Antiforensics

As most of the camera model identification systems from the literature Section 2.3.1
are based on demosaicing artifacts, the antiforensics methods developed over the last
10 years are as well based on mis-leading CFA recognition or demosaicing algorithms
identification.
Chuang et al. [88] proposed two anti-forensic techniques to disguise camera model

identification based on color interpolation artifacts. A first technique employs parameter
perturbation in order to mislead the identification with targeted interpolation algorithm.
The main idea is to prevent a color-interpolation-based identification system from iden-
tifying a specific interpolation algorithm. The second technique deals with algorithm
mixing, showing that it is also possible to modify an image so that it is identified as being
interpolated with a interpolation algorithm than the one used by the camera firmware.
Kirchner et al. [89] introduced a CFA synthesis method based on the idea of re-

interpolation of the color planes while minimizing the distortion between the input image
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Figure 2.3: Proposed pipeline for camera model attribution. (Top) CNN and SVM training process: patches
extracted from each training image I inherit the same label L of the image. (Bottom) Evaluation pipeline: for
each patch Pk from the image I under analysis, a feature vector bk is extracted through the CNN. Feature vectors
are fed to a set of linear SVM classifiers in order to associate a candidate label L̂k to each vector. The predicted
label L̂ for image I is obtained by majority voting.

Figure 2.4: Patch examples and with quality measures 0.91, 0.78, 0.54, left to right

and the output image. This method easily fools interpolation-based interpolation detec-
tors as the one presented in [58]. Moreover is is not trivial to detect the presence of such
an antiforensics attack on the anonymized image.

2.4 Camera Model Identification

The problem of camera model identification consists in detecting the model L (within
a set of known camera models) used to shoot the image I, a closed set classification
problem. In the following we describe the proposed algorithm to solve this problem.
We first explain how to perform the training step needed to learn the CNN and SVMs
parameters. Then, we report how to use the trained algorithm for classifying new images
under analysis. Figure 2.3 represents in a schematic way both training and evaluation
pipelines.
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2 Methods based on camera model traces

2.4.1 Patch selection

For each color image I, associated to a specific camera model L, we extract K non
overlapping patches Pk, k ∈ [1,K], of size 64×64 pixels. The rationale behind this choice
is twofold: (i) splitting images into patches allows us to obtain a greater amount of data
for CNN training; (ii) feeding the CNN with smaller data (i.e., a patches rather than full
resolution images) enables working with smaller and lighter CNN architectures. In order
to avoid selecting overly dark or saturated regions, we exclude all patches with saturated
pixels and prioritize those whose average value is close to half the image dynamic. To
this end, we devised a patch selection procedure. Specifically, for each patch Pk within
an image, we compute a quality value defined as

Q(Pk) =
1

3

∑
c∈[R,G,B]

[
α · β

(
µc − µc

2
)

+ (1− α) (1− eγσc)
]
, (2.3)

where α, β and γ are empirically set constants (set to 0.7, 4 and ln(0.01) in our ex-
periments), whereas µc and σc, c ∈ [R,G,B] are the average and standard deviation of
red, green and blue components (in range [0, 1]) of patch Pk, respectively. This quality
measure tends to be lower for overly saturated or flat patches, whereas it is higher for
textured patches showing some statistical variance (as shown in Figure 2.4). Therefore,
we select, for each image, the K patches with the highest Q values. This way, saturated
patches will not be considered during either training, validation or testing.

2.4.2 CNN Training

Given a set of training labeled images coming from N known camera models, we split
them into patches and associate to each patch the same label L of the source image to
which patches belong. Then, we feed the CNN with all available patch-label pairs for
training. The choice of the CNN architecture is a delicate step. As an example, a too deep
network may be unnecessary long to train and may contain too many parameters that
need a huge training dataset to be properly tuned. However, smaller networks may not
achieve accurate enough performance, loosing the ability of well discriminating the used
camera models. Moreover, despite the number of used layers, also the choice of filters
size and stride plays a crucial role, not to mention the use of fully-connected layers. For
these reasons we tested different CNN architectures, varying for each architecture the
number of layers and the hyper-parameters.
A common aspect among all tested architectures is that they accept as input patches

of size 64 × 64 × 3, with pixel values between 0 and 255. The pixel-wise average over
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2.4 Camera Model Identification

the training set is subtracted to each input patch. The result is then scaled pixel-wise
in amplitude by a factor of 0.0125 to reduce its dynamic. At the end of the training
step, we obtain the CNN modelM. As trained CNN modelM, we select the one that
provides the smallest loss on validation patches within the first 50 training epochs.
Designing a proper CNN architecture for our camera model identification pipeline is

a critical step. The overall accuracy of the system is significantly determined by the
extracted feature vectors from each image patch. There are several key design choices
that have to be considered as they determine the final structure of the CNN. The depth
of the network, the use of pooling layers and the size of the kernels are examples and are
referred to as hyper-parameters. Tuning hyper-parameters is approached in a trial-and-
error fashion as there are no hard-quantitative rules that can be followed. This is due
to the fact that we approach camera model identification as a data-driven problem and
the final architecture of the network depends on the type of data under consideration.
In our particular case, we explore networks that accept input patches of size 64× 64× 3.
By using some of the CNN architecture design guidelines proposed in [90] we proposed
a baseline CNN architecture, hereinafter denoted asMConv4, defined as follows:

• An RGB color input patch of size 64× 64 is fed as input to the first Convolutional
layer with kernel size 4 × 4 × 3 producing 32 feature maps as output. Filtering is
applied with stride 1.

• The resulting 63× 63× 32 feature maps are aggregated with a Max-Pooling layer
with kernel size 2× 2 applied with stride 2, producing 32× 32× 32 feature maps.

• A second Convolutional layer with 48 filters of size 5 × 5 × 32 applied with stride
1 generates 28× 28× 48 feature maps.

• A Max-Pooling layer with kernel size 2 × 2 applied with stride 2 produces a 14 ×
14× 48 feature maps.

• A third Convolutional layer with 64 filters of size 5× 5× 48 applied with stride 1

generates 10× 10× 64 feature maps.

• A Max-Pooling layer with kernel size 2×2 applied with stride 2 produces a 5×5×64

feature map.

• A fourth Convolutional layer with 128 filters of size 5× 5× 64 applied with stride
1 generates a vector of 128 elements.

• A fully-connected layer with 128 output neurons followed by a ReLU layer produces
the 128 element feature vector.
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2 Methods based on camera model traces

• A last fully-connected layer with Ncams output neurons followed by a Softmax layer
acts as logistic regression classifier during CNN training phase. Ncams is the number
of camera model used at CNN training stage.

The overall architecture is characterized by 340, 462 parameters, learned through Stochas-
tic Gradient Descent on batches of 128 patches. In Table 2.1 we summarize its hyper-
parameters.
In Section 2.7, we study the behavior ofMConv4 compared to other 3 new networks,

which vary in depth. In particular, we considerMConv4 as the base CNN on top of which
we develop the 3 remaining deeper architectures. As shown by the Oxford VGG team
in [91] and Szegedy et al. in [37] the representational capacity of a network is largely
determined by its depth. This insight was also verified with the recent development
of deep residual networks [92], which can have more than 150 layers and were used by
the winners of the ILSVRC-2015 competition [93]. Keeping simplicity in mind, and
following the strategy that Simonyan et al. devised in [91] to prepare their submission
for the ILSVRC-2014, we explored a single family of networks of increasing depth. By
doing so, we took advantage of the key design choices made in our base CNN model,
MConv4, such as the stacks of convolutional and pooling layers structure and the kernel
sizes of the convolutional layers. A stride value of 1 was chosen for the convolutional
layers. This results in no skipping (i.e. our filters are applied to all the values of the
input volumes they receive).
The CNN architectures evaluated in Section 2.7 are outlined in Table 2.2, one per

column. The baseline architecture MConv4 was introduced earlier, and we refer to the
three remaining networks as MConv6, MConv8 andMConv10. As already mentioned,
the 4 networks vary only in the depth: from 6 weight layers in the baseline network
MConv4 (4 convolutional and 2 fully-connected layers) to 12 weight layers in the network
MConv10 (10 convolutional and 2 fully-connected layers). The number of filters of each
convolutional layer is rather small, starting from 32 in the first layer and then adding
16 more filters after each pooling layer, except for the last one, where we increase the
number of filters by a factor of 2 reaching a total of 128 filters.

2.4.3 SVM Training

Even though we could perform classification by simply thresholding the output of the
last network layer, we decided to make use of an additional classification tool. For each
patch, the selected CNN model M is used to extract a feature vector of 128 elements,
stopping the forward propagation at the ReLU-1 layer. Feature vectors associated to
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Table 2.1: Structure of the reference CNN architecture MConv4. N is the number of training classes. Feature
are extracted after the ReLU-1 layer.
Layer Input size Kernel size Stride Num filters Output size
Conv-1 64× 64× 3 4× 4 1 32 61× 61× 32

Pool-1 61× 61× 32 2× 2 2 - 31× 31× 32

Conv-2 31× 31× 32 5× 5 1 48 27× 27× 48

Pool-2 27× 27× 48 2× 2 2 - 14× 14× 48

Conv-3 14× 14× 48 5× 5 1 64 9× 9× 64

Pool-3 9× 9× 64 2× 2 2 - 5× 5× 64

Conv-4 5× 5× 64 5× 5 1 128 1× 1× 128

FullyConnected-1 1× 1× 128 - - 128 28

ReLU-1 128 - - - 128

FullyConnected-2 128 - - N N

SoftMax N - - - N

Table 2.2: The 4 proposed CNN architectures (shown in columns). Added layers are shown in bold and the
number of filters for each convolutional layer is shown in parenthesis

CNN Architecture
MConv4 MConv6 MConv8 MConv10

6 weight layers 8 weight layers 10 weight layers 12 weight layers
Input (64× 64× 3 image patch)

Conv-1 (32)
Conv-1 (32) Conv-1 (32) Conv-1 (32)
Conv-1 (32) Conv-1 (32) Conv-1 (32)

Pool-1

Conv-2 (48)
Conv-2 (48) Conv-2 (48) Conv-2 (48)
Conv-2 (48) Conv-2 (48) Conv-2 (48)

Pool-2

Conv-3 (64) Conv-3 (64)
Conv-3 (64) Conv-3 (64)

Conv-3 (64)
Conv-3 (64) Conv-3 (64)

Pool-3

Conv-4 (128) Conv-4 (128)
Conv-4 (128) Conv-4 (128)

Conv-4 (128)
Conv-4 (128) Conv-4 (128)

FullyConnected-1
ReLU-1

FullyConnected-2
SoftMax

training patches are used to train a set of N · (N − 1)/2 linear binary SVM classifiers
S in a One-versus-One fashion. The regularization constraint C is selected to maximize
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2 Methods based on camera model traces

classification accuracy on validation patches.

2.4.4 Majority Voting

When a new image I is under analysis, the camera model used to shoot it is estimated as
follows. A set of K patches is obtained from image I according to the quality measures
described above. Each patch Pk is processed by CNN model M in order to extract a
feature vector vk. The set S of linear SVMs assigns a label L̂k to each patch by attributing
vectors vk to one of the available N classes (i.e., camera models). The predicted model
L̂ for image I is obtained through majority voting on L̂k, k ∈ [1,K]. In case of par,
random selection between equally likely models is operated.

2.4.5 Training Strategies

As discussed in [29], the training procedure for machine learning-based camera model
identification algorithms must be devised with great attention. As a matter of fact, on
one hand it is important to ensure a sufficient number of training data. On the other
hand, training data cannot be just randomly selected. Instead, they must be carefully
chosen in order to avoid over-fitting and ensure a wide variety of images covering different
scenarios.
In order to further highlight the importance of the training strategy, let us consider the

following example. Let us consider camera model identification problem using only two
camera models whose labels are L1 and L2, respectively. If all images coming from camera
L1 are very dark, and all images from camera L2 are very bright, the CNN might learn
to discriminate luminance levels rather than camera models. It is clear that, in order
to avoid such a biased training inevitably leading to incorrect results and conclusions,
images from both cameras must depict both dark and bright scenes in this case. Despite
the simplicity of this example, the situation becomes less trivial when many different
camera models and images with different semantic contents are used.
In order to consider this important issue, in our study we consider the Dresden Image

Dataset [94] as reference, as suggested in [29]. This dataset is composed by 73 camera
devices from 25 camera models from 14 manufacturers. For each device a variable number
of shots has been taken in several geographical positions. For each position a set of
different motives is shot. Details about the acquisition process are available at [94]. In
the following we will refer to scene when considering the combination of a geographical
position with a specific motive. This results in a total amount of 83 available scenes. We
only consider camera models represented by more than one device, in order to ensure that
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2.4 Camera Model Identification

the CNN learns model specific artifacts rather than instance specific ones. This leads to
a dataset composed of 18 camera models (as Nikon D70 and D70s basically differ only
in their on-device screen), for nearly 15, 000 shots.
For our problem, we need to split images in three different datasets: (i) a training

set DT used for updating CNNs and SVMs parameters; (ii) a validation set DV used
to decide the stopping point of the training step and avoid over-fitting (i.e., typically
the training process is stopped when validation loss, given by SoftMax layer, reaches its
minimum); (iii) an evaluation set DE used to test the trained architectures. Following
the ideas presented by Kirchner et al. [29]

• we selected shots belonging to the evaluation set (DE) from NE scenes and a single
instance per camera model. The selected images are never used in training or
validation.

• we selected shots for training set (DT ) and validation set (DV ) among images from
remaining scenes and instances.

Specifically, we define three splitting policies for DT and DV so to test for possible
over-fitting on scenes content rather than on camera model identification during CNN
training. Since the validation set is used to decide when to stop the training process, if
its content is too similar to the training set we could easily over-fit. Conversely, if the
validation set is sufficiently different from the training set, we should be able to obtain
more generalizable results on the evaluation set. Splitting policies are detailed below:

1. Fair-NT : training and validation shots are split according to the depicted scene.
The number of training scenes is set to NT and shots coming from a specific scene
are included only in DT or in DV . In this way, DT and DV are completely disjoint
sets (in terms of scenes), thus should lead to robust training.

2. Fair-balanced-NT : training and validation shots are split according to scenes as for
Fair-NT . The number of shots for each device model is the same, leading to a
model-balanced training dataset.

3. Unfair-PT : training and validation shots are split regardless of the scene they
belong to, fixing the percentage of training shots to PT . In doing so, the same
scene can appear in both training and validation sets, thus possibly leading to
over-fitting and less accurate evaluation results.

A small case example for the three splitting strategies is available at Table 2.3.
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2 Methods based on camera model traces

Table 2.3: A small scale example for three different splitting strategies. Row colors correspond to scenes. First,
an instance id and a set of scenes are selected for the evaluation set DE . Considering the remaining instances and
scenes, DT and DV are built according to what specified in the text. Labels E, V and T denote images associated
to DE , DV and DT according to each policy.
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Canon Ixus 70 0 Kohlenstrasse Back view ZINT E E E
Canon Ixus 70 0 Home III Trees in a garden II
Canon Ixus 70 0 Kaethe-Kollwitz-Ufer Blue Wonder
Canon Ixus 70 1 Kohlenstrasse Back view ZINT
Canon Ixus 70 1 Home III Trees in a garden II V V T
Canon Ixus 70 1 Kaethe-Kollwitz-Ufer Blue Wonder T T T
Canon Ixus 70 1 Kaethe-Kollwitz-Ufer Blue Wonder T V
Kodak M1063 0 Kohlenstrasse Back view ZINT E E E
Kodak M1063 0 Home III Trees in a garden II
Kodak M1063 0 Kaethe-Kollwitz-Ufer Blue Wonder
Kodak M1063 1 Kohlenstrasse Back view ZINT
Kodak M1063 1 Home III Trees in a garden II V V V
Kodak M1063 1 Kaethe-Kollwitz-Ufer Blue Wonder T T T

Figure 2.5: Pipeline of the proposed method. An image I is split into patches P(i, j). Each patch is described by
a feature vector f(i, j) extracted through a CNN, and a confidence score Q(i, j). A custom clustering algorithm
produces a tampering mask prediction M̂, which is also used for detection.

2.5 Tampering detection and localization

In this section we present the proposed method for image forgery detection and local-
ization in case of images generated through composition of pictures shot with different
camera models. In this scenario, we consider that pristine images are pictures directly
obtained from a camera. Conversely, forged images are those created taking a pristine
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2.5 Tampering detection and localization

image, and pasting onto it one or more small regions taken from pictures shot with dif-
ferent camera models with respect to the background shot. Under these assumptions,
the proposed method is devised to estimate whether the totality of image patches come
from a single camera (i.e. the image is pristine), or some portions of the image are not
coherent with the rest of the picture in terms of camera attribution (i.e. the image is
forged). If this is the case, we also localize the forged region.

Figure 2.5 outlines the proposed pipeline used to detect and localize tampered regions
within images. An image I is first divided into non-overlapping patches. Each patch
P is fed as input to a pre-trained CNN to extract a feature vector f of Ncams elements.
Information about patch position, feature vectors f and patch confidence are given as
input to the clustering algorithm that estimates a tampering mask. The final output M̂ is
a binary mask, where 0s indicate patches belonging to the pristine region and 1s indicate
forged patches. If no (or just a few) forged pixels are detected, the image is considered
pristine. In the following, we report a detailed explanation of each algorithmic step.

2.5.1 Feature Extraction

The first step of our algorithm consists in splitting an image into 64× 64 color patches,
and extracting a feature vector containing camera model information from each one of
them.

Formally, let us define with Ix,y, x ∈ [1, Nx], y ∈ [1, Ny] the pixel in position (x, y)

of the image I under analysis. Similarly, let us define 64 × 64 patches as P (i, j), i ∈
[1, Ni], j ∈ [1, Nj ], where Ni = Nx

64 and Nj =
Ny
64 are the numbers of patches per column

and row, respectively. In other words a patch P(i, j) corresponds to pixels Ix,y, x ∈
[64(i− 1) + 1, 64 · i], y ∈ [64(j − 1) + 1, 64 · j]. Each patch is fed to the pre-trained CNN
MConv4 presented in Section 2.4, which outputs aNcams-dimensional feature vector f(i, j)

after its Softmax layer.

Notice that features f(i, j) are vectors whose elements are positive and add to 1. Ideally,
if a patch comes from a camera model used for CNN training, f(i, j) should present a
maximum close to 1 in a single position indicating the used camera model. However, in
case of cameras never seen by the network, or simply due to noise, f(i, j) may present
different behaviors. However, as will be shown in Section 2.7, this feature vector is
capable of extracting camera model information that generalizes to models never used in
training. Therefore, we expect that f(i, j) for patches coming from a single camera are
coherent and can be clustered together in the feature space. This enables localization of
pixel regions coming from different devices, even if unknown.
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(a) Forged image I (b) K-means
output

(c) M̂ initialization (d) M̂ after first it-
eration

(e) M̂ final estima-
tion

(f) Forged image I (g) K-means
output

(h) M̂ initialization (i) M̂ after first it-
eration

(j) M̂ final estima-
tion

Figure 2.6: Example of forged images and intermediate outputs of the proposed localization algorithm. Forgeries
are highlighted in red dashed lines. K-means detected clusters are mapped to different colors. White and black
pixels represent 0 and 1 values of M̂, respectively.

2.5.2 Confidence Computation

As discussed in Section 2.4 the output of the used CNN is expected to be more reliable
on some image patches than others. Indeed, not all patches contain enough statistical
information about the used camera model. Therefore, we associate a confidence value
Qi,j to each patch as defined in Equation (2.3). Notice that Qi,j ∈ [0, 1] for convenience.
The lower the value, the less confident the algorithm is about the patch.

2.5.3 Tampering Mask Estimation

Once we obtain confidence Qi,j and feature f(i, j) for each patch P(i, j), we make use
of this information to estimate a tampering mask M̂i,j . This mask is a binary matrix,
where M̂i,j = 0 indicates that P(i, j) is pristine, whereas M̂i,j = 1 indicates that P(i, j)

is an alien patch.
To initialize M̂, we assume that the majority of patches comes from a single camera,

whereas only spliced regions come from different camera models. Therefore, the majority
of vectors f(i, j) should be coherent (i.e. those belonging to the pristine region), whereas
other features should group into different clusters (e.g. due to noise, low confidence, or
because they belong to alien regions). We therefore apply K-means clustering algorithm
to features f(i, j) to perform a first rough detection of which patches belong to the pristine
portion of the image. In order to be robust in this initialization step, we set the initial
number of clusters Nclusters = 5 (i.e. greater than the expected number of cameras used
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2.5 Tampering detection and localization

Algorithm 1 Tampering mask estimation
Require: f(i, j) i ∈ [1, Ni], j ∈ [1, Nj ] . Feature vectors
Require: Qi,j i ∈ [1, Ni], j ∈ [1, Nj ] . Confidence
Require: Γdist, Γconf . Thresholds
Require: Nclusters . Number of clusters

function EstimateMask

cluster(i, j)← Kmeans({f(i, j)}∀(i,j), Nclusters) . Mask initialization
for i ∈ [1, Ni], j ∈ [1, Nj ] do

if cluster(i, j) is the largest one then
M̂i,j ← 0

else
M̂i,j ← 1

end if
end for

repeat . Refinement
f̄ ← average({f(i, j)}(i,j) | M̂i,j=0) . Centroid estimation

for (i, j) | M̂i,j = 1 do . Feature space refinement

d(i, j)←
∑Ncams
k=1 |f̄(i,j)k−f(i,j)k|∑Ncams
k=1 (f̄(i,j)k+f(i,j)k)

if d(i, j) < Γdist then M̂i,j = 0
M̂i,j ← 0

end if
end for
M̂←opening(M̂) . Geometric space refinement

until M̂ changes with respect to the previous iteration

for i ∈ [1, Ni], j ∈ [1, Nj ] do . Confidence thresholding
if Qi,j < Γconf then

M̂i,j ← 0
end if

end for
return M̂

end function

for the forgery). We then set M̂i,j = 0 if f(i, j) belongs to the cluster with the highest
cardinality (i.e. pristine region). Conversely, we set M̂i,j = 1 if f(i, j) belongs to any
other cluster (i.e. possibly forged region). An example of this step output is shown for
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two forged images in Figure 2.6.
After mask initialization, we need to refine our estimate about all patches initialized

as forged. To this purpose, we apply the following iterative procedure:

1. We compute the centroid f̄ of all features f(i, j) for which M̂i,j = 0 (i.e. pristine
ones). Formally,

f̄ = average({f(i, j)}(i,j) | M̂i,j=0), (2.4)

where average(·) computes the average vector in the set.

2. We compute the Bray-Curtis distance between f̄ and each f(i, j) for which M̂i,j = 1

defined as

d(i, j) =

∑Ncams
k=1 |f̄(i, j)k − f(i, j)k|∑Ncams
k=1 (f̄(i, j)k + f(i, j)k)

, (2.5)

where f(i, j)k is the k-th element of vector f(i, j). Notice that all considered vectors
add to 1, thus d(i, j) ∈ [0, 1].

3. We refine pristine region in the feature space by considering as pristine all patches
with feature vector close to the pristine centroid f̄ . Formally,

M̂i,j = 0 if d(i, j) < Γdist, (2.6)

where Γdist is a threshold selected in range [0, 1] balancing probability of true posi-
tive and true negative detections, as shall be explained in the experimental section.

4. We finally refine pristine region estimate in the geometric space, by aggregating to
pristine region spurious isolated patches considered forged. The idea is that each
forgery should not be smaller than a given pixel size. Formally, we achieve this
goal using opening morphological operator to M̂ with a 2× 2 structuring element
of ones. Notice that this means we consider that the smallest possible forgery is a
128× 128 pixel region.

This procedure is iterated until convergence (i.e. all patches are identified as pristine, or
M̂ estimate does not change with respect to previous step).
After last iteration, we take into account feature confidence for each patch, i.e. Qi,j .

Specifically, we decide to be conservative and set as pristine all patches for which we are
not confident enough about their camera model estimation. Formally,

M̂i,j = 0 if Qi,j < Γconf, (2.7)
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where Γconf is a threshold selected in range [0, 1] (i.e. 0 means we do not take confidence
into account, 1 sets all patches as pristine). For the sake of clarity, the pseudo-code is
reported in Algorithm 1. Figure 2.6 shows an example of estimated masks for two forged
images.

2.5.4 Tampering Detection

Once mask M̂ has been estimated, we decide whether image I is pristine or not based
on the amount of estimated forged pixels. Formally,I is pristine if µM̂ ≤ Γdet,

I is forged if µM̂ > Γdet,
(2.8)

where µM̂ is the average value of M̂ which spans the range [0, 1], and Γdet is a threshold
indicating how many pixels we need to identify as forged to estimate that the image is
actually forged (i.e. 0 means that images are considered pristine only if all patches are
detected as pristine, 1 means that images are always considered pristine).

2.6 Antiforensics

In this section we describe the antiforensic approach used to fool a CNN trained to
perform camera model identification. Figure 2.7 shows the block diagram of our proposed
counter-forensic method. Our method consists of an adversarial image generator module
that can be added to a CNN-based camera model evaluation pipeline. In Figure 2.7,
we assume a similar structure to the previously presented pipeline in Section 2.4. Our
adversarial image generator module takes as input the set of K patches that have been
extracted from the image I that is being analyzed. When presented with new image
patches, our module can work in two different modes.
In the first operation mode, the adversarial image generator module does an untargeted

image manipulation, that is, it does not try to perturb the image patches to produce a
specific misclassification class. Instead, we use the derivative of the loss function of the
CNN with respect to the input image patches to add a perturbation to the images. The
derivative is computed using backpropagation with the labels L̂′k, k ∈ [1,K] that are
given by the CNN detector when it first processes the unmodified image patches. This
procedure is known as the fast gradient sign method (FGSM), see Section 2.2.4 .
In the second operation mode, the adversarial image generator module does a targeted

image manipulation. In this case, we try to perturb the image patches to produce a
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Figure 2.7: Block diagram of our proposed method.

specific misclassification class L′, different from the true real label L that is associated
with the analyzed image I and its associated Pk patches. In this mode of operation,
we exploit the forward derivative of a CNN to find an adversarial perturbation that
will force the network to misclassify the image patch into the target class by computing
the adversarial saliency map. Starting with an unmodified image patch, we perturb
each feature by a constant offset ε. This process is repeated iteratively until the target
misclassification is achieved. This procedure is known as the Jacobian-based saliency
map attack (JSMA), see Section 2.2.4.

2.6.1 Implementation Details

To implement our counter-forensic method, we have used the software library clever-
hans [95]. The library provides standardized reference implementations of adversarial
image generation techniques and adversarial training. The library can be used to de-
velop more robust CNN architectures and to provide standardized benchmarks of CNNs
performance in an adversarial setting. As noted in [95], benchmarks constructed with-
out a standardized implementation of adversarial image generation techniques are not
comparable to each other, because a good result may indicate a robust CNN or it may
merely indicate a weak implementation of the adversarial image generation procedure.

2.7 Experiments

In the following we show the results obtained in terms of camera model identification,
tampering detection and localization and counter-forensics attacks to CNN for camera
model identification.
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Table 2.4: CNN classification accuracy for the different sets of Fair-60
CNN Architectures DT accuracy (%) DV accuracy (%) DE accuracy (%)

MConv4 97.69 97.74 94.51
MConv6 97.82 97.53 94.67
MConv8 97.95 97.62 94.79
MConv10 98.01 97.81 94.93

2.7.1 Camera model identification

Impact of the CNN architecture To evaluate the proposed CNN architectures, we
selected a reference splitting policy showing good performance in our initial analysis. We
used the Fair-60 splitting policy and worked with a 10-fold cross validation framework
(i.e., the selected splitting policy is tested 10 times on different realizations of scenes).
This results in a total number of 40 trained CNN models. For evaluation, we do not to
train additional SVMs, but use the CNN output as class prediction. This allows us to
study the effect of the different CNN architectures on the accuracy results for a fixed
splitting policy.
For each shot in train, validation and evaluation sets in Fair-60, K = 32 patches were

extracted using the explained procedure. Training and validation patches were used
to train the proposed CNNs. Specifically, the CNN architectures were trained on DT
patches until classification loss on DV patches was minimized. Once the CNNs were
trained, they were used to extract an 18 elements vector vk for each patch Pk at the end
of FullyConnected-2 layer of the CNN. Results aggregation at shot level was performed
averaging element by element feature vectors vk associated to patches Pk belonging to
the same shot I, so to obtain an 18 elements score vector v for the shot. Camera model
associated to the maximum score was used to predict the shot’s class. Shots classification
accuracy was computed on DT , DV and DE as average over the 10 data realizations.
The results, presented in Table 2.4, indicate that the classification accuracy increases

as we increase the CNN architecture depth: from 6 weight layers in the networkMConv4

to 12 weight layers in the networkMConv10. The camera model classification accuracy of
our architecture saturates when the depth reaches 12 layers, but even deeper CNNs might
be beneficial for larger datasets with a higher number of classes and training images.

Impact of training strategy After testing different architectures, we focused on a ref-
erence CNN showing good performances and performed an extensive set of experiments
over the three splitting policies described in the previous section. In particular, we se-
lected the MConv4 CNN detailed in Table 2.1. For evaluation, we decided not to train
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(a) Fair

(b) Fair-balanced

(c) Unfair

Figure 2.8: Fair, Fair-balanced, and Unfair splitting policies results. Training (blue), validation (green) and
evaluation (red) set.
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additional SVMs, but to use the CNN output as class prediction. This allows us to study
the effect of different training and validation split on the CNN only.

For this analysis, we fixed the number of evaluation scenes NE to 10. For split-
ting policies Fair and Fair-balanced the number of training scenes NT was varied in
{10, 15, 20, 30, 40, 50, 60} over the 73 available scenes. The remaining 73 − NT scenes
were used for validation. For splitting policy Unfair the percentage of training shots PT
was varied in {10, 20, 30, 40, 50, 60, 70, 80, 90}. The remaining shots were assigned to the
validation set. This resulted in 23 splitting policies.

Figure 2.8a shows results using the Fair splitting policy to select train and validation
datasets. Shots classification accuracy is reported as function of number of training
scenes. Train and validation curves, in blue and green respectively, are almost always
aligned. The red curve refers to the performance on the evaluation set. When using a
small number of scenes for training (i.e., Nt = 10) , the small amount of data limits the
CNN capabilities of learning from data. Once the number of training scenes is sufficiently
large (i.e., Nt > 15) the results increase reaching an evaluation accuracy up to 94.5%.

Figure 2.8b shows results using the Fair-balanced splitting policy to select train and
validation datasets. In this case the small amount of data severely limits the CNN
capabilities of learning from data. In fact, in the Dresden Dataset, some camera models
are represented by only a few number of shots. In the best situation (Fair-balanced-60 ),
the evaluation accuracy reaches 92.6%.

Figure 2.8c shows results using the Unfair splitting policy to select train and validation
datasets. Also in this case the small amount of training data impairs CNN learning
capabilities when PT = 0.1. However, as soon as the percentage of training data is
increased, the evaluation accuracy reaches 94.4%.

Both the Fair and the Unfair splitting policies show a gap around 3.3% between
validation and evaluation accuracies. This kind of behavior might be an indicator of
some instance specific features learned during the training process.

A comparison between the Fair (Figure 2.8a) and the Unfair (Figure 2.8c) shows that
there is not much gain in carefully splitting training and validation scenes. A possible
motivation for this results stands in the small size of the patches used in this context.
In fact, a 64 × 64 × 3 patch extracted from a full resolution picture (as the ones in the
Dresden Image Dataset) contains only a few details from the image, and rarely some
scene specific content that might be found only in larger patches. This motivates even
further the use of small patches for this learning task.
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Figure 2.9: Comparison between the overall pipeline considering the CNNMConv4 trained with Fair-balanced-60
splitting policy and the state-of-the-art algorithm by Chen et al. [72].

Comparison with the state of the art After validating the good performance of CNNs
standalone (i.e., using the FullyConnected-2 output as score for each class), we focused on
the evaluation of the entire pipeline (i.e., with SVMs and majority voting) in comparison
with the recently proposed state-of-the-art method by Chen et al. [72]. In particular we
stopped the forward step ofMConv4 at the end of the ReLU-1 layer in order to extract
from each patch Pk a feature vector vk. As dataset, we considered the Fair-balanced-60
splitting policy.

Figure 2.9 shows how the average classification accuracy on shots from DE varies
while increasing the number of voting patches for each image. The proposed CNN-based
approach is depicted by the green line. Benchmark result using the approach proposed by
Chen et al. [72] applied on 64× 64 color patches followed by majority voting is reported
with red line. As the method proposed by Chen et al. is not specifically tailored to small
patches, we also tested it on full resolution images without voting procedures (i.e., blue
line of Figure 2.9). It is worth noting that, despite the high accuracy obtained by Chen
et al., our method approaches within 1% their result by using considerably less input
data (i.e., just a few patches and not the full image).

As a final remark, notice that the number of features generated at the output by the
CNN for each patch is only 128, less than one tenth with respect to the 1, 372 generated
by Chen et al. This confirms that we are able to characterize camera models in a space
with reduced dimensionality. In principle, this enables the use of simple classifiers, which
can be trained more efficiently.
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Figure 2.10: Confusion matrix for the 10-models Flickr Dataset. Results are obtained by voting with 32 patches
per image. Each cell reports the percentage of images from Target Class assigned to Output Class.

CNN generalization capability One of the seemingly negative aspects of the proposed
method with respect to the state of the art is that our feature extractor (i.e., the CNN)
needs to be trained. Conversely, the other methods rely on manually defined feature
extraction techniques. Therefore, in principle, one may think that the proposed method
needs to be trained from scratch every time new camera models are considered, thus
increasing the computational burden.

Our second experiment aims at disproving this preconception by showing that the
feature extraction procedure learned by the CNN well generalizes to novel camera models.
As a matter of fact, when new camera models are considered, only the SVMs needs to
be re-trained (as it happens for classifiers used in [72].

Experimental Setup. For this experiment, we built a dataset denoted as 10-models
Flickr Dataset. This was created by collecting 20 photos at full resolution from 10

different camera models (not present in the Dresden Image Dataset) from Flickr website.
The dataset is split into a training set FT with 10 shots per model, and an evaluation
set FE with the remaining 10 shots per model.

For feature extraction, we selected one MConv4 CNN model M trained during the
previous experiment on the Dresden Image Dataset (i.e., DT and DV ), and we adopted
it on patches extracted from images in FT and FE (i.e., models never seen before by
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Figure 2.11: Tampering localization example. We spliced two images from different camera models (inside and
outside the red circle). By classifying each block separately withMConv4 and attributing a color to each detected
camera model, it is possible to expose the splicing despite a few misclassified blocks (in yellow).

the CNN). A set of 45 linear binary SVMs was trained on feature vectors computed on
patches extracted from images in FT . Image from FE were used for evaluation.
Results. Figure 2.10 reports the confusion matrix obtained when evaluating the 10-

models Flickr Dataset FE , using majority voting on 32 for each image. The overall
accuracy reaches 93%, showing that the features extracted with the CNN model M,
trained on 18 camera models from the Dresden Image Dataset, are capable of generaliz-
ing to unknown camera models. As a matter of fact, this result suggests that the CNN
learned a feature extraction procedure that is independent from the used camera models.
The learned set of operations turned out to be a good procedure to expose traces charac-
terizing different camera models. This confirms that the trained network can be used as
other hand-crafted approaches [72] not requiring to be trained from scratch every time.

2.7.2 Tampering detection and localization

In this section we present all achieved experimental results regarding the detection and
localization on image forgeries. To this purpose, we first present the used dataset. Fi-
nally, we report numeric results on tampering detection and tampering localization, also
comparing against different state-of-the-art methods [75].
As an example of an handmade realistic example, Figure 2.11 reports a tampered

image in which the background comes from a camera model, and the area marked in
red comes from another model. In the example we show just the output of theMConv4

Softmax layer, without any iteration of the iterative algorithm for tampering localization
presented in Section 2.5.

Dataset The reference dataset used to validate the proposed method is the Dresden
Image Database [94]. The dataset consist of more than 16k images from 26 different
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camera models depicting a total of 83 scenes. As suggested in [29] Nikon D70 and
Nikon D70s are considered as the same camera model. In a first phase aimed at training
the CNN, the 18 camera models with more than one device per model are taken into
account and split into a training DT , validation DV , and evaluation DE sets. One camera
instance per model is selected for DE , whereas all other camera instances are in DT and
DV . Shots from same scene (e.g. outdoor, indoor, etc.) are only in one of the three sets.
This replicates the splitting strategy adopted in [10], aimed at avoiding that the CNN
trained on DT and DV over-fits on image content rather than learning camera specific
features.
In a second phase two distinct tampered datasets are generated: i) the known dataset

made from images in DE , and; ii) the unknown dataset containing images from the 8

single instance camera models never seen by the CNN. It is important in our opinion to
evaluate our algorithm on both datasets to study performance differences in case known
or unknown cameras are used. Indeed, working with camera models known by the CNN
should be a more favorable working condition. However, it is important to notice that
the algorithm is able to robustly work also with unknown cameras.
Both known and unknown datasets contain 500 pristine images and 500 tampered

images generated according to the following procedure:

1. Select a random receiver image Ircv from the dataset.

2. Generate an empty mask M with the same size of Ircv.

3. Randomly chose the number of donor alien images Nd in [1, 2].

4. For each donor d ∈ [1, Nd]:
- Select a random donor image Iddnr from the dataset, taking care it comes from a
different camera model than Ircv.
- Copy a rectangular random region with width and height in [128, 1024] from
Iddnr and paste it in a random location of Ircv (not paying attention to any grid
alignment).
- Update M accordingly.

5. Store Ircv and M as forged image and ground-truth mask.

Detection Each image I from the known and the unknown dataset is split into non
overlapping 64 × 64 patches. Each patch P(i, j) is fed to the MConv4 CNN and the
Softmax layer output is used as a feature vector f(i, j) relative to P(i, j).
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(a) known dataset

(b) unknown dataset

Figure 2.12: ROC curves of tampering detection algorithm tested on known (a) and unknown (b) datasets using
different thresholds Γdist and Γconf values.

Table 2.5: Tampering detection results. Γdet = best is the threshold maximizing accuracy.
Dataset Γdist Γconf Γdet ACC TPR TNR

known

0.8 0.0 0 0.720 0.994 0.446
best 0.800 0.914 0.686

0.8 0.6 0 0.832 0.980 0.684
best 0.888 0.916 0.860

0.9 0.0 0 0.823 0.966 0.680
best 0.877 0.878 0.876

0.9 0.6 0 0.890 0.942 0.838
best 0.908 0.888 0.928

unknown

0.8 0.0 0 0.668 0.968 0.368
best 0.731 0.860 0.602

0.8 0.6 0 0.742 0.954 0.530
best 0.784 0.856 0.712

0.9 0.0 0 0.741 0.864 0.618
best 0.785 0.786 0.784

0.9 0.6 0 0.788 0.834 0.742
best 0.810 0.772 0.848
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The proposed algorithm for tampering detection depends on three thresholds (i.e. Γdist,
Γconf and Γdet), all taking values in range [0, 1]. Figure 2.12 shows detection performance
on both known and unknown datasets in terms of receiver operating characteristic (ROC)
curves moving detection threshold Γdet and fixing Γdist and Γconf. Results in terms of
area under the curve (AUC) show that, on both datasets, the best detection performance
are obtained for Γdist = 0.9 and Γconf = 0.6. Using Γdist close to 1 means that we only
consider as forged those patches whose feature vector is far from the estimated pristine
centroid. Using Γconf 6= 0 means taking into account the confidence score Q, which
actually helps in refining the detection results.

However, as the role of Γdet is to decide how many forged blocks should be detected in
an image in order to decide that the picture is forged, we also computed some additional
results by setting Γdet = 0. This case means we only detect as pristine, images for which
M̂i,j = 0 for all (i, j). Table 2.5 shows results in terms of: i) true positive rate (TPR), i.e.
the percentage of forged images correctly detected as such; ii) true negative rate (TNR),
i.e. the percentage of pristine images correctly detected as such; iii) accuracy (ACC),
i.e. the average between TPR and TNR. threshold Γdet = best, means we selected Γdet

values maximizing accuracy according to ROC results. Notice that, setting Γdet = 0

always provide better TPR results, albeit a different threshold (i.e. the one maximizing
accuracy) is more suitable to balance TPR and TNR.

Localization As far as tampering localization is concerned, we compared the proposed
algorithm on forged images against nine methods reviewed in [75], whose implementation
were made available in the toolbox presented in the same paper. More specifically, we
took into account all algorithms presented in Section 2.4, as they do not require any
additional prior information on images under analysis (e.g. PRNUs, JPEG quantization
matrix, etc.).

As evaluation metrics, we decided to rely on: i) true positive rate (TPR), i.e. the
percentage of forged pixels correctly detected as such; ii) balanced accuracy (ACC),
i.e. the average between TPR and the percentage of correctly detected pristine pixels.
However, differently from our method, the considered state-of-the-art methods provide
a soft tampering mask as output. In order to enable a fair comparison, we binarized the
soft masks using the threshold that maximizes each state-of-the-art algorithm accuracy.

Figure 2.13 shows results obtained with our method for different values of thresholds
Γdist and Γconf, together with state-of-the-art methods. Notice that, our method achieves
best results when Γconf = 0. This means that for localization purpose, it is better
to discard confidence Q information, which instead turned out to be paramount for
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(a) known dataset

(b) unknown dataset

Figure 2.13: Accuracy and TPR on known (a) and unknown (b) datasets using our algorithm (left hand side
of dashed line) with different thresholds (Γdist, Γconf) and state-of-the-art algorithms (right hand side of dashed
gray line). Our best accuracy and TPR results are reported with dashed blue and orange lines.

detection purpose. Regarding comparison against state of the art, it is possible to notice
that our algorithm outperforms all considered baseline solutions. This is due to the fact
that considered baselines are tailored to different kinds of tampering operations. Even
more interesting, the proposed method achieves promising results even on the unknown
dataset. This means that we are able to cope with composition forgeries even when
used cameras do not belong to the CNN training set. Moreover, it is possible to notice
that even by slightly varying thresholds Γdist and Γconf, our results do not drop under
baselines performance, showing a good degree of robustness also to the choice of sub-
optimal parameters.

2.7.3 Camera model counter-forensics

In this section, we evaluate our proposed method to fool camera model identification
CNN system. We compare the results of the two proposed techniques for generating
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Camera Model Training Validation Test
AS-One 90000 25500 12500
ES-D5100 37500 10500 5000
MK-Powershot 35000 10000 5000
MK-s860 35500 10000 5000
PAR-1233 71000 20000 10000
PAR-1476 107000 30500 15000
PAR-1477 70000 20000 9500
PAR-A015 40500 11500 5500
PAR-A075 26000 7000 3500
PAR-A106 54000 15500 7500

Table 2.6: Number of image patches per camera class for each of the different dataset splits.

the adversarial images. First, we create a reference dataset specially designed to exploit
the traces left by the operations of the acquisition pipeline of different image capturing
devices. Then, we train an advanced deep learning architecture to have a baseline to
compare the accuracy results in the presence of adversarial images. Finally, we generate
several adversarial image examples to demonstrate the performance of our proposed
method.

Experimental Setup As part of DARPA’s MediFor Program, PAR Government Sys-
tems collected an initial dataset of 1611 images acquired by 10 different camera models,
ranging from DSLRs to phone cameras, with a mixture of indoor and outdoor flat-field
scenes. We focus on a flat-field image dataset because flat-field images are more difficult
to modify without inserting visual distortions due to the absence of texture content.
Throughout the rest of the section, we refer to this dataset as PRNU-PAR. Using

the PRNU-PAR dataset, we create a patch dataset, composed by image patches of 32
× 32 pixels randomly extracted from the original images. Specifically, 500 patches are
uniformly sampled from each original image in the PRNU-PAR dataset, which results
in a patch dataset that contains 805,500 patches in total. The training, validation and
test sets are created following a 70/20/10 split, while we ensure that the patches in each
dataset split only contain patches from different images.
Table 2.6 shows the statistics of the patch dataset. As can be seen, due to the difference

in the number of images per camera model class in the PRNU-PAR dataset, our dataset
of image patches has an unequal number of patches for each of the camera models.
Figure 2.14 shows a representative example of the images that are present in the PRNU-

PAR dataset next to one of their randomly extracted patches. In this case, both camera

49



2 Methods based on camera model traces

Figure 2.14: Example of images from the training set of the patch dataset. (Top) Image from camera model
PAR-A075 and one of the randomly selected patches associated with it. (Bottom) Image from camera model
PAR-A106 and one of the randomly selected patches associated with it.

models PAR-A075 and PAR-A106 have been used to capture images of a cloudy sky.
Other camera models such AS-One or ES-D5100 have taken images of a white screen.
All the image scenes that are captured in the PRNU-PAR dataset are mostly flat and
bright.
As it has been shown in the literature [28], these largely uniform images are ideal

candidates to be used for the extraction of the “fingerprint" (e.g. the characteristic
PRNU noise of the camera model) left in the image by the camera.

CNN architecture In order to do a fair evaluation of our counter-forensic method,
we use a CNN-based camera model detector that has been trained to achieve state-of-
the-art accuracy results in the patch dataset. CNN architecture designs have tended
to explore deeper models. Networks which can be hundreds of layers deep are now
commonplace in the literature. This design trend has been motivated by the fact that
for many applications such as image classification tasks, an increase in the depth of the
CNN architecture translates into higher accuracy performance if sufficient amounts of
training data are available.
A first approach to design a CNN architecture may be to simply stack convolutional

or fully-connected layers together. This naive strategy works initially, but gains in ac-
curacy performance quickly diminish the deeper this kind of architecture becomes. This
phenomenon is due to the way in which conventional CNNs are trained through back-
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propagation. During the training phase of a CNN, gradient information must be propa-
gated backwards through the network. This gradient information slightly diminishes as
it passes through each layer of the neural network. For a CNN with a reduced number of
layers, this is not a problem. For an architecture with a large number of layers, the gra-
dient signal essentially becomes noise by the time it reaches the first layer of the network
again.

The problem is to design a CNN in which the gradient information can be easily
distributed to all the layers without degradation. ResNets and DenseNets are modern
CNN architectures that try to address this problem.

A Residual Network [92], or ResNet is a deep CNN which tackles the problem of the
vanishing gradient using a straightforward approach. It adds a direct connection at each
layer of the CNN. In previous CNN models, the gradient always has to go through the
activations of the layers, which modify the gradient information due to the nonlinear
activation functions that are commonly used. With this direct connection, the gradient
could theoretically skip over all the intermediate layers and be propagated through the
network without being disturbed.

A Dense Network [56], or DenseNet generalizes the idea of a direct connection between
layers. Instead of only adding a connection from the previous layer to the next, it con-
nects every layer to every other layer. For each layer, the feature maps of all preceding
layers are treated as separate inputs whereas its own feature maps are passed on as in-
puts to all subsequent layers. The increased number of connections ensures that there
is always a direct route for the information backwards through the network. The con-
nectivity pattern of DenseNets yields state-of-the-art accuracies on the CIFAR10 image
classification dataset, which is composed by images of 32 × 32 pixels in size.

Motivated by the accuracy performance of DenseNet in the CIFAR10 dataset and
the fact that we also work with image patches of 32 × 32 pixels, we select a DenseNet
model with 40 layers as our CNN camera model detector. To prevent the network from
growing too wide and to improve the parameter efficiency, we limit the growth rate of
the network, this is, the maximum number of input feature-maps that each layer can
produce, to k = 12. To train the CNN, we use the Adam optimizer with a learning rate
of 0.0001 and a batch size of 512 images. After 5 training epochs, we reach a plateau in
the accuracy in our validation set. Table 2.7 shows the single patch accuracy results for
our training, validation and test splits of the patch dataset.

Adversarial image generation In order to evaluate the performance of our counter-
forensic method, we test the DenseNet model trained on the patch dataset using untar-
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Dataset Split Train Validation Test
Accuracy (%) 99.8 98.7 97.7

Table 2.7: Single patch accuracy results for our training, validation and test splits of the patch dataset.

ε
value

Error
rate (%)

Confidence
Score (%)

0.001 91.4 97.7
0.002 91.7 97.2
0.003 92.2 96.7
0.004 92.7 95.8
0.005 93.1 95.3
0.006 94.1 95.1
0.007 94.5 94.2
0.008 95.3 93.6
0.009 95.9 93.0
0.01 96.2 92.3

Table 2.8: Error rate and confidence score values of our trained DenseNet model after an untargeted attack with
FGSM to the test split with different values of ε.

geted attacks with FGSM and targeted attacks with JSMA. To properly evaluate our
method, we only perturb images from the test split which were correctly classified by our
CNN in their original states.

To be clear, what we refer as the average confidence score is the average value of
the probability that is associated with the candidate camera model label for each of
the image patches in the test split. The probability for each candidate camera model
label corresponds with the highest probability value assigned by the softmax layer of our
trained DenseNet model.

For untargeted attacks with FGSM, we report in Table 2.8 the error rate and the
average confidence score on the test split of the patch dataset for different values of
ε which have been shown to generate high misclassified adversarial images while not
producing appreciable visual changes. We find that using ε = 0.005 offers the best
compromise between error rate and visual changes in the image, causing the trained
DenseNet model detector to have a error rate of 93.1% with an average confidence of
95.3% on the patch test split. It should be noted that as we increase the value of ε, the
manipulations become more visually apparent.

Figure 2.15 shows an example of the adversarial images that our proposed method
can generate when we use FGSM. The modifications done to the images by FGSM are
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Figure 2.15: An example of untargeted fast adversarial image generation using FGSM applied to our trained
DenseNet model on the patch dataset. By adding an imperceptibly small vector whose elements are equal to the
sign of the elements of the gradient of the cost function with respect to the input, we can change DenseNet’s
classification of the image patch.

Target
Camera Model

Error
rate (%)

Confidence
Score (%)

AS-One 99.5 87.7
ES-D5100 99.3 88.6

MK-Powershot 99.3 88.4
MK-s860 99.7 88.5
PAR-1233 99.7 87.9
PAR-1476 99.4 88.1
PAR-1477 99.5 88.2
PAR-A015 99.6 88.4
PAR-A075 99.3 87.8
PAR-A106 99.2 87.9

Table 2.9: Error rates and confidence scores of our trained DenseNet model for each possible target camera model
after applying a targeted attack with JSMA to the test split.

performed on 32-bit floating point values, which are used for the input of the DenseNet
model. The gradient computed for Figure 2.15 uses 8-bit signed integers. The image
representing the sign of the gradient is converted from 8-bit signed integers to 8-bit
unsigned integers. To increase the range of each color channel, we represent the −1s
values as 0 and the 1s as 255. For the possible 0’s, we have treated them as positive
values (they are represented by 255).

For targeted attacks with JSMA, we report in Table 2.9 the error rate and the average
confidence score for each possible camera model target class. Figure 2.16 shows an exam-
ple of the images that JSMA allows us to generate when we perform a targeted attack. In
this case, an image patch captured by camera ES-D5100 that is correctly classified when
is analyzed by our trained DenseNet model is manipulated to be misclassified as an image
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Figure 2.16: An example of targeted adversarial image generation using JSMA applied to our trained DenseNet
model on the patch dataset. (Left) Original image patch correctly classified as ES-D5100. (Right) Altered image
patch with target camera model PAR-1233

patch that had been generated by camera model PAR-1233. It is important to appreciate
that although JSMA allows us to generate image patches that get misclassified into a
specific camera model with high error rates and confidence scores, the modifications that
it applies to the images can usually be spotted through visual inspection. This effect
is due to the fact that JSMA crafts the adversarial images by flipping pixels to their
minimum or maximum values. Because our patch dataset is composed of image patches
with mostly flat scene content, the effect can be clearly observed, for example, in the
upper corners of the manipulated image patch in Figure 2.16.

2.8 Conclusions

In this chapter we presented the possibility of using CNNs to solve camera model identifi-
cation problems. The proposed algorithm has been validated paying particular attention
to the used evaluation protocol in order to avoid overfitted or biased results. We in-
vestigated the effect of training a CNN on different data splits in order to highlight
the dependency between accuracy, training set size, and training-testing splitting policy.
This study shows that it is possible to achieve high camera model attribution accuracy
(i.e., around 96% ) even with fairly small network architectures (i.e., four convolutional
layers), provided that a minimum amount of training images are available. Indeed, the
use of larger configurations determines a negligible accuracy increment, at least on the se-
lected dataset of 18 camera models. Comparison against state-of-the-art method showed
promising results when small image patches are considered. Accuracy achieved in the
literature exploiting full size images can be obtained with our method with a considerable
reduced amount of information (i.e., a few patches).

Despite being a method based on deep learning, results show that the CNN can be
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trained only once to learn a feature extraction procedure that can be used afterwards
also on images from camera models never seen by the CNN. Moreover, the ability of
associating small image patches to camera models, paves the way to the development of
image splicing localization methods.
With this regard, the method proposed in Section 2.5 exploits a the CNN model

presented in Section 2.4 to extract features capturing camera model traces from image
patches. Features are clustered into two groups (i.e. pristine or forged) using an iterative
algorithm, and information about patches content and locations is further used to refine
forgery localization estimation.
Evaluation carried out on a dataset of 2000 images obtained from 26 camera models

shows that the proposed algorithm is able to detect forged images with accuracy of 0.91

if camera models involved in forgeries have been used during CNN training. If camera
models involved in forgeries have never been used for training, detection accuracy still
remains as high as 0.81. Results on tampering localization shows that it is possible to
detect forged regions with accuracy about 0.90 and 0.82 depending on the knowledge (or
not) of the used camera models at training stage. This makes the proposed method more
accurate than alternative baseline solutions selected from [75].
Finally, we proposed a counter-forensic method to subtly alter images to change their

estimated camera model when they are analyzed by a CNN-based camera model detec-
tor. We tested our method on a reference dataset with images from multiple cameras
that show highly similar indoor and outdoor scenes. The results demonstrate that we
can generate imperceptibly altered adversarial images that are misclassified with high
confidence by the CNN, opening the way to a new class of counter-forensics attacks.
The challenge in designing and training a CNN architecture for camera model identifica-
tion that is accurate on a high number of camera models and robust against adversarial
attacks is still open.
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3.1 Introduction

Over the last decade, ownership attribution and origin verification of digital content
has become of capital importance, due to the widespread diffusion of digital devices
capable of acquiring images, videos and audio tracks, as well as sharing them over the
Internet. Active forensic methods based on image watermarking or bit-stream embedded
metadata are not always applicable for owner identification purposes, or may be easy
to fool. Watermarks, for instance, must be inserted at image inception time to let the
content be recognizable even after common transformations such as rotation, scaling, or
compression [96]. Conversely, metadata manipulation is at everyone’s hand, and with a
few clicks it is possible to anonymize an image removing all its EXIF properties [97]. To
face ownership attribution in a completely blind fashion, researchers have developed a
set of techniques tailored to extract traces left on the image by processing components
such as lens aberrations [57, 98], color filter array (CFA) demosaicing artifacts [58, 99],
JPEG compression traces [100], or combinations of these [27, 101].

The most widespread technique for camera device identification is based on the Photo
Response Non-Uniformity (PRNU) [13]. This is a time invariant weak multiplicative
signal introduced on every picture taken with a CCD/CMOS imaging device. PRNU
traces are mainly due to sensor’s silicon imperfections and can be exploited as a unique
fingerprint for each camera sensor. Silicon imperfections occurring at sensor manufac-
turing process cause each pixel to have a slightly different area, thus the amount of light
energy captured in a fixed time slot (i.e. exposure time) varies pixel-wise even under a
perfectly uniform light field. Such a fingerprint is embedded in every shot taken with
a specific device, being it a professional Digital Single-Lens Reflex (DSLR) camera or a
cheap smartphone. PRNU knowledge allows to determine whether two images have been
captured by the same device, link a picture to the specific camera that took it, and even
detect forgeries [102–104].

The PRNU can be extracted, or at least estimated, by having access to a set of images
captured by the same camera. As a matter of fact, the PRNU fingerprint extraction
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process from natural images has been deeply analyzed [105–110] and the effect of image
content residuals after noise extraction has been faced with signal enhancement tech-
niques [111]. Moreover, the resilience of the extracted PRNU traces to cropping, scaling
and JPEG compression [112,113] gave way to a massive usage of PRNU fingerprints for
camera device identification [114]. Furthermore, clustering based approaches [115, 116]
have shown the possibility of separating pictures coming from several camera devices
based on the analysis of PRNU traces.

PRNU compression

One drawback of large scale approaches is the need to store in a central database, or
transmit over bandwidth-limited channels, a huge amount of data. Indeed, PRNU fin-
gerprints need to be extracted at higher resolutions, up to the size of the imaging sensor,
to achieve better matching and detection performance and avoid false-alarms. In a large-
scale retrieval setup the need of storing several thousands of reference fingerprints at full
resolution poses issues regarding the amount of storage space. A second issue arises in
terms of computational complexity, when a query fingerprint needs to be matched against
many device fingerprints stored in a central camera fingerprints database. In a mobile
authentication scenario [117], when a user wants to authenticate its device by sending
a residual extracted from a picture to a centralized database for verification, restricting
the amount of data being sent over the network is mandatory to reduce response times
and improve user experience.
An overview of the state-of-the art techniques on PRNU compression is provided in

Section 3.3.1, while in Section 3.4 we address the problem of PRNU compression by
proposing:

1. a projection design methodology that takes into account interpolation effects on
the PRNU (Section 3.4.2)

2. a pipeline for PRNU compression tailored to JPEG images based on state-of-the-art
Random Projections [15] (Section 3.4.3)

As for the former, a Signal-to-Noise-Ratio (SNR) maximization problem for the alter-
native hypothesis of a fingerprint cross-correlation test is solved, taking into account the
interpolation effect due to the post-acquisition operations a digital image undergoes, e.g.
demosaicing, JPEG compression. We first provide a theoretical framework to establish
near-optimal conditions for the projection matrix, then we provide a design methodol-
ogy for such a matrix. The approach not only yields better detection performance as
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compared to the state of the art, but is much cheaper in computational terms, which is
a critical indicator when huge databases need to be searched.
As for the latter, we leverage on two founding concepts for PRNU compression tailored

to JPEG images:

• As images are often JPEG compressed, high-frequency PRNU components may be
corrupted, thus making low-frequencies overall more informative.

• Dead-zone quantization provides much more flexibility than binary one, especially
when paired with entropy coders.

Exploiting the first idea, we show that it is possible to pre-process PRNU traces with
a decimation operation up to a certain ratio before reducing vector space dimensionality
with Random Projections, still retaining important camera device information. Even
though PRNU is robust to JPEG compression in terms of device identification or verifi-
cation [13], the strong quantization introduced by JPEG compression at high frequency
components [62,118] motivates the introduction of a low-pass filtering via decimation as
first step of the pipeline, in order to preserve only those frequency components that are
carrying significant information about the original PRNU signal.
The second idea basically compromises between fingerprint binarization [119] (i.e., bi-

nary quantization) and fingerprint digest [50] (i.e., only coding prominent peaks). Thanks
to the proposed dead-zone quantization process, it is possible to further compress finger-
prints exploiting entropy coders that did not prove useful after PRNU binary quantiza-
tion.

Image anonymization

When privacy is a concern, being able to link a picture to its owner is clearly undesirable.
As an example, photoreporters carrying out legit investigations may prefer to anonymize
their shots in order to avoid being threatened. For this reason, counter-forensic methods
that enable deleting or reducing PRNU traces from images have been proposed in the
literature. An overview is offered to the reader in Section 3.3.2.
In Section 3.5 we investigate different solutions for PRNU anonymization:

1. two parallel and fast inpainting techniques as methods for image anonymization
that do not require the knowledge of the camera fingerprint (Section 3.5.2)

2. an auto-encoder inspired fully-convolutional neural network for image anonymiza-
tion, that instead requires the knowledge of the camera fingerprint (Section 3.5.3)
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Inpainting methods Inpainting is a well-known topic, which refers to the application
of simple or sophisticated algorithms for reconstructing lost or corrupted portions of an
image (e.g., by solving partial differential equations, with the application of sparse domain
transformations or the regularization of inverse problems, etc.). The rationale behind our
approach is that, by deleting and reconstructing each pixel from its neighbors, PRNU
effect can be strongly attenuated. The proposed method mainly works in two steps: (i)
each image pixel is substituted by its inpainted value, in order to corrupt the PRNU;
(ii) pixels around edges are replaced by denoised versions of the original ones in order to
mask possible visual artifacts around sharp discontinuities.
Even though the literature is wide and provides many advanced solutions, we inves-

tigate the use of simple yet effective inpainting schemes that keep computational com-
plexity at bay. Specifically, we only consider solutions that reconstruct pixels by solving
inverse regularized problems.
In particular, it is important to point out that a regularization which perfectly recon-

structs the original image would lead to a high visual quality result, but would be totally
useless for what concerns the anonymization task, as the traces of PRNU would remain
almost unchanged. Therefore, in order to achieve our goal, the algorithm proposes a
trade off between quality and anonymization of the outputs.

Auto-encoder method We explore the possibilities offered by CNNs in terms of cam-
era device anonymization based on the knowledge of the reference PRNU. An image-
wise anonymization loop is built upon a CNN-based noise extractor. An auto-encoder
inspired fully-convolutional neural network is trained as anonymization function via back-
propagation, exploiting the possibilities offered by a recently introduced CNN-based de-
noising method [120].
The proposed use of a CNN is different from the typical one. Instead of training a

CNN on many images to learn a generalizable method, we “overfit” the proposed CNN
on each single image to be anonymized. In other words, we consider the CNN as a
parametric operator. We build a loss function to be minimized in order to estimate the
CNN parameters. The CNN training is seen as an iterative way of minimizing the CNN
loss for each given image.

3.2 Background

In this section we introduce the necessary background about PRNU fingerprint estimation
and matching, and finally we present a short overview about JPEG compression and how
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it affects PRNU fingerprints and residuals.

3.2.1 PRNU estimation

Photo Response Non-Uniformity (PRNU) is a multiplicative noise pattern mostly related
to different sizes of imaging sensor cells. It is a weak signal caused by minute imperfec-
tions occurring during the manufacturing process of the sensor. Despite its weakness,
when a sufficiently large number of image samples is available it is possible to estimate
and use it as a robust fingerprint for a specific camera sensor [105].

y = gγ [(1 + k) ◦ f + z]γ + nq (3.1)

where y is the one-dimensional representation of the acquired image Y , f is light field at
the sensor, g is the color channel gain and γ is the gamma correction factor [103]. k, the
column-wise unwrapping of K, is a zero-mean noise-like signal identified as the PRNU
fingerprint, z is a combination of remaining noise sources (dark currents, read-out noise,
shot noise), and nq is quantization noise. The imaging model can be further simplified
as

y = x+ x ◦ k0 + n (3.2)

where x = (gf)γ is a noise-free version of y, k0 = γk and n condensates all the indepen-
dent random noise components residuals. Here we consider, without loss of generality, the
wavelet decomposition based denoising algorithm proposed in [121] and adopted in [102]
to get x. When a single query image yq is available, we define its residual as

wq = yq − xq . (3.3)

When a set of Nc images from the same device is available, we define the residual for each
picture yc, c ∈ [1, Nc] as wc = yc−xc and we obtain the estimated PRNU fingerprint k̂
for the device as

k̂ =

∑Nc
c=1wc ◦ yc∑Nc

c=1 y
2
c

(3.4)

Wiener adaptive filtering in the Discrete Fourier Transform domain and mean subtraction
are finally applied to k̂ in order to remove model or compression specific artifacts.

When a query image under investigation yq and a camera device c, characterized by
a PRNU fingerprint kc are made available, a two-channel hypothesis testing problem is
faced in order to determine whether query yq has been shot by the device characterized
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by kc:

H0 : yq was not taken with camera c;

thus it does not contain kc

H1 : yq was taken with camera c;

thus it contains kc

Detection of such matching is performed via cross-correlation test, defined as

r
.
= 〈k̂c,wq〉 =

N∑
i=1

k̂c,i · wq,i (3.5)

When r > τ then H1 hypothesis is verified and query image is verified to come from c. τ
is a threshold on the cross-correlation test properly set in order to bound the false-alarm
probability under a maximum desired value.

3.2.2 JPEG compression

JPEG compression is the most widespread standard for saving natural pictures in a
digitized way. All camera models and smartphones, both professional and cheap ones,
provide a way to save on non-volatile storage the acquired images in JPEG format.
At first, a color space transformation from the RGB color space to the YCbCr color

space is applied to the original image, to get a luma component (Y) and two chroma
components (Cb, Cr). Luma and chroma matrices are split in 8×8-pixel non-overlapping
blocks. Every block is transformed with 2D Discrete Cosine Transform, rearranging the
64 resulting coefficients in a 8 × 8 matrix where the top-left element contains the DC
component and the bottom-right element contains the highest – both vertically and
horizontally – frequency component coefficient.
Each block is then quantized by dividing each frequency component by a specific quan-

tization step, then rounding the result to the nearest integer. Quantization coefficients
are stored in two quantization matrices, one for luma component and one for chroma
components. The aforementioned coefficients quantization carries two effects: i) a re-
duction of inter-coefficient entropy, exploited by zig-zag run-length Huffman coding to
compress each block thus reducing storage space; ii) a frequency-dependent filtering, that
greatly reduces high-frequency components while preserving low-frequency ones.
The final effect of JPEG compression on an image is a block-wise low-pass filtering.

This also affects the image embedded PRNU, which loses its white-shaped spectrum in
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favor of a low-pass version. This consideration stands behind the choice of pre-processing
with a low-pass filter the estimated PRNU fingerprints and image residuals, in order
to reduce the amount of data being processed and transmitted, while preserving the
surviving spectral components of the PRNU.

3.3 State of the art

In this section we present the most relevant techniques at the state of the art in PRNU
compression, Section 3.3.1, and PRNU-based antiforensics techniques, Section 3.3.2.
Some of the presented techniques are used as baseline to compare the results of the
proposed methods in the following sections.

3.3.1 PRNU compression

Being the problem of PRNU dimensionality reduction necessary in real-world applica-
tions, several PRNU compression techniques have been proposed in the literature. In the
following, we present an overview of the most relevant dimensionality reduction systems
presented in the literature. The illustrated compression strategies are described in terms
of camera fingerprint (K̂c) but the same process holds also for query residuals (Wq).

Trimming and cropping Fingerprint trimming [50] is the most trivial way of compres-
sion. Considering k̂c as the column-wise unwrapping of K̂c, trimming is performed by
preserving only the first P samples from k̂c.
Similarly, fingerprint cropping results when preserving only the central portion of a

fingerprint K̂c and then performing the unwrapping.

Digest Fingerprint digest [50] is one of the most effective PRNU compression tech-
niques. The base idea is that most prominent peaks of the extracted PRNU K̂c are
more relevant when using a cross-correlation test for device attribution. Therefore, the
digest is built by retaining the position and value of the P highest energy pixels from K̂c,
creating a pair of vectors of length P , holding respectively peak values and positions.
While this method turns out to be very effective in terms of compression ratio, it

requires the knowledge of a rather good estimate of K̂c to preserve those pixels that are
really characterizing a specific sensor fingerprint. This is made possible only when K̂c

is estimated from many images, as only with a good estimate of the PRNU the peaks
selection process is robust enough to allow compression while retaining high detection
performance.
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In a query compression scenario, as in a joint compression scenario, where query resid-
ual compression is limited to the knowledge of a single image, fingerprint digesting is not
a viable option.

Binarization Fingerprint binarization [119] is an effective way to greatly reduce the
fingerprint bitrate even after trimming, cropping or projection. Binarization is defined
as an element-wise operation transforming a real number x into its binarized version xb
as

xb =

+1 if x ≥ 0

−1 if x < 0
(3.6)

An additional benefit from binarization is the reduced computational complexity when
performing a cross-correlation test, as shown by Bayram et al. [119].

Gaussian Random Projections Introduced as PRNU compression method by Valsesia
et al. [15], Random Projections (RP) with Gaussian sensing matrix have proven to be an
effective way of compressing camera fingerprints and query residuals. The idea of RP is
to project the one dimensional unwrapping k̂c of fingerprint K̂c from a vector space of
dimension L = h · w to a subspace of dimension P .

Formally, a sensing (projection) matrix Φ with size L × P is generated with samples
being extracted from a i.i.d. zero-mean Gaussian distribution. The resulting projection
rc is thus a matrix product between a sensing matrix Φ and a vector k̂c

rc = Φ� k̂c (3.7)

In order to speed-up computation and save memory, a simplified way of building the
projection matrix is to randomly generate as i.i.d. zero-mean Gaussian a single column
φ of Φ, then generate all other columns by means of circular shifting. In this way the
projection can be turned into an element-wise product in the Fourier Transform domain
as

rc = IFFT
(
FFT(k̂c) ◦ FFT(φ)

)
(3.8)

The process ends by preserving only the first P elements of rc. The binary version of rc
is denoted as rbc.
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3.3.2 Antiforensics

Given an image Y shot with a camera whose PRNU fingerprint is Kc, the cross-
correlation test between the PRNU residualW extracted from Y and Kc is expected to
be greater than a threshold τ . Formally, 〈Kc,W 〉 > τ .
PRNU-based antiforensics techniques aim at modifying Y to generate an anonymized

version Ỹ so that

• The PRNU residual W̃ extracted from Ỹ fails the cross-correlation test with Kc.
Formally, 〈Kc, W̃ 〉 < τ .

• The perceptual quality of the anonymized image is as similar as possible to the
original one. One of the measures used to evaluate the perceptual quality is the
Peak Signal-to-Noise Ratio (PSNR) between Ỹ and Y , whose value should be as
high as possible.

Among the developed techniques, some require the knowledge of the PRNU fingerprint
to be deleted, while others are PRNU independent.

PRNU-aware techniques In [122] the authors propose an adaptive fingerprint removal
technique based on what suggested in [105,123]. The base idea is to remove the estimated
camera fingerprint Kc from the original image Y to obtain an anonymized image Ỹ as

Ỹ = Y − βKc (3.9)

where β is a magnitude adjustment estimated by solving

〈Ỹ ,Kc〉 ≈ 0 (3.10)

By substituting the cross-correlation in Equation (3.10) with the Peak to Correlation
Energy (PCE), as from [124], and changing the type of PRNU extractor used to estimate
the image residual, the authors of [122] improve the PSNR between Y and Ỹ while
obtaining better anonymization performance.
One of the challenges in adaptive fingerprint removal is that Kc estimate, K̂c, can

be obtained from different images and using several denoising filters. Based on this
consideration, the authors of [125] propose an iterative anonymization algorithm based
on two different estimates of Kc. One estimate, K(1)

c , is used to attenuate the PRNU
traces, as in Equation (3.9), the other, K(2)

c , is used to modify the value of β. The
algorithm iterates until the stopping condition

∣∣∣〈K(2)
c ,W 〉

∣∣∣ < τ is met or the maximum
number of iterations is reached.
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PRNU-independent techniques The authors of [113] have studied the effect that multi-
ple denoising steps and multiple lossy compression-decompressions have on PRNU-based
image source identification. They noticed that, when repeated multiple times, both sets
of operations behave as anonymizers. However, the cost in terms of image quality loss is
generally too high.

Given the nature of the cross-correlation test, Equation (3.5), image resizing with
tailored seam-carving techniques is introduced in [126] to de-synchronize the positions
of the pixels between the anonymized image and the reference PRNU fingerprint. By
forcing seams over specific pixel locations, the anonymized image is perceptually very
similar to the original one, but the largest synchronized (i.e. unmodified) block in the
anonymized image is not large enough to have sufficient statistics to correctly match in a
block-wise cross-correlation test with the reference PRNU. The main drawback of such a
technique is that the number of seams to be removed in order to get good anonymization
performances is generally too high, thus compromising the anonymized image quality.

The most effective PRNU-independent anonymization technique for sensor-based
source identification is presented in [20]. Based on PatchMatch [127], as the seam-carving
approach it is based on the idea of de-synchronizing the PRNU residual extracted from an
anonymized image. Each patch of the original image is substituted by a weighted average
of similar patches coming from the same image. As the most similar patch within the
same image is always the patch itself, the PatchMatch algorithm is modified so to enforce
a minimum mean squared error between the source patches and destination patch.

3.4 Compression

In this section we formalize the problem of PRNU compression, Section 3.4.1, and we
propose two different approaches to tackle it.

The first approach, Section 3.4.2, is based on the design of projection matrices that,
under hypothesis H1, maximize the Signal-to-Noise Ratio between the expected value
and the standard deviation of the cross-correlation test. The main goal of this approach
is complexity reduction by designing computationally efficient projection matrices.

The second approach, Section 3.4.3, is tailored to fingerprints and residuals extracted
from JPEG compressed images, and aims at designing a pipeline for PRNU compression
that empowers the state-of-the-art Random Projections. The goal is to obtain a better
compression rate while preserving unaltered detection performance.
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Figure 3.1: Overall database and query pipeline. (Top) A set of flatfield images is used to estimate a camera
fingerprint k̂c, that is compressed and stored into a database. (Bottom) Residual wq is extracted from a single
query image, then compressed and sent to a central location for matching purpose.

3.4.1 Problem formulation

When it comes to storing a huge amount of fingerprints or there is the need of send-
ing them over a band-limited communication channel, an effective PRNU compression
method becomes mandatory.
We are interested in two main applicative scenarios that can summarize several real-

world applications (see Figure 3.1). Both scenarios include two players: i) a central
database that stores camera fingerprints, each extracted from several images; ii) a number
of query devices whose fingerprints need to be sent to a central server for matching
purposes. The two scenarios are described in the following:

Query compression scenario The goal is to reduce as much as possible the amount
of memory used to represent query residual information. This means minimizing the
bitrate required to send the compressed residual from a remote device to a central server.
Equivalently, this can be interpreted as minimizing the file size in case of residual storage
applications.

Joint database-query compression scenario The first goal is to restrict as much as
possible both the bitrate required to send a query residual to a central server and at the
same time limit the storage space required to store camera fingerprints. The second goal
is to reduce the computational complexity required to match each camera fingerprint
with a given query residual.
One of the main issues in compressing a PRNU fingerprint comes from the observation

that it is an inherently broadband white noise-like signal, well modeled as a sequence of
i.i.d. samples drawn from a zero mean Gaussian distribution. This results in a signal
with little or no redundancies to be exploited for lossless compression. Lossy compression
is then the only way to reduce fingerprint’s rate. In particular, we focus on compressing
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PRNU fingerprints and residuals when no geometrical transformations are applied to the
original images.
From a formal point of view, the problem of PRNU compression faced in this work can

be defined as follows. Let C be a collection of camera fingerprints, where each fingerprint is
estimated from several flatfield images according to Equation (3.4). Let Q be a collection
of query residuals, where each residual is extracted from a single query image. Let k̂c
and wq be an estimated fingerprint and a noise residual extracted respectively from C
and Q. The main goal is to generate reduced rate representations of k̂c and wq such that

• the performances in terms of Receiver-Operating-Characteristic of the compressed
and the uncompressed case are similar.

• storage space – or transmission rate – requirements of the compressed fingerprints
and residuals are minimized.

In Section 3.4.2 we present a projection matrix design methodology tailored to com-
plexity reduction by designing computationally efficient projection matrices.
In Section 3.4.3 we design a compression pipeline with the goal of obtaining a better

compression rate, while preserving unaltered detection performance.

3.4.2 Projection matrix design

Given a device whose estimated PRNU fingerprint is k̂c ∈ RN and a query image yq ∈
RN , our goal is to design a projection matrix Φ of size L×N,L < N that under statistic

r
.
= 〈Φk̂c,Φwc〉 (3.11)

enables dimensionality reduction of both k̂c and wc while maximizing detection proba-
bility for H1 hypothesis and minimizing false alarm probability for H0 hypothesis.
We assume the existence of a zero-mean vector k0 with N i.i.d. components N (0, σ2

k)

describing the PRNU of a sensing device.
The estimated device PRNU fingerprint k̂ ∈ RN , extracted from a set C of images

taken with the same camera device as from Equation (3.4), is modeled as

k̂ = Hck0 + ne (3.12)

where ne is the extraction noise which we assume zero-mean i.i.d., i.e. E{nenTe } = σ2
eI.

Matrix Hc ∈ RN×N accounts for demosaicing effects in the spatial domain and possibly
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the equivalent filtering performed in the DCT domain when images are compressed. All
other effects due to compression are included in ne.

Given a query vector y from an image in the query images set Q, and its denoised ver-
sion x, we model x = µx1+ x̃, where x̃ is assumed to be stationary with autocorrelation
rx̃[i− j] .= E[x̃ix̃j ].

The noise residual y−x is modeled asHq(k0◦x)+nt, where nt is zero-mean i.i.d. noise,
i.e. E{ntnTt } = σ2

t I and Hq plays a similar role to Hc. In general Hc 6= Hq because
we assume that images from C and Q may be compressed differently. Also notice that
more complicated noise models can be easily accommodated in our discussion, but we
keep our choice for the sake of readability.

For dimensionality reduction, we assume that both k̂ and y − x are projected using
the dimensionality-reduction matrix Φ, so the test statistic is the one introduced in
Equation (3.11).

Under hypothesis H1, we are interested in computing the mean and standard deviation
of r, and find conditions on Φ that maximize the Signal-to-Noise Ratio (SNR) defined
as SNR = E{r}/

√
Var{r}.

The mean term is

E{r} = µxE{Tr[Φqk0k
T
0 ΦT

c ]} = µxσ
2
kTr[M ] (3.13)

where Φq
.
= ΦHq, Φc

.
= ΦHc, and M

.
= ΦT

q Φc. We assume that projection vectors are
normalized, so that each row of both Φq and Φc has l2-norm equal to 1.

For the variance term, we show in [128] that

Var{r} = σ4
k

(
µ2
xTr[MM ] + (µ2

x + σ2
x)Tr[MMT ]

+
∑
i,j

rx̃[i− j] (Mi,iMj,j +Mi,jMj,i)
)

+ σ2
t σ

2
kL

+ σ2
eσ

2
k(µ

2
x + σ2

x)L+ σ2
eσ

2
tTr[(ΦΦT )2] (3.14)

Recalling that Tr[ΦΦT ] = L, the last summand is minimized when ΦΦT = I, that is
when projection vectors are orthonormal. Minimization of Equation (3.14) with respect
to M is cumbersome; however, noticing that in practice µ2

x is often larger than σ2
x, it

makes sense to minimize instead σ4
kµ

2
x

(
Tr[MM ] + Tr[MMT ]

)
, subject to Tr[M ] = L.

Writing M = MS +MA, where MS and MA are, respectively, symmetric and anti-
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Figure 3.2: Figure 3.3:

Figure 3.4: ΦcΦT
q for Φ is a Sub-Wrapping matrix (a) and when Φ is a Gaussian matrix (b) in a small-scale

example with n = 15, L = 12, s = 3 and real case Hc and Hq .

symmetric, the problem can be formulated as

minimize Tr[MMS ]

subject to Tr[M +MT ] = 2Tr[MS ] = 2L

Observe that Tr[MMS ] = Tr[(MS +MA)MS ] = Tr[MSMS ]. Then, we can pose the
problem equivalently in terms ofMS . In fact, if Λ is the diagonal matrix containing the
eigenvalues of MS , the problem becomes

minimize Tr[Λ2]

subject to Tr[Λ] = L
(3.15)

From Cauchy-Schwarz inequality, the solution to this problem is achieved when all
P non-null eigenvalues of MS are identical and take the value L/P . Notice that P =

rank(MS) ≤ 2·rank(M) = 2L. It is an ongoing problem to translate this general solution
into design principles regarding Φc and Φq. A particular approach consists in assuming
that M is symmetric, in which case P above will be equal to L, and the eigenvalues of
ΦcΦ

T
q will be all identical to 1. Therefore, we will seek projection matrices Φ for which

ΦcΦ
T
q = I.

On the other hand, for hypothesis H0 we find that E{r} = 0 and in [128] we show
that Var{r} = (µ2

x + σ2
x)Tr[MMT ]. Then, minimizing Tr[MMT ] also minimizes the

variance for H0.
As shown above, a condition to nearly maximize detection while minimizing false-

alarms in a cross-correlation test is ΦcΦ
T
q = I. Since our goal is to design Φ, we

first want to find the support of the point-spread function characterizing Hc and Hq.
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Figure 3.5: Estimated camera PRNU K̂c autocorrelation matrix as space-invariant bi-dimensional linear filter
with h = 11 in a small-scale example with N = 225.

Figure 3.6: Hc approximation as space-invariant bi-dimensional linear filter with h = 11 in a small-scale example
with N = 225.

To this end, we consider a bi-dimensional estimated camera PRNU fingerprint K̂c and
compute its autocorrelation, as shown in Figure 3.5. If the estimated fingerprint were
purely a white noise signal, its autocorrelation would result in a single peak at (0, 0).
However, demosaicing and low-pass filtering occurring during image compression lead the
autocorrelation to be far from an impulse, thus with a support extended over more than
one pixel. Approximating the PRNU autocorrelation as a bi-dimensional point-spread
function with support h×h, we can estimateHc as a space-invariant bi-dimensional linear
filter, as from the example in Figure 3.6. Following the same reasoning, it is possible to
estimate the support of Hq via autocorrelation of Wq, the bi-dimensional residual for
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3 Methods based on sensor fingerprints

Figure 3.7:

Figure 3.8:

Figure 3.9: Projection matrix Φ designed as a bi-dimensional Sub-Sampling matrix Φss (a) and the derived
Sub-Wrapping matrix Φsw (b) in a small-scale example with n = 15, L = 12, s = 3.

image Yq. For the sake of simplicity, in the following we will consider Hq = Hc. The
extension to the case where they are different is straightforward.

When it comes to the design of Φ, among the infinite set of solutions that lead to
ΦcΦ

T
q = I, we propose two simple design strategies: i) Sub-Sampling; ii) Sub-Wrapping.

Sub-Sampling The first proposed strategy is bi-dimensional subsampling with step-size
s, cropped to the first L output coefficients. In order to build the projection matrix Φ

let us suppose we wish to project a bi-dimensional fingerprint K̂c ∈ Rn×n, with N = n2,
L and n integer multiples of step-size s, such that n = b · s, for some b ∈ Z. Let us define

a
.
=
[

1 0 . . . 0
]
∈ {0, 1}s

B
.
=
[
Ib×b | 0b×b(s−1)

]
∈ {0, 1}b×bs

Φ̄ss .= Ib×b ⊗ (B ⊗ a) ∈ {0, 1}b2×N

where a is a row vector of s elements, representing the structuring element for the
subsampling matrix, Ib×b is an identity matrix of size b × b, 0b×b(s−1) is an all-zero
matrix of size b × b(s − 1) and ⊗ represents the Kronecker product between matrices.
The subsampling projection matrix Φss ∈ {0, 1}L×N is then obtained by retaining the
first L rows of Φ̄ss. An example for matrix Φss is shown in Figure 3.7.

Sub-Wrapping The second strategy is an extension of subsampling with step-size s that
takes into account the unused input coefficients due to cropping to length L. Cropped
rows from Φ̄ss are warped and summed to obtain Φsw, taking care of normalizing each
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row of Φsw. Formally, let us define

δ
.
= Ls2, r

.
=

⌈
b2

L

⌉

Z
[z]
i,j =

1 if i+ z = j

0 otherwise
i ∈ [1, N ], j ∈ [1, N ]

D
.
=

r−1∑
z=0

Z [zδ] ∈ {0, 1}N×N

where δ is the offset, in input space, between successive warps, r is the maximum number
of input samples contributing to a single output sample and D is an offset projection
matrix. We can now define an over-sized projection matrix Φ̄sw as

Φ̄sw .
= Φ̄ssD ∈ {0, 1}b2×N

and finally derive the actual subwrapping projection matrix Φsw ∈ RL×N by selecting
the first L rows of Φ̄sw and normalizing each row in l2 norm. An example of the resulting
projection matrix Φsw is depicted in Figure 3.8.

Orthogonality The design of Φssand Φsw presents two degrees of freedom, namely, s
and L ≤ N/s2. When designing a Sub-Sampling or a Sub-Wrapping projection matrix,
the rule that allows us to meet the ΦcΦ

T
q = I requirement is s ≥ h, since this way

replicas of the point-spread function will not overlap in Φc or Φq.
Figure 3.4 shows an example of how Sub-Wrapping and Gaussian Random Projections

affect ΦcΦ
T
q when real-world (i.e. with unlimited support) Hc and Hq are considered.

With the same set of parameters of the figure (n = 15, L = 12, s = 3), the resulting
values for Tr[Λ2] are 14.58, 14.92, 16.88 respectively for Sub-Sampling, Sub-Wrapping,
Gaussian Random Projection. Recalling from Equation (3.15) that the objective function
to minimize is Tr[Λ2], we can see how Gaussian Random Projection, despite being built
as an orthogonal basis, presents a higher value for Tr[Λ2] than Sub-Sampling and Sub-
Wrapping, which leads to a worst expected performance, as we will confirm later.

Complexity A final consideration about the design of Φ is in terms of complexity. In
the Sub-Sampling case, projection complexity is reduced only to samples selection, as no
sum or multiplications are involved, thus Css = 1. For the Sub-Wrapping case, sample
selection is followed by summing of a maximum of r elements for each output sample,
thus Csw = L(r−1). When Φ is built as a circulant matrix, as for the Gaussian Random
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Projections case, CRP = 2N [2 log2(N) + 3], considering a direct Fast-Fourier-Transform
(FFT) of size N , a dot product between two complex vectors of length N and the final
inverse FFT of size N . In a real-case application with n ≈ 1, 500, s = 3, b ≈ 500,
L ≈ 150, 000 and r = 2, the complexity of Sub-Wrapping projection is Csw ≈ 150K, less
than 0.1% with respect to the complexity of Gaussian Random Projections CRP ≈ 200M.

3.4.3 Random-projections-based pipeline design

Algorithm 2 Camera fingerprint processing algorithm

Require: K̂, d, φ, P , δ
1: K̂tmp ← decimate(K̂, d)
2: Ǩ ← decimate(K̂tmp, d)
3: ǩ← unwrap(Ǩ)
4: r∗ ← random project(ǩ, φ, P )
5: rδ ← dead-zone quantize(r, δ)
6: bit-stream ← entropy encode(rδ)
7:
8: function decimate(A, d)
9: h,w ← size(A)

10: for ir in {0, 1, . . . , h− 1} do
11: for ic in {0, 1, . . . , b(w − 1)/dc}

do
12: Ad(ir, ic) = 0
13: for jc in {0, 1, . . . , w− 1} do
14: x = ic · d− jc
15: Ad(ir, ic)+ = hc(x)A(ir, jc)
16: end for
17: end for
18: end for
19: return Ad

20: end function
21:
22: function random project(A, φ, P )
23: a← flatten(A)
24: aF ← FFT(ad), φF ← FFT(Φ)
25: pF ← aFφF

26: p← IFFT(pF )
27: p← trim(p,P )

28: return p
29: end function
30:
31: function dead-zone quantize(a, δ)
32: P ← length(a), σ ← std(a)
33: for i in {0, . . . , P − 1} do
34: if a(i) > δσ then
35: aq(i) = +1
36: else if a(i) < −δσ then
37: aq(i) = −1
38: else
39: aq(i) = 0
40: end if
41: end for
42: return aq
43: end function
44:
45: function entropy encode(a)
46: P ← length(a)
47: for i in {0, . . . , P − 1} do
48: if a(i) = 1 then
49: bitstream ← bitstream +10
50: else if a(i) = −1 then
51: bitstream ← bitstream +11
52: else
53: bitstream ← bitstream +0
54: end if
55: end for
56: return bitstream
57: end function
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Figure 3.10: Proposed compression pipeline. A camera fingerprint estimate K̂ is first decimated (DEC) by a factor
d to obtain Ǩ, then Random Projections (RP) are used to compress Ǩ into a P elements vector r∗. Finally a
dead-zone quantizer (DZ) is applied with threshold δ to get a quantized fingerprint rδ successively encoded (EC)
to generate a compressed output bit-stream.

Figure 3.11: Power Spectral Density (PSD) for noise residuals from a single flatfield image (a, b, c, d, e) and from
a single natural image (f, g, h, i, j) on PNG uncompressed images and while varying JPEG quality factor.

Given a camera fingerprint K̂c acquired according to Equation (3.4) and a query
residual Wq we propose the same compression pipeline for both K̂c and Wq. For the
sake of clarity, in the following we describe the process only for K̂c, using K̂ as a short
notation for K̂c.

Algorithm 2 and Figure 3.10 depict the proposed approach, comprising four steps: i)
fingerprint K̂ is decimated over rows and columns by a factor d to generate K̂d; ii)
Random Projections (RP) are applied to K̂d to produce a vector r∗P of length P ; iii)
dead-zone (DZ) quantization with threshold δ preserves only the peaks of r∗P and creates
rδP ; iv) Entropy Coding (EC) applied to rδP generates the compressed output bit-stream
containing fingerprint information. In the following we illustrate the rationale and the
details for each step, introducing compression for the case of the fingerprint estimate K̂.
The whole pipeline holds exactly in the same way also for query residuals Wq.

75



3 Methods based on sensor fingerprints

Decimation It is known from [118] that JPEG compression increases the variance of
cross-correlation values in Equation (3.5), thus reducing the margin between H0 and H1

hypotheses. In Figure 3.11 we analyze the effect of JPEG compression on the Power
Spectral Density (PSD) for different quality factors by looking at noise residuals W ex-
tracted from flatfield and natural images. It is clear that the power of the residue at
high spatial frequencies – lower right quadrant – lowers as images are more compressed.
Moreover, residual PRNU contributions in high-frequency bins are combined with resid-
uals of blockiness artifacts from JPEG compression that cannot be completely removed
by the residue extraction process.

Putting together the aforementioned consideration, a reasonable and simple prepro-
cessing method to reduce the dimensionality of K̂ and attenuate its high-frequency com-
ponents consists in decimating K̂ by a factor d > 1 along rows and columns. This
operation is accomplished via interpolation with a cubic kernel [129] hc(x) defined as

hc(x) =


1.5|x|3 − 2.5|x|2 + 1 if |x| ≤ 1

−0.5|x|3 + 2.5|x|2 − 4|x|+ 2 if 1 < |x| ≤ 2

0 otherwise

(3.16)

Given a vector a of length L and a decimation factor d, the i-th element of its decimation
ad results in

ad(i) =
L−1∑
j=0

hc(j − i · d) · a(j), ∀i ∈ {0, . . . , bl/dc} (3.17)

The choice of d is carried out such that the resulting resized fingerprint Ǩ performs in
the same way as the original K̂ fingerprint in terms of detection performance.

Random Projection The second step in the pipeline consists in projecting ǩ – the
column-wise unwrapping of Ǩ – with P Random Projections according to Equation (3.8),
to obtain r∗. Recalling that L = w · h is the number of pixels in the sensor, it is worth
observing that the input to Random Projection is now a vector with L/d2 elements due
to the previous decimation, thus the computational complexity in terms of additions and
multiplications of implementing Equation (3.8) for ǩ is

CRP (ǩ) = 2
L

d2
[log2(L) + 3− 2 log2(d)] (3.18)
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whereas the computational complexity of implementing Equation (3.8) for k̂ – the
column-wise unwrapping of K̂ – as in [15] is

CRP (k̂) = 2L [log2(L) + 3] (3.19)

Finally observing that

CRP (ǩ) <
1

d2
CRP (k̂) (3.20)

we can conclude that the computational complexity is reduced by more than a factor d2.

Dead-zone quantization While binarization of random projections has been proved to
be an effective way of quantizing and preserving good performance in terms of detection,
here we propose to use a dead-zone quantizer on r∗ to get rδ. Given σ, the standard
deviation of r∗, the i-th element of rδ for i = 1, . . . , P is obtained as

rδ(i) =


+1 if r∗(i) > δσ

0 if − δσ ≤ r∗(i) ≤ δσ
−1 if r∗(i) < −δσ

(3.21)

The rationale behind this choice is twofold. On one hand, as observed in [50] for
PRNU digest, peaks with high absolute values are the most important ones in terms
of cross-correlation, thus preserving those peaks seems a reasonable choice. On the
other hand, quantizing with a variable threshold allows to reduce the bitrate of rδ via
entropy coding by fixing P while increasing the value of δ (i.e., setting more samples to
zero). When comparing a dead-zone quantized signal with another binarized or dead-zone
quantized signal, the similarity measure provided by the cross-correlation, Equation (3.5)
is equivalent to the Opposite Absolute Distance (OAD) defined as:

OAD (x,y) =

N∑
i=1

1− |x(i)− y(i)| (3.22)

where x and y are respectively the two binarized or dead-zone quantized reference fin-
gerprint and query residuals of length N .

Entropy coding As last step of the pipeline, an arithmetic entropy coding scheme is
applied to rδP in order to get a compressed bit-stream containing compressed information
about K̂. The threshold value δ is a tunable parameter, as will be discussed in Section 3.6.
The Gaussian distribution of PRNU fingerprint coefficients after projection comes at help
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in the entropy coding stage. In fact, dead-zone quantization produces a three-symbols
output whose entropy is lower than log2(3) for increasing values of δ, due to the higher
probability of symbol 0 with respect to symbols +1 and −1.

3.5 Antiforensics

In this section we present the problem of device anonymization, Section 3.5.1, with two
different approaches to the topic.

In Section 3.5.2 we present a no-reference technique based on image inpainting.

In Section 3.5.3 we introduce a reference-based technique that explores the use of a
double-input CNN auto-encoder for sensor-based antiforensics.

3.5.1 Problem formulation

Given an image Y , attenuate its PRNU traces (wq) so that it is impossible to attribute
the image to the camera that shot it. In other words, if Y is acquired with a camera
whose estimated PRNU is kc, we expect that 〈k̂c,wq〉 > τ . Our goal is to modify Y
through editing techniques in order to obtain an anonymized version Ỹ with the following
properties:

• the cross-correlation between the noise extracted from the output image Ỹ (i.e.,
w̃q) and the camera PRNU gets to reasonably low values (i.e., 〈k̂c,wq〉 < τ)

• Ỹ is not visually corrupted by the applied editing operations (i.e., peak-signal-to-
noise ratio between Y and Ỹ assumes high values).

3.5.2 Inpainting-based method

The proposed pipeline, shown in Figure 3.12, is the following: (i) select and delete dif-
ferent blocks of Y ; (ii) blocks of Y are processed in parallel, reconstructing the erased
pixels from neighboring ones as in a classical inpainting problem; (iii) image Ŷ is recon-
structed by splicing together all the inpainted blocks; (iv) the final anonymized image
Ỹ is obtained by further processing pixels around edges of Ŷ , in order to mitigate in-
painting artifacts near sharp discontinuities and increase visual quality. The algorithm is
applied separately on each color plane. In the following, we describe each step considering
focusing on a single color plane, without loss of generality.
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Figure 3.12: Pipeline of the proposed anonymization strategy: an original image Y undergoes block selection,
and every modified version is inpainted in parallel. Results are merged to obtain Ŷ , which is further processed
around edges, thus obtaining the anonymized image Ỹ .
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Figure 3.13: Results of applying 4 pixel selectors to image Y : each selector Ss selects and deletes different blocks
of the original image. White areas represent deleted pixels.

Block selection The first step consists in selecting and deleting different image blocks
as shown in Figure 3.13. The selection of pixels is performed through N pixel selectors
S, s ∈ [1, N ], applied in an element-wise fashion to Y . Specifically, each pixel selector
Ss is a matrix with the same size of the image, set to 0 if the pixel must be removed and
to 1 elsewhere. This matrix, if multiplied pixel-wise with image Y , selects and erases
areas of B × B pixels, interleaved in both horizontal and vertical directions by a fixed
gap of P pixels left at their original values. In order to gradually select and cancel all
image pixels, each selector Ss is orthogonal to the others. This means that each selector
deletes a different portion of the image, but the whole image is covered considering the
effect of all selectors eventually. Figure 3.13 shows an example in which 4 pixel selectors
are multiplied by the original image in order to cancel some specific regions. We define
each modified version of Y as Ys = Ss ◦ Y , with s ∈ [1, N ].

Inpainting methods We investigate the family of inpainting methods based on the
solution of simple `1 and `2 regularized inverse problems. Our choice is motivated by
the fact that this class of problems has been broadly implemented through standard and
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efficient iterative methods [130].

In this scenario, the inpainted image Ŷs is estimated by solving the minimization
problem:

Ŷs = arg min
Ȳs
‖Ss ◦ Ȳs − Ys‖2F + µ ‖R(Ȳs)‖pp . (3.23)

The pixel selector Ss selects the pixels from Ŷs, ‖ ·‖F represents the Frobenius norm, µ is
the penalty weight associated to the regularizer operator R(·), and ‖·‖p is the entrywise `p
norm. The first term of the objective function (i.e., ‖Ss◦Ȳs−Ys‖2F ) is a fitting condition.
It basically imposes that the inversion result approximately honors the known samples
of the image. The second term (i.e., µ ‖R(Ȳs)‖pp) is the regularizer, which provides the
condition to be respected by the inpainted pixels. Different regularizing operators and
norms lead to different inpainting results.

A reasonable regularizer condition consists in imposing some smoothness constraints
(i.e., R(·) should be a roughening operator). This ensures inpainted values to be not too
dissimilar from neighboring pixels, which is desirable especially in flat regions of natural
images (i.e., far from edges). Among the many regularization operators available in the
literature, we make use of R(·) =

√
(Dx(·))2 + (Dy(·))2, where operations are applied

element-wise and Dx(·) and Dy(·) are the horizontal and vertical derivative operators,
respectively. For instance, the result of applying Dx(·) to an image Ŷs is defined as

Ȳsx,(i,j) =

Ȳs,(i,j) − Ȳs,(i,j+∆) j ∈ [1, H −∆]

0 j ∈ [H −∆ + 1, H]
, (3.24)

where ∆ > 0 is the desired pixel gap for the derivative calculation, H represents the image
height and width, as we are dealing with square images, and (i, j) represent the pixel
locations within the image. By setting different gaps ∆, various definitions of derivative
can be used.

For what concerns the norm applied to the regularization term, we consider two strate-
gies: (i) a `2 norm leading to the well-known Tikhonov regularization [131], which is the
most widespread technique for inverting ill-conditioned problems; (ii) a `1 norm strat-
egy, known as Total Variation (TV) regularization [132], which exhibits edge preserving
properties. While the `2 strategy is very simple from an implementation point of view,
it is known to introduce an overall smoothing effect that may be undesirable around
sharp edges. For this reason we also investigate the `1 norm applied to the previously
defined operator, which is widely used for preserving edges and discontinuities in the
final inpainting solution.
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Block Merging After obtaining the inpainted versions Ŷs of each image Is, we construct
the image Ŷ by merging the inpainted blocks:

Ŷ =

N∑
s=1

(1− Ss) Ŷs. (3.25)

Note that each pixel of Ŷ is an inpainted pixel, and no original pixels of I are preserved
by this operation. Moreover, due to Ss definition, each pixel of Ŷ is reconstructed from
a single Ŷs.

Edge Processing Inpainting applied with the aforementioned solutions may still in-
troduce some undesirable visual artifacts around edges (the effect can be noticed in
Figure 3.12, where image Ŷ has low peak signal to noise ratio). Therefore, to increase
image visual quality, a further edge processing operation is applied. More specifically, we
substitute pixels of Ŷ around image edges with pixels coming from a denoised version of
Y , in order to avoid the reintroduction of too much PRNU information. Indeed, [113]
shows that denoising can attenuate PRNU, thus motivating our approach.
Formally, the edge reconstruction pipeline is as follows: (i) the original image Y is

denoised using two successive steps of BM3D algorithm (with variance parameter σ = 7)
[133], thus obtaining Ẏ ; (ii) Y edges are extracted using Canny edge detector (with its
default parameters in MATLAB R©), obtaining a binary edge mask E (the same size of
Y ), which is 1 only at edge locations and 0 elsewhere; (iii) edge-mask E is dilated by
means of a disk structural element (with radius of 3 pixels); (iv) the final anonymized
image is defined as Ỹ = Ŷ ◦ (1−E) + Ẏ ◦E, where each operation is applied pixel-wise.
Figure 3.12 shows the effect of applying edge processing to Ŷ . Note that peak signal to
noise ratio (PSNR) of Ỹ is increased by 7 dB. Moreover, the computational complexity
of this step is mainly due to denoising operation, which is almost negligible with respect
to the rest of the inpainting pipeline.

3.5.3 Autoencoder-based method

In order to anonymize an image Y , we propose an anonymization function A (Y ,K)

that generates an anonymized version of Y , namely Ŷ = A (Y ,K). The design of A
is such that the Peak Signal-to-Noise Ratio (PSNR) between Y and Ŷ is greater than
a reference value while the normalized cross-correlation between the noise residual Ŵ
extracted from Ŷ andK is minimized. In an optimal case, it will result that 〈K̂, Ŵ 〉 < τ ,
so that it is not possible anymore to bind the anonymized image Ŷ to its camera device
with confidence α.
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Ŵ

lc

�

N

Figure 3.14: Architecture of the proposed system. An anonymization function A is fed with the input image
Y and the relative camera PRNU K. The anonymized image Ŷ is used to compute a quality loss lq based on
the Mean Squared Error (MSE) between Ŷ and Y . The noise residual Ŵ , extracted through a noise extraction
function N from Ŷ , is used together with the camera PRNU K to determine a correlation loss lc.

The proposed anonymization method is based on the idea of minimizing a cost function
made up of two components: i) a measure of the difference between the input image Y
and its anonymized version Ŷ ; ii) the cross-correlation between the anonymized noise
residual Ŵ and the camera PRNU K.
Figure 3.14 shows the overall working scheme. An image Y and the corresponding

camera PRNU K are fed as input to the anonymization function A. The output of A
is an anonymized version of Y , namely Ŷ . The Mean Square Error (MSE) between Y
and Ŷ is computed and stored into lq, the first component of the global cost function.
The anonymized image Ŷ is fed as input to the noise extraction function N and the
output Ŵ is correlated with the sample-wise product between K and Ŷ to get lc, the
second component of the global cost function. The global cost function l is then defined
as l = (1 − β) · lq + β · lc, where β is a weighting parameter tailored at balancing the
trade-off between image quality and anonymization performance.
In the depicted scheme, N is a fixed noise extractor, whereas A is a denoising function

learned independently on every pair (Y ,K) provided as input. We require both N and
A to support gradient computation so that it is possible to learn via back-propagation
the parameters of A as a function of the overall cost function l.
To satisfy the gradient computation capability for N we resort to DnCNN [120], a

fully-convolutional neural network that shows noise extraction capabilities comparable
with the Wavelet-based filtering approach commonly used for PRNU-based image source
attribution. DnCNN is composed by a set of 17 convolutional layers composed by 64
filters each with kernel size equal to 3 and padding 1, each followed by ReLU non linearity
and batch normalization. The fully-convolutional nature of the network does not require
as input a fixed size image and produces as output a noise residual with the same size of
the input image.
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Figure 3.15: Structure of the proposed CNN-based anonymization function A. The input image Y is processed
through a set of 17 convolutional layers (Conv2D) followed by ReLU non-linearity and Batch Normalization
(BN). The reference PRNU K is processed with two convolutional layers separated by a ReLU non-linearity.
The output anonymized image Ŷ results from the sample-wise algebraic sum of the input image Y and the two
fully-convolutional branches.

Algorithm 3 Image-wise anonymization process
Require: Y , K, PSNRmin
β ← 0.1
for i in {1, . . . , 3000} do
Ŷ ← A(Y , K)
lq ← MSE(Y , Ŷ )
P ← PSNR(Y , Ŷ )
Ŵ ← N (Ŷ )
lc ← | ρ(Ŵ , K ◦ Ŷ ) |
l = (1− β) · lq + β · lc
A ← BackPropagate(A, l)
if mod(i, 300) = 0 ∧ P < PSNRmin then

β ← β/4
end if
if P > PSNRmin ∧ lc < 10−4 then

return Ŷ
end if

end for
return Ŷ

As for the choice of A, we exploit an autoencoder structure similar to DnCNN, as
depicted in Figure 3.15. The input image Y is processed by a set of 17 convolutional
layers (Conv2D), each followed by ReLU non-linearity and batch normalization (BN).
The reference PRNU K is fed to a convolutional layer, followed by a ReLU and yet
another convolutional layer. The final anonymized image Ŷ results from the sum of the
two convolutional processing branches together with the input image itself. The weights
of the convolutional layers and the parameters of batch normalization for A are learned
for every single image via back-propagation, driven by the global cost function l.

The image-wise anonymization process follows as from Algorithm 3. An input Image
Y , a reference PRNU K and a minimum desired Peak Signal-to-Noise Ratio (PSNRmin)
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i = 30

⇢ = 0.122

P = 27.3

i = 410

⇢ = 0.012

P = 34.3

i = 970

⇢ = 0.004

P = 42.2

Figure 3.16: Iterations of the proposed algorithm on a sample image. From left to right the evolution of Ŷ
at i = {30, 310, 970} with cross-correlation ρ decreasing and PSNR P increasing. The rightmost picture is the
original image Y .

are provided as input. The loss weighting factor β is initialized at 0.1. At every iteration
the anonymized image Ŷ is first computed, together with the MSE loss lq and the
PSNR P with respect to the original image. Then the noise extraction function N is
used to extract a noise residual Ŵ from the anonymized image and compute the cross-
correlation loss lc. The global loss l is computed according to the weighting factor β.
As all operations in A are differentiable, it is possible to back-propagate the error and
modify A parameters to minimize loss with any iterative optimization algorithm (e.g.,
stochastic gradient descent in our implementation). It is not required for N and A to
have a similar structure, as long as both are differentiable operators. Once every 300
iterations if the PSNR value P is smaller than the desired minimum value PSNRmin the
weighting factor β is reduced by a factor 4, to raise the importance of the MSE loss
lq over the cross-correlation loss lc. If the current PSNR is greater than the desired
minimum and the cross-correlation loss is small enough (i.e., lc < 10−4), the current
anonymized image Ŷ is returned and the optimization stops. At most 3000 iterations
of the algorithm are performed, in order to bound the required anonymization time if
the early stop condition is not met. A sample of the evolution of Ŷ , ρ and P over the
iteration is provided in Figure 3.16.

3.6 Experiments

In this section we reports the experimental setup and the results related to PRNU com-
pression, Section 3.6.1, and PRNU-based antiforensics, Section 3.6.2.

3.6.1 PRNU compression

Setup To validate the effectiveness of the proposed methods, we focus on the problem
of image source attribution in a probabilistic framework with the following constraints:
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• All extracted fingerprints K̂c and residuals Wq are cropped to their central region
of size h = w = 1500, thus L = 2.25 · 106 is the number of elements for each vector
k̂c and wq. This allows for a direct comparison between every fingerprint-residual
pair.

• We consider only aligned fingerprints and residuals at original resolution, meaning
that we are not looking for rotation, cropping, or other affine transformations.
All fingerprints and residuals have the same size and for each camera device the
cropped region offset with respect to the origin is fixed. This choice follows from
state-of-the-art works about PRNU compression [15,119].

Given a set of C camera devices, for each device c ∈ [1, C] we have Fc flatfield pictures
that we use to estimate the camera fingerprint K̂c, according to Equation (3.4). In this
way we build a dataset C of Nc device fingerprints. For each natural image Y (n), n ∈
[1, N ] we estimate its residual W (n), building a dataset Q of N query images.

Evaluation metrics In order to determine whether a query image residual W (n) from
Q is correctly binded to its camera device and not to other devices, we build a cross-
correlation matrix CC ∈ RC×N defined as

CCc,n =
〈
K̂c, W

(n)
〉

c = 1, . . . , C, n = 1, . . . , N
(3.26)

then we set the same cross-correlation threshold τ for all camera devices such that the
overall False-Positive rate is below a certain false-alarm probability pFA. The cross-
correlation matrix CC is then turned into a binary prediction matrix P ∈ {0, 1}C×N
according to

Pc,n =

1 CCc,n > τ

0 CCc,n ≤ τ

c = 1, . . . , C, n = 1, . . . , N

(3.27)

Comparison between P and the Ground-Truth binary matrix GT, where GT (c, n) = 1

when K̂c and W (n) are from the same camera device, leads to definition of the here-
inafter used evaluation metrics known as True-Positive Rate (TPR) and False-Positive
Rate (FPR). In particular, when evaluating the relationship between residual bitrate and
system performance, we are considering the True-Positive Rate at a specific false-alarm
probability pFA = 0.05.
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Datasets Resorting to images from the Dresden Image Database [94] we build two
camera fingerprint datasets and several query residual datasets.
Four controlled compression datasets are built upon RAW images coming from 6 cam-

era devices, two for each model of Nikon-D200, Nikon-D70, Nikon-D70s:

• CRAWf is composed of 6 camera fingerprints extracted from flatfield RAW images.

• QRAW
n is composed of 1317 query residual extracted from natural RAW images.

• QQF=q
n is composed of 1317 query residual extracted from natural RAW images

compressed in JPEG format with QF = q before the noise extraction process.

Two uncontrolled compression datasets are built upon JPEG images from 53 camera
models, the same used in [15]:

• CJPGf is a composed of 53 camera fingerprints extracted from flatfield JPEG images
as encoded by cameras’ firmware.

• QJPG
n is a composed of 9092 query residual extracted from natural JPEG images

as encoded by cameras’ firmware.

3.6.1.1 Sub-Sampling and Sub-Wrapping

Experiments conducted in this Section aim at proving the compression effectiveness of the
proposed PRNU fingerprint and residuals projection methods described in Section 3.4.2.
Each reported plot presents four curves, each one related to a different compression
pipeline:

• Crop (blue): a central square region of the fingerprint or residual is cropped and
the rate is modulated by varying region size. This is a baseline reference method.

• Random Projections [RP] (green): Gaussian Random Projections implemented via
circulant sensing matrices are used for fingerprint and residual projection. The rate
is modulated by varying the projected subspace dimensionality.

• Sub-Sampling [SS] (purple): Bi-dimensional subsampling is implemented as de-
picted in Section 3.4.2. The rate is modulated by varying the downsamping step
size s while keeping L = bc.

• Sub-Wrapping [SW] (red): Bi-dimensional subwrapping with s = 3. The rate is
modulated by varying L.
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Figure 3.17: Rate vs TPR when camera fingerprints and query residuals are extracted from RAW images. Fin-
gerprints and residuals are not quantized.

Figure 3.18: Rate vs TPR when camera fingerprints and query residuals are extracted from RAW images. Fin-
gerprints and residuals are binarized after projection.

Figure 3.17 reports results obtained with camera fingerprints from CRAWf and query
residuals from QRAWn . Images used to estimate camera fingerprints and query residuals
have been affected only by demosaicing and neither projected fingerprints nor residuals
are quantized. We observe how the SS, SW and RP perform at par, a symptom of almost
diagonal Hc and Hq matrices due to reduced point-spread function support h.

Figure 3.18 shows how SS and SW behavior changes when both camera fingerprints and
query residuals are binarized after projection. Both SS and SW are now outperforming
RP with a noticeable compression improvement, e.g. a rate reduction in the order of
37% for a TPR of 0.99.

Figure 3.19 reports results when images used to estimate camera fingerprints and query
residuals have undergone JPEG compression by camera built-in firmware. In this case
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Figure 3.19: Rate vs TPR when camera fingerprints and query residuals are extracted from JPEG images.
Fingerprints and residuals are not quantized.

Figure 3.20: Rate vs TPR when camera fingerprints and query residuals are extracted from JPEG images.
Fingerprints and residuals are binarized after projection.

the point-spread function in Hc and Hq have surely larger support. This experiment
resembles a real-world scenario, where camera fingerprints are taken from CJPGf , query
residuals are from QJPGn and no quantization is applied to projected fingerprints and
residuals. In this case SS is performing as RP, with better TPR for bitrates smaller than
1700kbit per residual. SW is instead always offering a TPR improvement in the order of
1% meaning a rate reduction of nearly 23% at a fixed TPR of 0.9.

Finally, Figure 3.20 shows how binarization affects the aforementioned real case sce-
nario on CJPGf and QJPGf . While with similar performance, among the three methods
SW achieves better detection performances at equal bitrate with respect to RP and SS.

In any case, we once again remark that the complexity of the new projection methods
is much lower than that of RP.
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Figure 3.21: Effect of decimating by factor d in terms of detection performance when query images are uncom-
pressed (QRAW

n ) or JPEG compressed with different quality factors (QQF=q
n , q ∈ {30, 40, 50, 60, 70, 80, 95}).

3.6.1.2 Random-projections-based pipeline

In the following we report the experimental results related to the compression pipeline
proposed in Section 3.4.3.

At first we show how to properly select the decimation kernel and factor. Then we
compare Random Projections with and without the proposed resizing and dead-zone
quantization approaches in terms of bitrate vs. True-Positive Rate. Finally we show how
the proposed pipeline compares with the state-of-the-art solution in terms of Receiver-
Operating-Characteristic.

Decimation Choice of d, the resizing factor for the first step of the pipeline, is performed
evaluating the impact in terms of TPR when database fingerprints are extracted from
CRAWf , while query residuals are extracted from QRAW

n and QQF=q
n , q ∈ {30, 40, 50, 60,

70, 80, 95}. Figure 3.21 depicts the TPR at fixed pFA = 0.05, as a function of d. For
weak JPEG compression (QF ≥ 70) we observe a drop in detection performance when
decimating with a factor d ≥ 3, while for d < 3 the accuracy is preserved almost without
loss at a value of 1.0. For stronger JPEG compression factors (QF < 70) decimation
with d = 2 results beneficial, as it increases the Signal-to-Noise Ratio between the PRNU
(signal) and the PRNU-unrelated noise components remaining after the noise extraction
process. It is also interesting to notice that the loss-less behavior of decimation with
d = 2 might be related to CFA interpolation, even though we have no experimental
evidences to prove it at this time. Given the aforementioned considerations we chose to
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Figure 3.22: Comparison between decimation with a factor d = 2 followed by central cropping (Ǩ) against central
cropping alone (K̂) in terms of detection performance when query images are JPEG compressed with different
quality factors (QQF=95

n , QQF=90
n ).

set d = 2 for all the following experiments. As shown in Section 3.4.3 this leads to a
75% complexity reduction in terms of subsequent Random Projections. As for the choice
of the kernel function, the cubic one defined in Equation (3.16) shows similar detection
rates when compared to Lanczos kernels, with a noticeable improvement with respect to
a bilinear kernel, as it should be expected.

To understand the effect introduced by decimation when dealing with JPEG com-
pressed query images, Figure 3.22 reports the comparison between a baseline central
cropping strategy (K̂ dotted lines) versus a compression approach based on decimation
by a fixed factor d = 2 followed by central cropping (Ǩ dashed lines). To vary the bitrate
when no decimation is applied (K̂ dotted lines) we centrally crop both the fingerprint
and the residual. When decimation of a fixed factor d = 2 is applied as a pre-processing
step (Ǩ dashed lines) the bitrate is varied by central cropping both the decimated fin-
gerprint and the decimated residual. The bitrate is computed as l2 · 32bit, where l is the
side-length of the cropping square. Database images are drawn from CRAWf while query
images are extracted from QQF=95

n and QQF=90
n . Results show that when JPEG query

images are involved the same TPR can be obtained with a significantly lower bitrate,
meaning that the interpolation effect introduced by the cubic kernel is preserving PRNU
components and compacting them into a smaller support.

When Random Projections are used instead of central cropping, the benefits of deci-
mation are confirmed and highlighted. Figure 3.23 shows the benefit of decimation with
d = 2 when Random Projections are used to compress the signal while varying the pro-
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Figure 3.23: Effect of decimation with a factor d = 2 followed by Random Projections in terms of detection
performance when query images are JPEG compressed with different quality factors (QQF=95

n , QQF=90
n ).

Table 3.1: Entropy coded query rate [kbit] @ TPR = 95% with several quantizer choices in joint and query
compression scenarios. Best results in bold font.

P Quantization Joint
QF 95

Joint
QF 90

Query
QF 95

Query
QF 90

96k Dead-zone, δσ 22 30 13 18
96k Dead-zone, δ 44 54 35 42

varying Binarization 30 39 19 26
varying Uniform scalar, 3 levels 28 40 18 26
varying Uniform scalar, 5 levels 33 45 23 31
varying Uniform scalar, 7 levels 39 52 27 34
varying Lloyd-Max scalar, 3 levels 34 46 22 33
varying Lloyd-Max scalar, 5 levels 44 62 30 41
varying Lloyd-Max scalar, 7 levels 53 68 34 46

jection space dimensionality P . As no quantization is involved, the bitrate is computed
as P · 32bit. The comparison between the use of Random Projections applied directly to
the input fingerprint or residual (r dotted lines) against the use of Random Projections
after decimation (r∗ dashed lines) show that in the latter case the same TPR is obtained
with a significant reduction of bitrate.

Quantization and coding Figure 3.24 shows the reduction in terms of bitrate at equal
TPR when dead-zone quantization is used instead of binarization for compressing query
residuals. Camera fingerprints extracted from the CRAWf database are decimated with
d = 2, projected with Random Projection with P = 96k and binarized. Query residuals
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Table 3.2: Query rate [kbit] @ TPR = 95% with different encoders in joint and query compression scenarios. AC
= Arithmetic Coding, RLC = Run-Length Coding

P Quantization Encoding Joint
QF 95

Joint
QF 90

Query
QF 95

Query
QF 90

96k Dead-zone AC 22 30 13 18
96k Dead-zone RLC 28 40 18 23

Figure 3.24: Effect of dead-zone quantization, applied after decimation and Random Projection, in terms of
detection performance when query images are uncompressed (QRAW

n ) or JPEG compressed with different quality
factors (QQF=95

n , QQF=90
n ).

from QRAW
n , QQF=95

n and QQF=90
n are first decimated with d = 2 then projected with

Random Projection with varying P and binarized (rb dotted lines) or projected with
P = 96k and quantized with a varying δ dead-zone quantizer (rδ dashed lines). The
reported results show how for both uncompressed and JPEG compressed query images,
the same TPR can be obtained with a bitrate reduction of more than 20% when using
dead-zone quantization.

To confirm the choice of a dead-zone quantizer whose dead-zone is driven by the
standard deviation σ of the residual, as described in Section 3.4.3, we also tested several
different quantizers followed by an entropy coder and reported the results in Table 3.1. We
evaluate the required query rate to reach a TPR of 95%. In the first two lines, a Random
Projection with 96k output coefficients is fed to two different dead-zone quantizers, the
top one with a σ-driven dead-zone and the second one with a signal independent dead-
zone. In both cases, the values for δ are the same for all camera devices and a varying
value of δ is used to draw a ROC curve. From the ROC curve we derive the bitrate needed
to reach a 95% TPR. The other lines of the table are obtained by projecting the decimated
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Figure 3.25: Detection performance in a query compression scenario on uncompressed query images.

residuals with a varying projection length P while quantizing with binarization, three
uniform scalar quantizers and three Lloyd-Max scalar quantizers. The overall results
from the table confirm the choice of a signal-dependent dead-zone quantizer as it reduces
the required bitrate for fixed TPR performance.
As final step of the pipeline, the choice of a proper encoding scheme is essential to

exploit the reduced entropy resulting from the dead-zone quantization. While results
reported in the plots are computed with the use of a real arithmetic encoder, Table 3.2
shows the comparison between an arithmetic coder (AC) applied after dead-zone quan-
tization (first row) compared to run-length coding (RLC) after dead-zone quantization
(second row). Run-length coding is obtained by encoding only differential positions and
sign of the peaks. The increased bitrate when using RLC is in any case smaller or
equal to the bitrate obtained with binarized Random Projections applied to the original
query residual (third row of Table 3.1). In applications where bitrate constraints are
relaxed, the choice of a run-length encoder allows to keep coding complexity at bay while
preserving state-of-the-art compression rates.

Query compression scenario In a query compression scenario we wish to evaluate the
trade-off between query residual bitrate and achieved True-Positive Rate. Three different
datasets combinations are taken into account, all resorting to camera fingerprints from
CRAWf while query residuals are drawn from QRAW

n (Figure 3.25), QQF=95
n (Figure 3.26)

and QQF=90
n (Figure 3.27).

Each plot reports four curves comparing different methods: i) central fingerprint and
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Figure 3.26: Detection performance in a query compression scenario on JPEG compressed query images (QF =
95).

Figure 3.27: Detection performance in a query compression scenario on JPEG compressed query images (QF =
90).

residual cropping (K̂) while varying the amount of preserved pixels. Query residual co-
efficients are quantized by binarization; ii) Random Projections (r) applied to the entire
K̂ fingerprint while varying the number of projection components P . Projected coeffi-
cients from query residuals are quantized by binarization; iii) “Sub-Wrapping” method
introduced in Section 3.4.2 (SW), which proved to behave at par with Random Projec-
tions with a lower computational complexity; iv) proposed method, with K̂ resized by a
factor d = 2 that is then projected through Random Projections with P = 96000, giving
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Figure 3.28: Detection performance in a query compression scenario on Dresden dataset.

rise to r96k. Query projected fingerprints are then quantized with a Dead-Zone quantizer
(rδ), where threshold δ is gradually increased to decrease query residual bitrate, thanks
to arithmetic coding exploiting the reduced entropy of quantized residual.
By observing the three plots we can clearly see that when query residuals are extracted

from uncompressed images (Figure 3.25) the performance gap between Random Projec-
tions applied to the entire fingerprint (r) and dead-zone quantized Random Projections
applied to resized fingerprints (rδ) is negligible. When JPEG compression is applied to
query images (Figure 3.26 and Figure 3.27) the gap between r and rδ increases greatly.
If setting a goal TPR at around 95% the rate required by r is 25kbit and 52kbit, respec-
tively for QQF=95

n and QQF=90
n , while for rδ it is 13kbit and 18kbit, with a rate reduction

between 48% and 65%.
To test performance of proposed method on a dataset with uncontrolled JPEG com-

pression, Figure 3.28 reports results when camera fingerprints are from CJPGf and query
residuals from QJPGn . In this case both camera and query images have undergone JPEG
compression, but with several quality factors and customized quantization matrices, due
to different brands’ firmware implementations. In spite of the uncontrolled condition,
when setting a desired TPR at 90% the proposed method achieves a 70% rate reduction
with respect to Random Projections.

Joint database and query compression scenario In a joint database and query com-
pression scenario, experiments are carried out while quantizing by binarization all
database fingerprints. Figure 3.29, Figure 3.30 and Figure 3.31 report results obtained
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Figure 3.29: Detection performance in a joint compression scenario on uncompressed query images.

Figure 3.30: Detection performance in a joint compression scenario on JPEG compressed query images (QF =
95).

respectively on query datasets QRAW
n , QQF=95

n and QQF=90
n . For each plot, the four

lines represent performance with same query compression methods illustrated for query
compression scenario. When query residuals are extracted from uncompressed images
(Figure 3.29) the gap between r and rδ results negligible, while as soon as JPEG com-
pression is applied to query images (Figure 3.30 and Figure 3.31) the rate reduction
obtained by rδ with respect to r is respectively of 46% and 66%, at a desired 95% TPR.
As previously done for the query compression scenario, also in the joint compression

scenario we wish to verify performance under uncontrolled JPEG compression. Fig-
ure 3.32 reports results obtained from database fingerprints CJPGf and query residuals
QJPGn . As for the query compression scenario, the rate reduction offered by the proposed
method rδ with respect to Random Projection directly applied to K̂ is more than 68%,
under a fixed 90% TPR.
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Figure 3.31: Detection performance in a joint compression scenario on JPEG compressed query images (QF =
90).

Figure 3.32: Detection performance in a joint compression scenario on Dresden dataset.

Both in the query compression scenario (Figure 3.25,Figure 3.26,Figure 3.27) and in the
joint compression scenario (Figure 3.29,Figure 3.30,Figure 3.31) we can observe a common
trend. The proposed method (rδ) performs better in terms of compression than the state
of the art method based on solely binarized Gaussian Random Projections (r) when
query images are JPEG compressed. However, when query images are uncompressed,
the proposed method performs at par with the state of the art in terms of compression,
but with a reduced computational complexity.

Lowering false-alarm probability A last experiment is carried out by computing the
Receiver-Operating-Characteristic (ROC) for both scenarios, query and joint compres-
sion, on the Dresden dataset. This test allows us to verify the performance of the proposed
pipeline even at pFA smaller than 0.05. With a fixed rate of 64kbit per query for all three
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Figure 3.33: Receiver-Operating-Characteristic at 64kbit per residual in a query compression scenario on Dresden
dataset.

compared compression methods, Figure 3.33 reports the obtained ROC curves for the
query compression scenario, showing the Equal-Error-Rate for each curve at side of leg-
end items. The same results are shown for the joint compression scenario in Figure 3.34.
The proposed compression method preserves its good performance even at really small
pFA, making this choice viable also for those kind of systems that need to strictly bound
the False Positive rate.

Running times The execution time for the query compression pipeline is measured
on a modern laptop equipped with a quad-core Intel Core-i7 processor on top of a
MATLAB R© 2018a implementation. The baseline pipeline that takes as input the image
and directly applies Gaussian Random Projections followed by binarization and encoding
takes 150ms. When decimation of a factor d = 2 is pre-pended to the same pipeline the
running time drops to 38ms. Finally, as for the proposed method, when binarization is
substituted by dead-zone quantization the total time required to execute the pipeline is
39ms.
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Figure 3.34: Receiver-Operating-Characteristic at 64kbit per residual in a joint compression scenario on Dresden
dataset.

3.6.2 PRNU-based anonymization

Setup To state the effectiveness of the proposed approaches, we resort to the same
dataset and metrics used in [20]. The dataset is composed of 600 raw natural images,
demosaicked with Adobe Lightroom, randomly selected from 6 cameras (Nikon D70,
Nikon D70s, Nikon D200, two devices each) from the Dresden Image Database [94]. All
the images are cropped in their center to a fixed size of 512× 512 pixels.

The estimation of the clean sensor fingerprint K for each camera was obtained from
25 homogeneously lit flatfield images as typically suggested [105, 107]. We evaluate the
anonymization performance by using two different noise extraction functions: i) the
DnCNN function used as noise extractor within the anonymization scheme, denoted as
Ndn; ii) the Wavelet-based noise exaction function [121] commonly used in PRNU-based
works, denoted as Nwl. As for the use of DnCNN as noise extractor, we resort to the
pre-trained model available from [120]. We resort to Pytorch [134] as Deep Learning and
CNN framework.
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Figure 3.35: (a) ROC curves after camera anonymization process (each color represents a different inpainting
strategy). (b) Median PSNR vs. TPR0.01 for different inpainting strategies, in comparison with PatchMatch-
based (gray lines) patch replacement [20]. (c) Median PSNR vs. AUC for different inpainting strategies, in
comparison with PatchMatch-based (gray lines) patch replacement [20].

3.6.2.1 Inpainting-based methods

We show results in terms of receiver operating characteristic (ROC) curves of a camera
identification PRNU-based detector. Specifically, fixing the PRNU of a given camera,
cross-correlations obtained from anonymized images taken with that camera define the
set of positive samples, whereas the set of negative ones includes cross-correlation values
from all images not taken with that camera. Our goal is to reduce as much as possible
the area under the curve (AUC), thus making the PRNU-based detector not working.
Moreover, to evaluate image quality level, we report the relationship between PSNR and
true positive rate (TPR) calculated at a fixed false positive rate (FPR) of 1%, which we
denote as TPR0.01. The goal is to reach a high PSNR with low values of TPR and AUC.
Results are always averaged on all six devices. For the inpainting-based methods we
resort to the Wavelet noise extractor for both camera fingerprints and query residuals.

To distinguish between the proposed inpainting strategies, we use the following nota-
tion: each technique is identified by the label `(B)

p , where `p represents the selected norm
for the cost function regularization (i.e., p ∈ {1, 2}), while the superscript defines the
size of the B×B regions deleted by the pixel selectors. For what concerns the derivative
implementation, we noticed that ∆ = 3 provides a good trade off between high recon-
struction quality and low PRNU correlation. Indeed, smaller ∆ tend to inpaint the image
from nearer (and more correlated) pixels, consequently enhancing the correlation with
the camera fingerprint. Conversely, larger ∆ result in low PSNR. The penalty weight
associated to the regularizer is µ = 10−20 for both `2 and `1 norms, since higher values
oversmooth the image, thus reducing the quality.
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The first experiment aims at showing that the proposed pipeline is actually able to fool
PRNU-based camera attribution detectors. To this purpose, we tested both `2 and `1 in-
painting by considering different block sizes B ∈ {3, 5}. Figure 3.35(a) reports promising
ROC curves, as their slopes are approximately 45o degrees (i.e., perfect anonymization).
Every strategy seems to provide satisfying performances, even though, the bigger the
block dimensions (B = 5 instead of 3), the better the anonymization results.
For what concerns the inpainting effect on image quality,Figure 3.35(b) and Fig-

ure 3.35(c) show encouraging results, both in terms of TPR0.01 and AUC as functions
of the median PSNR of inpainted images. As the goal of image anonymization is to
reduce TPR or approaching AUC ' 0.5 still granting high PSNR, the best solutions
forFigure 3.35(b) andFigure 3.35(c) are those in the lower right quadrant of the graph.
In particular, notice that with the `1 strategy we are able to reduce TPR0.01 under 11%

and to obtain an AUC of 0.6 by still achieving a median PSNR around 39 dB.
As state-of-the-art comparison,Figure 3.35(b) and Figure 3.35(c) also show results of

the PatchMatch-based image anonymization proposed in [20], adapted to work on color
images. This algorithm depends on two parameters: (i) τ is an error threshold; (ii) σ is
a smoothing factor. Each gray line inFigure 3.35(b) andFigure 3.35(c) represents results
obtained for a given τ and changing σ ∈ {0.1, 0.75, 2, 4}. This comparison shows that the
proposed methodology is an effective alternative to PatchMatch-based anonymization,
both in terms of TPR0.01 and AUC. For instance, the `1 solution for both B ∈ {3, 5}
is able to match state-of-the-art performances in terms of median PSNR, while gaining
about 0.1 in terms of both TPR0.01 and AUC.

3.6.2.2 Autoencoder-based method

All the 600 images are anonymized by varying the PSNRmin parameter in the set of
values {37, 38, 39, 40, 41}. Each anonymized image is stored as an uncompressed PNG
file, thus being quantized to 8-bit as in real case scenario. For each value of PSNRmin we
observe the distribution of the obtained PSNR values. Noise residuals are extracted with
Ndn and Nwl for each anonymized image and than correlated with the 6 camera PRNUs.
For each PSNRmin we compute a Receiver-Operating-Characteristic (ROC) by varying
the value of τ , the threshold used in the cross-correlation test to detect an image as being
shot from a specific camera. From each ROC we extract both the True-Positive Rate
value at a False Alarm probability α = 0.01 (TPR@0.01) and the Area Under Curve
(AUC). Small AUC values indicate good anonymization performance. Small TPR@0.01
values indicate that when accepting a small false-alarm probability it is not possible to
bind the picture to its camera device.
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Figure 3.36: Distribution of normalized cross-correlation values on pristine images using DnCNN (Ndn) and
Wavelet (Nwl) noise extractors, for matching image-PRNU pairs (M) and non-matching pairs (NM).

Validation of Denoising Operator First, we need to assess whether DnCNN (Ndn) can
be used as a reasonable approximation for the widespread Wavelet (Nwl) noise extractor
tailored to PRNU matching and camera device identification. Figure 3.36 shows the dis-
tribution of normalized cross-correlation values (ρ) when Ndn and Nwl are used as noise
extractors from pristine images. In both cases the reference PRNU (K) is computed
with the Wavelet filter. We can notice that for both noise extractors the discriminability
between matching (M) and non-matching (NM) image-camera pairs is preserved, with
a slight superimposition of the two distribution for DnCNN. Figure 3.37 shows the dif-
ference in terms of Receiver-Operating-Characteristic between Ndn and Nwl on pristine
images. The values of AUC reported in the legend show how DnCNN detection per-
formance are slightly lower than the ones of Wavelet, but still above 0.99. This test
confirms that DnCNN is able to extract PRNU-based residual information from images,
thus justifying its use within our anonymization pipeline.

Minimum PSNR Requirement As the proposed algorithm uses the PSNRmin to enforce
the minimum accepted image quality, we are interested in checking with experiments
whether this criteria is actually met. In facts, it might happen that the anonymization
loop reaches the maximum number of iterations but the PSNR between Y and Ŷ is still
smaller than PSNRmin. Figure 3.38 reports the histograms of PSNR values obtained for
various values of PSNRmin. It is possible to notice that for every choice of PSNRmin the
actual values of PSNR are always greater or equal to the minimum bound. This confirms
that the proposed iterative method is able to reach convergence in terms of the imposed
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Figure 3.37: Comparison between Nwl and Ndn as noise residual extractors in terms of Receiver-Operating-
Characteristic. The Area Under Curve reported between squared brackets shows almost equivalent performance
in terms of detection.

40 45
PSNR [dB]

0

100

200

300

400

C
ou

n
t

PSNRmin = 37

40 45
PSNR [dB]

0

100

200

300

400

C
ou

n
t

PSNRmin = 38

40 45
PSNR [dB]

0

100

200

300

400

C
ou

n
t

PSNRmin = 39

40 45
PSNR [dB]

0

100

200

300

400

C
ou

n
t

PSNRmin = 40

40 45
PSNR [dB]

0

100

200

300

400

C
ou

n
t

PSNRmin = 41

Figure 3.38: Real PSNR distribution when varying PSNRmin in {37, 38}. The real PSNR values are always
greater or equal the the minimum value (vertical dashed gray line). The same behavior is obtained for different
PSNRmin values.

minimum PSNR requirement.

Image Anonymization When it comes to verify the effectiveness of the proposed
pipeline in reducing PRNU-based device identification, we first compute the distribu-
tion of matching and non-matching normalized cross-correlation (ρ) values obtained from
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Figure 3.39: Distribution of normalized cross-correlation values on anonymized images using DnCNN (Ndn) and
Wavelet (Nwl) noise extractors, for matching image-PRNU pairs (M) and non-matching pairs (NM).

anonymized images with noise residuals extracted with DnCNN (Ndn) andWavelet (Nwl).
Figure 3.39a shows how the distributions of matching and non-matching ρ values, ob-
tained when noise residuals are extracted from Ŷ through Ndn, are superimposed. This
makes practically impossible to bind an anonymized images to the device it comes from.
This means that the proposed anonymization pipeline is working in the proper way, thus
it has minimized the cross-correlation between the reference PRNUK and the noise resid-
ual extracted through Ndn. As we wish to evaluate the effect of the proposed method
when the Wavelet-based noise extractor is used on Ŷ , Figure 3.39b shows the distribu-
tion of matching and non-matching ρ values obtained when noise residuals are extracted
with Nwl. We can immediately spot two differences with respect to the Ndn extractor:
i) the mean of the matching values is not anymore zero, but it is shifted toward negative
values; ii) the variance of matching cross-correlations is way higher than the variance of
non-matching cross-correlations. A forensic investigator acting in a blind way, without
the knowledge of the proposed anonymization pipeline, might use the cross-correlation
test definition at Equation (3.5) to assess whether an image Ŷ under investigation comes
from a camera whose PRNU is K. However, an attack-aware investigator would also
perform another test, evaluating the absolute value of the normalized cross-correlation,
thus building a symmetric test |〈W ,K〉| > τ . In the plots, we refer to the results ob-
tained with the standard Wavelet detector with Nwl, while the results obtained with the
Wavelet symmetric detector are denoted as N a

wl.

Figure 3.40 shows the ROC on anonymized images detection for PSNRmin = 40. If
Ndn is used to extract the noise residual from Ŷ we get almost perfect anonymization
performance. This confirms that the anonymization loop, based on the minimization of
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Figure 3.40: Receiver-Operating-Characteristic for PSNRmin = 40.
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Figure 3.41: True-Positive Rate at a fixed False-Alarm probability α = 0.01 (a) and Area Under Curve (b) when
varying PSNRmin.

the cross-correlation value betweenK and Ŵ extracted through Ndn, is effectively work-
ing as expected. When noise residuals are extracted from Ŷ through the Wavelet-based
function and the unidirectional cross-correlation test in Equation (3.5) is used (Nwl),
the detection performance are severely affected. However, resorting to the symmetric
detector (N a

wl) shows that in fact the detection performances are affected, but are not as
bad as when the asymmetrical detector is used.

A final result is shown in Figure 3.41, where two standard metrics in anonymization
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are presented. Figure 3.41a and Figure 3.41b respectively report the True-Positive rate
at a fixed False-Alarm rate of 0.01 and the Area Under Curve for several median PSNR
values. Each point is obtained by setting PSNRmin to {37, 38, 39, 40, 41}. The almost
zero TPR@0.01 value for Ndn and the almost constant 0.5 value for AUC are assessing
that the anonymization cycle is working properly if the noise extraction function used
in the anonymization loop is the same as the one used for analysis purposes. When a
different noise extraction function is used and a forensics investigator is aware of the
attack (N a

wl) the anonymization is not guaranteed anymore.

3.7 Applications

In this section we present two applications related to the use of PRNU fingerprints
as features. In Section 3.7.1 we introduce a method to create robust fingerprint for
smartphone-based authentication [18], merging together accelerometer, gyroscope and
PRNU residual to obtain a unique identifier for the smartphone at hand. In Section 3.7.2
we present a method that exploits PRNU residuals to group together videos coming from
the same camera device within a pool of semantically similar videos.

3.7.1 Robust smartphone fingerprint

Nowadays, and probably always more in the next coming years, many of our basic ac-
tivities such as reading an e-mail, checking our bank account, buying on-line, etc., are
performed by using a smartphone to access our personal accounts in a mobile environ-
ment. Generally, our actual degree of security is granted by the classic username and
password access (something that the user knows). When a stronger level of security is
required, additional instruments are usually adopted such as smart cards, USB sticks,
OTP generators, in a two-factor authentication protocol [135]. Anyway, such means are
not always available (must be carried around by the user at all times) or usable (they
are not pluggable in a mobile device easily); so the need of a superior degree of secu-
rity often conflicts with feasibility and usability. A possible solution could envisage the
use of the user’s own smartphone and its intrinsic characteristics as a mean to grant a
safer mobile access by reducing the end-user involvement. The basic idea is to inves-
tigate and understand if it is possible to generate a specific fingerprint that allows to
distinctively and reliably characterize each smartphone hardware in a unique way. As a
matter of fact, modern mobile phones are equipped with several kinds of sensors such as
accelerometer, gyroscope, magnetometer, camera, etc. These sensors are characterized
by peculiar anomalies left onto the acquired signals due to the imperfections generated
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during the manufacturing process [13]. Therefore, it is possible to measure these anoma-
lies and exploit them as an asset for uniquely identifying each phone. The objective of
this section is to present a methodology to obtain a robust smartphone fingerprint by op-
portunely combining different sensor fingerprints. The proposed methodology to create
the smartphone fingerprint is firstly based on the individuation and definition of a set of
distinctive features for each sensor; in our experiments we considered the accelerometer,
the gyroscope and the camera. For the accelerometer and the gyroscope we considered
two subsets of features both in the temporal and in the spectral domain, calculated onto
the output data (x, y, z) acquired by each sensor [136, 137]. Concerning the camera, we
computed spatial features derived from the 2D Photo Response Non-Uniformity (PRNU)
noise [105, 138], extracted from the R, G, B channels. All these features, organized in a
vector, constitute the fingerprint of each device. According to these fingerprints, a classi-
fier has been trained and some experimental tests to evaluate detection performances of
the method have been carried out. Also different sub-combinations of the sensors have
been considered in creating the fingerprint (e.g., only the accelerometer, accelerometer
and the camera, accelerometer and gyroscope, etc.) to better understand which was the
impact of each sensor on distinctiveness. Moreover, to decrease computational complex-
ity, we investigated the possibility of reducing fingerprint size through hashing operations
typically used for PRNU [15,50,139]. Furthermore, diverse operative conditions have to
be analyzed: smartphone position (handheld or posed on a table of different materials),
vibration on/off, with or without a cover and so on.

3.7.1.1 Sensors overview

Most smartphone devices have built-in sensors that measure motion, orientation, and
various environmental conditions. These sensors are capable of providing raw data and
are useful if you want to monitor three-dimensional device movement or positioning, or
you want to monitor changes in environment near a device. In general, both Android and
iOS platforms, support three categories of sensors: motion sensors, environmental sensors
and position sensors. The first kind of sensors measures acceleration forces and rotational
forces along three axes. This category includes accelerometer, gravity sensor, gyroscope
and rotational vector sensor. The environmental sensors measure various parameters,
such as ambient temperature and pressure, illumination and humidity. This category
includes barometer, photometer and thermometer. The last kind of sensors measure
the physical position of a device. This category includes orientation sensor, GPS and
magnetometer. Some of these sensors are hardware-based and some are software-based.
Hardware-based sensors are physical components built into a smartphone or a tablet
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Figure 3.42: Sensors vs Android versions.

device. They derive their data by directly measuring specific environmental properties,
such as acceleration, geomagnetic field strength, or angular change. Regarding Android-
powered devices, few of them have every type of sensor. For example, most handset
devices and tablets have an accelerometer and a magnetometer, but fewer devices have
barometer or thermometer. On the other side, regarding operative system, all the sensors
are supported from Android 4.0 (see Figure 3.42).

Accelerometer The accelerometer inside a smartphone is composed by a circuit having
seismic mass (made up of silicon) that changes its position according to the orientation
and it is attached to the circuit of the device. Actually an accelerometer is a circuit based
on MEMS (Micro Electro Mechanical System), that measures the forces of acceleration
that may be caused to gravity, to the movement or by tilting action. Such accelerations
are measured in terms of g-force on the three axes (x, y, z). MEMS-based accelerometers
are based on differential capacitors. Figure 3.43 shows the internal architecture of a
MEMS-based accelerometer. As we can see there are several pairs of fixed electrodes
and a movable seismic mass. Under no acceleration the distances d1 and d2 are equal
and as a result the two capacitors are equal, but a change in the acceleration will cause
the movable seismic mass to shift closer to one of the fixed electrodes causing a change
in the generated capacitance. This difference in capacitance is detected and amplified
to produce a voltage proportional to the acceleration. The minute imprecision in the
electro-mechanical structure induce imperfections among the accelerometer chips.
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Figure 3.43: MEMS accelerometer: how it works.

Gyroscope A gyroscope is a device for measuring or maintaining orientation, based on
the principle of angular momentum. Mechanically, a gyroscope is a spinning wheel or disk
in which the axle is free to assume any orientation. Same as accelerometer, gyroscope
returns three-dimensional values along the three axes of the device and it measures the
rate of rotation (in rad/s). MEMS-based gyroscopes use the Coriolis effect to measure
the angular rate. Whenever an angular velocity ω is exerted on a moving mass of weight
m and velocity v, the object experiences a Coriolis force in a direction perpendicular to
the rotation axis and to the velocity of the moving object. The Coriolis force is sensed by
a capacitive sensing structure where a change in the vibration of the proof-mass causes
a change in capacitance which is then converted into a voltage signal by the internal
circuitry. The slightest imperfections in the electro-mechanical structure could introduce
differences across chips.

3.7.1.2 Features vs Sensors

As mentioned in the previous section, sensors readings are affected by anomalies due to
sensors imperfections. Our goal is to detect these anomalies and exploit them as an asset
to understand which device generated them. To accomplish this goal, we make use of a
set of features computed on signals acquired by the different sensors.

For both accelerometer and gyroscope it is possible to obtain raw values along three
axes of the device at certain time. So, for a given timestamp t we have two vectors of
the following form: a(t) = (ax, ay, az) and ω(t) = (ωx, ωy, ωz) for the accelerometer and
gyroscope respectively.
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Table 3.3: List of time domain features
Feature Name Accelerometer Gyroscope

Mean x
Std-Deviation x x

Average Deviation x x
Skewness x x
Kurtosis x x

RMS amplitude x x
Lowest value x x
Highest value x x

ZCR x
Non-negative count x

As regarding accelerometer, 17 scalar features are extracted in both time and frequency
domains using the MIRToolbox [140], a popular audio feature extraction library [141],
starting from the two following signals:

T (k) = t(k + 1)− t(k)

S(k) =
√
a2
x(k) + a2

y(k) + a2
z(k)

The time domain features are calculated using T (k) and S(k) signals prior to inter-
polation, and the frequency domain features are drawn from the interpolated versions.
In total a 34 features vector fa is obtained to describe the accelerometer sensor. In Ta-
ble 3.3 and Table 3.4 all the features taken in consideration are outlined. For a complete
description of each feature please refers to the MIRToolbox guide.
Regarding the gyroscope we consider data from each axis as a separate stream in

the form of ωx, ωy, ωz. For all data streams, time and frequency domain characteristics
are analyzed as for the accelerometer. To summarize the characteristics of each signal,
21 features are extracted, consisting of 10 temporal and 11 spectral features (listed in
Table 3.3 and Table 3.4). In total a 63 features vector fg is used to describe the gyroscope
sensor for each device.
Concerning digital cameras, we exploit a feature vector based on the PRNU. To this

purpose, let Y be a 2D digital image, and W be the noise residual extracted from
Y , according to Equation (3.3), with the de-noising wavelet-based procedure described
in [13,105]. Given a set of images Yp, p ∈ {1, ..., P} from the same camera, the maximum-
likelihood estimation of the PRNU for that cameraK is derived from Equation (3.4). For
particularly accurate PRNU estimation, the use of flatfield bright images is encouraged
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Table 3.4: List of frequency domain features
Feature Name Accelerometer Gyroscope
Spectral Std-Dev x x
Spectral Centroid x x
Spectral Skewness x x
Spectral Kurtosis x x
Spectral Crest x x
Irregularity-J x x
Smoothness x x
Flatness x x
Roll Off x x
Entropy x

Brightness x
Roughness x

(e.g., shots of the sky). However, K can still be estimated (with less precision) using
pictures of natural scenes. In this case, a sufficient greater number of images is needed
(i.e., P must be increased with respect to the flatfield case) [13].
It is well known that the correlation between the noise residual W and the PRNU K

assumes high values only ifW is extracted from an image coming from the camera whose
PRNU is K [13, 32, 107, 142]. Therefore, a feature characterizing a digital camera could
in principle be the noise componentW . However, for the sake of speeding up the device
identification process, and motivated by state-of-the-art works on PRNU compression
[50,139], we perform an additional step. More specifically, we consider only the 512×512

pixels patch taken from the center ofW , and binarize it according to its sign. Formally,
the feature vector used to describe a camera is fc = sgn(W512×512), where W512×512 is
the 512×512 central portion ofW . Notice that, thanks to binarization, fc can be stored
using only 512 × 512 bits (i.e., less than 33 kBytes), which is much less than a typical
image size and allows very fast feature transmission also in low bandwidth conditions.

3.7.1.3 Procedure

In order to achieve device identification, we propose a methodology based on supervised
classification and the features described in the previous section (i.e., fa, fg and fc). In
the considered scenario, there are two main entities: (i) the user owning a device that
wants to be identified; (ii) a trained system that analyses the data provided by the user
in order to identify (or not) its device. The overall identification procedure works in
three steps, as shown in Figure 3.44: (i) each new user registers into the system; (ii) the
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Figure 3.44: Procedure pipeline.

system is trained based on the acquired registration data; (iii) device identification can
be accomplished each time a user needs it by sending a new set of features (as fingerprint)
to the system.
For the registration procedure, let us consider a generic user u out of all the possible

U users. First, he/she runs an application installed on its device to collect Q sensors
readings from the accelerometer and the gyroscope, then finally shots Q+ P pictures of
natural scenes (possibly neither saturated nor overly dark). From the first two sensors
readings, Q different sets of feature vectors fu,qa and fu,qg , q ∈ {1, ..., Q} are computed.
From Q images, the device computes a set of feature vectors fu,qc , q ∈ {1, ..., Q}. From
the remaining P images, the the PRNU Ku is estimated according to Equation (3.4).
The user finally sends to the server all the feature sets fu,qa , fu,qg and fu,qc , q ∈ {1, ..., Q},
and the PRNU estimate Ku. This procedure is followed by every user.
At this point, the system can be trained as shown in Figure 3.45. To this purpose,

from each 512 × 512 bits training feature f q,uc , a U -dimensional feature vector f̂ q,uc is
computed, defined as

f̂ q,uc =
[
ρ(f q,uc ,K1), ρ(f q,uc ,K2), . . . , ρ(f q,uc ,KU )

]
,

where ρ computes the cross-correlation as from Equation (3.5). In other words, each
component of f̂ q,uc is the correlation value between f q,uc and one of the possible PRNU
templates Ku, u ∈ {1, ..., U}. From an intuitive point-of-view, the vector f̂ q,uc should
point in the u-th direction, strongly indicating the correct camera. Features f q,ua , f q,ug
and f̂ q,uc are concatenated and used to train a supervised classifier (in our experiments a
Bagged Decision Tree [143]). In a nutshell, a set of classifiers is trained several times over
random splits of training data. Each training split leads to a different classification tree.
The final classification result is obtained by majority voting over all the classification
trees
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Figure 3.45: During training procedure the set of classifiers is fed with Q×U feature vectors with the corresponding
labels. Each feature vector is obtained by concatenating f̂q,uc , fq,ua , fq,ug .

Once the system has been properly trained, each time a user needs to be identified,
he/she can simply collect a few seconds sensors reading and shoot a picture. The user’s
device computes the tuple of features fa, fg and fc and sends them to the server. As
per training, feature fc is converted into f̂c, and classification is performed using the
concatenation of fa, fg and f̂c as input for the classifier.

3.7.1.4 Experimental Results

Different experimental tests have been carried out to verify the effectiveness of the pro-
posed methodology and some of them are presented hereafter in this section. In particular
the dataset of the considered smartphones is described (only Android platform has been
analyzed) together with the way sensor acquisitions are performed, then we report the
diverse test scenarios that have been investigated. Finally, we presents the achieved
results in the various circumstances.

Test setup Experimental tests have been carried out on 10 different smartphones that
are listed hereafter in Table 3.5. It is worthy to highlight that one half are the same
model and this has been chosen in order to investigate which was the actual capacity
to distinguish also within devices of the brand and model. The acquisitions from the
sensors have been done by means of a specific mobile application, named SensorData
which is able to interact with the smartphone sensors and get their output signal. Both
for the accelerometer and for the gyroscope 20 acquisitions (Q = 10 for training plus 10
for testing), of 2 seconds each, have been taken. Because of the different characteristics
of every smartphones, the number of samples within each acquisition is diverse, so each
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Table 3.5: List of smartphones
Device Amount

LG Nexus 5 5
Samsung S2plus 1
Samsung S3 2
Samsung S4 1
Motorola 1

sequence has been resampled by using spline interpolation to compute spectral features.
For what concerns digital images, they have been taken at the default resolution and
settings of the device, which is (in pixels): 2448× 3264 (Nexus5, S2plus and S3), 1836×
3264 (Motorola) and 2322× 4128 (S4). For each camera, P = 10 images have been used
for PRNU estimation, Q = 10 for training and other 10 for testing. Notice that only the
central 512× 512 pixels portion of each image has been used, thus no image resampling
is needed even if different devices have different camera resolutions.

Test scenarios and evaluation metric Different test scenarios have been envisaged
in order to understand which could be the operative circumstances that could affect
performances. There are, in fact, many aspects that can influence the acquisition phase
both during training and testing steps: first of all, the smartphone’s position (leaning on
a table, hand-held by a still or slightly moving user, etc.), secondly, the usage conditions
(characteristics of the table surface, presence or not of a telephone cover made of diverse
materials, audio/vibration stimulation, running processes on the operating system, etc.)
and so on. In the next subsection, some of the main achieved results are presented; in
particular, two basic cases have been taken into account: when the acquisition takes
place in a more controlled environment with the smartphone on a flat wooden surface
and when it is hand-held (without any cover in any case). Tests have been carried out
in order to understand how different conditions can impact on training with respect of
testing and viceversa. The issue of using or not a vibrating impulse has been considered
when acquiring only from the accelerometer, but no requirements have been imposed
on the running processes at all. Classification has been done by resorting at a Bagged
Decision Tree approach and experimental tests has been carried out both for each sensor
separately and also in combination. The obtain results have been evaluated in terms of
F-score (F) which is defined as in Equation (3.28):

F = (2 · Pr ·Re)/(Pr +Re) (3.28)
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Table 3.6: Test configurations
Training set Test set

Position Vibration Position Vibration
Configuration1 Table ON Table ON
Configuration2 Table OFF Table OFF
Configuration3 Hand-held ON Hand-held ON
Configuration4 Table ON Hand-held ON
Configuration5 Hand-held ON Table ON

Figure 3.46: F-score in percentage for the scenarios where training and testing are aligned.

where Pr = TP/(TP +FP ) and Re = TP/(TP +FN) stands for Precision and Recall.
The overall F-score is the average of F-score computed on each class.

Results This Section presents experimental results with reference to some test config-
urations exploited in Table 3.6. When the parameter “Vibration” is set up ON, it is
intended that the acquisition for the accelerometer sensor has been done when there was
a stimulation generated by the vibration motor.

It is interesting to underline that the two last test configurations conceive that training
and testing conditions are not aligned. This circumstance has revealed as being more
challenging, as expected, but it represents an actual operative scenario where there is
no control over the end user activities. In Figure 3.46 the F-score values for the first
three test configurations are depicted. It can be seen, as general, that the two sensors,
accelerometer and gyroscope, are both able, by themselves, to provide reliable results in
terms of device distinctiveness; however, when both are used together performances are
improved with a F-score that tends to achieve values around 100%.

In particular, for the case of Configuration3 (Hand-held) which is more challenging, it
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Figure 3.47: F-score in percentage for the scenarios where training and testing are not aligned.

Figure 3.48: F-score in percentage for all the scenarios when the camera sensor is added.

is interesting to notice that a high value of F-score is achieved similarly to what happened
for the other two configurations in which the smartphone is leaning on the table.

On the contrary, in Figure 3.47 the results obtained for Configuration4 and Configura-
tion5 (e.g. training and testing misaligned) are presented. It is immediate to comprehend
that performances are drastically worsened and not even the approach to join both sen-
sors, though providing some benefits, does not succeed into granting satisfactory F-score
values: 70% is achieved for Configuration5 at most.

In Figure 3.48, the results obtained when also the camera sensor is taken into account
are shown. It can be evidenced that the first and the third configurations, that already
presented very good performances, tends to reach 100% while the second one remains
almost unaltered, even a bit lower, and this could be due to the fact that not using the
vibration for the accelerometer impacts on performances as a whole.

It is appreciable that for Configuration4 and Configuration5 results are strongly im-
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proved and, for instance, a F-score of about 85% is reached in the last case.
In the light of these results, it is worth making a specific comment on the used camera

fingerprint. As a matter of fact, PRNU is known to be very robust and reliable, ensuring
very high accuracy in camera identification (often higher than 90%), especially when used
for high-end devices. However, in our scenario, we must consider a series of constraints:
(i) the user cannot be asked to shoot too many pictures for system training; (ii) we
typically have no control on the kind of pictures the user sends; (iii) the generated
feature vector must be small enough to enable transmission also in low-bandwidth cases.
Therefore, we work in a very disadvantaged scenario: (i) PRNU is estimated using only a
few (i.e., P = 10) images; (ii) these images represent natural scenes and are not flatfield;
(iii) the correlation procedure is performed using a strongly quantised (i.e., binarisation
according to the sign) image noiseW ; (iv) smartphones cameras are strongly affected also
by other noise component with respect to high-end devices. This is the main reason we
cannot expect to reach an even higher accuracy using camera fingerprint in this scenario.
In Figure 3.49 the test Configuration5 when also the sensor camera is taken into

account is analyzed in detail. The confusion matrix structured onto the ten target/output
classes is presented; over the diagonal there are the correct classification (green blocks)
while all the other are wrong (red blocks). It is interesting to highlight that most of the
performance decrement is given by the classes numbered 1 and 2 (top-left of the matrix)
otherwise performances would be around a F-score of 95%.

3.7.2 Near-duplicate video detection

The forensic community has developed a wide set of algorithms to blindly reconstruct
the history of a video sequence based on single video analysis [8,144–146]. Additionally,
in the last few years, researchers have also shown the possibility of performing interesting
forensic analysis by jointly studying and processing multiple near-duplicate (ND) video
objects, i.e., sequences obtained applying a set of content preserving transformations to
the same original content [147–149]. As an example, when multiple ND copies of the same
video of sensitive nature are diffused online, it is possible to help investigators pointing
out which user first posted the original content. This can be done by reconstructing
the video phylogeny tree, i.e., a directed graph summarizing the parental relationships
among ND videos [150,151]. Additionally, exploiting ND analysis, it is possible to help a
forensic investigator to increase the media coverage about an important event of interest
(e.g., to gain more information about a crime scene [152]).
A fundamental step in this kind of algorithms is the accurate collection of ND video

sequences to analyze. To this purpose, many algorithms robust against video transforma-
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Figure 3.49: Case Configuration5 (considering also sensor camera): confusion matrix.

tions have been proposed in the video search and retrieval literature [153,154]. However,
in a forensic scenario, it is not uncommon that analysts investigate public events of
interest (e.g., public speeches, criminal attacks, etc.). These are often simultaneously
documented by many people using their own capturing devices (e.g., smartphones) from
different viewpoints, thus giving rise to semantically similar (SSI) videos in addition to
NDs (see Figure 3.50). Algorithms tailored to ND video detection that do not take this
possibility into account may incorrectly recognize as NDs also SSI videos acquired by
different users from particularly close points of view. As an example, the authors of [155]
showed that the hashing-based algorithm for ND detection discussed in [152] can be used
to detect also SSI video sequences. This is undesirable for video phylogeny algorithms
that strictly process ND videos and do not deal with SSI ones [149–151].
In order to solve the aforementioned problem, in this section we propose a ND video

detection algorithm, which is robust against SSI sequences even if coming from very close
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Near-duplicate

Semantically similar
V 1,0 V 2,0V 1,1 = T1(V

1,0)

Figure 3.50: Example of ND and SSI videos. A scene is captured simultaneously with two devices, originating
V 1,0 and V 2,0. Video V 1,0 is further edited to obtain a ND video V 1,1. In this scenario it is difficult to distinguish
videos coming from different devices.

viewpoints. Given a pool of videos under analysis, the goal is to blindly cluster groups
of NDs, not containing spurious SSI sequences. The proposed method is based on two
founding concepts: (i) robust video hashing [151, 154] to perform a first rough and fast
screening; (ii) sensor noise traces left on video sequences by the capturing device [156,157],
for detection refinement.

The rationale behind the proposed method is that ND videos are all generated from the
same original sequence, thus they come from the same acquisition device. Conversely,
SSI videos recorded simultaneously are by definition acquired from different cameras.
Therefore, after we group SSI videos based on semantical content using robust hashing
techniques, we can resort to traces characterizing different devices to recognize ND fam-
ilies. Specifically, as it is well known that each device leaves on captured videos peculiar
footprints that can be exposed by denoising operations [105, 156, 157], we rely on this
concept for the refinement step.

The validation campaign is performed on a set of more than 12 000 videos among ND
and SSI ones coming from seven different devices. Experiments show that the proposed
approach is capable of reaching more than 98% of accuracy in ND detection, thus greatly
improving over the baseline ND detection method [152] based only on robust hashing.
We also tested the proposed algorithm on a set of videos gathered online.

3.7.2.1 Problem Formulation

In everyday scenarios, events of interest (e.g., public speeches, criminal attacks, but also
concerts and sport events) are often documented by different users that simultaneously
capture the scene with their own devices from multiple viewpoints. In this context, let
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us define {V p,0}p∈[1,P ] a set of P original videos, each one acquired by the p-th device
(i.e., from the p-th point of view).
If these videos are shared, other users can edit and re-distribute their own copies, thus

creating other Jp versions V p,j = Tj(V p,0), j ∈ [1, Jp] of each original content V p,0, where
Tj is any content preserving transformation (e.g., colour enhancement, logo insertion,
resizing, frame cropping, or combinations of them). As an example, this happens every
time newscasts broadcast the same interview at different resolutions with different overlay
text and superimposed logos.
In this scenario, all videos V p,j , p ∈ [1, P ], j ∈ [0, Jp] are defined semantically similar

(SSI) sequences [155], since they all capture the same semantic information about a
scene or an event. In particular, videos V p,j , j ∈ [0, Jp] for a fixed p value are denoted
as strictly near-duplicate (ND) sequences [149, 150, 152]. Figure 3.50 shows an example
of the ND and SSI videos generative process.
Given a generic set of video sequences, ND video detection refers to the problem

of correctly clustering separate groups of strictly ND videos. Solving this problem is
paramount for video phylogeny tools designed to jointly analyze multiple versions of
the same video object [149, 150], as they work under the hypothesis that only NDs are
present within the analysis pool. For this reason, some effective ND detection solutions
have been proposed in the literature [153, 154]. However, when the set of considered
video sequences contains SSI videos shot from very close viewpoints (as those shown in
Figure 3.50), ND detection problem turns out to be more challenging. Indeed, solutions
as the one proposed in [152] tend to cluster SSI videos as if they were NDs [155].
In this work we propose an algorithm for ND video detection in this challenging sce-

nario. Specifically, our goal is to separate actual ND sequences from SSI sequences
captured from different viewpoints, even if very close to each other. Formally, given a set
of videos {V p,j}p∈[1,P ], j∈[0,Jp], we aim at individuating: (i) the number P of ND clusters;
(ii) the composition of each cluster Cp = {V p,j}j∈[0,Jp], p ∈ [1, P ], each one containing
only ND videos generated from the original sequence V p,0.

3.7.2.2 Near Duplicate Video Detection

In this section we present the proposed algorithm for ND video detection starting from a
generic set of SSI videos relative to the same event V = {V p,j}p∈[1,P ], j∈[0,Jp]. For notation
simplicity, from now on, a generic video in V will be denoted as Vi, univocally mapping
the pair of indexes (p, j) into a single index i.
The proposed algorithm works by comparing pairs of videos (Vi1 , Vi2) in V separately

in three stages, as shown in Figure 3.51. When all video pairs in V have been compared
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Figure 3.51: Pipeline of the proposed method. A pool of SSI videos is analyzed, and separate clusters of NDs are
identified.

to estimate how likely they are ND, a clustering algorithm is applied to group separate
sets of ND video sequences. In the following a detailed description of each step.

Rough ND matching The first step of the algorithm consists in performing a rough and
fast ND detection based on the robust hashing method proposed in [151] to determine
whether sequences Vi1 and Vi2 are ND candidates. Indeed, if the two videos happen to be
ND or SSI depicting the same time instant from closed viewpoints, the algorithm in [154]
returns the sets of corresponding frames of Vi1 and Vi2 that are temporally synchronized.
Depending on the output of [151], we fill a logical near-duplicate relationship matrix
defined as

Mi1,i2 =

1, if synchronized frames are found,

0, otherwise.
(3.29)

If Mi1,i2 = 1, we detect videos Vi1 and Vi2 as candidate ND and apply the following
refinement steps of the algorithm. If Mi1,i2 = 0, we proceed analyzing the next video
pair.

Note thatM can be interpreted as a binary adjacency matrix representing a undirected
graph, whose nodes represent videos, and video pairs (Vi1 , Vi2) for which Mi1,i2 = 1 are
linked by an edge. As a matter of fact, the ND detection algorithm proposed in [152] is
equivalent to running a Depth-First Search (DFS) algorithm on M to find the connected
components of the graph. However, in presence of SSI videos, this simple strategy is not
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Figure 3.52: Matrices M and X computed on V composed by 35 videos split into 7 SSI clusters of 5 ND sequences
each depicting the scene represented in Figure 3.50. Only clustering on X leads to the correct results (in green),
whereas considering M , sequences are under-clustered (in red).

sufficient. An example of M computed on a set of 35 videos split into 7 SSI groups of 5

NDs each, is shown in Figure 3.52(a). Correct clusters of NDs are highlighted in green,
whereas connected components identified by DFS are reported in red. This motivates
our further analysis.

Geometric estimation If Vi1 and Vi2 are detected as ND candidate (i.e.,Mi1,i2 = 1), we
need to estimate the geometric transformations Tgeom that maps Vi1 into Vi2 in terms of
resize and crop, before further proceeding with noise analysis. To do so, we select a pair
of matching frames (Vi1(s1), Vi2(s2)) returned by [151], and estimate the homography and
crop transformation Tgeom between them by matching points of interest using Speeded-Up
Robust Features (SURF) [158] and applying RANSAC [159] (see Figure 3.53).

Note that we estimate Tgeom only once for each video pair, assuming that the geometric
transformation mapping Vi1 into Vi2 is exactly the same for all the sequences’ frames,
which is typical for ND videos. However, in order to increase algorithm’s robustness, it
is possible to compute a different transformation Tgeom for each pair of frames returned
by [151].

Refinement ND matching Given the video pair Vi1 and Vi2 and the geometrical trans-
formation Tgeom, the rationale of the refinement step is to leverage camera fingerprint
to assess whether the two potential ND videos have been actually acquired by the same
device (i.e., they really are NDs). To this purpose, we estimate sequences’ fingerprints
K̂i1 and K̂i2 by aggregating noises extracted from a set of S frames as typically done
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in camera fingerprinting works [105, 156]. This can be done also in the ND scenario as
camera traces are not deleted by cropping or resizing [112,157].

Formally, the noise residual of each frame Vs of a video is defined asWs = Vs−D(Vs),
where D is a denoising operator. Given a set of frames Vs, s ∈ [1, S] from the same
camera, the fingerprint can be computed as

K̂ =

∑S
s=1Ws ◦ Vs∑S

s=1 V
2
s

. (3.30)

Note that, as we are considering ND videos, they may have different resolutions due
to the processing operations they underwent, e.g, resize and cropping. Therefore, be-
fore comparing two different fingerprints K̂i1 and K̂i2 it is necessary to geometrically
register them. To this purpose, we apply to K̂i1 the estimated transformation Tgeom,
thus obtaining K̂i1→i2 = Tgeom(K̂i1), i.e, the warped version of K̂i1 into K̂i2 . We com-
pare the registered noise fingerprints by means of the normalized cross-correlation (NCC)
ρ(K̂i1→i2 , K̂i2), and store this value in a cross-correlation matrix X defined as

Xi1,i2 = ρ(K̂i1→i2 , K̂i2). (3.31)

The higher theXi1,i2 value, the higher the probability of Vi1 and Vi2 coming from the same
device (i.e., are NDs). Conversely, low Xi1,i2 values are expected for sequences coming
from different devices (i.e., SSI videos). An example is reported in Figure 3.52(b).

Note that this registration step is paramount for two reasons. First, it compensates
for ND geometrical transformations allowing us to correctly match NDs as explained.
Second, if we compare two videos from the same camera that are not NDs (i.e., they are
not obtained from the same original video) it allows us to correctly detect them as non
NDs. Indeed, in this scenario, the estimated Tgeom would be a meaningless transformation
leading to fingerprint desynchronization. Therefore, noise traces would not match, and
we would not incorrectly detect as NDs videos that actually are not.

Finally, it is also important to notice that we do not really need to estimate a clean
camera fingerprint for our goal. Indeed, if some scene content leaks into the estimated
fingerprint, it helps us in matching ND videos through correlation. Therefore, even if
in principle many video frames are needed to correctly estimate the camera noise for
attribution problems, in our scenario we can simply exploit a reduced set of frames.

Clustering Once the comparison between all pairs of candidate ND videos are carried
out, we run a clustering algorithm on rows of matrix X. This step returns the separate
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T1(V
1)

Figure 3.53: Keypoint detection and matching for Tgeom estimation between two ND frames.

sets of ND videos Cp, p ∈ [1, P ].

3.7.2.3 Results

In this section we first describe the datasets used for the experimental campaign, then
we report the achieved results.

Datasets We acquired a set of SSI sequences simulating a scenario in which multiple
users simultaneously take videos of the same scene. Then, NDs were generated from
each SSI video through editing transformations. We opted for this strategy instead of
using any common multiview video dataset available in the literature, as these datasets
are usually acquired with high-end devices and cameras movements are constrained, thus
leading to less realistic results.
For the SSI generation process, 7 users with 7 handheld devices acquired 9 scenes

(between 15 s and 40 s each) of different nature (e.g., indoor, outdoor, moving objects,
buildings, people, repeating patterns, etc.) from very close viewpoints. To be more
realistic, users were free to pan or slightly rotate, given that each camera was centered
on the scene of interest. Videos were not temporally synchronized. This process led
to 9 families of 7 original SSI videos each, which were resized to a common 640 × 360

resolution. Starting from these 63 original sequences, we built different datasets to test
the proposed algorithm (see Table 3.7).
To evaluate the effect of Tgeom estimation and its application to PRNUs, we built
Vres and Vcrop composed by 1 386 videos. Each one contains 63 sets (i.e., 9 scenes for 7

devices) of 11 sequences: an original video plus 10 ND copies obtained through resizing
(Vres) or cropping (Vcrop) to a resolution that ranges from 95% to 55% of the original
one.
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Table 3.7: Each dataset is composed by different video sets, characterized by different ND clusters and transfor-
mations.

Dataset Sets (scene x realiz.) Videos Clusters Transf Tot
Vres 63 (9x7) 11 1 resize 693
Vcrop 63 (9x7) 11 1 crop 693
V2

ND 90 (9x10) 10 2 any 900
V3

ND 90 (9x10) 15 3 any 1350
V4

ND 90 (9x10) 20 4 any 1800
V5

ND 90 (9x10) 25 5 any 2250
V6

ND 90 (9x10) 30 6 any 2700
V7

ND 90 (9x10) 35 7 any 3150

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Crop ratio
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(a) Vcrop
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;

(b) Vres

Figure 3.54: NCC obtained on ND videos in Vcrop and Vres at different resolutions applying the proposed pipeline.
If geometric transformations are not compensated (yellow line), NCC tends to zero.

To evaluate the overall proposed pipeline, we generated six additional datasets
VpND, p ∈ [2, 7] for a total amount of 12 150 videos. Each VpND contains 90 sets (i.e.,
9 scenes for 10 random ND realizations) of p clusters of 5 ND videos. For ND generation,
we considered the following transformations [151]: contrast enhancement, brightness ad-
justment, spatial cropping and resizing, in any combination. Each transformation was
followed by compression with a random codec (MPEG-2, MPEG-4 Part 4, H.264/AVC),
group of picture (1 to 15) and quality parameter (1 to 10).

Geometric transformation First, we evaluated the performance of fingerprint regis-
tration. We know from [112, 157] that fingerprints survives ND editing steps, but we
need to validate the reliability of using Tgeom to compensate for fingerprints geometric
transformations.
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To this purpose, for each set of videos in Vres and Vcrop, we analyzed the 10 video
pairs (Vi, V0), i ∈ [1, 10], where V0 is the original SSI of the set and Vi is a resized or
cropped version. For each pair, we estimated the fingerprints K̂i, K̂0 aggregating the
residuals extracted from the first S = 20 frames of each video. We computed both K̂i→0

and K̂0→i by means of Tgeom estimated from Vi and V0. Evaluation is carried out by
computing normalized cross-correlations (NCCs) between registered fingerprints. The
higher the NCC, the better the geometrical registration.

Figure 3.54a and Figure 3.54b show NCC values at different resolutions obtained on
Vcrop and Vres, respectively. Solid blue lines represent the average between NCC val-
ues ρ(K̂i→0, K̂0) and ρ(K̂0→i, K̂i) (i.e. the proposed approach). Yellow dashed lines
represent NCC values ρ(K̂i1 , K̂i2) obtained without spatially synchronizing fingerprints.
Dashed orange lines represent the NCC upper bounds obtained when Tgeom is known a
priori. These results confirm the importance of estimating Tgeom. Indeed, if Tgeom is not
applied (yellow line), NCCs tend to zero (i.e., we cannot recognize videos from the same
device). Conversely, the proposed approach (blue line) enables to achieve high NCC
values that allow to detect ND sequences.

Overall pipeline We applied the proposed pipeline to every set of videos in datasets
VpND, p ∈ [2, 7]. Each set is composed by p clusters of ND videos. The goal is to detect:
(i) the number of clusters; (ii) which videos belong to each cluster (i.e., ND videos). For
both tasks, we tested two different clustering approaches on X: (i) DFS(X,Γ) denotes
the use of Depth First Search algorithm on matrix X, binarized according to a threshold
Γ = 0.06 (learned on a small training set); (ii) Hier(X,Γ) denotes hierarchical clustering
on X using correlation distance and euclidean linkage, where Γ = 1 represents the cutoff
threshold (learned on a small training set). The first approach is based on the knowledge
that X is composed by NCC values of fingerprints. Therefore it links in the same cluster
videos whose NCC is grater than Γ. The second approach makes use of rows of X as
generic features, applying the hard Γ thresholding only at the very end.

Figure 3.55 shows the accuracy in correctly detecting the number of ND clusters within
each video set. Accuracy is always greater than 80%. If the number of clusters to be
detected is small (i.e., 2) the DFS(X,Γ) strategy tends to better results. Conversely,
the Hier(X,Γ) approach has a better accuracy (90%) when the number of ND clusters
is greater than 4. DFS applied on M [152] aggregated more ND clusters together, thus
it was never able to correctly detect the number of clusters.

Evaluation of clustering approaches is carried out by measuring how well pairs of ND
are assigned to the same cluster. Specifically, we used the Rand index (RI) [160] (the
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Figure 3.55: Accuracy in detecting the number of clusters in each video set.
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Figure 3.56: Clustering metrics obtained with the proposed techniques on datasets that contain two (a) and seven
(b) ND clusters.

percentage of data pairs that are correctly clustered), the Jaccard index [161] (JI) (similar
to RI, not considering pairs of elements that are in different clusters), the F-measure (F1)
[162] (the harmonic mean of precision and recall), the Fowlkes-Mallows index (FM) [163]
(the geometric mean of precision and recall), and the normalized mutual information
measure (nMI) [164](residual entropy within clusters). All clustering measures yields
values between 0 (worst result) and 1 (best result).
Figure 3.56 shows the aforementioned metrics on V2

ND (a) and V7
ND (b). In the first

case, only two ND clusters are present, and DFS(X,Γ) shows more promising results.
Conversely, the second scenario validates the use of Hier(X,Γ) when more clusters of
NDs are present within the analysis pool.

3.8 Conclusions

In this chapter we proposed a novel projection framework for PRNU fingerprint and
residuals compression based on SNR near maximization of the alternative hypothesis
in a cross-correlation statistical test. We derived systematic design conditions for the
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projection matrix, taking into account local interpolation effects on PRNU due to demo-
saicing and JPEG compression. Two projection design strategies have been introduced
and tested on real-world datasets, in comparison with state-of-the-art PRNU compression
methods. The obtained experimental results confirm that proposed projection methods
perform at par or better with state-of-the-art Gaussian Random Projection, with a sig-
nificant reduction in terms of computational complexity.

We also presented a compression pipeline for PRNU fingerprints and residuals based
on decimation, Random Projections and dead-zone quantization. At first we observed
that JPEG compression strongly attenuates high frequency components of the PRNU,
basically zeroing the usefulness of such frequencies in terms of cross-correlation. Exploit-
ing this phenomenon, we decimate the extracted PRNU fingerprint and residuals before
passing to Random Projections. Finally we are able to further reduce the bitrate by
adopting a dead-zone quantization scheme, that fuses the advantages of fingerprint bina-
rization and digest compression methods. On the Dresden Image Dataset, the proposed
pipeline accounts for more than 65% bitrate reduction with respect to basic Random
Projections applied to the whole fingerprint or residual, both in terms of query and joint
compression, with an overall 75% complexity reduction.

As for PRNU-based antiforensics, we proposed a pipeline for no-reference image
anonymization against PRNU-based detectors. This approach is based on image in-
painting to reconstruct image pixels, and edge processing to increase image visual qual-
ity. We tested different inpainting strategies, showing that it is possible to attenuate
PRNU traces even exploiting simple inpainting solutions. Considering that results are
competitive with state-of-the-art blind PRNU removal solutions [20], the investigated
pipeline proves an interesting alternative method for image anonymization. Moreover,
the proposed framework is computationally efficient because of its high parallelization
potential. Indeed, inpainting is computed in parallel on different versions of the image,
and results are merged at the end.

We also proposed a method to anonymize images by removing PRNU traces in a
scenario in which the specific PRNU to be removed is assumed to be known. Despite
state-of-the-art methods achieve better anonymization performance, we believe this work
shows a different perspective on the topic, as the proposed solution makes use of a CNN
in an uncommon fashion. Indeed, the CNN is seen as a parametric operator. CNN
training is used to estimate CNN parameters by minimizing a loss function on a single
image. From a different perspective, the proposed method works by overfitting a specific
CNN to each input image. From the adversarial forensic point-of-view, results show an
interesting aspect. If the denoising operators used for PRNU testing and within the
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anonymization network match (i.e., DnCNN is used), images are strongly anonymized.
If the analyst makes use of a different denoising operator for PRNU testing (i.e., the
Wavelet-based one), anonymization may or may not be effective depending on the use
correlation test. In reality, denoising operator matching is not needed by an attacker,
given that the analyst is not informed about the possibility of an attack. If analysts
know about possible attacks, they can use the symmetric test to avoid being completely
fooled.
In the last section presented two PRNU-powered multimedia forensics applications.

We proposed a method to combine different smartphone sensors to obtain a reliable,
distinctive and easy-to-use fingerprint able to characterize each single device unequiv-
ocally. The challenge is to succeed in defining effective features and integrating them,
though extracted from different sensors, to achieve a robust distinctiveness among di-
verse smartphones. The results obtained so far are encouraging, since mixing features
from different sensors outperforms the classification obtained using the features from
each sensor separately.
We finally presented a pipeline based on hash and camera fingerprint tailored to sep-

arate semantically similar videos while clustering together near duplicate ones. We val-
idated the proposed algorithm on a set of more than 12 000 video sequences specifically
designed in a challenging scenario, achieving promising results. From the computational
point ov view, it is important to notice that a lot of data can be precomputed (e.g., hashes
for rough detection, fingerprints for refinement, etc.) and only videos that pass the rough
detection step are further processed, thus decreasing the computational burden.
Despite the robustness and precision of PRNU-based source identification systems,

their deployment in real-world scenarios presents challenges that are evolving every day.
To name a few, the effects of High Dynamic Range (HDR) interpolation algorithms and
video coding on PRNU traces are still unknown, even though the number of devices
acquiring, without an explicit user consensus, HDR pictures or short videos instead of
steady images is constantly increasing.
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forensics

In this chapter we present two applications of data-driven approaches in the multimedia
forensics field. In Section 4.1 we present a broad study on the use of Convolutional Neural
Networks (CNN) for the problem of single vs double JPEG compression detection [23].
We explore the effect of several preprocessing and CNN architectures on different image
patch sizes, and compare against state-of-the-art methods. In Section 4.2 we present a
laser printer attribution system [24] based on the fusion of several CNN. Each CNN is
trained to classify a specific letter with a specific preprocessing operation applied at the
input. The effect of clean vs un-clean data input to the CNN is evaluated in terms of
robustness. Both feature-based fusion and majority voting schemes are implemented to
increase recognition accuracy.

4.1 Single vs. Double JPEG compression

In the last decades, due to the wide availability of easy-to-use imaging software, diffusion
of tampered content has become a widespread phenomenon. Among the techniques
developed by the image forensic community to fight this trend [1,7], great attention has
been devoted to methods analyzing JPEG traces [66, 165]. Indeed, every time an image
is stored (e.g., at shooting time directly on the acquisition device, or after editing with
processing tools), it is usually saved in JPEG format. Therefore, manipulated content
often undergoes JPEG re-compression. Because of this fact, detection of double JPEG
compression has received great attention in image forensics, and presence of tampering
is often revealed by looking for the artifacts left by JPEG re-compression. However,
depending on whether second JPEG compression grid is aligned or not with the one
adopted by the first compression, different artifacts are introduced. For this reason, these
two scenarios are often analyzed separately and are commonly referred to as aligned
double JPEG (A-DJPEG) compression detection and non aligned double JPEG (NA-
DJPEG) compression detection, respectively.
In many cases, manipulation takes place on limited parts of the image only. Therefore
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DJPEG traces are only left on a limited number of pixels. For this reason, being able to
detect DJPEG on small image patches proves paramount for localization of manipulated
regions in image forgery detection problems. However, most of the techniques performing
double JPEG detection in literature focus on estimating compression history of an image
as a whole, whereas the localization of double compressed regions of relatively small size
(i.e., possibly tampered regions) has been often overlooked and only addressed in some
works. In this section we investigate the use of convolutional neural networks (CNNs) for
the detection of A-DJPEG and NA-DJPEG even when working on small image patches
(i.e., 64× 64 pixel), which may be useful for forgery localization purpose.

4.1.1 Prior Work on Double JPEG Detection and Localization

It is well known that double JPEG compression leaves peculiar artifacts in the DCT
domain, in particular, on histograms of block-DCT coefficients [166]. Accordingly, many
proposed detection algorithms focus on the analysis of first order statistics of DCT co-
efficients. This is the case with the data-driven approach in [167], based on analysis
of low-frequency block-DCT coefficients histograms, and many model-based approaches,
e.g., the ones in [168–170] that rely on distribution of first (and sometimes second) sig-
nificant digits (FSDs) in block-DCT coefficients and methods based on Benford-Fourier
analysis [171, 172]. Data-driven detectors based on features derived from second-order
statistics have also been proposed, e.g., [165]. A major drawback of many of these ap-
proaches is that they are designed to work on the whole image, i.e., to detect if an image
has entirely undergone single or double JPEG compression and they fail to correctly
classify small blocks or image patches, due to the difficulty of estimating the statistics in
these cases. Therefore, they are not applicable in a tampering detection scenario, when
only part of the image has been manipulated.
Among the algorithms performing localization, Lin et al. [76] exploit double quantiza-

tion (DQ) effect on DCT coefficients’ histograms to produce a likelihood map reporting
tampering probabilities for each 8× 8 block of the image. This method has been refined
in [173] through use of an improved probability model. However, spatial resolution con-
sidered by the authors for good detection accuracy with these methods is 256× 256, and
performance drop significantly when smaller regions are considered. Besides, this method
performs poorly when quality factor used for the first compression (i.e., QF1) is signifi-
cantly larger than the second one (i.e., QF2). In [174], localization of spliced regions is
achieved by using FSD features of block-DCT coefficients and employing a support vec-
tor machine (SVM) classifier. Recently, in [175], authors proposed a novel method that
relies on a one-dimensional CNN, designed to automatically learn discriminant features
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from DCT coefficients histograms. This approach outperforms both methods in [173]
and [174], achieving good detection performance with small sized images up to 64 × 64

pixel. However, all the above approaches exploit the peculiar traces left by aligned
DJPEG compression and then fail to detect double compression in the non-aligned case.
In the NA-DJPEG scenario, several other methods for detecting double compression

have been proposed, relying on ad-hoc features extracted from both pixel domain [176,
177] and DCT domain [13, 178]. Specifically, in [177] authors proposed a method able
to detect both aligned and non-aligned re-compression. The scheme works by combining
periodic artifacts in spatial and frequency domains. Specifically, a set of features is
computed to measure periodicity of blocking artifacts, which is altered when a NA-
DJPEG compression occurs, and another set of features is used to measure periodicity
of DCT coefficients, which is perturbed in presence of A-DJPEG. This approach for
non-aligned re-compression detection is outperformed by [179]. Furthermore, in [180],
Bianchi and Piva propose a forensic algorithm for tampering localization when DJPEG
compression occurs, either aligned or not. The proposed scheme is as an extension of
their analysis carried out in [173], where a unified statistical model characterizing JPEG
artifacts in the DCT domain is considered. However, similarly to [173] (and [180]),
this scheme works well as long as QF2 > QF1; moreover, in order to achieve accurate
detection, spatial resolutions lower than 256× 256 pixel are not considered.

4.1.2 Contribution

Deep learning using convolutional neural networks (CNNs) [33,34] has proved to be very
powerful in many image classification problems, thus achieving considerable success in
recent years also in steganalysis [46, 48, 63] and image forensics [10, 47, 72]. By using
CNNs, the classical machine learning paradigm of manually extracting characteristic
features from the data is replaced by the possibility of learning discriminant information
directly from data.
Motivated by this recent trend, the goal of this work is to design CNN-based approaches

able to classify single and double JPEG compressed images. Specifically, we are interested
in working with small size images.
To the best of our knowledge, CNNs to perform double JPEG detection have been

applied only in [175]. In this paper, a one-dimensional CNN is designed to take as input
a feature vector built by concatenating DCT histograms. Since the network is fed with
hand-crafted features (i.e., one-dimensional DCT histograms), the CNNs’ capability of
automatically learning from data is not addressed in that work.
We consider the case in which the image is directly given as input to the network, thus

133



4 Data-driven approaches in multimedia forensics

fully exploiting self-learning capability of CNNs. Besides, our analysis is not limited to
the case of aligned DJPEG compression, but we also consider the case of non-aligned
double JPEG compression, in which the method proposed in [175] is not meant to work.
Specifically, the contributions we present are detailed in the following. Concerning A-
DJPEG detection:

• We refine the approach in [175] by showing that DCT histograms can be computed
using common and readily available CNN layers, and that correlation among DCT
histograms can be exploited to increase classification accuracy on small 64 × 64

images.

• We propose two alternative ways to perform detection based on CNNs with self-
learned features directly from image pixels or noise residuals, showing the robust-
ness of these algorithms in classifying images compressed with QFs different from
those used for training.

Then, concerning NA-DJPEG compression:

• We compare the proposed CNN-based detectors against state-of-the-art solutions
[169, 170, 179], showing that the CNN working on noise residuals significantly im-
proves the performance especially on small 64× 64 images.

• We confirm the robustness with respect to variations of QFs, showing that CNNs
working on noise residuals are also able to correctly classify images compressed
twice with the same QF.

Finally, when both A-DJPEG and NA-DJPEG are jointly considered we show that it
is possible to use the same CNN-based methods to build a detector which works in the
general case.
A strength of the proposed solutions, with respect to the most powerful state-of-the-art

techniques (e.g., [175,179]), is that they are designed to work directly on the pixel values.
Therefore, our algorithms can detect a double JPEG compression even when images are
made available in bitmap or PNG format. This indeed can be seen as a simple yet
effective antiforensic attack against the aforementioned methods which need access to
the information in the JPEG bitstream (e.g., to read quantization tables or quantized
coefficients).

4.1.3 Problem Formulation

JPEG is a lossy image transform coding technique based on block-wise Discrete Cosine
Transform (DCT). In a nutshell, an image is split into 8 × 8 non-overlapping blocks,
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each block is DCT transformed and quantized, then entropy coded and packed into the
bitstream. Quantization is the operation causing information loss. Specifically, quan-
tization is driven by pre-defined quantization tables scaled by a quality factor (QF). A
lower QF indicates a stronger quantization, thus lower quality of the final decompressed
image.
Double compression occurs when an image compressed with a quality factor QF1 is

first decompressed and then compressed again with quality factor QF2. If no operations
are applied between the two compression steps, 8×8 JPEG blocks of the first and second
compressions are perfectly aligned, thus we speak of A-DJPEG compression. Conversely,
when the second compression 8×8 grid is shifted with respect the previous one (e.g., due
to cropping between first and second compression or to a cut and paste operation), we
have a NA-DJPEG compression. Depending on the particular scenario, both A-DJPEG
and NA-DJPEG may occur.
Our goal is to build a detector which is able to classify between single compressed

and double compressed images. In other words, let H0 correspond to the hypothesis of
single compressed image, and H1 to the hypothesis of image compressed twice. Given
a B × B pixel image I, we want to detect whether H0 or H1 is verified, considering: i)
only A-DJPEG case; ii) only NA-DJPEG; iii) both A-DJPEG and NA-DJPEG cases.
To solve this classification problem, we propose to use data-driven techniques based

on CNNs. Specifically, starting from a standard supervised-learning pipeline, we propose
three different architectures. The investigation of different approaches is motivated by
the fact that aligned and non-aligned DJPEG compressions leave different footprints and
then in principle cannot be detected in the same way.

4.1.4 Proposed Solutions

The proposed methodologies follow a common pipeline depicted in Figure 4.1 composed
by two steps: training and test. During training, a database of labeled images is used to
learn CNN parameters for the selected architecture. Accordingly, the CNN is fed with
N pairs {In, ln}, n ∈ [1, N ], where ln = 0 if image In verifies H0 (single compressed),
ln = 1 if it verifies H1 (double compressed). After training, the CNN outputs the learned
model M containing all CNN parameters (e.g., filters, fully connected weights, etc.).
Optionally, a pre-processing step (e.g., denoising) can be applied to the images, in order
to turn images In into Ĩn. When an image I is under analysis, it is fed to the trained
CNN. The network outputs the probability of the image to verify whether H0 is true or
not. This probability (soft output) is converted to the estimated label l̂ by thresholding
(hard output). Clearly, if pre-processing is applied during training, it must be applied
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Pre-processing CNN

Pre-processing CNN

Training
Set

{In, ln}

I Ĩ

{Ĩn, ln}

l̂

M

Figure 4.1: Pipeline common to the proposed solutions. CNN training (top) is performed using images In labeled
with ln. The CNN modelM is then used for testing (bottom) a new image I and obtain the candidate label l̂.
Optional pre-processing might be applied to the images.

also during testing.
In the following we report the three investigated solutions, based on the above pipeline.

4.1.4.1 CNN in the Pixel Domain

The first investigated approach is based on the idea that properly designed CNNs should
be able to automatically learn to distinguish between single and double compression by
working directly on the image in the pixel domain. Encouraging results in this direction
have been recently obtained in steganalysis field for classification of stego and cover
images [62,63].
In this case, In corresponds to the JPEG image in the pixel domain (decompressed)

and Ĩn results from removing the average image 1
N

∑N
n=1 In computed from the training

set of images:

Ĩn = In −
1

N

N∑
n=1

In. (4.1)

The mean subtraction is customary done before CNN training to let the network work
with almost-zero-average signals.
Regarding the CNN architecture, we resort to a slightly deeper variation of the well-

known LeNet [33] developed for digits recognition, which has already been successfully
exploited for forensic analysis [10, 45, 47]. This network architecture is depicted in Fig-
ure 4.2 (bottom part) and input-output size of each layer are reported in Table 4.1.
B×B is the size of input grayscale image. Then, three convolutional layers (i.e., Conv-1,
Conv-2 and Conv-3) apply stride 1 valid convolution with 30 filters 5× 5 shaped. All of
them are followed by a max-pooling layers (i.e., Pool-1, Pool-2 and Pool-3) with kernel
2× 2. The first inner product layer (i.e., IP-1) reduces its input to 500 neurons and it is
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Table 4.1: Reference CNN architecture parameters. Input-output relations for each layer are reported as function
of the input image size B ×B × 1.
Layer Kernel size Stride Num. filters Input Size Output Size
Conv-1 5×5 1 30 B ×B × 1 B-4 ×B-4 × 30
Pool-1 2×2 2 - B-4 ×B-4 × 30 B/2-2 ×B/2-2 × 30
Conv-2 5×5 1 30 B/2-2 ×B/2-2 × 30 B/2-6 ×B/2-6 × 30
Pool-2 2×2 2 - B/2-6 ×B/2-6 × 30 B/4-3 ×B/4-3 × 30
Conv-3 5×5 1 30 B/4-3 ×B/4-3 × 30 B/4-7 ×B/4-7 × 30
Pool-3 2×2 2 - B/4-7 ×B/4-7 × 30 B/8-3 ×B/8-3 × 30
IP-1 - - 500 B/8-3 ×B/8-3 × 30 500
ReLU-1 - - - 500 500
IP-2 - - 2 500 2
SoftMax - - - 2 2

followed by a ReLU non-linearity. Finally, the last fully connected layer (i.e., IP-2) re-
duces its input to 2 elements, i.e., one per class. SoftMax is used at the end to normalize
IP-2 output to probability values.

Avoiding the use of deeper architectures, we are able to work even on small images.
Indeed, after each convolutional and max-pooling layer, feature maps size is reduced by
more than a half in the first and second dimensions. Therefore, starting from small
input images it is not possible to go too deep, unless filter size and pooling strategies are
changed. Moreover, the use of much deeper networks has proved to provide not many
benefits in related forensic works [14].

4.1.4.2 CNN in Noise Domain

The second solution is based on the idea that additional pre-processing, aimed at re-
moving irrelevant information (e.g., image content), may help the CNN in its training
process. In order to expose double JPEG compression traces, we decided to rely on a
denoising pre-processing operator. Then, the CNN input image Ĩn corresponds to the
noise residual

Ĩn = In −F(In) , (4.2)

where F(·) is the denoising operator described in [121], which relies on a spatially adaptive
statistical model for the Discrete Wavelet Transform. The denoised image is predicted in
the Wavelet domain by means of the minimum mean squared error (MMSE) estimation.
This algorithm is widely used in forensics for its good capability of separating image
content from noise [50,105,114]. With regard to the CNN architecture, we rely again on
the one described in Table 4.1.
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4.1.4.3 CNN Embedding DCT Histograms

The above solutions implicitly assume that DJPEG artifacts are exposed in the pixel
domain. This is the case with non-aligned re-compressed images, which are characterized
by a different behavior of blocking artifacts with respect to single JPEG compressed one
[176,177]. Conversely, when aligned re-compression is concerned, it is well known in the
literature that peculiar traces are left in the DCT domain (specifically in the histogram
DCT coefficient statistics), whereas traces left in the pixel domain are generally weaker.
Therefore, our third proposed detection method relies on a CNN which automatically
extract first order features from the DCT coefficients. We do not consider the case in
which the image is block-wise transformed to the DCT domain and then directly fed
to the CNN, because based on some preliminary experiments, we did not obtain good
performances on small image patches (B = 64).

Despite this approach is similar to the one proposed in [175], we would like to stress
that: i) we do not make use of DCT coefficients extracted from JPEG bitstream, rather
we compute DCT with a CNN layer enabling us to work with decompressed images (i.e.,
our method still works if double JPEG images are stored in bitmap or PNG format); ii)
we exploit a 2D-convolutional CNN, rather than a 1D one as done in [175], thus cap-
turing possible correlation among DCT coefficient histograms; iii) our solution embeds
histogram computation as part of the CNN, thus enabling fast and adaptive histogram
computation using one of the many available GPU frameworks for CNN; iv) by em-
bedding histogram computation in the CNN, we are able to also optimize the choice of
quantization bins, rather than fixing it manually as in any hand-crafted approach.

Since this method does not make use of any pre-processing operation, Ĩn = In. Then,
the used CNN can be thought as split into two parts as show in Figure 4.2: i) the former
computes DCT coefficients histograms; ii) the latter, fed with these histogram, is the
CNN described in Table 4.1, whose filters in convolutional layers are 3 × 3 rather than
5× 5.

For the first part, the first step consists in obtaining the 2D DCT representation of
each 8 × 8 image block. To this purpose, let us define D(c1, c2) as the B

8 × B
8 matrix

containing the DCT coefficients at frequency (c1, c2) for each 8 × 8 image block. This
can be easily computed with a convolutional layer as

D(c1, c2) = conv8(I,H(c1, c2)), (4.3)

where conv8(·, ·) computes the valid part of the 2D linear convolution using stride 8, and
H(c1, c2) is the DCT base at (c1, c2) frequency. An example of D(c1, c2) is reported in

138



4.1 Single vs. Double JPEG compression

Conv
DCT Bias Sigm Avg

Pool
Conv
Diff

Co
nv

-1

Co
nv

-2

Po
ol

-1

Po
ol

-2

IP
-1

Re
LU

IP
-2

DCT Cumulative Histogram Histogram

Co
nv

-3

Po
ol

-3

Figure 4.2: Pipeline of the CNN layers used by the third proposed method. On the top, the part devoted to DCT
histogram computation. On the bottom, the CNN described in Table 4.1.

Figure 4.3.

At this point, for each frequency (c1, c2), we want to compute the histogram. To
do so using common CNN layers, we first compute the cumulative histogram and then
differentiate it. Specifically, to count the average number c(c1, c2)b of values in H(c1, c2)

that are grater than a constant b, we resort to a series of bias, sigmoid and average-pooling
layers obtaining

c(c1, c2)c =
B2

64

∑
i,j∈[0,7]

sigmoid [γ · (D(c1, c2)i,j − b)] , (4.4)

where the bias b is a constant value identifying a histogram bin boundary, γ is a gain
(i.e., 106 in our experiments) used to expand the dynamic of D(c1, c2)i,j − b (i.e., to
obtain very high values for D(c1, c2)i,j > b and very low values for D(c1, c2)i,j < b),
sigmoid(·) turns very high and very low input values into 0 or 1, and the average-pooling
layer performs the sum and normalization for B2

64 . In other words, c(c1, c2)b is the b-th
cumulative histogram bin for DCT coefficient (c1, c2). Examples of these signals are
depicted in Figure 4.3.

The histogram for each (c1, c2) coefficient can be obtained using a convolutional layer
that computes

z(c1, c2) = conv1(c(c1, c2), [1,−1]), (4.5)

where conv computes 1D convolution, and the filter [1,−1] acts as differentiator in the b-
th direction. Differently from [175], we do not assume to already have access to quantized
DCT coefficients. Therefore, the set of b values use to construct histograms is not known
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(a) D(c1, c2)

(b) D(0, 1)− b

(c) sigmoid(γ · (D(c1, c2)− b))

Figure 4.3: Outputs of CNN layers devoted to histogram computation: (a) output of the DCT layer D(c1, c2) for
nine different pairs (c1, c2); (b) output of the bias layer D(0, 1)− b for (c1, c2) = (0, 1) and different b values; (c)
output of sigmoid layer sigmoid(γ · (D(c1, c2)− b)) for (c1, c2) = (0, 1) and different b values.

and must be sought. An example of obtained histogram and its cumulative version is
reported in Figure 4.4.
Once all histograms z(c1, c2) for all considered DCT frequency pairs (c1, c2) have been

computed in parallel by the CNN, they are concatenated into a 2D matrix Z, where each
row represents a histogram bin b, and each column represents a frequency pair (c1, c2).
This matrix (i.e., the output of ConvDiff layer of Figure 4.2) can be considered as an
image, fed as input to the CNN pipeline defined in Table 4.1.

4.1.5 Dataset Construction

In order to thoroughly validate the proposed solutions, we generated a set of training and
test datasets of single and double compressed images at different resolutions and with
different quality factors, for a total amount of more than 3M images. All datasets are
built starting from images of RAISE database [181]. This is a collection of more than
8 000 uncompressed real-world images of high resolution taken from different cameras.
Images have been first converted to grayscale, then randomly cropped in order to obtain
smaller resolution images used in our tests. Attention is paid to split into only one set
(training or validation) all cropped portions coming from the same original image. All
sets are balanced, i.e., they contain the same number of single and double JPEG images.
Training sets have been created in the following cases: i) B = 64, 256; ii) aligned

and non-aligned DJPEG. Each set contains between 280k and 300k image patches. For
each scenario, the image set is built as it follows: for the first class (H0), images of size
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(a)

(b)

Figure 4.4: Example of (a) cumulative histogram c(c1, c2)b and (b) histogram z(c1, c2)b, for (c1, c2) = (0, 1) and
b ∈ [b0, b15]. These are the output of average pooling and derivative convolutional layer fixing (c1, c2) = (0, 1),
respectively.

B × B are single compressed with quality factor QF; for the second class (H1), double
compressed images are built by coding B × B images first with various QF1 and then
with QF2. For a meaningful analysis, we take QF = QF2 as done in [175].

To build double compressed images for the non-aligned case, we start from images
of size B′ × B′ with B′ ≥ B + 7. Then, after the first compression with QF1, images
are shifted by a random quantity (r, c), 0 < r, c < 7, and cropped to the size B × B,
before being compressed again with QF2, thus simulating grid misalignement. In all our
experiments, we consider three possible values for QF2, that is 75, 85 and 95, whereas
QF1 ∈ {50, 60, 70, 80, 90} for the first two QF2 values and QF1 ∈ {60, 70, 80, 90, 98} for
the last one. Table 4.2 reports the breakdown of all these training datasets. We denote
with D̄ datasets for the aligned DJPEG case and with D̂ datasets for non-aligned JPEG
scenario. Superscripts indicate the adopted QF2 (i.e., 75, 85 or 95), whereas subscripts
indicate image size (i.e., B = 64 or 256).

Validation datasets have been created to evaluate: i) detection accuracy under nor-
mal working conditions, i.e., the ability of classifying test images built under the same
conditions of training, and also; ii) generalization capability, that is, the ability of clas-
sifying images even when they are not perfectly compliant with the used training set.
To this purpose, we generated different sets of double JPEG images with many different
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Table 4.2: Datasets used for training. All datasets are balanced in both classes and QF pairs.
Datasets I Size QF1 QF2 Alignment # Train # Val

D̄(75)
256 /D̄(85)

256

256x256
50,60,70,80,90 75/85 A

280k 30kD̂(75)
256 /D̂(85)

256 NA
D̄(95)

256 60,70,80,90,98 95 A
D̂(95)

256 NA

D̄(75)
64 /D̄(85)

64

64x64
50,60,70,80,90 75/85 A

300k 30kD̂(75)
64 /D̂(85)

64 NA
D̄(95)

64 60,70,80,90,98 95 A
D̂(95)

64 NA

(QF1,QF2) pairs and single JPEG images with the corresponding QF2. Specifically, in
addition to the same pairs used for training, we consider some new pairs where QF1 or
QF2 deviates from the values used for training. Each set contains 3 000 single compressed
images and 3 000 double compressed ones. As for training, validation sets are built for
the case B = 64 and 256, with either aligned or non-aligned DJPEG.
As commonly done to evaluate the performance with data-driven approaches, detection

accuracy is measured over the same (QF1,QF2) pairs used for training. Then, to test
their generalization capability, we also measure the performance of the detectors with
respect to (QF1,QF2) pairs never used for training.

4.1.6 Evaluation Methodology

In order to fairly evaluate all CNN-based considered approaches, we devised a com-
mon training-validation strategy. All CNNs have been trained using stochastic gradient
descent (SGD) algorithm with batch size (i.e., number of images used for each SGD it-
eration) set to 128. Momentum was set to 0.9. Learning rate was set to 0.01 for 64× 64

images and 0.001 for 256×256 images, and was progressively decreased with exponential
decay at each iteration. The maximum amount of epochs (i.e., number of times the CNN
sees all training data) was set to 30 to ensure network convergence. Initialization of CNN
parameters have been performed using the method devised in [182]. As best CNN trained
model, we always selected the one at the epoch with minimum validation loss in order to
avoid overfitting. All experiments have been run exploiting Caffe framework [183] on a
workstation equipped with an Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz with 64GB
of RAM and one NVIDIA Titan-X GPU.
The results are provided in terms of accuracy, namely the percentage of correctly clas-

sified single and double JPEG images in the validation dataset. We use notation Cpix
to refer to the CNN-based detector in the pixel domain, Cnoise for the one in the noise
domain, and Chist for the case of CNN embedding DCT histogram computation. Con-

142



4.1 Single vs. Double JPEG compression

cerning parameters of the latter, we made use of all the AC DCT frequencies. Histograms
have been computed using 101 integer bins initialized with b ∈ [−50, 50].

4.1.7 Aligned Double JPEG

It is well known that the performance of supervised machine learning techniques strongly
depends on the amount of data used for training. In order to assess the dependency
between number of images used for training and detection accuracy in our case, Fig-
ure 4.5(a) shows the results achieved with Cpix in the most difficult scenario with small
patches (B = 64) and strong second quantization (QF = 75). To get the plot, the
network is trained on different percentages of training images from D̄(75)

64 . We see that,
when 10% of the dataset is used for training, accuracy is below 0.75. However, when
more than 70% of training data is used, accuracy saturates around 0.82. Therefore, us-
ing the whole training dataset, we are sure that we are not experiencing losses due to
insufficient amount of training data.1

In order to assess the effect of CNN architecture deepness, we trained five CNNs with
increasing number of Conv-Pool layer pairs on a subset of the whole dataset. Results
reported in Figure 4.5(b) show how the selected architecture almost saturates the achiev-
able performance in terms of accuracy.
To assess the performance of the proposed approaches for aligned double JPEG detec-

tion, we compare them to the state-of-the-art techniques in [175], [169] and [170], denoted
respectively as WZ, KH and TR in plot legends. We select [175] as one of the baseline for
two reasons: i) it is shown to outperform previously existing state of the art detectors,
e.g., [167, 168, 173, 174]; ii) to the best of our knowledge, it is the only method based on
CNNs, thus being a natural comparison for our methods.
Figure 4.6 reports results obtained training all proposed CNNs in the various cases,

i.e., on the datasets D̄(75)
256 , D̄(85)

256 , D̄(95)
256 , D̄(75)

64 , D̄(85)
64 and D̄(95)

64 . Results for B = 256 show
that the proposed Chist architecture achieves equal or better performance with respect to
all baseline methods. This is due to the fact that hand-crafted features exploited in [175]
are very distinctive, especially when large images are concerned.
With small patches (B = 64) all algorithms suffer when QF2 ∼= QF1 (this case is

addressed in the literature by specific methods tailored for the purpose, e.g., [184]) and
QF2 < QF1, as a stronger second compression tends to mask artifacts left by the first
one. However, on 64× 64 patches, Chist is the one with the best performance and always
outperforms state-of-the-art methods on average.

1It is worth pointing that the other proposed solutions, i.e., Cnoise and Chist, usually need less training
images to converge.
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(a) Impact of training set size on A-DJPEG detection accuracy
using Cpix.

(b) Impact of CNN depth on A-DJPEG detection accuracy
using Cpix and Cnoise.

Figure 4.5: Impact of training set size and number of CNN layers.

(a) Train on D̄(75)
256 (b) Train on D̄(85)

256 (c) Train on D̄(95)
256

(d) Train on D̄(75)
64 (e) Train on D̄(85)

64 (f) Train on D̄(95)
64

Figure 4.6: Aligned DJPEG compression detection accuracy against baselines WZ [175], KH [169], and TR [170].
Dashed black line indicates the considered QF2.
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Figure 4.7: Sensitivity analysis for aligned DJPEG compression detection when QF2 = 75. Image size is 64× 64.

Concerning the proposed methods, Chist always outperforms Cpix and Cnoise. This is
also expected, as aligned DJPEG traces are better exposed in the DCT domain, rather
than the pixel domain. Nonetheless, a part when QF1 and QF2 are very close, also Cpix
and Cnoise allow to achieve accuracy greater than 0.70 on small images.

Regarding generalization capability, Figure 4.7 shows the accuracy achieved by all
CNNs trained on the most difficult scenario with QF = 75 and small images (B = 64).

The methods based on DCT histograms or Benford law (i.e., Chist and baselines WZ,
KH, TR) suffer to recognize aligned DJPEG for values of QF1 different from those used
during training when they are close to QF2, and completely fail when these QF1s are
larger than QF2.

Contrarily, the methods relying on pixel analysis (i.e., Cpix and Cnoise) show greater
robustness to changes in (QF1,QF2).

To further explore this fact, Table 4.3(a) shows the behavior of Cnoise trained on D̄(75)
64

and D̄(75)
256 and tested on images with several different (QF1,QF2) pairs (similar results

hold for Cpix). Similarly, Table 4.3(b) reports the accuracy results with Cnoise trained on
D̄(85)

64 and D̄(85)
256 . We notice that, by varying QF1, results are perfectly in line with those

achieved with matched QF pairs. Good results are also obtained with different QF2s, a
part for the case of much higher QF2.

This behavior is not surprising, since compression with high QF2 leaves few traces on
images compressed at lower quality, hence detecting a DJPEG compression in these cases
is hard when such examples are not included in the training set.

To conclude the analysis of this section, although on one side CNNs based on a strong
hand-crafted modeling assumption (as baseline [175] and Chist) allow to achieve the best
accuracies, the ones based on the analysis of the pixel image (i.e., Cpix and Cnoise) prove
to be more robust to perturbations of QF1 and QF2 with respect to the values used for
training, which is paramount every time the algorithm works in the wild.
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Table 4.3: Sensitivity of Cnoise to variations of QF1 and QF2 for aligned DJPEG detection. For any pair, only
one between QF1 and QF2 is common to images used in the training set (reported in bold).

Testing (QF1,QF2) B = 64 B = 256

(55, 75) 0.925 0.982
(65, 75) 0.880 0.981
(85, 75) 0.820 0.952
(60, 78) 0.900 0.917
(70, 78) 0.810 0.907
(60, 80) 0.860 0.810
(70, 80) 0.790 0.800

(a) Train on D̄(75)
B , B ∈ {64, 256}.

Testing (QF1,QF2) B = 64 B = 256

(55, 85) 0.963 0.994
(65, 85) 0.960 0.993
(75, 85) 0.923 0.978
(70, 88) 0.860 0.914
(80, 88) 0.640 0.656
(70, 90) 0.718 0.687
(80, 90) 0.500 0.510

(b) Train on D̄(85)
B , B ∈ {64, 256}.

4.1.8 Non-aligned Double JPEG

When DJPEG compression occurs with misalignment between the grids, detectors in the
previous section trained on aligned data do not work anymore, getting an accuracy which
is around 0.5. To evaluate the performance of our method for NA-DJPEG detection, we
re-train the detectors in the misaligned case. In this case, not surprisingly, the algorithm
in [175] (WZ) does not work. Indeed, the features extracted by this method, i.e., the
DCT histograms, are particularly distinctive only when the second compression is aligned
with the first one (the typical peak and gap artifacts shows up in the DCT histograms).
Therefore, we select the well-known algorithm for NA-DJPEG detection proposed in
[179], denoted as BP, as additional baseline in this case.
Figure 4.8 shows the performance of all proposed techniques and baselines for QF2 =

75, 85 and 95 with image size 64× 64 and 256× 256. It is known that BP does not work
when QF1 > QF2. Besides, the accuracy significantly drops for small images, especially
in the case QF1 ' QF2. Concerning our methods, not surprisingly, our solution Chist
shows poor performance with respect to Cpix and Cnoise. Indeed, similarly to [175], the
traces in the DCT domain that Chist looks at are weak in the non-aligned case.
On the other hand, CNNs designed to work in the pixel domain show good detection

performance even for small images (i.e., 64 × 64). From these results, we see that the
detector based on Cnoise always outperforms state of the art.
Concerning network sensitivity to QF pairs different from those in the training set,

Table 4.4 shows the results obtained with our best method Cnoise for both QF1 = 75 and
85, and image sizes. As for the aligned scenario, Cnoise enables good detection accuracy,
the only critical cases being those with much higher QF2. It is interesting to notice that
Cnoise is able to detect non-aligned DJPEG compression with good accuracy also in the
very challenging scenario in which QF1 = QF2.
When double compression occurs with QF2 = 95 and QF1 > 95, the detector fails and
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(a) Train on D̂(75)
256 (b) Train on D̂(85)

256 (c) Train on D̂(95)
256

(d) Train on D̂(75)
64 (e) Train on D̂(85)

64 (f) Train on D̂(95)
64

Figure 4.8: Non-aligned DJPEG compression detection accuracy against baselines BP [179], KH [169], and TR
[170]. Dashed black line indicates the considered QF2.

Table 4.4: Sensitivity of Cnoise to variations of QF1 and QF2 for non-aligned DJPEG detection. Test and training
images have only QF1 or QF2 in common (reported in bold).

Testing (QF1,QF2) B = 64 B = 256

(55, 75) 0.816 0.876
(65, 75) 0.805 0.866
(75, 75) 0.764 0.842
(85, 75) 0.674 0.776
(60, 78) 0.777 0.845
(70, 78) 0.765 0.830
(60, 80) 0.723 0.794
(70, 80) 0.720 0.790

(a) Train on D̂(75)
B , B ∈ {64, 256}.

Testing (QF1,QF2) B = 64 B = 256

(55, 85) 0.897 0.972
(65, 85) 0.878 0.972
(75, 85) 0.865 0.961
(85, 85) 0.793 0.954
(70, 88) 0.751 0.786
(80, 88) 0.738 0.785
(70, 90) 0.650 0.610
(80, 90) 0.634 0.600

(b) Train on D̂(85)
B , B ∈ {64, 256}.

the images are misclassified half of the time. Experiments show that even if we train our
methods to detect this specific case, the accuracy does not go above 66%, thus confirming
that the misalignment between the 8 × 8 compression grid tends to remove completely
the traces, which in this case were already very weak in the aligned case, and then makes
the detection very challenging.

4.1.9 Aligned and Misaligned Double JPEG

Since it is usually not known a-priori whether double compression is aligned or not,
it is relevant to be able to detect both A-DJPEG and NA-DJPEG. To this purpose,
we trained the proposed architectures on a dataset obtained by the union of the one
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(a) Train on (D̄(75)
64 ∪ D̂

(75)
64 )

(b) Train on (D̄(85)
64 ∪ D̂

(85)
64 )

(c) Train on (D̄(95)
64 ∪ D̂

(95)
64 )

Figure 4.9: DJPEG compression detection accuracy tested separately on aligned and misaligned cases, when
training is performed on a mixed dataset. Image size is 64 and QF2 = 75, 85.

used for A-DJPEG, namely D̄, and the one used for NA-DJPEG, namely D̂. For the
experiments of these section, we considered the most challenging scenario with small
images (B = 64). Figure 4.9 shows the performance of the CNN-based detectors in terms
of average accuracy computed separately on A-DJPEG and NA-DJPEG images. The
average is taken over all the QF pairs used for training. As expected from the previous
analysis, Chist tends to learn better characteristics of aligned DJPEG and performs poorly
in non-aligned case. Conversely, Cpix and Cnoise are more stable solutions being able to
detect with almost the same accuracy both A-DJPEG and NA-DJPEG images.

Driven by the accurate performance of Chist on A-DJPEG compression, we also in-
vestigated an alternative solution according to which the detection for the mixed case
is obtained by fusing the outputs of our best CNN-based detectors for the aligned and
non-aligned case, through the use of a binary classifier. Specifically, we considered the
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(a) (b)

double

single

Figure 4.10: A-DJPEG (a) and NA-DJPEG (b) localization example of a compressed central region withQF2 = 95
and QF1 = 80. Chist is used for the aligned case while Cnoise for the non aligned case. Actual forged region lies
inside the yellow rectangle.

output provided by Chist trained on A-DJPEG images, and the output of Cnoise trained
in the NA-DJPEG case, as feature vector. By feeding this feature vector to a binary
classifier (i.e., a random forest in our case), it is possible to further increase the final
accuracy in the mixed case by up to 2%. However, other solutions and fusing strategies
might be investigated. We leave a thorough investigation of this case to future studies.

4.1.10 Localization

Given the good performance achieved on small patches, our method can be applied on
sliding windows to localize possible tampering regions in images. This can be done,
e.g., by dividing the image into overlapping blocks of size 64 × 64 with stride 16 × 16.
Each block is fed to the CNN (after a pre-processing step for the case of Cnoise) and
the softmax output is used as an estimation of the probability that the block is double
compressed. Figure 4.10 shows the results of double compression localization of a central
region, bounded in yellow, in A-DJPEG and NA-DJPEG scenarios with QF2 = 95 and
QF1 = 80, when Chist is used for the former case and Cnoise for the latter case. Both
examples show that red-shaded blocks, i.e. those for which the probability of being
double compressed is higher, are mainly inside the expected central region.

4.1.11 Conclusions

In this section we explored the use of CNNs for double JPEG compression detection
problem in the case of aligned and non-aligned recompression. Specifically, three different
solutions are investigated: in one of them, the CNN is based on hand-crafted features
extracted from the images; in the other two, the CNN is trained directly with the images
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and the denoised versions, then features are self-learned by the CNN itself.
Results show that CNN based on hand-crafted features allow to achieve better accura-

cies in the case of A-DJPEG. For the NA-DJPEG instead, the CNN based on self-learned
features applied to the image noise residuals is shown to outperform the state of the art
in every tested scenario. Good performance are achieved even in the difficult cases in
which the second quality factor is larger than the first and over small images, thus paving
the way to the application of the techniques to tampering localization. Besides, CNN
based on self-learned features prove very robust to deviations between training and test
conditions. Additionally, some preliminary experiments show the proposed CNN-based
methods can also be successfully applied to simultaneously detect an aligned or non-
aligned DJPEG compression.
We designed our methods by assuming that no processing operation occurred in the

middle of the two compression stages. Although this is a common assumption to D-JPEG
detection approaches in the literature, in real applications, some intermediate processing
might be applied. In view of this, we made some preliminary tests to check if and at which
extent the D-JPEG detector is robust to basic processing operations2. The tests show
that good resilience is achieved on the average with respect to histogram enhancement
operations (accuracy around 85%) and cropping (80%), which just introduces a 8 × 8

grid desynchronization as a main effect. On the other side, the performance with respect
to filtering operation are poor (62% of accuracy in the case of a light blurring, performed
with a 3× 3 Gaussian smoothing kernel with variance σ2 = 1). The classification fails in
the case of geometric transformation, e.g., resizing (around 30%).

4.2 Laser Printer Attribution

Printed documents are found everywhere. From simple documents available today such as
homeworks and warnings, to more crucial ones such as contractual clauses and scientific
articles, a printer is always involved, being it a dot matrix, dye-sublimation, thermal,
ink-jet or laser. The last one has been the choice of domestic users and offices in the last
decade because of its speed, quality of printing and decreasing price.
However, with this massive access to printing devices, a new threat has also emerged:

the use of laser printers for criminal intentions. Additional contractual clauses inexistent
before, child pornography and animal abuse photos, life threatening letters, illegal corre-
spondence, terrorist plots, fake currency and fake documents can now be easily printed

2Results are referred to Cnoise trained on both aligned and misaligned D-JPEG compressed images
(Section 4.1.9) with QF2 = 85 and B = 256.
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by anyone. Hence, providing ways of pinpointing printing ownership of documents is
paramount, mainly to link them to criminals. Also, linking a document to a printer is
another way of authenticating official documents.

Several approaches have been proposed for this task in the literature. Some techniques
are based on laboratory analysis of the actual used paper [185, 186]. However, these
methods can damage or even destroy investigated documents as chemical and physical
procedures are involved. Another branch of approaches exploits the so called extrinsic
signatures, which are characteristic footprints printed on documents, either visible or not
to the naked eye. These signatures can be embedded into printed material by modify-
ing the printing process to encode some sort of source identification [187]. This can
be done, for example, using watermarks, pulse width modulation, QR-codes or security
deterrents [188–191]. Recently, it has been reported that some printers encode, on the
printed pages, some provenance information using tiny yellow dots spread over the print-
ing material, no matter if the document is colored or not [192]. The limitation of these
approaches is the fact that they do not represent a gold standard followed by the whole
industry, and an expert user can change the printer’s firmware maliciously.

Finally, another group of methods aims at solving printer attribution in a non-invasive
(i.e., preserving the original document) blind fashion. This means these methods do
not rely on printer information embedded into documents. Rather, they rely on signa-
tures left by mechanical imperfections specific of printers that can be searched for on the
printed material [193–196]. These techniques use computer vision and machine learn-
ing approaches applied to scanned versions of suspected documents. More specifically,
existing methods for text (non-colored) documents make use of hand-crafted features
generated by an initial assumption about printing imperfections. These features are
then extracted from a limited part of the data (e.g., one symbol or letter of the raw
text) [194, 197–199] and fed to supervised classifiers for reaching a decision upon the
printer source of the document.

As the use of engineered features has been recently challenged by feature learning
paradigms in many detection and recognition tasks [37], in this work, we present a data-
driven printer attribution approach. This is the first deep learning solution for laser
printer attribution that uses several Convolutional Neural Networks (CNNs) in paral-
lel, extracting meaningful discriminative patterns straight from the analyzed documents
instead of using ordinary feature engineering. Our approach exploits the advantages
of back-propagation procedures, commonly used in CNNs, to automatically learn dis-
criminant features from a set of existing training documents. It also uses different data
representations to better identify printing pattern artifacts on an input printed character,
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further enhancing the characterization process and the analysis of provenance of a printed
document (attribution task). Finally, we apply a late-fusion paradigm to integrate the
classification outcomes coming from different letters within the same document.

The proposed approach is tailored to blind laser printer attribution for grayscale text
documents. This means we do not rely upon any prior information such as inserted
watermarks, and the traces we exploit can be extracted by the analysis on sets of letters.
As the proposed method builds upon a machine learning framework, we assume the
availability of a set of training documents as for any other supervised learning approach
in the literature [195,200]. More specifically, we consider that the only available data are
scanned versions of: (i) the questioned document, and; (ii) a set of training documents
coming from a set of suspect or candidate printers. The available training documents are
considered to be printed with the same font and approximately the same font-size of the
document under analysis. Moreover, we assume that some training documents actually
come from the printer used to generate the document under investigation. In this setup,
we consider that all the documents have been scanned with the same scanner, in order
to avoid introducing any additional bias.

Notice that, even though these hypotheses may seem strict, we are not bounding
our method neither to work with a single font and font-size, nor to work with a fixed
character. Moreover, in courts of law, it is common that: (i) the analyst has direct access
to many documents printed with the suspect printer, or; (ii) the analyst has access to
the suspect printer itself. In the first case, as the commonly used fonts and sizes for
official documents are not many, the analyst has a high probability of owning sufficient
data with the same font and (approximate) size. In the second case, the analysis is even
simpler, as the analyst can print as many documents he/she wants, with any font and
size.

In summary, the main contributions of this section are:

1. The design and development of an ad-hoc CNN for laser printer attribution based
on the analysis of small patches representing text characters. The network is char-
acterized by a small amount of parameters, thus allowing a fast yet reliable training
with a limited set of labeled data.

2. The use of CNNs on multiple representations of the same character to learn com-
plementary features that are fused together for an increased recognition accuracy.

3. The use of a late-fusion paradigm to merge results coming from the analysis of
different characters within the same document. In this way, each character is
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classified separately, and individual results contribute to the final document label.
This is useful especially for documents containing repetitions of some letters.

4.2.1 Literature solutions for laser printer attribution

Laser Printers (LPs), differently from ink-jet printers, use a dry painting process based
on the electromagnetic attraction of sooty powders inside a toner and the paper to be
printed, in a process conducted by modifying charges on a light-sensitive revolving drum
by a laser light source reflected by mirrors. The laser printer process occurs, in a nutshell,
by charging this drum by a laser reflected by a mirror, which attracts the positive charged
toner. Finally, the paper attracts the toner and a fusing process, by heat, joins the toner
to the paper.
The intrinsic characteristics that can be seen on printed pages during this process

are generated by imperfections in the manufactured parts of LPs, such as the leak of
electric charges in some parts of the drum, different patterns of mirrors angle for different
manufacturers, different speed of the revolving drum, among others. One of these intrinsic
characteristics is called banding and is the most considered by the literature. Banding is
defined as light and dark lines in a perpendicular direction to where the paper is moved
inside the printer [188,201]. Different brands are characterized by almost unique banding
frequencies on different models of printers [195]. Several techniques in the literature
have been focused on detecting such banding artifacts. Most of them can be divided in
approaches focused on color documents (images) and text-only-documents. We discuss
both of them in the following subsections.

4.2.1.1 Solutions for color documents

Existing methods to identify the source printer of color documents (i.e., documents with
images) often exploit intrinsic signatures in the printing process, such as noise and geo-
metric distortions, or in statistics derived from the transformed scanned images.

Solutions based on noise analysis Lee et al. [202, 203] used the CMYK color space
to detect the printer source of a document. The authors calculate a residual image by
subtracting the scanned version of a document to its Wiener-filtered version. The residual
image is then summarized using gray-level co-occurence matrix (GLCM) statistics [204]
and classified using a machine learning algorithm. Following a similar path, Choi et
al. [205] and Tsai et al. [206] incorporated different color channels in the analysis and
employed wavelets for feature extraction.
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Elkasrawi and Shafait [200] also used the noise residual pattern to identify the printer
even with common-resolution scans (400dpi). For this they propose a descriptor based
on the work of Khanna et al. [207], in which statistics of the row and column directions
of the image are calculated. However, image filtering is performed differently, with the
aid of the Otsu’s threshold method [208].

Solutions based on the analysis of geometric distortions Bulan et al. [209] used geo-
metric distortions to identify the source of a color document. First, geometric signatures
are extracted by estimating the positions of dots in halftone in training scanned doc-
uments of a given set of printers. Then, by correlation, the halftone points in a test
document are linked to their source. Wu et al. [210] created printer models composed of
distance and angles of halftone dots. K-means clustering on these Euclidean distances
help in the final printer attribution process.

Solutions based on the analysis of statistics of the transformed image Ryu et al. [211]
proposed the analysis of very high-resolution scanned images through histograms of
Hough transform angles in CMYK color channels, generating a feature vector of print-
ing patterns for each document printed by a given printer. The printer attribution is
performed by correlating this pattern with a reference created for each printer.
Kim and Lee [212] used the halftone patterns for laser printer identification, acquiring

images by photography, instead of scanning. First, the image is preprocessed to eliminate
illumination variability using each channel in the CMY domain. Then, a set of 15 halftone
texture features are extracted in the discrete Fourier transform domain and are used to
feed a machine learning classifier. This work was extended upon in [196] using the
curvelet transform and correlation-based attribution.

4.2.1.2 Solutions for text documents

For text documents, most of the approaches to printer attribution rely upon texture, noise
and geometric distortion analysis in the printed letters to find the extrinsic signatures of
the banding process common to different printers.

Solutions based on the texture of printed letters Mikkilineni et al. [193,213] proposed
the use of texture descriptors based on statistics of gray-level co-occurrence matrices to
identify the source of text documents. A set of letters “e”, which is the most used letter
in English texts [214], is chosen for feature extraction. Then, 22 statistics of gray-
level co-occurrence matrices are extracted and used as input to a previously trained
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5-nearest neighbors classifier, with the majority voting of the classified letters defining
the final source of a document. In follow-up works, support vector machines (SVM) were
used [197], as well as clustering and Euclidean distances [215]. Jiang et al. [216] proposed
the extraction of feature vectors based on Benford’s law. The extracted features were the
first digit probability distribution of discrete cosine transform coefficients from multi-size
blocks. Following a different path, Ali et al. [217] used the linearized pixel values of
letters “i” as features properly mapped onto lower dimensional spaces through Principal
Component Analysis. The decision making is then performed using a Gaussian mixture
model machine learning classifier.

Ferreira et al. [195] proposed a series of approaches based on the multidirectionality and
multiple resolution banding texture effects present in printed letters in a document. The
authors extended the GLCM texture descriptor to consider more directions and scales
in the analysis of the input letter. They also proposed another descriptor, called the
convolutional texture gradient filter, which filters textures with specific gradient, present
in areas that better differentiate the printers. The authors used the proposed approaches
on “e” letters and proposed to consider another region for analysis: the frames, which are
rectangular areas with sufficient printing material.

Finally, other authors have focused on the attribution problem for languages using
different alphabets. Tsai et al. [198, 218] combined features from statistics of gray level
co-occurrence matrices and sub-bands of wavelet transform for laser printer source of
Chinese printed documents. As with English language, a specific symbol of Chinese
language was chosen for analysis. Tsai et al. [199] extended upon this method by using
statistical features from a gray-level co-occurrence matrix, discrete wavelet transform,
spatial filter, Wiener filter and Gabor filter to identify the source of Japanese printed
documents.

Solutions based on the analysis of noise and geometric distortions Kee and Farid
[194] proposed to use reference characters and the reconstruction error to identify the
source of text documents. The authors start with a reference “e” character of each
printer. Then the search of similar characters from the same printer is done in a training
step by template matching. These letters are then used to build the printer profile,
useful for printer attribution later on. This profile is firstly built by preprocessing letters
with histogram normalization and registration with respect to the reference letter of the
printer. Then the mean character is calculated and the top p eigenvectors from principal
component analysis [219] are calculated on aligned characters, yielding the printer profile.
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Wu et al. [220] used geometric distortions to identify the laser printer source of docu-
ments. They first model a projective transformation using the center of characters and
the whole scanned image in uncompressed format. Then, they solve this model with
least squares and singular value decomposition for outlier removal. The estimated model
parameters are used as geometric signatures inserted in a machine learning classifier.
Finally, Schreyer [221] used statistical features from noise images in the discrete cosine
transformed domain and in the multi-resolution wavelet domain, to train a machine
learning classifiers for source printer attribution.

4.2.1.3 Remarks

In this work, instead of focusing on the printer attribution problem with hand-crafted
features, similarly to previous solutions in the literature, we set ourselves the following
guiding research principles:

1. Learn the discriminative features directly from the available collected data in a
totally data-driven fashion.

2. Extract meaningful discriminative characteristics from a reduced set of training
data, instead of the large ones often necessary for training deep Convolutional
Neural Networks.

4.2.2 Proposed Method

The proposed solution for laser printer attribution works according to the following su-
pervised machine learning pipeline. First, documents under analysis are digitalized and
different sets of characters Schar are extracted from them (e.g., Se and Sa for characters “e”
and “a”, respectively). Each character of each set is processed separately. Characters are
processed to obtain multiple representations of them (i.e., Srawchar, Smed

char and S
avg
char contains

the raw, median filtered residual and average filtered residual versions of the characters).
For each representation, different features f rawchar, fmed

char and favgchar are extracted using small
CNNs trained for this problem. These features are combined for each character set into
a single feature vector fchar, which is used to classify each character separately. Finally,
a voting step aggregates all labels lprintchar assigned to each character into a final decision
lprint. In the following, we provide a detailed description of each step.
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Figure 4.11: Document digitalization and character extractor pipeline. Printed documents are scanned, and
letters are extracted by template matching using the procedure described in [195]. The set Se is composed by the
detected pixel patches containing character “e”.

4.2.2.1 Characters extraction

Choosing the appropriate input data to solve laser printer attribution problem with the
proposed architecture is an important step. As a matter of fact, selected data should
contain enough information to characterize the used printer (e.g., banding artifacts).
However, this data should not be strongly influenced by the semantic of the content,
otherwise the network training would be negatively affected. As a good compromise, and
motivated by state-of-the-art methods using characters as the minimal entity for text
documents analysis [195], we also decided to start the analysis at character level.

To extract characters from printed documents, a digital version of them must be ob-
tained. To this purpose, our algorithm starts by scanning all documents under analysis
and extracting from scanned versions sets of characters using the same extractor devised
by Ferreira et al. [195], as shown in Figure 4.11. The extractor works according to the
following pipeline. First, we generate a reference letter, which has the same font typeface
and is adjusted to have the same size as one letter from the scanned documents. Then,
the algorithm slices the letter in eight regions and counts the proportion of black and
white pixels in each one, yielding a feature vector used for letter extraction later on. To
extract letters from the documents, black pixels connected components are extracted (i.e.,
character candidates) and the black/white ratio descriptor is computed again (the same
as did before for the reference letter) for each connected component. Candidate letters
whose descriptor has low cosine distance with respect to the reference letter descriptor
are selected. Although the extractor is not perfect (the images of extracted letters have
not the same size and some false positives may happen), it guarantees that most of the
letters extracted are the same as the reference letter.
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Figure 4.12: Same letter “e” printed by different printers.

4.2.2.2 Multiple representation of input data

By using different characters and different representations of them, it is possible to sep-
arately train several small networks in parallel instead of a single complex network, thus
reducing the computational complexity and still achieving promising results. The in-
tuition is that: (i) several simpler deep networks can be effectively trained using less
training examples and (ii) early layers of simple networks are sufficient to identify inter-
esting artifacts contained in the pixel domain (e.g., banding). Moreover, we also decided
to consider different representations of the input data along with multiple simple deep
networks. Different data representations rather than raw image pixels have already been
considered in the forensic literature, such as for median filtering detection [45].

To this purpose, from each document, different sets Schar of grayscale characters of
the same font and approximately the same size are extracted. As an example, a set Se
of letters “e” and Sa of letters “a” are used. In order to exploit the advantages given by
multiple representation, for each set Schar, we resorted to the following three different
representations:

1. Raw data (Srawchar): image pixels are used as input to the network as they are. This
is the common representation used as input for CNNs, as it contains high and low
frequency components that can be isolated by the CNN filters and can be useful
for image classification (see Figure 4.12).

2. Median filter residual (Smed
char): we apply a 3 × 3 median filter over the image and

subtract the image from the filtered version. The yielded noise pattern is used as
input to the network. As the median filter better preserves edges, the median filter
residual will contain, mostly, high frequency imperfections, which can be regarded
as the banding (see Figure 4.13).

3. Average filter residual (Savgchar): we apply a 3 × 3 average filter over the image and
subtract the image from its filtered version, using this residual as input to the
network. This residual isolates border effects (see Figure 4.14).
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Figure 4.13: Median filter residual representation of the same letters “e” showed in Figure 4.12. Here, some
minimal borders are highlighted. Pixel values (black and white) are inverted in this figure for better visualization.

Figure 4.14: Average filter residual representation of the same letters “e” showed in Figure 4.12. Here, natural
borders are highlighted. Pixel values (black and white) are inverted in this figure for better visualization.

4.2.2.3 Feature extraction

To extract relevant features from our input data, we use a deep learning approach.
More specifically, we train a simple CNN for each character and each set Srawchar, Smed

char and
Savgchar. Then we feed again patches from Srawchar, Smed

char and Savgchar to the networks to obtain
three feature vectors f rawchar, fmed

char and favgchar for each character within each set, using these
vectors in a supervised classifier.

The used network architecture is common to each character and set and is similar in
spirit to the MNIST network for digit recognition [222]. However, for a better repre-
sentation of the data of interest herein, we train the network from scratch, yielding new
filter weights able to recognize interesting characteristics for laser printer attribution. As
far as we know, this is the first deep network custom-tailored to the printer attribution
problem. The used CNN architecture has the following layers:

1. One input layer, where the raw image or a different representation (median filter
residual or average filter residual) is used. It requires 28× 28 images as input.

2. The first convolutional layer is made of 20 5 × 5 filters and is followed by a non-
overlapping max pooling layer of size 2× 2 and stride 2.

3. A second convolutional layer, with 50 filters of size 5×5×20 is followed by another
non-overlapping max pooling layer of size 2× 2 and stride 2.

4. An inner product layer, which generates a vector ∈ R500.

5. The 500 dimensional vector is non-linearly processed with a ReLU function applied
element-wise.
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Figure 4.15: Example of filters weights for the first convolutional layer operating on the raw input image pixels.
Weight values are mapped in grayscale.

Figure 4.16: Convolutional output of the first layer of the trained network, given an input letter from an investi-
gated printer. For each filter, different areas inside or outside the borders are highlighted.

6. An inner product layer acts as classifier with as many output confidence scores as
the number of printers available during training.

7. A soft-max layer finally outputs the index and the confidence of the most probable
printer.

In our proposed approach, we train the network using this architecture and then feed
the training images again to the already trained the network, extracting 500-dimensional
feature vectors in the last but one layer and repeating the process for the testing images.
To follow the literature, we used the network as a feature extractor only, transferring
the feature vectors to another and well used classifier for this application. The network
autonomously learns which characteristics of the input images are relevant for discrimi-
nating the different printers.
Specifically, the network is trained using stochastic gradient descent with a momen-

tum set to 0.9. We used an initial learning rate of 0.001 and a weight decay of 0.0005
without dropout. We used a batch size (subsampling of image examples used in one for-
ward/backward pass through the network) of 100 images without batch normalization.
The number of training epochs, which is the number of one forward and one backward
pass of all training examples through the network was set to 30, and the model generated
at the epoch with the smallest validation loss (20 epochs) was selected.
Figure 4.15 and Figure 4.16 depict the 20 5 × 5 filters of the first convolutional layer

and also the characteristics they highlight from a letter printed by a given printer in the
case the set Srawe is considered. These figures show that different filters enhance different
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early 

late 

Figure 4.17: Proposed multiple representations of different data for laser printer attribution through a set of
lightweight Convolutional Neural Networks. Early and late fusion steps are highlighted in blue and green, respec-
tively.

areas of letters, such as texture and borders, which have been shown to be important to
detect banding for LP attribution by existing methods in the literature such as [195].

4.2.2.4 Classification with early and late fusion

The proposed CNN architecture is characterized by a limited amount of parameters, in
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order to allow a fast and reliable training even with a small number of labeled samples
available. Small networks, as the one we are using, are expected to have worse perfor-
mance with respect to bigger and deeper networks typically used in the computer vision
community [37]. To compensate for this issue, we propose to use two lightweight fusion
methods depicted in Figure 4.17:

1. Early fusion – multiple representations of the same data: we apply three
different networks on input characters (of one type) coming from Srawchar, Smed

char and
Savgchar. We concatenate the generated feature vectors f rawchar, fmed

char and favgchar into a
single vector fchar in an early-fusion fashion [223]. This vector is fed to a set of
linear SVMs used with a One-vs-One classification policy [224] to classify each
character separately assigning a label lprintchar to each one of them. The rationale
for using this technique is that different representations highlight complementary
artifacts.

2. Late fusion – multiple representations of different data: after taking de-
cisions at the character level within a document, we apply a late-fusion tech-
nique [223] by using majority voting on sets of different characters. This is useful
especially when dealing with documents presenting a limited amount of characters
within a single set (e.g., only a few “e” letters). The obtained document label lprint

allows us to pinpoint which printer was used to print the document.

For final decision making, we analyze the list of classification outcomes (votes) of letters
from a document. In the case of ties, we decide the mode as being the first most frequent
value that appears in the list. For example, in a list of classifications x = [9, 7, 7, 7, 9, 9],
the final classification would be 7. This can be thought of a pseudo-random tie-breaking
and its most important advantage is simplicity. A more interesting tie-breaking policy
would be be summing up the distances to the hyperplane of each classified letter in a
document, per class, and then deciding the final class as being the one with the highest
sum (i.e., surer about the classification from the classifier).

4.2.2.5 Remarks

As we show later on, it is indeed possible to train effective deep learning networks
(DNNs) with less data if we take appropriate actions such as: (i) not selecting a too
deep network, (ii) learning the features on different, and complementary, representations
of the data; and (iii) combining the different outputs in the end through fusion. That
being said, our motivation for using a solution based on a DNN for feature extraction
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and a discriminative classifier at the end was threefold. First, we wanted to evaluate
the richness of data-driven features directly and not the DNN as a full-fledged feature
extractor + classifier. Although it is straightforward to attach a last soft-max layer in the
end of the network for classification, we opted to use a discriminative classifier at the end
to have a standardized form of comparison with previous works, which have used SVMs
for classification. By doing this, we ended up having just one free comparison parameter
(the features themselves). Second, our own previous experience with DNNs show that
the combination of a DNN for feature extraction and a discriminative classifier at the
end are very powerful, especially if we intend to perform fusion later on. Finally, our
third motivation comes from that fact that by using a discriminative classifier at the end
of the DNN-based feature extraction, we could simplify the fusion of different methods
at the end, thus creating a lightweight integrated solution.

4.2.3 Experimental setup

This section presents the experimental methodology used in this work along with the
used evaluation metrics, dataset and statistical tests. Finally, it details all the tested
algorithms, some of which are baseline methods whereas some others are individual parts
of our algorithm used to separately validate each step.

4.2.3.1 Dataset

For validation, we considered the same dataset of documents proposed by Ferreira et
al. [195]. It comprises 120 Wikipedia documents containing up to three pages each
converted to Portable Document Format (PDF). These documents were printed by 10
printers using 75g/m2 letter paper and scanned using a 600 dpi resolution Plustek SO
PL2546 device, generating a total of 1,184 images. Table 4.5 shows the printers break-
down along with their main characteristics. This is the first standardized dataset in the
literature containing documents in two languages: English and Portuguese. Although
the characters in these two languages appear to be similar, in Portuguese texts, there
are some accentuation signals in some letters (e.g., é and ã) that can confuse the letter
extraction or the classification.

In [195], the authors have used two different datasets, one considering regions of interest
of 980×800 pixels extracted from the input documents – referred to as Frames Dataset

– and another one with only detected and extracted characters from the input documents
– referred to as Letters/Characters Dataset. Given the results presented in [195], we
further motivated our research to cope with the following real-world setups: (i) classifying
documents for which only a few printed lines are available, making it impossible to extract
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Table 4.5: Printers and number of documents per printer used in the dataset of Ferreira et al. [195]
ID Brand Model Documents

B4070 Brother HL-4070CDW 120
C1150 Canon D1150 116
C3240 Canon MF3240 120
C4370 Canon MF4370DN 120
H1518 Hewlett Packard CP1518 120
H225A Hewlett Packard CP2025 119
H225B Hewlett Packard CP2025 110
LE260 Lexmark E260DN 119
OC330 OKI Data C330DN 120
SC315 Samsung CLP315 120

Total 1,184

many frames and end up with a reliable attribution solution in an investigation; and (ii)
having available only small pieces of document, a torn apart document or a shredded
one. Those cases would render the analysis of frames impossible or useless.
Based on this motivation, we set forth the objective of tailoring a solution to the

problem that would allow us to have the highest possible attribution effectiveness while,
at the same time, not requiring large input regions from the investigated document.
Thus, we decided to use the Letters/Characters Dataset presented in [195] as our
reference benchmark. In addition, we also established the objective of exploring data-
driven features directly learned from the data instead of hand-crafted oriented solutions
as the ones exploited and reported in [195]. For that, we would need inputs that would
not lead to an explosion of parameters in our DNN-oriented solution.
In addition to only using the “e” letters extracted from the documents as [195] we go

beyond and exploit the impact of using different letters as well, as the authors in [195]
did not consider these cases. Table 4.6 summarizes the datasets of letters used for the
tests we generated from the aforementioned documents. As already mentioned, these
have been extracted exploiting the characters extractor devised by Ferreira et al. [195].
With this method, we extracted several different letters of approximately 38× 47 pixels
printed with the Wikipedia font from the documents according to their frequency in the
English language [214], resulting in four datasets of different letters De, Da, Dd, Do as
reported in Table 4.6.
As the extractor in [195] also detects letters of similar font and size, these datasets can

be regarded as affected by a small amount of noise. As an example, Figure 4.18 shows
the distribution of sizes of the extracted “e” letters for each printer. Although most of
them share a common size, some of them slightly deviate. These datasets are then very
useful to test the performance of the proposed algorithm in adverse conditions.
To validate the proposed method in a noiseless scenario, we also created a clean dataset

D̃e of 131, 435 “e” letters. This dataset was created starting from the noisy “e” dataset
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Table 4.6: Datasets used for experimental evaluation.
Dataset Letter Samples

De “e” 245,650
Da “a” 286,098
Dd “d” 185,009
Do “o” 351,850
D̃e “e” 131,435

Dframe frames 352,433
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Figure 4.18: Distribution of the extracted letter “e” sizes for each printer. Most of the characters have a resolution
of 38× 47 pixels, but some have slightly different sizes.

De keeping only the most similar letters sharing a (38± 1)× (47± 1) resolution.

At this point, it is worth mentioning that the input of our network is always a 28× 28

pixel patch. Therefore, we always crop the center region of the letters so as to have inputs
exactly matching this network requirement. We do not perform any resampling/resizing
in order to avoid introducing additional processing artifacts that can hinder attribution
performances by masking part of the telltales left behind by printers.

Finally, to validate our idea of using characters to train our small CNNs, we also built
a dataset of small frames (e.g., small random patches). To this purpose, we applied
a 28 × 28 frame extractor in the documents, extracting 300 valid frames whose ratio
between black and white pixels r is 0.6 ≤ r ≤ 0.8 from each scanned document. This
resulted in the Dframe dataset.
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4.2.3.2 Experimental methodology

For validation, we consider the same 5 × 2 cross-validation protocol used in [195]. In
this protocol, we replicate the traditional 2-fold cross-validation protocol five times (thus
5× 2). In each of these 2-fold cross validations, a set of documents (not characters) D is
split into D1 and D2. In each of the five executions, a classifier is trained with characters
of documents in D1 and tested on characters present in D2, and then vice-versa. After
that, we report the results based on documents classification (after majority voting of
test documents letters) and perform the statistical tests after 10 rounds of experiments.
In this experimental protocol, each combination of training and test will use letters from
592 documents for training an one-against-one SVM classifier while the remaining 592
documents letters are used for testing the classifier. The number of letters used in the
training and testing of each of 10 experiments (which we call fold) will depend on how
many letters are extracted from each training and testing document and will also depend
on which letter is being used in the analysis. For example, in the total 5 × 2 protocol,
there are a mean of 122,825 letters ‘e’ for training and the same for testing. According
to a study conducted by Dietterich et al. [225], the 5 × 2 cross-validation is considered
an optimal experimental protocol for learning algorithms.

In a multi-class problem with n classes, the classification results may be represented
in an n×n confusion matrix. In this case, the main diagonal contains the correct classi-
fications while the other entries contain misclassifications. In the 5 × 2 cross validation
protocol, one confusion matrix is yielded per experiment. Therefore, we present results
by averaging these matrices.

To test the statistical relevance of the obtained experimental results, we consider a
two-level statistical test. In the first level, we use the Friedman test as a pre-test to
point out whether or not there is statistical difference in the obtained results. Then we
refine these results with the Tukey-Kramer post-test, also known as honestly significant
difference (HSD) test to point out statistical differences (if any) pairwise. In all tests, we
set the confidence level to 95%.

4.2.3.3 Tested algorithms

We performed several tests to validate the proposed approach. First, we conducted a set
of experiments aimed at selecting the reference CNN architecture. Then we tested each
separate step of our algorithm (e.g., robustness to noise, early fusion, late fusion, etc.).
Finally, we validated the proposed algorithm against state-of-the-art baseline methods.

At first we compared several different Convolutional Neural Network architectures in
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order to find the right balance between complexity and accuracy. To this purpose, in
addition to the architecture proposed in Section 4.2.2, hereinafter denoted as S2-Conv,
we also tested some deeper solutions. By adding one and two more convolutional layers,
each followed by a max-pooling layer, we created two CNNs, denoted as S3-Conv and
S4-Conv. Two additional state of the art network architectures were used as benchmark:
AlexNet [35], denoted as SAlexNet, and GoogLeNet [37], denoted as SGoogLeNet.

After validating the use of S2-Conv as CNN (hereinafter simply denoted as S for the sake
of clarity), we also tested each data representation separately. This means we extracted
features using CNNs on a single representation of the input data (e.g., raw letters “e”)
and used the obtained feature vectors for classification with SVM. Majority voting was
applied to letters to take a decision at document level. As single representations, we
tested the median filter residual of the image (Smed

char), the average filter residual (Savgchar)
and the raw image pixels (Srawchar).We also tested different representations inspired by the
existing methods in the literature. As a matter of fact, we tested the filtered image from
the Convolutional Texture Gradient Filter (CTGF) using both the 3 × 3 (SCTGF3

char ) and
the 5× 5 (SCTGF5

char ) filters from the work of Ferreira et al. [195] and also the Wiener filter
residual [226] (SWiener

char ).For each approach, the subscript “char” represents the letter we
tested (e.g., SWiener

e for the Wiener-based representation on “e” letters). With an abuse
of notation, we use the symbol S to refer to both the algorithm and the set of input data.

We also tested the performance of the early fusion approach. For this, we concate-
nated the feature vectors from the last but one layer of CNNs applied on three different
representations of the same data, making them the input of an SVM classifier.We refer
to early fusion methods as {Sraw,Smed,Savg}char, where the methods in the brackets
represent the used data representations, and the subscript indicates the used letter (i.e.,
“e”, “a”, “d”, “o” or 28× 28 frames).

To test the late fusion, we performed majority voting to classification labels obtained
with early fusion methods run on different character families. We call these approaches
{Sraw,Smed,Savg}char1, ..., charN, specifying the different sets of characters used for fusion.
Notice that late fusion approaches also embed early fusion.

We also compared our proposed technique to eight state-of-the-art methods focused on
text documents. The first one is the GLCM-based method from Mikkilineni et al. [193,
213], which describes the signature present in the banding with 22 statistics calculated
per matrix. We refer to this approach in the experiments GLCM. The next four methods
used in the experiments were proposed in the work of Ferreira et al. [195]. The first
one uses GLCM with multiple directions (GLCM-MD), while the second uses GLCM with
multiple directions and multiple scales in the input data (GLCM-MD-MS). The third one
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uses CTGF with size 3× 3 (CTGF) and the fourth method uses a combination of all these
methods (CTGF-GLCM-MD-MS).
The sixth implemented method from the literature was proposed by Kee and Farid [194]

(RECONST-ERR) and uses reference characters to extract letters from documents. To detect
the source of a document, letters “e” are extracted and compared with the profile of each
printer to obtain a reconstruction error for each printer. The printer with the smallest
mean error is detected as the source. Finally, we also tested two well-known texture
descriptors widely used in the literature: (i) local binary patterns (LBP) [227]; and (ii)
histogram of oriented gradients [228] (HOG).

4.2.4 Results and discussion

We now turn our attention to the experimental results obtained with different methods.
First, we test our proposed lightweight CNN fusion approach against several individual
CNN architectures. Second, we dissect the proposed approach to test each of its steps
separately. Third, we show results considering the effects of training CNNs on noisy
rather than noiseless data. Then, we compare different representations of the input data.
Afterwards, we show the advantages of using multiple representations (early fusion) and
multiple data (late fusion). Finally, we present experiments comparing the performance of
our approach to the methods discussed in Section 4.2.3.3. All experiments were performed
using the methodology presented in Section 4.2.3.2 on the dataset with 1,184 printings
presented in Section 4.2.3.1.

4.2.4.1 Evaluation of the CNN model

The first step toward the development of our proposed deep learning approach for laser
printer attribution is to determine the kind of CNN architecture that best suits the
problem at hand. One natural solution would be using the whole digitalized document
as input for a Convolutional Neural Network, but this procedure have the following
drawbacks: (i) it requires the designing of deeper networks, which will require a larger
amount of data, computational time and memory resources to train the network; and (ii)
the network training process will be strongly influenced by the semantic of the documents.
Conversely, smaller areas with fixed patterns used as input to smaller networks do not
require as many layers as using the whole document as input and also can lead to a faster
learning of network parameters and weights.
In this vein, we selected CNNs whose input are small patches of size as 28 × 28,

227× 227 and 224× 224 as candidate architectures for our proposed multiple represen-
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Table 4.7: Results comparing different deep learning approaches for laser printer attribution in one combination
of training and testing. Our best proposed late fusion approach is highlighted in light gray. TTE refers to the
training time for a single epoch.

Method Accuracy TTE [s] Size [MB] Input Data

{Sraw,Smed,Savg}a,e 98.30% 20.22 9.84 Da,De

SGoogLeNet [37] 98.30% 886.00 39.40 De

SAlexNet [35] 98.13% 290.00 217.00 De

S4-Conv,raw
e 97.29% 21.70 15.43 De

S3-Conv,raw
e 96.10% 8.10 2.92 De

tation of multiple data approach. For each candidate architecture, we train and test the
first split of the raw “e” dataset De, training these architectures for 30 epochs. The model
generated at the epoch with the smallest validation loss is selected as the best candidate
for each CNN. We show in Table 4.7 results considering our fusion approach, denoted as
{Sraw,Smed,Savg}a,e, using six lightweight networks with 2 convolutional layers (archi-
tecture that we denote as S2-Conv) and some individual deeper architectures, using the
networks as feature extractors and a linear SVM as the classifier.

As shown in Table 4.7, the proposed approach, underpinned by six lightweight net-
works instead of one, has similar results to a more complex network (SGoogLeNet) while
presenting a memory footprint 75% more efficient and being, approximately, 43× faster
to train. Moreover, each individual network of the proposed late-fusion approach con-
sumes 1.64MB, thus the final footprint is 6× 1.64 = 9.84MB of space. This is a further
confirmation that the use of the proposed lightweight simple networks in a fusion frame-
work outperforms deeper solutions in terms of complexity-accuracy trade-off, at least for
the particular setup considered herein. Indeed, the fusion approach with six networks
reaches an accuracy equals the one generated by a deeper network, but with a reduced
complexity.

We also evaluate the solutions for laser printer attribution with different training set
sizes. We start comparing our proposed lightweight fusion of CNNs to existing solutions
for laser printer attribution on different proportions of training data. For this experiment,
we separated one combination of training and test data, sub-sampling the training data
to be 1%, 10%, 30%, 50%, 70%, and 100% of the original training data, classifying the
same testing data using the same SVM linear classifier used in the experiments. We show
the results in Table 4.8. Each column shows a percentage of the training data used.

Normally, deeper networks require more data to show good results if compared to
smaller ones. As Table 4.8 shows, the proposed approach outperforms more complex
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Table 4.8: Results comparing different deep learning approaches against our proposed approach for laser printer
attribution in one combination of training and testing on different amounts of training data. The best accuracy
per training data proportion used is highlighted in gray.

Method 1% 10% 30% 50% 70% 100%

{Sraw,Smed,Savg}a,e 91.20% 97.29% 97.63% 97.63% 97.96% 98.30%

SGoogLeNet [37] 87.64% 96.27% 94.92% 94.07% 98.13% 98.30%

SAlexNet [35] 89.00% 96.44% 95.77% 96.44% 97.29% 98.13%

CNNs for 1%, 10%, 30% and 50% of training data proportion used. A deeper network
(GoogLeNet) starts to catch up and outperforms the proposed method when using 70%
of data. In summary, the fusion of S2-Conv networks has the following advantages (i) it
requires less data for effective training; and (ii) individually, each network (S2 architec-
ture) used in the fusion requires less memory and time to train than using more complex
networks. Therefore, we chose S2-Conv architecture in our proposed fusion approach. In
the following, we will denote the S2-Conv architecture simply as S in order to allow for a
more compact notation.

4.2.4.2 Dealing with noisy data

In order to be useful in a real-world scenario, it is important that the developed method is
robust against non-ideal working conditions. More specifically, it is paramount that the
features learned by the CNNs are generalizable enough to guarantee good performance
also on noisy data (e.g., letters of slightly different sizes). To test this property, we trained
and tested the algorithm using different single representations of the “e” character (i.e.,
Srawe , Savge , and Smed

e ) on different combinations of datasets (i.e., the noiseless D̃e and
the noisy De).

Table 4.9 shows the achieved results. For each representation, the best accuracy
(around 97%) is obtained when the algorithm is trained and tested on clean data not
containing characters at different size (D̃e). When the same network trained on clean
data (D̃e) is tested against dirty data (De), accuracy falls down at approximately 85%.
However, it is sufficient to train CNNs on De to obtain results comparable to the noiseless
case even when dirty data is tested (94%). Therefore, to ensure enough robustness, from
this point on, we always consider noisy datasets for both training and testing, as they
are closer to a real-world setup.
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Table 4.9: Average results using early fusion and single representations on noiseless (D̃e) and noisy (De) datasets.

Method Mean Training Data Test Data
97.95% D̃e D̃e

Srawe 96.13% De De
84.43% D̃e De

97.56% D̃e D̃e
Savge 94.50% De De

85.81% D̃e De

96.87% D̃e D̃e
Smed
e 94.30% De De

85.58% D̃e De

Table 4.10: Results obtained using different representations on different datasets sorted from best to worst.
Method Mean ± Std.Dev. Input Data
Srawe 96.13% ± 0.00 De
Savga 94.89% ± 0.30 Da
Savge 94.50% ± 0.03 De
Smed
e 94.30% ± 0.01 De
Smed
a 93.34% ± 0.02 Da
Srawa 93.07% ± 0.03 Da
SCTGF3
e 89.12% ± 0.03 De
SWiener
e 84.84% ± 0.30 De
SCTGF5
e 83.15% ± 0.06 De

4.2.4.3 Choice of multiple representations

The proposed algorithm works by exploiting multiple representations of the input data.
It is therefore important to detect which representations contain more discriminative
information for LP attribution. Table 4.10 shows the best results obtained using different
representations (e.g., Srawchar, SWiener

char , etc.) on the different datasets (e.g., Da, De, Do, etc.).

Representations yielding higher accuracies are Srawchar, S
avg
char and Smed

char , whereas the use
of CTGF or Wiener-filtered versions of the characters provide the worst results. The
best results are obtained using “a” and “e” datasets. This can be explained as they are
the most common characters in English and Portuguese. Therefore, Da and De are larger
than Dd, whereas Do probably is affected by too much noise as “o” can be often mistaken
with other letters during the characters extraction phase.

Interestingly, for some data (letters), the raw representation in deep networks is not
good enough. For instance, deep networks applied on average filter residual (Savga ) of
letters “a” yielded an accuracy of 94.89%, against the accuracy of 93.07% on letters “a”
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Table 4.11: Results comparing early and late fusion using the best representations sorted from best to worst. Late
fusion approaches are highlighted in light gray.

Method Mean ± Std.Dev. Input Data
{Sraw,Smed,Savg}a,e 97.33% ± 0.00 Da,De
{Sraw,Smed,Savg}a 96.89% ± 0.00 Da
{Sraw,Smed,Savg}a,e,d 96.87% ± 0.00 Da,De,Dd
{Sraw,Smed,Savg}e 96.84% ± 0.00 De
{Sraw,Smed,Savg}a,e,o 96.24% ± 0.03 Da,De,Do
{Sraw,Smed,Savg}d 93.67% ± 0.03 Dd
{Sraw,Smed,Savg}o 92.21% ± 0.03 Do
{Sraw,Smed,Savg}a,e,frame 88.72% ± 0.02 Da,De,Dframes
{Sraw,Smed,Savg}frame 73.69% ± 0.05 Dframes

raw image pixels (Srawa ). This justifies the use of multiple representations and motivates
the use of data fusion.

4.2.4.4 Early and late fusion

To validate the early and late fusion stages, we tested only the three selected best repre-
sentations Srawchar, S

avg
char and Smed

char . Table 4.11 shows the results of the 5×2 cross-validation
experiments considering this scenario.
Fusion approaches typically outperform the ones using only single representations. This

is because different representations in the input layers of CNNs can contain important
information that better identifies the banding over the different networks, as well as other
printing artifacts left behind during the physical printing of a document. For example,
banding in the borders contained in the average filter residual are better highlighted in
its CNN and can complement the information found in the two other CNNs that use
information from the raw image data and median filter residual. Moreover, different
letters (late fusion) can contain even more explicit banding patterns than using the same
letter. With these findings, we conclude that both multiple representation approach and
late-fusion are useful for laser printer attribution using deep networks.
A special comment is in order regarding the use of frames ({Sraw,Smed,Savg}frame). As

a matter of fact, their use, instead of letters, is not as effective when deploying a solution
using deep learning. This is explained by the fact that different data are used as input at
the same time to the same network, each of them presenting different printing patterns,
probably demanding a different and deeper CNN architecture. This further confirms the
idea of using characters for the proposed method.
Considering all the presented results, the statistical test using the Friedmann pre-

test yielded the p-value of 7.55 ×10−154, helping us to state that the approaches have
a statistical significant difference. Table 4.12 shows the statistical Tukey HSD tests.
This confirms that our proposed fusion approaches have statistically significant difference
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4.2 Laser Printer Attribution

Table 4.12: Tukey-HSD pairwise statistical tests considering CNN approaches that use unique and multiple data.

Ra
nk Method

TO
TAL

1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
2 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 12
3 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14
4 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 11
5 -1 0 -1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 2
6 -1 0 -1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 2
7 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
8 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1
9 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
10 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
11 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
12 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
13 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 -1
14 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 0 0 -14
15 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 -12
16 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 -1
17 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 0 0 -14
18 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 0 0 -14

 1  = Line method is better than column method
 0  = Line method is equivalent to column method

-1 = Line method is worse than column method
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when compared to all the single representations. Notice that, even if the results obtained
using early and late fusion are statistically equivalent, the use of late fusion is strongly
motivated whenever a document does not contain enough letters from the same set (e.g.,
enough “e” letters).

4.2.4.5 Comparison with existing techniques in the literature

Table 4.13 shows the results of the 5×2 cross-validation experiments considering our best
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Table 4.13: Results comparing the best configurations of the proposed method to the existing methods in the
literature after 5× 2 validation. Late fusion approaches are highlighted in light gray.

Method Mean ± Std.Dev. Input Data
{Sraw,Smed,Savg}a,e 97.33% ± 0.0065 Da,De

{Sraw,Smed,Savg}a 96.89% ± 0.0052 Da

{Sraw,Smed,Savg}a,e,d 96.87% ± 0.0087 Da,De,Dd

{Sraw,Smed,Savg}e 96.84% ± 0.0068 De

CTGF-GLCM-MD-MS [195] 96.26% ± 0.0054 De

S4-Conv,raw
e 95.84% ± 1.4700 De

S3-Conv,raw
e 95.40% ± 0.8400 De

GLCM-MD-MS [195] 94.30% ± 0.0110 De

GLCM-MD [195] 91.08% ± 0.0089 De

HOG [228] 90.59% ± 0.0214 De

LBP [227] 88.66% ± 0.0145 De

RECONST-ERR [194] 78.90% ± 0.0210 De

GLCM [193,213] 77.87% ± 0.0459 De

CTGF [195] 72.46% ± 0.0377 De

approaches and existing counterparts in the literature. In this scenario, we are using all
approaches as feature extractors and feeding a linear SVM classifier with these vectors
in the training and testing step.

Table 4.13 shows that the first proposed method that outperforms the state of the
art is the one that uses multiple representations of the letter “e” ({Sraw,Smed,Savg}e),
classifying, on average, three more documents in each fold of the cross validation when
compared to the best existing solution in the literature.

When using a different letter rather than “e”, such as the letter “a”, we also see an
improvement in the results. The use of multiple representations of letter “a” ({Sraw,Smed,
Savg}a) enables to classify a mean of four more documents in each fold when compared
to state-of-the-art techniques. The multiple representation of multiple data “a” and “e”
({Sraw,Smed,Savg}a,e) shows its efficacy by showing the best overall accuracy of the
experiments (97.33%), classifying six more documents than the best existing counterpart
in the literature, on average. The reason for this good performance relies on the fact that
this method takes into account multiple data with different banding artifacts that can
be better highlighted using different representations in the specialized deep networks.

To validate the efficacy of the proposed methods, we also performed statistical tests.
The Friedmann test showed a p-value of 3.16× 10−138, which helps us to state that the
difference amongst the methods’ performance is statistically significant.Table 4.14 shows
the Tukey-HSD pairwise tests.

Considering the best performing configuration of our algorithm ({Sraw,Smed,Savg}a,e)
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Table 4.14: Tukey-HSD pairwise statistical test results comparing the proposed methods to the existing ones in
the literature.
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and the best literature approach (CTGF-GLCM-MD-MS), Table 4.15 and Table 4.16 show
confusion matrices representing the classification accuracies per printer. In Table 4.15,
the confusion matrix of the proposed method shows that it is possible to identify 100% of
three out of ten printers used in the experiments. These printers are Canon MF4370DN,
OKI Data C330DN and Samsung CLP315. The CTGF-GLCM-MD-MS confusion matrix in
Table 4.16, on the other hand, shows 100% classification for only one printer, the OKI
Data C330DN.

It is also remarkable the fact that we are using two printers of the same model and
brand (H225A and H225B) and it is possible to see, in Table 4.15 and Table 4.16, that
there are just some misclassifications between them. The errors in these cases are likely
related to the printing artifacts generated by these two printers, which are similar for some
documents. The proposed approach misclassified an average of 6.6% of the documents
in these two classes, while the best existing method in the literature did it for 7.7% of
the documents. It is also important to note that there are some misclassifications when
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Table 4.15: Confusion Matrix of the best proposed approach ({Sraw,Smed,Savg}a,e) showing, in percentages,
the right and wrong mean hits per printer after the 5 × 2 cross validation.

BEST PROPOSED
Attributed Printer

B4070 C1150 C3240 C4370 H1518 H225A H225B LE260 OC330 SC315

Ac
tu

al
 P

rin
te

r

B4070 99.50 0.00 0.33 0.17 0.00 0.00 0.00 0.00 0.00 0.00
C1150 0.52 99.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C3240 0.67 0.00 98.83 0.50 0.00 0.00 0.00 0.00 0.00 0.00
C4370 100.00
H1518 0.33 10.50 89.17
H225A 93.10 6.90
H225B 0.18 6.37 93.45
LE260 0.17 0.33 99.50
OC330 100.00
SC315 100.00

Table 4.16: Confusion Matrix of the best literature solution showing, in percentages, the right and wrong mean
hits per printer after the 5 × 2 cross validation.

CTGF-GLCM-MD-MS [12]
Attributed Printer

B4070 C1150 C3240 C4370 H1518 H225A H225B LE260 OC330 SC315

Ac
tu

al
 P

rin
te

r

B4070 98.67 0.33 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C1150 1.72 98.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C3240 0.00 0.00 97.83 2.17 0.00 0.00 0.00 0.00 0.00 0.00
C4370 0.00 1.00 0.50 98.50 0.00 0.00 0.00 0.00 0.00 0.00
H1518 1.33 10.33 0.00 0.00 86.83 0.50 0.00 0.00 0.84 0.17
H225A 0.00 0.50 96.98 2.52
H225B 12.90 87.10
LE260 0.67 0.50 0.17 98.66
OC330 100.00
SC315 0.50 0.33 99.17

classifying printers H1518 (an HP printer) and C3240 (a Canon printer) in both cases.
This happens because these two printers present a slightly smaller average font size with
respect to the other eight, as can be seen in Figure 4.18. Therefore, they probably share
some common artifacts.

4.2.5 Conclusions

Laser printer attribution is a difficult task that involves investigating several printing
patterns, created with different manufacturing processes, models and brands. Existing
methods in the literature rely on computer vision and machine learning algorithms ap-
plied to scanned versions of documents, aiming at finding intrinsic signatures on printed
material that better discriminate different printers. The main problem with these ap-
proaches is that they are underpinned by so-called hand-crafted features, which often re-
quire expert domain-knowledge to properly capture discriminative artifacts useful in the
attribution process (e.g., intrinsic texture, geometric distortions in the printed material,
etc.). Ideally, it would be interesting to also be able to detect important discriminative
features directly from training data (data-driven methods). Those features could be even
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combined with hand-crafted ones for a more effective method.

In this vein, in this work, we have proposed a solution capable of learning discrimi-
native features for the printer attribution problem directly from available training data
(i.e., scanned versions of printed papers). The solution inherits the benefits of convolu-
tional neural networks and back-propagation procedures, evolving the descriptor during
training, thus making these networks tailored to the analyzed data. The method relies
on artifacts captured from different letters of documents in different languages. It also
uses other letters rather than the commonly used “e”. To better highlight characteristic
artifacts, different data representations through some image transformations were also
investigated.

As we discussed thoroughly in this work, the use of multiple representations of multiple
data allows to outperform the state of the art when for the laser printer attribution
problem. Multiple representations fed as input to the used deep networks are important
because they highlight different characteristics of the input images. We also showed
that multiple representations of multiple data is a reasonable choice for laser printer
attribution with deep networks. Indeed, with the benefits of the multiple representations
presented before, multiple data also ensures a larger amount of voters per document.

One interesting finding in this research is the promising use of these different repre-
sentations, composed by low-pass filtering residuals, as input to Convolutional Neural
Networks. In a real-world setup, in which a suspect document was printed using a toner
different from the one used for training the method, these low-pass filtering residuals can
work better for pointing out the source than raw image inputs, as this last representation
is more affected by the change of toner due to the increased presence of high-frequency
components linked to toner artifacts. One natural extension of this proposed approach
for this cross-dataset setup is replacing the raw image representation with other low-
pass filtering residual analyses, such as the Gaussian filtering residual [229], bilateral
filtering [230] and guided image filtering [231].

With current solutions to the printer attribution problem achieving high classification
results, we believe it is time to aim at more challenging scenarios. For instance, current
methods in the literature have shown great potential for classifying documents printed in
similar conditions (both physical but also temporally close together. As a matter of fact,
the printer attribution problem is much more difficult than its related problem of sensor
attribution (for cameras and scanners). The reason is that the printing process has much
more mechanical elements involved and intertwined when printing a document. Such
elements surely play different roles in the creation of a unique signature for each printer.
However, and the literature needs more study in this regard, it is natural that such
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signature will not last forever and will probably degrade over time as different elements in
the printer age and defects appear. Then the next question is what happens if a document
was printed several years ago, while the printer under suspicion was just recently acquired
by the investigators. A thorough investigation of this problem considering data captured
in several moments along the years will be a significant contribution to the field.

4.3 Conclusions

In this chapter we showed two multimedia forensics applications that benefit from the
adoption of data-driven methods. A set of vision tools and deep-learning frameworks,
mainly developed by the computer vision community, is studied and fused with hand-
crafted features extraction and signal processing techniques to improve state-of-the-art
performance in single vs. double JPEG detection and laser printer attribution. For both
applications the fusion of several deep-learning pipelines with proper pre-processing tech-
niques improves the results with respect to a blind usage of data-driven methods on raw
data.
The lesson learned is that data-driven techniques alone might suffer in multimedia

forensics applications when not paired with a proper domain knowledge, necessary to
understand the observed phenomena and process the available input data to allow a
better learning from a limited amount of training data.
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In this thesis we faced several open challenges in the multimedia forensics field. Most
of the proposed methods exploit a combination of classic signal processing techniques,
handcrafted features and data-driven methods. All the methods and results included
in this thesis have been published in peer-reviewed conferences and journals in the last
three years.

In Chapter 2 we proposed the first data-driven method for camera model identification.
A family of convolutional neural networks is designed and tested under several data-
splitting policies, evaluating the effect of shallow rather then deep architectures. We
designed and trained a CNN architecture that extracts meaningful forensics features
from small image patches, thus paving the way to a fine-grained analyses of digital
images. The challenging choice of working on small image patches is motivated by the
perspective of detecting intra-image inconsistencies. In facts, the features extracted
with the proposed CNN architecture are exploited in an iterative clustering scheme to
face the problems of tampering detection and localization. For each image patch we
define a quality function to feed the clustering algorithm with a confidence measure of
the provided camera-model-based feature. We concluded the chapter with two CNN-
tailored attacks that are proposed and tested as antiforensics methods to fool a deep-
learning based camera identification system. The effectiveness of such attacks poses
new challenges in a real-world deployment of data-driven systems for source attribution.
Despite the promising results of data-driven methods for camera model identification,
the lack of extended, shared, and challenging evaluation databases and metrics limits
the portability of such systems to the industry. Challenges as working in an open-set
scenario, where not all the camera models are known, or under multiple global images
modifications still require a lot of effort to be solved.

In Chapter 3 we studied the problem of PRNU fingerprints and residuals compres-
sion, a step toward large-scale adoption of sensor-based source identification. We faced
the topic by defining a design methodology and a compression pipeline tailored at re-
ducing the intrinsic redundancies of PRNU while preserving a high detection rate. The
two presented approaches face the problem of PRNU compression under two different
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perspectives: computational complexity and bitrate reduction. The designed projection
matrices provide an impressive reduction in terms of computational complexity while
preserving state-of-the-art detection performance. The proposed pipeline based on deci-
mation, Random Projections and dead-zone quantization provides state-of-the-art perfor-
mance in terms of bitrate vs. detection rate. We also proposed two types of antiforensics
attacks tailored to PRNU removal. A first no-reference approach leverages inpainting
techniques to reconstruct each pixel starting from its neighbors. A second reference-
based data-driven approach is designed as a double-input autoencoder properly trained
on a single image to attenuate PRNU traces while preserving an excellent image quality.
PRNU fingerprints and residuals extracted from smartphones cameras and video frames
are finally exploited in two forensics applications, to create a sensor-based fingerprint
for smartphone authentication and to pre-process collections of videos for multimedia
phylogeny applications. Several PRNU-related challenges are still open, as the correct
extraction of fingerprints and residuals from stabilized video sequences and high dynamic
range images.
We concluded in Chapter 4 with two forensics applications, where a combination of

handcrafted features and data-learned features is the key to solve the task at hand.
Single versus double JPEG detection is faced with a combination of handcrafted features
extraction and properly designed CNN architectures. Similarly, laser printer attribution
based on data-driven method benefits from classic signal pre-processing operations on
the raw input data.
The increasing interest from both researches and companies to multimedia forensics ap-

plications and solutions is surely a positive element toward the development of advanced,
reliable and scalable real-world systems. The lack of a common evaluation protocol for
the many forensics tasks faced by the scientific community is still an open issue. We
believe that in the next few years the resources devoted to this field will allow the col-
lection of large and challenging publicly available datasets to measure, as objectively as
possible, the performance of the many proposed forensics systems.
The main lesson learned from the set of works carried out over the past few years is

that a blind transfer of machine learning and data-driven techniques to the multimedia
forensics field is not enough to perform at par with handcrafted state-of-the-art solutions.
The knowledge of the domain and of the signals at hand is key to turn a powerful data-
learning tool into an effective forensic tool. The fusion of the “best of the two worlds”
seems to be the way to go when dealing with limited training data and challenging
forensics tasks.
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