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Abstract

The analysis of complex natural and social systems - using modern geospatial

data - requires dedicated methods and tools to grasp their characterising fea-

tures while accounting for the geographical context where they take place. The

same applies both to data discovery and representation. In views of the above,

the use of Exploratory Spatial Data Analysis is here leveraged alongside its

application into Geographic Information Systems to uncover underlying char-

acters of geospatial data. Among these, the spatial association is considered as

the critical aspect to be investigated in this work. A comprehensive review of

popular statistical methods for measuring and mapping spatial association is

presented together with a description of the most cutting-edge software tools

to perform them. A Free and Open Source Software tool dedicated to the spa-

tial association mapping is developed, and its use into sample case studies is

discussed. These encompass well-established applications of local spatial as-

sociation statistics that focus mainly on univariate analysis. To account for

both the growing complexity and abundance of the modern geospatial data, ex-

tensions of these statistical methods are outlined to enable spatial association

analyses in a multivariate context. Experimental results from early applications

of these extended methods are disclosed and critically discussed. Finally, the

lesson learned and the future directions for the work are presented together

with more general considerations on the role of the spatial association in both

present and future geospatial data analysis.
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Chapter 1

Introduction

In the era of Big Data, the main challenge to address for data scientists and

analysts is most definitely to turn data into actionable insights. Data has been

recognized as a fundamental asset in manifold sectors of both modern science

and business [65]. At the same time, it has been recognized that data alone

means nothing without a proper purpose and interpretation [107]. During the

last three decades, the Information Technology (IT) has brought terrific ad-

vances in data management and tooling but still leaving the duty to scientists

of converting data into spendable knowledge [67]. The increasing complexity

and richness of the modern Big Data have enforced the need for tools and meth-

ods to facilitate this latter task. These have to be properly designed to cope

with data heterogeneity and volume rather than individual observations quality

and accuracy. In other words, these tools have to focus on data characters such

as underlying patterns, links, and redundancy in order to ease data exploration

and understanding [69].

With this in mind, the present work aims at introducing methods as well as

suggesting novel solutions - embedding the above concepts - for investigating

characters of a specific type of data, namely geospatial data. For geospatial
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2 Chapter 1. Introduction

data, we intend all the information describing a physical object or a generic

event that can be represented by numerical values in a geographic coordinate

system [94]. According to the debatable assertion ”80% of all information is

geographic” [62], much of the data in the world is - or can be - georeferenced.

The latter can be easily recognised by thinking to the flow of information which

is continuously produced by Earth Observations (EO) satellites, mobile devices,

physical sensors, public administrations, private enterprises, etc. which is in-

trinsically connected to a defined location both in time and space. On one hand,

the increasing number of formats, sources, and purposes of the collected geospa-

tial data presents challenges in data storing, managing, deploying, security, and

quality [78]. On the other hand, access to and interaction with geospatial data

are of the utmost importance to explore natural, human, and social systems [79]

and provide outstanding opportunities to gain insights into complex phenom-

ena such as climate change [85], disease surveillance [64], disaster response [28],

critical infrastructures monitoring [101], transportation [20], and many others.

Despite the majority of these applications are confined into the research and

public sectors [35], a growing value has been attributed to geospatial data also

by the business sector [27]. Among the business-oriented activities involving

the use of geospatial data, the Location Intelligence [14] and the Geomarketing

[95] are perfect examples of tasks heavily impacting trades and markets. In gen-

eral terms, besides that most of the geospatial information can be still handled

with the available geospatial theory, tools, and methods, there is an emerging

need for establishing spatial enablement into general data analysis frameworks

for advancing leading-edge research as well as good practices within all those

domains exploiting geospatial data [99].

In this work, I leverage the use of Exploratory Spatial Data Analysis (ESDA)

[13] as a key tool to enable geospatial data character investigations. ESDA can

be broadly defined as a framework including a number of statistical methods, vi-
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sualisation techniques and software tools to identify spatial patterns and trends

as well as to accurately discover and account for spatial relations characterising

most of the geospatial datasets [5]. The character that is mainly considered

along this work is the spatial association.

Together with a review of some methods of interest, which primarily focus

on the spatial association analysis of geospatial data with a single or double

attributes (i.e. univariate or bivariate analysis), an extension of these methods

to account for multiple attributes (i.e. multivariate analysis) is here developed

and presented. The latter promises to be relevant for tackling the increasing

complexity of the information potentially available at any location on Earth.

Therefore, the main advantage of the presented research within Big Data anal-

ysis is actually entitled on a single edge of the Big Data that is the variety [47].

This intention is embedded in the output of this work which includes the mul-

tivariate extensions of traditional spatial association statistics. Other aspects

of Big Data are not tackled by the presented work.

In parallel, some of the relevant software tools to perform ESDA are intro-

duced. These are generally provided as modules of software suites dedicated to

geospatial data management and analysis, known as Geographic Information

Systems (GIS). Particular attention is paid here to the development of ESDA

tools for Free and Open Source Software (FOSS) GIS. FOSS includes all those

software which are freely distributed with open licenses allowing users to ac-

cess, modify and redistribute them for any purpose. In contrast to copyrighted,

closed-source proprietary alternatives, FOSS enables free access to the source

code in order to favour the application reuse and customisation. This is per-

fectly aligned with the underlying goal of this research work that is to improve

both visibility and usage of ESDA tools among the largest community of data

scientists and analyst [86].
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Both methods and tools are also presented by taking advantage of applica-

tions on real data. For this purpose, heterogeneous geospatial data sources are

considered. These range from the Volunteered Geographic Information (VGI)

[66] to the georeferenced user-generated content [19] passing through official

geospatial data from national bureaux of statistics, economics, and environ-

mental protection. Nevertheless, these represent only a byte of the possible

geospatial data sources to which ESDA can be applied.

Focusing on the key points mentioned above, the rest of the document is orga-

nized as follows. Chapter 2 contains a deeper introduction to ESDA and the

spatial association, including their main features and requirements. Chapter 3

outlines the ESDA methods of interest for this work. Chapter 4 describes the

available and most popular ESDA software tools. Chapter 5 presents sample

applications on real data. A primer on the application of some ESDA methods

in a multivariate context is presented in Chapter 6. In Chapter 7, both key

conclusions and the future directions of the work are discussed.



Chapter 2

Exploratory Spatial Data

Analysis and Spatial Association

In this chapter, the general features of ESDA are described together with the

concept and analytical implications of the spatial association. This is antici-

pated by a discussion on the meaning of exploratory analysis and its contribu-

tion to the modern data science.

2.1 Exploratory Spatial Data Analysis

2.1.1 The exploratory approach in data science

In Chapter 1, we defined ESDA as a framework including a number of statistical

methods, visualisation techniques and software tools to identify spatial patterns

and trends as well as to properly discover and account for spatial relations of

a geospatial dataset. The acronym derives from the more famous Exploratory

Data Analysis (EDA) [105] which can be described as the critical process of

carrying out data investigations to detect patterns, spot anomalies, test hy-

pothesis, and check assumptions by exploiting mainly descriptive statistics and

5



6 Chapter 2. Exploratory Spatial Data Analysis and Spatial Association

graphs. ESDA inherits from EDA the key concepts of dynamic interaction with

data and focus on its summarizing characteristics rather than individual obser-

vations quality. This by coupling visual and statistical methods to bring out

underlying data features. Both EDA and ESDA incorporate most of the tradi-

tional statistical methods for data analysis although their role is here marginal

or - at most - purely functional to the interactive procedure of formulating and

checking assumptions as well as design new experiments on the data [9]. In

this exactly resides the meaning of exploratory analysis which has to be dis-

tinguished from the confirmatory one. In fact, confirmatory analysis aims at

attesting conclusions rather than generate new hypotheses based on the data.

Nevertheless, these two approaches should be considered complementary and

not competitive within any comprehensive analysis framework. Indeed, the ex-

ploratory step should encompass the whole analysis cycle being this valuable

both during the preliminary checks on data as well as for the results assessment.

In general terms, the principles and the ultimate utility of EDA are summa-

rized in the statement ”It is important to understand what you can do before

you learn to measure how well you seem to have done it” formulated by the

pioneer of EDA J. K. Tukey [105].

In practice, one of the main distinction between the exploratory and the confir-

matory approach is that the first, according to its goals, emphasises the use of

data visualisation tools and techniques. Therefore, most of the existing graphi-

cal techniques in data analysis have been developed as a consequence of the prin-

ciples introduced by EDA. These techniques include popular statistical graphics

such as histograms, box-plots, scatter-plots, stream-graphs, table-based plots,

and many others [108]. Furthermore, not only graphical techniques but also

quantitative methods have been developed to cope with the EDA principles.

These methods mainly face up to:
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• Dimensionality reduction, e.g. the Principal Component Analysis (PCA)

[70]

• Clustering, e.g. the K-Mean Clustering [38]

• Uncertainty estimation, e.g. the Bootstrap [40]

• Outliers detection and hypothesis testing, e.g. permutation tests [58].

Most of the graphical and quantitative EDA techniques are at the core of the

modern computational statistics, which represents the interface between statis-

tics and computer science. The computational statistics is nowadays crucial in

numerous scientific fields and increasingly adopted also in the business sectors

and the decision-making practices. In fact, the operational value of EDA has

been strongly recognised especially within empirical or data-driven applications.

Concerning the computation statistics, at the same time as the EDA birth also

the earlier versions of statistical programming languages were released. His-

torically, the first example is the S1 programming language for which some of

the EDA pioneers - including J. K. Tukey - actively contributed to the design

and development. S evolved in the premier statistical programming languages

R2. Nowadays, a number of programming languages provide with statistical

computing and graphics capabilities. Among these, Python3 will be mainly

considered and used later in this work. The increasing availability of tools to

perform EDA is one of its main assets and allows for delivering interactive and

reproducible computing that has terrifically changed the paradigm for the sci-

entific discovery as well as for the operational business [65]. According to the

above, we can objectively consider EDA one of the precursors as well as a pillar

of the modern Big Data science.

1https://en.wikipedia.org/wiki/S programming language
2https://www.r-project.org
3https://www.python.org
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2.1.2 Connection to the geospatial data analysis

Most of the concepts outlined above can be naturally conveyed into the con-

text of geospatial data analysis. Indeed, the main difference between ESDA

and EDA consists of the target data. Whereas EDA is designed to explore the

characteristics of any generic series of observations (or a-spatial data), ESDA

is specifically developed for dealing with geospatial data. Unlike a generic set

of observations, geospatial data generally shows a strong dependence on the

geographical location it refers to. This phenomenon is best described by the

so-called first law of Geography which states that ”Everything is related to ev-

erything else, but near things are more related than distant things” [103]. In the

context of geospatial data analysis, this is known as spatial association, whose

measurement helps to identify the degree of similarity between neighbouring

observations in the geographical space, whether they are modelled as points,

polygonal areas, or raster cells. Therefore, the spatial association matters be-

cause traditional statistical methods for data analysis (e.g. regressions) often

rely on the hypothesis of independence for the observations. If the spatial asso-

ciation is present, this hypothesis is no longer valid, and the statistical inference

might be biased or misinterpreted [76] [54].

According to the above statements, one of the main goals of ESDA is pre-

cisely to describe the spatial association and as well as to measure it by means

of statistical tests. Considering the geographic nature of the problem, results

are generally linked to maps. Thus, enabling a compelling visualisation of cor-

relation patterns within a geospatial dataset. Here comes the affinity between

ESDA and GIS software [5]. In fact, modern GIS software provides with reading,

writing, numerical processing, and display capabilities to any digital geospatial

data. This allows for developing all-in-one tools to perform ESDA and visually

interact with both data and results.
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To accommodate the needs of both statistical graphics and rigorous cartographic

representations, specific visualisation techniques have been developed to accom-

plish ESDA tasks. Rigorous cartographic representations are characterised by

defined and reproducible features which make maps metrics of the geographical

space. Traditionally, these features are the scale, the topological relations, the

projection, and the associated Coordinate Reference System (CRS). Statistical

graphics are accounted by assigning a specific colour pattern or symbol style

connected to the type of attribute to display. Categorical attributes are gener-

ally shown by varying symbols colour, hue, and shape as well as using labels.

Quantitative data are portrayed using colour pattern spacing, hue, shape, and

lightness variations (e.g. choropleth maps) [17]. In the context of ESDA, maps

are no longer the final products they used to be in the traditional cartography.

Indeed, maps function as storage of geospatial data analytics. Therefore, maps

are considered a tool to gain insight into the distribution of data across locations

as well as to discover data underlying structures, such as the spatial association

[72]. Because most of ESDA methods are quantitative in nature, the choropleth

map is one of the earliest adopted tools for ESDA purposes [104]. Depending on

the specific application and on the data type, different classification intervals

for the quantitative attributes can be adopted, e.g. the Natural Breaks, the

Head/tail Breaks [68], and many others [91]. The selection of interval classi-

fication is crucial in quantitative mapping because of intuitive methods such

as the equal interval classification do not properly capture underlying patterns

for heavy-tailed or skewed attribute distributions [68]. Another popular ESDA

mapping technique is the Cartogram [34] in which the scale of the map and its

geometries are distorted to point out underlying data features better and guide

the analyst in the exploration procedure. Nowadays, both choropleth maps

and cartograms are largely employed for communication purposes rather than

for analytics. Indeed, as a result of the link between ESDA and the computer
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systems - such as GIS - a number of more powerful ESDA mapping tools have

been made available [5]. These include interactive and dynamic desktop and

web-based maps linking statistical graphics and embedding complex data ana-

lytics and browsing functionalities [6]. Both tools and mapping techniques are

in a continuous evolution [114] that makes difficult to list and describe them all

within this work. Valuable examples can be found scattered in the literature,

e.g. [1], [93], and [97], as well as within most of the premier data visualization

frameworks, libraries, and software 4,5,6,7,8.

I conclude this section by remarking the correct role of ESDA within a generic

geospatial data analysis framework. What ESDA actually attempts to fill is the

gray area between the raw data and the formal modelling as best summarised

in Figure 2.1. With this in mind, results from ESDA have to be intended for

testing assumptions, spotting anomalies, suggesting modelling strategies, and

encouraging the analyst’s interaction with both data and results rather than in

a strict analytical or confirmatory sense.

2.2 Spatial association

A number of papers and books in the statistic literature spelt out the concept

of spatial association at different levels of mathematical complexity, see, e.g.

[24] [59], [2], and [39]. Historically, the spatial association has been appointed

as spatial autocorrelation, among other terms. The spatial autocorrelation is a

drift concept of the temporal autocorrelation as earlier introduced and under-

4http://datavizproject.com
5https://vega.github.io/vega/docs/data
6https://www.tidyverse.org
7https://plot.ly/python/maps
8https://geodacenter.github.io
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raw geospatial data

data display, cleaning, and manipulation

ESDA formal geospatial analysis and modelling

result presentation

Figure 2.1: ESDA positioning in a generic geospatial data analysis framework.

stood in the time series analysis [113]. In this work, I prefer the use of the term

spatial association because the autocorrelation generally refers to the analysis

of a single variable whereas one of the goals here is to emphasise the extension

of the concept to a multivariate context.

Section 2.1 focused on portraying the EDA and ESDA as well as some of their

essential visualisation tools. To address the application of ESDA to the spatial

association, the next section reports additional considerations on the spatial

association and its implications into the geospatial analysis and the GIS sci-

ence in general. The formulation of analytical methods to measure the spatial

association - of interest for this work - is included in Chapter 3.

2.2.1 Why, when and how ”location matters”

We broadly defined the spatial association as the measure of the degree at

which similar things are also similarly arranged in space. A closer definition

to the context of GIS science is derived from [55] and states that ”The spatial

association represents the relationship between nearby spatial units, as seen on

maps, where each unit is coded with a realisation of a variable”. This relation-
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ship characterises most of the geospatial data that is measured as a result of

nonstationary or heterogeneous spatial processes [88] taking place in the real

geographical space. Indeed, there are many instances in which an object loca-

tion affects its behaviour. Snippets of evidence of the spatial association can be

intuitively disclosed through simple examples. Housing prices are one among

these. In fact, the location of a house will affect its selling price, and nearby

houses are likely to be affected by the same neighbourhood effects. On the other

way round, the selling price of a house can be only estimated by knowing its

location together with, of course, its a-spatial features such as the building type.

On one hand, this behaviour can be seen as a nuisance or a noise as it compli-

cates statistical tests and the reliability of regression analyses by violating the

independence assumption for the observations [39]. Moreover, collateral issues

such as the analysis scale as well as the selection of the aggregation unit for

the data might produce additional mis-specifications to the analysis [30]. On

the other hand, once the structure of the spatial association is estimated, this

information can be embedded into any prediction technique, e.g. the Kriging

[26], thereby improving its accuracy. A fuller treatment of the topic can be

found in [23], [76], [39], [54], and [31].

So far, we have outlined the effect of the spatial association mainly on the

accuracy and reliability of traditional statistical methods. However, the spatial

association provides with many uses and opportunities to any geospatial data

analysis and particularly to the exploratory techniques. In the following list,

which I partially amended from [55], the most meaningful applications of the

spatial association concept are described.

• Test of spatial stationarity. Spatial stationarity implies that no significant

variations in the spatial distribution of the analysys variable are present.

Many spatial models require that spatial stationarity exists. Spatial as-

sociation measures allow testing hypotheses of no spatial variation in dis-
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tribution parameters such as the mean and the variance [63] [46].

• Test on model mis-specification. Properly specified spatial models require

residuals, map onto the study region, to not be affected by any association

between neighbour spatial units [23]. Tests of spatial independence for

residuals are commonly performed using spatial association statistics [2].

• Measure the strength of the location effects on any variable. Spatial as-

sociation coefficients help in weighing and understanding the strength of

spatial effects in regression models [3] [44].

• Investigate the influence of the spatial unit geometries on a variable and

design spatial sampling. Measures of spatial association change in known

ways according to the configuration of spatial units. Spatial association

measures help in understanding the role that spatial scale and aggregation

strategies have on geospatial variables and their samples [61] [112] [115].

• Test on hypotheses about spatial relationships and measure a spatial unit

effect on other units (and vice versa). Spatial association statistics are

usually designed to assess the presence of a relationship among realisations

of a single variable [4]. Tests may be extended to consider spatial relations

between multiple variables [111] [8].

• Identifying spatial clusters and outliers. Spatial clusters and outliers are

sub-regions of a spatial dataset which present significant strong similarity

(or dissimilarity) for the observed variables. Spatial clustering algorithms

rely on the conjecture of spatial association among some nearby values of

one or more variables [87]. On the other way round, spatial association

statistical and exploratory graphical tools allow for identifying spatial

units that unduly influence or disturb spatial effects [4].

The list might be expanded whereas the most important concepts are there

included. The last three points are of particular interest in this work. From an
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exploratory perspective in GIS, the analysis of spatial association to point out

interesting patterns, reciprocal influences, and significant effects characterising

every spatial unit provides with plenty of chances to nimbly discover, by means

ESDA mapping, relevant underlying characters of any geospatial datasets. Fur-

ther considerations on this latter point are included in the next section.

2.2.2 Global versus local

Most of the long-established techniques aim at describing the spatial associ-

ation in a dataset with a single measure, therefore gathering insights into its

global behaviour. This is generally used for quantitative analysis with the pur-

pose of assessing the presence and the degree of the spatial association among

geospatial datasets as well as to integrate corrections for the spatial association

into spatial modelling [37]. The assumption behind global methods is that spa-

tial association properties are the same everywhere across the region of interest.

This deficiency often masks spatial variations in the data by preventing analysts

to detect inner pockets of spatial instability. As a consequence of the above,

the development of local methods that account for inner spatial variations has

been engaged in geography and connected disciplines in the recent past.

Spatial analysts have always been interested in local measures, that means to

encode precisely both spatial characteristics and relationships of a particular

site [55]. Moreover, the growing availability of geospatial data at a finer resolu-

tion as well as covering large areas, such as the satellite imagery, continent-wise

road networks layers, etc. has uncovered the need for local methods [81]. This

because the probability that regions with different properties would be encoun-

tered or considered within the modern spatial analysis has inevitably increased.

Central to the topic is once again the need for exploring the spatial associa-

tion. If the property of interest (e.g. precipitation, human population, traffic
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jam, etc.) shows significantly different spatial association properties across the

study region or across some scale of analysis, then e.g. a nonstationary model

has to be considered for the analysis [81]. The same applies to the simultaneous

analysis of multiple properties, i.e. in a multivariate context. In the case that

different spatial processes partially overlap on the study region, the modelling

phase requires to incorporate such a discovery [21]. By focusing o ESDA map-

ping, it comes naturally to prefer methods providing with local or mappable

statistics whose representation and display are readily achievable with any GIS

software.

A number of local methods have been developed in the context of geospatial

data analysis. The logic behind local methods consists of allowing model param-

eters or statistical indicators vary as a function of the location. Typically, two

approaches have been introduced to account for local variations in geospatial

data modelling and analysis. These are summarised below.

• Moving window methods, whose model relationships between the data at

the n locations closest to the centre of a moving spatial window. This

enables to locally tune or fit parameter estimations thus allowing for local

applications of global models that e.g. require for stationarity assumptions

[29] [80].

• Geographical weighting methods, whose identify a neighbour relationship

among the spatial realizations of a variable by means of a model matrix

that can be directly embedded in the model formulation to account for

local spatial variation in the data [45].

By considering the analysis of the spatial association, popular local methods

are e.g. the Geographically Weighted Regression (GWR) [16], which allows

regression parameters varying in space, and the Local Indicators of Spatial As-

sociation (LISA) [4] that allow evaluating the existence of spatial clusters in a
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geospatial dataset. An exhaustive treatment of the local modelling in spatial

analysis is provided by [81].

Relevant to this work are in particular the LISA. According to this, the next

chapter is dedicated to the mathematical formulation and explanation of LISA

by including also recent developments and extensions of these methods to a

multivariate context.



Chapter 3

Methods for Measuring Spatial

Association

The analysis of spatial association has challenged geographers and spatial statis-

ticians over the last 70 years. Since the applications involving the spatial asso-

ciation vary considerably from field to field, many analysis methods have been

created for different purposes. By confining the attention on GIS and mapping,

the best-known methods are connected to or derived from a small family of

statistics. These are the Moran’s I [83] and the Geary’s c [50] and the Getis-

Ord G [51] statistics. All these statistics share a common general formulation

and provide measures of spatial association that help to investigate patterns

and interactions among spatially distributed variables. Originally, these statis-

tics were designed as global measures of spatial association. Nevertheless, local

versions have been proposed starting from the 90’s [4] [51]. Actually, the G

statistic, has been proposed directly in its local version and shows slightly dif-

ferent features than the I and the c. However, due to its relevance in mapping

applications, the G is described together with the other two statistics in Section

3.3.

In Section 3.1, the general formulation of the above-mentioned spatial associa-

17
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tion statistics is provided. This is followed by considerations on the significance

testing for the selected spatial association statistics. A detailed description of

the local versions of the selected statistics is the subject of Section 3.3.

3.1 General formulation

A number of methods for measuring spatial association have been proposed

in the literature [39]. Nevertheless, all measures of spatial association can be

traced back to a cross-product statistic as reported in Equation 3.1.

Γ =
n∑
i=1

n∑
j=1

Wi,jRi,j ; i 6= j (3.1)

Where i and j is a couple of locations in the same geospatial dataset, with n equal

to the total number of locations. The Wi,j matrix is the so-called contiguity or

spatial weights matrix whose values define whether location j is a neighbour -

or not - of location i (see e.g. Table 3.1). This is often expressed as a n × n

symmetric matrix having values, e.g. ones, at i (i.e. row) and j (i.e. column)

position if i and j are defined as neighbours, and zeros elsewhere. The term Ri,j

is a measure of the attribute similarity between locations i and j (see Section

3.3).

The neighbouring or contiguity relationship is specified by the analyst through

rules such as a threshold distance for point data or edges and corners congruency

for areal data. Most popular spatial weights types are summarised in Table 3.1.

A fuller description of geographical weighting schemes can be found e.g. in [53]

and [55].

The general formulation expressed by Equation 3.1 provides with a single mea-
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Spatial Weight Type Description

Distance-based

• Bandwidth d̄ (distance = d):

Wi,j

{
1, 0 < di,j ≤ d̄

0, di,j > d̄

• Power Distance (distance decay rate = α):
Wi,j = d−αi,j

• k-Nearest Neighbours (subset rule = Nk):

Wi,j


1, j ∈ Nk(i)

0, j /∈ Nk(i)

Nk(i) = {di,j1 ≤ di,j2 ≤ · · · ≤ di,jk}

Boundary-based

• Spatial Contiguity (edges/corners = bnd)

Wi,j

{
1, bnd(i) ∩ bnd(j) 6= �
0, bnd(i) ∩ bnd(j) = �

Table 3.1: Description of the most popular spatial weights types.

sure of spatial association for the whole geospatial dataset, thus describing its

global behaviour. Generally speaking, this helps to identify both the degree and

the type of spatial association. The degree is connected to the absolute value

of the computed statistic. The type can be assessed by looking at the sign of

the statistics or by comparing the computed value of the statistic to a reference

one. Types of spatial association are basically two, namely the positive and

the negative spatial association. Positive association stands for the significant

presence of similar observations close in space, depicting a high spatial clus-

ter activity for the geospatial dataset. Conversely, negative association implies

a significant presence of dissimilar observations close in space, thus the likely

presence of spatial outliers.

Despite the global spatial association measure provides with a compact and

useful information for exploring characteristics of a geospatial dataset, it does

not allow for presenting results directly on a map, that is of primary interest

to GIS applications. To overcome this limitation, local versions for the spatial
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association statistics have been introduced [4] [51]. Their general mathematical

formulation is directly derived from the global statistic (Equation 3.1) by simply

removing the summation on i, as shown in Equation 3.2.

Γi =
n∑
j=1

Wi,jRi,j ; i 6= j (3.2)

The latter leads to the definition of a single value for the statistic at each location

i in the dataset, considering its j neighbours according to the adopted spatial

weights matrix Wi,j. Therefore, these local versions are capable of suggesting

the exact location of spatial clusters and outliers that is one among the most

relevant tasks for GIS scientists.

3.2 Significance testing

A fundamental aspect connected to the use of local spatial association measures

is the assessment of the significance of the computed statistics at each location.

This implies computing reference or threshold values that allow to point out

interesting locations, i.e. locations showing a strong dissimilarity with respect

to the hypothesis of randomness, that is unlikely to be encountered across the

whole study region when dealing with geospatial data. Indeed, the significance

of the local spatial association statistics is inferred against the hypothesis of

Complete Spatial Randomness (CSR). CSR aims at describing the distribution

of the selected spatial association statistic in the case of a random arrangement

of the observations within the n locations of the dataset.

The significance testing is key to the analysis of spatial association and ESDA

in general. What it attains to demonstrate is - in fact - that the attribute val-
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ues arrangement in some particular location of the dataset cannot be due to a

random process. Therefore, there is likely a chance of modelling or explaining

these non-random spatial patterns. This discovery is a crucial point for ESDA.

A clear example of the above is reported in Figure 3.1. In the first map (Figure

3.1a), the actual spatial distribution of the African Americans population in

the City of Chicago (USA) is portrayed. This variable shows an intense cluster

activity thus providing insight into a well-known issue affecting the city, i.e. the

racial segregation [22]. In Figure 3.1b, a random spatial distribution of the same

variable is simulated, and the information on segregation remains unobserved.

This clearly explains the central role played by the significance testing for the

CSR hypothesis in the exploration of geospatial data.

(a) (b)

Figure 3.1: Share of African Americans population by city block in
Chicago (USA) in the Year 2012. (a) the actual spatial distribution, and
(b) a simulated random spatial distribution of the same variable. Data
source: http://robparal.blogspot.com. Basemap: c©OpenStreetMap contributors,
c©CARTO.

Analytical approximations to perform inference on local spatial association

statistics have been discussed in the literature [98] [102]. The analytical-based

inference is often used in the practice because less demanding in computational
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terms. Analytical methods are based on the hypothesis of asymptotic normality

for distributions of the local statistics [52]. However, the normality is shown

under the conditions of the analytical testing of the ac CSR to poorly accurate

procedures under some circumstances cite Leung e.g., for isolated locations

of the dataset having fewer neighbours than the central ones cite Ord1995.

Therefore, the use of computational methods is suggested to the practical in-

ference. Computational methods are based on Monte Carlo like experiments

such as the conditional permutations [12]. Practically, this approach consists of

holding the value of the variable at location i fixed, random permute or shuffle

the remaining values within the other n -1 location (Figure 3.1b) and recom-

pute the local spatial association statistic. By repeating m times this process,

an empiric reference distribution for the statistic under the CSR hypothesis is

obtained for each location. Using this reference distribution, the pseudo p-value

of the statistic at each location i can be computed according to Equation 3.3

[92].

pi =
b+ 1

m+ 1
(3.3)

Where m is the number of permutations and b is the number of times (out of

m) that the statistics in the empirical reference distribution is equal or lower

than the observed one. Smaller the pseudo p-value at a location i stronger the

rejection of the null hypothesis (CSR). In turn, this means a higher probability

that location i is interesting hence it belongs to a spatial cluster, or it is an

outlier. A significance level α needs to be selected by the analyst to reject or

accept the null hypothesis like any other statistical test.

The pseudo p-value estimated from the conditional permutations has to be

cautiously interpreted [8]. This because it is not likely to properly reflect the
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actual Type I error, that is the case when the null hypothesis (CSR) is true but

is rejected thus a false positive is encountered [41]. Due to the computational

procedure adopted in the conditional permutation approach, many of the val-

ues used to simulate a local measure of spatial association at a location i, are

used again for a test on a neighbouring location by producing a large number of

correlated tests. This ironically means that by searching for evidence of spatial

association the tests are affected by the spatial association themselves [55]. In

this unfavourable situation, the selected significance level or the p-values need

to be adjusted to account for the Type I error with multiple comparisons. A

number of empirical methods have been proposed [15] to control the error rate

that is known as the False Discovery Rate (FDR). A graphical example of the

above issue is included in Figure 3.2.

Figure 3.2: Schematic for the effect of correlated test on a p-values distribution.
Black bins represent a simulated distribution from tests not affected by multiple
comparisons, red bins a distribution in the presence of multiple comparisons,
and green bins the affected distribution adjusted by means of FDR procedures.

Among these methods, the Benjamini-Hochberg procedure [10] is largely ac-

cepted as a standard to adjust p-values in a multiple comparisons problem.
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The FDR is defined as the expected value of the ratio between the number of

false positives in an experiment divided by the total number of discoveries in

the experiment. This rate can be estimated from the pseudo p-values obtained

from the conditional permutations and used to adjust the original p-values.

The Benjamini-Hochberg procedure consists of a few steps as follows. First,

the pseudo p-values for each observation pi have to be sorted from smallest to

largest and ranked such as p i=1 ≤ p i=2 ≤ ... ≤ p i=n. Then, for a given signifi-

cance level α , the larger rank imax needs to be defined such as that the inequality

expressed in Equation 3.4 is verified, where n is the number of observations. All

observations with i lower or equal than imax are then considered significant and

considered to reject the null hypothesis.

pi,significant ≤ (
imax
n

)α (3.4)

An exhaustive technical discussion on the FDR procedure can be found in [41].

Due to the artefact introduced by the FDR, it is important to remind that

the traditional definition of significance might not be appropriate to describe

outcomes of the described inference procedure. That is the reason why many

authors prefer the term interesting instead, which nevertheless best applies in

the context of ESDA [8].

3.3 Local Indicators of Spatial Association

(LISA)

The local versions of the spatial association statistics mentioned at the be-

ginning of this chapter are known as Local Indicators of Spatial Association
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of which LISA is the acronym. The mathematical formulation of LISA de-

rives from a decomposition of their global parent statistic such as the sum of

LISA computed for a geospatial dataset is proportional to the global statistic

[4]. Along with this section, LISA are presented according to their enabling

application into univariate, bivariate, and multivariate analysis contexts. The

multivariate LISA description has to be intended as an experimental drift of

the well-established LISA theory because of its recent development [8].

The possibility to automatically locate LISA outcomes on a map enables to

depict spatial association patterns as well as to detect pockets of spatial associ-

ation that cannot be discovered using global statistics. For these reasons, LISA

mapping has become a cross-cutting practice within a number of disciplines

ranging from ecology to economy, passing through health surveillance and land

planning.

3.3.1 Univariate LISA

The Local Moran’s I

Among LISA, the most popular is the Local Moran’s I (Equation 3.5) [4], which

is a local version of the Moran’s I [83].

Ii = zi

n∑
j=1

Wi,jzj ; i 6= j (3.5)

Where zi and zj are the standardized attribute values, such that their mean is

zero and their variance is one, at locations i and j, and W i,j is the element of

the spatial weights matrix. Generally, variables standardization is performed

by means of Z-score scaling [36] as expressed in Equation 3.6, where xi is an
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unscaled observation of the considered variable, µx is the sample mean and σx

the standard deviation.

zi =
xi − µx
σx

(3.6)

The link with the global parent statistics, the Global Moran’s I [83], is that this

is the average of the Local Moran’s I computed at each location of the study

region. A significant and positive value for Ii, expressed in deviation from the

mean or Z-score, indicates that location i has similar values in its j neighbours,

so it belongs to a spatial cluster. A significant and negative value indicates

that location i has dissimilar values in its j neighbours, and it is, therefore,

a spatial outlier. The significance is inferred considering the CSR hypothesis.

Furthermore, by plotting on a Cartesian plane each couple (zi, Wi,jzj), where

the Wi,jzj element is usually known as the spatial lag of the spatial attribute

zi, an additional information on the type of spatial association can be assessed.

The resulting plot is known as the Moran Scatterplot [5]. Depending on the

quadrant of the plane at which this couple is found, and belonging this couple

to a significant cluster or outlier, the types of spatial association together with

their descriptive conditions are described in the following list and by Equation

3.7:

• Positive association of high values (upper right quadrant)

• Positive association of low values (lower left quadrant)

• Negative association of high zi and low Wi,jzj values (lower right quadrant)

• Negative association of low zi and high Wi,jzj values (upper left quadrant).
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locationi =



pi ≥ α, not significant

pi < α ∧ zi ≥ 0 ∧Wi,jzj ≥ 0, high values cluster

pi < α ∧ zi < 0 ∧Wi,jzj < 0, low values cluster

pi < α ∧ zi ≥ 0 ∧Wi,jzj < 0, high-low values outlier

pi < α ∧ zi < 0 ∧Wi,jzj ≥ 0, low-high values outlier

(3.7)

Figure 3.3: Schematic for the clusters and outliers mapping using the Local
Moran’s I.

The classification into quadrants is used to display results on a map by assigning

a proper visualisation style to the geospatial dataset using GIS software (Figure

3.3).

The Local Geary’s c

The Local Geary’s c is the second LISA outlined in [4] and its formulation

derives from the decomposition of the global parent statistic, the Geary’s c

proposed in the ’50s by [50]. The Local Moran’s I provides a local measure of

spatial association as cross-products among a focal location and its neighbours.

Differently, the Local Geary’s c expresses the spatial association as a weighted

average of squared distances in the attribute space between attribute values at

a location i and that at each neighbouring location j, as shown in Equation

3.13.
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ci =
n∑
j=1

Wi,j(xi − xj)2 ; i 6= j (3.8)

Where xi and xj are the attribute values at locations i and j, and Wi,j is the

element of the spatial weights matrix. The significance is inferred considering

the CSR hypothesis. Due to the analytical formulation, this statistics focuses

on dissimilarity rather than correlation. Therefore, a significant and less than

the mean value for ci depicts similarity, hence positive spatial association. A

significant ci value greater than its expected value indicates dissimilarity or

negative spatial association. On the other way round, a significant ci value

lower than its expected value indicates similarity or positive spatial association.

The expected value E [c] can be either computed analytically, e.g. the sample

mean, or from an empirical reference distribution derived by the conditional

permutations used for significance testing, as for the other statistics explained

before. These conditions are specified by Equation 3.9 and in Figure 3.4.

locationi =


pi ≥ α, not significant

pi < α ∧ ci < E [c] , cluster

pi < α ∧ ci ≥ E [c] , outlier

(3.9)

The Local Geary’s c does not provide any chance of classifying detected spatial

cluster and outliers such as for the Local Moran’s I. A partial classification

can be achieved by the simultaneous analysis of resulting cluster maps form the

Local Geary’s c and the Local Moran’s I by using dynamic linking and brushing

visual techniques [6]. Due to this limitation, other LISA are usually preferred

for map-based researches. However, the Local Geary’s c can be extended to the
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Figure 3.4: Schematic for the spatial association mapping using the Local
Geary’s c.

analysis of multiple attributes, thus to a multivariate context, making it central

to this research work. The multivariate extension of this LISA is presented later

in this section.

The Local Getis-Ord G

The last univariate statistic here presented is the Local Getis-Ord G [51]. This is

not a LISA in a formal sense because there is not a direct connection to a global

parent statistic. Nevertheless, the Local Getis-Ord G is likely the most popular

techniques for detecting spatial clusters. This statistic provides a measure of

spatial association by comparing the sum of the values xj in the neighbourhood

of the focal location i with the sum of all locations. The significance is inferred,

once again, considering the CSR hypothesis. Two versions of the Local Getis-

Ord G are available as reported in Equation 3.10. The Gi that evaluates the

spatial association as values similarity in the proximity of the focal location i,

and the G*
i allowing for clustering detection such as the location i is included

in the sum by introducing non-zero diagonal values in the spatial wights matrix

W.
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G∗
i =

n∑
j=1

Wi,jxj

n∑
j=1

xj

; i 6= j ; ∗i ∈ j (3.10)

Conversely to the Local Moran’s I and the Local Geary’s c, the interpretation

of the results is straightforward. Significant and positive values, expressed as

deviations from the mean or Z-scores (Z [G∗
i ]), depict clusters of high values or

hot spots, and vice versa significant and negative values clusters of low values or

cold spots as expressed by Equation 3.11 and Figure 3.5. The negative spatial

association, i.e. spatial outliers, cannot be spotted by using the Local Getis-Ord

G.

locationi =


pi ≥ α, not significant

pi < α ∧ Z [G∗
i ] ≥ 0, hot spot

pi < α ∧ Z [G∗
i ] < 0, cold spot

(3.11)

Figure 3.5: Schematic for the hot and cold spots mapping using the Local
Getis-Ord G with multiple significance levels.

Univariate LISA statistics provide analysts with different rationales for inves-

tigating the spatial association. These include similarity measures based on
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additive processes (G), cross-products (I), and squared distances (c). Combina-

tions of these indicators are generally considered during the exploitative phase

or mapping of the spatial association in a dataset, hence increasing the infer-

ence power against alternative hypotheses. This means that the rejection of the

null hypothesis (CSR) can be achieved with high confidence while alternatives

remain unknown. Indeed, spatial clusters and outliers are suggested by LISA

but not explained. LISA do not provide insights into the possible spatial pro-

cesses generating the patterns. Univariate LISA results might also suffer from

underlying interaction between the analysis variable and other covariates which

might act at different scales or just on portions of the study region. While the

explanation of both univariate and multivariate spatial processes remains out of

LISA purposes, the exploration of multivariate interactions in terms of spatial

association can be achieved by LISA extensions to the multivariate context.

This topic is presented in the following.

3.3.2 Bivariate LISA

The Local Moran’s I is suitable for both univariate and bivariate analyses. In

the bivariate setting, the geospatial dataset has two attributes measured at each

location. The bivariate Local Moran I is introduced in Equation 3.12 to enable

a joint spatial association analysis of the two attributes [111] [75].

I ik,l = zik

n∑
j=1

Wi,jz
j
l ; i 6= j (3.12)

Conversely to Equation 3.5, the zi is substituted with the standardized values of

the base attribute zik, and zj with the standardized values of a second attribute in

the neighbours locations zjl . Clearly, the standardization procedure (Equation
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3.6) becomes here necessary in order to scale and compare the two different

attributes. By doing so, a significant and positive value for I ik,l indicates that

location i has the value of the first attribute similar with values of the second

attribute in its j neighbours. Location i is - therefore - a joint spatial cluster

for the two attributes. A significant and negative value for I ik,l hence location

i being a joint spatial outlier for the two attributes. Results can be linked and

mapped using the quadrant classification of the Moran Scatterplot, as for the

univariate version. Applications of the bivariate Local Moran’s I are illustrated

in Chapter 5. The Local Geary’s c could be adopted in a bivariate context.

I preferred to report in the following its general extension to the multivariate

case which naturally applies also to the bivariate analysis.

3.3.3 Multivariate LISA

In a multivariate context, i.e. when k attributes are measured at each loca-

tion and their spatial association needs to be investigated simultaneously, no

consolidated methods are available in the literature. Recently, an extension of

LISA has been finally proposed by [8], potentially enabling multivariate spatial

association analyses and mapping. This is an extension of the Local Geary’s c

statistic [4]. This LISA was originally designed to accomplish univariate analy-

sis, and it is a measure of the squared distance - in the attribute space - between

the attribute value at a location i and that at each neighbouring location j. The

multivariate extension of the Local Geary’s c collapses the k squared distances

into a weighted sum by providing a single value for the statistic at each location

of a geospatial dataset, as shown in Equation 3.13.

ck,i =
k∑
v=1

n∑
j=1

Wi,jd
2
vi,j

; d2vi,j = (zv,i − zv,j)2; i 6= j (3.13)



3.3. LISA 33

Where d2
vi,j is the k-dimensional squared distance, in the attribute space, be-

tween the standardize zv attribute values at locations i and j, and Wi,j is the

element of the spatial weights matrix. Even more than in the bivariate analysis,

the standardization procedure (Equation 3.6) is here crucial for comparing the

k different attributes. As for the univariate case, the interpretation of spatial

association using the multivariate Local Geary’s c is less intuitive as that of the

other LISA such as the Local Moran’s I. A significant value of ck,i that is less

than its expected value suggests a positive spatial association. While a signif-

icant and higher value suggests negative spatial association [8]. The expected

value can be computed analytically or from an empirical reference distribution

derived by the conditional permutations, as for the univariate version of the

statistic. Cluster and outliers classification, such as the one introduced with

the Moran Scatterplot, is not achievable in this case, leading to a strong limita-

tion of exploring the spatial association by the exclusive use of the multivariate

Local Geary’s c. However, interesting locations in the dataset can be identified

and later analysed exploiting other data analysis techniques. This topic is the

subject of Chapter 6.

Being recently developed, the multivariate extension of the Local Geary’s c

is neither exhaustively tested nor fully integrated into stable software tools.

For these reasons, a proper interpretation of the outcomes cannot be currently

performed in an objective manner. In Chapter 6, we attempt to an application

of this new LISA for demonstrating the technical feasibility of the methodology,

its integration into a GIS environment, and its consolidation with traditional

EDA methods, rather than for confirming its advantages and the practical im-

plications of the results for the selected case study.



Chapter 4

Software Tools

The strong connection with ESDA and graphical techniques has naturally led to

the spread of software tools dedicated to geospatial data exploration by means

of statistical mapping. This has been significantly facilitated by the diffusion

of GIS and the terrific improvements that both computer graphics and com-

putational power faced along the last two decades. Nowadays, ESDA and - in

particular - LISA rely on many software implementations available as libraries

for many programming languages, statistical software, and GIS software mod-

ules. Some of these tools are released with open licenses1 thus allowing users

free access to both software functionalities and the source code. This pro-

vides analysts with plenty of tools and opportunities for investigating, testing,

and extending spatial association methods by also empowering geospatial data

analysis and modelling with dynamic data interactions. Focusing on spatial

association testing and mapping, some of the most popular and cutting-edge

tools are introduced in the following list.

• GeoDa2 is a FOSS distributed under the GNU General Public License

(GPL)3 that provides geospatial data analysis and visualization function-

1https://opensource.org/licenses
2https://geodacenter.github.io
3https://www.gnu.org/licenses/gpl.html
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alities by means of an interactive GUI to explore and modelling spatial

patterns. The software runs on the main Operative Systems (OS) like

Windows, macOS and Ubuntu. The analytical functionalities are imple-

mented as a collection of C++ classes with associated methods. The

analytics include spatial association and spatial regression models as well

as EDA and mapping tools. GeoDa supports a large variety of vector data

formats such as shapefiles, geodatabases, GeoJSON, and Keyhole Markup

Language (KML) layers thanks to the integration with the Geospatial

Data Abstraction Library (GDAL)4. Basemaps can be added to any map

view to improve data and results visualisation. GeoDa provides extensive

support for LISA mapping as well as multivariate EDA by means of link-

ing and brushing operations between maps and statistical graphs (Figure

4.1).

Figure 4.1: GeoDa dynamic interfaces including statistical maps and linked
EDA graphs.

• The ArcGIS ESDA extension5 is part of the Spatial Statistics Toolbox of

the premier proprietary desktop GIS software ESRI R© ArcGIS6. This soft-

ware runs on Windows OS only whereas a cloud-based version, the ArcGIS

4https://www.gdal.org
5https://tinyurl.com/yah6f7cx
6http://desktop.arcgis.com
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Online7, has been recently made available. ArcGIS allows user for creating

custom desktop and Web applications by serving a number of Application

Programming Interfaces (API) for many programming languages such as

Python, JavaScript, and Java. The ESDA extension provides with a set

of techniques for describing and modelling geospatial data including EDA

statistical graphs, LISA mapping (Figure 4.2), and many global measures

of spatial association. These are fully integrated into a complete GIS envi-

ronment that eases any geospatial data manipulation and display through

a user-friendly GUI.

Figure 4.2: LISA mapping with ESRI R© ArcGIS.

• The Spatial Dependence: Weighting Schemes, Statistics and Models (spdep)

8 is a cross-platform package for the statistical programming language R

dedicated to geospatial data analysis. It is a FOSS released with the

GPL license that includes a collection of functions to perform a num-

ber of spatial analytics such as pattern analysis, spatial regressions and

7https://www.esri.com/en-us/arcgis/products/arcgis-online
8https://cran.r-project.org/web/packages/spdep
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tests for spatial association. Thanks to the capabilities of the R language,

the spdep allows for integrating with other packages by extending both

supported data formats and mapping capabilities (Figure 4.3). The ac-

cess to functionalities is enabled only through the command line through

scripting operations.

Figure 4.3: Sample statistical maps computed using the spdep R package.
Source: https://rdrr.io/rforge/spdep/man/probmap.html.

• The Python Spatial Analysis Library (PySAL)9 is a FOSS cross-platform

library for geospatial data science data written in Python and release un-

der the 3-Clause Berkeley Software Distribution (BSD) license10. PySAL

project was started with the goal of leveraging existing software tools

development such as GeoDa and Space-Time Analysis of Regional Sys-

tems (STARS)11 in order to supply a core of analytical functions to sup-

port and extend spatial analysis applications. This also by considering

the emerging role of Python as the scripting language for geospatial anal-

ysis since its adoption by ESRI R©, the leading commercial GIS software

provider, as well as its growing popularity among spatial analysts. PySAL

consists of multiple packages that implement a number of spatial statistics,

spatial association tests, and spatial regression models. It also provides

9http://pysal.org
10https://opensource.org/licenses/BSD-3-Clause
11http://regionalanalysislab.org/index.php/Main/STARS
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built-in methods to display and visually analyse spatial datasets and spa-

tial statistic outputs by means of ESDA graphic techniques (Figure 4.4).

Each package is deployed as a stand-alone component that eases the inte-

gration into data analysis frameworks by optimising the dependency re-

quirements as well as facilitates the development and maintenance of the

library. PySAL supports multiple vector data formats such as shapefiles,

and text-based file formats like Comma-separated Values (CSV), GenePix

Array List (GAL) files, and DataBase File (DBF). Being a programming

library, the access to functionalities is enabled exclusively through the

command line. Only experimental GUIs to exploit the PySAL library are

currently available, the stand-alone FOSS CAST12 is an example.

(a) (b) (c)

Figure 4.4: An example of the PySAL analytic and graphic functionalities. A
choropleth map for a spatial variable (a), the local Moran’s I map computed
from the variable (b), and the corresponding Moran Scatterplot (c). Source:
https://github.com/pysal/splot.

Modules for spatial association analysis can also be found in different statistical

software such as SAS c©,13, some FOSS GIS like SAGA-GIS14, or embedded into

Web-based analytical platforms such as CARTO c©,15. Nevertheless, the tools

included in the previous list represent the state-of-art concerning LISA mapping

that is the central topic of this work. In particular, PySAL is considered in

the next section to highlight the opportunities enabled by FOSS of developing

12https://geodacenter.github.io/CAST
13https://support.sas.com/rnd/app/stat/procedures/SpatialAnalysis.html
14http://saga-gis.org
15https://carto.com/platform/spatial-data-science/
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custom LISA mapping applications and sharing them to the users’ community.

4.1 The Hotspot Anlysis Plugin for QGIS

Within FOSS GIS, there is still a lack of functionality dedicated to spatial asso-

ciation statistics and modelling [7]. However, the nature of the different FOSS

projects facilitates their extension and integration with other software tools,

thus enabling a valuable mix of custom geospatial data analysis tools with a

wide range of GIS mapping functionalities. This is the case of QGIS16 that is

currently recognized as one of the leading FOSS GIS. QGIS is a user-friendly

FOSS GIS licensed under the GPL that provides geospatial data manipulation

and analysis tools both on desktop and Web environments. Being a FOSS, users

are allowed to contribute the source code and the maintenance of the software.

QGIS is an official project of the Open Source Geospatial Foundation (OSGeo)

that provides with support, and coordination to the worldwide community of

FOSS GIS developers. The software runs on most Unix platforms, Windows,

macOS, and Android OS and supports numerous vector, raster, and database

data formats. QGIS is developed in C++ while the GUI is based on the Qt17

framework. Actually, QGIS is much more than a GIS software. It provides a

complete development environment that includes extensive support for Python

scripting and programming [82]. Custom scripts and data processing pipelines

can be run in QGIS by exploiting the Python QGIS (PyQGIS) APIs [74] as

well as by coupling them with functionalities from both external programming

languages such as R, and FOSS GIS software like GRASS GIS18, SAGA-GIS,

the Sentinel Application Platform (SNAP)19, and many others [60]. The feature

that mainly characterises QGIS is, however, the enabling possibility for users

16https://www.qgis.org
17https://www.qt.io
18https://grass.osgeo.org
19http://step.esa.int/main/toolboxes/snap/
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to develop and publish custom plugins. QGIS Plugins20 are independently de-

veloped software packages that can be installed and run on QGIS to extend its

core functionalities. QGIS Plugins are written in Python according to a common

framework that provides the minimum requirements for a plugin to work. The

interoperability between plugins and the core QGIS software is provided by the

PyQGIS APIs while the plugin interfaces are developed using PyQt21 which is

one of the most popular Python bindings for the Qt framework. QGIS provides

an official share repository to which any user can download available plugins or

deploy their ones. Generally, the plugins development and is carried out using

Web-based Version Control Systems (VCS) such as the GitHub22, which is the

VCS used also for the QGIS core development. Plugins can embed functionali-

ties derived from Python libraries that are included in the default QGIS Python

installation, by providing documentation on the dependencies requirements as

well as the licensing compatibility of the external resources adopted and QGIS.

This aspect is important, especially for published plugins. In fact, a plugin can

be produced for personal use only or shared onto the official repository where a

preliminary check of the code is performed by the repository managers. Some of

the top-ranking plugins, initially developed by users, have been later included

in the QGIS core, thus improving the default software capabilities during the

time. This virtuous development strategy, perhaps characterizing most of the

FOSS projects, represents the main strength of QGIS and, at the same time,

is one of the main reason for its popularity. Due to the above-described char-

acteristics and opportunities, I selected QGIS as a platform for developing new

FOSS GIS tools dedicated to LISA mapping that is one of the outputs of the

presented work.

Considering leading FOSS GIS like QGIS, no core ESDA functionalities imple-

20https://plugins.qgis.org
21https://wiki.python.org/moin/PyQt
22https://github.com/
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menting LISA mapping have been made available so far. These spatial statistics

can be accessed only through command line thus without the support of a ded-

icated GUI. In order to provide QGIS users with ESDA functionalities, we

develop an experimental plugin called Hotspot Analysis [89]. This allows per-

forming LISA computations such as the Local Getis-Ord G*
i and Local Moran’s

I, both in its univariate and bivariate versions, on a geospatial dataset and

automatically display results on a map as shown in Figure 4.5. The plugin

is written in Python and exploits some functionalities provided by the PySAL

ESDA module23, coupled with some of the digital mapping facilities enabled by

the PyQGIS APIs. The interface is built using on PyQt like any other QGIS

plugin. Both the source code and the user documentation are available on the

GitHub24. The stable version is also published on the official QGIS plugins web

portal25 which can be accessed and installed directly from the QGIS software

interface through the plugin manager menu. A description of the plugin func-

tionalities, derived from a recent paper that I co-authored [89], is reported in

the following.

The Hotspot Analysis Plugin requires as input a shapefile of polygons (Fig-

ure 4.5) or points (Figure 4.6) with associated a projected CRS and - at least -

one numerical attribute associated at each location. The attribute is the spa-

tial realisation of the variable for which a LISA is computed. This information

has to be assigned to pointwise locations or parcels covering the area under

investigation, e.g. city block centroids, pixels of a regular grid, etc. Spatial

relationships between neighbour geometries are considered by creating a spatial

weights binary matrix, exploiting the dedicated PySAL functionality26. A lim-

ited set of methods for creating the spatial weights matrix is currently available

in the plugin. Concerning points, the default spatial weights matrix is created

23https://pysal.readthedocs.io/en/latest/library/esda
24https://github.com/danioxoli/HotSpotAnalysis Plugin
25https://plugins.qgis.org/plugins/HotspotAnalysis
26https://pysal.readthedocs.io/en/latest/library/weights
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using a fixed distance band, expressed with the same unit of measure of the

projected CRS of the input shapefile. Alternatively, the matrix can be created

using the K-Nearest Neighbours (KNN) approach, which enables to define a

relation for each point of the dataset with its K nearest points, where K value

is set by the user. For polygons, a first order Queen’s case contiguity matrix is

used, i.e. edges and/or corners contiguity. The output layer is displayed with

an automatic style that combines Z-scores and p-values allowing an intuitive

visualisation of the detected local spatial clusters. For what it concerns the

Getis-Ord G*
i , a positive and statistically significant Z-score indicates a clus-

ter of high values (hot spot). A negative and statistically significant Z-score

indicates a cluster of low values (cold spot). Concerning the Local Moran’s I

and the Local Moran Bivariate, statistically significant Z-scores are translated

into quadrant values (q-values) of the Moran Scatterplot which are included

into a separate column of the attribute table. The q-values depict the presence

of clusters or outliers within the dataset. Plugin additional functionalities are

the following. The selection of row standardized spatial weights matrix, instead

of the default binary version. Row standardization consists of dividing each

matrix element by the sum of the row to which the element belongs to. This

normalization is traditionally used to prevent LISA begin biased by an uneven

neighbours availability at isolated or marginal locations in the dataset [71]. A

second option is the computation of statistical significance using the permuta-

tion approach instead of normality approximation, and lastly the optimisation

of the fixed distance band selection. The optimisation consits of defining a

range of possible distances to be tested by the plugin. The optimal distance

that is used by the plugin for computations is the one maximising the Z-score

of the Global Morans I [83] for the dataset. This distance reflects in principle

where the spatial process that promotes clustering is most pronounced27. The

default distance band suggested for any input shapefile of points is the mini-

27https://tinyurl.com/y8d4y3t7



4.1. The Hotspot Anlysis Plugin for QGIS 43

mum distance that guarantees at least one neighbour to each point. The plugin

functionalities are summarized in Table A.1 included in Appendix A.

Figure 4.5: The GUI of the Hotspot Analysis Plugin (a), a sample input data
(polygons grid) with an attribute distributed in space (b), and (c) an example
of the LISA output map from the Local Moran’s I computation.

Figure 4.6: The GUI of the Hotspot Analysis Plugin (a), a sample input data
(points layer) with an attribute distributed in space (b), and (c) an example of
the LISA output map from the Local Getis-Ord G*

i computation.

In Chapter 5, sample applications of the plugin to spatial association analysis

on real geospatial datasets are presented. Regarding the multivariate LISA,
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only an early module of the GeoDA software has been currently released. The

module provides with simple features to compute multivariate Local Geary’s c

maps from many geospatial data formats. However, advanced options for the

post-processing of the output maps are not available within the software. For

testing the multivariate Local Geary’s c, custom Python scripts are therefore

developed and used in this work enabling full control of both the outputs and

the mapping experiment settings. An extensive discussion of the multivariate

LISA computations is included in Chapter 6.



Chapter 5

Case Study Applications

In this Chapter, LISA applications on real data are illustrated with the aim of

helping the readers in better understanding the concepts of chapters 2 and 3.

At the same time, the practical use ESDA software is described. The Hotspot

Analysis Plugin is considered for this purpose (Section 4.1). Selected case stud-

ies focus on both univariate and bivariate LISA mapping. The complete case

studies discussion is published in recent papers that I co-authored [11][89][90],

from which part of the following is derived.

5.1 Univariate LISA mapping

5.1.1 Case study: Slow mobility spatial patterns

Nowadays, there is an emerging use of geospatial data and location-based ser-

vices not only among professionals but also by lay users during leisure activities.

A relevant example is the use of mobile devices for tracking outdoor activities

such as running, hiking, cycling, ski touring, etc. The information produced in

this context is then often shared by users on dedicated Web portals allowing

for visualizing, downloading, and reusing the content among the users’ commu-

45
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nity. A popular content which can be found on these platforms, in addition

to pictures and textual descriptions of routes and itineraries, consist of Global

Navigation Satellite Systems (GNSS) tracking data depicting the real users’ ac-

tivity along territories [18]. This example best describes the underlying role of

geospatial data for recreational activities. The activities mentioned above are

often referred to as slow mobility [49]. This has been increasingly recognized

as an asset for the sustainable development of the territories [73] because of

its low environmental impact as well as positive effects on the citizens’ health.

Due to the geospatial nature characterising most of the user-generated content

portraying slow mobility activities, ESDA can be adopted as a tool for investi-

gating the spatial characters of this phenomenon. In the following, an example

of univariate LISA mapping applied to slow mobility is reported.

As a case study, the Lombardy Region (Northern Italy) was selected, which

includes different landscapes as well as environments ranging from highly pop-

ulated cities to the alpine glaciers, passing through its famous subalpine lakes

and vast plains (Figure 6.2a). Thanks to this territorial variety, the Lombardy

Region is a good candidate for investigating slow mobility through its wide

range of different environments that favour the practice of these kinds of activi-

ties. Considered data consists of user-generated GNSS tracks retrieved from the

Wikiloc platform1. This is a free Web-based service offering users the possibility

of sharing their outdoor experiences using GNSS trails as well as access to the

platform content through advanced map-based functionalities. The available

GNSS tracks for the Lombardy Region were downloaded in GPS eXchange For-

mat (GPX). This format provides linear layers constituted by chronologically

ordered waypoints (point coordinates with time stamps) enabling full tracking

of movements registered by a GNSS device. Data collection referred to the pe-

riod January - March 2016.

1https://www.wikiloc.com
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The collected GPX files were stored in a PostgreSQL-PostGIS2 database. A

preliminary data cleaning procedure was applied to filter out trails with associ-

ated average speed, computed from the correspondent GPX tracks, greater than

22 [km/h]. According to [56], this threshold would cover mostly non-motorised

transportation, which was present inside the Wikiloc database in some propor-

tion. GPX tracks were re-sample at a 15 [s] time gap to account for the possible

differences in terms of waypoints sampling by the different users’ devices. The

waypoints considered were about 2.100.000. The dataset was split into two

groups according to the time when each track was generated, namely weekdays

and weekends. By doing so, it was possible to introduce a temporal dimension

into the analysis. Considering slow mobility patterns, this temporal distinction

is interesting for outlining users interactions with the territory that might show

important variations between the two periods. Finally, the waypoints counts

within each municipality area of the Lombardy Region was performed for the

two considered periods. The count values were associated with the centroid

of the corresponding municipality and represented the variable on which LISA

mapping was performed. Selected LISA was the Local Getis-Ord G*
i . Hot spot

and cold spot maps were created using the Hotspot Analysis Plugin for QGIS

(see Chapter 4) using a row-standardized spatial weights matrix computed by

a fixed-distance band weighting schema.

By mean of LISA maps, it is possible to discover clusters, at a regional scale, of

popular destinations for slow mobility activities. This reflects the actual users’

activities along territories whose attractiveness is explored by means of spatial

association among the registered waypoints counts. Results are reported in

Figure 5.1. During weekdays, hot spots concentrated mainly around some of

the main cities (i.e. Milano and Brescia) as well as in the Alpine area (Figure

2https://postgis.net
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5.1b). During weekends, a large hot spots concentration appears all along the

Subalpine area (Figure 5.1c), while cold spots clustered mainly in the Plain

area. With the Wikiloc data, the Local Getis-Ord G*
i highlights the different

concentration of activities which is explored accounting for the territorial fea-

tures of Lombardy Region. This experiment provides insight into a large-scale

phenomenon, such as the slow mobility, through simple maps that help in better

discovering hidden patterns in the data which is among the main goals of LISA.

(a)

(b) (c)

Figure 5.1: (a) reference map including the main territorial features of the Lom-
bardy Region. Local Getis-Ord G*

i maps for the Wikiloc waypoints counts per
municiaplity during weekdays (b) and weekends (c). Source (a): [11], Basemap:
(a) c©OpenStreetMap contributors, c©Stamen Design, (b,c) c©MapQuest.
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5.2 Bivariate LISA mapping

In this section, two sample applications of the bivariate LISA mapping are

reported. The first application is connected to the spatial association analysis

between users’ feedbacks and the prices for Airbnb c©,3 accommodations in the

City of Venice (Northern Italy). The second application deal with the spatial

association analysis of the soil consumed and the average income per capita in

Italy.

5.2.1 Case study: Tourist accommodations analysis

In the first example, the QGIS and the Hotspot Analysis Plugin is used to per-

form LISA mapping on the Airbnb c© accommodations. Airbnb c© is a Web-based

marketplace and hospitality service, enabling people to lease or rent lodgings for

vacations or short-term staying. It relies on a large and widespread community

of user worldwide and, among its services, it provides a collection/sharing sys-

tem for reviews and ratings of its recognized accommodations. This information

from the crowd is fundamental to both the marketing of any single lodging as

well as to the quality of the service provided by the marketplace itself. This

information also has a not negligible value in the fields of tourism economics

and territory management. In fact, by considering data such as lodging prices,

ratings, reviews, etc. in relation to their locations, it is possible to perform

analyses on the territory attractiveness which provide valuable inputs for the

implementation of proper territorial conservation as well as promotion policies

[106]. The presented example focuses on the analysis of the spatial correlation

between Airbnb c© lodging average prices and ratings for the City of Venice. The

first attribute is the average users’ rating ranging from 0.0 to 5.0, and the sec-

ond is its average price per day in [e/day]. The input dataset included about

3https://www.airbnb.com
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4000 point geometries describing lodgings locations and attributes. This data

are not distributed with an open license and we were allowed by the provider to

access it for research purpose only. Data refers to the Year 2015. The selected

LISA was the bivariate Local Moran’s I, computed for the lodging ratings as the

base attribute and the prices. Due to the significant variation of points density

within the study region, the spatial weights matrix was computed by using the

KNN strategy, with K value set to 30. The resulting map is shown in Figure 5.2.

In general, it can be observed that high values clusters (i.e. locations where high

ratings are surrounded by high prices) are mostly concentrated in the city cen-

tre. Conversely, low values clusters are segregated in the peripheral areas. This

is a typical situation in most of the historical cities where the centre embodies

most of the tourist destinations. In Venice, this pattern is perfectly followed by

the accommodation prices and ratings. Indeed, the LISA map provides valu-

able insights into the context of tourism management enabling to explore the

location attractiveness or attractiveness disparities across urban landscapes.

Figure 5.2: Resulting map from the computation of the bivariate Local Moran’s
I on the Airbnb c© accommodation ratings and prices for the city of Venice (Italy)
in 2015. Basemap: c©OpenStreetMap contributors, c©Stamen Design.
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5.2.2 Case study: Soil consumption and incomes

In the second example, the bivariate Local Moran’s I was employed using the

Hotspot Analysis Plugin to investigate the spatial patterns of soil consumption

in Italy and its interaction with a potentially linked macroeconomic variable,

i.e., the average income per capita.

The phenomenon of soil consumption is a pressing concern within the research

domains related to natural resources management. In fact, the soil provides hu-

mankind with most of the ecosystem services needed for its livelihood. At the

same time, the limited awareness on the effects of its degradation, coupled with

the long time necessary for the natural recovery of its functionalities and/or

the prohibitive costs of its restoration, make the soil a fragile, limited, and non-

renewable resource [32]. The principal causes of the soil consumption can be

directly attributed to human-driven phenomena such as the urbanization, the

demographic growth as well as the economic activities which take place along

the territories. In Italy, the monitoring of soil consumption is performed by the

Italian National Institute for Environmental Protection and Research (ISPRA)4

with the support of the Copernicus program of the European Commission5. Ac-

cording to [96], in Italy the soil consumption affects about the 7 % of the whole

territory (21.000 [Km2]) with a rate of new soil consumed, which is defined as

the changeover of a surface unit from natural to impervious soil per unit of time,

close to 4 [m2/s] between years 2012 and 2015. Considering this time interval,

the estimated economic impact in terms of loss of the main ecosystem ranges

between 538.3 and 824.5 million [e]. The reported data highlight the relevance

of this topic which is a geographically widespread phenomenon that needs to be

properly described and understood taking advantage of geospatial technologies.

For this reason, it represents a suitable case study for the application of LISA

4http://www.isprambiente.gov.it
5http://www.copernicus.eu
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mapping.

Figure 5.3: LISA map resulting from the computation of the bivariate Local
Moran’s I statistics for the total soil consumed and the average income per
capita in the Year 2012.

The LISA mapping was performed to help in reply to the following ques-

tions: being the soil a resource, does its consumption generate in turn eco-

nomic wealth? And if so, is this true everywhere along the national territory?

[90]. Considered data were made available by Italian public institutions and

released with a Creative Commons (CC-BY) open license. Since 2014, ISPRA

distributes binary raster maps at 10 [m] pixel resolution depicting the soil con-

sumption at the national scale. Whereas, the average income per capita [84]
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was retrieved from the Italian Ministry of Economy and Finance Web portal6.

A shapefile of Italian municipalities was enriched with the information of the

average income per capita in the Year 2012 [e], and totally consumed soil until

the same year as a percentage of each municipality area. The resulting bivariate

Local Moran’s I map computed from the two variables is included in Figure 5.3.

The bivariate cluster patterns depict a diffuse positive association between the

two variables. High values cluster are present only the northern part of the coun-

try while low values clusters are confined in the Southern area. The well-known

north-south disparity may drive this particular pattern in terms of incomes.

Some exceptions can be observed. This is e.g., the case of Rome (Central Italy)

where a high values cluster portrays a unique situation for this city concerning

the neighbouring areas. It is interesting to observe how the outliers are dis-

tributed. In fact, almost all the detected LH outliers are located in Northern

Italy while Hight-Low values outliers are present in Southern Italy only. Re-

garding Low-High values outliers, these show that in the north many cases can

be found where low levels of soil consumption are spatially connected with high

average incomes per capita. This is particularly true for Aosta and Bolzano

provinces and the inland part of Tuscany Region. The observed patterns may

be partially explained by the fact that mountain territories are generally less af-

fected by soil consumption [25]. Nevertheless, the sharped negative association

between soil consumption and income suggests that in these areas, the presence

of a significant economic wealth may be not directly connected to the consump-

tion of soil. A specular situation is detected in the South where many cases

of high levels of soil consumption are spatially associated with low average in-

comes per capita, thus suggesting a more significant number of situations where

the soil is consumed without a spatially associated generation of incomes. The

obtained results produced a snapshot of the phenomenon of soil consumption

6http://www.mef.gov.it/en
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in Italy, advising possible explanations of local critical issues, and highlighting

evidence of disparities in the use of this resource along the territories.

Besides the specific case studies illustrated above, it has been spelt out the

crucial role of both univariate and bivariate LISA in exploring characters of

a large spatial dataset as well as in clearly presenting findings that are valu-

able for driving any further analysis. Exploratory results presented by means

of maps can be used for load or dismiss credits to preliminary assumptions

formulated on the data. With this in mind, both limits and constraints of map-

based analysis using LISA are worth to be remarked. Detected patterns do

not provide any power to explain the spatial processes which generated them.

Patterns may be due to unobserved covariates as well as to not optimal settings

of the exploratory experiments for the variable under investigation. Moreover,

correlation does not imply any causation among the phenomena under study.

Therefore, assumptions that are best supported by the LISA mapping require

always to be validated through confirmatory procedures such as regressions,

variance analyses, etc.



Chapter 6

Multivariate Spatial Association

Analysis

In this chapter, an application of the multivariate Local Geary’s c (Chapter 3)

is presented. This technique is nested into an experimental procedure enriching

the outcomes of the multivariate LISA by means of additional data analysis

techniques as well as descriptive statistics. The proposed procedure provides a

reproducible workflow enabling multivariate clusters and outliers classification

and mapping (Section 6.1). This early application report is intended to fulfil the

primary research objective of extending traditional LISA analysis and mapping

to the multivariate context. As a case study, the multivariate analysis of some

social vulnerability indices for the City of Melbourne (Victoria, Australia) is

presented and discussed in Section 6.2.

Most of the discussion of local spatial association has been situated in a uni-

variate context. The treatment of spatial association in a multivariate setting

has focused mainly on global statistics, specifically the Moran’s I [111]. Re-

cently, an extension of traditional LISA techniques (Equation 3.13) has been

proposed by [8]. This is derived from the univariate Local Geary’s c statistic

55
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(3.8), introduced by [4], which allows for identifying multivariate local spatial

clusters and outliers. However, the multivariate Local Geary’s c, like its uni-

variate version, does not provide any possibility to classify cluster and outlier,

i.e. into high or low values clusters, etc. such as for the others LISA. This is

a limiting factor in the exploration and mapping of multivariate spatial patterns.

In the next sections, an experimental procedure is proposed to enable mul-

tivariate spatial clusters and outliers classification. The procedure is based on

the multivariate Local Geary’s c computation (Chapter 3). The obtained clus-

ters and outliers map is post-processed to extract auxiliary indicators allowing

both to get insight into the multivariate clusters intensity as well as into the

types of cluster and outliers, such as high, low, etc. These tasks are plugged

into a pipeline, implemented through custom Python scripts, that provides as

output multivariate classified cluster and outlier maps which are comparable

to the output of the univariate LISA mapping. The procedure is tested on the

City of Melbourne to investigate the multivariate spatial association of some so-

cial vulnerability indices. Results are validated through the use of independent

data.

6.1 Procedure outline

Data preparation

The designed procedure for multivariate spatial association mapping requires

as input a geospatial layer depicting locations within a region of interest. At

each of the n locations is assigned a tuple of numerical attributes representing

observations of the k variables for which the multivariate spatial association

patterns need to be investigated. This layer can be e.g. a shapefile including

n geometries and k variables into separate fields of the attribute table. High
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variability in the ranges of analysis variables is likely to be encounter in a

multivariate setting. Therefore, a Z-score scaling standardization is applied to

each variable observations ki (Equation 3.6) to allow for comparisons.

Multivariate LISA computations

The standardized attributes zki are used to compute the multivariate Local

Geary’s c at each location in the dataset (cki) (Equation 3.13). A spatial weight

matrix for modelling the neighbour relationship among the n locations in the

dataset needs to be defined by the analyst and included in the computation.

Inference on the CSR hypothesis is provided through conditional random per-

mutation tests by assigning a pseudo p-value pi (Equation 3.3), eventually cor-

rected by means of FDR procedures, such as the Benjamini-Hochberg procedure

(Equation 3.4), to each location in the dataset. Significant pseudo p-values are

used to map interesting locations thus focusing on candidate spatial clusters or

outliers.

Spatial association type definition

The definition of the spatial association type, i.e. positive or negative, for each

interesting location is achieved by comparing the value of the cki computed

from observations, with its expected value that can be either the observed sam-

ple mean or the mean of its empirical reference distribution derived by the

conditional permutation tests. cki values higher than the expected value depict

negative spatial association while lower values positive association. By coupling

this information with pseudo p-values, a map of the multivariate spatial clusters

and outliers for the considered variables is obtained. The above steps encompass

the general procedure for the Local Geary’s c mapping whereas the following

ones are introduced to tackle the description of the spatial association type for
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the detected multivariate clusters and outliers. This LISA is key to the pro-

posed procedure. Indeed, it allows for testing on CSR in a multivariate setting,

thus focusing the additional processing, perhaps not directly embedding spatial

association measures, only on those locations for which spatial association is

likely to be present.

Test on PCA projections

A parallel test for spatial association can be implemented by exploiting the

output of the multivariate Local Geary’s c mapping. This consists of projecting

the attribute tuples of each location on a reduced attribute space by mean of

PCA [70]. By identifying on this new space the position of each interesting

location i, i.e. clusters and outliers, and the position of its neighbours j, it is

possible to retrieve a simple measure of dispersion that provides insight on the

cluster intensity. The PCA is a well-established EDA technique that can be

used for dimensionality reduction in multivariate analyses. Basically, the PCA

maps a number of possibly correlated variables into a smaller (or equal) number

of linearly uncorrelated variables by means of orthogonal transformations of the

original variable axes to new orthogonal axes called Principal Components PC.

These new axes coincide with directions of maximum variation for the original

observations such as that the PC1 corresponds to the direction of maximum

variation, the PC2 to the second direction of maximum variation, and so on.

Therefore, PCA is a decomposition of the n × k matrix X containing the n

standardized observations of the k original variables, such as in Equation 6.1

[35].

T = XP↔ X = TPT (6.1)
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Where T is the n×q matrix containing the projections of X onto the new space

defined by the q considered PC, with q ≤ k. The transformation X → T is

computed by means of an orthogonal projection matrix P such as PPT is equal

to the identity matrix I. Matrix P is often referred as loading matrix and T as

score matrix. P is computed so that its columns are the directions of maximum

variance in the data, with the first column (or PC1) representing the direction of

maximum variance, the second column (PC2) the direction of the next largest

variance, and so on. These directions correspond to the eigenvectors of the

correlation matrix S computed from the standardized observations matrix X as

in Equation 6.2.

S =
XTX

n− 1
(6.2)

Ordering the eigenvectors of S so that the correspondent eigenvalues are in

descending amplitude order, Equation 6.3 is verified.

Λ corresponds to diag(λS1 , λS2 , · · · , λSk
) winch is the diagonal matrix of the

ordered eigenvalues of S.

PTΛP = S (6.3)

From Equation 6.3, it follows that each PC corresponds to the direction of one

eigenvector and is a linear combination of the original variables. The percent-

age of the total variance explained by a generic principal component PCq is

equivalent to its corresponding eigenvalue λSq divided by the sum
k∑
v=1

λv of all

eigenvalues of S.
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In the proposed procedure, n observations for each k variable are considered.

The PCA is leveraged for reducing k and providing a compact view of the at-

tribute space preserving the variability of the observations. Suppose to consider

q = 2, thus projecting the n × k standardized observations matrix X onto a

new bi-dimensional space defined by the direction the first two principal com-

ponents PC1 and PC2. We call P2 the matrix containing the first two columns

of the full loading matrix P, and T2 the corresponding scores matrix. Hence

Λ2 being equal to diag(λS1 , λS2) with S denoting the correlation matrix from

X. Therefore, T2 contains the coordinates of the original observations mapped

onto the plane defined by PC1 and PC2. The percentage of the total variance

explained by T2 is given by Equation 6.4.

q∑
v=1

λSv

k∑
v=1

λSv

(6.4)

Where S is the k×k correlation matrix from the n×k standardized observations

matrix X, and λS are the eigenvalues of S. Providing that the percentage of the

total variance explained by T2 is large enough to meet the (arbitrary) analyst’s

needs, a compact and meaningful representation of the original k variables is

obtained by means of the bi-dimensional space PC1 - PC2. In many cases, X

can be decomposed using a small number q of PC, with q << k, while still

explaining most of the variance in the data [35].

It is now possible to isolate the projections of both each interesting location i,

outlined by the multivariate Local Geary’s c, and its neighbours j on the PC1

- PC2 plane. Neighbours are defined according to the spatial weights matrix

adopted in the multivariate Local Geary’s c computation. For each interesting

location i, a specific r × q subset T2,i,j of the T2 elements is considered. These
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elements consist of projected coordinates PC1i and PC2i of the original obser-

vations at location i and at its neighbours j that resulted in a spatial clusters or

outlier from the multivariate LISA mapping. To explore the spatial association

characterizing these significant locations in the PCA projected attribute space,

a simple measure of local dispersion Di is suggested as follows. Denoting tPC1i,j

and tPC2i,j respectively the first and the second column elements of the subset

T2,i,j, the coordinates of the centroid (or mass centre) Vi on the PC1 - PC2

plane for the points of the subset can be computed as in Equation 6.5.

Vi =


Vi,PC1 =

r∑
j=1

tPC1i,j

r
, Vi coordinate on PC1

Vi,PC2 =

r∑
j=1

tPC2i,j

r
, Vi coordinate on PC2

(6.5)

By computing the average distance from Vi to each point (tPC1i,j; tPC2i,j) a local

measure of dispersion (or cluster intensity) Di is obtained (Equation 6.6).

Di =

r∑
j=1

√
(Vi,PC1 − tPC1i,j)

2 + (Vi,PC2 − tPC2i,j)
2

r
(6.6)

According to the definition of the Di, the closer the value to 0 the higher the

cluster intensity. TheDi computed at each interesting location can be connected

to the type of spatial association, i.e. positive or negative, characterising the

considered locations. Accroding to this logic, low values for Di are expected for

clusters whereas higher values for outliers.

The T2,i,j subset from the PCA is linearly uncorrelated from the original vari-

able tuples at locations i and j used to compute the multivariate Local Geary’s
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c. Hence Di values can be used to validate the cluster and outlier obtained from

the multivariate LISA. A simple validation test can be performed by observ-

ing if the behaviour of the Di is in agreement with the reference multivariate

cluster and outlier map. Therefore, the Di test can be considered an internal

validation, i.e. directly derived from observations, of the spatial association

type defined by means of the multivariate Local Geary’s c. Moreover, the Di

values provide an exploratory and mappable metric to describe the intensity of

detected clusters and outliers, which can be displayed, e.g. on the LISA map

using a composite visualisation style. The use of only two principal components

eases the visual exploration of results from the PCA projections test through

bi-dimensional scatter plots. An example of the above is included in the next

section and additional considerations on the Di are illustrated in Appendix B.

Nevertheless, the test can be run using more than two principal components in

the case of an unsatisfactory percentage of the total variance explained by PC1

and PC2.

Multivariate clusters and outliers classification

Due to their mathematical formulation, neither the multivariate Local Geary’s

c nor the suggested local measure of dispersions Di allow to classify the type of

clusters and outliers such as other LISA e.g. the Local Moran’s I. This operation

can be performed by means of linking and brushing operation with univariate

LISA maps as suggested by [8]. However, the purpose of the presented proce-

dure is to outline an automatic classification strategy for multivariate clusters

and outliers by exploiting descriptive indicators computed from the input data.

The designed strategy is based on the comparisons of centrality measures from

the sample distributions of the considered variables. As for the case of PCA,

these comparisons are constrained to the significant locations detected by means

of the multivariate Local Geary’s c. The classification logic is inherited from

the Local Moran’s I (Equation 3.7).
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Generally speaking, a cluster is detected where observations at a focal loca-

tion i are similar to those in the neighbouring locations j. A cluster is labelled

as HH (high values) when this observations subset includes higher values than

the expectation of the correspondent variables in the study region. A cluster

is labelled as LL (low values) when the subset shows lower values than the ex-

pectation. An outlier is instead detected where observations at a focal location

i are dissimilar to those in the neighbour locations j. An outlier is labelled as

HL (high values surrounded by low values) where the observations at a focal

location i are higher than the expectation of the correspondent variables in the

neighbour locations j. An outlier is labelled as LH (low values surrounded by

high values) where the observations at a focal location i are lower than the

expectation of the correspondent variables in the neighbour locations j. The

definition of high and low values has a local validity and it is connected to the

ranges of the considered variables thus may differ from case to case. Indeed, no

threshold values are specified in the above description, and all the comparison

are referred to local expectation, e.g. the sample mean for the analysis variables.

The empirical measure Mmc enabling the classification of multivariate clus-

ters is proposed as follows. X is the n× k matrix containing the standardized

observations of the k original variables at each of the n locations. For a location

i that resulted in a cluster from the multivariate Local Geary’s c, a r×k subset

Xi,j containing the observations at location i and at its neighbours j can be

extracted. The idea is to compare the mean of the vector of the column-wise

medians of Xi,j (µXM
i,j

) with the mean of the vector of the column-wise medi-

ans of X (µXM ). This implies comparing the local mean of the medians for

the considered variables at a cluster location with the ones of the whole study

region. The median is preferred to the mean for performing the column-wise

aggregation because to account for possible skewed distributions of the analysis
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variable. This reduces the bias in estimating the central tendency values for

the comparison, due to the influence of possible outliers [109]. The proposed

measure Mmc,i consists of a simple difference between µXM
i,j

and µXM at each

cluster location i (Equation 6.7). Positive values of the Mmc,i depicts a higher

local mean of the medians than the one of the whole study region, hence a

possible HH cluster. Negative values of the Mmc,i depicts a lower local mean

of the medians than the one of the whole study region, hence a possible LL

cluster. The absolute value of the Mmc,i provides an indicator for perform-

ing inter-comparisons among clusters. Indeed, the higher the absolute value of

the Mmc,i, the stronger the HH or LL relationship with respect to the average

conditions for the study area.

Mmc,i = µXM
i,j
− µXM ,→


Mmc,i > 0, HH

Mmc,i ≤ 0, LL

|Mmc,i|, HH or LL intensity indicator

(6.7)

The empirical measure Mmo enabling the classification of multivariate outliers

is proposed as follows (Equation 6.8). X is the n × k matrix containing the

standardized observations of the k original variables at each of the n locations.

For a location i that resulted in a outlier from the multivariate Local Geary’s

c, two subsets Xi and Xj containing respectively the 1 × k observations at

location i and the r−1×k observations at its neighbours j can be extracted. In

this second case, the idea is to compare the mean of the vector Xi (µXi
) with

the mean of the vector of the column-wise medians of Xj (µXM
j

). This implies

comparing the mean of the observations at an outlier location with the mean of

the medians of its neighbour locations only. The median is again suggested for

the same reasons explained before. The proposed measure Mmo,i consists of a

simple difference between µXi
and µXM

j
at each outlier location i (Equation 6.8).
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Positive values of the Mmo,i depict a higher local mean than the mean of the

medians from the neighbour locations, hence a possible HL outlier. Negative

values of the Mmo,i depict a lower local mean than the mean of the medians

from the neighbour locations, hence a possible LH outlier. The absolute value

of the Mmo,i provides an indicator for performing inter-comparisons among

outlier. Indeed, the higher the absolute value of the Mmo,i, the stronger the

HL or LH relationship detected.

Mmo,i = µXi
− µXM

j
,→


Mmo,i > 0, HL

Mmo,i ≤ 0, LH

|Mmo,i|, HL or LH intensity indicator

(6.8)

Results form the Mmc, and the Mmo computations can be used to enrich clus-

ters and outliers map obtained from the multivariate Local Geary’s c. With

this additional information, clusters and outliers can be classified thus produc-

ing a multivariate LISA map comparable to that obtained, e.g. from the Local

Moran’s I in the univariate analysis. Additional measures such as the absolute

values of Mmc,i and Mmo,i might be also included and displayed on the multi-

variate map favouring the exploration of the spatial association features of the k

considered spatial variables. The full analysis workflow is summarised in Figure

6.1. Despite the relatively large number of steps required by the proposed pro-

cedure, the definition of an automatic strategy for enriching multivariate spatial

association maps is achieved. Being the proposed procedure highly experimen-

tal and not exhaustively tested, results have to be intended as an exploratory

tool rather than in a rigorous statistical sense. The same applies to the LISA

technique on which the whole procedure is based, i.e. the multivariate Local

Geary’s c.
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input
spatial layer

attributes standardization
& spatial weights definition

multivariate Local Geary’s c
& CSR inference

ck,i & pi

spatial association type
(positive or negative)

clusters
and outliers

internal validation
(PCA projections)

dispersion
measures (Di)

centrality measures
(medians & means comparison)

classified
clusters
(Mmc,i)

classified
outliers
(Mmo,i)

external validation

Figure 6.1: Flow chart of the proposed procedure for multivariate clusters and
outliers classification and mapping. Inputs and outputs are marked into ellipses,
full line boxes include the principal tasks of the procedure and dashed boxes
represent suggested additional steps.

In views of the above considerations, either a visual or numerical validation

of the results is strongly suggested. A visual validation can be achieved, e.g.

by observing choropleth maps of the original observations where also complex

spatial patterns might be easily detected by eye. Therefore, a careful visual

inspection and interpretation of the detected pattern should always accompany

the analysis [110]. Based on data availability, the procedure might be repro-
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duced by involving independent variables which are semantically or numerically

linked to the one used for the analysis. This might provide more robust con-

firmations for the analysis results. A sample validation is presented in Section

6.2. However, no validation procedures based on independent or reference data

with a general validity are identified within this work.

6.2 Case study: Social vulnerability in the City

of Melbourne

In the presented case study, the procedure outlined in the previus section is

tested for analysing and mapping of multivariate spatial association patterns of

some social vulnerability indices available for the City of Melbourne.

Over the past two decades, Melbourne has been in the midst of a third great

demographic change that rivals the Australian Gold Rush (mid to late 19th

Century) and the post Second War boom. The more the city sprawls, the

greater the risk it will become an unsustainable city divided by disadvantage

and inequity [57]. The purpose is to automatically identify interesting or critical

spatial patterns for the social vulnerability which might be further investigated

to deliver valuable insights into city planning and decision making practices.

To accomplish that, we considered three numerical variables representing in-

dices of social vulnerability such as the Vulnerability Assessment for Mortgage,

Petrol and Inflation Risks and Expenditure (VAMPIRE), the Index of Relative

Socio-economic Disadvantage (IRSD), and the Total Unemployment Rate. Ad-

ditional information for the considered indices is available in Table 6.1. Data

refer to the Year 2011. The indices have been selected to account for some of

the most relevant factors contributing to the social vulnerability in an urban

context. Among others, employment conditions, housing, health, education,

and purchase power [100]. The selection of the reference year is justified by the
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(a)

(b)

Figure 6.2: (a) reference map of the City of Melbourne with SA2 boundaries
(CRS: WGS84-UTM55S). The red marker identifies the central business dis-
trict. (b) spatial distribution of the considered social vulnerability indices in
the Year 2011. The visualization style is based on the fourth quantile break.
Basemap: c©OpenStreetMap contributors.
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Acronym Description (Reference Year, Source)

VAMPIRE

Vulnerability Assessment for Mortgage, Petrol and In-
flation Risks and Expenditure. The average VAMPIRE
score by definition is 15 out of 30. A low score indi-
cates good performances in terms of social vulnerability.
(2011, http://www.vampire.org.nz/vampire)

IRSD

The Index of Relative Socio-economic Disadvantage is
a general socio-economic index that summarises a range
of information about the economic and social conditions
of people and households. A low score indicates a rel-
atively greater disadvantage. In the analysis, the in-
verse of the IRSD scores is considered to disambiguate
its interpretation with respect to the other two indices.
(2011, http://www.abs.gov.au)

OECD

The total unemployment rate expressed as a percent-
age of the total labour force, where the latter con-
sists of the unemployed plus those in paid or self-
employment. Intuitively, a low score indicates good
performances in terms of social vulnerability. Data
is derived from the Organization for Economic Co-
operation and Development (OECD) records. (2011,
https://data.oecd.org/unemp/unemployment-rate.htm)

Table 6.1: Social vulnerability indices used in the multivariate analysis.

availability of consolidated information, such as census data and social indices,

which was not yet dispatched by more recent surveys at the beginning time

of this study. The indices are provided by census parcels (polygons) at the

Statistical Area Level 2 (SA2) according to the Australian Statistical Geogra-

phy Standard (ASGS). The study region includes the whole SA2 parcels (260)

of the Melbourne metropolitan area, known as the Greater Melbourne (Figure

6.2a). The VAMPIRE and the IRSD are provided by the Australian Bureau

of Statistics (ABS)1 while the Total Unemployment Rate is distributed by the

Organization for Economic Co-operation and Development (OECD)2.

According to the mathematical definition of each index, a first manipulation

of the data is performed. Namely, the scales of the variables have to be ad-

justed to meet the analysis requirements. In this case, hight values of both the

1http://www.abs.gov.au
2http://www.oecd.org
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VAMPIRE and the OECD indicate lousy performance in terms of social vul-

nerability for a SA2 parcel whereas the lower values, the better performance.

Conversely, low values for the IRSD means higher social vulnerability perfor-

mances whereas hight values lower performance. Therefore, the inverse of the

IRSD observations is considered in the computations. The spatial distribution

of the considered indices is reported in Figure 6.2b where the colour ramp for

the IRSD is inverted to graphically account to what stated above.

After a visual inspection of the spatial distribution of the indices, their global

spatial association is assessed by means of the univariate and the bivariate

Global Moran’s I [75] (Table 6.2). The spatial weights matrix selected for this

case study is based on the first order queen’s case contiguity, i.e. edge and cor-

ner contiguity (Figure 6.3a). This guarantees a generally even distribution of

neighbours (Figure 6.3b) excluding the presence of any island, i.e. disconnected

locations. A row-standardized version of the obtained spatial weights matrix is

used in the computations.

A global positive spatial association is detected according to the univariate

Global Moran’s I (diagonal values of Table 6.2), that is stronger for the VAM-

PIRE. The positive association also emerges from the bivariate Global Moran’s

I (extra-diagonal values of Table 6.2), especially between OECD and IRSD.

This evidence can be partially linked to the fact that the IRSD index includes

among its base indicators also the Total Unemployment (OECD).

The mapping of local multivariate spatial association patterns is performed by

means of the Local Geary’s c. The significance level α is arbitrary set equal to

0.001 and inference on CSR is performed using 9999 conditional permutations.

Pseudo p-values are corrected using the Benjamini-Hochberg FDR procedure.

Spatial association type is defined through comparisons between the computed

values of the ck,i and its sample mean. Clusters and outliers are thus detected
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VAMPIRE IRSD EOCD
VAMPIRE 0.811 0.186 0.025
IRSD 0.175 0.538 0.456
EOCD 0.017 0.458 0.476

Table 6.2: Global Moran’s I matrix computed from the considered indices. Di-
agonal values correspond to the univariate Global Moran’s I, and extra-diagonal
values result from pairwise comparisons between indices by means of the bivari-
ate Global Moran’s I.

(a)

(b)

Figure 6.3: (a) connectivity graph for the Greater Melbourne based on the
first order queen’s case contiguity rule. The centroids of each SA2 parcel is
used to represent the corresponding polygon. (b) histogram of the neighbours
distribution.

and mapped. In total, 27 significant locations are spotted of which 20 resulted in

being clusters and 7 outliers. Spatial association patterns for social vulnerability

indices in the Greater Melbourne are summarised in Figure 6.4.

A parallel assessment of the multivariate Local Geary’s c outcomes is performed

using PCA projections and the Di measure of dispersion, proposed in Section

6.1. The first two PC are considered which explain about 95% of the total
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Figure 6.4: Resulting clusters and outliers map from the computation of the
multivariate Local Geary’s c for the three selected social vulnerability indices.
Basemap: c©OpenStreetMap contributors, c©Stamen Design.

variance for the three variables considered. The resulting loading matrix P is

reported in Table 6.3.

The Di is computed using the same spatial weights matrix described before

to model the neighbouring relationships among locations. Results are shown

in Figure 6.5 and Figure 6.6. In Figure 6.5 the Di measures are mapped over

the correspondent significant locations. This metric allows for assessing the

local degree of clustering in terms of dispersions from a local centre of mass

in the PC reduced attribute space. Figure 6.6 provides a graphical insight on

the Di computations (Figure 6.6a, 6.6b) and its general agreement with the

outcomes of the Local Geary’s c. As expected, clusters show generally lower
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PC1 PC2
VAMPIRE 0.0847 -0.9851
IRSD 0.7091 -0.0458
EOCD 0.6999 0.1656

Table 6.3: Loading matrix P containing the two principal component loads for
the three considered indices.

Di than outliers. The only disagreement between the expected and the actual

behaviours of the Di is found in the middle of its distributions where an outlier

shows a lower Di than a cluster (Figure 6.6c). Further considerations on these

issues as well as on the possible uses of the Di as a measure of multivariate

spatial association are discussed at the end of this section and in Appendix B.

Figure 6.5: Resulting clusters and outliers map from the computation of
the multivariate Local Geary’s c enriched with the computed Di measures.
Basemap: c©OpenStreetMap contributors, c©Stamen Design.
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(a) (b)

(c)

Figure 6.6: (a), (b) scatter plots of projected indices onto the PC plane (green
crosses). The Di measures for (a) a cluster location (red star) and (b) an
outlier location (blue star) are highlighted together with their neighbours (black
triangles) based on which the mass center is computed. (c) increasing ordered
Di measures for all the locations. Resulting clusters and outliers from the Local
Geary’s c are highlighted respectively with red and blue dots.

To complete the multivariate spatial association experiment, clusters and out-

liers classification is performed employing the Mm measures (i.e. means and

medians comparison), proposed in Section 6.1. Results of the multivariate clus-

ters and outliers classification are reported in Figure 6.7. This map provides

insight on the type of clusters and outliers following a similar classification logic

such as the one adopted by the Local Moran’s I. Each cluster is labelled as

high or low values according to the difference between the mean of the medians

characterising observations in the cluster sub-region and the mean of the medi-
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ans from the whole observations in the region (Mmc). Each outlier is instead

labelled as high values surrounded by low values, and vice versa, according to

the difference between the mean characterising observations at the outlier lo-

cation and the mean of the medians from the observations at its neighbours

(Mmo). The absolute value of this difference can be adopted as a measure of

intensity for clusters and outliers in terms of dissimilarity between central ten-

dencies of local observations and the one characterising either the study region

or the neighbours, depending on the type of significant locations considered.

Figure 6.7: Multivariate clusters and outliers classification according to the
Mmc Mmo measures. Labels include the absolute values of the computed Mmc

or Mmo at each significant location. Basemap: c©OpenStreetMap contributors,
c©Stamen Design.
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6.2.1 Results disclosure and validation

The significant clustering outlined in Figure 6.4, suggests the existence of inter-

esting locations, and in turn non-random patterns, within the reciprocal spatial

arrangement of the considered indices. The multivariate Local Geary’s c map

provides a snapshot of spatial association patterns which are not apparent by

observing the index maps independently (Figure 6.2). An assessment of the

reliability of both clusters and outliers detection is achieved by introducing the

Di measure (Figure 6.5). The clusters and outliers classification is performed

by means of the Mm indicator (Figure 6.7).

Local clustering is numerically described using the computed Di values in terms

of attributes dispersion in the PC plane. Focusing on cluster locations, the

smaller dispersions are concentrated South-East to the Central Business Dis-

trict (CBD). These locations are classified as low values clusters according to

the Mm indicator. Hence, higher performances in terms of social vulnerability

are expected at these locations. High values clusters are more scattered and

generally characterised by a higher dispersion. They are located mainly North

to the CBD as well as along the South-Eastern and Western borders of the

Greater Melbourne region. Focusing on outliers, these are detected South-West

to the CBD as well as along the South-Eastern edge of the Greater Melbourne

region. Their position generally corresponds to the transition area between

clusters and not significant locations hence their presence may be connected to

this finding. No further conclusions are here argued about both the outliers

meaning in terms of social vulnerability as well as the practical results applica-

tion into any specific urban management practice. Nevertheless, the experiment

demonstrates the applicability of the procedure on tradition spatial data pro-

viding asset maps that might support needs assessments, policies evaluation,

and interventions planning that target social vulnerability reduction.
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Profile indicator Description, [Unit of measure]

Labour ratio
Number of labourers divided by the num-
ber of people in the labor force, [%].

Tertiary education ratio
Number of people having completed the
highest level of education divided by the
total resident people, [%].

Low-income ratio
Number of people having a total personal
income lower than 599 AUD$/week di-
vided by the total resident people, [%].

Table 6.4: Vulnerability profile indicators considered in the validation of multi-
variate spatial association mapping results.

Obtained results can be validated through comparisons with reference data

that consist of different information targeting social vulnerability than the one

adopted in the spatial association analysis. These may include vulnerability

profiles which are traditionally developed and used for a-spatial analyses. Pro-

files are generally composed by a set of indicators for each district or parcel

derived from census and socio-economical data. In this case study, three profile

indicators are considered for validation purposes. These are the labour ratio,

the tertiary education ratio, and the low-income ratio computed for the ref-

erence Year 2011 as described in Table 6.43. Comparison between the three

indicators is carried out on the detected clusters and outliers in Figure 6.8.

The comparison is disclosed according to the meaning of both indicators and

high/low values clusters in terms of social vulnerability. Indeed, it is expected

to observe relative lower trends for low-income and labour ratios as well as a

relatively higher trend of the tertiary education ratio at low values (i.e. LL)

cluster locations. Vice-versa at high values cluster locations (i.e. HH). As shown

in Figure 6.8, the expectation is met especially looking at the trend of labour

and the tertiary education ratios. The low-income ratio shows a less marked

agreement with the expectations. Nevertheless, the highest peaks are registered

3Indicators for validation were kindly provided by the Centre for Spatial Data
Infrastructures and Land Administration (CSDILA) of the University of Melbourne
(http://www.csdila.unimelb.edu.au)
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Figure 6.8: Trends of the considered vulnerability profile indicators at each low
values (blue bar) and high values (red bar) cluster location.

within the high values clusters. Despite being the latter a preliminary and coarse

validation procedure, results provide additional evidence on the reliability of

the multivariate spatial association mapping outcomes. Therefore, multivariate

LISA maps are promising tools to support operational urban management such

as locating and understanding critical social vulnerability patterns.

6.2.2 Discussion

The aim of this closing section is to outline and remark the main features of

the proposed procedure by also including the lesson learned through the devel-

opment of the preliminary case study.

The multivariate Local Geary’s c demonstrates to be suitable for mapping mul-

tivariate spatial association patterns. A reasonable classification technique for

cluster and outlier types is achieved in a reproducible way by applying medians

and means comparison, i.e through the Mm measure. Robustness and reli-
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ability of the Mm classification require additional investigation. Considering

multiple variables, the centrality measures might be affected by local anomalies

in the variable values such as points spanning around the mean (or median)

thus smoothing or leaping the differences on which the Mm indicator is based.

However, this classification can be easily fit into a single analysis pipeline to-

gether with the multivariate Local Geary’s c, allowing for an agile integration

into a single software tool, e.g. a QGIS plugin. As a proof of the above, the

prototype Python code used in the presented case study has been made avail-

able on the GitHub4.

An additional measure of multivariate spatial association is outlined, i.e. the

Di and computed considering the original variable projection onto a reduced at-

tribute space through PCA. Results from the Di are aligned with the outcomes

of the Local Geary’s c. The use of PCs is here introduced for better targeting

analyses involving a large number of variables thus like a simple dimensionality

reduction strategy. The contribution of PCA has not been exhaustively dis-

cussed in the case study. This is partially due to the limited dimension of the

considered data which can be still partially explored by means visual analysis

of choropleth maps. By increasing the number of variables, the PCA might

become more useful in order to reduce the data dimension as well as to enable a

more compact results visualisation. In principle, the Di might be directly com-

puted also on the original standardized variables. Both significance testing and

clusters/outliers detection might be carried out using the same strategies that

are used for the multivariate Local Geary’s c, namely by means of conditional

permutations under CSR hypothesis and comparisons with the expectation. An

early method proposal for adapting the Di into a local indicator of multivariate

spatial association is included in Appendix B.

4https://github.com/danioxoli/multivar lisa
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Optimal settings for the multivariate LISA mapping, e.g. the significance level,

need for further investigation to properly account for a larger number of vari-

ables as well as for the possible effects of the spatial association affecting every

single variable. Therefore at this early stage, results have to be intended as

experimental, and the robustness of the procedure requires for additional tests.



Chapter 7

Conclusions

The concept of geospatial data characters with a focus on the spatial association

- together with novel methods and tools to explore them - have been presented.

The crucial role still covered by the spatial association in the modern geospatial

data analysis has been most discussed and investigated by leveraging ESDA. In

particular, the use of ESDA within FOSS GIS environments has been argued

along this work. This has been identified among the best practices to produce

snapshots of spatial phenomena at different scales, to highlight their underlying

spatial features, and to guide the analysts in data assessments and interpreta-

tions. Moreover, the inclusion of ESDA modules into the most popular FOSS

GIS - such as QGIS - has been identified as a meaningful objective to enforce

ESDA use among a broader and diverse users’ community. I firmly believe that

to pursue such a goal, the most effective way is advocating openness into all the

edges of science. This by starting from source code, passing through data and

models that are at the base of any advanced knowledge and rational awareness.

Despite software technologies today offer massive support to any application,

there is always a need for extending, revamping, or re-designing established

geospatial analysis methods and frameworks. This to unpin the real assets of

81
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the emerging geospatial data to meet urgent requirements and expectations

associated with them by users. With this in mind, early extensions and com-

plements of LISA methods to the multivariate context have been proposed.

The underlying goal is to address frontier challenges of spatial statistics and

geo-visualisation that include - among others - multivariate spatial patterns

detection and mapping [48]. The latter is promising for many disciplines that

require simultaneous explorations of multiple variables to be linked with any

complex natural or human phenomenon under investigation. These include

subjects such as disaster risk management, ecology, epidemiology, regional and

social science among others.

Extensive testing of the proposed methodologies has not being carried out

within this work. This leave places for further research that should mainly

focus on investigating the analytical implications of multivariate spatial associ-

ation into the confirmatory analysis.

Future directions for the work will then focus on additional validations of the

proposed methodology for multivariate spatial clusters and outliers classifica-

tion (Mmi) as well as on the assessment of the statistical validity of the Di

measure (Section 6.1). An early test on the latter has been set up in Appendix

B. Concerning the software side, the source code produced within this work

requires a substantial improvement to be integrated into a plugin for the most

popular GIS platforms, such as QGIS. The extension of LISA to the multivari-

ate context implies higher computational costs due to the concurrent analysis

of multiple variables. The introduction of parallel computing to cut down the

multivariate LISA computational time is advised due to the critical role of this

factor to the practical application of this technique. The same applies by con-

sidering the analysis of high-resolution datasets for large geographic regions that

is one of the frontiers of the modern geospatial data analysis.
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Although this work represents only a byte of the modern geospatial analysis

solutions, I believe that all those disciplines which have made proficient use of

LISA in the past, would take advantage in the future for the multivariate LISA

analysis to address new challenges of the Big Data era.



Appendix A

The Hotspot Analysis Plugin

Functionalities

Functionality Description

LISA
• Getis-Ord G*

i

• Local Moran’s I (univariate and bivariate)

INPUT DATA
A shapefile of points or polygons with a projected CRS and at

least one numerical attribute at each geometry.

ATTRIBUTE

SELECTION

Field name of the shapefile attribute table containing the anal-

ysis variable. Double selection for the bivariate Local Moran’s

I.

84
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SPATIAL

WEIGHTS

MATRIX

• Fixed-distance band. Default distance is the one ensuring

at least one neighbour to each location. The user can

specify a distance in the the unit of measure of the input

data CRS (default for points)

• First order Queen’s case contiguity matrix (default for

polygons)

• Optimized fixed-distance band such as the one maximiz-

ing the Global Moran’s I for the dataset, selected among

a user defined range (alternative for points only)

• KNN spatial weights with a user selected k (alternative

for points only)

• Row standardized weights (alternative to binary weights

both for points and polygons)

SIGNIFICANCE

TEST

• Normality approximation (default)

• Conditional permutations (alternative)

OUTPUT

DATA

A copy of the input shapefile with two new fields in the at-

tribute table, i.e. LISA Z-scores and pseudo p-values.

MAPPPING

Automatic styling, rendering and legend creation for the output

layer on QGIS. Default hues are given by combining Z-scores

and pseudo p-values.

Table A.1: The Hotspot Analysis Plugin functionalities.



Appendix B

The Di as a Local Indicator of

Multivariate Spatial Association:

An Early Method Proposal

Chapter 6 introduces the local multivariate measure of dispersion Di which con-

sists of an average distance in a k dimensional attribute space from observations

at a focal location i and at its spatial neighbours j to their centre of mass (or cen-

troid). The centre of mass is the mean position in the attribute space computed

from all the k observations at each considered location and its neighbours. The

Di is initially applied to a reduced attribute space (bi-dimensional) obtained by

means of PCA. Under these circumstances, benefits of the Di measure into the

practical exploration of multivariate spatial association are illustrated through

an application on a real case study (Section 6.2). However, the Di can be easily

adapted to k dimensional spatial data that to a general multivariate context

where realisations of k spatial variables are observed at each location of the

study region. This appendix aims to argue the theoretical applicability the Di

method whereas testing and critical reviews are places left for future researches.
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The Di measure can be generalised to produce a local indicator of multivariate

spatial association as follows. Let’s consider a generic spatial dataset composed

of n locations to which zk observations of the same k variables are associated.

Observations are expressed in deviation from the mean through Z-score scaling

(Equation 3.6). Spatial relationships are defined by means of a binary spatial

weights matrix W b having non zero diagonal such as W b
i,i = 1. The purpose is to

compute the Di at each location and to perform inference under CSR hypoth-

esis. This can be achieved by using the same strategy such as for other LISA,

i.e. using conditional permutations. The test statistic is outlined in Equation

B.1.

Di =

n∑
j=1

W b
i,j ·

√
k∑
v=1

(z̄v,i − zv,j)2

n∑
j=1

W b
i,j

; z̄v,i =

n∑
j=1

W b
i,j · zj,v

n∑
j=1

W b
i,j

; i ∈ j (B.1)

W b
i,j is the element of W b for each couple i and j. z̄v,i is the centre of mass

coordinate on the v axis of the k dimensional attribute space with v ∈ k. The

centre of mass is computed out of the locations subset having a non zero entry

in the row vector W b
i that is the vector of weights of the focal location i. zv,j

is the standardized observation of the variable v at location j. A value of the

Di can be now computed at each location in the dataset. Significance under

CSR is inferred by means of conditional permutations, therefore by holding the

vector of observations at location i fixed, random permute or shuffle the remain-

ing observations across the other n− 1 locations, and recompute the local test

statistic. By repeating m times this process, an empiric reference distribution

for the statistic under the CSR hypothesis is obtained. Pseudo p-values can

be then computed as for other LISA (Equation 3.3). The computed Di can be

compared either with its sample mean or the mean from permutations to clas-
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sify significant locations into clusters or outlier like for the multivariate Local

Geary’s c (ck,i).

The Di and the ck,i embed a similar concept of the spatial association that

is measured by means of dissimilarities rather than correlation among obser-

vations. Dissimilarities are expressed in terms of a weighted sum of squared

distances in the attribute space by the ck,i, whereas through average distances

or weighted root-mean-square differences from a centre of mass by the Di. The

centre of mass is here considered as a reference for each locations subset com-

posed of i location and its neighbours. This is the main difference from the

ck,i that adopts i as the reference to compute square distances. The use of a

centre of mass instead of the focal location i provides with a slightly different

concept of spatial association. Generally speaking, the ck,i measures how far

are observations of the k variables between location i and its neighbours j. The

Di instead produces a measure of dispersion around a virtual point (centre of

mass). In principle, this is the most representative position in the k dimensional

attribute space for the locations subset which is a candidate spatial cluster or

outliers. The Di attempts to summarise the dissimilarity of observations in

the locations subset from this representative position. With this in mind, the

smaller the dissimilarity, the higher the chance to encounter a cluster, therefore

positive spatial association, vice-versa for an outlier. The definition of both

smaller and higher always refers to the relative range of the Di values for the

considers dataset. The focal location i loses its central role in the definition of

the spatial association while the focus is on the choral contribution of the loca-

tions subset by outlining the chance of being properly represented by a single

position in the attribute space.

A preliminary comparison between the outcomes of Di and the ck,i is carried

out using the Guerry’s data on moral statistics of France in the 1830s [48]. This
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data includes six variables for 85 France departments. Corsica (an island) is

removed from the original dataset. Both the definition and the spatial distri-

bution of the variables are included in Figure B.1a. The same dataset was also

used in the original publication of the multivariate Local Geary’s c [8]. Indeed,

the parameters set-up proposed by [8] for the ck,i test is here adopted for the

Di to enable the comparison. Namely are considered a queen’s contiguity spa-

tial weights matrix1, a significance level α = 0.01, a number of permutations

m = 99999, and the FDR correction by means of the Benjamini-Hochberg pro-

cedure [10]. The comparison between the ck,i and the Di maps is included in

Figure B.1b. Twenty-one significant locations are spotted using the ck,i while 26

using the Di, of which 17 overlaps. Hence, multivariate patterns of spatial as-

sociation are comparable for the two maps nevertheless not identical due to the

slightly different approaches that are used by the two statistics for describing

spatial association. The outperforming of the Di should be investigated start-

ing from the use of a centre of mass rather than a focal location for computing

dissimilarities. This may dilute the spatial association characteristics among

neighbouring locations thus smoothing or averaging patterns across relatively

larger sub-regions.

In views of the above, Di is here proposed as a complementary local indicator

of multivariate spatial association to the ck,i. Indeed, the Di provides a slightly

different measure of spatial association that can be employed together with the

ck,i to provide additional power against the CSR hypothesis. Furthermore, the

Di values computed from standardized observations give a metric of the local

clustering which might be used to correct multivariate spatial models for local

effects as well as into generic exploratory experiments.

For a matter of simplicity, a binary spatial weights matrix W b has been consid-

1Notice that differences between the two maps in Figure B.1b may be partially due to
the use of a binary spatial weights matrix for computing the Di according to Equation B.1
instead of a row-standardized matrix. This particular could not be fully ascertained from [8].
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(a)

(b)

Figure B.1: (a) Quantile maps of the six Guerrys moral statistics of France.
(b) multivariate Local Geary’s c map (right) published in [8] and the computed
Di map (left).

ered for the Di computations so far. This implies that both the centre of mass

coordinates as well as the average distances are considered as simple arithmetic

mean of observations in the locations subset considered, that is composed of

the i location and its neighbours j. However, spatially weighted averages can

be introduced either for computing the centre of mass coordinates and the av-
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erage distances (or both) by adopting different types of spatial weights. These

include, e.g. distance decay spatial weights as well as row-standardized weights

among others. Moreover, the influence of every variable on the multivariate pat-

terns can be arbitrarily modulated by introducing variables weights either in

computing the centre of mass coordinates and the average distances (or both).

Custom spatial and variables weighting may unpin valuable tuning options at

the cost of introducing additional complexity to the interpretations of results.

Equation B.2 present the generalized Di test statistic to account for custom

weightings, where W is a generic spatial weights matrix while av and bv are the

variable weights. This topic is here intended as a simple proposal that requires

further investigations which have not been addressed in the present study.

Di =

n∑
j=1

Wi,j ·

√
k∑
v=1

·bv · (z̄v,i − zv,j)2

n∑
j=1

Wi,j

; z̄v,i =

n∑
j=1

Wi,j · av · zj,v
n∑
j=1

Wi,j

; i ∈ j (B.2)

Due to the experimental content of the multivariate methods discussed above,

the following general recommendations have to be stated. As also argued by

[8], the introduction of multiple dimensions in the spatial association analy-

sis potentially produces trade-offs among spatial variables leading to patterns

which cannot be disclosed by merely overlaying the univariate patterns of each

variable. Therefore, dimensionality may negatively affect the usefulness of the

analysis by driving to blind alleys in results interpretation. A critical review and

validation of both results and analysis strategy adopted are strongly suggested

within any practical application.



List of Acronyms

IT Information Technology

EO Earth Observations

ESDA Exploratory Spatial Data Analysis

FOSS Free and Open Source Software

GIS Geographic Information Systems

LISA Local Indicators of Spatial Association

VGI Volunteered Geographic Information

EDA Exploratory Data Analysis

CRS Coordinate Reference System

GWR Geographically Weighted Regression

CSR Complete Spatial Randomness

FDR False Discovery Rate

GPL GNU General Public License

OS Operative Systems

KML Keyhole Markup Language

GDAL Geospatial Data Abstraction Library

92



93

API Application Programming Interfaces

GUI Graphical User Interface

spdep Spatial Dependence: Weighting Schemes, Statistics and Models

PySAL Python Spatial Analysis Library

BSD Berkeley Software Distribution

STARS Space-Time Analysis of Regional Systems

CSV Comma-separated Values

GAL GenePix Array List

DBF DataBase File

OSGeo Open Source Geospatial Foundation

SNAP Sentinel Application Platform

PyQGIS Python QGIS

VCS Version Control Systems

KNN K-Nearest Neighbours

GNSS Global Navigation Satellite Systems

GPX GPS eXchange Format

ISPRA Italian National Institute for Environmental Protection and Research

CC-BY Creative Commons

PCA Principal Component Analysis

PC Principal Components

VAMPIRE Vulnerability Assessment for Mortgage, Petrol and Inflation Risks

and Expenditure



94 Appendix B. List of Acronyms

IRSD Index of Relative Socio-economic Disadvantage

SA2 Statistical Areas Level 2

ASGS Australian Statistical Geography Standard

ABS Australian Bureau of Statistics

OECD Organization for Economic Co-operation and Development

CBD Central Business District

CSDILA Centre for Spatial Data Infrastructures and Land Administration
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