
POLITECNICO DI MILANO
DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

DOCTORAL PROGRAMME IN ENVIRONMENTAL AND
INFRASTRUCTURE ENGINEERING

NUMERICAL MODELLING OF FLOW-INDUCED

NOISE EMITTED BY CONTROL DEVICES

Doctoral Dissertation of:
Luca Fenini

Supervisor:
Prof. Stefano Malavasi
Tutor:
Prof. Stefano Malavasi
The Chair of the Doctoral Program:
Prof. Riccardo Barzaghi

2019 – XXXI Cycle



A Holly



Acknowledgements

Il più sentito ringraziamento per questo lavoro va a Stefano che è colui
che mi ha dato l’opportunità di effettuare questo percorso e che mi ha sti-
molato ponendomi davanti a problemi che non avrei mai pensato di vol-
ere e potere affrontare. Allo stesso modo voglio ringraziare Pibiviesse
che ha finanziato questa ricerca e che ha attivamente collaborato al suo
sviluppo. Un ringraziamento particolare va a tutte le persone con cui ho
avuto l’occasione di confrontarmi e da cui ho potuto imparare ad analiz-
zare i problemi con una prospettiva applicativa. Quindi ringrazio Danilo,
Bruno, Valerio, Marco e soprattutto Filippo che è stato il primo a farmi
sentire la parola ‘aeroacustica’.
Il ringraziamento va poi a Maria Vittoria, Marco, Giacomo, Marco, Gi-
anandrea e Simone, colleghi a cui ho sempre potuto chiedere un con-
siglio ma soprattutto amici che hanno contribuito a creare un ambiente
lavorativo in cui è stato ed è ancora adesso piacevole stare.

Ci sono poi le persone fuori dall’ufficio che fanno parte della mia vita:
i miei genitori che mi hanno sempre sostenuto in qualsiasi occasione, i
miei amici (in particolare Davide, Andrea e Guido che conosco da una
vita) e Ambra che mi ha aiutato a concentrarmi su questa tesi quando è
stato il momento.

E siccome questo lavoro lo posso considerare come la conclusione
del mio percorso di studio, un pensiero va anche al mio compagno di
studi che c’è stato dal primo giorno in cui ho imparato a leggere fino a
quando ha capito che ormai ero pronto a finire di studiare.





Abstract

T his study explores different numerical approaches for the inves-
tigation of the noise emitted by a gas flowing inside a pipeline
and perturbed by the presence of a flow-control device. Laws

about maximum human noise exposure force industries to cut down the
acoustical emissions coming from any possible source, control devices
included. The characterization of control valves’ noise emission is thus
a crucial task for the manufacturers of these devices.

This is the motivation that raised up this research on the aero-dynamic
noise. The analysis presented in this thesis is made with a numerical
approach which is a suitable tool for obtaining information in shorter
times and with lower costs than the experimental approach. Numerics is
used for the investigation of different aspects of the aero-dynamic noise
that are about the physical description of the noise dynamics (generation
mechanisms, interaction with the flow and propagation) and about its
intensity prediction.
The study has been conducted with the industrial purpose to achieve the
information of interest in the lowest time. Because of the complexity
of the phenomenon, the numerical models and approaches are chosen as
the most efficient for collecting only the information of interest. In fact,
suitable numerical methods for a complete description of all the aero-
acoustic features would have complexity and burden that go far over the
industrial resources and return a large amount of uninteresting data.

The physical investigation of the noise generation and propagation
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downstream of an orifice is thus performed thanks to the resolution of
a system of Acoustic Perturbation Equations (APE) developed in litera-
ture. The noise dynamic within the pipe reveals the nature of the acous-
tic sources and returns noise prediction along the duct. In particular, the
noise prediction 1 meter downstream of the control device plays a rel-
evant role because it is identified by the international standards as the
reference measure for the acoustical characterization of a device.
The APE system proposed in literature returns a noise description wider
than what is sought by valves’ manufacturers. An innovative APE sys-
tem is thus presented as a faster way to collect the information of interest
without wasting resources in the simulation of undesired details. This
system is tested and its reliability on the noise prediction far from the
device is verified.

An even faster approach for obtaining estimation about devices’ noise
emission is based on the application of the prediction procedure de-
scribed by the international standards that rule the aero-dynamic noise.
In this procedure four parameters are identified as the fundamental for
the acoustical characterization of a device; valves’ manufacturers must
provide their values to the customers. Different numerical methods can
be used for the evaluation of each of them. In this work the focus is on
the application of numerics for the estimation of the valve correction fac-
tor for acoustical efficiency Aη which is the parameter the external noise
is most sensitive to. Aero-acoustic models are applied to fluid-dynamic
simulation in order to estimate Aη taking into account its dependency on
the flow condition unlike the international standards that provide only
constant values for it.

A plant for experimental tests on small devices is finally designed
in order to collect further data for future analysis on the aero-dynamic
noise.
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6.1 Top-view of the plant designed for experimental campaign. 95
6.2 Possible installation for the PCB113B28 pressure sensor. . 96
6.3 Scheme of the sensors for the fluid-dynamic and acoustic

measurements with the respective module and chassis for
the acquisition system. . . . . . . . . . . . . . . . . . . . 98

X



List of Tables

2.1 Differences about the technical and physical aspects to be
cared of during numerical simulation of fluid-dynamics
and acoustics. . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Modelling for the noise propagation in different flow con-
ditions with APE and wave equation. . . . . . . . . . . . 24

4.1 Simulations on the orifice changing the pressure drop at
its sides . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

XI





List of Acronyms

APE Acoustic Perturbation Equations
CAA Computational Aero-Acoustics
CFD Computational Fluid-Dynamic
DES Detached Eddy Simulation
DNS Direct Numerical Simulation
LES Large Eddy Simulation
PPW Points Per Wavelength
RANS Reynolds Averaged Navier-Stokes
SNGR Stochastic Noise Generation and Radiation
SPL Sound Pressure Level
TKE Turbulent Kinetic Energy

XIII





List of Symbols

αP Numerical constant in Proudman’s equa-
tion

β Porosity of the perforated plate
∆k Spacing for the discretization of the energy

spectrum
∆kn Dimension of the n-th interval of the energy

spectrum
∆p Pressure drop at the size of a device
γ Specific heat ratio
ε Energy dissipation rate
λ Wavelength of a harmonic
ν Kinematic viscosity
Φ Potential for the source term Su

φ Phase of a harmonic
Π Natural logarithm of the pressure in Lilley

equation
ρ Density
ρ0 Density of the fluid at the receiver
ρ̄ Averaged density
ρ′ Density fluctuation
ρt Density turbulent fluctuation
ρa Density acoustic fluctuation
ρ1 Inlet density

XV



List of Symbols

ρ2 Outlet density
σn Direction of the n-th Fourier mode in

SNGR
τ Viscous stress tensor
τi,j Components of the viscous stress tensor

(i,j=1,2,3)
ψn Phase of the n-th Fourier mode in SNGR
ω Vorticity field
ω Mean vorticity field
ω Pulsation of a harmonic
ωn Pulsation of the n-th Fourier mode in

SNGR
ωx Axial component of the vorticity ω
ωy Transversal component of the vorticity field

ω
A Amplitude of a harmonic
Aη Valve correction factor for acoustical effi-

ciency
AH Area of a single flow passage
c Speed of sound
c0 Speed of sound at the receiver (in standard

conditions)
c2 Outlet speed of sound
C Courant number
Ca Acoustic courant number
cP Specific heat at constant pressure
CV Flow coefficient
cV Specific heat at constant volume
cvc Speed of sound in the vena contracta
D Diameter of the pipe
d Diameter of the perforated plate
d0 Circular equivalent diameter
dH Hydraulic diameter of a single flow passage
Dj Jet diameter
dt (or ∆t) Temporal spacing
dx (or ∆x) Grid spacing
E Kinetic energy per unity of volume
e Internal energy per unity of mass - specific

internal energy

XVI



List of Symbols

f Force density in momentum equation
f Frequency of a harmonic
Fd Valve style modifier
fi Force density component (i=1,2,3)
FL Liquid pressure recovery factor
fp Peak frequency
h Specific enthalpy
I Instantaneous acoustic intensity vector
I Mean sound intensity
IW Wetted perimeter of a single flow passage
K (or TKE) Turbulent kinetic energy
k Wave number
kn Wave vector of the n-th Fourier mode in

SNGR
ke Wave number with the peak of the fluid-

dynamic energy
kK Kolmogorov wave number
KL Numerical constant in the Lighthill’s eighth

power law
kn Wave number of the n-th Fourier mode in

SNGR
M Mach number
m Mass source term
M2 Outlet Mach number
Mt Turbulent Mach number
Mvc Mach number in the vena contracta
n0 Number of independent and identical flow

passages
P Opposite of the fluid stress tensor
p0 Pressure of the fluid at the receiver
p Pressure
p̄ Averaged pressure
p′ Pressure fluctuation
pt Pressure turbulent fluctuation
pa Pressure acoustic fluctuation
p1 Inlet pressure
p2 Outlet pressure
P Acoustic power density

XVII



List of Symbols

Pi,j Components of the opposite of the fluid
stress tensor (i,j=1,2,3)

prsm Root Mean Square of the acoustic pressure
pvc Pressure in the vena contracta
Qm Mass flow-rate
R̄ Specific gas constant
r Distance of the receiver from the acoustic

source
s Specific entropy
Stp Strouhal number for peak frequency
Su Source term for the momentum equation in

APE
Sui Component of the source term for the mo-

mentum equation in APE
T Temperature
T Period of a harmonic
t Thickness of the perforated plate
T1 Inlet temperature
Tvc Temperature in the vena contracta
u Velocity
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CHAPTER1
Introduction

The regulation of the flow is a crucial part in any industrial plant that
conveys fluids such as gases, liquids, vapours or slurries. For this rea-
son, valves are usually installed along pipelines in order to control hy-
draulic features as pressure and flow-rate. The functioning of a valve
is based on the localized dissipation of the flow energy through the
convection of the fluid in one or more passages inside the body of the
valve. The dissipated energy is transmitted to the surrounding ambient
in form of mechanical energy (valve’s and pipe’s vibrations), thermal en-
ergy (growth of the temperature of the fluid) and acoustic energy (noise).
The problems associated to the noise emissions coming from pipes and
ducts are indeed a distressing issue in a very wide range of engineer-
ing applications that must face problems about the quieting of industrial
and civil noise and about the prevention of workers’ hearing damages.
The sources of the industrial acoustic pollution can be of different types:
motors, fans, machineries and solid bodies’ oscillations generate the so-
called structure-borne noise. On the contrary, the term flow-induced
noise usually refers to the sound generated by fluid-dynamic instabil-
ities inside pipelines close to throttling devices, bends, junctions and
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Chapter 1. Introduction

obstructions. This kind of noise is also known as fluid-dynamic noise or,
when the flowing fluid is a gas as in this work, it is called aero-dynamic
noise. The fluid-dynamic noise is a common issue for oil refineries and
liquid/natural-gas plants because the mere flow of the fluid generates
sound due to the turbulence inside the pipelines. In this scenario, the
sources of flow-induced noise and vibrations are different and all of them
cooperate in the raise of the total intensity of the emitted sound [10].
Figure 1.1 summarises the acoustical behaviour of a pipeline in which
some high-speed gas is flowing highlighting all the possible noise gener-
ation mechanisms. In a straight pipe, for instance, a fully-developed flow
transports turbulence that induces random pressure fluctuations inside
the pipe and against the internal walls. Local singularities, as bends or

Figure 1.1: Representation of the most common acoustical sources in ducts with both
flow-induced and structure-borne sounds [43]

valves, generate flow discontinuities that excite the fluid developing tur-
bulent structures that impact against the walls and generate noise which
travels along the pipe.

The excitation transmitted by the fluid to the bodies installed along
the pipe induces mechanical vibrations that propagate along all the duct
but also in the surrounding external ambient. In fact, the external noise
is the result of the air excitation transmitted by the pipe’s vibrating walls
to the free space. The evaluation of the external Sound Pressure Level
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SPL can be thus considered as an example of structure-borne noise.
On the contrary, inside the pipe, the noise is flow-induced; its pos-

sible sources are distributed in several regions of the pipe and are very
different in strength. In general, the hierarchy of the acoustical inter-
nal sources suggests that the noise developed by the flow disturbance in
proximity of discontinuities (valves, bend, etc.) is the most relevant and
it dominates on the other flow-induced sources such as the wall turbu-
lence on a straight undisturbed pipe.
Finally, the pipeline’s structure and the valve’s geometry play a key-role
for the generation of the tonal noise that is generated when most of the
acoustic power is concentrated in few frequencies. Such a noise seldom
occurs and only in particular configurations; the noise produced in most
of applications has no dominant frequencies and it is thus called broad-
band noise. This is the noise investigated in this work.

The intensity of the noise generated by all these mechanisms can
reach harmful levels in critical conditions becoming even a threat for
people safety; for this reason, limits on the maximum noise exposure
are imposed by laws. Valves’ manufacturers thus seek for methods for
reducing the emissions of their devices and for knowing in advance their
behaviour in different working conditions. During the design of new de-
vices, their acoustical characterization is actually needed in order to pro-
vide estimations about the future emissions. In addition to this, valves’
manufacturers have to provide to their clients all the fundamental param-
eters for allowing them to estimate the broadband noise intensity, in the
desired operating conditions, according to the international standards.

The traditional approach followed by industries for the acoustical
characterization of control devices is based on experimental campaigns
because of the quality of the measured data that are representative of
the tested phenomena without any modelling assumption. The experi-
mental evaluation of the noise emitted by a control valve is regulated by
international standards that are widely described in Chapter 5 and that
assume the Sound Pressure Level measured in a specific point (1 me-
ter downstream of the device and 1 meter far from the pipe’s external
wall) as sufficient quantity for the acoustic characterization of a device.
The hardest part of the experimental approach stands in the capability
to guarantee the reliability of the measures avoiding external influences
such as ambient noises or instruments inefficiency due to dust, humidity
and electro-magnetic fields. In addition to that, for most of the appli-
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cations, the experimental approach is too expensive in terms of money
and time. For instance, the characterization of a control valve requires
its realization, a proper plant on which it can be installed and tested,
the purchase of all the instrumentations for the measurements and the
control on the hydraulic quantities. The costs of the materials and the in-
struments can be very high; the time for the realization of all the required
pieces is too long for a quick answer to urgent requests; a wide space for
the installation of a test plant for big devices is needed. The problem
becomes even worse when a complete database about all the valves and
their operating conditions is desired. All these issues contribute to try
to find alternative approaches that return information in shorter time and
with less resources available.
These are all the motivations that encouraged this work to be focused on
a numerical analysis that results to be a valid alternative whereas other
approaches are infeasible.

Indeed, this thesis is focused on the numerical analysis of the fluid-
dynamics inside ducts, on the processes at the base of the control de-
vices’ noise generation and on its prediction. The latter, in particular, is
very challenging because of the complexity of the flow close to a valve.
The objective of this work is thus the exploration of different numerical
approaches for the prediction of the acoustic emissions of a flow-control
device. This means that the same problem is here analysed with different
glasses aiming to obtain a comprehension of the noise generation mech-
anism close to the valve, to a description of the noise along the pipe and
to a prediction of the intensity of the noise heard by the workers outside
of the pipeline.

Chapter 2 deals with aero-acoustics background exploiting a brief
discussion about waves, about the theoretical research developed in lit-
erature and about the possible computational approaches to the problem.
At the end of this chapter the Acoustic Perturbation Equations are intro-
duced.

In this work two numerical approaches are used for the Sound Pres-
sure Level prediction: the first one is presented in Chapter 3 and it is
based on the resolution of the Acoustic Perturbation Equations (APE)
system. Its implementation is then discussed focusing on the solving
algorithm, on the numerical issues and on its validation with analytical
and literature cases.

Chapter 4 deals with the application of the APE to the description
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of the acoustic features of an orifice installed inside a pipe. A litera-
ture APE wave-operator is tested with different models about the source
terms description and about the synthetic generation of the turbulent ve-
locity. The best ones are identified thanks to the comparison of the pre-
dicted noise with the one coming from a LES simulation. The physics of
noise generation and propagation is then investigated highlighting that
the perturbations close to the orifice generate a strong but fast-decaying
noise. Since the reference for the acoustic characterization of a device is
set by the international standards at 1 meter downstream of the device,
the behaviour of the acoustic wave close to the orifice can be neglected in
some circumstances. This statement is confirmed by the results obtained
solving a new APE formulation which is here proposed. It neglects local
effects close to the orifice, but it is anyway capable to return an accu-
rate noise prediction far from it. Its advantage compared to the previous
formulation is the 20% lower computational burden.

The second numerical approach investigated in this work is described
in Chapter 5 that is about the international standards’ procedure for the
prediction of the control valves noise. Four valves’ characterizing pa-
rameters are investigated and numerics is introduced as reliable approach
for the prediction of their values. The focus is then concentrated to the
valve correction factor for acoustical efficiency Aη that is involved in
the description of the amount of energy converted from mechanical into
acoustical. Its values suggested by the IEC international standard do not
take into consideration its dependency on the flow conditions introduc-
ing relevant errors that are here highlighted thanks to previous experi-
mental campaigns’ data. An orifice described by the international stan-
dards is used as case on which the numerical models are applied for the
estimation of Aη. Its dependency on the flow velocity is thus obtained
and justified by theoretical discussion.

Chapter 6 is about the design of an experimental plant on which all
the numerical models will be analysed thanks to a comparison with ex-
perimental data. The test campaign will be focused on the study of the
influence of the pressure drop and the absolute pressure on the noise
generation for different devices. It has been designed in accordance with
the international standards’ requests.

Conclusions and the future works are resumed in the Chapter 7.
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CHAPTER2
Literature Background

A complete description of the flow-induced noise inside pipes is an ex-
tremely challenging purpose. Several and different phenomena are in
fact involved and they are about the sound generation mechanisms, the
propagation of the acoustic wave and its interaction with solid bodies or
with the mean flow. The merely classification of the noise in pipelines
is complex. A possible distinction on the nature of the acoustic sources
defines the following terms:

1. structure-borne sound is generated by the vibration of solid bodies
that perturb the surrounding fluid. The noise heard outside of a
pipe, for instance, is transported by an acoustic wave generated by
the vibrations of pipe’s external walls that excite the surrounding
air.

2. fluid-dynamic sound is generated by vibrations produced by turbu-
lence, local disturbances or unsteady flows within the fluid. Pipes’
walls vibrations are induced by the impacting pressure and density
fluctuations generated by the flow. When, as in this work, the fluid
inside ducts is a gas we talk about aero-dynamic noise.
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The main difference between the two kinds of noise is about the acoustic
source and its location respect to the fluid in which the sound is propa-
gated: the structure-born noise is generated by a solid (source external to
the fluid), while the fluid-dynamic one is generated by disturbances in-
side the fluid (aero-dynamic sound sources are always contained within
the fluid itself). In addition to this, inside a pipe the noise generation is
strongly affected by the fluid-dynamic and different mechanisms gen-
erate sound: vibrations can be induced for instance by time-varying
flow-rate (and mass), by unsteady forces from solid bodies and by tur-
bulence [43].

In this chapter, a brief discussion on the fundamental features of
acoustic and its sources is presented. The main contributes to theoret-
ical and numerical analysis are then summarized before moving into the
description of all the theories and models that can be applied for the nu-
merical approach. They are presented with increasing complexity and
with an always wider range of applicability till reaching the Acoustic
Perturbation Equations that take into account all the contributes nec-
essary for a good description of the aero-dynamic noise generated by
control devices in pipelines.

2.1 Fundamentals of Acoustics

The term noise usually refers to an unpleasant sound that can be heard
by the human ear. From a physical point of view, a sound is a pressure
wave that propagates through an elastic medium inducing vibrations and
particles’ oscillation that transfer their motional energy. The simplest
kind of noise is represented by the harmonic wave

x(t) = A sin (2πft+ φ) . (2.1)

An harmonic wave is defined by one and only value of its characteristic
quantities:

• the speed c indicates the velocity at which the wave propagates
respect to the medium;

• the amplitude A defines the intensity of the oscillation associated
to the wave (intensity of the noise);

• the period T indicates how long the wave takes to repeat the same
oscillation;
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2.1. Fundamentals of Acoustics

• the frequency f indicates how many times in a time unity a particle
repeats the same oscillation. It is the reciprocal of the period T i.e.
f = 1/T ;

• the wavelength λ indicates the distance covered by a particle in one
period. It satisfies the relationship λ = cT = c/f ;

• the phase φ indicates the shift of the wave respect to the axis used
for its analytical description (2.1).

A noise is usually made of several superimposed harmonics charac-
terized by different frequencies, amplitude and phases. The contribute
of each frequency to the total noise is analysed in the frequency space
through its spectrum. According to its shape, it is possible to talk about
white noise (constant power for all the frequencies) and pink noise (de-
creasing power at high frequencies) while the presence of any peak is the
disclaimer between tonal and broadband noise. The former has a spec-
trum characterized by one or more peaks in correspondence of single
frequencies. Harmonics that are propagated at those frequencies con-
tains most of the total acoustic energy. It occurs in few and particular
configurations, unlike the broadband one that is characterized by a spec-
trum without any dominant frequency with acoustic energy distributed
in a wide range of frequencies. This is the noise whose prediction is
discussed in this work.

In the evaluation of the noise intensity heard by humans, two main
aspects have to be considerd. The first is that our perception of noise
intensity is not linear, but it follows a logarithmic scale. For this reason,
the Sound Pressure Level (quantity that measures the noise intensity) is
defined as

SPL = 20 log10

(
prms
pref

)
, (2.2)

where prms is the root mean squared of the acoustic pressure and pref is
the reference pressure defined as the lowest pressure our ear can perceive
(pref = 2· 10−5 Pa). The SPL is measured in decibels dB.
A further particularity of human hearing system is that it cannot perceive
all the frequencies, but only a limited range that goes about from 20 Hz
to 20 kHz (lower frequency noises are called infrasounds, while ultra-
sounds propagate at frequencies higher than 20 kHz).
In addition to this, not all the frequencies in this range are heard with
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the same sensitivity. Empirical band corrections are introduced to mod-
ify the noise intensity in dB taking into account the gain for each band.
Therefore, we talk about dB(A) or dB(C) where the letter A and C stand
for different corrections [6]. These unit of measurements are the one
used by the laws for the definition of constrains: workers must not be
exposed to noises more intense than 140 dB(C) and cannot work for ex-
tended periods (8 hours) with a SPL higher than 87 dB(A).

2.2 Elementary Acoustic Sources

The possible acoustic sources in the industrial applications are several
and of different nature. The noise radiated by most of them, anyway,
can be modelled as the one emitted by elementary sources or by a com-
bination of them. For this reason, in this section a brief description of
monopoles, dipoles and quadrupoles is discussed focusing on their fea-
tures and on the intensity of the emitted noise. A visualization of the
pattern of the radiated noise emitted by those three sources is given in
section 3.2.
All the acoustic sources differ among them by the physical process that
emits the noise, by their shape, by the noise directivity, by the modelling
equations for the description of their features and by their intensity. For
the latter purpose, two quantities will be introduced and they are the
acoustic power Wa and the instantaneous sound intensity I.

2.2.1 Monopole

A monopole is the simplest acoustic source and is modelled as a spheri-
cal source that, through its pulsation, produces a spherical wave radiated
in the surrounding free-space. The noise is produced by the movement
of the monopole’s surface or through the variation of mass inside the
source region.
In engineering applications, a certain type of machineries (motors and
pumps) can be modelled as a monopoles, while in the aerodynamic noise
such a behaviour is assumed by unsteady combustion phenomena, un-
steady pulsating flows and cavitation.
The analytical description of the strength of the source make use of two
fundamental quantities that are its acoustic power Wa and the instanta-
neous sound intensity I. The latter is the power per unit area and its value
in a point in the space is defined as the product of the acoustic pressure
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2.2. Elementary Acoustic Sources

and the acoustic particle velocity in that point

I = p′u′. (2.3)

The acoustic intensity I is a time-dependent quantity because of the un-
steady nature of the acoustic phenomenon. In the theoretical treatment it
is usually preferred to exploit the discussion using a steady variable, the
mean sound intensity I , defined as the time-average of the instantaneous
sound intensity I. Since the monopole creates a spherical wave, the spa-
tial dependency of the sound intensity I is related only to the distance of
the evaluation point from the source (distance r between the source and
the receiver), i.e. I = I(r).
The acoustic powerWa, on the contrary, is not dependent on the distance
of the receiver. The evaluation of Wa is made through the integral of all
the contributes of the sound intensity I on a generic surface that contains
the acoustic source; for sake of simplicity the surface is usually chosen
as a sphere (with the monopole placed in its centre) so that the intensity
I(r) is constant on the surface

Wa =

∫
S

I(r) dS = 4πr2I(r). (2.4)

The root mean square of the acoustic pressure prms can be described as
function of the mean sound intensity too

p2
rms = I(r)ρ0c, (2.5)

allowing to rewrite the acoustic power (2.4) as

Wa =
4πr2p2

rms

ρ0c
. (2.6)

Equations (2.4) and (2.6) suggest that the sound intensity emitted by a
monopole decays with the square of the radius, while the acoustic pres-
sure with its first power.

2.2.2 Dipole

A dipole is an acoustical source that is composed by two monopoles
closed to each other that pulsate with the same strength and a phase-
shift of 180◦. The out-of-phase oscillation induces the formation of
a nett fluctuating force that acts along the axis that separates the two
monopoles. The resulting pressure radiation is a function of the radius r
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and of the polar angle θ.
In industrial application a monopole placed close to a rigid reflecting
body works as a dipole since, far from the source, its emission can be
seen as the superimposition of two waves, i.e. the direct wave and the
reflected one (phase-shifted).
The theoretical analysis of dipole intensity and power is simplified by the
assumption of working in the far-field, i.e. far enough from the source
to justify the assumption to consider the dipole as a point. In this case
the mean sound intensity of a dipole can be described as the one of a
monopole multiplied for a directivity factor 2kdcosθ that takes into ac-
count the polar angle contributes. The quantity k is the wave number of
the considered frequencies k = 2π/λ while 2d is the distance between
the two monopoles. The relevancy of their contribute is clear when the
acoustic power of a dipole is compared with the monopole’s one: it is
shown that [43]

WD

WM

∼
(
d

λ

)2

(2.7)

where WD and WM are the acoustic power of dipole and monopole.
Since all the equations are derived under the assumption of kd� 1 it is
clear1 that the sound power radiated by a dipole is always much lower
than the one radiated by a monopole. The ratio becomes smaller as the
wavelength λ increases, that means that the monopole is much more
efficient than a dipole especially at low frequencies.

2.2.3 Quadrupole

As the dipole is defined through the combination of two monopoles os-
cillating out of phase, a quadrupole is defined as that acoustic source
made of two dipoles close to each other and oscillating with a 180◦

phase-shift. As a dipole has one axis, the quadrupole has two. The
physical mechanism through which a quadrupole excites the surrounding
fluid is based on the fluctuating stresses that are applied to the medium
(monopoles work with oscillation or mass variation, dipoles with fluctu-
ating forces along the axis). An example of these stresses can be found in
gas flows where the viscous stresses within the gas act as quadrupoles.
Two kind of quadrupole (lateral and longitudinal) can be obtained ac-
cording to the disposition of the dipoles but in both cases their acoustic

1kd = 2πd/λ� 1
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power can be compared to the one emitted by a monopole and the fol-
lowing relationship stands

WQ

WM

∼
(
d

λ

)4

(2.8)

where now WQ is the acoustic power of the quadrupole. This means
that the power radiated by a monopole is greater than the one emitted
by a quadrupole and, comparing (2.8) and (2.7) it can be found that the
quadrupole is the least intense among the sources since it is even less
intense than the dipole.

2.3 Aero-Acoustics Background

The elementary sources presented in the previous section are a mod-
elling description of most of the possible acoustic emitters that can be
found. This work deals with aero-acoustic, i.e. a branch of the acoustic
that focuses on the noise generated by the motion of a gas. This science
was born in the 1952 with the first aero-acoustical theory that had been
developed by Lighthill [35] for unbounded fluctuating flows in a uni-
form medium. After that, several other studies have been conducted with
some improvements and generalizations proposed by Curle [15] in 1955
including the effect of fixed solid boundaries, by Powell [46] and Howe
[25] respectively in 1960 and 1975 splitting the effects of the vorticity
and of the mean flow on the acoustic wave and by Ffowcs Williams-
Hawkings [22] in 1969 extending Curle’s investigation to moving bod-
ies.
All these theoretical formulations, anyway, have been derived under
strong assumptions that are not satisfied in most of the engineering ap-
plications. In these situations, the numerical approach helps to describe
those phenomena that are too complex to be analytically described by an
aeroacoustic theory. Modelling assumptions are anyway required in the
numerics too and an exhaustive description may be obtained only with
very expensive simulations from the computational point of view. Any-
way, in most of the engineering applications, the maximum accuracy
is not required since people are interested in few aspects of the whole
phenomenon. A smart choice of the numerical model according to the
information of interest helps to save computational time and resources.
All the numerical approaches that deals with aero-acoustics are studied
by the Computational Aero-Acoustics (CAA) that is defined as that sci-
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ence that deals with the numerical description of the aerodynamic noise,
with its generation mechanisms, propagation and even prediction. The
complexity of the execution of a detailed numerical simulation that re-
turns a complete description of both the fluid-dynamic and the acous-
tics is too high for any engineering application. Such a computation, in
fact should take care of all the numerical issues of both the CFD and the
CAA. Their differences are so wide (as can be seen in table 2.1) that their
proper treatment requires resources usually not available in the industrial
world. Let’s assume for instance to be interested in the fluid-dynamic
characterization of a valve through which a gas flows at low Mach num-
ber. Such a characterization can be done with a steady simulation, on
a domain that exploit any possible symmetry of the geometry, neglect-
ing compressibility effects and with turbulence models that describe the
small-scales effects. But when a noise prediction on the same valve is
desired, its accurate numerical description must be completely different
as the noise propagation is an unsteady phenomenon whose computation
must take care of the solid walls that reflect the wave, the compressibil-
ity effects and all the frequencies the acoustic wave is made of. But, if

Computational Fluid-dynamics Computational Acoustics
Time dependency steady/unsteady unsteady
Frequency range driven by turbulence audible

Domain source region far-field
Compressibility according to Mach number necessary

Numerical schemes - low dispersion and diffusion

Table 2.1: Differences about the technical and physical aspects to be cared of during
numerical simulation of fluid-dynamics and acoustics.

not interested in a description of all the acoustic features, some of the
technical constraints mentioned in table 2.1 can be relaxed simplifying
the numerical resolution of the acoustic simulations.

In fact, different CAA approaches have been proposed in literature
[13, 53]. They are classified in

• Direct methods compute both the unsteady flow and the acoustic
field thereby generated during the same simulation [53]. Navier-
Stokes equations are a suitable tool for managing both the processes
since they describe both the fluid-dynamic variation and the acous-
tic vibrations. Their numerical resolution is performed thanks to
DNS (Direct Numerical Simulation) or to LES (Large Eddy Sim-
ulation). The former aims to a detailed description of the phe-
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nomenon from the largest scales to the Kolmogorov scale, while
the latter introduces models for the description of the turbulence
dynamic of the small scales reducing the computational burden of
the simulation.
The issues to be faced by a direct simulation regard the techniques
for simulating both the noise generation connected to the fluid-
dynamic and its propagation in the far-field. The disparity between
the two phenomena requires the application of models and numer-
ical techniques that are able to describe, on turn, the most critical
one in any region. For instance, a detailed description of fluid-
mechanics is usually achieved with a steady, incompressible simu-
lation on a fine grid around the source. On the other side, the acous-
tic requires a wider domain for the evaluation of the noise far from
the source and an unsteady compressible simulation: these differ-
ences forces to ’waste’ resources to describe the fluid-mechanics
even where not needed. Furthermore, the acoustic propagation in
the audible frequency range may be conduced on a coarser mesh
in the source region than the one needed for the flow simulation.
All these differences are summarized in the table 2.1 that highlights
how the two phenomena require different numerical techniques and
models for their evaluation [40, 51].

• Hybrid methods solve the acoustic problem after the fluid-dynamic
one, in two separated steps. The problem is in fact decomposed in
noise generation and noise propagation following two different nu-
merical methods. A CFD simulation is first run in order to evaluate
the flow-field responsible for the generation of noise around the
source region in the near-field. Once the noise production is de-
scribed, its propagation is managed by an acoustic model that can
be based on the resolution of PDEs or acoustic analogies.
Hybrid approaches are usually appreciated for those simulations
where the evaluation of the noise is made too far from the noise to
be computed with a direct approach.
The CFD simulation can be carried out at different accuracies with
DNS, LES, RANS (Reynolds Averaged Navier-Stokes) or com-
bined approaches as DES (Detached Eddy Simulation). It is any-
way important that they describe the noise generation mechanisms
in order to return all the data needed for the noise propagation.
In industrial applications the most demanding methods as DNS or
LES are usually infeasible and alternative methods for the noise
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generation have been developed based on the synthetic generation
of noise from the RANS output.
On the other hand, the complexity of the acoustic model depends
on the physics of the noise propagation and on its interaction with
the flow and with solid bodies. The acoustic analogies describe the
noise very far from the source where it can be modelled as compact
(2.4). Wave equations as the APE Acoustic Perturbation Equations
describe the local effects of noise and are a tool for the description
of the noise propagation in a more general flow condition. Their
application will be discussed in details in section 2.5

2.4 Acoustic Analogies

The term acoustic analogy refers to a method for the description of the
acoustic propagation through an equation whose left-hand side is a wave
operator while its right-hand side contains other terms that are treated
as an acoustically equivalent source term. The concept of analogy can
be actually referred to any field of study when its fundamental equation
is written with an equivalent source term. In acoustics, the physics of
the propagation of a wave in a uniform stagnant fluid is described by the
wave equation

∂2ρ′

∂t2
− c2

0∇2ρ′ = 0, (2.9)

where ρ′ indicates the density fluctuations and c0 is the speed of sound
in standard conditions. For an isentropic flow c2

0 = ∂p/∂ρ that, for a
stagnant fluid, means

c2
0 =

p′

ρ′
. (2.10)

The solution ρ′(x, t) of equation (2.9) returns the value of the density
fluctuations in space and time. In a uniform stagnant fluid, the receiver
(point in which the noise is calculated) is characterized by a pressure
p0, a density ρ0 and a speed of sound c0 that are equal in any place of
the space at any time [9]. Any departure from these conditions (non-
uniform medium) introduces new terms in equation (2.9). It is possible
to talk about acoustic analogy when all these new terms are collected in
the right-hand side and, for the receiver, are considered as an equivalent
acoustic source that emits noise in a uniform fluid.
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2.4.1 Lighthill Analogy

The first, most famous acoustic analogy was derived by Lighthill [35] for
the description of the density fluctuations in a uniform stagnant medium.
The derivation of the analogy starts from the non-homogeneous mass
and momentum conservation laws

∂ρ

∂t
+
∂ρui
∂xi

= m

∂ (ρui)

∂t
+
∂ (Pji + ρujui)

∂xj
= fi +mui

(2.11a)

(2.11b)

where m is the mass injection per unit of time, f the force density and
P = pI− τ the opposite of the fluid stress tensor2.

When no mass injection nor external forces are applied (no monopole
m nor dipole f ), the system (2.11) can be simplified and, taking the time
derivative of (2.11a) and the divergence of (2.11b), rewritten as a second
order partial differential equation

∂2ρ′

∂t2
− c2

0

∂2ρ′

∂x2
i

=
∂2Tij
∂xixj

, (2.13)

where Ti,j is the Lighthill’s stress tensor defined as

Tij = ρuiuj − τij +
(
p′ − c2

0ρ
′) δij. (2.14)

Unlike equation (2.9) which is derived neglecting second order fluctu-
ations, equation (2.13) is an exact equation as no approximations are
introduced and all the non-linear terms are collected in the source term.
Lighthill’s stress tensor works as equivalent source term and its formu-
lation (2.14) helps to distinguish three fundamental mechanisms at the
base of the aero-dynamic noise generation:

• the Reynolds stress tensor ρuiuj that collects the non-linear terms
(the velocities in a stagnant fluid are just the acoustic fluctuations)
and describes the noise generation due to turbulence;

2The same system, written with the vectorial notation is
∂ρ

∂t
+∇· (ρ u) = m

∂ (ρ u)

∂t
+∇· (P + ρ u u) = f +m u

(2.12a)

(2.12b)
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• the viscous forces τij that are usually very small compared to Reynolds
stresses;

• the deviation from an isentropic behaviour where equation (2.10) is
valid and p′ − c2

0ρ
′ is equal to zero. An alternative interpretation of

this Lighthill’s stress tensor’s term is the deviation of the speed of
sound c from the reference one c0 valid only at the listener’s posi-
tion. For low Mach numbers all these effects are very low and their
contribute is order of magnitude lower than the Reynolds stresses.

For low Mach numbers the Lighthill’s stress tensor can be thus approxi-
mated with the only contribute coming from the Reynolds stresses Tij ∼
ρuiuj .

Lighthill’s equation can also be rewritten in terms of pressure fluctu-
ations p′ = c2

0ρ
′ as

1

c2
0

∂2p′

∂t2
−∇2p′ =

∂2Tij
∂xixj

, (2.15)

and its analytical solution [23] is made of a volume integral over the
source region

p(x, t) =

∫
V

∂2Tij
∂xixj

(
y, t− |x− y|

c

)
4π|x− y|

d3y, (2.16)

where V represents the source region volume. Few considerations must
be done:

• the vector y represents the position inside the source region (vol-
ume V );

• the vector x represents the position of the receiver, external to the
sound region;

• inside the source region different elementary monopole sources are
present3, each of them characterized by an intensity equal to ∂2Tij

∂xixj
;

• each elementary monopole is characterized by a different intensity
and phase;

3From a mathematical point of the pressure field generate by a monopole is described by an integral,
a dipole produces a pressure described by the divergence of an integral and a quadrupole by the double
divergence of an integral.
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• the difference of the phases is taken into account with the retarda-
tion time t− |x−y|

c
;

• if the source is assumed compact, small phase differences can be
neglected (and so the retardation times);

• if the source is assumed compact, x must be far enough from the
source region and its distance from a point in the source region can
be approximated with its own position r = |x− y| ≈ x.

The assumption of compactness of the source region is crucial for a for-
mal simplification of the equation (2.16) that can be rewritten as

p(x, t) =
∂2

∂xixj

∫
V

Tij

(
y, t− r

c

)
4πr

d3y. (2.17)

The differential operator ∂2

∂xixj
can be moved outside of the integral thanks

to mathematical procedures [23]. This operation highlights the nature of
the acoustic source related to the Lighthill’s stress tensor that is made
of a quadrupole, while in equation (2.16) the source is described as a
series of different monopoles.
It must be noted that, if the retardation times are neglected because of the
source compactness assumption, the differential operator must be moved
outside of the integral because, otherwise, the summation of the different
in-phase monopoles contributions would reduce to zero and there would
be no sound produced.

2.4.2 Ffowcs Williams - Hawkings Analogy

Solutions (2.16) and (2.17) describe the value of the acoustic pressure in
space and time due only to the flow fluctuations described by Lighthill’s
stress tensor. Anyway, other sources of noise can be present and the
most relevant improvements to Lighthill analogy have been derived for
the extension of the analogy to the prediction of the acoustic pressure in
a uniform flow with oscillating solid bodies [15, 22]. The presence of a
fluctuating body introduces two additional sources of noise, i.e. a dipole
due to the presence of a body immersed in the flow that is therefore ex-
cited by fluctuating forces and a monopole due to the oscillating motion
of the body itself. In this situation the acoustic pressure fluctuations are
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described as [22]

p(x, t) =
∂2

∂xixj

∫
V

Tij

(
y, t− |x− y|

c

)
4π|x− y|

d3y+

− ∂

∂xi

∫
S

fi

(
y, t− |x− y|

c

)
4π|x− y|

dS(y)+
∂

∂t

∫
S

ρv

(
y, t− |x− y|

c

)
· n

4π|x− y|
dS(y)

(2.18)

where S is the surface that encloses the volume V , v is the velocity at
which the body’s surface is moving and n the normal to that surface.
The dipole contribute is described by the second integral on the right-
hand side, while the monopole due to the oscillating body is connected
to the last surface integral.

2.4.3 Lilley Analogy

Further efforts in the development of the Lighthill’s analogy have been
done by Philips [45] and Lilley [37] in order to take into account the ef-
fect of a mean sheared flow on the acoustic propagation. Noise spectrum
and waves directivity are influenced by the characteristics of the flow in
which they are propagating and its effect can be relevant in the evalua-
tion of the noise intensity far from the source.
Phillips and Lilley modified the classical wave operator (equation (2.15)left-
hand side) including convective terms in the total time derivative D(·)

Dt
where

D(· )
Dt

=
∂(· )
∂t

+ u· ∇(·). (2.19)

The final equation developed by Lilley is written for the variable Π =
ln(p) in the form of a third-order equation

D

Dt

{
D2Π

Dt2
− ∂

∂xi

(
c2 ∂Π

∂xi

)}
+ 2

∂ui
∂xj

∂

∂xi

(
c2 ∂Π

∂xi

)
=

− 2γ
∂ui
∂xj

∂uj
∂xk

∂uk
∂xj

+ Ψ, (2.20)

where Ψ contains other terms connected to entropy fluctuation and vis-
cous effects (usually negligible).
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Respect to the previous analogies described in sections 2.4.1 and
2.4.2, no analytical solution is available since the free-space Green func-
tion is not known for Lilley’s equation [3]. Moreover, the numerical
resolution of this equation results to be complicated. For this reason,
when the acoustic propagation occurs in a non-uniform sheared flow it
is convenient to solve the problem with different numerical approaches.
One of the possible choice is the resolution of the Acoustic Perturbation
Equations (APE) described in the following section.

2.5 Acoustic Perturbation Equations

When the acoustic wave propagates in a non-uniform sheared flow the
evaluation of the noise through an acoustic analogy becomes more com-
plicated since no analytical solution can be derived. In addition to this,
the complexity of the phenomenon increases so much that the funda-
mental equations from which the analogies’ wave operator are derived
needs to be modified. The conservation equations of mass, momentum
and energy for an inviscid fluid are described by the Euler equations

∂ρ

∂t
+
∂ρuj
∂xj

= 0

∂ρui
∂t

+
∂ρujui
∂xj

+
∂p

∂xi
= 0

∂
(
e+ 1

2
u2
i

)
∂t

+ uj
∂
(
e+ 1

2
u2
i

)
∂xj

+
∂puj
∂xj

= 0

(2.21a)

(2.21b)

(2.21c)

where e is the specific internal energy and 1
2
u2
i is the kinetic energy per

unit of mass. The system (2.21) describes the dynamics of the fluid in-
cluding both the flow and the acoustic wave.
As mentioned in section 2.3, APE belong to the hybrid methods and are
a system of equations that describes the generation and propagation of
the noise generated by a flow field previously computed with a CFD sim-
ulation. The derivation of the APE system can be exploited in different
ways [5, 16], but the most common approach is based on the descrip-
tion of the flow as a superposition of a mean part plus a fluctuating one
which contains both the turbulent effects and the acoustic disturbances.
This means that all the variables appearing in the Euler equations can
be decomposed in different contributes connected to the fluid-dynamics
and to the acoustics. The most common decomposition is therefore the
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one based on the superimposition of a mean part, a turbulent fluctuation
and an acoustic fluctuation [5, 41]. The quantities in the Euler equations
are decomposed as:

u = u + ut + ua

ρ = ρ+ ρt + ρa

p = p+ pt + pa .

(2.22a)
(2.22b)
(2.22c)

The acoustic energy produced by the flow is usually a very small fraction
of the mechanical energy of the mean fluid (the ratio between the ener-
gies varies from 10−2 to 10−5). For this reason the fluctuations (turbulent
and acoustic) are orders of magnitude lower than the mean part and, fur-
thermore, the acoustic fluctuations are even smaller than the turbulent
ones. Therefore, the following relationships are valid:

u� ut � ua

ρ� ρt � ρa

p� pt � pa .

(2.23a)
(2.23b)
(2.23c)

The procedure for the derivation of the Acoustic Perturbation Equation
is described in Appendix A. It is based on the decomposition of the flow
(2.22) and on the assumption of consider negligible the second order
acoustical fluctuations. This means that all the terms containing a prod-
uct of an acoustic fluctuation (or its derivative) with another fluctuation
(acoustic or even turbulent) are removed from the final equations. The
resulting system is written as (see Appendix A)

∂pa
∂t

+ uj
∂pa
∂xj

+ γ

(
p
∂uaj
∂xj

+ pa
∂uj
∂xj

)
+ uaj

∂p

∂xj
= Sp

∂uai
∂t

+ uj
∂uai
∂xj

+ uaj
∂ui
∂xj

+
1

ρ

∂pa
∂xi
− pa
ρ2c2

∂p

∂xi
= Sui.

(2.24a)

(2.24b)

The first equation (2.24a) describes the evolution of the acoustic pressure
pa during the propagation of the noise. It is influenced by the mean
quantities (pressure, velocity and their derivatives) and is coupled with
the acoustic particle velocity ua whose evolution is described in (2.24b).

In the left-hand side of the APE system (2.24) the mean-flow influ-
ences the dynamics of pa and ua without participating in the noise pro-
duction. All the terms that are connected to the noise generation are
collected in the right-hand side. Following the described procedure for
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the derivation of the APE system (2.24), the source terms look like

Sp = −∂pt
∂t
− ui

∂pt
∂xi
− uti

∂p

∂xi
(2.25)

Sui = −∂uti
∂t
− 1

ρ

∂pt
∂xi
− utj

∂ui
∂xj
− uj

∂uti
∂xj
− utj

∂uti
∂xj

+ utj
∂uti
∂xj

. (2.26)

The most relevant terms in the noise generation are, according to order
of magnitude analysis, the ones in the source term Sm for the acoustic
particle velocity. For this reason, the source term Sp is usually neglected
and considered equal to zero [5]. The analysis of the terms in equation
(2.26), on the contrary, is more complex and different literature analysis
proposed different formulations [3,5,16,41]. No evidence about the best
choice for the description of the noise generation inside pipelines has
been found and for this reason a deeper investigation of the source term
Sm is further discussed in section 3.3.

2.5.1 APE Modelling

The left-hand side of the APE system (2.24) is a wave operator that de-
scribes the propagation of an acoustic wave in an inviscid medium with
not constant nor uniform velocity and pressure fields, i.e. a non-uniform
flow. This flow represents the most general (and common) framework
inside of which an acoustic wave can travel.
All the terms of the system (2.24) describe a particular interaction of the
acoustic wave with the flow field and no simplified formulation can be
proposed that guarantees a complete modelling of the noise propagation
in a non-uniform flow.. In this section, the physical meaning of the terms
is analysed showing how the APE system can be modified according to
the complexity of the flow in which the wave propagates. A resume of
these flow conditions and how the noise propagation can be modelled is
contained in table 2.2.

The simplest flow in which the acoustic wave can be propagated is
the quiet flow, i.e. that condition characterized by a medium at rest (null
velocity) with a constant pressure. This is also the classical frame used
for the theoretical derivation of the wave equation

∂2pa
∂t2
− c2

0

∂2pa
∂x2

i

= 0. (2.27)

On the other hand, several terms contained in the left-hand side of the
APE (2.24) are identically equal to zero because of the particular flow
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Flow APE Equivalent
formulation wave equation

Quiet Eq.(2.28) Eq.(2.27)
Uniform velocity Eq.(2.29) Eq.(2.30)
∇p 6= 0 Eq.(2.31) Eq.(2.32)Uniform velocity

Non uniform Eq.(2.24) N-A

Table 2.2: Modelling for the noise propagation in different flow conditions with APE
and wave equation.

conditions. The system is thus reduced to
∂pa
∂t

+ γp
∂uaj
∂xj

= 0

∂uai
∂t

+
1

ρ

∂pa
∂xi

= 0.

(2.28a)

(2.28b)

With the introduced simplifications, the variables pa and ua are decou-
pled and the system is equivalent to the a second order partial differential
equation that is exactly the classical wave equation for the acoustic pres-
sure (2.27).
The four terms in the system (2.28) are thus the ones that describe the
wave propagation at its speed, neglecting the interaction with the flow.

If the medium is in motion with a mean uniform velocity u (and
constant pressure) the velocity of the propagation of the acoustic wave is
influenced by this flow. Respect to the previous system, two more terms
containing the mean flow are introduced in the APE system that now
looks like 

∂pa
∂t

+ γp
∂uaj
∂xj

+ uj
∂pa
∂xj

= 0

∂uai
∂t

+
1

ρ

∂pa
∂xi

+ uj
∂uai
∂xj

= 0.

(2.29a)

(2.29b)

Despite the introduction of the new terms which include the mean ve-
locity field u, the variables are still decoupled and it is possible to obtain
again a second order equation that describes the evolution of the acoustic
pressure as

∂2pa
∂t2
− c2∂

2pa
∂x2

i

= 0, (2.30)
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where c is the velocity of propagation that takes into account for the con-
vection of the mean flow field and c2 = c2

0 + u2 where u is the absolute
value of the velocity vector u. In two dimensions the wave propagates
with a velocity that, as is better discussed in the case analysed in sec-
tion 3.1.1, is different according to the direction in which it is travelling
(c = c0 + u or c = c0 − u).

It is even possible that an acoustic wave propagates within a flow
with non uniform pressure but uniform velocity. Also in this case, two
terms are responsible of the description of the interaction of the acoustic
wave with the pressure gradient. The terms that contains derivatives of
the mean pressure are added to the APE system (2.28) obtaining

∂pa
∂t

+ γp
∂uaj
∂xj

+ uaj
∂p

∂xj
= 0

∂uai
∂t

+
1

ρ

∂pa
∂xi
− pa
ρ2c2

∂p

∂xi
= 0.

(2.31a)

(2.31b)

It is still possible to decouple the system and write a second order equa-
tion for the acoustic pressure, but now the wave operator is more com-
plex because pa appears also as zero-order term multiplied for the gradi-
ent of the mean pressure

∂2pa
∂t2
− c2

0

∂2pa
∂x2

i

+ pa

(
1

ρ

∂2p

∂x2
i

+
1

ρ2c2
0

(
∂p

∂xi

)2
)

= 0. (2.32)

Unlike the previous case in which the non-null velocity field changed
only the speed of the wavefronts, the effect of these new terms is a
change in the amplitude of the acoustic perturbations.

The last generalization that can be added is the effect of a non-uniform
mean flow that is mathematically described by the introduction of the re-
maining two terms in which the gradient of u appears (γpa

∂uj
∂xj

for the pa
equation and uj ∂uai∂xj

in the ua one). In this conditions, the APE wave
operator become exactly the one described by the system (2.24) except
for the source terms. Since the source terms and the interaction of the
acoustic wave with a non-uniform mean flow field are very important in
the applications investigated in this work, they are discussed in detail in
sections 3.2.4.
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CHAPTER3
Numerical Resolution of APE

The Acoustic Perturbation Equations are a system of two coupled equa-
tions that describe the evolution in time of the acoustic pressure pa and
the acoustic particle velocity ua. Their left-hand side is a wave operator
that deals with the propagation of the noise. Its generation is modelled
by the source term in the right-hand side: this acoustic source can be of
any typology, i.e. not only related to aero-dynamic noise. The APE are
indeed a suitable system for the resolution of problems that goes beyond
the aero-acoustic framework since the source terms can be related to any
other noise generation mechanism.

In this work the APE formulation used for the acoustic analysis is
described by the system (2.24) presented in section 2.5. The equations
are derived from the Euler one under the assumption of isentropic flow
and with the linearisation of the acoustic quantities. In this work, their
numerical resolution has been performed thanks to a new in-house code
implemented in OpenFoam [24].

The first part of this chapter describes the technical issues associated
to the APE’s numerical resolution paying particular attention to the de-
velopment of a new solver that faces numerical instabilities. This new
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solving algorithm is validated thanks to the comparison with analytical
solutions and literature results. These test are not about aero-acoustics
since the noise generation is not related to turbulence effect. On the
contrary the solver is tested on the propagation of the noise emitted by
all the fundamental acoustic sources (monopole, dipole and quadrupole)
and on the influence of a sheared flow (typical of the internal flows) on
the acoustic wave.
In the second part of the chapter the application of the APE to the aero-
acoustic problem is introduced and the Stochastic Noise Generation and
Radiation (SNGR) model for the synthetic generation of the turbulent
fluctuations is described.

3.1 Implementation and Resolution of the APE

The implementation and resolution of the APE system (2.24) are per-
formed in OpenFoam, an open-source software for the resolution of Par-
tial Differential Equations (PDE) based on the finite-volume approach.
OpenFoam is a C++ library in which CFD tools are implemented: solvers
for different flows, boundary conditions, turbulence models, thermo-
physical models and several other applications for the pre-processing
(mesh design and flow initialization) and post-processing analysis are
included. Not belonging to the CFD world, the Acoustic Perturbation
Equations are not implemented in the library provided by the official
software.
For this reason, their implementation and resolution has been thus per-
formed in this work. Particular attention has been dedicated to the fol-
lowing numerical issues:

1. algorithm for the resolution of the time-marching APE equations
(solver);

2. methods for the resolution of linear systems associated to the PDEs;

3. discretization of the derivatives (in space and time);

4. choice of the mesh size;

5. choice of the time step.

All these aspects are crucial in order to guarantee the stability and the
accuracy of the resolution and an inadequate choice of one among them
can compromise the whole result.
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This section is particularly focused on the importance of the APE solver
on the stability and accuracy of the results (point 1). On the contrary,
the other numerical settings mentioned in the points 2 to 5 are not here
deeply discussed but they will be specified only when needed.

3.1.1 New Solver for the APE System

The solver for the APE must be designed as an algorithm that man-
age the resolution of a second order hyperbolic system. Such a system
has the same structure as the one for compressible Navier-Stokes equa-
tions which, in OpenFoam, are solved by the solver rhoPimpleFoam.
This algorithm is designed for the resolution of unsteady, compressible
flows and, at each time step, it manages the coupling between the differ-
ent equations through nested iterative cycles and through the predictor-
corrector method. The correction of the velocity field due to the newest
pressure calculated inside the corrector step is performed with an ex-
plicit update of the velocity field based on the diagonal and off-diagonal
matrices associated to the velocity equations. That means that, if U is de-
fined as the discretized velocity vector and P the discretized pressure, the
linear system that describes the velocity equation (2.24b) can be written
as

CU−R = −∇P, (3.1)

where R is the vector that contains all the terms in which the velocity
doesn’t appear (except the pressure gradient). The C matrix, in the finite
volume framework, is split in a diagonal matrix A and a off-diagonal one
H′. Matrix H, defined as

H = R− H′U (3.2)

is introduced for writing the linear system as

AU = H−∇P. (3.3)

The calculation of the velocity field after the correction of the pressure
is performed with an algebraic operation that in the rhoPimpleFoam
solver is described by the command

U = HbyA− rAU ∗ fvc :: grad(p); (3.4)

where HbyA stands for the ratio between H and A, rAU is the inverse of
the A matrix and the method fvc::grad(p) returns the discretized

29



Chapter 3. Numerical Resolution of APE

pressure gradient vector.

Because of the nature of the equations, the same solving algorithm
has been applied to the APE but instabilities issues arose. Here are pre-
sented the test conducted for the identification and solving of these prob-
lems.
The benchmark case on which the solver has been tested is the propaga-
tion of the acoustic wave generated by a pulsating monopole in a uniform
field with a constant not-null velocity. The monopole excitation is math-
ematically modelled by a source term in the acoustic pressure equation
(2.24a) while the source term of the acoustic velocity equation (2.24b) is
null. The test is run with non-dimensional quantities, that means that the
variables in APE system are scaled with the grid spacing dx, the speed of
sound c0 and the density ρ0 at standard conditions. The non-dimensional
variables (indicated with an asterisk) are:

x∗ =
x

dx
c∗ =

c

c0

t∗ =
t c0

dx
u∗ =

u

c0

p∗ =
p

ρ0c2
0

.

(3.5)
The source term for the acoustic pressure equation is

Smono = sin (ωt∗) exp
{
−α
(
x∗2 + y∗2

)}
, (3.6)

where the pulsation ω is set equal to ω = 2π/30 and the parameter
α = ln(2)/9. Thanks to the scaling (3.5), the speed of sound is equal
to 1, the wavelength of the resulting acoustical wave is λ∗ = 15 and the
period T ∗ is equal to 15 too. The uniform velocity field inside of which
the noise is propagated is described by a mean velocity from left to right
that guarantees a Mach number equal to 0.5. Limitations on the size
of the time step used for the time marching are derived from the CFL
condition. The Courant number C for CFD is

C =
U∆t

∆x
. (3.7)

Acoustic simulations are governed by the acoustic Courant number Ca,
an extension of C which takes into account the speed of sound in addi-
tion to the fluid velocity

Ca =
(U + c)∆t

∆x
. (3.8)

In this benchmark the time step is set to 0.1 for a Ca = 0.15.
Another fundamental quantity in the acoustic analysis is the number of
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points that are used to describe a harmonic oscillation. The number of
Points Per Wavelength PPW is defined as

PPW =
λ

dx
(3.9)

and it is a fundamental quantity in order to avoid aliasing effects.

The propagation of the noise emitted by the monopole (3.6) is com-
puted on a square domain with the source located in the origin of the
Cartesian axes. A qualitative visualization of the acoustic field is dis-
played in figure 3.1. The acoustic wave is perturbed by the presence

Figure 3.1: Acoustic pressure emitted by the pulsating monopole (3.6) at time t∗ =
270. Flow from left to right with M=0.5.

of the mean flow (from left to right) that changes the velocity at which
the wavefronts travel through the medium. Since the frequency is fixed
by the pulsation of the source, the wavelength changes according to the
propagation velocity U + c cosθ where θ is the angle with the positive
horizontal axis. The change of the travelling velocity is clear looking at
the position of the wavefronts: on the left side of the domain the wave
travels at the velocity U − c and its fronts are much closer than the ones
on the right (velocity U + c). In particular, the wavelength of the fronts

31



Chapter 3. Numerical Resolution of APE

that propagate along the horizontal axis (aligned with the mean flow) are

λl =
1−M
f

= 15 λr =
1 +M

f
= 45. (3.10)

A quantitative investigation of the reliability of the implemented solver
is performed comparing the APE results with the analytical solution. As
shown in section 2.5.1, when the APE are applied to the propagation
of the noise in a field with uniform velocity and pressure, the acoustic
variables can be decoupled and the APE become equivalent to the inho-
mogeneous wave equation (2.30). Its analytical solution is obtained with
the convolution of source term (the monopole (3.6) in this example) with
the Green function [2].
In figure 3.2 the acoustic pressure computed with the APE is compared
to the analytical solution (red line). The two series of numerical values
(blue and black dots) are obtained with different time steps that corre-
spond to an acoustic Courant number Ca equal to 0.15 and 0.3 (temporal
spacing dt = 0.1 and 0.2). The blue dots (Ca = 0.3) are affected by dif-
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Figure 3.2: Acoustic pressure on the x-axis emitted by a pulsating monopole: analyti-
cal (red line) and numerical solution with acoustic Courant number 0.3 (blue dots)
and 0.15 (black dots); dx = 1.

fusion (underestimated amplitude) and dispersion (different travelling
velocity) on the short-wavelength side, while instabilities and oscilla-
tions arise on the first front of the right-propagating wave. On the other
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side, the reduction of the acoustic Courant number to Ca = 0.15 leads to
a decrease in diffusion and to the absence of the oscillations on the right
side of the domain.
While diffusion and dispersion are errors connected to the schemes for
temporal and spatial derivatives discretization, the oscillations are a sta-
bility issue that is influenced by the way in which the linear system asso-
ciated to the PDE is solved. Grid spacing and temporal step are usually
the two parameters that most influence the instabilities amplitude. An in-
vestigation on the instabilities is thus performed analysing the influence
of the PPW (it grows with the mesh quality) and of the Ca (it enforces
limits on the time step). In the previous figure 3.2 the numerical series
are obtained changing the acoustic Courant number with the temporal
spacing (dx is fixed). On the contrary, in figure 3.3 Ca changes with the
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Figure 3.3: Acoustic pressure on the x-axis emitted by a pulsating monopole: analyti-
cal (red line) and numerical solution with acoustic Courant number 0.3 (blue dots)
and 0.15 (black dots); dt = 0.1.

spatial discretization dx (dx = 1 and 0.5) keeping fixed the dt = 0.1.
The series at Ca = 0.15 in the two figure are the same, while figure 3.2
Ca = 0.3 is obtained with dx = 1 and dt = 0.2 and figure 3.3 Ca = 0.3
with dx = 0.5 and dt = 0.1 instead. At the same Ca = 0.3 the oscilla-
tions on the right-propagating wavefront in figure 3.3 are more enhanced
that figure 3.2 and their amplitude is higher than the actual amplitude of
the acoustic wave. This is an instability issue that make the noise estima-
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tion completely unreliable because it is dominated by numerical errors
higher than the physical values.
On the other side, the diffusion is lower because it is known that is an
issue mostly due to the temporal discretization.

The increased amplitude of the oscillations suggests that the main
cause of those instabilities it is exactly the spatial discretization. If on
simple benchmark cases it is possible to find out the right choice of dx
and dt, in real applications there are no clues that help to define their
optimum values.
An alternative approach for managing these issues has been investigated
at the light of the evidences suggested by the oscillations behaviour.
Their dependency on Ca shows a greater influence of dx than dt: this
means that the numerical issues that creates the instabilities may be con-
nected to some explicit equation in the solving algorithm. Such an in-
vestigation allow to identify the critical equation in the solver based on
rhoPimpleFoam as the explicit update of the velocity during the cor-
rector step (3.4).

This step has been replaced by the implementation of a new algorithm
based on the update of the acoustic particle velocity through the resolu-
tion of its PDE and not thanks to the algebraic operation [18]. This modi-
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Figure 3.4: Acoustic pressure on the x-axis emitted by a pulsating monopole computed
with the new solver: analytical (red line) and numerical solution with acoustic
Courant number 0.3 (blue stars) and 0.15 (black dots); dx = 1.
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fication basically moves the iterations needed for managing the acoustic
velocity-pressure coupling from the predictor-corrector loop’s internal
cycle to the external one that solves on turn the APE system’s two equa-
tions.
The new solver has been tested on the same benchmark and the results
obtained withCa equal to 0.3 and 0.15 are displayed in figure 3.4. No os-
cillations on the right-propagating wavefront are now generated thanks
to the numerical stability achieved with the new algorithm. Dispersion
and (especially) diffusion are improved too and the difference between
the computed results and the analytical solution is limited to the different
velocity of propagation of the left-travelling wave.
The influence of the acoustic Courant number is also removed as can be
seen by the overlap of the two numerical series.

3.2 APE Validation

This section is about the validation of the implemented APE system
(2.24) with analytical solution and literature results. The first tests are
performed on the acoustic propagation in a quiet field with the noise
emitted by the three fundamental acoustic sources described in section
2.2. This cases are used for testing the APE with the most general
acoustic sources (not only with the ones connected to aero-acoustics).
Monopoles, dipoles, and quadrupoles are indeed acoustic sources that
represents the most generic noise generation mechanisms. Analytical
solutions are used as comparison for the APE results.
Other tests are then performed with a flow field similar to the one ex-
pected in the industrial applications, i.e. a sheared flow. Due to the
complexity of these cases, no analytical solutions are available and the
acoustic pressure returned by the APE is compared to literature results.

3.2.1 Monopole

The physical description of the behaviour of a monopole has been dis-
cussed in section 2.2.1. In the present paragraph the APE are applied for
the emitted noise propagation in a quiet medium. The noise radiation is
managed by the wave operator in the left-hand side is the one described
by equations (2.28), while the noise generation is governed by source
terms in the right-hand side.
With a quiet medium the wave equation (2.27) can be used as wave op-
erator as well. Its equivalence with the APE system (2.28) has been

35



Chapter 3. Numerical Resolution of APE

shown in section 2.5.1 for the homogeneous equation. Similar consider-
ation can be also done for the non-homogeneous case: if Sp and Su are
the source terms respectively in (2.28a) and (2.28b), the inhomogeneous
wave equation becomes

∂2pa
∂t2
− c2

0

∂2pa
∂x2

i

=
∂Sp
∂t
− c2

0

∂Sui

∂xi
. (3.11)

In right-hand side of the wave equation (3.11), the zero-order derivatives
represent a monopole, the first-order ones a dipole while quadrupole is
described by second-order ones. The source term Sp is thus a monopole
source, while Su is a dipole or, if it contains other spatial derivatives, a
quadrupole.

The monopole here simulated is described by a source term Sp =

sin(2π/30t∗) exp
(
−ln(2)x

∗2+y∗2

9

)
. The instantaneous pattern of acous-

tic pressure is displayed in figure 3.5 that, as expected, is made of con-
centric wavefronts whose intensity depends only on their distance from
the origin and decreases moving far from the source.

Figure 3.5: Acoustic pressure emitted by a pulsating monopole at t∗ = 150.

For the noise propagation in quiet medium an analytical solution is
computable and the numerical result along the horizontal axis is com-
pared to it (figure 3.6). The acoustic pressure pa computed with the APE
is overlapped to the analytical solution. From the physical point of view
it can be noticed the expected decrease of the intensity of the peaks of
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the acoustic pressure moving far from the monopole described in section
2.2.1.
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Figure 3.6: Comparison of the analytical solution and numerical results of the acoustic
pressure along the x-axis emitted by a pulsating monopole at t∗ = 150.

3.2.2 Dipole

A dipole that radiates sound in a quiet field is modelled by a spatial
derivative terms in the right-hand side of (3.11), i.e. by a force. In
the APE system it is thus modelled by Su since in the wave equation it
appears under the divergence operator.
The main features of a dipole were discusses in section 2.2.2. Here, the
APE are solved for the computation of the noise radiated by a dipole
which is described by the source term

Su =

 sin (2πt∗/15) cos (10π/x∗) exp

(
−ln(2)

y∗2

9

)
0

 .
Its directivity pattern is shown in figure 3.7.

Unlike the monopole, now it is evident that the pressure intensity
changes with the polar angle and that is equal to zero along the axis of
the dipole placed at 90◦ respect to the horizontal axis. At the sides of
the axis the wavefronts have opposite signs that attest the phase-shift of
the waves emitted by the two monopoles. This is even more evident
when the solution is sampled along the horizontal axis (figure 3.8): the
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Figure 3.7: Acoustic pressure emitted by a pulsating dipole at t∗ = 150.
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Figure 3.8: Comparison of the analytical solution and numerical results of the acoustic
pressure along the x-axis emitted by a dipole at t∗ = 150.

acoustic pressure is no more symmetric as in the monopole radiation but
now it is antisymmetric because of the 180◦ phase shift.
Figure 3.8 shows the agreement between the APE numerical result and
the analytical solution in this case too.
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3.2.3 Quadrupole

A quadrupole, whose physical description is treated in section 2.2.3, is
modelled by a source terms under a second order spatial derivative in the
wave equation (3.11). This means that, when Su in the APE is written
as a spatial derivative it represent a quadrupole excitation of the sur-
rounding medium. Here, the directivity pattern of a lateral quadrupole
(figure 3.9) is computed through the resolution of the APE system with
the source term

Su = sin (2πt∗/30)

 sin (π/20x∗) exp

(
−ln(2)

y∗2

9

)
sin (π/20y∗) exp

(
−ln(2)

x∗2

9

)


with (x∗, y∗) ∈ [−10, 10]× [−10, 10].
Since a quadrupole is modelled as two close dipoles, the directivity of

Figure 3.9: Acoustic pressure emitted by a pulsating lateral quadrupole at t∗ = 150.

the noise is now characterized by the presence of two axes of low noise.
Even in this case, the APE solver has been tested and figure 3.10 shows

the accordance between the analytical solution and the numerical data.
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Figure 3.10: Comparison of the analytical solution and numerical results of the acous-
tic pressure along the x-axis emitted by a quadrupole at t∗ = 150.

3.2.4 Propagation in Sheared Flow

So far, the APE have been tested on the propagation of the noise emitted
by the fundamental acoustic sources and radiated into a quiet medium.
Anyway, in industrial applications a flow inside ducts is always present
and it is often described by a non-uniform profile because of the pertur-
bation induced by singularities as, for instance, the control devices. For
this reason, the APE have also been solved on two cases that are about
the noise propagation in a flow with non-uniform velocity and pressure.
The results are compared with literature references because no analytical
solutions are available in such complex phenomena.

The first test-case deals with the propagation of the noise radiated by
a pulsating monopole in a sheared flow whose mean velocity profile is
described by the hyperbolic tangent U = 0.5tanh (y∗/25). The source
is placed at the origin at the axis and the only difference with the set-up
described in the paragraph 3.2.1 is represented by the mean flow. Since
no analytical solution is available for such a complex flow, the compar-
ison of the numerical results is made with a reference solution that can
be found in literature [16].
The visualization of the acoustic wave emitted by the monopole is dis-
played in figure 3.11: the mean flow affects the directivity of the acoustic
wave that now is no more characterized by spherical wavefronts.

A quantitative comparison with literature results is done looking at
the intensity of the acoustic pressure along the y∗ = 70 horizontal line
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Figure 3.11: Mean velocity profile and acoustic pressure emitted by a pulsating
monopole in a sheared flow at t∗ = 180.

as reported in [16] (figure 3.12). The amplitude of the pressure is per-

(a) APE (b) Reference solution [16]

Figure 3.12: Acoustic pressure at the time t∗ = 180 emitted by a pulsating monopole in
a sheared mean flow computed with the APE solver (a) and obtained from literature
[16] (b).

fectly described by the APE and it is in accordance with the literature
evidences. The small difference on the first sink on the right of the origin
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is due to numerical diffusion, while dispersion affects the wave as can
be seen by the phase at the boundaries of the domain. These issues are
associated to the numerical schemes (temporal and spatial) that are im-
plemented in OpenFoam that cannot reach higher orders than the third,
while it is well-known that the numerical dispersion is removed only
with higher-order schemes [51, 52]. Such an error is anyway acceptable
for the purpose of this work because the spectral analysis goes beyond
the interest in the evaluation of the SPL of the noise inside pipelines.

Another comparison with literature has been performed simulating
the noise propagation in a flow whose profile is similar to a jet, exactly
as the flow expected inside pipes in industrial applications. In this case
the velocity profile is described by U = 0.5/cosh

[
(1 +

√
2)y∗/10

]
and

the sound is emitted once again by a pulsating monopole. The compar-
ison with literature results is shown in figure 3.13 where the acoustic
pressure isolines are plotted. The diffusion effects noticed in the previ-
ous test are still present and the results computed with the APE smooth
out the lowest-intensity isolines in the back of the monopole and in
the front of the propagating waves. Despite these numerical inaccura-
cies, all the other isolines are in accordance with the reference solution,
i.e. the APE properly describe the peaks of the intensity of the acous-
tic pressure. This is confirmed by the formation of the ‘lobes’ of noise
around the jet that describe the directivity of the wave; according to lit-
erature, the angle at which the maximum noise is obtained is defined by
θ = cos−1 (1/(1 +M)) where M is the Mach number that here is im-
posed equal to 0.5. The directivity of the lobes computed with the APE
is about 49◦ that is very close to the literature value of θ ≈ 48◦. The
error introduced in the change of directivity of noise is so low that can
be quietly assumed negligible.

The results returned by the APE in the tests just described show the
goodness of the implemented solver that does not introduce numerical
instabilities. The evaluation of the intensity of the acoustic pressure is
always in accordance with literature results. Small errors due to diffu-
sion and dispersion are introduced by the numerical schemes used for
the discretization, respectively, of the temporal and spatial derivatives.
Because of the limitation of the schemes implemented in the OpenFoam
standard library no better results can be obtained under these aspects.
Because of the aforementioned reasons, the APE, as implemented, have
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(a) APE (b) Reference solution [2]

Figure 3.13: Acoustic pressure at the time t∗ = 900 emitted by a pulsating monopole
in a jet computed with the APE solver (a) and obtained from literature [2] (b).
Isolines from 10−2 to 10−3 (step 10−3) and 10−4.

been then applied to the aero-acoustics for the prediction of control de-
vices’ noise emissions.

3.3 APE for Aero-Acoustics

In the previous section 3.2 it has been discussed how the source terms
of APE can be modelled for the description of the fundamental acoustic
sources such as monopoles, dipoles and quadrupoles. In aero-acoustics,
a small branch of acoustics, the sources are more complicated than the
fundamental ones because they are connected to all the non-linear con-
tributes associated to the turbulence. The Lighthill analogy has been
already discussed in section 2.4.1 showing that the effects of the turbu-
lence are collected in the Lighthill tensor Tij defined by equation (2.14).
The derivation of the source terms for the APE is discussed in details
in Appendix A and section 2.5: according to literature [5] it is possible
to neglect the contribute of the source term Sp for the acoustic pressure,
while different formulations of Su have been derived in different papers.
The common point to all the possible expressions for the source term Su

is that it depends on the turbulent effects as described in equation (2.26).
In literature, different considerations (order of magnitude analysis and
filtering operations) led to the different formulations of Su [7]. In this
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work two possible expressions are considered. The first one [5, 48] is

Su = −ut· ∇u− u· ∇ut − ut· ∇ut. (3.12)

Its derivation is based only on the orders of magnitude analysis that re-
veals that the main terms are the ones associated to the interaction be-
tween the turbulent and mean flow field (shear noise), and to the self-
noise generated by the turbulence-turbulence interaction.
The second expression of the Su source term that is used in this work
is [3, 41]

Su = ut· ∇ut − ut· ∇ut (3.13)

and is characterized by a mean equal to zero.

The computation of the turbulent velocity fluctuations is a necessary
step required for the evaluation of the APE’s acoustic source terms. Two
possible approaches are feasible for the computation of the turbulence
through CFD: the first one evaluates the turbulent field at each time step
in every point of the domain thanks to the resolution of an unsteady DNS
or LES. This is the most complete way to describe the turbulence but not
the most efficient because of the numerical burden associated to that kind
of simulations.
The second approach is based on the reconstruction of the turbulent ve-
locity field from information about the mean flow as the mean velocity,
pressure and density that can be computed with a RANS simulation.
The reconstruction of the turbulent velocity is then made with the use of
a Stochastic Noise Generation and Radiation model (SNGR) that allows
to write the turbulent fluctuations exploiting the statistical quantities of
the turbulence. This approach is much faster than the previous one and
it is the proper choice for industrial purposes. In fact, because of its high
computational cost, the first approach is usually not feasible in an indus-
trial framework where the companies seek for results in a short time.
In this work the turbulent velocities are thus computed with a SNGR
model that has been implemented in OpenFoam. Next sections are about
the main features and characteristics of the model implemented and used
in chapter 4.

3.3.1 Stochastic Noise Generation and Radiation (SNGR) Model

The Stochastic Noise Generation and Radiation method is an algorithm
for the synthetic generation of turbulent quantities from the information
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from an averaged flow field. Turbulence is a very complex phenomenon
whose detailed description goes beyond the purpose of this work, but
its main features and characteristic quantities can be found for instance
in [34]. However, turbulence is not a deterministic phenomenon nor a
completely stochastic one: turbulent structures in space and time arise
and their evolution is described thanks to their statistics. The most im-
portant turbulence theory has been formulated by Kolmogorov in 1941
[33] for isotropic turbulence. The analysis of the turbulence statistics
is developed in the Fourier space and the synthetic generator of the tur-
bulent velocity thus follows the same approach making use of Fourier
modal decomposition. A description of some of the possible synthetic
generators can be found in [40].

This work makes usage of a synthetic generator that writes the turbu-
lent velocity as a finite sum of Fourier modes. Two formulations of the
turbulent velocity are considered: the first one (Karweit method) creates
a field that takes into account only the spatial correlation [5, 8, 31] and
reconstruct ut as

ut (x, t) = 2
N∑
n=1

ũncos [kn·x + ψn]σn. (3.14)

The second formulation (Bailly method), presented in [1, 3], write ut as

ut (x, t) = 2
N∑
n=1

ũncos [kn· (x− ut) + ψn + ωnt]σn. (3.15)

Such a formulation creates, in each point x of the domain, a temporal
series of turbulent velocities that are not independent from their previous
values, but are correlated in time according to the turbulence theory. In
addition to the temporal correlation, the ut field still maintains the same
spatial correlation as the Karweit method (3.14).
The contributes of the terms that appear in the Fourier series are:

• N is the number of Fourier modes used to describe the turbulent
velocity. The number of these modes is chosen in order to guaran-
tee an accurate discretization of the energy spectrum preserving the
total energy.

• ũn is the amplitude of the n-th Fourier mode (σ is a unit vector) and
describes the intensity of the turbulence associated to one mode.
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The energy of the turbulent mode is extracted from the discretiza-
tion of the energy spectrum E(k).

• kn is the wave vector correspondent to the n-th Fourier mode.

• x − u t takes into account for the spatial correlation of the tur-
bulence considering also the convection of the turbulent structures
due to the mean flow.

• ψn is the phase of the n-th Fourier mode.

• ωn is the pulsation of the n-th Fourier mode and it describes the
temporal correlation of the turbulent structures. It is introduced for
the accounting of the turbulent velocities’ temporal correlation.

• σn is the directivity unit vector of the n-th Fourier modes.

Some of these variables are deterministic, while others need a random
process to be generated. Their detailed description is treated in the next
sections.

3.3.1.1 Energy spectrum

The deterministic quantities that are generated by SNGR model accord-
ing to turbulence statistics [33] are the intensity of the Fourier modes ũn
and the intensity of each wave vector, i.e. the wave number kn. The most
important quantity in the description of the turbulence is its energy spec-
trum E(k) that describes the quantity of mechanical energy associated
to each spatial length-scale 1/k. The theoretical definition of the energy
spectrum is based on the auto-correlation function of the velocity field.
Because this is exactly the unknown in the SNGR, other models have
been developed in order to describe it with just the mean flow variables.
In this work the Modified Von-Karman spectrum [4, 40] has been used
for the E(k) modelling:

E(k) =
2

3
A
K

ke

(k/ke)
4[

(k/ke)
2 + 1

]17/6
exp

[
−2(k/kK)2

]
, (3.16)

where K is the turbulent kinetic energy, ke is the most energetic wave
number and kK is the Kolmogorov wave number, i.e. the smallest scale
at which viscous forces are less intense than the inertial ones and do not
dissipate energy. The value of ke is imposed equal to ke = 1.4539π

55
1
L
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where L is the integral length scale, while the definition of the Kol-
mogorov wave number is obtained again from the mean flow quantities
as

kK =
ε1/4

ν3/4
, (3.17)

where ε is the energy dissipation rate and ν is the viscosity of the fluid.
The shape the energy spectrum E(k) in a point of the domain can be
visualized in figure 3.14 in the natural scale and in the bi-logarithmic
on. In particular figure 3.14(b) proves that the shape of the spectrum in
the inertial band is in accordance with the theoretical description of the
“5/3” turbulence law.

(a) (b)

Figure 3.14: Modified Von-Karman spectrum (a) and comparison with k−5/3 law
(dashed line) in log-log scale (b).

The energy spectrum E(k) is a continuous variable that needs to be
approximated through its discretization in N intervals. The upper ex-
treme of the n-th interval is evaluated as

kn = exp [ln(k1) + (n− 1)∆k] ∀n = 1, ..., N (3.18)

where k1 = ke/5 and ∆k = ln(kN )−ln(k1)
N−1

. In turn, kN = 2π
7∆x

with ∆x
defined as a characteristic dimension of the grid spacing.
From the discretized energy spectrum it is possible to evaluate the am-
plitude kn of the wave vectors kn that appears inside the Bailly model,
but also the intensity of each Fourier mode because

ũn =
√
E(kn)∆kn (3.19)
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Figure 3.15: Relative error on the integral of E(k) changing the number of intervals
N .

where ∆kn = kn − kn−1.
In order to guarantee a good reconstruction of the turbulent field it is

important that the number N of the Fourier modes is high enough to
obtain a good description of the spectrum. In this work N is set equal to
200 that is enough to ensure that the relative error between the integral
of the continuous spectrum and the discretized one is lower than 0.05%
as shown in figure 3.15.

3.3.1.2 Random Variables in SNGR models

The stochastic processes in the SNGR model are about the random gen-
eration of some terms that appears in equation for the turbulent velocity
ut. In the Bailly method described by equation (3.15), for each of the N
Fourier modes, a random generation process is required for the evalua-
tion of:

• the direction of the wave vector kn;

• the phase ψn;

• the pulsation ωn;

• the direction of the Fourier modes σn.

Since the direction of a vector is defined by two quantities (longitudi-
nal and azimuthal angles), six variables must to be synthesized for each
wave vector (directions of kn and σn, phase ψn and the pulsation ωn).
The SNGR method described in [1, 3] removes one of the degrees of
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freedom with the introduction of the incompressibility assumption that,
in the Fourier space, corresponds to an orthogonality relationship be-
tween the wave vector and the direction of the turbulent velocity. This
means that

kn·σn = 0 ∀n = 1, .., N. (3.20)

One of the angles required for the characterization of the direction of
σn is thus defined by this equation. A graphical visualization of the
relative positions of the wave vectors kn and σ is displayed in figure
3.16. According to that figure, the angles that need to be synthesized

Figure 3.16: Position of the wave vector kn and the direction of the n-th Fourier mode
σn.

are φn, ϑn and αn. The direction of the vector kn is chosen randomly
on a unit sphere, while αn is synthesized with uniform probability in
[0, 2π]. The same distribution is assumed for the description of the phase
ψn, while the pulsation is taken from a Gaussian N (ωtn, ω

2
tn) where

ωtn =
√

2K/3 kn [1, 40].

In the Bailly method all the five random variables must be synthe-
sized for all the N Fourier modes, but their values do not change during
the time advancement since the temporal correlation is managed by the
variable t inside the cosine in equation (3.15). The computational bur-
den of this approach is negligible if compared to the APE’s resolution
burden because, after the first iteration, no other random generations are
required. In addition to this, the data stored during the simulation are
only the values of the five random quantities.

The synthesis of the random variables in the Karweit method de-
scribed by equation (3.14) involves the same quantity except the pulsa-
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tion ωn. Even though less variables need to be synthesized, this approach
results to be more expensive than the Bailly one because, since the time
advancement is not managed by the variable t, at each time step it is
required to synthesize all the four variables for all the N modes.
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CHAPTER4
Numerical Investigation of the Noise

Generated by an Orifice

In Chapter 3 the numerical tools for the computation of fluid-dynamic
noise generation and propagation in a medium have been discussed. The
hybrid approach based on the resolution of the APE system has been im-
plemented and tested on benchmark cases that have shown its reliability
in the prediction of the noise intensity, whatever its source. In indus-
trial applications the source of noise is definitely more complex than
the fundamental sources and, in the case of the noise produced by flow-
control devices, the aero-acoustics theory suggests that it corresponds to
the high-turbulent region. This area is usually localized at the outlet of
a flow-control device. A very small amount of noise is produced inside
the body of the valve and transmitted outside of it [28], while the interest
in the noise prediction is focused on that part of acoustic energy that is
generated at the outlet, convected downstream and propagated outside of
the pipe. Of course, several types of control valves are available on the
market but most of them are characterized by a flow that, at their outlet,
is made of one jet or more interacting jet coming from different paths.
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For this reason, the jet may be considered as the reference configuration
for the investigation of the noise emitted by control devices.
In this chapter the APE system (2.24) is applied and solved for the char-
acterization of the acoustic emission of a transversal perforated plate
with a single perforation whose axis is aligned with the pipe’s one. The
nominal diameter of the pipe inside of which the plate is installed is
equal to 3” (D = 77.5mm). In the rest of the work, the perforated plate
will be also referred to as resistor or orifice.

4.1 Fluid-Dynamic Characterization of the Orifice

The orifice used in the simulations presented in this chapter is the one
described in the technical draw in figure 4.1. Its relevant features are

Figure 4.1: Technical draw of the orifice. Property of Pibiviesse S.r.l.

the dimension of the perforation and its thickness. The diameter of the
orifice is d = 30.48 mm that corresponds to a porosity β = 0.4 that is
defined as

β =
d

D
. (4.1)

The fluid-dynamic characterization of a hydraulic device is made through
some quantities defined in the international standard [26, 29, 44]:

• X = ∆p/p1 is the pressure drop ratio, i.e. the pressure drop divided
for the pressure upstream of the device (inlet pressure);
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• FL =
√

(p1 − p2) / (p1 − pvc) is the liquid pressure recovery fac-
tor where p2 is the outlet pressure and pvc the one within the vena
contracta;

• Xcr is the pressure drop ratio at the velocity in the vena contracta
of a compressible fluid is equal to the speed of sound;

• XT is maximum pressure drop ratio over which, increasing ∆p, no
increase in flow-rate is obtained for a compressible fluid;

• Y is the expansion factor that is a coefficient introduced for com-
pressible fluids in order to compute them with similar equations to
the ones introduced for incompressible fluids;

• CV is the flow coefficient and describes the flow-rate that passes
through a device with a unity pressure drop.

For the tested device represented in figure 4.1, previous works stated
that its FL is equal to 0.745 [39]. The liquid pressure recovery factor is
used for the estimation of XT

∼= 0.85F 2
L and Xcr

∼= 0.47F 2
L for an ideal

gas [44]. The flow coefficient is computed as

Y CV =
1

27.3

Qm√
ρ1∆p

, (4.2)

where Y = 1− X
3XT

for an ideal gas, Qm is the mass flow rate (in kg/h)
and ρ1 is the inlet density. The flow coefficient of the studied orifice
computed with RANS simulation is about 34.5 [17].
The RANS simulations are performed in OpenFoam running the compu-
tation on a simplified geometry that exploits the symmetry of the domain
and of the perforated plate. Since the software works in Cartesian coor-
dinates (not cylindrical), a slice of pipe corresponding to one fourth of
the pipe is used for the CFD simulation (inner angle equal to 90◦). The
mesh is a structured hexahedral one, designed in order to guarantee a
y+ ≈ 85 far from the orifice for the undisturbed flow.

The flow displayed in figure 4.2 refers to the one developed imposing
a pressure drop ∆p = 1 bar with an upstream pressure p1 = 5 barA. It’s
dynamic is characterized by the formation of a jet along the axis of the
pipe with the confinement of the vena contracta inside the orifice. In fact,
its enlargement is partially obstructed by the walls of the orifice whose
thickness had been designed in order to guarantee the reattachment of
the vena contracta inside of the resistor, before it can reach the trailing
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edge. The influence of the orifice’s thickness on the pressure is such that,
after the drop on the leading edge due to the transformation of potential
energy in kinetic one, the energy-recovery does not take place contin-
uously but it is interrupted in correspondence of the trailing-edge. The
pressure curve (black) in figure 4.2 describes this effect with its change
in convexity.

Figure 4.2: Velocity (coloured contours) and pressure along the axis of the pipe (black
line) on a slice of the pipe. Results from RANS simulation with p1 = 5 barA and
p2 = 4 barA.

4.2 Noise Prediction with APE

In section 3.3 it has been discussed the possibility to use different models
for the evaluation of the source term Su and algorithms for the synthetic
generation of the turbulent velocity. Both of them influence the APE
prediction because they respectively change the intensity of the acoustic
source and the properties of the turbulence necessary for the evaluation
of the APE source term. Several models have been developed in liter-
ature: in this work the attention is focused on testing the effects of the
Karweit method (3.14) and the Bailly one (3.15) for the generation of
the turbulent velocity ut in the SNGR, and on the source term modelling
according to the equations (3.12) and (3.13). No evidences of the best
choice for industrial applications has been found in literature and for this
reason, this section is focused on their analysis in order to find the most
suitable method. The evaluation of the goodness of one method is done
thanks to the comparison of the noise prediction with the results returned
by a Large Eddy Simulation.
The coupling of the two algorithms for noise synthesis and the two
source term’s modelling equations returns four possible combinations:

• Karweit method for SNGR and source term (3.12) from Bechara’s
work: this source term will be called SuKB and the corresponding
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formulation APEKB;

• Karweit method for SNGR and source term (3.13) with zero-mean:
this source term will be called SuK and the corresponding formu-
lation APEK ;

• Bailly method for SNGR and source term (3.12) from Bechara’s
work: this source term will be called SuBB and the corresponding
formulation APEBB;

• Bailly method for SNGR and source term (3.13) with zero-mean:
this source term will be called SuB and the corresponding formu-
lation APEB.

From the numerical point of view, the computational burden of all the
four APE formulations is comparable among them. Their complexity
depends only on the number of operations performed by the SNGR: the
Karweit method synthesizes just one variable less than the Bailly ap-
proach (the pulsation ωn) but has the disadvantage to synthesize all the
other quantities at each time step in order to create a temporal series. The
Karweit method it is thus more expensive than the Bailly one, but its bur-
den is anyway much lower than the one associated to the resolution of
the APE linear system. Their influence on the total burden associated to
the APE resolution is thus comparable among them.

As pointed out, the first step of this work is about the identification of
which among the four models is the most suitable for the noise predic-
tion emitted by the jet downstream of the orifice. Their reliability is thus
tested thanks to the comparison of their results with the noise computed
by a LES solution. In order remove all possible errors coming from a
different description of the fluid-dynamic, the mean flow field used for
the resolution of the APE system is the time-averaged one returned by
the LES instead of the mean one coming from RANS [19]. The settings
used for the LES are described in the next section 4.2.1.
For the resolution of the APE a uniform structured mesh is built and the
equations are solved with totally reflective boundary conditions on the
walls of the pipe and non-reflecting ones on the numerical boundaries
(inlet and outlet). The time advancement is made with a time-step equal
to 10−7s and the simulation is run till a time T = 2 ms, after which the
distribution of the acoustic pressure inside the pipe reaches a stable con-
figuration, terminating its transient from the initial silent condition. The
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Figure 4.3: Sound pressure level downstream of the orifice computed with different
models applied on APE.

noise intensity predicted by the four APE models is evaluated thanks to
the Sound Pressure Level (SPL) on the walls of the pipe. The expected
trend of the noise emitted by a flow-device is similar to the one described
by Kirkwood in [32] that focused on the experimental investigation of
perforated plates noise emissions. Kirkwood measured the noise along
the pipe and described its trend as a curve made of a fast increase of
SPL close to the device followed by a fast decrease and a slower one far
enough from the resistor.
The SPL trends returned by the APE with all the tested models are visu-
alized in figure 4.3.

Except for the APEK , all the other curves has a shape in accordance
with the one described in literature. Anyway, the four formulation re-
turn noise predictions shifted among them. The APEBB computes the
highest noise, followed by APEKB and by APEB. The lowest formula-
tion is the APEK whose SPL prediction is about 25/30 dB lower than
the one computed with the APEBB. A further comparison with the four
different methods is necessary for the identification of the best model.
This is done looking at the acoustic pressure inside the pipe. Figure 4.4
shows the instantaneous pa pattern on a slice of the pipe, downstream of
the orifice, returned by the different models described before. The pat-
terns of the four cases are qualitatively similar among them: the acoustic
pressure is distributed with alternate structures with negative and posi-
tive intensity. They are located in the shear layer around the potential
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(a) APEKB

(b) APEK

(c) APEBB

(d) APEB

Figure 4.4: Instantaneous acoustic pressure pa at time T = 2ms calculated with
different APE models applied on the system (2.24). Contours of the mean axial
velocity. Orifice’s trailing edge at x = 0.
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core (not within it) and at the end of the jet decreasing their intensity
moving far from the orifice.
Differences among the four models are about the intensity (as expected
from the SPL considerations) and the dimension of the structures:

• if the source term Su is modelled as (3.12) (figure 4.4.(a)-(c)) the
amplitude of the acoustic pressure is higher than the respective one
computed with the zero-mean source term (3.13) with the same
SNGR model (figure 4.4.(b)-(d));

• if the Karweit method is used for the synthesis of the turbulent ve-
locity (figure 4.4.(a)-(b)) the amplitude of the acoustic pressure is
lower than the respective one computed with the Bailly method de-
scribing the source term in the same way (figure 4.4.(c)-(d));

• the structures returned by the Bailly method with the description
of the source term (3.12) (APEBB in figure 4.4.(c)) are bigger than
the other simulations. This mean that they are propagated with a
different wavelength and are generated with a different frequency.

All these considerations are in accordance with the trend described in
figure 4.3 but do not help to understand which is the most suitable for-
mulation. For this reason, a further comparison with the results coming
from a LES is required.

4.2.1 Comparison with LES

A Large Eddy Simulation is performed for computing the SPL emitted
by the orifice and for using it as further comparison for the APE models
introduced in the previous section. LES belongs to the so-called CAA
direct approaches: its advantage is that no acoustic model is required
for the noise propagation since it is computed together with the fluid-
dynamic simulation [53].
The geometry on which the LES is run is the complete 3D pipe with-
out any symmetry plane because of the three-dimensional behaviour of
the turbulence (figure 4.5). The inlet of the pipe is placed 15d upstream
of the resistor and the outlet 25d downstream of it, far enough to avoid
the influence of the outlet on the computed fields. The modelling of the
subgrid turbulence is made through a one-equation model developed by
Yoshizawa [54] based on the resolution of a transport equation for the
kinetic energy KSGS . The simulation is run on a uniform, Cartesian grid
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Figure 4.5: 3D domain for LES simulation.

with a spacing that allows to compute the sound propagation up to al-
most 70 kHz according to the formula fmax = c0/(5∆x) [11] where
c0 is the speed of sound in the free field and ∆x is the spacing of the
grid. The dimension of the filter for the application of the subgrid model
is computed as the cube root of the cells’ volume. The time spacing is
adapted at each time step in order to keep the Courant number lower
than 0.75, and the whole simulation is run for about 200 characteristic
periods D/Uj where Uj is the velocity of the jet developed at the outlet
of the orifice.
The physics of the gas inside the pipe is described by the ideal gas model
(dry air) whit viscosity and specific heat that change with temperature
according respectively to Sutherland’s law and JANAF polynomial.
The movement of the fluid is imposed through the assignment of bound-
ary conditions with the pressure values on the inlet patch (total pressure
equal to 5 barA) and at the outlet (static pressure equal to 4 barA). With
this pressure drop, a Mach number equal to 0.7 is reached inside the
jet and the Reynolds number referred to the mean velocity in the pipe is
5.3· 105. Wave transmissive boundary conditions are also added on these
patches in order to avoid numerical reflection of the incident waves. On
the other boundaries of the domain (walls of the pipe and orifice) no-slip
condition is imposed while their thermodynamic behaviour is modelled
as adiabatic. The external temperature is imposed equal to the ambient
one at 300 K.

The velocity field computed with the LES is averaged over the differ-
ent time steps and the time-averaged velocity is used for the definition
of the length of the jet at the orifice outlet. Its profile along the axis of
the pipe is shown in figure 4.6 and helps to define the jet length equal to
about 4d. Unlike the RANS simulation, LES provides details also on the
turbulence distribution of the flow inside the pipe. In aero-acoustics the
noise generation takes place only in the regions characterized by high
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Figure 4.6: Time-averaged velocity along the axis of the pipe.

turbulence. The vorticity ω = ∇× u is an indicator of high-turbulence
region and according to Powell-Howe theory of vortex sound [25] it is
a necessary condition for the generation of the flow-induced noise. Its
distribution is visualized in figure 4.7 and it shows that ω reaches its
highest intensity in the annular shear layer around the potential core and
at the end of the jet filling each transversal section of the pipe.

Powell-Howe theory states that the presence of ω is just a neces-

Figure 4.7: Instantaneous vorticity field: visualization of the components of ω or-
thogonal to the surfaces (ωy in the longitudinal section and ωx in the transversal
section). Flow from left to right.

sary condition (not sufficient) for noise generation: the definition of the
acoustic source region is thus performed through the turbulent kinetic
energy K (that can be derived from the RANS simulation as well). In the
Acoustic Perturbation Equations, the region of domain where the source
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terms are not equal to zero is defined as the part of the domain where K is
higher than a a percentage of its maximum value assumed in the domain.
Here the percentage is chosen equal to the 20% in accordance with [41].
The evaluation of the source region is made with the time-average of K
computed as half of the trace of the averaged subgrid scale stress tensor

K = 0.5
(
u′u′ + v′v′ + w′w′

)
. (4.3)

Figure 4.8 shows the distribution of the turbulent kinetic energy so cal-
culated and its intensity suggests that the biggest generation of noise is
located downstream of the potential core of the jet and not in the mixing
layer where the vorticity reaches its peak.

Figure 4.8: Time-averaged turbulent kinetic energy from LES downstream of the ori-
fice. Flow from left to right.

According to the procedure described in [11] it is possible to compute
the acoustic pressure from the LES output and compare it with the results
obtained by the APE described in the previous section that were run with
the mean quantities from the LES here presented. The SPL evaluated on
the walls of the pipe is compared with the one plotted in figure 4.3 in
order to define which combination of models (sources and SNGR) is the
one which that shows the better accordance with LES results. The noise
computed with the Bailly method for the SNGR and the source term
with zero-mean (APEB) is the one that return the closest SPL curve to
the LES noise as shown in figure 4.9. The accordance of the two curves
is almost perfect in all the regions (close to the orifice and far from it)
since both describe the increase of noise in the region close to the end
of the jet (x = 4d) with the following decrease of intensity with a slope
that changes about at x = 9d. Such a comparison suggests that, among
the four models combination, this is the best choice that returns the most
reliable prediction for the considered orifice.
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Figure 4.9: Sound pressure level downstream of the orifice computed with LES and
different models applied on APE.

4.2.2 Influence of the Flow-Rate on the Noise Emission

The APEB has been identified as the model that can be used for the pre-
diction of the noise emitted by the orifice. The analysis of the influence
of the boundary conditions on the noise emission is always a relevant
topic in industrial applications because of the different flow-conditions
in which control devices usually works (temperature, density and pres-
sure). Here the influence of the pressure drop at the sides of the orifice
(with fixed upstream pressure) has been investigated. This is a typical
procedure for the fluid-dynamic characterization of a device that allows,
for instance, to evaluate its flow coefficient CV [29].

Some of the tests performed on the orifice are described in table 4.1.

p1 [barA] p2 [barA] X Qm [kg/s] Re SPLmax[dB]
5 4.63 0.07 0.38 3.47· 105 160.77
5 4.42 0.11 0.47 4.23· 105 165.24
5 4.28 0.15 0.51 4.62· 105 166.74
5 4.07 0.18 0.56 5.12· 105 168.96
5 4 0.2 0.58 5.26· 105 169.53

Table 4.1: Simulations on the orifice changing the pressure drop at its sides

The simulations are run with the APE from the RANS mean field (fastest
approach in industrial applications). The pressure drop is imposed such
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that the pressure drop ratio X is kept lower than the critical one Xcr =
0.35 for the studied orifice (subsonic regime).
The reduction of the downstream pressure induces an increase of all the
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Figure 4.10: SPL on the walls of the pipe changing the pressure drop at the sides of
the orifice.

other fluid-dynamic quantities (flow-rate and Re) but also of the noise
intensity. This is justified by the increase of the mechanical energy asso-
ciated to the flow-rate: the noise is a fraction of the mechanical energy
that is generated by its dissipation and therefore it increases with the
flow-rate.
The trend of the SPL along the walls of the pipe is not influenced by
the pressure drop, but the SPL curves are just shifted. The mismatch be-
tween the most intense noise and the lowest one is about 9 dB. Finally,
another influence of the pressure drop on the SPL curves is on the po-
sition of the noise peaks that move downstream increasing the flow-rate
following the jet length.

4.2.3 Acoustic Pressure Inside the Pipe

The SPL curves computed with LES and with APEB displayed in figure
4.9 are not perfectly coincident in the region around the peak of noise.
Such a difference is investigated with a comparison of the acoustic pres-
sure inside the pipe: from the APEB results (figure 4.4.(d)) it is evident
the formation of alternated pa structures localized in the shear layer with
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a growing intensity moving downstream up to reach their maximum just
after the end of the jet (figure 4.4.(d)). This is exactly the position where
the peak of the SPL is located and along the walls of the pipe there is a
correspondence between the SPL trend and the intensity of the acoustic
pressure.
The decrease of noise after its peak is justified by the decay of the in-
tensity of these structures. Furthermore, the change in the slope of the
SPL curve’s decreasing branch placed about at x = 9d suggests that the
acoustic influence of these structures does not goes further than that sec-
tion. Their influence is just localized to their very-near field. In fact,
if the noise far from the orifice was due to emission of the structures it
should not change its behaviour moving away from the end of the jet
where the most intense structures are located.
On the other side, it is clear that the fast decrease of SPL just down-
stream of the peak is an indicator of the local effect of the acoustic pres-
sure structures and of the fast decay suffered by the noise generated by
them. The noise far from the orifice must be thus produced by another
source that is the one placed at the end of the jet where, according to the
turbulent kinetic energy in figure 4.8, is located the region of strongest
noise generation.

The considerations just explained are even enforced by the compar-
ison of the acoustic pressure field from APEB with the one computed
with LES. The pressure fluctuations returned by LES are visualized in
figure 4.11. At a first glimpse the qualitative pattern looks a bit different
than the one from the APEB (figure 4.4.(d)). The structures in the shear

Figure 4.11: Instantaneous acoustic pressure field downstream of the orifice on a
longitudinal section of the pipe and contours of the time-averaged longitudinal ve-
locity calculated with LES. In yellow the boundary of the acoustic source region; in
grey contours of the mean axial velocity.
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layer are still present but their dimension and intensity are lower than the
one computed with the APE. Despite such differences, their generation
mechanism and dynamics inside the pipe are exactly the same described
by the APE system. The birth of these structures, in fact, happens about
at half length of the jet in the annular shear layer and it is due to the inter-
action of pre-existing pressure perturbations with the flow. In particular
in the shear layer the gradient of the velocity and the vorticity (figure
4.7) are very high and give a contribute to the noise generation and to
the refraction of the acoustic wave. The structures are then convected
by the mean flow towards the end of the potential core where they are
no more confined in the shear layer but fill the transversal section of the
pipe.
The difference between LES and APEB acoustic pressure is that APE
overestimates the intensity and the dimension of the structures; when
they are convected downstream they locally hide the contribute of the
other chaotic structures not confined in the shear layer. For a better
characterization of the phenomenon it is possible to define four regions
downstream of the orifice according to the information from LES about
both fluid-dynamics and the acoustics:

1. just downstream of the orifice (between 0 and 2d) the shear layer
has a very low thickness and it is filled by high vorticity that, nev-
ertheless, here does not generate noise [25];

2. between 2d and 4d the thickness of the shear layer increases and the
interaction of the pre-existing noise with the sheared flow induces
the generation of further noise in the form of order structures of
alternate negative and positive acoustic pressure;

3. the structures are convected downstream towards the end of the jet
and enter the region between 4d and 9d where the potential core is
no more present and the turbulent flow fills each transversal section
of the pipe. In this region, according to the turbulent kinetic energy,
the most intense part of the source region is located. The acoustic
pressure pattern is no more so ordered as in the previous region but
it is more chaotic (figure 4.11)

4. downstream of 9d the turbulence vanishes and the intensity of the
acoustic pressure decreases fast.

As already pointed out, the structures generate a noise that decays
very fast. Such a statement is enforced by the comparison of both pa
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and SPL computed with LES and APEB. In the shear layer the acoustic
pressure returned by APEB is almost one order of magnitude higher than
the one from LES, but APE’s SPL peak is just 1 dB higher than the
one from LES. The noise produced by the structures in the shear layer
decays so fast that on the walls its contribute is already smoothed. The
structures hereby described play a key-role in the definition of the shape
of the curve of the SPL on the walls with its local increase of noise,
but their influence on the noise outside of the shear layer is negligible
because of their fast decay.

4.3 New Modified APE

The results obtained from the tested APE and from the LES highlighted
the irrelevance of the acoustic structures in the shear layer on the noise
far from the orifice. The applicability of the APE to industrial prob-
lems encourages to find the fastest formulation for obtaining the desired
information. In the field of valves manufacturers, the reference inter-
national standards characterize the noise emission of a device with the
SPL evaluated 1 meter downstream of it [28]. When this distance is far
enough from the device it is useless to spend time and resources for the
description of the near field structures detected in the shear layer. A
smart numerical approach should be based on the reduction of compu-
tational time for the description of those structures that do not influence
the noise prediction in the position indicated by the standards. For this
reason a new formulation of APE is here proposed without the terms that
describe the noise generation mechanism in the shear layer.

In order to identify them, a deeper comprehension of the physical
meaning of the terms in the APE system (2.24) is needed. In [16] a
different interpretation of the APE is given: the system is not derived
with the flow decomposition (2.22) but with the application of a filter on
the Euler equations’ source terms that modifies them exciting only the
acoustic modes. Since the source term of the acoustic pressure equation
(2.24a) has been considered negligible, here the discussion is focused on
the equation for the acoustic particle velocity. When the filter is applied
to the momentum balance equation of the linearized Euler equations, its
filtered source term that excites only the acoustic modes can be written
as the gradient of a potential field ∇Φ. The potential Φ is decomposed
in three terms that represent different contributes to the noise generation
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[16]

∇Φ1 = u· ∇ua + ua· ∇u (4.4a)

∇Φ2 =
∇p
ρ

(4.4b)

∇Φ3 = ut· ∇ut + ut· ∇u + (ut· ∇ut)′ . (4.4c)

When the flow is isentropic, simplifications can be introduced on these
three terms: ∇Φ1 and ∇Φ3 are the only two terms that generate noise
while ∇Φ2 can be moved to the left-hand side since it does not work as
source term. The comparison of these three term with the acoustic par-
ticle velocity equation (2.24b) suggests that, in the APE system (2.24),
∇Φ3 is included inside the source term Su, while ∇Φ1 is moved to the
left-hand side because it contains the acoustic particle velocity. Even
though ∇Φ1 is on the left-hand side of (2.24), it is a noise generator.
Furthermore, it can be manipulated and thanks to irrotationality of ua, it
can be rewritten as

∇Φ1 = ∇ (u·ua) + ω × ua, (4.5)

where ω is the vorticity of the mean velocity. This formulation helps to
clarify the interaction of the acoustic wave with the mean flow and with
its mean vorticity, and their influence on the noise generation mecha-
nisms. These effects are in fact the responsible of the generation of
the structures in the shear layer. For this reason and with the purpose
described before to reduce to complexity of the APE system, the new
formulation of APE is obtained removing the terms contained in∇Φ1.
The new modified APE system is thus

∂pa
∂t

+ uj
∂pa
∂xj

+ γ

(
p
∂uaj
∂xj

+ pa
∂uj
∂xj

)
+ uaj

∂p

∂xj
= 0

∂uai
∂t

+
1

ρ

∂pa
∂xi
− pa
ρ2c2

∂p

∂xi
= Sui.

(4.6a)

(4.6b)

The equation for the acoustic pressure is exactly the same as the previous
APE system. The removal of the two terms described by∇Φ1 has effect
only on the left-hand side of the equation for ua. The source term Su is
modelled as suggested by the analysis presented in section 4.2 with the
Bailly SNGR and the zero-mean source.
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From the numerical point of view, the simplification introduced in the
new formulation changes the structures of the linear system associated to
the equation for the acoustic particle velocity. In the APE system (2.24)
ua is an implicit quantity and the matrix of the linear system has non-null
off-diagonal terms connected to its derivatives. In the new formulation
the matrix for equation (4.6b) is diagonal and this simplification allows
to change the method for the resolution of the system from an iterative
approach to a faster direct one. In addition to this, the coupling between
the two equations (acoustic pressure and acoustic particle velocity) is
extremely reduced and less iterations are required in order to reach the
convergence at each time step. The overall reduction of computational
time is about the 20%.

4.3.1 Acoustic Prediction with the Modified APE

The new APE formulation is now applied to the same case described
before and, as for the comparison made in section 4.2.1, it is run with
the mean field obtained from the time-averaged quantities from LES.
As expected, the acoustic pressure is distributed in the domain with a

Figure 4.12: Instantaneous acoustic pressure pa computed with different numerical
methods: LES, APE system (2.24) and new modified APE (4.6). Different scales
according to the own values.

completely different pattern from the ones computed with the previous
methods. Figure 4.12 compares the output of the different simulations
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scaled with a proper factor in order to have a similar qualitative rep-
resentation of the acoustic pressure pattern. The results show that the
typical structures described in the previous sections are not generated in
the shear layer by the new modified APE. The terms in ∇Φ1 are thus
the only responsible for the generation of those structures, whose nature
is due only to the mutual interaction between the acoustic wave and the
sheared flow field.
Despite the absence of those structures, the results coming from the new
APE are interesting because of the intensity of the acoustic pressure that
is of the same order of magnitude of the oscillations described by the
LES. Further comparison can be done looking at the SPL curve on the
walls (figure 4.13): as expected close to the orifice the SPL does not
have the typical hill-shaped profile due to the increasing intensity of the
structure in the shear layer, but far from the resistor it overlaps the noise
computed with the complete APE system (2.24). This is a further con-
firm that the pa structures affect the noise only locally with the peak of
SPL close to the end of the jet, but their influence on the radiated sound
is completely negligible.
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Figure 4.13: Sound pressure level downstream of the orifice computed with different
APE systems.

In industrial applications the interest in the noise prediction is con-
centrated on the noise 1 meter downstream of the valve. When such a
distance is far enough from the control device it is thus possible to apply
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the new APE (4.6) for a successful noise prediction. The disclaimer be-
tween near and far is given by the dimension of the jet: for instance, in
the case of the orifice, the dimension of the jet is given by the diameter
of the perforation. It is thus possible to state that when the diameter of
the orifice is small enough to have 9d < 1 m the new APE formulation
is able to return, with a lower computational burden, the same prediction
as the previous APE formulation (2.24).

4.4 Main Results with APE

The application of the Acoustic Perturbation Equations for the predic-
tion of the internal Sound Pressure Level emitted by an orifice has been
investigated. The APE are solved after a compressible RANS simula-
tion (fastest CFD approach) coupled with a SNGR model for the syn-
thesis of the turbulent velocity. The choice of the fluid-dynamic models
(RANS+SNGR) is driven by the necessity to apply this numerical anal-
ysis to industrial applications that claim for results in very short time.
The APE formulation has been chosen among several literature formu-
lations: it is directly derived from the Euler equations with the decom-
position of the flow in a mean part and in turbulent and acoustic fluc-
tuations. Linearization of the second order acoustic quantities has been
performed.
Two SNGR models (Karweit method and Bailly one) has been com-
pared: they are selected because of their low computational burden and
low quantity of stored data.
The combination of the two possible SNGR models with two possible
source term formulations gives four possible combinations that have
been compared among them and with a LES solution. All the four
APE formulations describe the generation of acoustic pressure structures
in the shear layer due to the interaction of pre-existing noise with the
sheared flow. The APE formulation written with the Bailly method for
the SNGR and the zero-mean source term returns SPL on the pipes’ wall
similar to the LES one. Despite such a similarity, the intensity of the
acoustic pressure of the structures in the shear layer is overestimated by
the APE. The nature of these structures has been investigated and it has
been found that their contribute to the noise is just local and the sound
they generate decays very fast. For this reason, the difference between
the APE and the LES is more evident on the intensity of the acoustic
pressure inside the domain (in the shear layer) than on the SPL evalu-
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ated on the walls.
Furthermore, the noise far from the orifice has been computed neglect-
ing the influence of these structures with a new APE formulation. This
new system is preferable to the first APE formulation because of its re-
duced computational time obtained thanks to the simplification of the
mathematical terms that describe the generation of the acoustic pressure
structures in the shear layer. As supposed, the SPL prediction returned
by the new APE formulation far from the orifice is in accordance with
the noise computed with the other methods even though the structures in
the shear layer are not described.
The international standards measure the noise 1 meter downstream of
the tested device: for all those devices which develop a small jet at their
outlet, the new APE formulation is thus a reliable and faster system for
SPL computation.
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CHAPTER5
Numerical Evaluation of Valves’

Parameters in International Standards for
Industrial Aerodynamic Noise

In this chapter another approach for the estimation of valves’ noise emis-
sion is presented. In chapter 4, APE have been introduced and a phys-
ical description of the noise generation mechanisms has been provided.
A new fast APE formulation has been formulated in order to reduce the
computational time as much as possible. Anyway, industries are also
asked to be able to characterize their products in an even faster way
based on the identification of valves’ parameters that allow the noise
prediction according to international standards. Several standards have
been developing manuals with world-wide accepted procedures for test-
ing and characterization of the flow-control devices. Example of the
international standards are the Organisation Internationale de Normali-
sation ISO, the International Electrotechnical Commission IEC and the
Instrumentation, System, and Automation Society ISA. In this work, the
IEC international standard is used as reference for the noise prediction
procedure in control valves.
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Standards for Industrial Aerodynamic Noise

The purpose of the study presented in this chapter is the numerical esti-
mation of those parameters that characterize a control devices and whose
values must be known to valves’ manufacturers.
In the first part of the chapter the IEC international standard for aerody-
namic sound in control valves is described. The focus is then moved on
the estimation of a particular parameter Aη which plays a fundamental
role in the definition of the amount of mechanical energy converted into
noise.

5.1 Reference IEC International Standard for Control Valve
Aerodynamic Noise

The reference international standard for aerodynamic noise prediction
used in this work is the IEC 60534-8-3 [28] which describes a procedure
for the acoustical characterization of a control valve. The purpose of this
standard is the estimation of the external noise perceived 1 meter away
from the pipe’s outer wall and 1 meter downstream of the valve body.
The equations that define valve’s working regimes and all the quantities
involved in the acoustic characterization are described by the procedure
in different steps:

1. the mechanical power of the flow is evaluated from hydraulic and
fluid-dynamic quantities;

2. the internal acoustic power is computed as a portion of the mechan-
ical power;

3. the internal sound is decomposed in frequency bands;

4. the contribute of each frequency is transmitted outside of the pipe
through its walls;

5. the noise is propagated 1 meter far from the external pipe and the
SPL is evaluated.

A graphical representation of the steps of the IEC procedure is visualized
in figure 5.1.

The first hydraulic and fluid-dynamic quantities that are introduced
are the pressure at the sides of the valve (p1 measured 2D upstream of
the valve and p2 evaluated 6D downstream [29]), the upstream density
ρ1 and temperature T1 and the mass flow rate Qm. The liquid pressure
recovery factor FL and the differential pressure ratio X = ∆p/p1 are
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Figure 5.1: Scheme of the IEC procedure for valve aerodynamic noise prediction [28]

then introduced for the computation of the characteristics of the flow in
the vena contracta, i.e. its pressure pvc, its temperature Tvc, Mach num-
ber Mvc and speed of sound cvc.
The differential pressure ratio is used for the definition of the flow regime
in which the valve operates (in this work the flow always belongs to the
subsonic regime). The quantities evaluated in the vena contracta are, on
the contrary, computed as function of the parameter FL. This is one
of the four parameters that be provided by the valves’ producers for
their devices’ acoustical characterization. From the information about
the flow in the vena contracta, the mechanical power of the flow is cal-
culated as

Wm =
Qm (Mvc cvc)

2

2
. (5.1)

The acoustic power Wa is a fraction of the mechanical one. Their ra-
tio is defined by the acoustical efficiency factor η = Wa/Wm whose
computation is performed as

η = 10AηF 2
L M

3
vc, (5.2)

where Aη is the valve correction factor for acoustical efficiency and it is
the second parameter required for the characterization a control-device.
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The internal sound pressure level on the walls of the pipe is then
computed from the acoustic power Wa and from the outlet density ρ2,
the outlet speed of sound c2 and the related Mach number M2. A spec-
tral decomposition of this noise in one-third octave bands associating a
proper intensity to each central frequency. The shape of the spectrum is
modelled according to the peak frequency fp that defines the band with
the highest acoustic energy. For the definition of fp two other funda-
mental parameters for the acoustic characterization must be introduced:
they are the valve style modifier Fd and the Strouhal number for peak
frequency calculation Stp. The former is used for the evaluation of the
diameter of the jet at the outlet of the valve

Dj = 4.6· 10−3Fd
√
CV FL. (5.3)

The Strouhal number Stp is then involved in the computation of the peak
frequency

fp =
Stp Mvc cvc

Dj

. (5.4)

Once the spectrum of the noise is computed, each frequency band is
transmitted outside of the pipe through the walls according to the trans-
mission loss function. The amount of noise dissipated during the passage
through the walls depends on the frequencies and on the characteristics
of the pipe as thickness, natural frequency and material.

The external noise is finally propagated 1 meter far from the pipe with
a cylindrical law.

In all the steps here described, four parameters about the fluid-dynamic
and acoustic behaviour of the valve have been introduced (FL, Aη, Fd,
Stp). Their usage in the procedure for noise prediction is described in
figure 5.2. The four parameters are the quantities that characterize each
flow-control device and that must be provided by valves’ manufacturers.
Their estimation is described in the next sections: the discussion starts
from the fluid-dynamic parameters FL and Fd and then deals with the
acoustic ones Aη and Stp.

5.1.1 Estimation of the Fluid-Dynamic Parameters FL and Fd

The liquid pressure recovery factor FL and the valve style modifier Fd
are the two parameters connected to the fluid-dynamics. The former
is connected to the fraction of energy that is recovered downstream of
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Figure 5.2: Scheme of the IEC procedure for valve aerodynamic noise prediction [28]

the valve with the conversion from kinetic energy to potential and it is
defined as

FL =

√
p1 − p2

p1 − pvc

. (5.5)

The latter is defined as a geometric ratio between the hydraulic diameter
of a single flow passage dH and the equivalent circular diameter d0 of
the total passage area

Fd =
dH
d0

=
4AH/IW√

4n0 A/π
, (5.6)

where AH is the area of a single flow passage, IW its wetted perimeter
and n0 the number of independent and identical flow passages.

Both the parameters have a definition that, for complex devices, is not
applicable because the vena contracta cannot be easily identified and be-
cause often there are flow passages with different shapes and areas. For
this reasons, the international standards [29] defines other ways to esti-
mate them with different formulations. The FL, for instance is evaluated
with increasing pressure drop tests (upstream pressure p1 fixed) until the
choked flow is reached and the maximum flow-rate is evaluated.
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The Fd on the contrary can be evaluated according to a procedure de-
scribed in [29] with test where the Reynolds number is so low that a
laminar flow is obtained.

These procedures are suggested for experimental campaigns but, in
principle, they can be followed by numerical simulations too. Indeed,
for the numerical evaluation of the FL it is possible either to use its
definition (in simple geometries as the orifice) or to simulate the choked
flow with multiphase models that take into account the generation of
vapour bubbles when the liquid pressure goes under the liquid vapour
pressure [21, 38, 49].
The valve recovery factor, on the contrary, needs a very simple CFD
simulation because it is computed with a low-Reynolds laminar flow and
no turbulence model is thus required.

Their computation is feasible with numerical methods that require a
reasonable computational time independently from the size of the sim-
ulated device. This is the biggest advantage of the numerical approach
respect to the experimental one that, especially with big-sized devices,
is very expensive because of the costs of realization of the valve and of
the plant on which it can be tested.

5.1.2 Estimation of the Acoustic Parameters Aη and Stp

The parameters that describe the acoustic behaviour of a device are the
valve correction factor for acoustical efficiencyAη and the Strouhal num-
ber for peak frequency Stp. In the IEC 60534-8-3 international standard
there are no equations or definitions for those quantities that can be used
for their estimation on new devices. On the contrary, only general infor-
mation on their values for particular devices are indicated in a table that
is here reported in figure 5.3.

In addition to those information, Aη is suggested to be equal to “−4
for a pure dipole noise sources as for free jets in a big expansion vol-
ume” [28]. It is also stated that it can be dependent on the differential
pressure ratio X but, nevertheless, the tabulated Aη values for different
valves do not change with the flow conditions.
The range for the Stp parameter changes between 0.1 and 0.3 for free
jets, but the reported values are in the range between 0.19 and 0.3. Un-
likeAη the Strouhal number for peak frequency is not assumed to change
with the flow conditions.
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Figure 5.3: Table 4 from IEC 60534-8-3 [28] with the suggested values for the Aη and
Stp parameters for particulars devices.

The IEC table in figure 5.3 is the only reference provided by the in-
ternational standard for the definition of the values of Aη and Stp. The
reliability of the values indicated in the table is questioned in section
5.2.1. A good estimation of Aη in particular is crucial for the noise pre-
diction because a variation of 0.1 in its value leads to a variation of 1 dB
in the prediction of the external noise.

No direct methods are proposed by the IEC for the evaluation of Stp
and Aη; the only way to deduce their values is through the computation
of related quantities and to the inversion of the equations presented in
the international standards. With an experimental approach the Stp is
can be evaluated measuring the peak frequency with a microphone and
inverting equation (5.4), assuming Fd known.
Similar approach can be followed by numerics even though an expen-
sive (from the computational point of view) CAA simulation should be
solved.

The estimation of Aη can be only performed from the acoustical effi-
ciency η (5.2) that, on turn, must be computed as the ratio between the
mechanical and the acoustic power. In the experimental approach the
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real challenge is the measurement of the acoustic power of the source
inside the pipe. On the contrary, with a numerical approach and acoustic
models it is possible to estimate the same quantity as illustrated in the
next sections.

5.2 Estimation of Aη Curve from CFD

The most critical parameter among the four that the valves’ manufactur-
ers have to provide for the acoustical characterization of their devices is
the valve correction factor for acoustical efficiency Aη. In fact, in the
previous sections it has been shown that the fluid-dynamic parameters
FL and Fd can be computed with numerical simulation and with equa-
tions from the IEC standard (section 5.1.1).
Among the acoustic parameters (Aη and Stp) the valve correction factor
for acoustical efficiency is the one that most influence the external noise
as can be seen with a sensitivity analysis on those two parameters. Figure
5.4 describes the noise emitted by a perforated plate according to the IEC
procedure changing the acoustical parameters in the ranges indicated in
the standard. A perforated plate correspond to a “drilled hole plate fixed

Figure 5.4: Variability of the external noise evaluated according to the IEC procedure
with the acoustic parameters Aη and Stp.

resistance” in figure 5.3 and its characteristic values are Aη = −4.8 and
Stp = 0.2. In figure 5.4 the two parameters changes in the range de-
scribed by the IEC, i.e. Aη ∈ [−4.8,−3] and Stp ∈ [0.19, 0.3]. The
incidence of the variability of Aη is much higher than the one due to the
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uncertainty on Stp: the noise changes up to 18 dB changing the values of
Aη while the variation due to Stp is limited to no more than 3.6 dB. The
black-dotted curve is obtained with Aη = −4 that is the general value
for a dipole source (it is not set equal to -4.8 as suggested by the table
because this is one of the extreme of the Aη range) and with Stp = 0.2
that is the one suggest for the drilled holed resistance.

Because of the major influence of the valve correction factor for
acoustical efficiency on the external noise, the focus of the developed
research has been moved on Aη. In particular the work here presented
is about the identification of acoustical models that, from CFD simula-
tions, are able to estimate Aη taking into account its dependency on the
flow conditions.

5.2.1 Experimental Evidences

The necessity of a more detailed investigation on Aη is justified by its
variability with the flow and by its high incidence on the noise predic-
tion. In addition to this, some previous experimental data [39] are also
available for a qualitative analysis on Aη. In [39] the noise emitted by
a perforated plate (different from the one here considered and described
in figure 5.6) was measured with external microphones for a statistical
analysis on the best combination of the valves’ parameters that return
a noise estimation close to the measurements. Figure 5.5 suggests few
considerations on the trend of Aη:

• the experimental data describe a noise higher than the one returned
with the prediction according to IEC. The value of Aη used for the
two black series are not coherent with experimental evidences;

• as expected, the black series are shifted among them of 8 dB be-
cause of a constant difference of 0.8 in the Aη values;

• the distance of the experimental red series from the black ones is
not constant.

The first consideration suggests that the Aη values indicated by the IEC
standard are not good enough to be in accordance with experimental
data. The most important consideration is anyway the third one: Aη is
not constant changing the pressure drop at the sides of the valve. In
fact, the second observation shows that two different values of Aη return
curves that are shifted of a constant amount. This does not happen for
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Figure 5.5: Noise prediction according to IEC with Aη=-4 (M) and Aη=-4.8 (♦) and
experimental data (•). Figure from [39]

the experimental data. The assumption of working with a constant Aη as
indicated in the table in figure 5.3 is not consistent with the experimental
evidences. A good characterization of Aη can be thus obtained only if
its prediction returns a value that changes with the pressure drop.

5.2.2 Acoustic Model for the Numerical Estimation of Wa

The estimation of Aη, as already pointed out, cannot be fulfilled with
its direct evaluation but it is made through the values assumed by the
acoustical efficiency η. The point is thus moved to the modelling of the
acoustic power Wa and the mechanical one Wm, whose ratio defines η.
The equation for the mechanical power is indicated by the IEC (5.1). On
the contrary, the international standard’s equation cannot be used for the
evaluation of Wa because it assume the parameter Aη to be known. This
equation states that

Wa =
(
10AηF 2

L M
3
vc

)
Wm. (5.7)

An alternative method for the modelling of the acoustic power is
based on literature acoustic models developed according to Lighthill’s
theory. It has been discussed about the fundamental sources’ acoustic
power in section 2.2 and it has been shown that it is possible to estimate
their intensity’s order of magnitude, regardless the type of the source. In
aero-acoustics the power of the sources is connected to the characteristic
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quantities of the flow as velocity, density and distances. For the funda-
mental sources (monopole, dipole and quadrupole), the following points
are valid:

• A monopole is characterized by the acoustic power WM = 4πr2p2rms

ρ0c
(2.6). The characteristic length for the radius r is a typical dimen-
sion of the domain L, while the pressure prms can be related with
dimensional analysis to the product of ρ0U

2 where U is for instance
the mean flow velocity. The order of magnitude of the acoustic
power of a monopole is thus

WM ≈
ρ0L

2U4

4πc
≈ ρ0L

2U3

4π
M. (5.8)

The sound power radiated by an aerodynamic monopole scales with
the fourth power of the flow velocity.

• The power of a dipole is (d/λ)2 times greater than the one from
a monopole. The wavelength λ scales as Lc/U and the radiated
power thus scales as

WD ≈
ρ0d

2U6

3πc
≈ ρ0d

2U3

3π
M3, (5.9)

that means the power radiated by a dipole scales with the sixth
power of the velocity. For a subsonic flow a monopole radiates
a sound power higher than the dipole because their ratio goes with
the second power of the Mach number.

• An aeroacoustic quadrupole radiates a power whose ratio with the
monopole’s one is described by equation (2.8). For a lateral quadrupole
the power is

WQ ≈
ρ0d

2U8

15πc5
≈ ρ0d

2U3

15π
M5 (5.10)

and it scales with the eighth power of the mean flow velocity. The
denominator in equation (5.10) changes with the type of quadrupole:
a more general law was derived by Lighthill [35, 36] in the eighth
power law that states

WQ = KL
ρ0d

2U8

c5
(5.11)

where KL is a constant.
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In the aero-acoustics theory the turbulence that generates noise is mod-
elled as a quadrupole. The eighth power law is thus a valid approach for
the estimation of the acoustic power of the quadrupole inside the fluid.
Further developments of the Lighthill’s theory focused on the derivation
of acoustic models for the definition of the acoustic power density P , i.e.
the power per volume unity radiated by the turbulent flow. One of the
models write it as [47]

P = αP εM
5
t , (5.12)

where αP is a constant, ε is the turbulent dissipation rate and Mt is the
turbulent Mach number defined as the ratio between the turbulent veloc-
ity and the local speed of sound.
The quantities involved in equation (5.12) refer to the flow turbulent
properties and their evaluation can be exploited with CFD numerical
simulations. Furthermore, under the assumption of isotropic turbulence,
the turbulent velocity can be written as function of the turbulent kinetic
energy K and the equation (5.12), known as Proudman equation, can be
rewritten as

P = αP ε

(√
2K/3

c

)5

. (5.13)

With this new formulation, the numerical computation of the quantities
that appear inside equation (5.13) is simpler than the previous one be-
cause it is no needed to compute the turbulent velocity, but information
on the turbulent kinetic energy are enough. Steady RANS simulations
are the fastest approach that returns all the information about K and ε
needed for the estimation of the acoustic power density. This method
is exactly the one that is used in this work for the analysis presented in
section 5.3.
According to literature, the value of the constant αP varies in that range
from 0.629 to 13. In this work, a re-scaled model it is used and the con-
stant is set equal to 3.804 [50].
Once the acoustic power density is computed from the CFD simulation
and the Proudman acoustic model, the acoustic power Wa of the source
region is numerically evaluated integrating P over the source region

Ŵa =

∫
S.R.

P(x) dx3. (5.14)

The source region, as in the APE, is localized where the turbulent kinetic
energy is higher than the 20% of the maximum K computed in the do-
main.
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The hat will be use to distinguish the acoustic power Ŵa computed with
CFD simulation and the acoustic model, fromWa obtained following the
equations described by the IEC procedure.

5.2.3 Computation of Aη from the Numerical Acoustic Power

The valve correction factor for acoustic efficiency Aη can be estimated
thanks to the numerical computation of the acoustic power presented in
the previous section. In fact, according to the equations presented in the
IEC, the acoustic power is a function of Aη and they are connected as
indicated by equation (5.7). The dependency of Aη from the acoustic
power can be thus written as

Aη = log10

(
Wa

F 2
L M

3
vc Wm

)
. (5.15)

The value of Aη is computable from this equation only if all the quanti-
ties on the right-hand side in equation are known. If the recovery factor
FL is known, the IEC standard give other equation for a trivial evalua-
tion of the Mach number in the vena contractaMvc and of the mechanical
power Wm.
The intensity of the acoustic power Wa, on the contrary, cannot be com-
puted from the IEC without usingAη. That is the reason why a procedure
for the numerical estimation of the acoustic power Ŵa has been proposed
in the previous section with the equation (5.14). When Ŵa is substituted
into equation (5.16), it is possible to obtain an estimation of Aη as

Aη = log10

(
Ŵa

F 2
L M

3
vc Wm

)
. (5.16)

This is the equation that is used in the following sections for the com-
putation of Aη from the numerical simulations.

5.3 Numerical Prediction of the External Noise Produced by
ISA Orifice

The numerical model for the estimation of Aη is applied again to an
orifice, but with another geometry respect to the one presented in section
4.1. The new one is described by the ISA international standard [30] and
it is chosen because its FL = 0.86 is defined in the manual allowing
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to take this data as a non-questionable parameter among the four that
characterize a control device. For an orifice the Fd is computable with
its definition and it is equal to 1.
The technical draw of the orifice is displayed in figure 5.6.

Figure 5.6: Technical draw of the orifice described in the ISA international standard
[30].

The acoustic power has been here computed with different pressure
drops at constant upstream pressure p1 = 5.2 barA. The pressure drop
goes from 0.1 bar to 1.3 bar that correspond to a flow whose jet Mach
number is close to 0.8.

For the application of the Proudman model described in the previous
section it is necessary to compute the turbulent quantities as the turbulent
kinetic energy K and the turbulent dissipation rate ε with a compressible
RANS simulation [20]. The simulation is run on a three dimensional
domain for sake of simplicity in the integration over the source region,
but it could be even run on the same slice of pipe as the one used for the
RANS described in section 4.1.

The acoustic power density P is then computed in all the domain
and then it is integrated over the source region in order to obtain an
estimation of the acoustic power of the source. The trend of the acoustic
power with the pressure drop is shown in figure 5.7. The acoustic power
predicted with the acoustic model Ŵa is between the curves obtained
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Figure 5.7: Acoustic power depending on the differential pressure drop ratio X: com-
parison of the values return from the IEC procedure with Aη=-4 and -4.8, and of
the numerical prediction Ŵa.

applying the IEC procedure with a fixed value of Aη equal to -4 and
-4.8. As in the experimental data described in figure 5.5, these values
are chosen because they are the values indicated by the international
standard for a generic drilled holed plate as the orifice, and the generic
value for an acoustic source not included among the valves in table 5.3.
The curve with Aη = −4.8 returns a lower value than the one with
Aη = −4 because, as can be seen in equation (5.7), it means that a lower
fraction of mechanical energy is converted into acoustic one.
The results returned by the numerical simulations with the application of
the Proudman equation stand between those two curve suggesting that
the numerical prediction is coherent with what is expected by the IEC.

All the three series in figure 5.7 grows according to power laws. The
dependency of the acoustic power is not actually connected to the pres-
sure drop but to the flow velocity as indicated in the laws described for
the fundamental sources (5.8), (5.9) and (5.10). A logarithmic represen-
tation of the acoustic power allows to see the slope of the curves and to
compare them also at small pressure drops. Figure 5.8 shows the acous-
tic power depending on the velocity of the jet (characteristic velocity for
the phenomenon). The slope of the series evaluated with the IEC proce-
dure is different from the one computed with the numerical model: the
IEC series grows about with the sixth power of the velocity while the
Ŵa one with the eighth power in accordance with (5.10). The difference
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Figure 5.8: Acoustic power depending on the velocity of the jet Uj in logarithmic
scale: comparison of the values return from the IEC procedure with Aη=-4 and
-4.8, and of the numerical prediction Ŵa. In the corner blue and green lines show
the slope of the U6 and U8 curves.

in the slope of the series must be searched in the modelling of the valve
correction factor Aη. In fact, in the equation that describes the acoustic
power evaluated according to the IEC procedure (5.7), the only way to
modify its dependency on the velocity is to assume that Aη changes with
the flow conditions (the other involved parameter FL is not dependent on
the pressure drop). The Mach number Mvc scales with the velocity and
the mechanical power with its cube. In order to have Ŵa ∼ U8 is thus
necessary to ask for

10Aη ∼ U2 (5.17)

that means
Aη ∼ 2 log10U. (5.18)

This theoretical analysis is confirmed by the graphical representation of
the curve of Aη computed from the equation (5.16) and displayed in fig-
ure 5.9. The series of the values assumed by Aη is, for low pressure
drops, under the -4.8 line that is crossed only over a certain pressure
drop. When the downstream pressure is much lower than the upstream
one, on the contrary, Aη assumes values that are close to the one sug-
gested by the IEC since it stands between the values -4 and -4.8. Its
numerical prediction is thus consistent with what expected by the in-
ternational standards, but has the big advantage to describe its variation
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Figure 5.9: Curve of the valve correction factor for acoustic efficiency Aη numerically
computed with the acoustic power Ŵa. The horizontal lines represent the values -4
and -4.8 suggested by the IEC for a generic source and for a perforated plate.

with the flow conditions, which the IEC is blind to.
The values of Aη lower than -4.8 for low pressure drops can be fur-

ther investigated considering the Mach number over which the Aη series
crosses the -4.8 line. Figure 5.10 represents the same series as figure 5.9
but with the Mach number on the x-axis. The numerical Aη becomes
higher than -4.8 for a Mach number close to 0.4 that corresponds to a
flow whose compressibility effects are low. With low compressibility,
low noise is expected too and this is confirmed by the estimation of the
external noise computed starting from the numerical acoustic power Ŵa

represented in figure 5.11. Once again, the curve of the numerical noise
is lower than the curves from IEC for low pressure drop and in particular
for a Mach number lower than 0.4. Even though this results means that
numerics is underestimating the noise emission (not conservative predic-
tion) it must be highlighted that this error is committed for an external
SPL that is lower than 40 dB (noise intensity lower than a normal con-
versation). For significant noises, on the contrary, the prediction with
the numerical acoustic power is higher than the curve with Aη = −4.8
and goes towards the value -4 suggesting that the acoustical efficiency
η of the orifice grows with the pressure drop. Finally, for the orifice, it
is possible to state that the value of Aη = −4.8 suggested by the IEC
table 5.3 is not reliable for high Mach numbers where the acoustic ef-
ficiency is actually higher. This inaccuracy of the IEC procedure in the
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Figure 5.10: Curve of the valve correction factor for acoustic efficiency Aη numeri-
cally computed with the acoustic power Ŵa with the jet Mach number on the x-axis.
The horizontal lines represent the values -4 and -4.8 suggested by the IEC for a
generic source and for a perforated plate.

Figure 5.11: External noise in the position indicated by IEC 60534-8-3, depending on
the differential pressure drop ratio X: comparison of the values return from the
IEC procedure with Aη=-4 and -4.8, and of the numerical prediction Ŵa.

description of the Aη values may be connected to the fact that, as state
in the introduction of the document IEC 60534-8-3, the values are val-
idated with test made using air at moderate pressure and temperatures.
The results here described are thus an interesting advancement respect
to the indications provided by the IEC.
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5.4 Main Results from the Application of Numerics on the
IEC Procedure

The IEC 60534-8-3 international standard for the prediction of the noise
emission of flow-control devices has been described in order to find out
how the numerics can support the valves’ manufacturers in the defini-
tion of the main acoustic features of their devices. The procedure for the
noise prediction takes into account the device’s characteristics with the
introduction of four parameters, two connected to the fluid-dynamic be-
haviour and two to the acoustic one. The formers are the liquid pressure
recovery factor FL and the valve style modifier Fd whose values can be
evaluated with procedures described by other IEC manuals and that can
be followed both by experimental campaigns and by numerical simula-
tions. The experimental approach is usually longer and more expensive
because it needs the realization of the device and of the test plant, while
the numerical approach results to be faster and cheaper.
The acoustic parameters that describe a control device are the Strouhal
number for peak frequency Stp and the valve correction factor for acous-
tical efficiency Aη. Unlike the fluid-dynamic parameters no procedures
or equations for their characterization is provided by the IEC standard,
but their values are just tabulated for some devices under the assumption
to be constant changing the flow conditions. The reliability of this as-
sumption is questioned in this work in the light of previous experimental
works that suggested a not constant behaviour of the Aη parameter. The
numerics is here used for the study on Aη because it has been shown
that its influence on the noise prediction is much more effective than the
uncertainty on the Strouhal number.
It has been then explained how numerics can be used in collaboration
with the IEC procedure for the prediction of Aη through the computa-
tion of the acoustic power. A literature model for the description of the
acoustic power density has been used to predict the acoustic power of an
orifice described in the ISA international standard. From the mean tur-
bulent quantities computed with numerical CFD simulations it has been
evaluated the orifice’s acoustic power under different increasing pres-
sure drop from 0.1bar up to 1.2bar. It has been shown that the numerical
acoustic power lays between the values computed with the IEC proce-
dure assuming Aη = −4 and -4.8 which are provided as typical values
for a generic acoustic source and a generic perforated plate. The de-
pendency of the acoustic power on the velocity of the flow is different
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between the one returned by the literature model and by the IEC, and this
difference must be ascribed to the assumption of constantAη. Removing
this constraint, a curve of Aη has been derived and it goes with twice the
logarithm of the flow velocity.
Finally, a comparison on the external noise shows that the numerical
prediction is lower than the IEC one only for SPL lower than 40 dB(A)
(harmless noise) while it is in accordance with the IEC prediction for jet
Mach numbers higher than 0.4. In these conditions the noise prediction
stands between the curves with Aη = −4 and -4.8 with a progressive
approach to the -4 curve suggesting that the value -4.8 indicated by the
IEC for the perforated plates is not reliable.
The results here described are thus an advancement in the characteriza-
tion of the Aη parameter whose values indicated in the IEC are simply
validated with test at low pressure and assuming it not dependent on the
flow conditions.
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CHAPTER6
Experimental Plant Design

In addition to the numerical approach, further information on the aero-
dynamic noise can be obtained thanks to experimental proofs. For this
reason, the last part of this work is focused on the design of a new ex-
perimental plant on which can be performed tests whose results may be
also compared to the numerical ones. In particular, the campaigns will
be about the study of the influence of the pressure drop, the pressure
drop ratio and the absolute pressure on the noise emission. In fact, none
of these quantities controls the noise generation by itself but they all
gave a contribute to the final results. For instance the pressure drop de-
fines the flow coefficient CV which is an important parameter to be used
in the procedure for the noise prediction described by the international
standards [28,29]. Even more important is the differential pressure drop
ratio X that appears in most of the equation in the IEC procedure. On
the other side, it is not possible to state that the noise depends only on
X because the absolute pressure influences the density of the air and the
flow-rate. The dependency of the noise on all these factors needs to be
investigated in detail and only a study based both on the numerical and
on the experimental approach can return a complete description of the
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phenomenon.
In addition to this, the experimental data can actually be used for a

calibration of the coefficients that appear in the numerical models and
for a comparison on more complex geometries than an orifice that are
closer to the industrial world. In fact, even though the orifice is the most
important fundamental configuration in aero-acoustics, it is actually true
that the valves’ manufacturers are interested in more complex devices.
Testing real valves is difficult to be managed as already mentioned in the
motivation of the numerical study at the beginning of this work. Indeed,
the costs of realization of a valve are very high (materials, machines us-
age and time) and it is even more complicated to design and manage
a proper plant on which these devices could be tested according to the
reference international standards. A previous plant had already been re-
alized [12, 14, 39, 42] but several issues were found about the quality of
the air (humidity and dirt), about the measurement of hydraulic quanti-
ties as the velocity of the fluid, about the air-supply that fed the plant
and by external noises. For all these reasons, the new plant wants to be
designed in order to have the full control of all the variables that involves
the quality of the air, the fluid-dynamic quantities and the loudness of the
surrounding ambient. Below, the description of the plant that has been
designed for the experimental campaign is fulfilled with particular atten-
tion to the choice of the instrumentations and their positioning along the
pipes.

A good control of all the variables is easier to be achieved when the
tests are performed on a small plant. The reduced dimension of all the
parts involves lower flow-rate, smaller tank for air storage, faster tests
and also money saving. For all these reason, the plant has been designed
with a 1” main line on which the testing device is installed and the acous-
tic measurements are taken. The section of the test line downstream of
the tested device is 2000mm long [27] while the upstream one is 750mm
long. The flow conditions are controlled with a pressure regulator (inlet
pressure) and by a valve at the end of the line to control the flow-rate.
According to the international standard IEC 60534-2-3 [29] the housings
for the measurement of pressure and temperature are taken 2D upstream
of the device and 6D. The flow-rate is measured upstream of the main
line just at the outlet of the tank that stores the air. Its quality is guaran-
teed by a dryer and two filters installed after a compressor.
The acoustic pressure inside the pipe is measured with different taps
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downstream of the device, while the external noise is recorded by a mi-
crophone placed inside an anechoic chamber around the orifice. The re-
duction of the internal noise is managed by two silencers, one mounted
upstream of the main line in order to reduce all the noise coming from
the flow-meter and by the tank, and one at the end of the main line for
avoiding the reflection of the noise that impacts against the downstream
valve. Two other silencers are mounted before the exhaust in order to
reduce the external noise emissions.

A visualization of the position of the different lines and instrumenta-
tions is visualized in figure 6.1. The placement of the instruments is the
one suggested by the IEC 60534-8-1 [27]. The air supply is managed

Figure 6.1: Top-view of the plant designed for experimental campaign.

in the first part of the plant by a Ingersoll Rand R7.5i-14 compressor
that pressurizes the air up to 12 barA a with a 8.83 m3/min flow-rate.
Filters (Ingersoll Rand FA751 G and FA751 H) and a dryer (Ingersoll
Rand D72IN-A) purify the air from dirt and humidity to a quality of the
air that reaches the class 4/5 in the ISO 8573-1:2001. The purified air is
not directly blown into the test line but it is collected in a 2 m3 reservoir.
The amount of air that flows inside the test line is managed by the con-
trol valve at the end of the section where the acoustic measurements are
taken, and by a pressure reducer that fixes the pressure at the outlet of
the reservoir.
The flow-rate is measured with the Coriolis Proline Promass F300 flow-
meter installed on a reduced 1/2” pipe that guarantees a more precise
measurement of all the flow-rate in the range 0.004-0.15 kg/s.
The silencers (1 and 2 in figure 6.1) are two Maxim 2” ILL-30 mounted
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with proper fittings for a smooth change of the diameter of the pipe in
order to avoid the generation of undesired noise.
The flow is finally characterized by the pressure and temperature re-
spectively measured with two absolute pressure transducer (Cerabar M
PMP51 and Tecsis P3290S075020), one differential pressure transducer
Deltabar S PMD75, and with two RTD Pt100 Omega M12TXSS.

The acoustic pressure inside the pipe is measured with three micro-
phones and three pressure sensors. The choice of the right instruments
here is delicate because of the reduced dimension of the pipe, the high
expected noise and because of the fragility of the microphones. The line,
as already mentioned, has a diameter equal to 1” and the measurement of
the acoustic pressure on the walls of the pipe becomes pretty challenging
because of the curvature of the walls. The smallest microphones on the
market that can be mounted with a flush installation have been identi-
fied in the 1/8” Gras 40DE. The problem associated to the installation of
these microphones is that they are very fragile and the presence of even-
tual particles in the fluid could damage their membrane. For this reason,
other sensors have been compared and the choice moved to the 1/4” PCB
113B28 pressure sensors; they functioning is completely different from
the microphones and their hard membrane make them resistant to parti-
cles. On the other side, no sensors smaller than 1/4” have been found on
the market and this is a critical issue since their dimension is compara-
ble with the diameter of the pipe. A flush installation is very intrusive
inside the pipe and modifies its geometry with possible affection of the
internal flow. A recessed installation (sensor installed after a pin-hole
on the walls) returns a measurement which is influenced by the hole and
by its dimension. The possible installations of the PCB pressure sensor
are displayed in figure 6.2. Because of the described issues, it has been

Figure 6.2: Possible installation for the PCB113B28 pressure sensor.
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decided to install both the instruments in order to compare their data and
make up for possible malfunctions of either of them. According to the
description of the acoustic pressure returned by the APE presented in the
chapter 4, the distribution of the acoustic pressure along the walls of the
pipe varies considerably close to the tested device. For this reason, the
taps for the pressure sensors and the housing for the microphones have
been placed in the first 10 diameters with a constant pace of 1 diameter
in order to be able to reconstruct all the SPL curve with its local peak,
fast decrease and slower one.
In order to avoid external influences on the noise measurements, all the
acoustic instruments are installed inside an anechoic chamber (1400 x
1000 x 1600mm LWH) placed around the testing device and along the
downstream section of the test line. Another microphone (PCB 378B02)
it is installed within the same chamber too and it measures the external
noise 1 meter far from the pipe as indicated by the IEC international
standard [28].

The last concern for a good experimental setup is the choice of the
acquisition system whose scheme is visualized in figure 6.3. On the
plant that has been described, the instrumentations for the hydraulic and
fluid-dynamic measurements require different specifics than what is de-
manded by the acoustic ones. The acquisition of noise must be done
with a frequency high enough to be able to describe the acoustic spec-
trum up to 20kHz, while lower frequencies are enough for the acquisi-
tion of the hydraulic quantities that change much slower than the acous-
tic ones. High-frequency modules have been identified in the National
Instruments NI-9234, while for the all the other instruments the acquisi-
tion is managed by the NI-9208 module. The former module has only 4
channels that are not enough for all the 7 acoustic instruments (3 pres-
sure sensors and 3+1 microphones) and two of them are thus installed on
the plant. Nevertheless, they cannot be installed in the same way because
of the different sensitivity of the pressure sensors respect to the micro-
phones. The amplitude of the signal returned by the pressure sensors
is in fact much lower than the one from the microphones and a signal
conditioner PCB 482C15 is thus installed before a NI-9234 module for
the amplification of the signal with a maximum possible gain of 100
times the original signal. All the three modules are installed on a chassis
NI-9185 that is connected to a computer.

All the details hereby presented have already been discussed with
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Figure 6.3: Scheme of the sensors for the fluid-dynamic and acoustic measurements
with the respective module and chassis for the acquisition system.

the partner company that follows such a research and approved for the
oncoming realization.
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CHAPTER7
Conclusions and Future Work

The research presented in this work is focused on the numerical predic-
tion of the noise emitted by flow-control devices. The knowledge of the
noise generation mechanism and the evaluation of the external noise are
here computed with numerical methods overcoming the difficulties of
experimental campaigns, lengthy and expensive for most of the valves.

In this work the Acoustic Perturbation Equations APE have been used
as system for the propagation of the noise, that is generated by a flow
computed with compressible RANS simulation and with synthetic gen-
eration of turbulence. The mean flow from RANS is used for the local-
ization of the acoustic source region inside the pipe and for the definition
of the APE source terms.
The APE has been implemented in OpenFoam and a new solver has been
developed for facing all those numerical issues associated to CAA com-
putation in the finite volume framework. The new solver has been tested
and validated with analytical solutions and literature examples and its
description of the intensity of the acoustic pressure is in accordance with
the references. Small differences have been found on the velocity of the
propagation of the acoustic wave and on its directivity but these are all
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factors that, in the applications of interested, have negligible incidence.

The APE have been applied to the study of the noise emitted by an
orifice installed inside a pipe. The jet generated at its outlet is charac-
terized by a source region whose highest intensity is localized at the end
of the potential core but it occupies also part of the shear layer. Dif-
ferent models for the description of the source term and the synthetic
generation of the turbulent velocities have been compared and all re-
turn a similar qualitative distribution of the acoustic pressure (and of the
SPL) inside the pipe. Differences have been found on the intensity of
structures of acoustic pressure developed in the shear layer. The identifi-
cation of the best couple of source models has been performed thanks to
the comparison of the APE results with a LES that computes the acoustic
fluctuations with a direct approach.
The noise produced downstream of the orifice is characterized by a local
increase of noise due to the structures of acoustic pressure developed in
the shear layer. However, the noise radiated by those structures decays
in very short distances and they do not influence the noise downstream
the end of the potential core. Here indeed the noise is governed by the
acoustic generation mechanism located in the source region at the end of
the jet.
This analysis on the role of the structures suggests that the noise far from
the orifice is not influenced by them. For this reason, the terms responsi-
ble for the physical generation of these structures have been identified in
the APE system and a new formulation without those two terms has been
proposed. Its resolution requires 20% lower computational burden be-
cause of the simplification of the matrix of the linear system associated
to its numerical resolution. The results returned by this formulation are,
as expected, very different from the previous ones in the region close to
the orifice where the lack of the structures induces a completely different
acoustic pattern. The remarkable result is that far enough from the ori-
fice (downstream of 9d) the amplitude of the acoustic pressure and the
SPL on the pipe’s wall is in accordance with the one computed with the
previous APE formulation. Such an evidence suggests that the new pro-
posed APE system is able to predict the noise far from the orifice with
the same reliability of the complete APE formulation, which on turn is
able to describe the local noise generation mechanisms close to the jet’s
potential core too.
In industrial applications the interest in the noise prediction is focused
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1 meter downstream of the tested device according to international stan-
dards. For all those devices whose jet at their outlet has a diameter such
that 9d is shorter than 1 meter, the new APE formulation can be used for
the noise prediction without the loss of any information.

The international standards used as disclaimer for the choice of the
APE formulation is the reference for the valves’ manufacturers who are
asked to characterize their devices. In particular, they need to provide
four parameters that can be used as part of a procedure for the evaluation
of the noise 1 meter downstream of the device and 1 meter far from the
external wall of the pipe. Among these four parameter, two are about
the fluid-dynamic behaviour and their computation is well described by
the proper international standards. The remaining two parameters are
about the acoustical behaviour of the device and their values in the inter-
national standards are just tabulated for few devices and are constant for
each of them. The assumption of invariability of these parameters with
the flow conditions is very strong and it is also disproved by previous
experimental results. Among the two acoustic parameters, furthermore,
the valve correction factor for acoustic efficiency Aη has been identified
as the one that influences the most the external SPL. The work is thus
focused on the application of numerics for the estimation of this parame-
ter and of its dependence with the flow conditions. An acoustical model
for the prediction of the acoustic power density has been applied to the
output of CFD numerical simulations for the computation of the acoustic
power of all the source region inside the pipe. According to the equation
returned by the international standard for its description, if the acoustic
power is known, the Aη parameter is the only unknown quantity and its
value can be thus evaluated inverting the equation. A curve of Aη values
with different flow conditions has been derived for an orifice and it has
been shown that it depends on the logarithm of the flow velocity.
The prediction of the noise obtained with the numerical value of Aη is
close to the one returned by the international standards but it takes into
account the flow influence and has a different shape. In particular, when
the noise is higher than 40 dB, the numerical prediction returns an exter-
nal SPL higher than the one computed with the suggested value for Aη
for drilled holed plates, but lower than the one with the generic Aη for
non-tabulated devices.

Finally, an experimental plant has been design with the definition of
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all the required length, instrumentations, accuracy and air-quality con-
trol for the accomplishment of test in accordance with the international
standards. Such a plant is projected for the realization of experimental
test with small devices on a 1” line in order to collect data for a com-
parison with the numerical evidences presented in this work and for a
deeper knowledge of all the noise generation mechanisms inside pipes.
The proper instrumentations and acquisition system have been identified
and their choice have been approved by the partner company for a future
realization of the design plant.
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APPENDIXA
Derivation of Acoustic Perturbation

Equations

The homogeneous Euler equations describe the conservation of mass,
momentum and energy for an inviscid fluid without any external force:

∂ρ

∂t
+
∂ρuj
∂xj

= 0

∂ρui
∂t

+
∂ρujui
∂xj

+
∂p

∂xi
= 0

∂
(
e+ 1

2
u2
i

)
∂t

+ uj
∂
(
e+ 1

2
u2
i

)
∂xj

+
∂puj
∂xj

= 0

(A.1a)

(A.1b)

(A.1c)

where e is the internal energy per unity of mass.

The Acoustic Perturbation Equations APE used in this wor is pre-
sented in [5] and it is based on the decomposition of the fluid-dynamic
quantities in a mean part (·), a turbulent fluctuation (·t) and an acoustic
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fluctuation (·a). This means:

u = u + ut + ua;

ρ = ρ+ ρt + ρa;

p = p+ pt + pa.

(A.2a)
(A.2b)
(A.2c)

The concept at the base of this decomposition is that the mean flow is
firstly computed with a CFD steady simulation, then the turbulent fluc-
tuations is superimposed with a random synthetic generator (SNGR) and
finally the acoustic fluctuations are left as unknowns in the APE system.
In this appendix the Euler equations are manipulated for the derivation
of the APE system.

A.1 Energy Equation

Equation (A.1c) is the first law of thermodynamics (thermal law equa-
tion) that describe the conservation of specific internal energy e and ki-
netic energy per unit of mass 1

2
u2
j = E/ρ where E is the kinetic energy

per unit of volume [34]. The conservation law for kinetic energy can
be derived from the momentum equation (A.1b) multiplying it for the
velocity vector with a proper scalar product

ui
∂ρui
∂t

+ ui
∂ρujui
∂xj

+ ui
∂p

∂xi
= 0. (A.3)

On the other side, from the continuity equation (A.1a) it is possible to
obtain an expression for the divergence of the velocity field1

∂uj
∂xj

= −1

ρ

∂ρ

∂t
− 1

ρ

∂ui
∂xj

uj = −1

ρ

Dρ

Dt
. (A.4)

Manipulating equation (A.3) and taking into account equation (A.4) it is
possible to obtain the conservation law for the kinetic energy

ρ
∂ 1

2
u2
j

∂t
+ ρui

∂ 1
2
u2
j

∂xi
+ uj

∂p

∂xj
= 0 (A.5)

or, written with the total derivative

ρ
D 1

2
u2
j

Dt
+ uj

∂p

∂xj
= 0. (A.6)

1It is used the decomposition of the divergence of a product of a scalar a with a vector b, i.e. ∇· (ab) =
a∇·b +∇a·b.
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A.1. Energy Equation

Subtracting the equation for the kinetic energy (A.6) from the first law
of thermodynamics (A.1c) it is possible to obtain an equation for the
specific internal energy e as

De

Dt
+
p

ρ

∂uj
∂xj

= 0. (A.7)

Substituting (A.4) in the energy equation (A.7) leads to

De

Dt
− p

ρ2

Dρ

Dt
= 0, (A.8)

which is equivalent to the condition of an isentropic flow (ds = 0) ac-
cording to the fundamental law of thermodynamics for reversible pro-
cesses

T ds = de+ p d
(
ρ−1
)
. (A.9)

This means that, under the assumption of isentropic flow, equation (A.1c)
is always satisfied.

The assumption of isentropic flow applied to the equation of state
p = p(ρ, s) for a generic gas

dp = c2 dρ+

(
∂p

∂s

) ∣∣∣∣
ρ

ds (A.10)

allows to derive the definition of the speed of sound c since stands

c2 =

(
dp

dρ

) ∣∣∣∣
s

. (A.11)

A perfect gas (ideal gas with constant heat capacities) is characterized
by the equation of state

p = ρR̄T, (A.12)

and by the relationship
de = cV dT (A.13)

where R̄ is the specific gas constant, T the temperature of the gas and cV
the specific heat at constant volume. Moreover, if the perfect gas trans-
formation is governed by an isentropic process, it is possible to write

γ
p

ρ
=

(
dp

dρ

) ∣∣∣∣
s

(A.14)
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where γ = cP
cV

is the specific heat ratio.
The comparison of the definition of the definition of the speed of sound
for a generic gas (A.11) and equation (A.14) allows to obtain the formu-
lation of the speed of sound for a perfect gas in an isentropic flow

c2 = γ
p

ρ
. (A.15)

A.2 Continuity Equation

Taking advantage of the equation (A.14) for a perfect gas in an isentropic
flow it is possible to rewrite the continuity equation (A.1a) as function
of the pressure

∂p

∂t
+ γp

∂uj
∂xj

+ uj
∂p

∂xj
= 0. (A.16)

On this equation is possible to apply the decomposition of the flow quan-
tities described by the equations (A.2) remembering that:

1. The mean flow is stationary and so the partial time derivative of a
mean quantity is equal to zero

∂ (·)
∂t

= 0. (A.17)

2. If the CFD simulation is run with an incompressible RANS other
simplifications can be introduced:

• the density of the fluid ρ is constant and uniform, i.e.

∂ρ

∂t
= 0 and

∂ρ

∂xi
= 0; (A.18)

• the fluid-dynamic density fluctuations are negligible since the
flow doesn’t change its density

ρt ≈ 0; (A.19)

• Reynolds averaged continuity equation (written for ρ as (A.1a))
states that the divergence of the velocity field (mean and tur-
bulent) is equal to zero

∂uj
∂xj

= 0 and
∂utj
∂xj

= 0; (A.20)
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• Reynolds averaged continuity equation (written for p as (A.16))
for perfect gas and isentropic flow can be written as

uj
∂p

∂xj
+ utj

∂pt
∂xj

+ γp
∂uj
∂xj

+ γpt
∂utj
∂xj

= 0. (A.21)

3. Acoustic fluctuations are usually order of magnitude lower than the
turbulent ones which, on turn, are lower than the mean quantities.
Second order fluctuations including acoustic fluctuations are neg-
ligible, that means that a product of an acoustic fluctuation with a
turbulent (or acoustic) one is approximated to zero

(·)a (·)a ≈ 0 and (·)a (·)t ≈ 0 (A.22)

The previous assumptions are applied to continuity equation (A.16) de-
composed according to (A.2) obtaining
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+uj
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]
.

(A.23)
According to [5] the right-hand side of (A.23) can be neglected accord-
ing to order of magnitude analysis. The resulting APE equation for
acoustic pressure is

∂pa
∂t

+ uj
∂pa
∂xj

+ γ

(
p
∂uaj
∂xj

+ pa
∂uj
∂xj

)
+ uaj

∂p

∂xj
= 0. (A.24)

A.3 Momentum Equation

The Euler momentum equation (A.1b) can be rewritten splitting the deriva-
tive of the first two terms as

∂ρ

∂t
ui + ρ

∂ui
∂t

+
∂ρuj
∂xj

ui +
∂ui
∂xj

ρuj +
∂p

∂xi
= 0. (A.25)

Furthermore continuity equation (A.1a) suggests that the sum of the first
and third term in (A.25) is equal to zero. Dividing equation (A.25) for
the density ρ the momentum equation becomes

∂ui
∂t

+
∂ui
∂xj

uj +
1

ρ

∂p

∂xi
= 0. (A.26)
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With the same flow decomposition and standing the assumptions intro-
duced for the continuity equation it is possible to derive the Acoustic
Perturbation Equation for the acoustic particle velocity

∂uai
∂t

+ uj
∂uai
∂xj

+ uaj
∂ui
∂xj

+
1

ρ

∂pa
∂xi
− pa
ρ2c2

∂p

∂xi
= Sui (A.27)

where the source term in its most complete form is

Sui = −
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(A.28)
In the derivation of (A.27) the following equation derived from RANS
equations has been used
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