
Master of Science in Computer Science and Engineering

Department of Electronics, Information, and Bioengineering

AIRLab - Artificial Intelligence and Robotics Laboratory

Adaptive difficulty selection for skill

matching in Robogames

Supervisor: Prof. Andrea Bonarini

Co-supervisor: Ing. Ewerton Lopes

Author:

Boriero Stefano, matricola 876106

Academic Year 2017-2018

To my family

Abstract

The more and more pervasive presence of robots in every day life pushes

the urge to study and improve the interaction that occurs between humans

and robots. We focused our attention on a competitive scenario, which has

been designed following the Robogame guidelines. The aim of the thesis is

to design a decision system to adapt the behavior of the robot in order to

match the ability of the player, offering an even game. We used an approach

based on the TrueSkill framework, tested on a simulation environment and

deployed it on the robot. We hosted people to play the game, with both a

fixed and an adaptive behavior. We compared answers to a questionnaire

between the two versions, and found an improvement on the overall pleasure

of the interaction. We also succeeded in making the game even, with an

almost 50% share of wins between humans and robot.

I

Sommario

La presenza sempre più massiccia dei robot nella vita di tutti i giorni sp-

inge il bisogno di studiare e migliorare la qualità dell’interazione tra umani e

robot. Abbiamo concentrato la nostra attenzione verso uno scenario di com-

petizione tra uomo e robot, il quale è stato definito seguendo le linee guida

dei Robogame. Lo scopo della tesi è quello di definire un approccio decision-

ale per adattare l’abilità esibita dal robot all’abilità del giocatore umano,

nell’intento di offrire un gioco bilanciato. Abbiamo utilizzato un approccio

basato sul framework TrueSkill, l’abbiamo testato in un ambiente simulato

e successivamente implementato sulla piattaforma robotica. Per valutare

l’impatto del nostro lavoro abbiamo invitato gli studenti a giocare, dividen-

doli in due gruppi: il primo ha affrontato una versione base del gioco, senza

segni di adattamento, mentre il secondo ha affrontato un robot con capacità

di adattamento. Abbiamo sottoposto un questionario ai due gruppi alla fine

dell’esperimento e comparato le loro risposte, trovando segni statisticamente

rilevanti di una maggior piacevolezza dell’interazione per quanto riguarda la

versione adattiva. Siamo inoltre riusciti a ottenere una ripartizione equa del

numero di vittorie tra robot e umani, avvicinandoci all’ideale 50%.

III

Acknowledgements

I would like to thank all the people that partecipated to the experiment to

help me finishing the work: Andrea, Annalisa, Benedetta, Cesare, Davide

C., Davide I., Fabio, Francesca, Giacomo, Giulia, Laura, Lorenzo, Mariella,

Martina, Matteo, Pietro Ma., Pietro Me., Sabrina, Sara, Simone Bi., Simone

Bo. e Stefano. I thank all my colleagues of the AIRLab Claudio, Emiliano,

Michele e Riccardo, that helped me by making the time spent in the lab

more enjoyable. I thank Laura and Ewerton that worked with me on the

project, for their help and their company. I thank professor Bonarini for the

time and resources he invested in the project. Lastly, I thank my family for

giving me the opportunity to take this path and for the support they always

offered me.

V

Contents

Abstract I

Acknowledgements V

1 Introduction 1

2 Background 5

2.1 Mobile Robotics . 5

2.2 Holonomic Wheeled Robots 6

2.3 Human-Robot Interaction . 8

2.3.1 Physically Interactive Robogames 9

2.4 Ranking Systems . 10

3 Robotic Platform 11

3.1 Triskar . 11

3.2 Robotower . 13

3.3 Hardware . 14

3.3.1 Motors . 14

3.3.2 Encoders . 14

3.3.3 Laser Scanner . 16

3.3.4 Shuttle . 18

3.3.5 Tower equipment . 18

3.4 Software . 19

3.4.1 Robot Operating System - ROS 19

3.4.2 Mapping and Localization 19

3.4.3 Tower navigation . 20

3.4.4 Player Tracking . 24

3.4.5 Obstacle Detection . 25

VII

4 Proposed Adaptive Steering Planning Architecture 29

4.1 Steering Behaviors . 29

4.1.1 Vehicle model . 30

4.1.2 Seek . 30

4.1.3 Flee . 31

4.1.4 Arrival . 31

4.1.5 Evasion . 32

4.2 Architecture . 33

4.2.1 Intention Planner . 34

4.2.2 Action Planner . 34

4.2.3 Actuation Planner . 35

4.3 Implementation . 36

4.3.1 State to Intention . 37

4.3.2 Intention to Action . 38

4.3.3 Action to Steering Behavior 41

4.4 Extending the planner . 42

5 Adaptive difficulty selection procedure 45

5.1 TrueSkill . 45

5.1.1 Skill update . 46

5.2 Approach idea . 48

5.2.1 Environment . 49

5.2.2 Path agent . 49

5.2.3 Walking agents . 50

5.2.4 Ground truth . 50

5.2.5 Simulation procedure 52

5.2.6 Baseline approach . 54

5.2.7 Our approach . 57

5.2.8 Regulating oscillation 60

5.2.9 Accuracy . 63

5.3 Implementation in our scenario 63

5.3.1 Robot parameters . 63

5.3.2 Microgame . 64

5.3.3 In game parameter estimation 65

6 Evaluation 69

6.1 Questions . 69

6.2 Statistical analysis . 70

6.2.1 Experimental setup . 70

6.2.2 Statistical tools . 70

6.3 Data Exploration . 71

6.4 Statistical results . 75

7 Conclusions and Future Works 77

Bibliography 79

A Questionnaire 83

A.1 English version . 83

A.2 Italian version . 85

List of Figures

2.1 Holonomic wheel model . 7

3.1 Triskar . 12

3.2 Robotic platform views . 13

3.3 Playground geometrical properties 13

3.4 Tower top view . 14

3.5 Motor schematic . 15

3.6 Encoder schematic . 16

3.7 Laser sensor . 17

3.8 360◦ coverage ensured by laser positioning. The dashed blue

line represents the field o view of the left scanner while the

orange represents the right one 18

3.9 The ESP32 Core Board V2 and its schematic 19

3.10 Map resulting from SLAM process 20

3.11 Example of misalignment between map and laser scan 21

3.12 Possible configurations of detected cylinders 22

3.13 Results of the reconstruction procedure when the towers are

mislocalized . 23

3.14 Projection over the x-axis. A proper sequence could be (0,1,3,2) 23

3.15 Results of the reconstruction procedure when the towers are

mislocalized. They should be localized above the black regions 24

3.16 Control flow to filter laser scan 25

3.17 Results of subsequent filtering of laser scan to find the player 26

3.18 Different possible situation to evaluate safety 28

4.1 Effect on the path followed by the character under variations

in the mass value for the vehicle model. The black arrow

represents the current velocity of the character, the green

circle the target to reach and the red line the trajectory followed. 31

4.2 Trajectory followed by an actor under the influence of steering

behaviors . 33

XI

4.3 Planning pipeline . 34

4.4 Intention planning transition graph example 35

4.5 Decision tree derived from game movements planning. The

Intentions are highlighted in orange, the Actions in blue and

the Steering behaviors in green 37

4.6 The tower with the brightest color has the highest utility . . 39

4.7 Example of a deceptive trajectory 40

4.8 Difference between actions tied to the Escape intention 41

4.9 Required interfaces . 42

4.10 Decision tree after the introduction of the Interact intention . 43

5.1 Different plots for functions v and w given different ε
c parameters 48

5.2 Different paths created by the path agent 50

5.3 Here are displayed, for each walking agent, the draw rate

against each parameter characterization of the path agent,

represented by the corresponding color. The walking agents

have been divided into three sets with respect to the charac-

terization of the path agent they had been trained against . . 51

5.4 Sample plot for explanation purposes 52

5.5 Focus on the belief update after the first game 53

5.6 Ground truth sample . 54

5.7 Control flow for baseline approach to choose the parameters . 55

5.8 Evolution of the belief for the average skill µ about walking

agent e-20. On the right side we can see the ground truth

for the model expressed in win, draw and loss rate for the

walking agent against each parameter characterization of the

path agent . 56

5.9 Control flow enhanced with regulation of relative ranking be-

tween skills of agent parametric characterization 58

5.10 Average skill belief evolution for model e-20, with focus on

the regularization procedure 59

5.11 Average skill belief evolution for model e-16 60

5.12 Control flow augmented with both regulation for relevant

ranking between parametric characterization and for decision

change . 61

5.13 Average skill belief evolution for model e-16 62

5.14 Average skill belief evolution for model e-20 62

5.15 Accuracy for the proposed procedures 63

5.16 Supporting architecture to capture in game evolution 65

5.17 Player whose best configuration was Easy 66

5.18 Player whose best configuration was Medium 66

5.19 Player whose best configuration was Hard 67

5.20 Player whose best configuration was mistaken as Hard and

corrected as Medium . 67

6.1 Age distribution of participants 71

6.2 Comparison of win rate using Fixed and Adaptive behavior . 72

6.3 Comparison of agreement to the ’I had fun’ statement 74

6.4 Comparison of agreement to ’The robot changed playing style’

statement . 74

List of Tables

3.1 Motor datasheet . 15

3.2 Computational power . 18

4.1 State to intention mapping 37

4.2 Intention to action mapping 38

4.3 Action to behavior mapping 41

5.1 Different sets of parameters to characterize the ability of the

robot. 64

6.1 Participant details . 72

6.2 Win shares and average duration of a game in seconds 73

6.3 Statistical values for comparison on the engagement and per-

ceived adaptation. Mean and variance refer to the normal

approximation for the distribution of the U statistics. The

p-value is computed for the two-tailed test, the Confidence

Interval for the CLES is computed for a 95% confidence . . . 75

XV

Chapter 1

Introduction

The latest achievements in the research fields related to robotics and the

sprout of the consumer electronics market led to a pervasive presence of

robots in every day life. The increased degree of autonomy in the behavior

of robots changed the way people used to interact with them: we’re moving

from an interaction predominantly driven by user initiative, towards an in-

teraction where robots can take autonomous actions. The aim of this work

is to devise a decision system able to tailor the decision process on the user

and to study whether it can improve the quality of the interaction or not.

The study involved a conflicting game between a robot and a human: we

tried to modify the ability of the robot in order to match the ability of the

player and to offer an even game. In order to evaluate the effect of adapta-

tion on the interaction, we hosted people to play the game with both a fixed

behavior and the adaptive one, and collected their opinions on the game.

We analyzed their answers to search for a statistically significant difference

between the two versions, and evaluated the magnitude of the impact of our

work on the engagement. Our analysis suggested that we can say our work

had an impact on the engagement, even tough the magnitude of the differ-

ence is limited: we believe one of the cause for this is the intrinsic appeal

of the game itself even in its most basic version. This work underlines and

supports the need for behavior adaptation even in a competitive scenario:

future works may try to bring the adaptation to a deeper level, using a richer

description of the user and its playing style other than its ability level.

This study can be placed inside the Human Robot Interaction field: more

specifically, it focuses on the benefits of adapting the behavior to the final

user, with the purpose of improving the overall interaction. Previous re-

searches, like [18, 15, 2], have investigated these questions in cooperative

scenarios, where usually the purpose of the robot was to help the human

in carrying out some tasks. These studies confirmed the general assump-

tion that an adaptation improved the quality of the intercourse between

human and robot and the likeability of the latter one. Our work wants to

analyze similar aspects of the interaction in competitive scenarios: in partic-

ular, our scenario can be listed among what are known as Robogames [12],

a game scenario where a human user has to play against a robotic oppo-

nent. Since this is a completely novel area of robotics, few studies had been

carried out. In [9] it has studied the impact of autonomous behavior and

emotional feature in a Robogame, but nothing had been questioned about

behavioral adaptation. This is where aroused the need for this study. We

devised a procedure to select, among a set of parameters describing different

characterization of the robotic agent, the parameters that would maximize

the probability of drawing the game between the opponents, thus providing

an even game. The parameters we considered only constrained the motion

capabilities of the platform, assuming that a less constrained robot would

exhibit higher ability in the game. We tested this procedure on a simulated

environment, where two agents competed against each other. We trained

several agents to play the game autonomously with different levels of skills,

like the humans in our scenario, and we introduced the possibility to char-

acterize the behavior of the opponent with a set of parameter, as our robot.

After reaching a stable and reliable procedure, we deployed it on the robot

and conducted experiments with students playing the game, collecting their

opinions. We compared the answer of people playing with and without the

adaptation to search for statistical proof of improvements in the interaction

quality. A deeper adaptation of the robot behavior, especially on the action

decision system, should be devised and its implications and impact should

be studied. Also, the user classification and the playing style identification

remain an open problem, which could lead to better and more user specific

adaptation.

The work is structured in the following way:

• Chapter 2 provides the reader the needed background to understand

the problems addressed and the solutions presented. It starts present-

ing concepts of autonomous robots with focus on holonomic platforms.

This part is followed by a presentation of Human Robot Interaction in

general and a presentation of Robogames in detail. To complete the

background of the tools used in this work, we briefly discuss ranking

systems and their use in match making contexts

• Chapter 3 presents the game scenario and the robotic platform used.

We present as well some problems related to autonomous robot we

2

encountered and how we solved them, in order to have a correctly

working game

• Chapter 4 illustrates the game decision system, the architecture used

to decided which actions to take during the game. We described the

different type of actions allowed and their implementation. In the last

section we show how to insert and create new actions in the decision

system

• Chapter 5 starts with a description of the TrueSkill ranking system

and proceeds explaining how we used and adapted it in our use case,

then presents the simulation environment, starting from how we built

it and proceeding to present the results of subsequent refinement of

our parameter selection procedure. In the last section, we discuss

the implementation on the robotic platform for our scenario and the

tweaks it required

• Chapter 6 presents the experimental environment we used to per-

form the experiment and the statistical analysis we used to support

our claims. We first discuss informally the data collected trough vi-

sual representations, then perform the statistical analysis on them and

comment the results

• Chapter 7 is the final chapter, where we recap, discuss the results

and suggest the guidelines for future works on the subject

• Appendix A contains the questionnaire the participants filled in after

the game

3

4

Chapter 2

Background

This section will give the reader the needed background to understand the

concepts treated and used in the thesis: it will introduce the technical con-

cepts related to robotics, human robot interaction and PIRG. To complete

the needed background to cover the thematic areas involved in this work, a

brief introduction of ranking systems is presented.

2.1 Mobile Robotics

In recent years the research field dealing with mobile robots, especially au-

tonomous ones, has been facing a huge sprout. In order to work with such

robots, it is required to blend in knowledge from many different engineering

and science disciplines, ranging from mechanics to computer science, passing

by electronics.

To define what a mobile robot is, it is helpful to put it in contrast with

manipulators: while a manipulator operates in a constrained environment,

has an absolute measurement of position and does not necessarily need to

sense the external world, a mobile robot:

• Can operate in unconstrained environments

• Needs internal and external sensing to determine its position

• Needs external sensing to avoid obstacles

This requirements pose many different challenges and issues to be solved in

order to work with a mobile robot. One challenge is that of localization: the

robot has to be able to determine its current position in the environment in

order to correctly work. This can be done relying only on internal sensing,

usually trough the use of encoders: this technique is called dead reckoning.

While it provides an easy implementation, it is prone to errors as any error is

just added onto the previous one leading to an erroneous internal belief that

does not match reality. To address this problem it is possible to use multiple

sensors, both internal and external, and combine them to reduce overall

error: this technique is called sensor fusion and provides better results for

each additional information source, with a properly modeled error.

To exploit the capabilities of a mobile platform, it’s required for it to be

able to move inside the environment it is placed: to do so, it needs to

have a representation of the environment called map. There are different

types of maps, each one with its own pros and cons: we can find continuous

maps, representing obstacles with lines, or discrete ones, with either fixed

or adaptive cell dimension. A Priori maps can be a good starting point

to specify where the target point is in the environment and start a global

planning of the path, but any variation caused by object motion can confuse

the robot while navigating; dynamically generated maps can be used in

synergy with a priori ones to account for moving obstacles and augment

local accuracy.

The last challenge posed by mobile robots is the one of navigation. Given its

position and a point to be reached in the map, the robot has to be able to

plan a path to reach the target. The path is planned at two different level:

at the global one, the robot finds a suitable path between the two points

in its configuration space; at the local one, it detects obstacles and updates

the map according to sensor measurements.

An example of the issues to face when designing an autonomous mobile

robot is presented in [8]: this work tackled the problem of mapping and

localization by using an a priori map built with a SLAM algorithm and a

real-time localization procedure based on LIDAR, IMU and odometry data.

They underlined that while this was a procedure easy to implement, it was

prone to errors, especially in the odometry estimation: they tried to reduce

this effect by using an extended Kalman Filter to perform data fusion. The

application domain for these type of robots is almost unlimited: in [3], an

autonomous robot has been developed to perform inspection of metal-based

bridge to check its maintenance status. Tasks like this one, where there’s

an high risk for the human, represent a domain where highly autonomous

robots would apply best.

2.2 Holonomic Wheeled Robots

Holonomic wheeled robots represent a particular class of mobile robots. In

this area, the term holonomic refers specifically to the kinematic constraints

6

of the robot chassis. A holonomic robot is a robot that has zero nonholo-

nomic kinematic constraints. Another definition of holonomic robot is the

following: a robot is holonomic if and only if its number of differentiable

degrees of freedom (DDOF) are equal its degrees of freedom (DOF). In other

words, a holonomic robot is able to maneuver around obstacles without af-

fecting its orientation and to follow any arbitrary path. The most frequent

type of holonomic robot are omnidirectional robots, where

DDOF = DOF = 3

This type of motion requires to be supported by a proper mechanical con-

figuration: in particular, it needs holonomic wheels. Holonomic wheels are

wheels with two degrees of freedom; they are also known as omni-directional

drive wheels or omni-wheels for short, sometimes written as omniwheel.

These wheels have small discs around the circumference which are perpen-

dicular to the turning direction. The effect is that the wheel can be driven

with full force, but will also slide laterally with great ease. A representation

of an holonomic wheel can be found in figure 2.1.

Full omnidirectionality and the concept of holonomic wheels have been first

introduced in [14]. This type of robots offer much richer movement capa-

bilities: the study [11] focused on how to plan and perform simultaneous

rotation and translation, a motion that would not be feasible for a non-

holonomic platform. More than that, these platforms can follow any given

path without steering constraints: [10] shows how to perform optimal path

planning with these motion capabilities.

Figure 2.1: Holonomic wheel model

7

2.3 Human-Robot Interaction

Human-robot interaction (HRI) is the study of interactions between humans

and robots. The goal of HRI research is to define models of humans’ ex-

pectations regarding robot interaction to guide robot design and algorithmic

development that would allow more natural and effective interaction between

humans and robots. The continuous evolution of the ways robot participate

in our everyday life pushes the need of research and studies towards new

and better guidelines to drive the interaction. When robots first appeared,

their usage was confined to industrial environment only and were not able

to take any initiative due to the immaturity of the involved technologies:

nowadays the studies and improvements in related fields, such as natural

language processing or image processing, make feasible a much richer inter-

action enabling the robots to take also active initiative.

One of the overarching goals of robotics research is that robots ultimately

coexist with people in human societies as an integral part of them. In order

to achieve this goal, robots need to be accepted by people as natural part-

ners within the society. It is therefore essential for robots to have adaptive

learning mechanisms that can intelligently update a human model for effec-

tive human-robot interaction. Several studies have investigated the question

whether an adaptation of the interaction to the currently involved human

would result in a more pleasant intercourse. In [18] a group of 25 people

was asked to rate the interaction with a robot designed for elderly assis-

tance. Each participant collaborated twice with it: on one occasion the

robot showed a standard, non adaptive behavior, while on the other one it

exploited an adaptation strategy. The study found that the adaptive interac-

tion differs from non-adaptive interaction at a statistically significant level,

suggesting a preference towards the former one. A more extensive study [15]

examined the impact of an autonomous mobile social service robot proto-

type in everyday life for elderly people. The prototype was deployed in 18

households for a total of 371 days and provided entertainment, phone ser-

vice, reminders and control of a manipulator. Findings showed that while

the robot met user’s expectation, it did not increase safety sensation and was

rather perceived as a toy instead of a support for independent living. The

main cause was identified in the lack of adaptive autonomy from the robot’s

side. A follow up study [2] from the same group suggests a framework to

enhance the robot with the ability to display different levels of autonomy,

which will be used to validate the assumption that it will increase the per-

ceived intelligence of the robot.

An experiment involving children [19] tried to answer whether a robot capa-

8

ble of adaptive emotion expression could support engagement. A Nao robot

was enhanced with the aforementioned ability, and children played a quiz

with both an affective robot using the model for adaptive emotion expression

and a non-affective robot without this model. The behaviour and opinions

of the children, were measured through video analysis and questionnaires.

The results show that children react more expressively and more positively

to a robot that adaptively expresses itself than to a robot that does not. The

feedback of the children in the questionnaires further suggests that showing

emotion through movement is considered a very positive trait for a robot.

Another promising analysis [1] proposed an architecture to support adapta-

tion in a learning scenario to support engagement. They designed as well

an exploratory study with children from 7 to 10 years old, which is still to

be carried out.

2.3.1 Physically Interactive Robogames

Robots toys involved in a game scenario are often limited when it comes

to the way the user can interact with them. They usually take little to no

initiative, making the only interaction possible a stimulus-response reaction.

Nowadays, the introduction of low cost sensors and computing power paved

the way to a richer interaction and games specifically designed for mobile

robots. PIRGs (Physically Interactive Robogame) have been introduced in

[12]: in a PIRG physical, autonomous (often mobile) agents are actively

engaged in a game that creates some sort of interaction, either competitive

or cooperative, between humans and robots, moving in the physical world.

Robogames will be one of the next robotic products for the mass technolog-

ical market, thus demanding a large exploration of new methodologies and

applications, especially for what concerns methods for enabling high auton-

omy, intelligence, and adaptive behavior, in order to respond to demands

in engagement support like the ones expressed in [22, 20, 21]. Being able

to evaluate how people play is crucial for an adaptive game. In the virtual

game industry, several studies have been published, most of them using arti-

ficial intelligence and machine learning algorithms. For instance, [4] reports

about emergent self-organizing maps for grouping types of players.

A recent study [9] tried to evaluate the impact of autonomous behaviors and

emotional features in a drone-based PIRG. Emotional features were encoded

and conveyed through a mixture of motion patterns and sounds. The par-

ticipant had to play three times: once against a robot showing autonomy

and emotions, once against a robot showing autonomy but not emotions,

and once against a robot remotely controlled with emotions. Data were col-

9

lected via questionnaire and the results show that autonomous behavior did

not influence user experience in a noticeable way, while emotional features

noticeably increased players’ engagement and enjoyment of the game.

2.4 Ranking Systems

The main focus of a ranking system is to find an ordering between a set of

players based on their ability. Some well known examples of ranking systems

usage can be found in many different professional sports: the ATP maintains

a global ranking for tennis players, the FIFA a world ranking for national

teams and so on. The feature that makes ranking systems adaptable to

be used in in many different contexts is that they focus only on finding an

ordering between players: while defining a metric for the skill is a hard and

often domain dependent task, finding an ordering based on game outcomes

is a simpler and more generic approach to the problem. One of the most

famous rating system is the Elo system [5], named after its inventor Arpad

Elo, which was adopted first by the United States Chess Federation (USCF)

in 1960 and then by the World Chess Federation (FIDE) in 1970. The basic

idea behind it is that each player in each game can be represented as a nor-

mally distributed random variable that is updated after every game based

upon the game outcome and the relative rankings of the opponents. Taking

inspiration from this system, many others have been generated, including

Glicko [6] and TrueSkill [7].

An attempt to use an adaptation of the Elo rating system for matchmaking

has been carried out in [13]: in this scenario the ranking system has been

used to select suitable questions for students given their estimated rank.

The devised on-line procedure has been tested against an off-line procedure,

showing comparable results. The main benefits highlighted by the proposed

procedure are the ease of computation, compared to maximum-likelihood

methods, and the flexibility to adapt to both new questions and students.

In [16], an adaptation of the TrueSkill system has been devised to support

preference elicitation in a movie recommendation context. They included in

the process information about the items to recommend encoded in a vector

of features: the study showed promising results in the preference prediction

while tackling the cold start problem as well.

We adapted Trueskill to our type of games to be able to evaluate the perfor-

mance of the player in short type so to adapt the performance of the robot

to obtain even games.

10

Chapter 3

Robotic Platform

This chapter presents the robotic platform we adopted and developed: we

will start from the physical properties of the robot and the game, then pro-

ceed to describe the hardware used, including sensors and actuators. Then

we will proceed to discuss the implemented software solutions to tackle gen-

eral issues related to autonomous mobile robots as player tracking, obstacle

recognition and localization.

3.1 Triskar

The robotic platform is an omnidirectional platform: it can move and rotate

in any direction along a fixed plane in space. It has an equilateral triangle

base with sides of length 0.6m, where at each corner there’s an omnidirec-

tional wheel. It has a protecting plastic band 0.2m tall around the base to

absorb impact and a central metallic body which height is 1.1m. On the

central body is placed the on board computer hosting the computational

core. Figure 3.1 shows a picture of the robot, while sketches about its geo-

metrical properties can be found in figure 3.2.

The platform hosts a computer to support execution in the middle, and two

laser sensor on the side to have a 360◦ visibility.

Figure 3.1: Triskar

12

(a) Top view (b) Side view

Figure 3.2: Robotic platform views

3.2 Robotower

The game is played inside a 4m x 4m playground, surrounded by an 0.8m

tall tarp. There are four towers placed in the corners of the playground.

Each tower is a cylinder 1.1m tall and with a diameter of 0.15m. On top of

the tower there are four leds and one button, as shown in figure 3.4.

(a) Playground top view (b) Playground side view

Figure 3.3: Playground geometrical properties

The goal of the robot is to physically take down one of the towers by

colliding with them. The goal of the player is to defend the towers by posing

himself on the robot’s path: at the same time, the player should conquer

each tower. In order to conquer one tower, the player has to light up all

the four leds of the tower: to light up one led, he has to keep the button

13

Figure 3.4: Tower top view

on the top of the tower pressed for two consecutive seconds. Once a tower

is conquered, the robot can no longer try to take it down. The game is a

conflicting one: while the player is keeping the button on one tower pressed,

he has to monitor robot’s actions to prevent it to take down another tower.

The player wins when conquers all towers, while the robot wins when it

takes down at least one tower.

3.3 Hardware

3.3.1 Motors

Each one of the tree wheels is powered by a MAXON 118798 DC motor

RE36 GB 70W KL 2WE. Its characteristics are reported in figure 3.5 and

table 3.1.

3.3.2 Encoders

To collect and monitor the speed of the motors a 110513 tacho ENCODER

HEDS 5540 500IMP 3K is mounted on each one. The schematics of the

encoder can be found in figure 3.4. Encoders contain a single Light Emitting

Diode (LED) as its light source. The light is collimated into a parallel beam

by means of a single lens located directly over the light source. Opposite the

14

Figure 3.5: Motor schematic

Assigned power rating 70 W

Nominal voltage 24 V

No load speed 70 x 60

Stall torque 783 mNm

No load current 105mA

Terminal resistance 1.11 ohm

Max. permissible speed 8200 rpm

Max. efficiency 85%

Torque constant 36.4 Nm/A

Speed constant 263 rpm/V

Mechanical time constant 6ms

Rotor inertia 67.7 gcm2

Terminal inductance 0.2 mH

Reduction ratio [14:1] (166158 planetary gear GP32A 2.25NM)

Table 3.1: Motor datasheet

15

emitter is the integrated detector circuit. This IC consists of multiple sets

of photodetectors and the signal processing circuitry necessary to produce

the digital waveforms. The code-wheel rotates between the emitter and

detector, causing the light beam to be interrupted by the pattern of spaces

and bars on the code-wheel.

Figure 3.6: Encoder schematic

These interruptions are detected by the photo diodes that send signals

to the circuitry in order to be processed. This circuitry produces the final

output as an index pulse P O which is generated once for each full rotation

of the code-wheel. circuitry that produces the final outputs that is an index

pulse P O which is generated once for each full rotation of the code-wheel.

3.3.3 Laser Scanner

In order to perceive the environment in the most precise way, the robot is

equipped with two laser scanners Hokuyo URG-04LX, shown in figure 3.7.

These laser sensors perceive the range of obstacles on a plan with a field of

view of 240◦ and a resolution of 0.36◦ , the maximum detectable distance

is 5.6m and they can be connected to the computer by means of a USB

interface, the required voltage is 5V.

The Hokuyo URG-04LX consists of a compact stacked structure with a spin-

dle motor and the actual scanner on top of it. The motor rotates a small

transmission mirror that deflects the vertical laser beam coming from the

top of the sensor into horizontal direction. This allows the laser beam to

scan a planar area around the sensor with an opening angle of 240◦ . A sec-

ond mirror below, the reception mirror, deviates the horizontal laser beam

16

captured by a lens into vertical direction again.

A full scan is performed every 100ms. The two laser scanners are mounted

on each side of the lower chassis. In order to maximize the scanning an-

gular range, the two sensors are placed at about 120◦ with respect to the

longitudinal axis of the robot. In this way a 360◦ coverage around the robot

is achieved as shown in figure 3.8, adding robustness to the detection of

obstacles.

(a) Laser sensor (b) Laser schematic

Figure 3.7: Laser sensor

17

Figure 3.8: 360◦ coverage ensured by laser positioning. The dashed blue line represents

the field o view of the left scanner while the orange represents the right one

3.3.4 Shuttle

The on board computation is performed by a Shuttle XPC Slim DH270.

The device has a 190x165x43mm steel chassis for 1.3kg of weight presenting

numerous threaded holes (M3) at both sides of the chassis to allow an easy

fixture to the mobile robotic platform. The operating system is Ubuntu

16.04.3 LTS (64bit).

Processor Intel Core i7 Kaby Lake

RAM memory 16 GB DDR4

Table 3.2: Computational power

3.3.5 Tower equipment

In order to control the leds and to enable communication between the towers

and the robot, we equipped each tower with a ESP32 Core Board V2, an

Arduino compatible board with built in WiFi functionality. It includes

USB to serial programming interface, that also provides power supply for

the board, and has pushbuttons to reset the board and put it in upload

18

mode. Using this board we deployed the control logic of LEDs directly on

the board, which communicates the status of the tower each second to keep

the connection alive.

Figure 3.9: The ESP32 Core Board V2 and its schematic

3.4 Software

Enabling the robot to move autonomously required the usage and devel-

opment of several side components that we’re going to present in the next

sections.

3.4.1 Robot Operating System - ROS

The Robot Operating System (ROS) is a flexible framework for writing robot

software. It is a collection of tools, libraries, and conventions that aim to

simplify the task of creating complex and robust robot behavior across a

wide variety of robotic platforms. It embraces a distributed software phi-

losophy, swaying developers towards designing highly independent modules,

called nodes, resulting in more general purpose solutions. These nodes can

communicate with each other trough the usage of messages: they can pub-

lish and subscribe to topics of interest in order to orchestrate the execution

flow.

The large community of users made possible to find ready made solutions

for common problems relative to robotics, such as static mapping and local-

ization, facilitating our work during the development process.

3.4.2 Mapping and Localization

To build the a priori map of the environment, we used a SLAM algorithm

before playing the game, producing a result like the one in figure 3.10.

19

Figure 3.10: Map resulting from SLAM process

During the game, to localize the robot inside the map we opted for an

AMCL approach and relied on the ROS node provided in the navigation

stack. To feed the node, we passed information sensed by the laser scans,

and from the odometry based on encoders.

The result of this simple localization procedure presented some flaws: when

the robot performs a crisp and sudden movement, it causes the laser scan

and the map to be misaligned, resulting in a non accurate localization: this

poses problems in navigation as often the robot failed to reach the towers as

the map resulted rotated or translated with respect to robot’s notion. An

example of this effect can be found in figure 3.11.

3.4.3 Tower navigation

Given the problem with localization, the system often mislocalized the tow-

ers, resulting in an non accurate navigation. In order to address this prob-

lem, we exploited the geometrical properties of the playground and of the

towers. First of all we analyzed the laser scan in order to find clusters that

would be compatible with a cylindrical shape: the set of clusters found would

embrace both the towers and the player’s legs. Given this information, we

try to reconstruct the rectangle formed by the four towers: to have robust

result in any game situation, we decided to reconstruct the rectangle using

only 3 vertices. This choice has come after the consideration that the pres-

ence of the player between the robot and one tower will actually hide the

tower from the laser sensors, thus we do not always have information about

all 4 towers, but we have information about at least 3 towers with an high

confidence. A visualization of the issue can be found in figure 3.12

20

Figure 3.11: Example of misalignment between map and laser scan

21

(a) All towers are visible to lasers (b) Bottom left tower is hidden by the

player

Figure 3.12: Possible configurations of detected cylinders

Given the initial position of the towers with respect to the map, we cal-

culate the area of all the triangles we can obtain by splitting in half the

rectangle, as well as the length of each side. When a set of new legs comes

in we consider all the triplets from the set and evaluate thee area of the tri-

angle they form: if the area matches one of the initial triangle, we check all

the pairs from the triplets to evaluate whether their distance is compatible

with one of the sides of the triangle. If this second step is successful, we have

obtained the three sides of a triangle formed by three towers. To obtain an

estimate of the position of the missing one, we have to identify which sides

are the catheti: then, we choose one to be reproduced and one to be kept

fixed. We estimate the orientation and length of the one to be reproduced,

and we reproduce a copy of it sprouting from the opposite vertex of the fixed

cathetus. The result of the process can be visualized in figure 3.13

22

(a) Initial configuration (b) Green lines are the matched trian-

gle, orange one the reconstructed sides

Figure 3.13: Results of the reconstruction procedure when the towers are mislocalized

Once we have found the four vertices of the rectangle, we have to sort

them in order to obtain a proper rectangle. To do so, we simply project

the points over the x axes and sort them in ascending order: we know that

the two middle points occupy opposite vertices, like the extreme ones: any

sequence of the type (extreme, middle, extreme, middle) will be a proper

sequence for a rectangle: an example can be found in figure 3.14

Figure 3.14: Projection over the x-axis. A proper sequence could be (0,1,3,2)

23

(a) Initial configuration (b) The green box is the reconstructed

rectangle

Figure 3.15: Results of the reconstruction procedure when the towers are mislocalized.

They should be localized above the black regions

3.4.4 Player Tracking

Localizing the player in the field is a crucial but complex feature of the

system. To do so, we relied on the information coming from the laser scan

and from the occupancy grid. We tried to match evidences of objects sensed

trough the laser with obstacles represented in the occupancy grid from the

a priori map. Since the occupancy grid is referred to the map frame, we

need to transform the laser scan points from the robot frame to the map

frame. We tried to rely on the tf framework provided by ROS but, given

the amount of points to be transformed, it often failed: we had to translate

them by hand exploiting the information about the robot’s pose in the map

frame. Once we translated successfully all the points to the map frame, we

check them against the occupancy grid: if, given a threshold, the contour of

the point in the occupancy grid contained an obstacle, we marked the point

as belonging to the a priori map: otherwise, we marked it as a new obstacle

and associate it with the presence of the player, under the assumption that

the player is the only entity not present in the a priori map.

Again, the flaws of the localization brought noise to this estimate: when

the robot is moving too fast, the map may rotate so much that one of the

walls is considered to be inside the playground, thus being considered as

evidence of the presence of a player. To reduce this effect, we exploited the

notion of cylindrical objects inside the field: after matching the scan against

the occupancy grid, we refine the result matching the outcome against the

cylindrical elements of the field: if what has been marked as a novel object

24

in the field is not a cylinder, it is discarded. After this second filtering, we

are left with an appreciable estimate of what is the laser scan of the player:

sometimes it happens that one of the towers is marked as moving obstacle,

but does not introduce too much noise.

After all this cleaning procedure, the laser scan associated to the player is

fed to a Particle Filter that updates the position of the player. The result

of this filtering pipeline can be seen in figure 3.17

Figure 3.16: Control flow to filter laser scan

3.4.5 Obstacle Detection

The nature of the game poses a problem when it comes to obstacle recogni-

tion: since we have to collide with the towers, we cannot consider anything

coming from the laser scan as an obstacle, but we must avoid only the player.

25

(a) Complete Scan (b) Scan filtered against costmap

(c) Scan filtered against legs

Figure 3.17: Results of subsequent filtering of laser scan to find the player

26

The work done for the tracking of the player comes in handy in solving this

problem. We define a situation as unsafe if we think we’re going to collide

with the player, otherwise we tag the situation as safe.

First of all we need the position of the player with respect to the robot

frame, so that we can evaluate its orientation with respect to the robot.

Then we need the current velocity of the robot, so that we can evaluate the

orientation of its motion. If we find that the two orientations are aligned, we

perform another check on the situation: we take the segment of scan rela-

tive to the motion direction of the robot and see if there’s anything that had

been sensed too close. If we don’t find anything too close in that segment,

we can say that the situation is safe, otherwise we say that the situation is

unsafe.

Algorithm 1: Safety Condition Algorithm

input : Player position wrt robot player, Robot velocity vel

output: Safety condition

player direction ← atan(player.y, player.x);

motion direction ← atan(vel.y, vel.x);

if player direction- motion direction < motion threshold then

start ← motion direction − (motion threshold / 2);

end ← motion direction + (motion threshold / 2);

motion scan segment ← getLaserScanSegment(start, end);

for distance in motion scan segment do

if distance < safety threshold then

return false;

return true;

return true;

When we find ourselves in an unsafe situation, we rollback to saying that

the situation is safe only when we do not sense anything in the full scan

that is closer than the safety threshold.

27

(a) Safe condition: the

player is not in the direc-

tion of motion

(b) Safe condition: the

player is in the motion di-

rection but distant enough

(c) Unsafe condition: the

player is in the motion

direction direction and is

too close

Figure 3.18: Different possible situation to evaluate safety

28

Chapter 4

Proposed Adaptive Steering

Planning Architecture

Designing a planning system for a PIRG poses some more challenges when

compared to a planning system for a non adaptive game. In the latter case

the goal of the agent is to win the game: this means it should aim at fol-

lowing an optimal strategy in order to maximize its own outcome. In our

scenario the goal of the agent is to offer a pleasant interaction experience

to the user: this means that the agent should try to match the user playing

style in order to make the game even, rather than play optimally. Given the

capabilities of the robotic platform, maximizing the agent’s outcome would

result in a game too difficult to be matched by a human counterpart. To

fulfill these requirements it is necessary to design a system architecture ca-

pable of adapting its decision flow and its motion abilities.

In the first part of this chapter we’re going to introduce steering behaviors,

which are the founding motion patterns used to implement the motion abil-

ities of the platform, then we will present the architecture and the decision

hierarchy designed to fulfill the requirements at high level. Lastly we are

going to give details about the lower level implementation for our scenario,

describing different situations that could occur during the game paired with

sample trajectories the decision system would result into.

4.1 Steering Behaviors

Steering behaviors have been proposed first by Reynolds in [17]: they are

high level guidelines of motion patterns that give an actor the ability to

navigate around their world in a lifelike and improvisational manner. The

main idea is to adjust gradually the velocity direction to be parallel to the

direction of the target to reach. To do this adjustment forward Euler in-

tegration is used: at each simulation step, the steering force to be applied

is calculated following the current behavior guideline. Then it is applied

to a representation of the vehicle, called vehicle model, which embeds its

kinematic properties and its steering capabilities. This application will pro-

duce an acceleration vector to be added to the current velocity vector of the

vehicle, gradually aligning the velocity direction to the desired target. This

is the backbone update procedure that is common in the steering behavior

framework:

steering force← truncate(steering direction,max force)

acceleration← steering force/mass

velocity ← truncate(velocity + acceleration,max vel)

Each steering behavior will then characterize the way the steering di-

rection is calculated, generating a different motion. Here follows a brief

presentation of the steering behaviors taken into consideration in our imple-

mentation.

4.1.1 Vehicle model

As previously pointed out, one of the two core components of the steering

behavior framework is the vehicle model, that is the way we represent the

locomotion platform of our character. Given the fact that our platform is

holonomic, we have no steering limitations and we can model it as a point

mass. The features describing the vehicle model will then be its mass and

its maximum speed. Changes in the vehicle model representation will affect

the motion of our robot as well, as displayed in figure 4.1

4.1.2 Seek

Seek (or pursuit of a static target) acts to steer the character towards a

specified position in global space. This behavior adjusts the character so

that its velocity is radially aligned towards the target. The desired velocity

used to calculate the velocity update will be a vector with direction parallel

to the straight line passing through the character and the target, and with

magnitude equal to max speed.

desired velocity ← normalize(position− target) ∗max speed
steering ← desired velocity − current velocity

30

(a) Higher mass values

will produce long turns

and overshooting trajecto-

ries

(b) Medium values will

produce smoother trajec-

tories

(c) Lower values will pro-

duce crisp and almost

straight movements

Figure 4.1: Effect on the path followed by the character under variations in the mass

value for the vehicle model. The black arrow represents the current velocity of the

character, the green circle the target to reach and the red line the trajectory followed.

An example of the motion produced by this behavior can be seen in

figure 4.2a.

4.1.3 Flee

In opposition to the seek behavior, that enables the character to reach a

given target, the flee behavior has been designed: a character driven by this

behavior will naturally escape from the target. The desired velocity used to

calculate the velocity update will be the same as for seek, but with opposite

direction.

desired velocity ← normalize(target− position) ∗max speed
steering ← desired velocity − current velocity

An example of the motion produced by this behavior can be seen as well

in figure 4.2a.

4.1.4 Arrival

The arrival behavior serves the same purpose of the seek behavior, that is

reaching a target, but instead of moving through the target at full speed,

this behavior causes the character to slow down as it approaches the target,

eventually slowing to a stop coincident with the target. This will prevent

the overshoot that often affects the seek behavior. The arrival behavior

is parameterized by the slowing distance, the distance from the target at

which the character will start slowing down. The desired velocity used to

31

calculate the velocity update will be the same as for seek when the distance

from the target is greater than the slowing distance, than its magnitude

will be more and more reduced as the character will be approaching the

target.

target offset← target− position
distance← length(target offset)

ramped speed← max speed ∗ (distance/slowing distance)

clipped speed← minimum(ramped speed,max speed)

desired velocity ← (clipped speed/distance) ∗ target offset
steering ← desired velocity − velocity

A character moving under the influence of the arrival behavior will follow

a path similar to the one presented in figure 4.2b

4.1.5 Evasion

Evasion is similar to the flee, but the target is not fixed: at each time step

the target to evade from is updated. This produced a non optimal path to

escape, but better resembles natural systems where evasion is non optimal

in order to be unpredictable. A visualization of the followed path can be

seen in figure 4.2c

32

(a) Seek and Flee behaviors (b) Arrival behavior

(c) Pursuit and Evasion behaviors

Figure 4.2: Trajectory followed by an actor under the influence of steering behaviors

4.2 Architecture

One of the most important features of the robot is that it has to show and

act following a rational behavior: this means that each movement must be

tied to a purpose, an intention that the robot wants to carry out. From this

requirement arouses the need for a planning component capable of reasoning

at a high level: this component should be in charge of defining the semantic

meaning of subsequent decisions to be taken by lower level components that

have to translate them into motion.

Each intention can be fulfilled by means of different actions: we need another

component to reason at this middle level in order to choose the actions to

be then actuated by the robotic platform.

Lastly, we need a component in charge of actuating the action planned at

the previous level: it should be able to choose the proper steering behavior

to actuate the action and calculate the velocity command to be sent to the

system.

These would result in a three layer architecture as represented in figure

4.3 where each layer reasons at a different level of granularity about the

interaction with the player.

33

Figure 4.3: Planning pipeline

4.2.1 Intention Planner

The planning procedure at the intention level is regulated by a transition

graph like the one shown in figure 4.4. Each state, given the current state

of the game, can generate an intention between the ones allowed by the

graph. At each iteration, we evaluate whether there should be a transition

between states: if so, we change the current state and generate the new

intention from it. In case no state transition happens, we evaluate if the

current intention is still running: if it is no longer running, i.e. has been

aborted or completed, we generate a new intention from the current state.

The pseudocode for the planning procedure is presented in algorithm 2

Algorithm 2: Intention planning routine

Data: gameState

Result: Intention to carry out

initialize the intention graph;

set the initial currentState;

generate initial currentIntention;

while game is running do

get current gameState;

if state transition is triggered then

update currentState;

generate currentIntention from currentState;

else

if currentIntention is not running then

generate currentIntention from currentState;

publish currentIntention;

4.2.2 Action Planner

The planning procedure for actions should listen to the intention planned at

the higher level of the hierarchy and plan the actions to be carried out. It

hosts a lookup table to filter the actions meaningful for the current intention

34

Figure 4.4: Intention planning transition graph example

between all the possible ones. The pseudocode for the planning procedure

is presented in algorithm 3

Algorithm 3: Action planning routine

Data: gameState, currentIntention

Result: Action to actuate

initialize the intention-action lookup table;

wait for first intention;

while game is running do

get current gameState;

get currentIntention;

if currentIntention has changed then

lookup possible actions for currentIntention;

choose best action given the gameState;

publish action;

4.2.3 Actuation Planner

The lower level planner takes as input the action to actuate and outputs a

stream of velocities command to make the robot move according to a steering

behavior. Again, it hosts a lookup table to filter the steering behaviors

meaningful for the current action between all the possible ones. Along with

that, it holds a representation of the vehicle to be used to generate velocity

35

commands according to steering behaviors. The pseudocode for the main

routine can be found in algorithm 4.

Algorithm 4: Actuation planning routine

Data: gameState, currentAction

Result: Steering behavior to follow

initialize the action-behavior lookup table;

initialize vehicle representation;

wait for first action;

while game is running do

get current gameState;

get currentAction;

if currentAction has changed then

lookup possible behaviors for currentAction;

choose best behavior given the gameState;

set behavior to the vehicle representation;

generate command given vehicle representation;

publish command;

4.3 Implementation

We implemented a version of this architecture with states, intentions, ac-

tions and behaviors limited to the ones necessary to satisfy the needs of

our research and to have a working game. The cascading pipeline decision

process in the end could be summarized by the decision tree shown in figure

4.5. In the following paragraphs we’re going to discuss the elements and

decision in detail.

36

Figure 4.5: Decision tree derived from game movements planning. The Intentions are

highlighted in orange, the Actions in blue and the Steering behaviors in green

4.3.1 State to Intention

The transitions between states are driven by safety decision: we would go

from a Safe state to a Not safe state if we detect an imminent collision with

the player. We would remain in a Not safe state until there is no obstacle

(either player or wall) near the robot. The mapping between each safety

state and the intentions they are able to produce in the following table.

STATE INTENTION

Safe PlayGame

Not safe
Escape

Wait

Table 4.1: State to intention mapping

When we’re in a Safe state, we always carry out the intention to play

the game. When we’re on a Not safe situation, we’ll initially carry out the

Escape intention, with the object of restoring a safe situation: if after a

timeout of 3 seconds we’re still in a Not safe situation, we’ll switch to the

Wait intention until the player gets far enough.

37

4.3.2 Intention to Action

We limited the set of actions to those useful to fulfill our implemented inten-

tions, that are: Capture Tower, Deceive, Center, Escape, Stop. The mapping

between intentions and actions can be found in table 4.2.

INTENTION ACTION

PlayGame
CaptureTower

Deceive

Escape
Center

Evade

Wait Stop

Table 4.2: Intention to action mapping

CaptureTower represents a direct attack to a given tower: each tower is

assigned a utility value using the following function:

utilityi =advantage factori ∗ blocking factori−
− led factori − recentness factori

The advantage factori takes into consideration the advantage that the robot

has over the player to reach tower i. This is simply the difference of their

distances from the tower, which is going to be positive if the robot is closer

to the tower than the player, negative otherwise.

advantage factori = player distancei − robot distancei

The blocking factori is going to represent how much the position of the

player is blocking the robot’s way towards tower i

blocking factori =
alpha player − alpha toweri

π

Where alpha player is the angle between the robot and the player, and

alpha toweri is the angle between the robot and the tower. The blocking factori
could take values between 0 and 1, where 1 means not blocked at all and 0

means highly blocked.

The led factori is going to account for the completion state of a tower,

since the complete ones should not be attacked by the robot.

led factori = −100 ∗ (leds oni == 4)

The leds oni is the number of leds currently on for tower i.

38

The recentness factori has been introduced to avoid constant repetition

in the choice of the same towers by the procedure: we noticed that the robot

often kept going along the diagonal (being the most advantageous choice)

resulting in a boring and highly predictable behavior. Thus we decided to

always penalize the last tower that was chosen as a target and to penalize

with a probability of 2
3 the second to last.

recentness factori = −100 ∗ (i == last target)−

−50 ∗ (i == second to last target) ∗ (random float <
2

3
)

Where random float is a real number randomly generated between 0 and

1. The penalty for the second to last tower will be dropped when there will

be only two towers left.

An example of the trajectory followed by this action and of the results of

this utility function can be seen in figure 4.6.

Figure 4.6: The tower with the brightest color has the highest utility

Deceive represents an attack to a tower after a fake attack to another

one. The robot will be initially headed towards the fake target and then it

will change target accelerating a little towards the real one, following a path

like the one showed in figure 4.7.

To decide between a Deceive action and a Capture tower we’ll look at

the utilities of towers: if we see that there are two tower with approximately

the same utility, we’ll choose a the first one. If this situation does not occur,

we choose the latter action.

39

Figure 4.7: Example of a deceptive trajectory

Escape intention should lead to the simulation of a getaway by the robot

when it’s facing a dangerous situation, trying to restore a safe situation. We

consider two actions for this intention: in the first one, called Center, the

robot will try to get closer to the center of the field, where it will have more

room for manoeuvre; in the second one, called Evade, it will just escape

from the obstacle closest to it.

To determine which is the most suitable action, we take a look at what is

surrounding the robot: if the way towards the center is not obstructed, we

will choose the Center action, which will be implemented in the following

way. Firstly, we define a set of targets eligible to be the ones to flee from: this

set is composed by points distributed along an arc centered in a point in the

opposite direction with respect to the center, as shown in figure 4.8a. Then

the target is chosen randomly, in order to avoid repetitive and predictable

movements. In case this behavior is not feasible, we will choose the Evade

action, where we simply run away from the closes obstacle. A sample of a

situation where we would choose it and a possible trajectory are shown in

figure 4.8b.

40

(a) Example of a trajectory for the Center

action

(b) Example of a trajectory for the Evade

action

Figure 4.8: Difference between actions tied to the Escape intention

4.3.3 Action to Steering Behavior

We decided to characterize the robot motion through the usage of steering

behaviors. In order to perform the actions described above, we implemented

the seek, arrival, flee, evasion and stop behaviors; a detailed description

of these behaviors had been given at the beginning of this chapter. The

mapping between actions and behaviors can be found in table 4.3.

ACTION BEHAVIOR

CaptureTower
Seek

Arrival

Deceive
Seek

Arrival

Center Flee

Evade Evasion

Stop Stop

Table 4.3: Action to behavior mapping

In order to choose between seek and arrival behaviors, we’ll simply look

at the maximum speed currently set for the robot: in presence of a higher

speed, we will select the arrival behavior, while we’ll go with the seek one

with lower speed values. The reason behind this decision is a merely safety

41

issue. We experienced that most of the collisions between human and robot

happen when the human gets suddenly in the way of the robot attacking

one tower: thus, if we use an arrival behavior, decelerating a little when

approaching the tower, it will be easier to change direction if the player

suddenly steps in the way. For lower speed values this adjustment is not

necessary to avoid collision.

4.4 Extending the planner

Given the design of the planning system, it is easy to extend the capabil-

ities of the robot adding new states, intentions, actions or behaviors. We

exploited inheritance and polymorfism to reason at a high level of abstrac-

tion: we designed the interfaces these objects must implement in order to be

taken in consideration by the planner without changing the planning core

loops. The only change required would be a remap of the lookup tables

defining intention to action mapping and action to behavior mapping. As

an example, if we wanted to add a new intention to interact with the player,

not finalized to play the game, we would just need to define the condition

upon which the Safe state could output the Interact intention. Then we

would define the actions to fulfill this intention. For example, if we would

like to follow the player movement, and the steering behavior to implement

such action, we can simply use the interfaces in figure 4.9

Figure 4.9: Required interfaces

After this sample extension, the decision tree would look like figure 4.10.

All this would not require changes in the main loops of the components, if

42

not for the initialization that should initialize the new items as well.

Figure 4.10: Decision tree after the introduction of the Interact intention

43

44

Chapter 5

Adaptive difficulty selection

procedure

This chapter will describe the procedure used in order to change the exhib-

ited ability of the robot. The purpose of our research is to find a proper way

to select a motion profile for the robot in order to maximize the engagement

of the human player: given the assumption that a game is more engaging

when even, our purpose becomes to find the motion profile that maximizes

the probability to draw the game.

Finding such a profile in a continuous space introduces unnecessary overhead

difficulties: the range of speed we can allow is so narrow that small changes

would not be relevant. Thus, we defined three sets of parameters which are

going to characterize three motion profiles for the robotic platform.

To help us in identifying the most suitable configuration for the player, we

exploit and adapt to our needs the TrueSkill ranking system.

5.1 TrueSkill

TrueSkill ranking system is a skill based ranking system for Xbox Live de-

veloped at Microsoft Research. The purpose of a ranking system is to both

identify and track the skills of gamers in a game (mode) in order to be able

to match them into competitive matches. The TrueSkill ranking system only

uses the final standings of all players in a game in order to update the skill

estimates (ranks) of all gamers playing in this game.

This system models the skill of the player using two numbers:

• µ: the average skill of the

player

• σ: the degree of uncertainty

in the player’s skill

Measuring the degree of uncertainty in the player’s skill enables the sys-

tem to perform updates that will have an high impact on the ranking during

the initial phase, when the uncertainty is high, and to reach a stable order-

ing when the uncertainty is lower.

Starting from this representation, this system is able to calculate the hy-

pothetical chance of drawing a game between two players given its current

belief.

5.1.1 Skill update

After each game, the system updates its belief about the players involved

according to its beliefs about the skills before the game. As we can see

from equation 5.1, the winner is going to get an increment of a multiple of

v
(
µwinner−µloser

c , εc

)
, while the loser is going to get a decrement of a multiple

of the same factor.

µwinner ← µwinner +
σ2winner

c
∗ v

(
µwinner − µloser

c
,
ε

c

)
µloser ← µloser −

σ2loser
c
∗v

(
µwinner − µloser

c
,
ε

c

) (5.1)

To have a better understanding of what this update equations imply, we

should focus our attention on what the difference µwinner − µloser tells us. If

the believed mean skill of the winner was higher than the loser’s one, the

outcome matched our expectations: the function v would output a small

increment in skill for the winner along with a small decrement for the loser.

On the contrary, if µwinner − µloser was negative, meaning that we believed

that the loser was a better player than the winner, the function v would

output a major increment in the mean skill for the winner along with a

46

great decrement for the loser.

The uncertainty σ over the mean skill µ is used as a weighting factor in the

update process: beliefs with higher uncertainty will get higher increments

on equal values computed by v.

Regarding the updates for the uncertainty σ over the mean skill µ, it will

depend again from the matching between expected and observed outcome:

if there’s a match, both the uncertainties will be reduced by an higher factor;

if the observed outcome is different from the expected one, the uncertainties

will decrease less. The equations are shown in 5.2.

σ2winner ← σ2winner ∗
[
1− σ2winner

c2
∗ w

(
µwinner − µloser

c
,
ε

c

)]
σ2loser ← σ2loser∗

[
1− σ2loser

c2
∗ w

(
µwinner − µloser

c
,
ε

c

)] (5.2)

In all the equations the c factor is

c2 = 2β2 + σ2winner + σ2loser

where the β2 factor represents the variance of the performance around

the skill of each player, and its default value is 4.16. Moreover, ε is the

aforementioned draw margin which depends on the game mode. The plots

of the functions v and w for varying values of ε
c can be found in figure 5.1

47

Figure 5.1: Different plots for functions v and w given different ε
c parameters

5.2 Approach idea

The TrueSkill ranking system was developed to be used in a setting where

two players are playing the same game against each other. In our scenario,

we have a slightly different setting: the goal of the robot is different from

the goal of the player, but we can still treat this as an adversarial game

where we can elect the winner. If we think of the robot playing with each

different set of parameters describing a motion profile as a different oppo-

nent for the human player, we can apply the TrueSkill approach to model

the skill corresponding to each set of parameters and to select the one with

the highest chance of drawing the game against the current player.

Before applying this approach to the physical game, we built a simula-

tion environment that could match the characteristics of our scenario. The

environment we needed should have had the following three characteristics:

1. Two opponents competing to reach two separate goals

2. The possibility to modify the ability of one of them

48

3. The possibility to define winning, losing and drawing situation

Given an environment with such characteristics, in order to simulate our

scenario we need a set of players that are able to compete autonomously in

the game with a different level of ability.

The purpose of this environment was to run simulations to gain insights

about our approach, to build an estimate of its quality before applying it to

the physical robot.

5.2.1 Environment

The OpenAI Gym project is a well known environment to build and train

agents to solve a wide variety of tasks. Going trough the environments

offered by the projects, we identified the BipedalWalker-v2 environment as

the most suitable for our needs. In this environment a bipedal agent has

to travel a given distance without loosing its balance: the path the agent

has to face is created at run time and could feature hills, valleys, stairs and

steps.

While this environment is mainly used and studied as an environment to

train an agent, we should change our point of view and interpret it in a

different way. We should see it as a game between two agents: one is the

walking agent and the other one is the agent in charge of creating the path.

The goal of the walking agent is to maintain the balance and proceed along

the path, while the goal of the path agent is to make the walking agent fall.

From here, we define win, draw, and loss situations for both agents: the

walking agent wins if he succeeds in reaching the end of the path without

falling; the game is drawn if the walking agent completes half of the path

and then falls; the path agent wins if the walking agent falls before the mid

point of the path.

To complete the simulation environment we need a set of walking agents

that can play the game autonomously with different performances and a

way to characterize and control the ability of the path agent.

5.2.2 Path agent

The path agent is the one we want to control trough a set of parameters,

simulating the robot in our scenario. We have the ability of controlling what

kind of obstacles the agent is able to create along the path. We defined three

sets of parameters that enable the path agent to:

1. Create no obstacle - Easy configuration

49

2. Create hills and valleys - Medium configuration

3. Create stairs and steps - Hard configuration

This is also an ordering in terms of performance of the agent, having in mind

that the goal is to make the walking agent loose its balance. Examples of

the types of paths that the agent could create are shown in figure 5.2

(a) Path created with no

obstacle

(b) Path created with hills

and valleys

(c) Path created with

steps and stairs

Figure 5.2: Different paths created by the path agent

5.2.3 Walking agents

The walking agents will have to play the role of human players in our sce-

nario. We need a set of players that are able to play with different levels

of performance. To create this set, we followed a reinforcement learning

approach to train several walking agents.

To ensure a tangible difference in the performance, we used two measures:

first, we trained the walking agents against each parameter characterization

of the path independently, taking the assumption that an agent trained on a

path with no obstacles would fail to face a stair or a step; second, we saved

the model produced every 10000 training steps, taking the assumption that

more training steps would produce a better performance.

5.2.4 Ground truth

Now that we have an adequate simulation environment that reproduces the

distinctive features of our scenario, we can build a ground truth to evaluate

our approach for the selection of the best set of parameters to characterize

the ability of the agent opposing to the player. Given the assumption that

a game is more engaging when even, we define the best set of parameters as

the one yielding to the highest drawing rate of a game. To identify it, for

each walking agent we played several games against each parameter charac-

terization of the path agent and collected the outcomes. The results of the

draw rates can be found in figure 5.3

50

Now that we know the set of parameter that maximizes the draw rate for

each walking agent, we can evaluate the accuracy of our approach in iden-

tifying it.

Figure 5.3: Here are displayed, for each walking agent, the draw rate against each

parameter characterization of the path agent, represented by the corresponding color.

The walking agents have been divided into three sets with respect to the characterization

of the path agent they had been trained against

51

5.2.5 Simulation procedure

Before discussing the approaches we tried for the online selection of the

parameters, it’s worth presenting the simulation procedure followed and

explain a bit how to read and interpret the produced plots which vehicle a

lot of information.

We iterate the same routine over 30 games: before each game, we select the

parameters according to the devised procedure; we play the game, update

the beliefs of the system according to the outcome and collect their new

values. After collecting these values after each game, we plot the sequence

to evaluate the evolution of beliefs through time, producing a plot with two

components like the one reported in figure 5.4.

Figure 5.4: Sample plot for explanation purposes

On the left component, we will plot the evolution of the belief regarding

the mean skill µ of both the walking agent and the path agent’s characteri-

zations. An example of the plot presented in this component can be found

in figure 5.5. Along the x axis we find the timeline, expressed by means of

number of games played, while along the y axis we have the estimated mean

skill µ after n number of games. The colored dots represent the configura-

tion chosen to characterize the path agent for the given game, with the same

color code as the one showed in the legend. In order to read each decision, we

should slice the plot vertically. Let’s have a look at what happens with the

first game: we added the arrows to the plot to highlight the changes in the

belief. Before playing, the estimated mean skills for each characterization

are approximately:

52

• 33 - Stairs and steps

• 25 - Hills and valleys

• 25 - Player

• 19 - No obstacle

Figure 5.5: Focus on the belief update after the first game

The procedure selects the Hills and valleys configuration as the most

appropriate to characterize the path agent, as the orange circle represents.

After the game, we see an increase in the estimated skill for the player

and a decrease in the Hills and valleys configuration one, highlighted by

the arrows for explication purposes. This means that the player won this

particular game. Since the Stairs and steps and No obstacle configurations

did not participate, their skill estimates are not updated. For the second

game, again the Hills and valleys had been chosen, while from the third one

the selected one was the Stairs and steps.

The left component of the plot is the representation of the ground truth

built before the experiment. It represents the win, draw, and loss rate of

the walking agent against each configuration of the path agent. To give an

example, let’s look at figure 5.6. The color code is the same used in the

belief plot, being blue for No obstacles, orange for Hills and valleys and

green for Stairs and steps. In this case, we can see that the walking agent

has approximately a win rate (first bar graph) of 0.9 against the No obstacles

configuration, a win rate of 0.6 against the Hills and valleys and a win rate

of 0.0 against the Stairs and steps. From the plot we can also see that the

configuration yielding the highest draw rate (second bar graph) is the Hills

and valleys one. Having this graph helps understanding the evolution of the

53

Figure 5.6: Ground truth sample

belief of the mean skill µ, and that’s why we present them together: from

this one is clear that the Stairs and steps configuration is too difficult for

this walking agent, and that’s why it looses games from 2 to 7.

5.2.6 Baseline approach

First of all, we tried a bare metal approach of the TrueSkill skill repre-

sentation and update procedure in order to create a baseline to reference

subsequent refinements.

If we have no prior knowledge about the player we’re currently facing, we

have to initialize the database records relevant to the player: to do so, we

have to select starting values of σstart and µstart. Given that the belief is

represented as a Gaussian, the values that the average skill µ is going to take

will fall in the interval [µstart− 3 ∗ σstart, µstart + 3 ∗ σstart] with a confidence

of 99.7%. Usually the starting values in the TrueSkill framework for any

players are an average skill µ of 25 and a degree of uncertainty σ of 8.3, so

that the expected range of meaningful values for µ is [0, 50]. We stick to

these values as well, since they can be arbitrarily chosen. For each player

we’re going to maintain separate beliefs regarding the skill associated to the

parameter settings: this is because the skill of each parametric configuration

is estimated with respect to the single player, not globally.

54

Next, we’re going to evaluate the probability of drawing a game given the

current beliefs of the skills using the TrueSkill approach. For the baseline

approach, we’re just going to choose the set of parameters maximizing this

probability estimate. After the decision, we set all the parameters of the

path agent and run a game against the current walking agent. After the

game, we update the beliefs of the two opponents given the outcome of the

game, and repeat the procedure. The control flow of this procedure can be

found in figure 5.7.

Figure 5.7: Control flow for baseline approach to choose the parameters

To understand the evolution trough time of the beliefs of the skills of

55

the involved agents, we can have a look at figure 5.8. On the y axis are

represented the average skills of each participant to the game, while on the

x axis are enumerated the games played. The colors of the circles represent

the parameters chosen for the ith game. As we can see there are some

problems about this approach:

• Slow convergence: the decision becomes consistent after about 8 games,

which are too many for our scenario, and has an high variance during

the early stage

• Wrong result: the set of parameters the system converged to is not the

one maximizing the draw rate according to the ground truth we built

Figure 5.8: Evolution of the belief for the average skill µ about walking agent e-20.

On the right side we can see the ground truth for the model expressed in win, draw

and loss rate for the walking agent against each parameter characterization of the path

agent

The root cause for these results is that the assumption we made about

the ordering of path agent skills is not represented in the beliefs of the

system: as we can see, the parametric characterization of the path agent

that can create hills and valleys has an average skill estimate lower than the

one that cannot create any obstacles. But if we look at the ground truth,

we see that the assumption is holding: the walking agent has a higher win

rate against the path agent that creates no obstacle.

This discrepancy between belief and reality is caused by the basic usage of

the TrueSkill framework: the belief updates take in consideration only the

skill representation of the two opponents that have just competed against

each other. This implies that if two opponents never play a game against

each other, they’re relative ranking is not reliable. In this scenario, two

56

path agents are never going to face each other in a game, making the whole

ranking unreliable.

5.2.7 Our approach

To address this problem, we had to find a way to infuse this prior knowledge

about relative ranking between parameter sets into the belief update proce-

dure. Even if we cannot actually run a game between two path agents with

different parameter configurations, we can craft the outcome of a hypotheti-

cal game between them to update their relative skills. This procedure would

act as a regulator for the average skill of parameter settings, reducing the

uncertainty σ related to the estimate, while leaving freedom to the estimate

of the skill of the player.

Keeping the same backbone of the baseline procedure, we perform this reg-

ulating procedure at a decaying rate during the decision process: we’ll do

it more frequently at early stages when the estimates are less reliable and

repeat it less and less frequently as the reduction in σ will itself prevent

abrupt changes in the average skill estimations. The enhanced control flow

can be found in figure 5.9.

57

Figure 5.9: Control flow enhanced with regulation of relative ranking between skills of

agent parametric characterization

58

Figure 5.10 shows the evolution of the system beliefs for the walking

agent e-20 using the novel approach: we can see now that the relative rank-

ing between parametric characterizations of the path agent are stable and

coherent with the ground truth we have. The arrows highlight the effect of

the regularization procedure: if we focus our attention on how the belief is

updated before games 0 and 5, we can see that the average skill of each char-

acterization of the path agent is updated according to their relative ranking.

This results in an increase of the believed skill of the hardest configuration

to beat and a reduction of the skill of the easiest to beat.

Figure 5.10: Average skill belief evolution for model e-20, with focus on the regulariza-

tion procedure

The system converged to the correct set of parameters that maximize

the draw probability, but still it takes too many games to reach a stable

situation. This approach has another drawback that is better visible for

another walking agent, number e-16. If we take a look at figure 5.11, we

see that the algorithm does not converge to a stable decision. The reason

for this becomes clear when we look at the ground truth for this agent:

while it outperforms both the path agents able to create no obstacle and

hills and valleys, it performs extremely poorly against the one able to create

stairs and steps. This means that there is not a suitable set of parameters,

among the ones we can consider, to offer an even game for the agent. While

we could consider that on average the walking agent would win and loose

the same number of games with this approach, in our scenario this would

translate into a robot frequently changing playing style: this could transmit

a sense of randomness to our users, which is undesired.

59

Figure 5.11: Average skill belief evolution for model e-16

5.2.8 Regulating oscillation

We needed a way to regulate changes of decision in order to reduce the

oscillating behavior. We are going to change decision if the new choice

satisfies two requirements:

1. The estimated probability of a draw with the new parameters is higher

than a given threshold with respect to the probability of a draw for

the current parameters

2. The uncertainty σ of the skill estimate for the new parameters is higher

than a given threshold with respect to uncertainty σ of the skill esti-

mate for the current parameters

The first requirement enforces the fact that we change decision for one that

can give a relevant, potential benefit; the second one favours the exploration

of a set of parameters that we have been less exploited. The enhanced con-

trol flow can be found in figure 5.12

The results of this regulation for model e-16 is shown in figure 5.13:

there’s clearly more consistency in the decision. Moreover this regulation

provided faster convergence for model e-20, as shown in figure 5.14

60

Figure 5.12: Control flow augmented with both regulation for relevant ranking between

parametric characterization and for decision change

61

Figure 5.13: Average skill belief evolution for model e-16

Figure 5.14: Average skill belief evolution for model e-20

62

5.2.9 Accuracy

Finally, we evaluate the accuracy of the procedure in selecting the correct

characterization of the path agent. In figure 5.15 we can see the accuracy ex-

pressed as number of correct selections
number of walking agents evolving trough time, as more and more

games are played. As we can see from the figure, the regulation of oscillation

helps to achieve both higher and faster accuracy when compared to the only

regulation on relative ranking. After about 4 games played, the accuracy

is around 0.7, meaning that we are able to identify the set of parameter

matching the ground truth for 7 walking agents out of 10, and remains more

or less stable as the number of played games grows.

Figure 5.15: Accuracy for the proposed procedures

5.3 Implementation in our scenario

To transfer this approach to our scenario, we had to redefine some concepts

due to its intrinsic limitations. Firstly, we have to define how to characterize

different abilities for the robot; secondly, we have to define win, draw, and

loose situations; thirdly, we want to be able to choose the right parametric

characterization for the robot during one game, not after many games.

5.3.1 Robot parameters

Since the motion of the robot is driven by the steering behavior framework,

there are two main parameters that characterize its motion profile: the max-

imum speed and the mass of its representation, introduced in section 4.1.1.

63

We identified three sets of parameters that can be considered to describe

three levels of ability:

Difficulty Parameters

Easy
speed: 0.6 m/s

mass: 10

Medium
speed: 0.75 m/s

mass: 8

Hard
speed: 1.0 m/s

mass: 6

Table 5.1: Different sets of parameters to characterize the ability of the robot.

Lowering the mass of the representation allows a crisper movement and

a higher acceleration under the influence of a force of the same magnitude,

as already discussed in paragraph 4.1.1. Since the goal of the robot, in order

to win, is to reach the tower before the player, we assume that the type of

motion derived from a lower mass value would result in a behavior closer

to the optimal one, where the optimal robot is the one going full speed

following a straight path towards the target.

5.3.2 Microgame

Since we want to find the parameters while playing a single a game, we de-

cided to segment a full game into microgames: a microgame is a sequence

of 2 attacks to towers performed by the robot.

A single attack is won by the player if he succeeds to make a progress in the

game: we consider a progress the lighting of a led on a tower. Conversely,

an attack is won by the robot if it succeeds in preventing the player from

progressing. A microgame is won by the participant winning the largest

number of attacks. A complete game is usually composed by 6 to 8 mi-

crogames, which is a fair amount to perform a good selection of the robot

parameters in one single game.

In order to capture these microgames, we have to enhance the planning

architecture presented in chapter 4 with a couple of modules. We need a

module in charge of recognizing when a led is lighted, which we will name

Tower activity monitor : this module is deployed on each tower, and sends

out information about the pressing of the button present on top of them.

Another module in charge of capturing the beginning of an attack and elect

the winner of the microgame named Microgame monitor : it will listen to

the pressing of buttons and output whether after two attacks the player

64

was able to make progress in the game or not. The resulting architecture is

presented in figure 5.16.

Figure 5.16: Supporting architecture to capture in game evolution

5.3.3 In game parameter estimation

During the experiments, the procedure was able to distinguish and differ-

entiate the decision for different types of players: we had players whose

best parameters corresponded clearly to an easy configuration, like the one

in figure 5.17, to a medium one as in figure 5.18 and to a hard one as in

figure 5.19. Even in the case of player with an unclear evaluation of their

skill, the algorithm managed to find a suitable configuration after a bit of

exploration, as in figure 5.20.

65

Figure 5.17: Player whose best configuration was Easy

Figure 5.18: Player whose best configuration was Medium

66

Figure 5.19: Player whose best configuration was Hard

Figure 5.20: Player whose best configuration was mistaken as Hard and corrected as

Medium

67

68

Chapter 6

Evaluation

“It’s the best version ever of this game. Awesome.”

Michele Bertoni

In the following section we’re going to describe the experimental setting

used to answer our questions regarding HRI. We will start by stating the

questions we want to answer: after that, we will describe how the data had

been collected, and which statistical analysis we performed. Then we will

present the data visually and start to gain the first informal insights. In

the last section we will provide the outcome of the statistical analysis and

discuss the results.

6.1 Questions

The main aspect we want to investigate is if this approach to adapt to the

player yields to a more engaging and pleasant interaction between the human

and the robot. On a second note, we also want to investigate whether this

approach results in a recognizable adaptation from the point of view of the

player, or if a more extensive characterization of the robot’s playing style

should be conceived for this purpose. Finally, we also want to confirm that

our approach is able to match the ability of the robot to the ability of the

player.

Formalizing the questions we want to answer:

1. Does this adaptive behavior yield a better engagement than a fixed

one?

2. Does the adaptation of motion profile yield to a recognizable adaptive

behavior?

3. Does this approach produce an even game?

6.2 Statistical analysis

6.2.1 Experimental setup

We performed this study asking students of Politecnico di Milano to play

Robotower in the controlled environment of the AIRLab. Each participant

played 2 games and filled a questionnaire regarding the experience. The

questionnaire can be found in appendix A.

We built the control group by having participants playing against a fixed

configuration for the robot’s motion profile, corresponding to:

• Maximum speed: 0.75 m/s

• Mass: 8

Later on, we will refer to this version of the game as Fixed.

We built the experimental group by having participants playing against a

robot able to modify its motion profile during the game according to the

procedure discussed in chapter 5. We will refer to this version as Adaptive.

6.2.2 Statistical tools

In order to evaluate whether the adaptation procedure we devised actually

had an impact on the interaction between the human and the robot, we

performed a statistical analysis on the answers collected. We used the non-

parametric Mann Whitney U-test to test the null hypothesis that the two

independent statistical samples come from the same distribution. This test

is suitable for the analysis of ordinal values, like the ones we have collected.

In case of small sample sizes, typically under 20 samples, the statistical

significance of the study can be obtained by calculating the U value and

matching it against provided tables. With bigger samples, as in our case,

U can be approximated with a normal distribution: this gives us the ability

to interpret the statistical significance by calculating the p-value of the U

value obtained.

The statistical significance analysis tells us only what is the chance that we

rejected the null hypothesis while it actually holds, but provides no infor-

mation regarding the magnitude of impact of our work on the interaction:

to gain insights on this, we calculated the Common Language Effect Size

(CLES). This value is a measure of the difference between the two popu-

lations, which expresses the probability that a randomly selected score X1

70

from one population will be greater than a randomly sampled score X2 from

the other population.

X1 ∈experimental,X2 ∈ control
CLES = P (X1 > X2)

(6.1)

In the end, we will provide a 95% confidence interval for the CLES we

estimate, that is an interval where the true value of the CLES will lie with

that given confidence.

6.3 Data Exploration

We split the total 52 participants evenly, thus we had 26 of them playing

the Fixed version of the game and the other 26 the Adaptive one. The age

of participant went from 21 to 30 years old, distributed as shown in figure

6.1.

Figure 6.1: Age distribution of participants

More information about the participant can be found in table 6.1.

71

Version Male Female Total Age mean Age variance

Fixed 25 1 26 23.3 2.99

Adaptive 19 7 26 23.4 1.55

Table 6.1: Participant details

Our work focused on evaluating the effect of providing an even game for

the player. Figure 6.2 compares the win rates for the two versions of the

game: one playing with the Fixed behavior and the other with the Adaptive

behavior. While the game in the Fixed version resulted in an unbalanced

win rate in favour of the human player, our approach managed to reach

almost an equal partitioning of the number of wins, with 27 wins for the

human and 25 for the robot, out of the 52 games played (2 for each person):

we can say that we were able to provide an even game.

Figure 6.2: Comparison of win rate using Fixed and Adaptive behavior

One of the effect produced by the ability matching procedure was that

we were also able to provide longer interactions: in table 6.2 we compare

the average duration of a game for the two variants. We divided the anal-

ysis between games won by the player and the robot as in the latter case

72

interactions are inherently shorter.

Version Fixed Adaptive

Number of

player wins
32 27

Number of

robot wins
17 25

Average time for

the player to win
95s 118s

Average time for

the robot to win
51s 77s

Table 6.2: Win shares and average duration of a game in seconds

In figure 6.3 we compared answers to the question I had fun between

the two versions. We can see that people liked the game even in its Fixed

version, mostly agreeing to the statement, but few people gave the maxi-

mum agreement rate. For the Adaptive version, people were more prone to

strongly agree with the statement.

In figure 6.4 we compare agreement level to the statement The robot

changed playing style to see if the adaptation was perceived by the human

player. We can see high variance for the Fixed version, but most of the people

neither agreed nor disagreed with the statement. The dynamic change of the

robot action space during the game, given by the fact that a tower conquered

by the player can no longer be attacked, had been sometimes interpreted as

a change in playing style. For the Adaptive version, most people agreed to

the statement recognizing the change of motion profile as change in playing

style. For some people, like in figure 5.18, it happened that the selected

motion profile never changed during the game.

73

Figure 6.3: Comparison of agreement to the ’I had fun’ statement

Figure 6.4: Comparison of agreement to ’The robot changed playing style’ statement

74

6.4 Statistical results

Table 6.3 reports the outcome of the statistical analysis carried out to com-

pare results of the agreement level about the statements I had fun and

The robot changed playing style. We used the first statement to establish

whether the interaction with the robot was more pleasant and engaging for

the player and the second one to investigate if the adaptation was perceived

by the player.

I had fun
The robot changed

playing style

U 229.5 173.5

mean 338 338

variance 679.5 239.0

p-value 0.024 0.002

CLES 0.66 0.74

CI CLES [0.52, 0.80] [0.60, 0.88]

Table 6.3: Statistical values for comparison on the engagement and perceived adapta-

tion. Mean and variance refer to the normal approximation for the distribution of the

U statistics. The p-value is computed for the two-tailed test, the Confidence Interval

for the CLES is computed for a 95% confidence

About the engagement level, we can reject the null hypothesis that the

two samples come from the same distribution at a significance level α = 0.05:

this means that the probability that we are rejecting the null hypothesis

while it actually holds is 5%. The Common Language Effect Size found

for the engagement analysis is 0.66, meaning that if we draw randomly an

answer from people that played with the fixed version and another one from

people that played the adaptive version, there’s a probability of 66% that

the second one answered with a score higher than the first one. While the

magnitude of this result may not seem relevant, we can see from figure 6.3

that the game results appealing even in its fixed variant, leaving a small mar-

gin for improvement. We also compute a 95% confidence interval for this

measure, resulting in a CI = [0.52, 0.80]: we can be highly confident that

the approach had a positive impact, but still the appeal of the game in the

Fixed version limited the magnitude of the impact our approach could bring.

Regarding the perception of adaptation from the player, our approach

managed to bring a higher impact. We can reject the null hypothesis that

the two samples come from the same distribution at a significance level

75

α = 0.01. Also, the CLES we computed is 0.74, meaning that about three

times out of four we would get a higher agreement level to the statement

from randomly selected answer from people who played the Adaptive version

against randomly selected answer from people who played the Fixed one.

The computed 95% confidence interval is CI = [0.60, 0.88].

76

Chapter 7

Conclusions and Future

Works

The study we conducted aimed at evaluating the effect of adaptation to the

user in a competitive HRI scenario. While this question has already been

investigated in collaborative scenarios, where an adaptation of the robot is

aimed at easing the task of the human, this is one of the first study that

aims at providing a challenging interaction for the user and evaluating its

effects.

We characterized the ability level of the robot trough its motion abili-

ties, both in terms of steering ability and maximum speed, and devised a

procedure to modify the ability level of the robot during the game in order

to match the estimated player ability. This procedure succeeded in pro-

viding an even game, where the number of wins for the robot was almost

equal to the number of wins for the players. We performed a study inviting

students to play the game and give their opinion trough a questionnaire:

from a statistical analysis we found out that the adaptation produced a pos-

itive effect on the user engagement when compared to the interaction with

a robot exhibiting a fixed behavior: the magnitude of the effect was limited

by the appeal of the game even in its basic form. This result is nevertheless

encouraging, and suggests that the adaptation of the robot behavior can

lead to positive effects even in competitive scenarios.

Future works on the field may try to produce a deeper adaptation of the

robot behavior. We adapted only the motion ability of the robot, but the

adaptation could be brought to an higher reasoning level by recognizing and

classifying actions from the player and counteracting them.

78

Bibliography

[1] M. I. Ahmad and O. Mubin. Applying adaptive social mobile agent to

facilitate learning. In 2016 11th ACM/IEEE International Conference

on Human-Robot Interaction (HRI), pages 407–408, March 2016.

[2] M. Bajones. Enabling long-term human-robot interaction through

adaptive behavior coordination. In 2016 11th ACM/IEEE Interna-

tional Conference on Human-Robot Interaction (HRI), pages 597–598,

March 2016.

[3] C. Balaguer, A. Giménez, J. M. Pastor, V. M. Padrón, and M. Abder-

rahim. A climbing autonomous robot for inspection applications in 3d

complex environments. Robotica, 18(3):287–297, 2000.

[4] Anders Drachen, Alessandro Canossa, and Georgios N. Yannakakis.

Player modeling using self-organization in Tomb Raider: Underworld.

In Computational Intelligence and Games, 2009. CIG 2009. IEEE Sym-

posium on, pages 1–8. IEEE, 2009.

[5] Arpad E. Elo. The rating of chessplayers, past and present. Arco Pub.,

New York, 1978.

[6] Mark E. Glickman. Parameter estimation in large dynamic paired com-

parison experiments. Journal of the Royal Statistical Society: Series C

(Applied Statistics), 48(3):377–394, 1999.

[7] Ralf Herbrich and Thore Graepel. Trueskill(tm): A bayesian skill rating

system. Technical report, January 2006.

[8] M. Köseoǧlu, O. M. Çelik, and Ö. Pektaş. Design of an autonomous

mobile robot based on ros. In 2017 International Artificial Intelligence

and Data Processing Symposium (IDAP), pages 1–5, Sep. 2017.

[9] F. Lamberti, F. G. Pratticó, D. Calandra, G. Piumatti, F. Bazzano,

and T. R. K. Villani. Robotic gaming and user interaction: Impact of

79

80 BIBLIOGRAPHY

autonomous behaviors and emotional features. In 2018 IEEE Games,

Entertainment, Media Conference (GEM), pages 1–9, Aug 2018.

[10] G. D. S. Lee, K. S. Lee, H. G. Park, and M. H. Lee. Optimal path

planning with holonomic mobile robot using localization vision sensors.

In ICCAS 2010, pages 1883–1886, Oct 2010.

[11] M. Mariappan, J. C. Sing, C. C. Wee, B. Khoo, and W. K. Wong. Si-

multaneous rotation and translation movement for four omnidirectional

wheels holonomic mobile robot. In 2014 IEEE International Symposium

on Robotics and Manufacturing Automation (ROMA), pages 69–73, Dec

2014.

[12] Diego Martinoia, Daniele Calandriello, and Andrea Bonarini. Physi-

cally Interactive Robogames: Definition and design guidelines. Robotics

and Autonomous Systems, 61(8):739–748, August 2013.

[13] Radek Pelánek. Applications of the elo rating system in adaptive edu-

cational systems. Computers & Education, 98:169 – 179, 2016.

[14] F. G. Pin and S. M. Killough. A new family of omnidirectional and

holonomic wheeled platforms for mobile robots. IEEE Transactions on

Robotics and Automation, 10(4):480–489, Aug 1994.

[15] J. Pripfl, T. Körtner, D. Batko-Klein, D. Hebesberger, M. Weninger,

C. Gisinger, S. Frennert, H. Eftring, M. Antona, I. Adami, A. Weiss,

M. Bajones, and M. Vincze. Results of a real world trial with a mobile

social service robot for older adults. In 2016 11th ACM/IEEE Interna-

tional Conference on Human-Robot Interaction (HRI), pages 497–498,

March 2016.

[16] L. Vanessa Cruz Quispe and J. E. O. Luna. A trueskill approach for

movies recommendation. In 2015 Latin American Computing Confer-

ence (CLEI), pages 1–5, Oct 2015.

[17] Craig Reynolds. Steering behaviors for autonomous characters. 1999.

[18] Ali Sekmen and Prathima Challa. Assessment of adaptive human-robot

interactions. Knowledge-Based Systems, 42:49 – 59, 2013.

[19] M. Tielman, M. Neerincx, J. Meyer, and R. Looije. Adaptive emotional

expression in robot-child interaction. In 2014 9th ACM/IEEE Interna-

tional Conference on Human-Robot Interaction (HRI), pages 407–414,

March 2014.

BIBLIOGRAPHY 81

[20] Georgios N. Yannakakis. How to model and augment player satisfaction:

a review. In First Workshop on Child, Computer and Interaction, 2008.

[21] Georgios N. Yannakakis and John Hallam. Real-time game adaptation

for optimizing player satisfaction. IEEE Transactions on Computa-

tional Intelligence and AI in Games, 1(2):121–133, 2009.

[22] Georgios N. Yannakakis, John Hallam, and Henrik Hautop Lund. En-

tertainment capture through heart rate activity in physical interactive

playgrounds. User Modeling and User-Adapted Interaction, 18(1):207–

243, 2008.

82 BIBLIOGRAPHY

Appendix A

Questionnaire

A.1 English version

Who are you?

1. Age (completed years):

2. Gender: 2 M 2 F

3a. Have you already had a direct experience with robots?

2 No 2 Yes

3b. If you answered “Yes” to the previous question, please de-

scribe your experience:

4. What do you usually play?

2 Videogames 2 Board games 2 Cards 2 Sport

2 Other

With respect to the game just played, state how much do you

agree with the following statements, where: 1 = “strongly

disagree”, 3 = “indifferent” e 5 = “strongly agree”

5. I had fun

2 1 2 2 2 3 2 4 2 5

6. I wanted to play

2 1 2 2 2 3 2 4 2 5

84 Appendix A. Questionnaire

7. While playing, I paid attention to the robot

2 1 2 2 2 3 2 4 2 5

8. The robot was paying attention to what I was doing

2 1 2 2 2 3 2 4 2 5

9. The robot wanted to win

2 1 2 2 2 3 2 4 2 5

10. I was scared by the robot

2 1 2 2 2 3 2 4 2 5

11. The game lasted too few

2 1 2 2 2 3 2 4 2 5

12. I understood immediately the game rules

2 1 2 2 2 3 2 4 2 5

13. I changed my playing style

2 1 2 2 2 3 2 4 2 5

14. The robot changed his playing style

2 1 2 2 2 3 2 4 2 5

15. The robot did some feints

2 1 2 2 2 3 2 4 2 5

16. I would enjoy more if the robot did some feints

2 1 2 2 2 3 2 4 2 5

17. It was easy to understand what the robot would have done

2 1 2 2 2 3 2 4 2 5

Game outcome (to be completed by the researcher)

18. Winner:

19. Time:

20. Winner:

21. Time:

22. Notes:

A.2. Italian version 85

A.2 Italian version

Chi sei?

23. Età (anni compiuti):

24. Genere: 2 M 2 F

25a. Hai già avuto esperienze dirette con dei robot? 2 No 2
S̀ı

25b. Se hai risposto “S̀ı” alla domanda precedente, racconta la

tua esperienza:

26. Come giochi di solito?

2 Videogiochi 2 Giochi in scatola 2 Carte 2 Sport

2 Altro

Rispetto al gioco appena fatto, indica quanto sei d’accordo con

le seguenti affermazioni, dove: 1 = “per niente d’accordo”, 3

= “indifferente” e 5 = “molto d’accordo”

27. Mi sono divertito

2 1 2 2 2 3 2 4 2 5

28. Avevo voglia di giocare

2 1 2 2 2 3 2 4 2 5

29. Quando giocavo stavo attento al robot

2 1 2 2 2 3 2 4 2 5

30. Il robot era attento a quel che facevo

2 1 2 2 2 3 2 4 2 5

31. Il robot voleva vincere

2 1 2 2 2 3 2 4 2 5

32. Avevo paura del robot

2 1 2 2 2 3 2 4 2 5

33. Il gioco dura troppo poco

2 1 2 2 2 3 2 4 2 5

86 Appendix A. Questionnaire

34. Ho capito subito le regole del gioco

2 1 2 2 2 3 2 4 2 5

35. Ho cambiato il modo di giocare

2 1 2 2 2 3 2 4 2 5

36. Il robot ha cambiato modo di giocare

2 1 2 2 2 3 2 4 2 5

37. Il robot ha fatto delle finte

2 1 2 2 2 3 2 4 2 5

38. Mi divertirei di piú se il robot facesse delle finte

2 1 2 2 2 3 2 4 2 5

39. Era facile capire cosa avrebbe fatto il robot

2 1 2 2 2 3 2 4 2 5

Risultato gioco (a cura del ricercatore)

40. Vincitore:

41. Tempo:

42. Vincitore:

43. Tempo:

44. Note:

	Abstract
	Acknowledgements
	Introduction
	Background
	Mobile Robotics
	Holonomic Wheeled Robots
	Human-Robot Interaction
	Physically Interactive Robogames

	Ranking Systems

	Robotic Platform
	Triskar
	Robotower
	Hardware
	Motors
	Encoders
	Laser Scanner
	Shuttle
	Tower equipment

	Software
	Robot Operating System - ROS
	Mapping and Localization
	Tower navigation
	Player Tracking
	Obstacle Detection

	Proposed Adaptive Steering Planning Architecture
	Steering Behaviors
	Vehicle model
	Seek
	Flee
	Arrival
	Evasion

	Architecture
	Intention Planner
	Action Planner
	Actuation Planner

	Implementation
	State to Intention
	Intention to Action
	Action to Steering Behavior

	Extending the planner

	Adaptive difficulty selection procedure
	TrueSkill
	Skill update

	Approach idea
	Environment
	Path agent
	Walking agents
	Ground truth
	Simulation procedure
	Baseline approach
	Our approach
	Regulating oscillation
	Accuracy

	Implementation in our scenario
	Robot parameters
	Microgame
	In game parameter estimation

	Evaluation
	Questions
	Statistical analysis
	Experimental setup
	Statistical tools

	Data Exploration
	Statistical results

	Conclusions and Future Works
	Bibliography
	Questionnaire
	English version
	Italian version

