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B.1 Design of the filter current ī regulator. . . . . . . . . . . . . . . . . . . . . 219
B.2 Bode diagram of the open LI(s) and closed KI(s) transfer functions. . . . 221
B.3 Phase-Locked loop scheme, with internal first order filter. . . . . . . . . . 221
B.4 Bode diagram of the PLL dynamical model. . . . . . . . . . . . . . . . . . 223

D.1 Physical scheme of the adopted experimental setup . . . . . . . . . . . . . 232
D.2 Functional structure of the code - Part I . . . . . . . . . . . . . . . . . . . 234
D.3 Functional structure of the code - Part II . . . . . . . . . . . . . . . . . . 235



List of Tables

2.1 System parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Droop parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Droop model verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Test conditions in grid-connected mode. . . . . . . . . . . . . . . . . . . . 74
3.2 Power decoupling - Experimental and theoretical values . . . . . . . . . . 78
3.3 Test conditions for the converters operated in island. . . . . . . . . . . . . 78
3.4 Load sharing in island condition . . . . . . . . . . . . . . . . . . . . . . . 79

4.1 Comparison of the impedance estimation techniques . . . . . . . . . . . . 102

5.1 Parameters for case study 1 of the synthetic inertia analysis . . . . . . . . 118
5.2 Parameters for case study 2 of the synthetic inertia analysis . . . . . . . . 118
5.3 Parameters for PQ converter . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4 Proportional DC regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.5 PI controller for DC bus voltage - Case definition . . . . . . . . . . . . . . 136
5.6 PI DC regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1 Design alternatives definitions for the SOGI algorithm . . . . . . . . . . . 148
6.2 Design alternatives definitions for the SOSOGI algorithm . . . . . . . . . 155
6.3 Numerical comparison between angular quantities estimation techniques. . 164

7.1 Eigenvalues calculation without synthetic inertia - CASE STUDY 1 . . . 171
7.2 Eigenvalues calculation without inertia introduction - CASE STUDY 2 . . 174
7.3 Model validation for current-controlled inertia in CASE STUDY 1 . . . . 181
7.4 Model validation for current-controlled inertia in CASE STUDY 2 . . . . 186
7.5 Emulated-grid characteristics used for the experimental test. . . . . . . . 188
7.6 Current-controlled inertia in CASE STUDY 2 - Experimental validation . 189

8.1 Model validation for voltage-controlled inertia in CASE STUDY 2 . . . . 206

B.1 Parameters for filter current loop design . . . . . . . . . . . . . . . . . . . 217
B.2 Design parameters for the PLL loop . . . . . . . . . . . . . . . . . . . . . 222

D.1 Test set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

xi





Abstract

The main topic of this thesis regards the analysis and development of control strate-
gies for power converters in microgrid applications, mainly referring to three-phase AC
systems; the thesis is divided into two parts, each followed by a specific bibliographic
section to allow an easier identification of the references. A preliminary chapter precedes
Part I and serves as an introductory framework for the rest of the work.

In the first chapter, the topic of microgrids is presented from the normative perspec-
tive, identifying the major technical trends and the on-going standardization process.
Furthermore, it introduces the characteristics of the main control architecture later de-
veloped in the work: two main schemes (each corresponding to a part of the thesis) are
analysed and extended.

The first part refers to the droop control : this architecture allows the regulation
of the voltage amplitude and frequency in a distributed way. The dynamical model of
the droop is developed and analysed in chapter two: the focus is to identify rigorous
analytical design procedures to increase the converter stability and to correctly set the
control parameters.

Chapter three deals with the introduction of virtual impedance: this technique repre-
sents a modification of the traditional droop scheme and enhances the converter dynam-
ical behaviour both in grid-connected and island mode. The stability conditions for the
virtual impedance loop are identified and the design procedure is validated experimen-
tally. The analysis illustrates a strong stability sensitivity with respect to the converter
external output impedance. In this perspective, a couple of real-time identification al-
gorithms for the converter output interface reconstruction have been developed, based
on the system response to some harmonic disturbances. The introduced algorithms are
illustrated and tested in chapter four: they can be used as input for possible adaptive
schemes inside the converter control.

The second part of the thesis deals with the grid-following architecture, typically
adopted for non-dispatchable units. Moreover, the traditional scheme has been mod-
ified in order to transiently emulate the presence of a physical machine connected to
the network: the introduced changes allow the provision of a transitory frequency sup-
port (synthetic inertia), which damp the network frequency overshoot during power
imbalances and improves the grid regulation performances.

Chapter five introduces the dynamical model of the converter under grid-following
regulation and defines the design rules of the internal controllers. Furthermore, it iden-
tifies the case studies used for the analytical and numerical development of the second
part of the thesis.

A key aspect related to the experimental implementation of synthetic inertia schemes
regards the possibility to estimate the angular quantities in a fast and clean way, even
under disturbed network conditions. In chapter six, several architectures are tested
and compared experimentally: the goal is to develop an advanced algorithm able to
reconstruct the derivative angular frequency of the fundamental harmonic, keeping into
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account all the physical disturbances that are naturally present in any real power net-
work.

Chapter seven analyses a derivative current-based inertia scheme: the mathematical
modelling of the system allows to identify the stability conditions for the control as a
function of the external regulation properties of the network. The effectiveness of the
proposed technique is validated experimentally.

A second possible synthetic inertia scheme is analysed in the last chapter; in this
case, the emulation of the synchronous machine behaviour is obtained acting on the DC
voltage of the converter with a proportional-based regulation. Again, the mathematical
model is analysed and later experimentally tested.

Four final Appendices are reported at the end. The first one includes the explicit
representation of the state-space models developed in the main chapters of the work,
reported in appendix for compactness. The second and third include some mathemat-
ical procedures used for the definition of the internal converter controllers or for the
results reconstruction; even though the reported analysis are necessary for a correct reg-
ulation of the system and for dynamical performances identification, still the adopted
methodologies are well-developed and documented in literature. In the final appendix,
an extensive description of the experimental system used for models validation is pro-
vided.



Chapter 1

General context

1.1 Chapter introduction

This section has the objective of introducing the main control architectures analysed
in the rest of the thesis. Moreover, the chapter provides a technical definition of the
concepts of microgrid and smart-grid, referring to the available standards published in
literature: even though the analysis does not have the presumption to enter into all
the details of the normative scenario, still it provides a useful overview of the incoming
standardization process.

1.2 Introduction to microgrids systems

Even though the scientific literature of the last years has significantly explored the
topic of microgrids, it may be hard to find a univocal technical definition for these
systems. The description of a microgrid is often associated to the one of smart-grid :
even if in some cases a certain superposition may exist, it is necessary to define the
technical borders of each concept and avoid misunderstandings.

1.2.1 Smart-grid definition

The concept of smart-grid has a data-oriented characterization and refers to the
massive presence of ICT 1 infrastructures used for the optimal management of electri-
cal networks. This definition takes into account the possibility to operate a system in
an economic way thanks to the coordination of flexibility sources (e.g. storage units,
electrical vehicles, controllable loads), knowing their actual state from standardized com-
munication protocols; in this perspective, no constraints are introduced as regards the
electrical characterization of the control system of each single element nor on its opera-
tional conditions (island or grid-connected). The concept of smart-grid takes its origin
from IEEE 2030 [1] and IEC 81950 [2] which are, in practice, communication standards.

An example on the introduction of communication schemes for optimized grid man-
agement is related to Demand-Side-Response schemes, which consist in the provision
of frequency regulation services by means of non-essential-load modulation, actuated
by the Transmission System Operator (TSO). This concept, already applied for several
years by most of the European TSO, has recently evolved in the perspective of the
participation of flexible-load resources to the Ancillary Service Market [3].

1Information and Communication Technologies
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1.2.2 Microgrid definition

A microgrid is an electrical concept: it stands for an autonomous power system able
to operate independently of an external network or connected to the main system in the
Point of Common Coupling (PCC); by definition, the microgrid is able to maintain a
stable supply of the local loads both in grid-connected and island conditions by means
of distributed or centralized controllers. Because of the required operational flexibility,
microgrids are typically characterized by a high percentage of units interconnected by
fully-controllable electronic converters: this allows an easy implementation of stable
regulation schemes for the network.

From the point of view of the available standards, the concept of microgrid has a
direct application on the series IEEE 1547 [4] which clarifies the electrical behaviour of
distributed generation units at the interface of an external system. In particular, IEEE
1547.4 specifically clarifies the conditions of independent converters operated in island,
together with the corresponding procedures for connection / disconnection to the public
mains.

At a European level, the technical specifications for distributed generation inter-
face to traditional electrical networks have been initially promoted by ENTSO-E and
subsequently approved by the European Commission by means of the decree 631/2016
and 1447/2016 [5] - [6]. The application of the general guidelines into specific tech-
nical constraints is taken into account by the grid code of each country; even though
single-unit island operations were already available for specific stand-alone photovoltaic
applications [7], the concept of microgrid is not fully regulated in most of the national
network standards.

As concern the Italian situation, the first technical specifications for the connection
of distributed resources to the public network has been introduced in the grid code
attachment A70 [8]. The document clarifies the characteristics that must be imposed by
the control system of the interface converter in renewable sources, even though it does not
provide any direct indication related to the operations of autonomous systems in island
conditions; furthermore, the proposed protection settings in [8] are designed in order to
avoid that the public network remains permanently supplied during unintentional island
conditions. As far as concern private systems operated autonomously, the scenario
remains unclear. Nonetheless, new versions of the technical standards CEI 0-16 and
CEI 0-21 [9] - [10], recently approved by the Italian Authority, allow some behind-the-
meter operations of the storage units and seem to represent an evolution towards a more
mature microgrid scenario.

Significant differences exist also as regards the regulation services provision to the
public network from electronic-interfaced sources: referring for example to the primary
frequency regulation (also labelled Frequency Containment Regulation FCR), it is pos-
sible to identify a wide range of regulation settings. Some of them are suitable both for
traditional synchronous generators and power electronics units, like in the Italian case
[11] - [12]; others [13] - [14] impose technical constraints that can be met exclusively by
digitally-controlled converters.

Given the high variety of standardization approaches as well as the proposition of
new regulation services [15], this thesis proposes to develop rigorous analytical models
associated to the most used architectures available in literature. The focus of the analysis
will be mainly electrical (thus the decision to refer to the term microgrid instead of smart-
grid): main characteristics of the major control strategies for power converters in isolated
electrical systems will be analysed and extended, with a focus on the mathematical
stability conditions. New design technique and control schemes will be proposed to
enhance the dynamical performances of the electronic converter and of the whole system.
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1.3 Microgrid control: converter level

At the converter level, the three main architectures proposed in literature for voltage-
source inverters are explained in [16] and reported in Fig. 1.1.
• The control architecture reported in Fig.1.1(a) goes under the name of V ω scheme.

In this configuration, the converter imposes both the magnitude and the angular
frequency of the three-phase voltage set at the interface with the external system,

(a) Grid-forming architecture

(b) Grid-supporting architecture

(c) Grid-following architecture

Figure 1.1: Typical control architectures for grid converters.
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behaving according to power systems slack-bus model. Even though this configura-
tion allows to maintain the system in nominal conditions indefinitely, nevertheless
this architecture cannot be applied to multiple converters operated in parallel as
the power sharing between units would be undetermined. This control is gener-
ally regarded as grid-forming architecture and it generates a three-phase balanced
voltage set independently of external system conditions.
• A second very well-known control for grid-converters is the droop regulation (Fig.

1.1(b)). In this scheme, the angular frequency and magnitude of the three-phase
voltage set at the converter interface are determined by the average active and
reactive power injection of each unit. This allows to equally share the load between
parallel-connected converters both at steady-state and during transients. This
scheme is a grid-supporting architecture: all the units regulated by means of this
strategy contribute to the provision of primary voltage and frequency regulation,
proportionally to their nominal rating.
• The third architecture regulates the active and reactive power injections from each

unit (Fig. 1.1(c)) to almost constant set-points, thus goes under the name of PQ
scheme or grid-following architecture. It allows to maintain constant injections
independently of the external system condition, even though it does not provide
any contribution to the system regulation.

In this thesis, the last two architectures will be considered and analysed. Starting
from the base configuration already available in literature, several changes are introduced
in order to improve the regulation performances of the converters and to extend the
functionalities associated to these controls, both in grid-connected and island mode.

As for the droop regulation scheme, a rigorous dynamical model is developed: dif-
ferently from the available literature, the model is able to take into account all the major
dynamical interactions that occur inside the control. Moreover, the base droop architec-
ture is extended in order to adaptively take into account the changes associated to the
modification of converter output impedance, which plays a major role in the definition
of stability. These aspects are covered in the first part of the thesis.

As for the grid-following architecture several schemes aimed at the provision of tran-
sitory active power injection are proposed, in order to improve the microgrid behaviour
during frequency transients: this approach goes under the name of synthetic inertia and
it is developed in the second part of the thesis.

1.4 Microgrid control: system level

At a system level, two different control approaches can be identified: Centralized
control and Hierarchical control.

1.4.1 Centralized control

The centralized control is generally exploited for systems with a limited number
of interconnected units. The control approach is quite simple, as all the computation
burden associated to the grid stability and its management is taken into account by
a single regulation unit, typically a micro-controller or an industrial computer. As all
the information has to be acquired and elaborated in real-time by a single intelligence,
the number of converters that can be physically interfaced to the system is contained
by the computation power of the controller. Moreover, the possibility to regulate the
system with a centralized control approach is dependant on the communication interfaces
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availability between the central controller and the peripheral units: this makes the
system intrinsically susceptible to instability in case of fault on the data infrastructure.

1.4.2 Hierarchical control

A second, more advanced, architecture goes under the name of hierarchical scheme
[17] and it is realized by means of several regulation levels (typically three, as in tra-
ditional power systems), each of them with its own peculiar characteristics. The first
level corresponds to the primary regulation and it is carried out by distributed con-
trollers, each managing a single interconnected converter; in this way, the management
and regulation of the fast dynamics is independent of the communication infrastructures
availability. The system stability under the changes of the local load and production is
obtained by means of grid supporting droop schemes reported in Fig.1.1(b).

A secondary-level control, based on the communication between adjacent units,
contributes to restoring nominal conditions for the system after a transient, changing
the reference values for distributed controllers. As only a limited number of information
is exchanged on the communication platform, the characteristics of the data network
are typically less stringent with respect to the ones of the centralized control.

The tertiary level determines the nominal set-points of the secondary control and it
is responsible of the microgrid coordination with the external utility networks.

1.5 Conclusion

This brief introductory chapter has described the area of interest of the thesis. The
concept of microgrid is reported referring to its electrical characteristics and technical
standards typically adopted in the practical applications; additionally, the major features
of the analysed architectures are taken into account, providing a general frame for the
analysis performed in the following chapters.
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Introduction to part I

In this part of the thesis, the structure of droop-controlled converters will be anal-
ysed. Droop converters are responsible of grid voltage and frequency management ac-
cording to a distributed-regulation scheme; these units are generally controlled with a
nested-loop architecture, whose reference is modulated according to the average power
injection to guarantee equal load sharing between parallel-connected units.

The dynamical model of the droop converter will be analysed in detail; furthermore,
different changes with respect to the classical architecture have been introduced in order
to improve the dynamic performances of the converter in a vast range of operating
conditions. These include the possibility to modify the equivalent output impedance
of the converter and to estimate on-line the interface impedance. The equivalent final
structure of the system is reported in Figure 1.2; each of the following chapters in Part
I will be devoted to the analysis of a single aspect of the reported architecture.

Figure 1.2: Proposed Enhanced Droop architecture
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Chapter 2

Model of the converter under
droop regulation

2.1 Chapter introduction

In this chapter, the dynamical model associated to droop-controlled converters will
be derived. Even if the basic concepts of droop regulation for active and reactive power
are already available in literature, here the attempt is to obtain a complete description
of the control dynamics which include enough structure to take into account also the
secondary effects associated to the internal control loops.

2.2 Nomenclature

Physical circuit
• Rf , Lf , Cf , Rd: parameters associated to the LC filter [p.u.];
• Rg, Lg: parameters of the interface impedance [p.u.];
• Tg = Lg/ (Rgωb): output impedance time constant [s];
• ωpcc: angular frequency at the point of common coupling [p.u.];
• Vpcc: voltage amplitude at the point of common coupling [p.u.];

Droop parameters
• ω: inverter angular frequency [p.u.];
• m, n (md, nd): linear and derivative coefficients of the droop control [p.u.];
• ω∗, V ∗: no-load angular frequency and voltage in the droop control of the inverter

[p.u.];
• po(t), qo(t) (Po, Qo): instantaneous (average) real, reactive powers;
• Tp: time constant of the filter for average power calculation [s];
• mrest, nrest: droop coefficients of the characteristic imposed by the external net-

work [p.u.];
• ω∗rest, V ∗rest: no-load angular frequency and voltage of the external regulation [p.u.];
• prest, qrest: instantaneous real and reactive powers provided by the rest of the

network;
• Trest: time constant of the primary regulation performed by other converters [s];

Current and voltage controllers
• HI : grid-current compensation gain in the voltage loop;
• HV : capacitor-voltage compensation gain in the voltage loop;
• TiV = kpV /kiV : integral time of the PI voltage regulator;
• ωcI , ωcV : cut-off angular frequency of the current and voltage loops [rad/s];

15
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Operators and base frequency
• p = d/dt: time derivative operator;
• s = jωs: complex Laplace operator and frequency response notation [rad/s];
• ωb: base angular frequency [rad/s].

2.3 Droop equation from power decoupling: traditional
derivation

The droop equations derivation as typically reported in literature is based on the
concept of power decoupling. This property is generally considered a positive feature in
power systems as it allows independent regulation of frequency and voltage amplitude,
reducing the coupling phenomena between active and reactive powers: the traditional
form of the droop equations is generally obtained focusing on this perspective.

Consider the circuit reported in Fig.2.1: the converter is interfaced to an external
grid modelled as the series connection of a sinusoidal voltage source with an ohmic-
inductive impedance. This is the lumped-parameter model typically used in power
systems applications. Considering the voltage level, it is possible to neglect the shunt
capacitances, and calculate the exchanged active and reactive powers with simple for-
mulations. Phasor domain is considered for the analysis.

Define V̄1 = V1∠ψ1 the source phasor-voltage and V̄2 = V2∠ψ2 the equivalent phasor
voltage of the grid. The equivalent branch impedance between nodes 1 and 2 can be

expressed as Z̄g = Rg + jωLg and its characteristic angle θ = atan
(
ωLg
Rg

)
.

The typical approach used to derive the droop equations starts from the calculation
of the average active and reactive power exchange between the converter and the network
(represented by the voltage sources V̄1 and V̄2, interfaced by the equivalent impedance
Z̄g). The current can be obtained from a simple Kirchhoff equation (2.1), while (2.2)
allows to obtain the expression of the complex power injected by the converter.

Ī =
V̄1 − V̄2

Z̄g
(2.1)

S̄o = V̄1 · I =
V 2

1 − V1V2e
j(ψ1−ψ2)

Zge−jθ
(2.2)

Figure 2.1: Simplified equivalent model of the converter interface. The model com-
prises two sinusoidal voltage sources for converter and grid respectively (V̄1 and V̄2); an

ohmic-inductive interface impedance Z̄g is considered.
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Introducing the angular difference δ = ψ1 − ψ2, (2.2) can be rewritten to highlight
the active and reactive powers separately:

Po = Re(S̄o) =
V1

Zg
· (V1cos(θ)− V2cos(δ + θ)) (2.3)

Qo = Im(S̄o) =
V1

Zg
· (V1sin(θ)− V2sin(δ + θ)) (2.4)

The dependency of the active and reactive powers on the magnitudes [V1, V2] and
phase difference δ is associated to the characteristic angle θ of the impedance Z̄g. In
case the interface impedance shows a predominantly inductive behaviour (θ → π

2 ) the
equations in (2.3) simplify to:

Inductive network

Po = Re(S̄o) =
V1V2sin(δ)

ωLg
(2.5)

Qo = Im(S̄o) =
V1

ωLg
· (V1 − V2cos(δ)) (2.6)

Alternatively, if we consider the case of a mainly resistive impedance (θ → 0) the
following simplification holds:

Resistive network

Po = Re(S̄o) =
V1

Rg
· (V1 − V2cos(δ)) (2.7)

Qo = Im(S̄o) = −V1V2sin(δ)

Rg
(2.8)

The two formulations reported in (2.5)-(2.6) and (2.7)-(2.8), for inductive and resis-
tive networks respectively, represent the typical conditions under which power decoupling
holds. As the load angle δ typically has a limited value, it is possible to derive approxi-
mate proportional relations between δ, voltage magnitudes [V1, V2] and exchanged active
and reactive powers Po - Qo.

Inductive network

Po =
V1V2δ

ωLg
(2.9)

Qo =
V1

ωLg
· (V1 − V2) (2.10)

Resistive network

Po =
V1

Rg
· (V1 − V2) (2.11)

Qo = −V1V2δ

Rg
(2.12)

The droop control emulates the linear dependency between active / reactive injec-
tions, angular quantities (load angle δ or angular frequency ω) and voltage magnitude
difference ∆V .
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Even though some authors have proposed different types of relationships for the
droop structure [1]-[2], nevertheless the most typical control schemes introduce a linear
dependency between state variables.

Two configurations are generally taken into account:
• linear dependency between active power Po and angular frequency ω, as well as

between reactive power Qo and voltage difference ∆V (2.13) - (2.14);
• linear dependency between active power Po and voltage difference ∆V , as well as

between reactive injection Qo and angular frequency ω (2.16) - (2.15).

ω = ω∗ −m · Po (2.13)

vrefo = V ∗ − n ·Qo (2.14)

ω = ω∗ −m ·Qo (2.15)

vrefo = V ∗ − n · Po (2.16)

The terms ω∗ and V ∗ are the no-load frequency and the voltage amplitude references;
these values are typically chosen depending on the nature of the energy source on the
primary side of the converter, the network standards and the set-up imposed by the
system secondary control [3] - [4] - [5].

Droop slopes take into account the load-ability of the unit and the maximum al-
lowed range of variation for the frequency and voltage magnitude. For inductive droop
characteristics, the slopes m and n can be obtained as:

m =
ωMax − ωmin
PMax − Pmin

(2.17)

n =
VMax − Vmin
QMax −Qmin

(2.18)

The case expressed by (2.13) - (2.14) is the most used scheme [6]-[7]-[8], as it emu-
lates the characteristics of primary voltage and frequency regulation typically adopted for
traditional generators in predominantly-inductive transmission networks [9]-[10]. Even
though the characteristics of this type of regulation suit very well for high-voltage dis-
tribution because of the inductive nature of the system, they may not be the perfect
solution for low or medium-voltage microgrids in which the power decoupling is less
evident.

The modification of the droop equations according to (2.15)-(2.16), in order to adapt
them to the case of predominantly resistive networks, may be reasonable only for some
specific cases: we have to take into account that the determination of the equivalent
external impedance seen by the converter depends on a multitude of physical factors
(e.g. voltage level, presence or absence of the interface transformer, loading conditions
of the system, number and nature of active loads connected to the network). Thus
both solutions proposed in (2.13)-(2.14) and (2.15)-(2.16) suffer from the inherent time
variability of the external network impedance.

In this thesis, inductive droop (2.13)-(2.14) is taken into account: nevertheless,
several changes to improve its control performances even with a predominantly resistive
impedance will be analysed; moreover, it will be investigated the possibility to estimate
the equivalent impedance seen by the converter, in order to develop robust and adaptive
control schemes for the converter.
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2.4 Structure of the system

Consider the model of a single converter controlled by means of a droop scheme. The
unit may be connected to an external strong power system which is imposing amplitude
and angular frequency of the three-phase voltages at the interface (Fig. 2.2(a)) or it
is supplying a microgrid where active and reactive primary regulation is carried out
in a distributed way (Fig. 2.2(b)). Table 2.1 includes the base system used for per-
unit transformation, as well as the characteristics of the considered study case for each
converter.

The design of the LCL filter is carried out according to [11]; the filter includes a
damping resistor Rd, designed in order to avoid parallel resonance.

(a) Operation of the converter in grid-connected mode.

(b) Operation of the converter in island mode.

Figure 2.2: Operations of the converter interfaced to a public network (a) or in island
mode (b).

Table 2.1: System parameters

Quantity Value

Base system Vb [V], Ab [kVA], ωb [rad/s] 200; 2.4; 2π 50
Rf , Lf , Cf , Rd [p.u.] 0.0073, 0.045, 0.052, 0.63

Rg, Lg [p.u.] 0.049, 0.024
Current loop cut-off ang. freq. [rad/s] ωcI 2π · 350

Current loop phase margin 70 deg.
Voltage loop cut-off ang. freq. [rad/s] ωcV 2π · 50
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As regards the proportional droop parameters as defined in (2.17) - (2.18), the values
in Table 2.2 are considered. A first order filter with time constant Tp is used for the
extraction of average power components according to the droop equations (2.13) - (2.14).

The external system is represented by the three-phase voltage source v̄g and the
equivalent ohmic-inductive impedance (Rg, Lg).

2.5 Non-linear model of the converter

Consider the per-unit (p.u.) dynamical equations of the filter in the αβ frame. The
operator p = d

dt represents the time derivative; as it is homogeneous with [s−1], it is
divided by the base angular frequency ωb.

αβ frame

v̄ − v̄o = Rf ī+ Lf
p

ωb
ī (2.19)

Cf
p

ωb
v̄o = (̄i − īo) +RdCf

p

ωb
(̄i − īo) (2.20)

v̄o − Vpccej δ = Rg īo + Lg
p

ωb
īo (2.21)

For the control, a rotating dq frame aligned to reference voltage v̄o ref is considered
(thus v̄o ref = vod ref + j · 0). The expressions of the filter equations in the dq frame can
be obtained from the substitution p

ωb
→ p

ωb
+ jω, where ω is the rotating control frame

angular frequency expressed in per-unit.

dq frame

v̄ − v̄o = Rf ī+ Lf
p

ωb
ī + j ω Lf ī (2.22)

Cf
p

ωb
v̄o + j ω Cf v̄o = (1 + jωRdCf ) (̄i − īo) +RdCf

p

ωb
(̄i − īo) (2.23)

v̄o − Vpccej δ = Rg īo + Lg
p

ωb
īo + j ω Lg īo (2.24)

The representation of the control scheme on synchronous axes is reported in Fig.
2.3. The converter regulation is realized by means of three nested loops, respectively
associated to the control of the filter current ī, the capacitor voltage v̄o and the droop
control, which defines the instantaneous voltage reference based on the absorbed active
and reactive powers.

Table 2.2: Droop parameters

Quantity Value

Droop coefficients m , n [p.u.] 0.010 , 0.017
Time constant Tp for average power calculation [s] 0.10
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Figure 2.3: Control system of the converter under study.

The dynamical equations associated to the internal current and voltage loops can
be expressed as:

v̄ref = (kpI + kiI/p)
(
īref − ī

)
+ v̄o + j ω Lf ī (2.25)

īref = (kpV + kiV /p)
(
v̄refo − v̄o

)
+HI(p) īo +HV (p) jωCf v̄o (2.26)

Two additional complex state variables Ēi and Ēv model the effect of the integral
regulators in the current and voltage loop:

pĒi =
(
īref − ī

)
(2.27)

pĒv =
(
v̄refo − v̄o

)
(2.28)

HI(p) and HV (p) represent the transfer functions associated to the feed-forward
compensation of the output current īo and capacitor voltage v̄o. A typical simplification
assumes the functions HI(p) and HV (p) as constant coefficients; this choice significantly
reduces the complexity of the control system and the number of state variables in the
dynamical model. In the next section, it will be shown that there is a strong correlation
between the desired characteristics of the voltage v̄o control loop and the feed-forward
term HI .

Neglecting the internal switching dynamic of the converter, it is possible to assume
v̄ ∼= v̄ref .

As for the voltage reference definition v̄refo , a typical inductive droop is taken into
account; derivative coefficients are also introduced in the traditional droop equations in
order to improve the dynamical behaviour of the converter [12] - [13]: nevertheless, in
the consulted literature, a rigorous design procedure for the derivative droop coefficients
has not been clearly identified. In section 2.8 a straightforward method able to predict
the effects of derivative droop coefficients on the system dynamics will be developed.



Chapter 2. Model of the converter under droop regulation 22

The magnitude and angular frequency of the voltage reference v̄refo can thus be
expressed as:

ω = ω∗ − (m+mdp) Po = ω∗ − (m+mdp) (vod iod + voq ioq)

1 + Tp p
(2.29)

vrefod = V ∗ − (n+ ndp) Qo = V ∗ − (n+ ndp) (voq iod − vod ioq)
1 + Tp p

(2.30)

vrefoq = 0 (2.31)

Depending on the characteristics of the external system, the load angle δ, which
expresses the angular difference between converter-controlled and grid voltages, and the
corresponding amplitude Vpcc in (2.24) are determined by the following equations:

Grid-connected mode

pδ = ωb · (ωpcc − ω) (2.32)

ωpcc = constant Vpcc = constant (2.33)

Island conditions mode (see Fig. 2.4)

pδ = ωb · (ωpcc − ω) (2.34)

ωpcc = ω∗rest −
mrest

1 + p Trest
· prest (2.35)

Vpcc = vrest −
∣∣Z̄rest · īrest∣∣ ∼= (V ∗rest − nrest

1 + p Trest
· qrest

)
−
∣∣∣∣Z̄rest · (prest − jqrest)

Vpcc

∣∣∣∣ ∼=
(2.36)

∼=
(
V ∗rest −

nrest
1 + p Trest

· qrest
)
−
(
Rrest · prest + ω0Lrest · qrest

)
Vpcc

(2.37)

where (neglecting the active and reactive losses into the network):

prest + po ∼= pload qrest + qo ∼= qload (2.38)

Equation (2.37) takes into account:
• the equivalent impedance Z̄rest = Rrest+ jω0Lrest seen from the load to the equiv-

alent high-power external grid. The circuital representation of the model is pro-
vided in Fig.2.4, and the voltage drop associated to the external regulation system
is modelled according to the simplified steady state approximation typically used
in power systems [14].
• the primary voltage regulation performed by the rest of the system, according to

the typically used proportional scheme [15].
The reference circuit used for the identification of converters contribution to the

definition of the reactive voltage at the Point of Common Coupling is given by Fig. 2.4.
The local load is modelled as a constant power absorption; moreover it is assumed

that the voltage drop associated to the regulation system shows a predominantly induc-
tive nature, thus changing (2.37) into (2.39).

Vpcc
∼=
(
V ∗rest −

(
nrest

1 + sTrest
+ ω0Lrest/V

0
pcc

)
· qrest

)
(2.39)
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Figure 2.4: Physical representation of the circuit used for the analysis of the converter
behaviour in island mode.

The explicit form of the state space model used for numeric stability evaluation of
the droop-controlled converter is reported in Appendix A: all the already introduced
equations are grouped there, highlighting the typical state space form typically used in
control theory.

2.6 Controllers design

Assume that the desired cut-off frequencies for the current and voltage loops are
respectively ωcI and ωcV (Table 2.1); it is decided to use typical linear PI controllers for
the regulation of the system, with constant feed-forward compensations. Under these
hypotheses, the dynamic of the regulator is linear and it can be analysed in the Laplace
domain.

As regards the current loop, the design process is straightforward and does not
present any significant theoretical complexity. The proposed procedure and the numer-
ical results are included in Appendix B.

As for the voltage loop, the situation is more complex: according to [16] and [12],
the coefficient HI associated to the grid current compensation into the voltage loop
has to be chosen lower than one in order to maintain stable operations for the system.
The consistency of this hypothesis will be verified, together with its effect in terms of
regulation properties for the voltage loop.

Consider the voltage loop control on synchronous dq axes, as reported in Fig. 2.5.
The loop is controlled by means of a traditional PI controller; feed-forward compensa-
tions of the external current īo and of the capacitor voltage v̄o coupling term are taken
into account by HI and HV .

Similarly to the procedure reported in Appendix B for the current loop, the starting
point for the design of the voltage regulator is the identification of an equivalent load

Figure 2.5: Equivalent block diagram associated to the voltage control.
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function GV (s) which includes the dynamical characteristics of the system under control.
The following procedure will be carried out:
• in this section, a simplified design model for the voltage loop is proposed: the

objective is to derive analytical expressions for the PI coefficients kpV and kiV ;
• in the next section, a numerical model will be developed in order to verify the

consistency of the introduced simplifications.

2.6.1 Identification of a simplified load function GV (s).

Starting from the model in Fig. 2.5, the following hypotheses are introduced:
• a non-ideal feed-forward term HI = 0.95 is considered;
• all the coupling terms are neglected, both as regards capacitor and interface

impedance;
• the effect of the external grid voltage v̄g is neglected in the design of the voltage

loop.
From the model reported in Fig. 2.6(a) and 2.6(b), it follows the identification of

the equivalent load function GV (s) on a synchronous control system obtained as:

GV (s) = KI(s) · Fc(s) ·
1

1 + (1−HIKI(s)) · Fc(s) · Yg(s)
(2.40)

where KI(s) represents the internal current loop according to the equation (B.17) in
Appendix B; Fc(s) and Yg(s) take into account the capacitor and interface impedance
respectively.

Fc(s) =
1 + sCfRd/ωb

sCf/ωb
(2.41)

Yg(s) =
1

Rg + sLg/ωb
(2.42)

The equivalent Bode diagram of the transfer function GV (s) as obtained in (2.40)
is plotted in Figure (2.7); physical values used for the calculation are the ones reported
in Table 2.1. The profile associated to the load function shows a non-monotonic be-
haviour and a resonance peak close to the desired cut-off angular frequency ωcV , thus
the regulator coefficients definition has to be carried out carefully.

2.6.2 Design approach 1

A first approach consists in the application of the same formulations (2.43)-(2.44)
used for the current controller (Appendix B). These expressions allow to identify the
proportional and integral coefficients of the PI, as functions of the desired cut-off angular
frequency ωcV and phase margin φmV for the voltage loop; GV (s) is the load function
as reported in (2.40).

kpV =
cos(− arg(GV (jωcV ))− π + φmV )

|GV (jωcV )|
(2.43)

kiV = −ωcV
sin(− arg(GV (jωcV ))− π + φmV )

|GV (jωcV )|
(2.44)
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(a) Simplified voltage control scheme - step 1

(b) Simplified voltage control scheme - step 2

Figure 2.6: Simplified schemes for the identification of the loop function GV (s).
Coupling terms and external grid voltage v̄g are neglected into the derivation of the

model.

Figure 2.7: Equivalent simplified load function GV (s) of the voltage regulator. Cou-
pling terms are not taken into account during the design phase.
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Once defined the desired cut-off ωcV according to Table 2.1, one can choose φmV = 90
degrees, obtaining kpV = 1.74 pu and kiV = 610. pu/s.; the open and closed-loop
functions for this case are reported in Fig. 2.8.

In Fig. 2.9, the values of the parameters kpV and kiV as a function of the desired
phase margin φmV are plotted. Nevertheless it is difficult to have a clear understanding
of what is physically happening inside the control and which is an acceptable phase
margin for the loop. Moreover (2.43) and (2.44) require the phase evaluation of a high-
order transfer function GV (jωcV ) where the position of the poles cannot be calculated
in an analytical form; thus the implementation of (2.43) and (2.44) requires a significant
computational effort, that may be hardly obtainable with standard micro-controllers.

In this perspective, a simplified low-order evaluation of the equivalent load function
GV (s) is proposed. This allows to derive analytical expressions for the regulator coef-
ficients kpV and kiV that can be calculated also when the control device shows a low
computational power.

Figure 2.8: Open LV (s) and closed loop function KV (s) associated to the voltage
loop, designed according to the Method 1.

Figure 2.9: Values of the regulator coefficients kpV -kiV as function of the phase margin
under design Method 1 (ωcV = 2π · 50 rad/s.)
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2.6.3 Design approach 2

Consider the expression of the equivalent load function GV (s) as identified in (2.40).
The idea behind this design method is to express voltage controller parameters as a
direct function of the physical characteristics of the system, in a form which is readily
implementable on a low-computational-power controller.

GV (s) =

(
1

1+s/ωcI

)
·
(

1+sCfRd/ωb
sCf/ωb

)
1 +

(
1−HI ·

(
1

1+s/ωcI

))
·
(

1+sCfRd/ωb
sCf/ωb

)
·
(

1
sLg/ωb+Rg

) (2.45)

The calculation of the denominator in (2.45) would lead to a third order polynomial;
even though it can be solved analytically, it is not easy to manage the expressions of the
obtained roots.

Nevertheless, a single approximation in (2.45) allows to reduce the system order
while keeping most of the information related to the dynamical effect of the terms inside
the control: considering the Bode diagram associated to the non-ideal current feed-
forward (1−HIKI(s)) as reported in Fig. 2.10, it is easy to recognize that the dominant
behaviour in the frequency range of interest can be approximated as the combination of
a gain with a low-frequency zero. Thus:

(1−HIKI(s)) =

(
1−HI ·

(
1

1 + s/ωcI

))
= (2.46)

=

(
1 + s/ωcI −HI

1 + s/ωcI

)
= (2.47)

= (1−HI) ·
1 + s

ωcI ·(1−HI)

1 + s/ωcI
∼= (2.48)

∼= (1−HI) ·
(

1 +
s

ωcI · (1−HI)

)
for ωs ≤ ωcI (s = jωs) (2.49)

Figure 2.10: Approximation of the dynamic behaviour of the non-ideal feed-forward
current compensation.
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Introducing the approximation (2.49) in (2.45) leads to the following expression for
the load function GV (s):

GV (s) =

(
1

1 + s/ωcI

)
·

(1 + sCfRd/ωb) · (sLg/ωb +Rg)
s2

ω2
b
· a+ s

ωb
· b+ c

= (2.50)

=

(
1

1 + s/ωcI

)
· Rg (1 + s/ωZ) (1 + sTg)

(1−HI) (1 + s/ωp1) (1 + s/ωp2)
(2.51)

a =

(
LgCf + CfRd

ωb
ωcI

)
b =

(
RgCf + (1−HI)RdCf +

ωb
ωcI

)
(2.52)

c = (1−HI) ωZ =
ωb

CfRd
(2.53)

The formulation in (2.50) is significant as it allows to analytically keep into ac-
count the predominant dynamics and to understand the influence of each element in the
stability of the open loop function LV (s):
• the current controller produces a pole ωcI at high frequency, typically outside the

desired pass-band of the voltage loop ωcV (ωcI ∼= 7ωcV );
• the combination of the capacitor Cf with the damping resistor Rd produces a zero

at high frequency (ωZ ∼= 30ωb ∼= 104 rad/s);

• the interaction of the grid with the control system introduces a zero in τ−1
g = ωb ·RgLg

and a couple of poles (ωp1 - ωp2) that can be obtained from the resolution of the
second order polynomial. Given the value of the difference 1 − HI sufficiently
small (HI = 0.95), the two pulsations ωp1 and ωp2 are real for all the possible
combinations of the output impedance parameters, as the polynomial discriminant
is positive (Fig. 2.11).

Figure 2.12 represents the asymptotic behaviour of the load function GV (s): in the
low frequency range ωs < ωcV , the function resembles the one reported in Fig. 2.7, even

Figure 2.11: Sign of the discriminant for the second-order polynomial in (2.50) under
typical values of the output-impedance parameters Rg and Lg.
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though some differences exist in the high frequency range.
The voltage regulator can be designed imposing its zero T−1

iV far below the desired
cut-off frequency ωcV and then imposing the loop pass-band for the system by acting on
the proportional term kpV . Consider T−1

iV = kiV
kpV

= 10 rad/s: as the zero of the controller

T−1
iV occurs before the expected cut-off angular frequency of the voltage loop ωcV , the

PI behaves almost as a pure proportional term kpV close to ωcV . Thus it is possible to
derive the simplified expression of the proportional and integral terms as:

kpV · |GV (jωcV )| ∼= 1 (2.54)

kpV =
LgCf +RdCfωb/ωcI

ω2
b

·

√
ω2
p1 + ω2

cV

√
ω2
p2 + ω2

cV

√
1 + (ωcV /ωcI)2√

1 + (ωcV CfRd/ωb)2
√
R2
g + (ωcV Lg/ωb)2

(2.55)

kiV = kpV · T−1
iV (2.56)

The simplified equations in (2.55)-(2.56) can be used as base scheme for the adaptive
voltage regulation, in coordination with the impedance estimation algorithm. For the
moment, constant coefficients are considered based on the case study reported in Table
2.1. The values of the proportional and integral terms obtained from (2.55)-(2.56) are
the following: kpV = 2.84 p.u. and kiV = 28.4 p.u./s.

Open and closed-loop transfer functions for the voltage control loop in these condi-
tions are reported in Fig. 2.13. Even though in this case the cut-off frequency does not
coincide exactly with the desired one ωcV , still the system shows a good phase margin
and the definition of the parameters can be easily performed also in real-time with a
low-computational-power micro-controller.

Figure 2.12: Asymptotic approximated behaviour of the load function GV (s). Even
though for high frequency the function is different from the exact one reported in Fig.
2.7, still it is able to predict the main tendency of the system in the desired frequency

range ωs < ωcV .
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Figure 2.13: Open LV (s) and closed loop function KV (s) associated to the voltage
loop, designed according to the Method 2.

2.7 Effect of the compensations terms on the voltage con-
trol loop

Following the procedure presented in [17], it is possible to derive a frequency based
characterization of the voltage loop, which allows to study the effect of the feed-forward
compensation terms. The proposed approach refers to the complex coefficients transfer
functions notation as developed in [18]-[19].

Even though similar analyses have been performed to study the instability of constant-
power control schemes (grid-following architecture) in [20]-[21], also including the effect
of the phase synchronization [22]-[23], it has rarely been used for the analysis of droop-
controlled converters.

The procedure develops in three main steps:
• identification of the transfer functions of each subsystem referred to its proper

reference frame (αβ for the physical circuit, dq for the synchronous control);
• combination of the functional blocks into a unique reference frame (in this case,
αβ);
• application of the Generalized Nyquist Criterion [18] for stability evaluation.

2.7.1 Block identification

Consider the blocks related to the voltage loop as reported in Fig. 2.14(a).
• The control acts on the synchronous axes dq quantities and a PI controller is

used for the regulation. As the internal current loop is characterized by a faster
dynamic behaviour, it can be approximated as the first-order transfer function
reported in Appendix B, equation (B.17). On the left side of the picture, it is
included the model of the voltage control PIV o, designed in the previous section,
whose expression in the dq frame is:

PIV o dq =
skpV + kiV

s
(2.57)

• The model includes the feed-forward current compensation associated to HI and
the one of the voltage coupling term defined by HV ; both act on dq axes. The



Chapter 2. Model of the converter under droop regulation 31

scope of this analysis is to assess their influence on the performance and on the
stability of the voltage control.
• The control system acquires the quantities referred to the αβ frame and later

rotate them to synchronous axes; anti aliasing filter AF (s) are included for correct
modelling of the high-frequency behaviour. A fourth-order Butterworth filter with
a cut-off frequency ωfilt = 2π · 2500 rad/s is taken into account, coherently with
the one installed on the experimental set-up.

AF (s) =
ω2
filt

s2 + 2ξ1ωfilt s+ ω2
filt

·
ω2
filt

s2 + 2ξ2ωfilt s+ ω2
filt

(2.58)

• On the right side, the dynamical model of the physical system on fixed axes αβ
is depicted. The dynamics of the capacitor filter Cf with its damping resistor Rd
and the one of the grid interface impedance are reported; these are respectively
defined by the transfer functions Fc(s) and Yg(s) in Fig.2.14(a).

2.7.2 Graphical resolution of the control system

The procedure allows to determine the behaviour of the voltage regulator, high-
lighting its dynamical characteristics for positive and negative sequences under possible
non-ideal compensations associated to the coupling terms. Moreover, it should be con-
sidered that the model as reported in Fig. 2.14(a) does not include approximations,
except for the one associated to the internal dynamic of the current loop.

Starting from the model in Fig.2.14(a), it is possible to derive Fig. 2.14(b) and
2.14(c): these modifications preserve the analytical equivalence of the dynamical models,
even though the topologies may seem to be different.

Once determined Fig.2.14(c), it is necessary to identify a procedure to transform the
transfer function HI ·KI(s) (referred to the dq frame) into an equivalent block referred to
the fixed system αβ. The procedure based on the complex-coefficients transfer matrices
[24]-[25] allows to derive the α and β components of the equivalent dynamical model as a
function of the original transfer functions in the dq domain, under positive and negative
sequences separately. The method significantly simplifies when the control system is
identically designed in the d and q axes, which is the case of Fig. 2.14(a) - 2.14(c).

Under this condition, the equivalent αβ model can be easily obtained by means of
an angular frequency shift expressed by (2.59), as reported in [26] and [27]. Analogously,
the reverse transformation is given by (2.60); ω stands for the per-unit angular frequency
of the synchronous rotating system, while ωb is the base angular frequency.

Fαβ(s) = Fdq(s− jωωb) (2.59)

Fdq(s) = Fαβ(s+ jωωb) (2.60)

This allows to build the scheme reported in Fig.2.15(a). The topology change from
Fig.2.14(c) to Fig.2.15(a) allows to identify an equivalent loop which comprises the
capacitor transfer function Fc(s), the grid admittance Yg(s) and a weighting function
W (s) (2.61), which takes into account the combination of the grid current īo and of its
compensation inside the control scheme:

W (s) = HI KI αβ(s)AF (s) (2.61)
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(a) Equivalent voltage control scheme - Step 1

(b) Equivalent voltage control scheme - Step 2

(c) Equivalent voltage control scheme - Step 3

Figure 2.14: Analytical derivation of the equivalent voltage control diagram - steps
1-3

The term KI αβ(s) in (2.61) corresponds to the internal current control model as
seen by the αβ frame and it is obtained applying (2.59) to (B.17). The result is a
complex coefficients transfer function:

KI αβ(s) = KI(s− jωωb) =
1

1 + s/ωcI − jωωb/ωcI
(2.62)

A further elaboration of the system in Fig.2.15(a) allows to reconstruct the behaviour
of the voltage regulator as seen from the αβ frame. To do so, it is useful to identify a
fictitious reference voltage v̄refoαβ expressed as an αβ space vector, as shown in Fig.2.15(b).

The elaboration of Fig. 2.15(b) into Fig. 2.15(c) represents the final stage of the
analysis. Once obtained the equivalent αβ sub-blocks by means of the technique already
exploited in (2.62), it is possible to obtain a model which links the fictitious capacitor

voltage reference v̄refoαβ and the actual one v̄oαβ in a unique complex coefficient model
referred to the αβ frame.
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(a) Equivalent voltage control scheme - Step 4

(b) Equivalent voltage control scheme - Step 5

(c) Equivalent voltage control scheme - Step 6

Figure 2.15: Analytical derivation of the equivalent voltage control diagram - steps
4-5
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Even though the procedure may seem to be excessively complex, it reconstructs in
a numerical way the characteristics of the voltage regulator and assesses the consistency
of any approximation related to the effect of feed-forward terms.

This allows to express the equivalent controlled voltage v̄o as:

v̄oαβ = KV αβ(s) · v̄refoαβ (v̄g αβ = 0) (2.63)

in which:

LV αβ(s) = PIV oαβ(s) ·KI αβ(s) · Fcmod(s) ·
(
1− jωCfHV (PIαβ)−1

)
·AF (S) (2.64)

KV αβ(s) =
PIV oαβ(s) ·KI αβ(s) · Fcmod(s)

1 + LV αβ(s)
(2.65)

Transfer function Fcmod(s) in (2.65) stands for the dynamical effect of the capacitor,
modified by the non-ideal compensation of the grid current īo. It can be obtained as:

Fcmod(s) =
Fc(s)

1 + Fc(s) · Yg(s) (1−HI KI αβ(s)AF (s))
(2.66)

where Fc(s) =
1 + sCfRd/ωb

sCf/ωb
(2.67)

Transfer function KV αβ(s) takes into account the ability of the control to impose

the reference v̄refoαβ to the capacitor bank; LV αβ(s) determines the stability conditions
for the control and keeps into account all the effects associated to axes coupling and
partial compensations.

2.7.3 Effect of the output current feed-forward coefficient HI

Consider the Bode diagrams associated to the open-loop function LV αβ(s) under
different values of the feed-forward compensation HI ; all the results reported here are
obtained by means of a self-developed Matlab library that allows to perform frequency
shift operations (2.59) - (2.60) in an automated way and, lately, to analyse the dynamical
behaviour of the system under positive and negative sequences.

The loop stability is studied referring to the generalized Nyquist stability criterion
for complex coefficients transfer functions as reported in [18]. Since the loop transfer
function LV αβ(s) is obtained as a product of sub-blocks with negative real-part poles,
the stability is guaranteed provided that the loop function does not perform rotations
around the point (−1; 0) in the complex plane [28]. The technique is very powerful as it
allows to keep into account in a numerical way all the effects associated to the system
sub-block, while keeping a simple formal representation.

Figure (2.18(a)) considers the case in which no compensation of the external current
īo is introduced (HI = 0). In the negative frequencies range, the loop function LV αβ(s)
does not show any intersection with the 0dB axis, thus all negative sequence compo-
nents show a stable behaviour. As for the positive sequences, the Bode diagram of the
loop function LV αβ(s) in Fig.2.18(a) shows an ideally-infinite gain in correspondence
to the fundamental component of the system; the phase profile does not intersect the
boundaries (−π, π). In order to have a physical interpretation of this condition, consider
the Nyquist diagram reported in Fig. 2.16 which is associated to the frequency response
profile in Fig.2.18(a). The magnitude diagram intersects the 0dB axis twice even though
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no rotations are performed around the point (-1;0); the resulting system is thus stable.
The same condition occurs when HI = 0.95 (Fig. 2.18(b)).

On the other hand, consider the simplified representation of the Nyquist diagram
in case HI = 1 in Fig. 2.17; the main tendency of the diagram can be reconstructed
from the frequency response in 2.18(c). As for the negative sequence, no stability issues
are highlighted as the magnitude profile does not intersect the 0dB axis. Nevertheless,
the positive sequence response produces a rotation around the point (−1; 0), which
determines the instability of the system.

Once assessed the stability of the system for HI < 1, it is interesting to evaluate
the performances of the closed-loop control, according to the function K1(s) in the
cases HI = 0 or HI = 0.95 (Fig. 2.19(a) and Fig. 2.19(b) respectively). Predictably, the
second case allows a higher regulation capability as it produces a flatter behaviour of the
closed-loop function around the nominal angular frequency of the system. The frequency
range in which the magnitude is close to 0dB stands for the regulation pass-band of the
voltage control, referred to the αβ frame.

This analysis allows to highlight the following characteristics associated to the com-
pensation terms in the control:
• current feed-forward coefficient HI plays a major role in the stability of the con-

verter; a design valueHI = 0.95 guarantees stable operations and a good regulation
pass-band of the voltage control loop;

Figure 2.16: Generalized Nyquist digram in stable condition.

Figure 2.17: Generalized Nyquist digram in unstable condition.
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(a) HI = 0

(b) HI = 0.95

(c) HI = 1

Figure 2.18: Frequency response of the open-loop transfer function LV αβ(s) under
different values of the feed-forward current coefficient HI . The diagrams are used to

reconstruct the Nyquist representations in Fig.2.16-2.17
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(a) HI = 0

(b) HI = 0.95

Figure 2.19: Frequency response of the closed-loop transfer function KV αβ(s) under
different values of the feed-forward current coefficient HI . When HI = 0 (a), the
closed-loop function has a magnitude profile much lower than 0 dB for ωs 6= ωb, which
indicates poor regulation performances. On the other hand HI = 0.95 (b) guarantees

a significant regulation pass-band.
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• performing the same analysis on the voltage de-coupling coefficient HV , it is possi-
ble to see that it does not significantly affect the system stability; a value HV = 1
can be chosen.

In the next section, a simplified model for the design of the derivative droop coeffi-
cients will be taken into account: the assumptions introduced in the model derivation are
the ones just mentioned and, thus, their consistency is supported by the mathematical
analysis carried out previously.

2.8 Linearised model

2.8.1 Derivation of the complete linearised model

Consider the linearisation procedure applied to equations (2.22) -(2.38), together
with the simplifying hypotheses derived in section 2.7.3 and in [29]. In this context, a
microgrid supplied by several converters is taken into account; local loads are modelled
as constant absorptions characterized by the active / reactive powers pload and qload.
The system under study is a microgrid supplied by several droop-controlled inverters
(Figure 2.2(b)); the case of a single converter connected to a very strong grid (Figure
2.2(a)) can be easily obtained from the developed procedure imposing mrest = nrest = 0.

The variational method is applied to derive the stability conditions for the droop
derivative terms. Each state variable x(t) is linearised in x(t) =

(
X0 + ∆x(t)

)
and the

dynamical dependencies between the variations are taken into account. The introduced
hypotheses are the following:
• the time-derivatives of the steady-state components are obviously equal to zero;
• second-order differential terms are neglected with respect to first order ones, as

the product of variations are negligible when the small-signal model is considered;
• steady-state phasor equalities are simplified within the model, leading to a pure

variational system;
• the Laplace complex angular frequency s is introduced instead of the derivative

operator p in the linearised model.
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The application of this procedure to (2.22) -(2.38) leads to the linearised model in
(2.68) - (2.76).

∆v̄ = ∆v̄o + (Rf + Lf s/ωb) ∆ī+ jLf
(
ω0∆ī+ ∆ω Ī

)
(2.68)(

Cf
s

ωb
+ jω0Cf

)
∆v̄o + j∆ω Cf V̄o =

=

(
1 + jω0RdCf +RdCf

s

ωb

)
(∆ī −∆īo) + jCfRd∆ω

(
Ī − Īo

)
(2.69)

∆v̄o = jVpcc e
jδ0 ∆δ + ∆Vpcc e

jδ0 + (Rg + Lg s/ωb) ∆īo + jLg
(
ω0∆īo + ∆ω Īo

)
(2.70)

∆v̄ref = (kpI + kiI/s)
(

∆īref −∆ī
)

+ ∆v̄o + j ω0 Lf ∆ī+ j∆ω Lf Ī (2.71)

∆īref = (kpV + kiV /s)
(

∆v̄refo −∆v̄o

)
+Hi ∆īo + jω0CfHV ∆v̄o + j∆ω0CfHV V̄o

(2.72)

∆ω = ∆ω∗ − m+ smd

1 + s Tp
·∆po = ∆ω∗ − m+ smd

1 + s Tp
· (∆vod Iod + Vod ∆iod + ∆voq Ioq)

(2.73)

∆vrefod = ∆V ∗ − n+ s nd
1 + s Tp

·∆qo = ∆V ∗ − n+ s nd
1 + s Tp

· (∆voq Iod −∆vod Ioq − Vod ∆ioq)

(2.74)

∆vrefoq = 0 (2.75)
s

ωb
∆δ = ∆ωpcc −∆ω (2.76)

∆ωpcc = ∆ω∗rest −
mrest

1 + sTrest
∆prest (2.77)

∆Vpcc ∼= ∆V ∗rest −
(

nrest
1 + sTrest

+ ω0Lrest/V
0
pcc

)
∆qrest (Rrest ∼= 0) (2.78)

∆prest + ∆po ∼= ∆pload (2.79)

∆qrest + ∆qo ∼= ∆qload (2.80)

The numerical resolution of the Equations (2.68)-(2.80) allows to calculate the eigen-
values of the system at equilibrium. Even though the eigenvalues calculation represents
a strong numerical tool for the identification of the stability properties of the converter,
still sometimes it is hard to interpret the results and to derive simple design guidelines
for the controllers. Thus, in the following it will be developed a simplified model that
takes into account the dominant dynamics associated to the droop control: the aim is
to provide an intuitive understanding of how each control element affects the system
stability.

In particular, the simplified model will be exploited for the identification of suitable
design criteria for the derivative droop coefficients.

2.8.2 Reduced order model

Consider a reduced-order model obtained from the application of reasonable simpli-
fications to the complete linearised system (2.68)-(2.80). The hypotheses introduced in
this context are the following:
• the internal current loop of the system, designed according to Appendix B, has

a fast response; thus it can be assumed as an ideal unitary gain and its internal
dynamics are neglected;
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• As the effect of the damping resistorRd is typically associated to the high-frequency
behaviour, it will be neglected in this simplified model developed for derivative
droop coefficients design that mainly affect the dominant low angular frequency
dynamics of the system.
• provided that the voltage control regulator is designed taking into account the

effects of the non-ideal compensation HI , it can be approximated as an equivalent
first order low-pass filter with a pass-band equal to the desired cut-off frequency
ωcV .

The application of these simplifying hypotheses to (2.68)-(2.80) leads to the reduced
order system reported in (2.81)-(2.88).

∆v̄o = jVpcc e
jδ0 ∆δ + ∆Vpcc e

jδ0 + (Rg + Lg s/ωb) ∆īo + jLg
(
ω0∆īo + ∆ω Īo

)
(2.81)

∆v̄o =
1

1 + s/ωcV
·∆v̄refo = KV (s) ∆v̄refo (2.82)

∆ω = ∆ω∗ − m+ smd

1 + s Tp
· (∆vod Iod + Vod ∆iod + ∆voq Ioq) (2.83)

∆vrefod = ∆V ∗ − n+ s nd
1 + s Tp

· (∆voq Iod −∆vod Ioq − Vod ∆ioq) (2.84)

∆vrefoq = 0 (2.85)
s

ωb
∆δ = ∆ωpcc −∆ω (2.86)

∆ωpcc = ∆ω∗rest −
mrest

1 + sTrest
(∆pload −∆po) (2.87)

∆Vpcc = ∆V ∗rest −
(

nrest
1 + sTrest

+ ω0Lrest/V
0
pcc

)
· (∆qload −∆qo) (2.88)

Moreover, the steady state load angle δ0 is typically small, thus the projection of
(2.81) on direct and quadrature axes leads to:

∆vod = − sin(δ0)Vpcc∆δ + ∆Vpcc cos(δ0) + (Rg + Lg s/ωb) ∆iod − Lg
(
ω0∆ioq + ∆ω Ioq

) ∼=
∼= ∆Vpcc + (Rg + Lg s/ωb) ∆iod − Lg

(
ω0∆ioq + ∆ω Ioq

)
(2.89)

∆voq = cos(δ0)Vpcc∆δ + ∆Vpcc sin(δ0) + (Rg + Lg s/ωb) ∆ioq + Lg
(
ω0∆iod + ∆ω Iod

) ∼=
∼= Vpcc∆δ + (Rg + Lg s/ωb) ∆ioq + Lg

(
ω0∆iod + ∆ω Iod

)
(2.90)

The combination of (2.89) - (2.90) with the system of equations given by (2.82)-
(2.88) is the starting point of the analysis: defining the equivalent impedance time con-
stant Tg = Lg/ (Rgωb) and the corresponding admittance function as Yg(s) = 1

Rg(1+sTg) ,

the linearised system reported in Fig. 2.20 can be obtained.
The complete linearised system is composed of four dynamically-coupled sub-blocks,

which determine the stability conditions for the converter both in grid-connected or
island mode. The blocks physically correspond to the direct and quadrature axes, as
well as to the mathematical implementation of the active and reactive droop equations.

The system in Fig. 2.20 takes into account the dominant dynamics of the system
and the dependency with respect to the steady state current conditions. As a first
assumption, it is possible to assume that the converter is operated in no-load conditions
(Fig. 2.21): starting from this common frame, the behaviour of the system in grid-
connected and during island operations will be analysed separately.
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Figure 2.21: No-load model of the converter for the design of derivative droop coef-
ficients.

2.9 Model of the converter in grid-connected mode.

The graphical model reported in Fig. 2.21 can be adapted to the analysis of grid-
connected mode conditions. The graphical elaboration of the system is carried out in
Fig. 2.22.

Two different aspects will be considered in the analysis:
• the prediction of the steady state response of the system after changes in the

frequency and voltage droop intersections (∆ω∗, ∆V ∗);
• the design of the derivative droop coefficients md and nd in a straightforward way.
Even though several authors have proposed the introduction of derivative coefficients

to stabilize the dynamics associated to the droop control both recently [6] and in the
past [12] - [13], still it is difficult to find a model that really tries to understand in deep
the dynamic effect of these regulation terms. Elaborating the models is [29] - [16], the
architecture here proposed seems to predict very well the dynamical characteristics of
the control.
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(a) Step 1

(b) Step 2

(c) Step 3

(d) Step 4

Figure 2.22: No-load model of the converter in grid-connected mode.
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2.9.1 Derivative coefficients design

Consider the model reported in Fig. 2.22(d); the expressions of the transfer functions
involved in the determination of the loop stability are the following:

Yg(s) =
1

Rg + sLg/ωb
=

1/Rg
1 + sTg

(2.91)

KV (s) =
1

1 + s/ωcV
(2.92)

N∗(s) =

[
n+ snd
1 + sTp

·KV (s) + Lgω
0/Vod

]
= (2.93)

=
n+

ω0 Lg
Vo d

+ s
(
nd +

TpLgω0

Vod
+

Lgω0

ωcV Vod

)
+ s2 TpLgω

0

ωcV Vod

(1 + sTp) ·
(

1 + s
ωcV

) (2.94)

M∗(s) =

[
V 0
pccωb

s

m+ smd

1 + sTp
+ Lgω

0/Vod

]
= (2.95)

=
V 0
pccωb

s
·
m+ s

(
md +

Lgω0

VodV 0
pccωb

)
+ s2 TpLgω0

VodV 0
pccωb

1 + sTp
= (2.96)

=
V 0
pccωb

s
·m ·

1 + 2ξM
ωnM

s+ s2

ω2
nM

1 + sTp
(2.97)

According to the scheme in Fig. 2.22(d), the loop function is given by (2.98).
Initially the sub-functions will be analysed separately and then will be combined together
in the loop Ldroop(s) for stability evaluation.

Ldroop(s) = Y 2
g (s)V 2

odM
∗(s)N∗(s) (2.98)

As a first step, consider the function N∗(s); it shows:
• a low frequency pole in T−1

p associated to the average reactive power calculation;
• a high frequency pole in ωcV associated to the effects of the internal voltage con-

troller;
• a couple of zeros, whose angular frequencies depend on the control characteristics

and on the equivalent inductance Lg seen at the interface point.
As ωcV typically shows a higher values with respect to the droop dynamics, the

asymptotic behaviour ωcV →∞ can be invoked to derive the approximated positions of
the zeros; in particular it is possible to see that the system shows a low-frequency zero
and a high frequency one close to ωcV . Thus the function N∗(s) can be approximated
as

N∗(s) ∼=
(
n+ Lgω

0/Vod
)
· (1 + sτ∗N )

1 + sTp
(2.99)

where the zero is placed at the angular frequency:

τ∗−1
N =

(
n+ Lgω

0/Vod
)

(nd + TpLgω0/Vod)
(2.100)
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Figure 2.23 shows the asymptotic behaviour of the transfer function N∗(s) under differ-
ent values of the derivative parameter nd: a positive nd moves the zero of the transfer
function to lower angular values, while a negative nd shifts the zero position towards
faster dynamics. Even though nd = 0, the zero introduced by the function is still placed
close to the pole in T−1

p : this reduces the sensitivity of the loop function Ldroop(s) with
respect to the derivative voltage droop coefficient nd.

Consider now the behaviour associated to M∗(s), as defined in (2.96). For md = 0,
the Bode diagram shows:
• a couple of low-angular-frequency poles (one in the origin and one in T−1

p );
• a couple of complex conjugate zeros, whose natural frequency and damping are

respectively given by (2.101) and (2.102).
The introduction of a positive coefficient md linearly increases the damping associated to
the zeros in M∗(s), while keeping a constant natural frequency ω∗nM . The corresponding
Bode diagram is reported in Fig. 2.24.

ω∗nM =

√
mVodV 0

pccωb

TpLgω0
(2.101)

ξ∗M =
1

m

(
md +

Lgω0

VodV 0
pccωb

)
· 0.5 · ω∗nM (2.102)

Once identified the general behaviour of the single sub-functions, all the dynamics
are combined together in order to identify the stability properties of the loop Ldroop(s)
(2.98). Consider the initial case in which both the derivative terms md and nd are equal
to zero. Referring to the numerical values reported in Tables 2.1 and 2.2, Fig. 2.25
holds.

The dominant dynamics of the open-loop function Ldroop(s) in (2.98) lead to the
asymptotic Bode diagram reported in Fig. 2.25. It is possible to identify:
• a pole in the origin;

Figure 2.23: Asymptotic behaviour of the transfer function N∗(s)
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Figure 2.24: Asymptotic behaviour of the transfer function M∗(s)

• a couple of real poles in T−1
p = 10 rad/s;

• a zero introduced by the voltage droop in τ∗−1
N (nd = 0) = 17 rad/s;

• a couple of low-damped complex conjugate zeros introduced by the frequency
droop, with ω∗n M = 36 rad/s and ξ∗M = 0.14;

• a couple of real poles associated to the equivalent grid admittance T−1
g =

ωbRg
Lg

.
The position of these poles exclusively depends on the relative value of the per-unit
resistance, per-unit inductance and on the base angular frequency ωb. In order to
assess the effect of these dynamics on the system stability, it is possible to consider
a variation range that includes grids characterized by a strong inductive nature,
as well as more resistive ones. For low voltage grids the characteristic impedance
ratio ranges in Rg/Lg ∈ [0.25; 4] p.u., thus T−1

g ∈ [80; 1250] rad/s: thus these
poles are typically much faster than the cut-off angular frequency associated to
the droop feedback.

It is possible to see that the open loop function is characterized by a low stability
margin because of the combination of the slow-frequency poles which are only partially
compensated by the zeros in the loop. Even though the pole T−1

g of the transfer function
Yg(s) can be generally neglected, the ratio Lg/Rg affects the stability as it influences
the Ldroop(s) gain (Fig. 2.25(a)). Higher values of Lg/Rg produce an increase of the
pass-band and thus a higher leading contribution to the phase-margin from the zeros:
this has a positive effect on system stability.

Furthermore, stability can be improved introducing the droop derivative coefficients
md and nd: the idea is to compensate the delay of the couple of real poles in T−1

p by
acting on the positions of the zeros associated to the frequency and voltage droop, that
can be modified by md and nd. Thus the design can be performed imposing that:
• the zeros in τ∗−1

N is moved left-ward to have τ∗−1
N
∼= T−1

p : this can be done acting
on the coefficient nd.
• the introduction of a strong derivative action on the frequency droop by means

of md > 0 increases the damping ξ∗M and produces a left-side movement of one
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(a) Singularities identification

(b) Exact plot (MATLAB)

Figure 2.25: Asymptotic behaviour of Ldroop(s) with md = 0 and nd = 0.
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frequency droop zero; the other moves right-ward and does not affect the system
stability.

The combination of these two effects almost entirely compensates the delay intro-
duced by the poles in T−1

p and significantly increases the system phase margin. The
proposed design idea is illustrated in Fig. 2.26.

According to the proposed design concept, the values of the derivative droop coef-
ficients can be derived as follows:
• in order to make τ∗−1

N
∼= T−1

p , it has to be chosen nd = n · Tp;
• In order to provide sufficient stability, the damping has to be chosen ξ∗M > 1 to

have real zeros. Analysing the damping function in (2.102), it is possible to see
that the term associated to the inductance Lg is practically very small, as it is
divided by the base angular frequency ωb. Thus for md 6= 0 equation (2.102) can
be approximated as:

ξ∗M
∼=
md

m
· 0.5 · ω∗nM (2.103)

The correctness of the proposed results has been verified considering the correspon-
dence of the reduced-order stability limits with the ones obtainable in a numerical way
from the eigenvalues of the complete model of the system. Figure 2.27 shows the in-
fluence of the derivative term on the eigenvalues of the complete full-order model, as
a proof of the validity of the developed analysis. The stability limit of the full system
is reached for md = 0 (and nd = 0 in this numerical model); the result is coherent
with the characteristics of the approximated loop function of the droop Ldroop(s) that in
the same conditions shows a limited even though positive phase margin (Fig. 2.25(b)).
Moreover, the analysis of the participation factors [30] associated to the slow dynamics
of the system reveals a strong dependence with respect to the state variables involved
in the definition of the loop Ldroop(s).

Figure 2.26: Asymptotic behaviour of the transfer function Ldroop(s) when derivative
terms md and nd are introduced. Dashed lines indicate the base case without derivative

coefficients already introduced in Fig.2.25(a).
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(a) Fast dyanamics

(b) Dominant eigenvalues

Figure 2.27: System eigenvalues under different values of the frequency droop deriva-
tive coefficient md ∈ (0; 2 · Tp · m) with steps of ∆md = 0.25Tpm. The eigenvalues
evolution shows the strong stabilization effect introduced by md; voltage derivative
term nd has been taken equal to zero. Eigenvalues in blue stand for the lower values of

the md interval, while red ones are associated to the higher values.
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A similar analysis has been done for the voltage droop derivative coefficient nd,
even though the improvements in terms of system stability are less effective. This is
reasonable since the zero in τ∗−1

N introduced by the reactive droop is naturally close to
the poles in T−1

p even with nd = 0, as it is possible to see in Fig. 2.28.

2.9.2 Steady state conditions

The Laplace final-value theorem applied to the diagram in Fig. 2.22(d) and the
feedback resolution allow to identify the steady-state variations of the output quantities
(active / reactive powers ∆po-∆qo) after a step-step change of the control variables
(frequency / voltage droop intersection ∆ω∗-∆V ∗).

The active power steady state variation after a step change of the frequency droop
intersection ∆ω∗ is given by:

∆po(∞) = lim
s→0

s ·
V 0
pccωb

s
· Y 2

g (s)V 2
od ·N∗(s) ·

1

1 + Y 2
g (s)V 2

odN
∗(s)M∗(s)

· ∆ω∗

s
(2.104)

where:

N∗(s) =

[
n+ Lgω

0/Vod + s(nd + TpLgω
0/Vod)

1 + sTp

]
(2.105)

M∗(s) =

[
V 0
pccωb

s

m+ smd

1 + s Tp
+ Lgω0/Vod

]
(2.106)

Yg(s) =
1/Rg

1 + sTg
(2.107)

Figure 2.28: System eigenvalues under different values of the voltage droop derivative
coefficient nd ∈ (0; 2 ·Tp ·n) with steps of ∆nd = 0.25Tpn. The term nd has a stabilizing
effect, even though it shows a lower effectiveness if compared to md as it is possible
to see by comparison with Fig.2.27; the frequency derivative term md has been taken
equal to zero. Eigenvalues in blue stand for the lower values of the nd interval, while

red ones are associated to the higher values.
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Considering that:

N∗(0) = n+ Lgω
0/Vod (2.108)

M∗(0) ' Vpccωbm

s
(2.109)

Yg(0) = 1/Rg (2.110)

Equation (2.104) becomes:

∆po(∞) = lim
s→0

V 0
pccωb

s
· n+ Lgω

0/Vod
R2
g

· V 2
od ·

1

1 +
V 2
od
R2
g
· (n+ Lgω0/Vod) · Vpccωbms

·∆ω∗ =

(2.111)

= lim
s→0

V 0
pccωb

s
· 1
Vpccωbm

s

·∆ω∗ =
∆ω∗

m
(2.112)

Equation (2.112) shows that a change in the frequency droop reference produces
a proportional variation of the injected active power by means of the inverse of the
coefficient m, as desired. Nevertheless, it is also interesting to analyse if a step change
in ∆ω∗ affects the reactive term ∆qo.

∆qo(∞) = lim
s→0
−s · Vpccωb

s
· Yg(s)Vod ·

1

1 + Yg
2(s)V 2

odN
∗(s)M∗(s)

· ∆ω∗

s
= (2.113)

= − lim
s→0

Vpccωb
s
· Vod
Rg
· 1

1 +
V 2
od
R2
g
· (n+ Lgω0/Vod) · Vpccωbms

·∆ω∗ = (2.114)

= − Rg
(Vodn+ Lgω0) ·m

·∆ω∗ (2.115)

Equation (2.115) shows that a step variation of the frequency droop intersection
causes an undesired change of the reactive power injected by the converter. This be-
haviour is stronger when the grid shows a highly resistive nature, while it is attenuated
in case of strong inductive network or when a high reactive droop term n is introduced.
Furthermore the sign of the variation is the opposite of the one associated to active
power: thus a positive change of ∆ω∗ produces an increase of the active power injection
and a decrease of the reactive power one.

It is also interesting to analyse the system response under a step change of ∆V ∗.

∆po(∞) = lim
s→0

s · Yg(s)Vod ·
1

1 + Yg
2(s)V 2

odN
∗(s)M∗(s)

· ∆V ∗

s
= (2.116)

= lim
s→0

Vod
Rg
· 1

1 +
V 2
od
R2
g
· (n+ Lgω0/Vod) · Vpccωbms

·∆V ∗ = 0 (2.117)

∆qo(∞) = lim
s→0

sM∗(s) · Yg2(s)Vod
2 · 1

1 + Yg
2(s)V 2

odN
∗(s)M∗(s)

· ∆V ∗

s
= (2.118)

=
1

n+ Lgω0/Vod
·∆V ∗ (2.119)

A variation of the voltage droop reference ∆V ∗ does not affect active power injection,
while it produces a change of the reactive power. Nevertheless, the variation ∆qo is also
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influenced by the external inductance of the system, according to (2.119).
To summarize, it is possible to identify some operative considerations:
• active power injection are exclusively influenced by the frequency droop parameters

(m and ∆ω∗), while for reactive power the perfect decoupling cannot be obtained
solely by means of a proportional voltage droop control; in this perspective, next
chapter will show how it is possible to improve the steady state reactive decoupling
introducing an additional virtual-impedance loop.
• From (2.115), the positive decoupling effect of a high Lg/Rg ratio can be high-

lighted, that allows to reduce the undesired reactive power variation caused by
the frequency droop modification ∆ω∗; this is coherent if we consider the intrinsic
similarity of the droop control with the inductive power-flow equations reported
in the first section of the chapter.

Furthermore, the proposed procedure and the identification of the loop system in Fig.2.20
are very powerful since it can be exploited for the analysis of any type of droop regulation
[31]-[32]-[3] and for the determination of their stability properties.

2.9.3 Model verification

The simulated transients reported in Fig. 2.29(a)-2.29(d) are exploited to verify the
correctness of the dynamical model introduced in Fig. 2.22(d), both in terms of the
steady state behaviour as well as regarding the dynamical improvement introduced by
the derivative droop coefficients.

A single converter is simulated in grid-connected mode; the interface impedance
is defined by Rg = 0.55 and Lg = 0.53 per-unit. Two different transients are stud-
ied, respectively associated to the changes of the intersections in the angular frequency
(∆ω∗ = 0.0025) and voltage droop (∆V ∗ = 0.004); both the transients are reported
both in case of normal droop and after the introduction of the derivative terms md-nd.
The design of the derivative droop coefficients is carried out referring to the procedure
reported in the previous sections and the following values are obtained: nd = n · Tp,
md = 0.4 ·m ·Tp, that according to (2.103) produce an equivalent damping ξ∗M = 0.7 for
the complex conjugate poles in M∗(s) and the compensation of the slow pole in T−1

p in
N∗(s).

A first consideration regards the higher stability properties associated to the intro-
duction of the derivative coefficients: the absence of the derivative terms (Fig. 2.29(a)
and Fig. 2.29(c)) produces transitory behaviours characterized by significant oscillatory
dynamics, which are an indication of the low phase margin in the global system, coher-
ently to the behaviour already highlighted in Fig. 2.27. As a consequence of the same
changes in the droop intersections, the derivative terms (Fig.2.29(b) and Fig.2.29(d))
guarantee more regular transients with practically no overshoots. This confirms the
validity and the general correctness of the proposed design method for the derivative
droop terms, as reported in Section 2.9.1.

A second consideration regards the correctness of the converter behaviour at steady
state. According to the model reported in Fig. 2.22(d) and the equations (2.112)-(2.115)-
(2.117)-(2.119), the changes in the active and reactive injections can be expressed as a
functions of the frequency and voltage droop changes, as well as of the characteristics
of the interface impedance. In Table 2.3 this comparisons is carried out. The results
obtained from the the system simulation match wit the theoretical ones associated to
the analytical resolution of the model derived in Fig. 2.22(d). The correspondence of
the theoretical results with the numerical ones represents an intrinsic verification of the
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(a) Frequency droop change - no derivative coeff. (b) Frequency droop change - derivative coeff.

(c) Voltage droop change - no derivative coeff. (d) Voltage droop change - derivative coeff.

Figure 2.29: Simulated verification of the dynamical model. The following changes
are considered intersections in the angular frequency ∆ω∗ = 0.0025 and voltage droop
∆V ∗ = 0.004. The changes are considered separately, without and with the derivative

droop coefficients md-nd.

derived dynamical model and thus validates its exploitation for the prediction of the
converter stability characteristics.

2.10 Model of the converter in island operations.

The model in Fig. 2.21 can be also used to predict the behaviour of the converter
when interfaced to an external microgrid operated in island. In particular, it can be
exploited to determine the power sharing under step changes associated to the variation

Table 2.3: Droop model verification

Droop change Power change Theoretical Simulated Mismatch

∆ω∗ = 0.0025 ∆po(∞) 0.25 p.u. 0.25 p.u. < 0.01 p.u.
∆qo(∞) −0.20 p.u. −0.20 p.u. < 0.01 p.u.

∆V ∗ = 0.004 ∆po(∞) 0 p.u. 0 p.u. < 0.01 p.u.
∆po(∞) 0.07 p.u. 0.06 p.u. 0.01 p.u.



Chapter 2. Model of the converter under droop regulation 54

of the local load ∆pload - ∆qload; voltage and frequency droop intersections are assumed
constant both for the single converter and for the entire microgrid (∆ω∗ = 0, ∆V ∗ = 0,
∆ω∗rest = 0, ∆V ∗rest = 0).

The same procedure carried out for the grid-connected case is taken into account;
the graphical elaboration of the block diagram is reported in Figure 2.30 and 2.31.
The internal dynamic of the voltage loop has been neglected as its effects, according to
the analysis related to the function N∗(s) reported in the previous section, are mainly
associated to high frequency behaviour (KV (s) = 1).

The final model as reported in Fig. 2.31(b) allows to identify the power sharing
between the unit under test and the external regulation system, that may also represent
the equivalent characteristic of other droop-controlled converters which are performing
the regulation on the grid.

Again, the steady-state power injection from the converter can be studied referring
to the Laplace final-value theorem in Fig. 2.31(b) and subsequent resolution of the feed-
backs. Thus the following expressions are obtained:

(a) Step 1

(b) Step 2

(c) Step 3

Figure 2.30: Model of the converter in grid-connected mode. Steps 1-3
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(a) Step 4

(b) Step 5

Figure 2.31: Model of the converter in grid-connected mode. Steps 4-5

Active load variation

∆po(∞) =
mrest

m+mrest
·∆pload =

1
m

1
m + 1

mrest

·∆pload (2.120)

∆qo(∞) = −Rg
Vod
· 1

n+ nrest + ω0Lg/Vod + ω0Lrest/Vpcc
· mrest

m+mrest
·∆pload (2.121)

Reactive load variation

∆po(∞) = 0 ·∆qload (2.122)

∆qo(∞) = − nrest + ω0Lrest/Vpcc
nrest + ω0Lrest/Vpcc + n+ ω0Lg/Vod

·∆qload (2.123)

The following behaviour already identified in grid-connected conditions is confirmed
in island mode:
• as regards active power, the droop regulation is able to share the contribution

between the converters proportionally to their rated power;
• reactive injection is contemporaneously affected by the proportional voltage droop

coefficient n and by the output impedance of the converter, as well as by the
changes in the active absorption of the loads.
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2.11 Conclusion

In this chapter, the model of the converter under droop regulation is analysed.
The developed model allows to reconstruct the behaviour of the converter both in grid-
connected and island mode, predicting injected active and reactive powers after changes
of the droop intersections as well as the contribution to the system regulation under
variations of the local load. The design of the internal controller has been carried out
considering the non-ideal compensation of the current feedback, as well as the effect of
the coupling coefficients.

Even though the procedure is based on standard control theory, the analytical eval-
uation of the effects associated to the non-ideal current compensation in the voltage
control loop is generally not analysed in literature. Most of the available papers just
propose the introduction of reduced-compensation coefficients without analysing the
impact on the equivalent control pass-band: the application of the complex-coefficient
functions theory, in this perspective, provides a powerful tool to take into account the
exact system dynamics in a straightforward way.

Furthermore, the chapter proposes a new design method for derivative droop co-
efficients based on the non-linear droop coupling effects identification. The proposed
representation enables to highlight the dynamical interactions of the physical and con-
trol parameters and can be studied both analytically and numerically.



Chapter 3

Virtual impedance model

3.1 Chapter introduction

In this chapter the virtual impedance control will be introduced. This algorithm
allows to improve the performances of traditional droop equations even under the case
of an equivalent resistive network; even though this technique has already been proposed
in literature, it is difficult to find a straightforward design procedure for the definition
of its internal parameters. Thus, in this chapter, it will be proposed a novel design
procedure based on the analysis of axes coupling, which allows to determine a stability
region for virtual impedance parameters as a function of the external grid characteristics.
Additionally it will be highlighted the effect of this additional feedback on the regulation
performances of droop-controlled converters operated in grid-connected or island mode.

3.2 State of the art for virtual impedance control

As already pointed out in the previous chapter, the traditional droop scheme shows
a significant reduction of its regulation performances when the output impedance of
the converter shows a predominant resistive nature. Even though an inverse-droop
definition can be applied in case of highly resistive conditions, still this alternative may
under-perform in the inductive case. In this perspective, the best available technique to
modify the equivalent nature of the system as seen by the converter is represented by
the virtual impedance, which has been initially proposed for a single-phase case in [33].
This additional control loop emulates the presence of a generic fictitious element in series
(or in parallel) to the physical one; even though different alternative configurations have
been presented in literature [34]-[35], here we will refer to the case in which an ohmic-
inductive element is mimicked.

This concept is not new and, actually, a vast literature is available as concern the
topic; virtual impedance concept has proved to be an effective solution for several prob-
lems related to the operations of power converters in island conditions:
• it allows to improve the accuracy of the reactive power sharing between droop con-

verters interfaced to a microgrid system, particularly when each converter shows a
different output impedance. This aspect is analysed in [36] and [37], even though
in both approaches it is assumed that each converter remains stable independently
of the imposed value of the virtual impedance, which is a very strong assumption.
• In [38] and [39], the structure of the virtual impedance is modified to damp selected

harmonics into the system, even though the proposed modifications practically
prevent from a direct analytical calculation of the stability limits for the converters.

57
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• An interesting work in [40] analyses the stability boundaries for the virtual impedance
loop under several interface conditions; the goal is to calculate stability regions for
the converter as a function of the actual configuration of the system. Nevertheless
the proposed approach is based on the numeric calculation of a high-order eigen-
value model and thus it is characterized by a significant computational cost when
extended to multi-converters systems.
• In [41] and [42] it is proposed to exploit a similar concept for secondary regulation

inside the microgrid; a single control coefficient is taken into account, even though
it is not analysed in deep the effect of axes coupling inside the converter after
virtual impedance insertion.

Thus in this chapter, starting from the draft idea proposed in [43], it is presented a
new design model of the virtual impedance that aims at identifying the stability regions
for the virtual impedance parameters as a function of the interactions with the external
system. The approach followed is mainly analytical: it has the objective of identifying
simplified transfer functions that allow to predict the main stability properties of the
converter under virtual impedance control.

3.3 Virtual impedance design approach

3.3.1 Structure of the control

Consider the introduction of the virtual impedance loop in the control scheme of
the converter (Fig. 3.1), as an additional linear controller which changes the voltage
reference as a function of the output current īo. Three different terms are taken into
account: a real coefficient RV (virtual resistance), a coupling element LV S (which defines
the static virtual reactance) and an approximate derivative, with per-unit time constant
τd, proportional to the coefficient LV D. This last term identifies the dynamic virtual
reactance.

ZV = RV + jωLV S +
s/ωb

1 + τd · s/ωb
LV D (3.1)

This formulation has been chosen as it is similar to the expression of an inductor as
seen by a rotating reference frame.

3.3.2 Assumptions

In the derivation of the virtual impedance design model, the following assumptions
are considered:

1. the converter under study is supplied by a DC constant voltage source, e.g. an
electrochemical storage unit;

2. The space-vector that represents the external grid vg is assumed constant and equal

to its nominal value; the time constant Tg =
Lg
Rgωb

takes into account the equiva-
lent output impedance of the converter; resonance effects with possible parasitic
capacitances are not contemplated into the model.

3. The internal voltage loop is modelled as a first-order unitary gain low-pass filter,
with the cut-off angular frequency ωcV defined according to the procedure reported
in the previous chapter.
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Figure 3.1: Equivalent model of the control system with virtual impedance.

4. The effect of the external droop is not included in the simplified design model of the
virtual-impedance: it behaves as a slow-varying reference with a dynamic deter-
mined by the time constant Tp (see Table 2.2). As T−1

p is significantly lower than
the voltage loop cut-off angular frequency ωcV , the external dynamic is neglected.

3.3.3 Design procedure

The proposed design approach is based on the identification of simplified trans-
fer functions able to reconstruct the stability properties of the converter under virtual
impedance design. The starting point of the analysis is the control model in Fig. 3.1;
introducing the hypotheses of section (3.3.2) and identifying separate block diagrams for
the direct and quadrature components allows to build the models reported in Fig.3.2.

The combination of the sub-diagrams of Fig. 3.2 into a unique dynamic model (Fig.
3.3) can be performed highlighting the axes coupling produced by the physical Lg and
virtual inductance LV S . This allows to identify stability criteria for the loop functions
and, subsequently, design constraints for the regulation parameters.
• The first step in the analysis regards the stability of the loop L1(s) as reported in

Fig. 3.3: the parameters that play a role in the stability of this loop are RV and
LV D. The closed loop function Y ′eq dd(s) is also calculated.
• The second step of the algorithm will derive some design conditions for LV S based

on the stability of the second loop L2(s), which includes Y ′eq dd(s) as a sub-block.
The external loop L2(s) is shown in Fig. 3.4.

Even though the general design approach holds in all the possible virtual impedance
configurations, some small differences occur in the approximated function definitions
depending on the value of LV D. Thus the above presented design procedure will be
developed separately for the static (RV 6= 0, LV S 6= 0, LV D = 0) case and the dynamic
(RV 6= 0, LV S 6= 0, LV D 6= 0) one, to provide a better understanding of the proposed
approach in all possible cases of interest.
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Figure 3.2: Direct and quadrature projections of the linearised system used for vir-
tual impedance design. Droop dynamics, which are slower than the voltage controller

frequencies, have been neglected.

Figure 3.3: Complete linearized model, which takes into account both the effects of
the virtual impedance and the coupling between direct and quadrature axis

Figure 3.4: External loop for the calculation of the phase margin associated to the
static virtual inductance LV S .
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3.4 Derivation of the stability model

3.4.1 Static virtual impedance ( RV 6= 0, LV S 6= 0, LV D = 0)

Consider the model reported in Fig. 3.3: the open-loop function L1 (s) is given by
(3.2) and the representation of the associated asymptotic Bode diagram is reported in
Fig. 3.5. Looking at the phase profile, it is possible to see that a negative value RV < 0
is chosen in the loop: this is reasonable according to what was stated in the previous
chapter, as the objective of the virtual impedance is to amplify the inductive nature of
the equivalent output impedance with respect to the resistive one.

L1 (s) = KV (s) · Yg (s) ·RV =
RV
Rg
· 1

1 + s
ωcV

· 1

1 + s Tg
(3.2)

Equation (3.2) shows a pole associated to the internal voltage control in ωcV and one
associated to the external grid in T−1

g = ωb ·Rg/Lg; nevertheless their relative position
is not defined a priori, as T−1

g may be higher or lower with respect to ωcV . The following
notation will be adopted in order to identify the slower and the faster pole inside the
control:

ω1 = max
(
T−1
g ;ωcV

)
ω2 = min

(
T−1
g ;ωcV

)
(3.3)

The introduction of a negative virtual resistance RV has an effect on the stability of
the loop L1(s): in order to maintain stable operations for the converter it is necessary
to keep a gain margin µg > 1. In this way the system does not show positive-real-part
poles and its Nyquist diagram is always contained in the unitary circle (Fig. 3.6): the
condition is verified if |RV | < Rg.

µg = Rg/ |RV | > 1 → |RV | < Rg (3.4)

Once identified the stability condition (3.4) for the virtual resistance RV , it is nec-
essary to determine its effect on the internal dynamics associated to the equivalent
admittance Y ′eq dd, which takes into account the nature of the external system as seen

Figure 3.5: Asymptotic diagram of the open-loop transfer function L1(s). A gain
margin µg higher than one must be chosen, so |RV | < Rg.
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Figure 3.6: Nyquist diagram of the open-loop transfer function L1(s).

by the voltage reference imposed by the droop. In absence of the virtual impedance
(RV = 0), the admittance of the network as seen by the control is given by (3.5).

Yeq dd (s) =
∆iod

∆vod ref

=KV (s) ·Yg(s)=
1/Rg(

1 + s
ω1

)
·
(

1 + s
ω2

) (3.5)

The introduction of the parameter RV 6= 0 changes (3.5) into (3.6):

Y ′eq dd (s) =
∆iod

∆v
′
od ref

= KV (s) · Yg (s) · (1 + L1 (s))−1 =

=
1/Rg(

1 + s
ω1

)
·
(

1 + s
ω2

)
+RV /Rg

=
1

Rg +RV
· 1

1 + s

ω
′
1

· 1

1 + s

ω
′
2

(3.6)

Figure 3.7 represents the equivalent admittance between voltage reference ∆v′od ref
and output current ∆iod, with and without the virtual resistance RV . The function
Y ′eq dd shows two poles, respectively associated to the angular frequencies ω′1 and ω′2.
Exact expressions are given in (3.7), normalized with respect to ω1; written in this way,
the position of the modified dynamics becomes exclusively function of the ratio ω1/ω2

and of the virtual resistance RV /Rg.

ω
′
1,2

ω1
=0.5·

(
1+

ω2

ω1

)
·

[
1 ±

√
1−

(
1+

RV
Rg

)
ε

]
where ε=

4·ω1/ω2(
1+ω1

ω2

)2 (3.7)

The introduction of a negative virtual resistance RV in the range RV ∈ (−Rg, 0)
maintains both the dynamics of Y ′eq dd stable (Fig. 3.8): increasingly negative values of
RV move the pole ω′2 to a slower frequency range, while tend to accelerate the fast one
ω′1.

Obviously the position of ω′1 and ω′2 can be derived from (3.7), even though these
expressions in general need to be evaluated numerically; moreover the presence of the
square root complicates the analytical writing of the functions associated to the external
loop Ls(s) stability, which includes Yeq dd (s) as a sub-block. In this perspective, it
may be useful to derive asymptotic simplified expressions able to model the general
dependency of ω′1 and ω′2 with respect to ω1, ω2 and RV ; asymptotic formulations also
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Figure 3.7: In solid line, the asymptotic Bode diagram of the function Y
′

eq dd (s) with
negative virtual resistance RV (3.6). In dashed-line, as a comparison, it is reported the

diagram of Yeq dd (s) without virtual resistance RV (3.5).

Figure 3.8: Exact poles of (3.6) as function of the virtual resistance RV ∈ (−Rg; 0]

allow an easier understanding of the transfer function representation provided in Fig.
3.7.

Depending on the ratio ω1/ω2, two different asymptotic trends can be identified for
the modified dynamics ω′1 / ω′2.

If ε → 1, the asymptotic expression of the poles angular frequencies are given by
(3.8).

ω′1, 2 =
ω1 + ω2

2
·

[
1±

√
−RV
Rg

]
(3.8)

On the other hand, when ε → 0 the dependency of the pole position with respect
to the virtual resistance becomes linear:

ω′1 ∼= ω1 − ω2 · (RV /Rg) (3.9)

ω′2 ∼= ω2 · (1 +RV /Rg) (3.10)

Figures 3.9(a) and 3.9(b) show the exact expressions of the angular frequencies ω′1
and ω′2 respectively, under different values of the ratio ω1/ω2. As a comparison, the
approximated expressions obtained under the hypothesis ε = 1 (associated to equation
(3.8)) or ε = 0 (equations (3.9)-(3.10)) are reported.

The representation provided in Fig. 3.9(a) and 3.9(b) highlights the different be-
haviour of the two approximations at the extremes of the interval. Obviously each
asymptotic representation shows a higher consistency when the underlying hypothesis is
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(a) ω
′
1/ω1

(b) ω
′
2/ω1

Figure 3.9: Comparison between exact (3.7) and approximated (3.8) - (3.10) expres-
sions of the poles ω′1 and ω′2 as a function of RV ∈ (−Rg, 0], under different ratios

ω1/ω2. In (a) the trend associated to ω′1 is reported, in (b) the one of ω′2.
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verified, thus (3.8) provides lower estimation error when ω1
∼= ω2, as well as (3.9)-(3.10)

do when ω1 >> ω2.
Nevertheless, differently from (3.8), expressions (3.9)-(3.10) always match the exact

values of the angular frequencies ω′1-ω′2 at the extremes of the virtual resistance variation
range RV ∈ (−Rg, 0]. Thus they are able to predict the general evolution of the poles in
all the cases of practical interest: in the following, expressions (3.9)-(3.10) will be used
inside (3.6) to express the positions of ω′1 and ω′2.

Once identified Y
′
eq dd as the closed-loop transfer function associated to L1(s) and the

expressions (3.9)-(3.10) as asymptotic approximations of the singularities, the stability
function L2(s) associated to the external coupling loop can be calculated (3.11): the
dynamical properties associated to axes coupling as expressed by L2(s) can be used to
obtain the maximum stable value for static virtual inductance parameter LV S .

L2 (s) = Y
′2
eq dd ·

(
ωLV S + ωLg ·KV (s)−1

)2
= (3.11)

= k2 ·

(
1 +

sLg
ωcV (Lg+LV S)

)2

(
1 + s

ω′1

)2
·
(

1 + s
ω′2

)2 = k2 ·

(
1 + s

ωz

)2

(
1 + s

ω′1

)2
·
(

1 + s
ω′2

)2 (3.12)

where k =
ωLg+ωLV S
Rg+RV

.

The parameter k in L2(s) has a strong impact on the performances of the control, as
it represents the equivalent per-unit X/R ratio of the output impedance as seen by the
control system of the converter. The choice of the factor k needs to take into account
several aspects:
• a low value guarantees good stability for the loop L2(s), even though it is not the

best solution from droop perspective as it indicates a high resistive nature for the
interface impedance;
• a high value of k amplifies the inductive nature of the interface impedance, but

it needs to be properly designed to avoid stability issues associated to the loop
function L2(s). Values of k around k ≈ 3− 4 guarantee good performances for the
droop, as they correspond to an equivalent characteristic angle of the ”modified”
interface impedance around θ = arctan (k) ∼= 75 deg.

The stability properties of the function L2(s) can be studied numerically by means
of the corresponding Bode diagram reported in Fig. 3.10; moreover in most typical cases
it is possible to derive a simple analytical expression of the cut-off angular frequency
ω̃L2 to be used for the analytical evaluation of the loop phase margin. In particular:

Figure 3.10: Asymptotic Bode diagram of the external loop function L2(s)
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• even for k ≈ 3− 4, the system shows a predominant inductive behaviour and thus
there is no need to choose higher values; thus the static gain of the function L2(s)
is generally limited.
• As far as a negative resistance RV is introduced, the couple of poles in ω′2 moves

towards smaller frequency and thus exhibits a significant influence in the deter-
mination of the angular cut-off frequency; this behaviour is particularly amplified
by the presence of a double pole in ω′2 which introduces a slope of −40 dB in the
asymptotic Bode diagram.

Given these considerations, the intersection of the loop function L2(s) with the 0 dB
axis is practically determined by the following simplified expression:

ω̃L2
∼= ω

′
2 ·
√
k2 − 1 (3.13)

Substituting (3.13) in (3.11) allows to express the phase margin of the global system
in an analytical way (3.14). Even though the effect of ωZ and ω′1 were neglected in the
evaluation of the approximated cut-off angular frequency ω̃L2, they can be easily included
in (3.14) to provide a higher consistency for the result.

φm2 = π + ]L2(jω̃L2) = π − 2·tan−1
(√

k2 − 1
)

+

− 2 · tan−1

(
ω2 ·

Rg +RV
(Rgω1 −RV ω2)

·
√
k2 − 1

)
+

+ 2 · tan−1

(
ω2Lg ·

Rg +RV
ωcV ·Rg · (Lg + LV S)

·
√
k2 − 1

)
(3.14)

The application of this stability characteristic to the operation of the converters, as
well as the validation of the proposed model in a simulated and experimental set-up,
will be reported in the next section of the chapter. Before doing this, it is necessary to
analyse the case of the dynamic virtual reactance.

3.4.2 Dynamic virtual impedance ( RV 6= 0, LV S 6= 0, LV D 6= 0 )

Consider the modification introduced by LV D into the dynamical model of the con-
verter. A procedure similar to the one of the static case will be carried out, even though
some approximations need to be managed properly. As it was previously done, the first
step of the analysis takes into account the loop function L1 (s) (Fig. 3.3).

L1 (s) = KV (s) · Yg (s) · (RV +
sLV D/ωb

1 + sτd/ωb
) =

=
RV
Rg
· 1(

1 + s
ω1

)(
1 + s

ω2

) · (1 + sτ ′d/ωb
1 + sτd/ωb

)
(3.15)

where τ ′d =
(
LVD
RV

+ τd

)
.

As concerns τd, it must be chosen so that the introduced pole (ωb/τd) does not alter
the stability properties of the internal current loop L1(s). In practice, ωb/τd determines
the frequency range in which the derivative controller is attenuated, avoiding the am-
plification of high-frequency components in the derivation process. In this case it was
chosen to limit virtual impedance effect to ωb/τd ∼= 2π · 1000 rad/s. The position of the
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pole should be chosen to higher than the ω1 and lower than the switching dynamics: this
condition allows to have a fast impedance emulation but avoids any possible interference
with the converter modulation.

On the other hand, the sign of the equivalent per-unit time constant τ ′d is influenced
by the relative magnitude of the coefficients RV , LV S and τd involved in its definition.
Keeping in mind the negative sign of RV according to the description provided in the
previous subsection, it is possible to identify three different conditions:

1. LV D < 0: highly negative values of the parameter LV D bring the system towards
instability as shown by the Bode and Nyquist diagrams reported in Fig. 3.11; the
time constant τ ′d is positive.

2. 0 < LV D < 2τd |RV |: independently of the sign of τ ′d, it holds |τ ′d| < τd. The
zero in (ωb/τ

′
d) associated to the dynamic virtual reactance is located after the

pole in (ωb/τd); the derivative term practically does not affect the stability of the
converter. Bode and Nyquist diagrams for this case are reported in Fig. 3.12.

3. LV D > 2τd |RV |: time constant τ
′
d is negative and in magnitude it holds

∣∣∣τ ′d∣∣∣ > τd

(as RV < 0). This case is the most interesting from the system perspective, as
the positive derivative coefficient LV D introduces a leading effect into the loop
L1(s): this enhances the responsiveness of the control system and, in particular,
its transitory P/Q decoupling. The asymptotic Bode and Nyquist diagrams for
this case are reported in Fig. 3.13.

If we refer to the condition identified in the third case (LV D > 2τd |RV |), the
expression associated to the loop function at low frequency can be approximated as in
(3.16).

L1 (s)∼=
RV
Rg
· (1 + sτ ′d/ωb)(

1 + s
ω1

)(
1 + s

ω2

) for s=jωs≤
jωb
τd

(3.16)

The condition LV D > 2τd |RV | defines a minimum suggested value to improve the
stability of the control system; nevertheless it is also necessary to identify a superior
threshold. The maximum acceptable value for LV D that guarantees sufficient phase
margin at the second intersection with the 0 dB axis can be identified according to the
sufficient stability condition expressed by the Bode theorem.

Figure 3.11: Bode and Nyquist diagrams of the transfer function L1 (s) when LV D <
0. The system is unstable.
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Figure 3.12: Bode and Nyquist diagrams of the transfer function L1 (s) when 0 <
LV D < 2τd |RV |. The system is stable.

Figure 3.13: Bode and Nyquist diagrams of the transfer function L1 (s) when LV D >
2τd |RV |. The system is stable.

In particular, the maximum value of LV D able to produce an intersection with -20
dB slope can be obtained from the asymptotic approximation of the transfer function
(3.16) close to the second intersection.

L2(s) ∼ RV
Rg
·
τ ′d
ωb
· ω1ω2

s
for ω1 < ωs < ωb/τd (3.17)

Imposing the intersection at ωb
τd

leads to (3.18);

∣∣∣τ ′d max∣∣∣ < ∣∣∣∣RgRV ω1 ω2 τd

∣∣∣∣ (3.18)

Thus referring to the definition in τ ′d (3.15), it is possible to reconstruct the maximum
value for LV D.

LV D < (
ω2
b

ω1ω2τd
Rg + τd |RV |) (3.19)
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Following the same approach developed for the static case, it is necessary to calculate
the analytical expression of the transfer function Y ′eq dd (s), according to the scheme
reported in Fig. 3.4. In this case the calculation leads to expression (3.20).

Y
′
eq dd (s) =

1/Rg(
1 + s

ω1

)(
1 + s

ω2

)
+RV /Rg · (1 + sτ ′d/ωb)

(3.20)

The poles1 of the function (3.20) are contained in the interval reported in Fig. 3.14
for RV ranging in RV ∈ (−Rg; 0), even though in this case one of the extremes of
the interval is function of the zero time constant τ ′d. A high value of LV D, within the
stability limit imposed by (3.19), produces τ

′
d < 0 and moves the high pole ω′1 to even

higher frequencies, contributing to the stabilization of the global coupling loop L2 which
includes Y

′
eq dd as a sub-block.

Figure 3.14: Exact poles position as a function of the virtual resistance RV ∈ [−Rg; 0]
in the dynamic case.

Even though in the dynamic case the behaviour of the transfer function Y
′
eq dd is

similar to the one associated to the static case (Fig. 3.7), still it has to be taken into
account that the simplification of the high-frequency pole in ωb/τd (3.16) introduces a
higher degree of uncertainty into the model.

Approximated positions of the poles ω′1-ω′2 are obtained assuming a linear behaviour
with respect to RV in the intervals reported in Fig. 3.14, even though in this case the
expressions are given by (3.21)-(3.22) instead of (3.9) - (3.10).

ω
′
1 = ω1 − (ω2 − τ

′
dω1ω2/ωb) · (RV /Rg) (3.21)

ω
′
2 = ω2 · (1 +RV /Rg) (3.22)

The loop function L2 (s) associated to the axes coupling is derived from Fig. 3.4, as
in the static case, even though here the expression associated to Y

′
eq dd is different.

L2 (s) ∼= Y
′2
eq dd (s) ·

(
ωLV S + ωLg ·KV (s)−1

)2
(3.23)

The equivalent phase margin of the loop L2(s) is given by the (3.14), provided that
the corresponding approximated expressions of the poles (3.21) - (3.22) of the dynamic
case are used instead of (3.9) - (3.10). Keeping the same parameters for the external
grid and control terms RV and LV S , the system L2(s) shows a higher phase margin in
the dynamic case (LV D 6= 0) with respect to the static one (LV D = 0) as the pole in ω′1
moves to higher frequencies.

1Expression: ω
′
1,2 = 0.5·

[
−
(
ω1 + ω2 + RV

Rg

τ ′d
ωb
ω1ω2

)
±
√(

ω1 + ω2 + RV
Rg

τ ′
d
ωb
ω1ω2

)2
− 4ω1ω2

(
1 + RV

Rg

)]
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3.4.3 Guidelines for virtual impedance design

The analytical study of the virtual impedance stability conditions allows to identify
reasonable design criteria for its control parameters: thus the list in the following con-
figures as a simple procedure to size the virtual impedance parameters, both a priori or
in real-time.

1. The pole associated to the voltage control ωcV as well as the one related to the
grid T−1

g =
Rgωb
Lg

are labelled as ω1 and ω2 according to (3.3). As regards the
pole associated to the voltage control ωcV , it is generally known from the desired
specification of the converter control. The one associated to the external grid T−1

g

can be reconstructed from on-line impedance estimation techniques that will be
covered in the next chapter: at this moment, it is assumed as a constant.

2. The gain margin of the open-loop transfer function L1(s) associated to direct axis
components equals Rg/ |RV |. In order to amplify the inductive characteristics
of the external output impedance it is necessary to choose RV<0; moreover the
stability condition (3.4) imposes |RV | < Rg.

3. The per-unit time constant τd associated to the approximate derivative in the
dynamic case is chosen to limit the virtual impedance effect at high frequency. In
this case it is chosen ωb/τd ∼= 2π · 1000 rad/s according to the comment to (3.15).

4. The dynamic virtual reactance term LV D (if present) can be designed referring to
the stability condition (3.19). This leads to the following allowed interval for the
parameters LV D.

0 < LV D <
ω2
b

ω1ω2τd
Rg + τd |RV | (3.24)

Moreover, it is often convenient to make its design independent of the virtual
resistance RV ; this can be easily done considering that τd is small, thus in the
right side of the inequality the second term is negligible.

0 < LV D <
ω2
b

ω1ω2τd
Rg (3.25)

5. The approximated expressions of the poles in Y
′
eq dd(s) are given by (3.9) - (3.10)

for the static case, or by (3.21) - (3.22) in the dynamic one. It was shown in
the derivation of the mathematical model that this operation allows to express
Y
′
eq dd(s) in an analytical form and, thus, to derive compact expressions for the

phase margin in the coupling loop L2(s).
6. Depending on the imposed value of virtual resistance RV and on the actual grid

characteristics from the real-time impedance estimation algorithm reported in the
next chapter, the converter can be operated maintaining a constant decoupling
coefficient k ≈ 3− 4 as defined before:

k =
LV S + Lg
RV +Rg

(3.26)

Nevertheless, it is necessary to verify that the desired configuration of the param-
eters is compatible with the derived stability model; thus, the maximum value of
the virtual inductance LV S has to be limited according to (3.13) - (3.14) for the
static case or to (3.23) for the dynamic one.

Some simulated and experimental tests will be carried out in order to verify the
correctness of the obtained dynamical model. As the main goal of this part is to verify
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the model consistency, it will be assumed that the values of the external parameters Rg
and Lg are known and that, at each instant, the converter operates keeping constant
virtual impedance parameters RV , LV D, LV S and τd.

3.5 Effect of the virtual impedance on power decoupling
at steady state

The virtual impedance influence on the steady-state power decoupling can be verified
extending the droop model developed in the previous chapter. Figure 3.15 depicts the
evolution of Fig. 2.20 when virtual impedance is also taken into account.

Performing the same operations already introduced in section 2.9, the model in Fig.
3.16(a) can be obtained. Moreover, as in this phase we are interested in the steady state
conditions, Fig. 3.16(b) can be derived introducing the asymptotic behaviour for s→ 0.
The transfer function Y ′eq dd(s) reported in Fig. 3.16(b) practically coincides with the
one introduced in (3.20); its behaviour at steady state is thus given by:

Y ′eq dd(0) =
1

Rg +RV
(3.27)

Thus the asymptotic active / reactive power changes after a step variation of the
frequency and voltage droop intersections (∆ω∗, ∆V ∗) can be calculated by the following
expressions, obtainable from Fig. 3.16(b):

∆po(∞)

∣∣∣∣
∆ω∗

= lim
s→0

V 0
pcc ωb

s
·

Y ′eq dd
2(0) V 2

o d N
∗(0)

1 + Y ′eq dd
2(0) V 2

o d N
∗(0) M∗(0)

·∆ω∗ =
∆ω∗

m
(3.28)

∆po(∞)

∣∣∣∣
∆V ∗

=
Y ′eq dd(0) Vo d

1 + Y ′eq dd
2(0) V 2

o d N
∗(0) M∗(0)

·∆V ∗ = 0 (3.29)

∆qo(∞)

∣∣∣∣
∆ω∗

= lim
s→0
−
V 0
pcc ωb

s
·

Y ′eq dd(0) Vo d

1 + Y ′eq dd
2(0) V 2

o d N
∗(0) M∗(0)

∆ω∗ =

= − Rg +RV
Vodn+ (Lg + LV S)ω

· ∆ω∗

m
= − 1

Vodn
Rg+RV

+ k2
· ∆ω∗

m
(3.30)

∆qo(∞)

∣∣∣∣
∆V ∗

=
Y ′eq dd

2(0) V 2
o d M

∗(0)

1 + Y ′eq dd
2(0) V 2

o d N
∗(0) M∗(0)

·∆V ∗ =

=
∆V ∗

n+ (Lg + LV S)ω/Vod
(3.31)

Equations (3.28)-(3.31) show the following properties associated to the virtual impedance:
• a change in the frequency droop produces an undesired variation of the reactive

injection, even though this effect is significantly reduced by the combination of a
negative virtual resistance RV < 0 and the static virtual reactance (with LV S > 0),
as both contribute to the increase of the decoupling coefficient k.
• active power is not influenced by the variation of the voltage droop intersection.
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(a) Equivalent model in grid-connected mode with virtual impedance

(b) Steady state model

Figure 3.16: Effect of the virtual impedance on power decoupling in grid-connected
mode. Modifications with respect to the traditional droop scheme of Fig. 2.20 are

highlighted with a red frame.

3.6 Model verification

The goal of this section is to verify the mathematical correctness of the derived
dynamical model. Two different values of the interface impedance conditions are taken
into account, in order to test the system in different conditions; the converter under test
is connected to the public grid of the laboratory, according to the scheme in Fig. 2.2(a)
(here reported again for an easier understanding), by means of the impedances reported
in Table 3.1. The physical explanation of the experimental set-up in grid-connected
mode is reported in Appendix D.

Recall from Fig. 2.2(a): operations of the converter in grid-connected mode.

3.6.1 Strong grid - Case study 1

Figure 3.18 shows the simulated and experimental stability limits, compared to the
ones that can be obtained from the analytical calculation of the dynamical model pre-
viously derived. In each graph a stability map is represented, which allows to obtain
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Table 3.1: Test conditions for the verification of the proposed dynamical model in
grid-connected mode.

Case Condition Physical parameters [p.u.]

1 Strong grid Zg = 0.019 ; ϕg = 20 deg.
2 Weak grid Zg = 0.284 ; ϕg = 34 deg.

the phase margin of the coupling loop as a function of the physical and control param-
eters (see (3.14) for the static case and (3.23) for the dynamic one); as a comparison,
the stability limits obtained experimentally and the simulated ones from the Simulink
environment are included.

All three sources (experimental, simulated and approximated analytical) show the
same general tendency as regards the prediction of the stability limit, even though some
differences exist because of the nature of each model.

Comparing the simulated and simplified analytical systems, it is possible to see
that the proposed approach tends to predict higher phase margin with respect to the
simulated ones; this is reasonable considering the introduced simplifications, that may
partially affect the numeric consistency of the results. Nevertheless it is possible to see
that, in terms of phase margin, the difference is negligible (around 20 deg.), especially
keeping in mind that typically it is suggested to operate the system with at least 50 deg.
of margin [44].

On the other side, experimental tests generally show a higher stability with respect
to the theoretical ones; this is mainly due to the presence of parasitic losses into the real
system, which are hardly measurable during the operation of the converter. Another
significant source of uncertainty is associated to the public network conditions, which are
time-varying and typically unknown: even though its typical characteristic impedance
is lower than the transformer one, still it contributes to the mismatch between the
experimental and analytical cases.

Furthermore it is possible to observe that, keeping the same values for the param-
eters RV -LV S , the stability margins associated to the dynamic case (Fig. 3.18(b)) are
higher than the corresponding static ones (Fig. 3.18(a)) thanks to the positive effect
introduced by the derivative term LV D in the control. The leading effect provided by the
derivative enhances the phase margin of the coupling feedback, allowing a wider admis-
sible operating range for the virtual impedance itself. As a drawback, the higher number
of hypotheses invoked in the derivation of (3.23) causes a stronger discrepancy of the
experimental dynamic case (Fig. 3.18(b)) with respect to the static one (Fig. 3.18(a)):
the equivalent cut-off frequencies of the loops involved in the stability definition grow
and the internal dynamics would require a more detailed modelling.

In reality, the discrepancy between theoretical and experimental model does not
jeopardize the usefulness of the analytical approach: the proposed stability model con-
figures as a real-time check for the consistency of the virtual impedance settings during
time-varying conditions of the system and the possible mismatch between the physical
and theoretical dynamics is often taken into account assuming a safety phase margin
generally much higher than the limited mismatch experienced.

3.6.2 Weak grid - Case study 2

In Fig.3.19 the same comparison between simulated and analytical stability limits
for a weak grid is reported. The first consideration regards the lower value for the
maximum acceptable virtual impedance, with respect to the strong grid case: as the
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(a) Static case (LVD = 0) (b) Dyanamic case (LVD = 6 LV S , τd = 0.1 p.u.)

Figure 3.18: Analytical phase margin curves compared to simulated and experimental
ones. CASE STUDY 1 - (strong grid). The theoretical stability values coincide with

the experimental and simulated ones.

equivalent interface impedance increases, the system tends to evolve toward instability
and the admissible values [RV , LV S , LV D] reduce. Nevertheless, the results associated
to the analytical model show a good consistency with the simulated ones both for the
static and dynamic case: this validates the correctness of the proposed mathematical
model.

A further consideration needs to be done on the mutual effects between the reactive
droop coefficients and the virtual impedance control. Both experimentally and in simu-
lations, it has been experienced a general reduction of the analytical model consistency
after the introduction of high reactive droop slopes n or reducing the time constants Tp:
as soon as the external droop increases its bandwidth, it behaves as an additional parallel
coupling feedback between the direct and quadrature axes and the stability expressions
associated to the virtual impedance (3.14)-(3.23) should include the dependency with
respect to the droop coefficients. Even though for the considered pass-bands (Appendix
D) the dynamical decoupling is guaranteed, the application of different design simplifi-
cations could lead to dissimilar dynamical properties [6]. Still the analytical approach
can help: the extension of the system complete model as reported in Fig. 3.15 already
includes the mutual interaction of the reactive droop and the virtual impedance without
any further simplification, also for the cases in which the loops show similar speeds.
Despite the model still has to be analytically solved in all the practical cases of interest,
still its complete definition includes the dynamical properties of the system in a general
way.

3.7 Functional behaviour of the virtual impedance in grid-
connected mode

Beside the verification of the stability limits, it is also important to verify the effects
associated to the insertion of the virtual impedance in the control of the converter. The
goal is to verify the stability improvements during grid-connected operations (in this
section) or in island mode (next section).
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(a) Static case (LVD = 0) (b) Dyanamic case (LVD = 0.7 LV S , τd = 0.1

Figure 3.19: Analytical phase margin curves compared to simulated ones. CASE
STUDY 2 - (weak grid). The theoretical stability values coincide with the simulated

ones.

3.7.1 Strong grid - Case study 1

Figure 3.20 shows the transient associated to the converter operated in grid-connected
mode in case 1 of Table 3.1, under different values of the virtual resistance RV . While
the converter is operated in parallel to the grid, the active droop intersection is changed
by ∆ω∗ = 0.01 p.u.: this corresponds to a change of the reference power equal to
∆Pref = ∆ω∗/m = 0.1 p.u. from the converter to the grid. In the initial configuration
of the system (Fig. (3.20(a))), the equivalent decoupling coefficient k is very small: even
though the converter is able to properly modulate its active injection as a consequence
of change in the droop reference, still this modification produces an undesired variation
of the reactive power. The introduction of a negative value for the virtual resistance
RV (compatible with the allowed stability region in Fig. 3.18(a)) allows to foster an
independent contribution of the active and reactive injections for the converter.

(a) RV = 0 (b) RV 6= 0

Figure 3.20: Experimental power decoupling improvements by increasing negative
values of the virtual resistance RV . Frequency droop step changes ∆ω∗ = 0.01 p.u. are
introduced. The static virtual impedance introduction improves the power decoupling.
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3.7.2 Weak grid - Case study 2

In Figure 3.21 the effect of the introduction of the dynamic virtual reactance LV D
in the control system of the converter is analysed (case study 2, Tab. 3.1). Figure 3.21
shows the step variation of the active and reactive power injections (obtained respectively
shifting the frequency and voltage droop characteristics) in grid-connected mode.

Small values of the static virtual impedance are inserted in the control, even though
the decoupling index k results lower than the ideal one. Under variation of the active
power (Fig. 3.21(a)), the reactive injection undergoes an initial transient and a subse-
quent variation of its steady state condition; as regard the change in the reactive power
(Fig. 3.21(b)), it does not affect the steady state behaviour in the active injection.

The dynamic term LV D introduction does not affect the decoupling at steady state,
even though it produces a significant improvement of the transients. According to the
mathematical model reported in the previous sections, this term increases the phase
margin of the loop L2(s): experimentally, this can be seen from the reduction of the
over-shoot transients in Fig. 3.21(c) and 3.21(d) compared to Fig. 3.21(a) and 3.21(b),
which denote a higher equivalent damping for the system.

3.7.3 Power decoupling at steady state: experimental validation

Consider the complete dynamical model of the system (Fig. 3.15), from which the
steady state equations for the active and reactive injection subsequent to a variation

(a) Active transient LVD = 0 (b) Reactive transient LVD = 0

(c) Active transient LVD 6= 0 (d) Reactive transient LVD 6= 0

Figure 3.21: Experimental transients improvement by LV D. In (a) and (c) step
changes of the frequency droop equal to ∆ω∗ = 0.01 p.u. are considered, while in (b)
and (d) voltage droop variations ∆V ∗ = 0.04 p.u.: the introduction of the dynamic

virtual impedance LV D improves the transitory converter behaviour.
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of the droop intersections have been obtained (3.28)-(3.31): in this section, the cor-
respondence of the model with the obtained experimental transients is considered and
analysed (Table 3.2). Both the cases of the strong and weak grids are taken into account,
respectively referring to Fig.3.20(a)-3.20(b) and Fig.3.21(a)-3.21(b); both frequency and
voltage droop intersections changes are considered in order to include all possible cases.

Comparing the results reported in Table 3.2, it is possible to derive the following
considerations:
• as regards the active power changes, the natural integral effect already highlighted

in Fig.3.15 guarantees the total correspondence between the theoretical model and
the experimental results under step changes of both the frequency and voltage
droop intersections.
• As analysed in Fig.3.15 and (3.30)-(3.31), the equivalent feedbacks involving the

reactive power do not include natural integral effects and thus the uncertainty with
respect to the non-ideal evaluation of the interface and grid impedances produces
higher discrepancies between the theoretical and experimental values. Still the
sign of the variation and its order of magnitude confirm the applicability of the
proposed dynamical model.

3.8 Functional behaviour in island mode

In this section the behaviour of a couple of converters operated in island is analysed,
according to the scheme in Fig. 2.2(b) (here recalled for the sake of clarity). Interface
impedances of each converter are reported in Table 3.3. The physical explanation of the
experimental set-up in island mode is reported in Appendix D. In order to emulate the
presence of an ideal voltage source on the DC side of the converters, a rectified voltage
from the the public network is exploited.

3.8.1 Power balance between parallel connected converters

Figure 3.23 shows the effect of the virtual impedance on the power balance between
different units connected in parallel in the supply of a local load during island operations.
Possible differences in the offset of the acquisition system [45], as well as the mismatch
of the interface impedances, produce unequal load sharing between parallel units. In

Table 3.2: Power decoupling - Experimental and theoretical values

Case
Figure

Variation ∆po
(theoret.)

∆po
(experim.)

∆qo
(theoret.)

∆qo
(experim.)

1 - Fig.3.20(a) ∆ω∗ = 0.01 p.u. 0.1 p.u. 0.1 p.u. −0.09 p.u. −0.08 p.u.
1 - Fig.3.20(b) ∆ω∗ = 0.01 p.u. 0.1 p.u. 0.1 p.u. ∼= 0 p.u. ∼= 0 p.u.
2 - Fig.3.21(a) ∆ω∗ = 0.01 p.u. 0.1 p.u. 0.1 p.u. −0.03 p.u. −0.02 p.u.
2 - Fig.3.21(b) ∆V ∗ = 0.01 p.u. 0 p.u. 0 p.u. 0.16 p.u. 0.19 p.u.

Table 3.3: Test conditions for the converters operated in island.

Converter Control type Interface impedance [p.u.]

1 Droop Zg1 = 0.030 ϕg1 = 53 deg.
2 Droop Zg2 = 0.019 ϕg2 = 20 deg.
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Recall: operations of the converter in island mode.

this, case an inductive-resistive load Pload ∼= 0.3 p.u - Qload ∼= 0.2 p.u. is taken into
account; as the two converters are characterized by the same nominal power, the ideal
condition would imply a perfect load balance between the units, both for the active and
reactive power. Figures 3.23(a)-3.23(d) depict the experimental load sharing experienced
by the two converters under different values of the virtual impedance: the corresponding
measurements are reported in Tab.3.4.

As concerns the active power, all four cases result equivalent: independently of the
applied virtual impedance, the active load results perfectly balanced between the two
units. On the other hand, reactive distribution shows a highly uneven behaviour. Refer-
ring to Fig.3.23(a), it is even possible to highlight the presence of a circulating reactive
component: the first unit not only supplies the entire reactive load, but even induces a
negative reactive flow through the second converter, which behaves as a physical induc-
tor (according to the chosen generators convention, a positive injected reactive power
is experienced when the converter behaves as a physical capacitor). In case a higher
load were be applied, this condition would worsen as the first unit would easily reach
its maximum capability. In this perspective, the virtual impedance introduction guar-
antees a more balanced distribution of the reactive injection, as it is possible to see from
Fig.(3.23(d)).

3.8.2 Transients improvement

Figure 3.24 shows the transients improvement under different settings of the virtual
impedance. In this test, the variations of the active local load (∆Pl = 0.1 p.u.) is
considered. In the ideal case, the two units equally share both the active and reactive
power; nevertheless, the different interface impedances and the mathematical nature of

Table 3.4: Load sharing in island condition

Case Active share (Conv.1-2) Reactive share (Conv.1-2)

1 50% / 50% 110% / -10%
2 50% / 50% 96% / 4%
3 50% / 50% 74% / 26%
4 50% / 50% 55% / 45%
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(a) (b)

(c) (d)

Figure 3.23: Experimental power balance in island conditions by means of the vir-
tual impedance. Virtual impedance control has been applied exclusively to the first
converter. An increase of the static inductance LV S implies a more regular reactive

sharing between parallel connected units.

the reactive droop produce an unequal reactive load sharing between the converters. As
already highlighted in Sect.3.8.1, the introduction of the static virtual inductance LV S
enhances the steady-state balance, even though the transient of the reactive power in
the second converter shows a significant overshoot; this stands for a low phase margin
for the system. The dynamic term LV D improves the stability of the system, as it can
be seen in Fig. 3.24(c).

3.8.3 Direct converter connection to the external grid

This subsection analyses the possibility to directly interface a converter to an exter-
nal network by means of the so called soft-start connection.

In [5], the introduction of a time-varying virtual impedance loop is proposed, to
allow a direct connection of the converter to the system; in the following, instead of
the time-varying term, the dynamic virtual inductance is exploited. Consider a single
unit (converter 1) initially supplying an ohmic-resistive passive load in island. The load
is characterized by nominal active and reactive powers equal to Pload = 0.1 p.u. and
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(a)

(b)

(c)

Figure 3.24: Experimental transients improvement in island conditions by means of
the virtual impedance. In (a) no virtual impedance is introduce. In (b) static virtual
impedance terms are considered: this improves the reactive power sharing at steady-
state. In (c), the dynamic virtual reactance LV D 6= 0 enhances transitory performances.
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Qload = 0.05 p.u.; the modulation algorithm of the second converter is not active. After a
certain instant (t = 3 s in the first case and t = 5 in the second one), the second converter
is activated, without (Fig. 3.25(a)) or with (Fig. 3.25(b)) the virtual impedance: it is
possible to see a significant reduction of the oscillations associated to the introduction of
the second unit and, as a consequence, a higher damping of the unidirectional circulating
power components between the converters.

3.9 Conclusion

In this chapter the mathematical model associated to the virtual impedance intro-
duction in the converter control has been analysed. This additional loop behaves as a

(a) Direct connection without virtual impedance

(b) Direct connection with virtual impedance

Figure 3.25: Experimental direct insertion of the converter by means of the virtual
impedance control. Virtual impedance introduction allows a more regular insertion of

the converter, as it is possible to observe comparing (a) and (b).
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fictitious element in series with the physical converter interface. Even though several
examples related to the introduction of this control have been identified in literature, it
is difficult to find a comprehensive model able to predict the stability conditions related
to the introduction of this control algorithm.

In this perspective, a rigorous dynamical model of the system equipped with vir-
tual impedance has been derived, highlighting its interaction with the physical circuit
elements for the determination of the system global phase margin. The model has been
derived analytically: this has enabled the identification of a simplified design procedure
for virtual impedance parameters which includes the information related to the existing
dynamics.

The adopted design model represents a novelty as it proposes to highlight the in-
ternal axes-coupling as a measure of the system stability: the advantage lies in the
identification of easy formulations for the global system phase margin, which require a
limited computational capability and can be easily implemented on any real-time micro-
controller. Still it is necessary to highlight the higher sensitivity of the technique in case
some of the introduced assumptions are not fully verified.

The general correctness of the proposed approach has been verified both experi-
mentally and with simulations. Additionally the system has been tested under various
operational conditions of the converter, so as to highlight the improvements derived from
its introduction, both in grid-connected and island mode.

From the reported analysis, it becomes evident the need to estimate in real time the
equivalent output impedance of the converter and consequently to have the possibility
to automatically tune the virtual impedance parameters, according to the developed
dynamical model, as a function of the external network conditions. This important
aspect will be developed in the next chapter.





Chapter 4

On-line impedance estimation

4.1 Chapter introduction

In this chapter a technique for the reconstruction of the equivalent interface impedance
of the converter with the external network will be developed. As previously highlighted,
this feature is particularly important as the converter control shows a great sensitivity
with respect to interface impedance; moreover, this parameter is time-varying by defini-
tion, as it depends on the conditions of the external network: in this perspective, on-line
estimation represents a possible way to adaptively changing the set-up of the internal
controller under variations of the external system conditions.

4.2 State of the art of real-time impedance estimation
techniques

4.2.1 Proposed approaches

On-line impedance estimation is becoming a common feature of grid connected
converters, in the perspective of real-time identification of the dynamic characteristic
of the external network as seen by the converter. Since the state of the external system
changes as a function of topology as wells as of the number and type of units connected
to the system, it is necessary that the reconstruction technique is carried out in real
time to keep track of the time-changing characteristics of the grid.

From the mathematical point of view, the input impedance reconstruction requires
the identification of the frequency response of the transfer function Z̄(ωs) in the desired
part of the spectrum, thus the computational effort of the reconstruction is directly pro-
portional to the desired frequency resolution and to the bandwidth of the reconstruction.

Before entering into the details of the proposed technique, the state of the art asso-
ciated to this topic is analysed. All the proposed on-line grid impedance reconstruction
techniques are based on the following concept: a known excitation is applied and it
is analysed the dynamic response of the system after the introduction of the distur-
bance, in order to determine the response of the network in each part of the considered
frequency range [46]. Even though all the methods require the introduction of a tran-
sitory behaviour to excite the dynamics of the system, each technique is characterized
by a different impact on the rest of the network, as well as by different reconstruction
performances and computational efforts.

Here a short list of the proposed approaches is shown; the objective of the analysis
is to point out the similarities and differences between the existing literature and the

85
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proposed technique that will be developed in the following, as well as the positive and
negative features of each approach.

A traditional technique reported in [47] consists in the analysis of the voltage varia-
tion at the fundamental frequency caused by the introduction of a physical linear element
with known impedance; the modification of the phasors associated to the absorbed cur-
rent and local voltage before and after the topological change allows to reconstruct the
parameters of the grid (modelled as a resistive-inductive series impedance) at the funda-
mental frequency. Every linear constant-impedance element can be used as disturbing
element, provided that its electrical characteristic is known; typically, a local constant-
impedance load or a capacitor bank can be used. More recent researches on the topic
have proposed a similar approach: in [48] and [49] periodic step variations of the injected
active and reactive powers from an electronic converter allow to identify two different
equilibrium states for the system. Impedance identification is carried out comparing
the steady state values in the two operating conditions. Even though these techniques
are characterized by a low computational effort, they require significant changes in the
waveforms.

Other approaches proposed in literature are based on the analysis of transitory be-
haviour associated to the set-point variations; even though the excitation of the system
occurs as a change in the current reference at the fundamental harmonic, the reconstruc-
tion is carried out analysing the transitory behaviour instead of the steady state one.
Different reconstruction methods have been proposed based on this approach, but with
different algorithms: in [50]-[51] and [52]-[53] similar identification models are proposed,
based on Extended Kalman filter or least square analysis, while in [54] Time Series
theory is taken into account.

Another approach often proposed in literature consists in the introduction of a wide
bandwidth disturbance (often a voltage pulse) to excite a consistent part of the fre-
quency spectrum, reconstructing the equivalent impedance of the network by perform-
ing frequency analysis on the response. Typical applications of this technique require
the on-line calculation of the Discrete Fourier Transform associated to the input and
output signals [55]-[56], while others exploit Wavelet Transform [57]-[58]. Even though
these techniques allow a wideband reconstruction of the desired frequency profile, their
implementation on low computational power micro-controllers is not always easy and
requires a significant memory on the device. Moreover, the accuracy of these techniques
is generally low close to the frequencies at which the system shows a harmonic voltage
component.

A last approach regards the exploitation of single harmonics, whose values can
be modulated in order to assess the dynamical response of the system at that specific
frequencies. Even though this method does not allow to reconstruct the frequency profile
in a large bandwidth, still from the computational point of view is very convenient as
it allows to reduce the order of the inversion model and can be implemented on every
hardware setup. Nevertheless, the most critical point of this technique regards the choice
of the harmonics to be controlled for the estimation. In [59] and [60] it is proposed to use
inter-harmonics close to the fundamental one in order to easily interpolate the equivalent
impedance seen at 50 Hz. In [61] high order harmonics are proposed, even though open-
circuit voltages naturally present in the network at that specific frequencies are not taken
into account.
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4.2.2 Comparison between the proposed method and the existing lit-
erature

In the next section, a technique based on the control of natural system harmonics
will be proposed, which allows to take into account the natural presence of open-circuit
voltage at the specific used frequencies. Before entering into the details of the mathe-
matical model, some advantages are identified:
• the decision to exploit the natural harmonics of the system reduces its impact

on the rest of the network, as it avoids the introduction of spurious components;
nevertheless, this decision impacts on the control system design, as it must operate
in a differential way to reduce its sensitivity with respect to external network open-
circuit voltages at the frequencies of interest.
• The low value of the harmonic disturbance makes the converter compatible with

the interconnection standards defined in terms of harmonic content.
• The realization cost of the technique, both in terms of memory and of computa-

tional effort, is low if compared to wide bandwidth identification methods and still
allows to reconstruct the equivalent impedance at the fundamental harmonic in a
consistent way, which is the goal of the algorithm.

On the other hand, some disadvantages can be identified:
• the reconstruction technique is founded on a model-based approach, as it assumes

an inductive-resistive (or capacitive-resistive) behaviour; thus, it may provide in-
consistent results as the physical system shows resonant behaviour close to the
exploited frequencies;
• the result of the estimation is clearly affected by other converters control in case the

percentage of electronic units connected to the microgrid is consistent; even though
this aspect has a high impact on the stability of the system, still it represents an
open issue in literature and, at the current stage, all the proposed techniques are
affected by this sensitivity.

4.3 Impedance Measurement Model

Consider a power converter interfaced to an external three-phase low-voltage grid as
already introduced in the previous chapters (Fig. 4.1). The fundamental component can
be controlled by means of a droop-scheme; nevertheless, as the impedance estimation
technique acts solely on the internal voltage and current loops, it results independent of
the droop characteristics.

Figure 4.1: Considered converter scheme for grid impedance parameters identifica-
tion.
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The objective of the estimation technique is to identify the equivalent parameters
Rg and Lg as seen by the converter at the external network interface in order to be able
to control its regulation parameters in an effective way, according to (2.55) - (2.56).

Two constraints have to be identified in the design of the technique:
• reduce the impact of the estimation on the rest of the network;
• keep the lowest possible computational effort for the system.
Thus the idea consists in the modulation of current īo h or voltage v̄o h harmonics

naturally present into the system and lately reconstruct the impedance profile according
to the typical least square inversion method. From the control system perspective, the
objective is to guarantee a robust control of either the harmonic current īo h or voltage
v̄o h and be able to measure the other physical quantity.

Thus it is natural to take into account two alternatives:
• Voltage-controlled mode: harmonic voltage v̄o h is regulated and the corresponding

current īo h is measured;
• Current-controlled mode: harmonic current īo h is regulated and the corresponding

voltage v̄o h is measured.
The components exploited for the reconstruction are 5th and 7th harmonics; the

choice has been done considering some key aspects:
• harmonic limits for odd harmonics are typically less stringent with respect to even

harmonic ones;
• resonance phenomena in this frequency range are uncommon, at least for medium

and low voltage microgrids;
• the control systems of several converters are already equipped with controllers

designed for the regulation of these components.
Three independent rotating reference frames can thus be identified: beside the one

synchronous with the fundamental harmonic dq, it is possible to define the ones associ-
ated with the considered harmonics (dq5 and dq7). According to the typical construction
of three-phase systems, the 7th order harmonic is a positive-sequence component, while
the 5th is a negative-sequence one; this condition is taken into account in the angular
rotation definition of the dq5 and dq7 frames (Fig. 4.2).

Figure 4.2: Axes system inside the control, for on-line impedance estimation.
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From the conceptual point of view, two different sub-functions are associated to the
equivalent output impedance reconstruction algorithm:
• Harmonic control : it imposes the desired values for the current / voltage harmonic

amplitudes.
• Acquisition and inversion model : elaboration of the acquired state variables and

impedance estimation.

4.4 Harmonic control

4.4.1 Voltage-controlled mode

Consider the equivalent algorithm reported in Fig. 4.3(a), which shows the con-
ceptual operations of the converter while performing harmonic management for the
impedance identification. The algorithm consists in the alternation of two different
phases associated to the temporal periods T1 and T2. During each part of the algorithm,
a different harmonic reference is chosen for the 5th and 7th order harmonics.

{
0 ≤ t < T1 V5 = V7 = 0

T1 ≤ t < T1 + T2 V5 = V7 6= 0
(4.1)

Figure 4.3(b) shows the required changes in the regulation system to properly impose
the desired value of harmonic voltage. As the converter control architecture is designed
on synchronous dq axes, the additional input associated to the 5th and 7th order har-
monics is seen from the synchronous frame as an equivalent 6th-order harmonic. This
allows to simplify the control scheme of the converter, since a single additional resonant
controller, placed in parallel to the PI already designed for the fundamental, enables
the control of both additional voltage references. The reference voltage associated to the
fundamental component vrefo dq comes from the droop, according to the traditional scheme
reported in the previous chapters (Fig. 4.3(b)).

The resonant controller (4.2) has been designed according to [26] and discretized
following [62]. Its resonance peak is placed in correspondence to the 6th order har-
monic: the analytical calculation of the discrete form allows to adapt the position of
the resonance peak even under the drift of the fundamental component and keep the
resonance peak placed in correspondence to the desired harmonic. The characteristics
of the resonant function are reported in Appendix C.1.

R6(s) =
s
ω6

( s
ω6

)2 + 2ξ s
ω6

+ 1
(4.2)

4.4.2 Current-controlled mode

The second scheme controls the harmonic current īo instead of the voltage v̄o. In
this case, the algorithm evolves as in Fig. 4.4(a): similarly to the voltage-controlled
scheme, two alternating conditions are imposed acting on the harmonic reference.{

0 ≤ t < T1 I5 = I7 = 0

T1 ≤ t < T1 + T2 I5 = I7 6= 0
(4.3)
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(a) Algorithm for voltage-controlled estimation

(b) Modified voltage v̄o regulation

Figure 4.3: Algorithm (a) and control scheme (b) used for impedance estimation
with harmonic voltage control. The procedure develops in two iterative phases: the
alternation of the harmonic reference voltage allows to define the differential model

used for impedance reconstruction.

In order to properly control the harmonic current value, the regulation scheme
should be modified as in Fig. 4.4(b). The presence of two parallel resonant controllers
allows a full controllability of the injected 5th and 7th order harmonics currents.

Figure 4.4(a) highlights that, in the current-controlled mode, the values of the esti-
mated grid parameters R̃g and L̃g are sent back to the harmonic regulation algorithm.
This is due to the inherent sensitivity of the regulator with respect to the external grid
admittance Yg(s), that is actually the desired estimated quantity: this condition intro-
duces some issues in the regulator definition, as their dynamical properties are dependant
on the quantity the system itself is asked to estimate.

The decision to regulate the harmonic current īho instead of the voltage v̄ho introduces
a significant complexity in the control scheme:
• at the fundamental frequency, the converter has to behave as a sinusoidal volt-

age source, whose amplitude and angular frequency are determined by the droop
control;
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(a) Algorithm for current-controlled estimation

(b) Control structure

Figure 4.4: Algorithm (a) and control scheme (b) used for impedance estimation with
harmonic current control. The regulation iteratively imposes two different harmonic
current levels and defines the differential model used for impedance reconstruction.
Estimated parameters R̃g and L̃g are sent back to the controllers, to compensate the

output admittance Yg(s) delay.

• in correspondence to the 5th and 7th harmonics, the converter is controlled as an
harmonic current source.

In order to meet these two constraints, the control architecture becomes more ar-
ticulated. In Fig. 4.4(b), as an example, it is possible to see the introduction of a
strong notch filter on the current īo feedback associated to the harmonic control: this
regulator, tuned at the fundamental frequency, is introduced in order to avoid a possible
interference of the harmonic control with the droop.

The structure of the harmonic controllers R5(s) and R7(s) is modified with respect
to the typical one analysed in Appendix C.1 to compensate the phase delay associated
grid admittance Yg(s). The introduced modification consists in a leading network whose
parameters are obtained from the impedance estimation process itself; Ta determines a
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high-frequency pole used to make the system realizable (T−1
a = 1 · 104 rad/s).

R5−7(s) =

s
ω5−7

( s
ω5−7

)2 + 2ξ s
ω5−7

+ 1
· R̃g + sL̃g/ωb

1 + sTa
(4.4)

Furthermore, the harmonic control is carried on in the αβ frame to avoid the pres-
ence of motional terms associated to the equivalent output grid inductance Lg. The
combination of all these aspects leads to the control structure illustrated in Fig. 4.4(b).

4.5 Inversion model for impedance identification (Rg - Lg).

The inversion model represents the portion of the algorithm that performs the re-
construction of the impedance parameters. The simplest form of the algorithm models
the equivalent grid as an inductive-resistive impedance, characterized by the terms Rg
and Lg; this approach goes under the name of finite parametric reconstruction problem,
as it allows to identify the values of the parameters that best fit the state equations of
a pre-determined model, which in this case is the Kirchhoff’s voltage law associated to
the interface impedance.

Consider the Kirchhoff’s voltage and current equations associated to the interface
impedance and to the filter capacitor respectively. These equations obviously hold for
the generic harmonic ωh (in per-unit with respect to ωb, h = 5 − 7); as for the notation
of the state variables, the superscript stands for the harmonic order and the subscript
for the reference system to which it is referred. Each component shows a constant
amplitude during each of the harmonic control algorithm phases (Fig. 4.3(a) and Fig.
4.4(a)) provided that it is referred to its synchronous frame, dq5 for the 5th harmonic,
dq7 for the 7th one.

v̄ho dq h = Rg ī
h
o dq h + jωhLg ī

h
o dq h + Lg

s

ωb
īho dq h + v̄hg dq h (4.5)

Cf

(
s

ωb
+ jωh

)
v̄ho dq h =

(
1 + jωhRdCf +RdCf

s

ωb

)
·
(
īhdq h − īho dq h

)
(4.6)

Now it is necessary to provide a formal definition of the differential parameters as
reported in Fig. 4.3(a) and Fig. 4.4(a): in both cases the control system imposes two
different reference conditions (identified by T1 and T2 according to (4.1)-(4.3)) where
the system reaches alternated steady state conditions. Thus for each state variable it is
possible to define a differential quantity (indicated by the symbol ∆) that corresponds
to the difference of the two steady state levels. As each harmonic is referred to its own
rotating reference system (Fig. 4.2), state differences are theoretically constant under
the square-wave harmonic references.

∆v̄ho dq h = v̄ho dq h(t = T2 + T1)− v̄ho dq h(t = T1) (4.7)

∆īho dq h = īho dq h(t = T2 + T1)− īho dq h(t = T1) (4.8)

∆īhdq h = īhdq h(t = T2 + T1)− īhdq h(t = T1) (4.9)

In reality, each left-side term of the difference in (4.7)-(4.9) is obtained as an average
of the last samples in order to filter out high-order harmonics; nevertheless, from the
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conceptual point of view it is possible to assume (4.7)-(4.9) as the difference of single-
instant terms at the specific time steps t = T1 and t = T1 + T2. Obviously as the
algorithm is iteratively repeated, the terms in the difference are alternatively updated
at each sub-iteration of the algorithm.

If we consider steady state conditions in (4.5) and (4.6) (s → 0), it is possible to
substitute (4.5) in (4.6) and express the result as a function of the differential terms in
(4.7)-(4.9). Assuming that the harmonic voltage components v̄g h do not significantly
change between the two phases of the algorithm, the differential model in (4.10)-(4.11)
can be derived.

∆v̄ho dq h = Rg∆ī
h
o dq h + jωhLg∆ī

h
o dq h (4.10)

∆īho dq h ·
(
1− ω2

hLgCf
)

+ jωhCf · (Rd +Rg) ·∆īho dq h = ∆īhdq h + jωhCfRd∆ī
h
o dq h

(4.11)

Relations (4.10) and (4.11) are two independent complex equations in the unknowns
Rg and Lg, as all other terms are known from the acquisition system. The differential
nature of the algorithm makes it independent of the open-circuit harmonic voltage v̄g h,
provided that these components do not evolve in a significantly fast way. This allows
to perform harmonic impedance reconstruction at the natural network components and
thus avoids the introduction of spurious frequencies into the system.

Theoretically, a single harmonic component would be enough for impedance estima-
tion. Moreover, this would lead to a strong sensitivity with respect to acquisition errors
and measurement uncertainties. In this perspective, the exploitation of two harmonics
(5th and 7th) and two formally independent equations (4.10)-(4.11) allows to increase
the order of the system and exploit the filtering properties of the Least Square approach.
The model can be written in the linear form A · x = b, where:

x = [Rg Lg]
−1 A =



∆i5tho d5 −ω5∆i5tho q5
∆i5tho q5 +ω5∆i5tho d5

∆i7tho d7 −ω7∆i7tho q7
∆i7tho q7 +ω7∆i7tho d7

+ω5Cf∆i5tho q5 ω2
5Cf∆i5tho d5

−ω5Cf∆i5tho q5 ω2
5Cf∆i5tho q5

+ω7Cf∆i7tho q7 ω2
7Cf∆i7tho d7

−ω7Cf∆i7tho q7 ω2
7Cf∆i7tho q7


(4.12)

b =



∆v5th
o d5

∆v5th
o q5

∆v7th
o d7

∆v7th
o q7

(∆i5tho d5 −∆i5thd5 )− ω5CfRd · (∆i5tho q5 −∆i5thq5 )

(∆i5tho q5 −∆i5thq5 ) + ω5CfRd · (∆i5tho d5 −∆i5thd5 )

(∆i7tho d7 −∆i7thd7 )− ω7CfRd · (∆i7tho q7 −∆i7thq7 )

(∆i7tho q7 −∆i7thq7 ) + ω7CfRd · (∆i7tho d7 −∆i7thd7 )


(4.13)

In (4.12) and (4.13), ω7 = 7·ω as the 7th-order harmonic is a direct sequence component,
ω5 = 5 · ω as the 5th is a negative sequence one.
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The solution to the Least Square problem can be calculated as in (4.14). In the
following, the same uncertainty level has been assumed for all the measured quantities
and absence of correlation between measurement uncertainties; thus:

x = (ATA)−1 ·AT · b (4.14)

The processing of the data to be used for the impedance evaluation is carried out
according to the scheme reported in Fig.4.5. The acquired quantities are filtered by
means of a strong notch filter to remove the fundamental harmonic component and later
by resonant filters to extract the single harmonics (5th and 7th). All the coefficients of
the digital filters are adaptively updated according to the actual frequency of the system
ω, that in island operations may be different from the nominal one ωn = 1 p.u. .

It is possible to see that both the output current īo and the filter one ī are acquired
and pre-processed; even though from the mathematical point of view there is no need to
add this redundancy in the acquisition inversion process, still this introduction allows
to compensate random and biased error that may be present in the inversion model.

4.6 Experimental tests

4.6.1 Current-controlled mode

Consider the experimental waveform of the 5th harmonic current as seen by the dq5
frame in Fig. 4.6 and the corresponding voltages in Fig. 4.7. The profiles allow to have
a visual understanding of the harmonic control performed on the system: the regulator
imposes an alternation between two different states, each associated to a pre-determined
harmonic amplitude. The duration of each state is identified by the time-ranges T1 and
T2, where T1 = T2 = 500 ms:
• during T1, a null harmonic current reference is imposed (I5 = 0);
• during T2, the harmonic current amplitude is set equal to 0.02 p.u.

The same condition is applied for the 7th order component. The measured current and
voltage harmonic amplitudes during time ranges T1 and T2 are the base for the differ-
ential inversion introduced in Sect.4.5. Furthermore, from the experimental behaviours

Figure 4.5: Pre-processing of the data to be used for the impedance reconstruction.
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reported in Fig.4.6 and Fig.4.7 it is possible to highlight some important considerations
associated to the actual behaviour of the system:
• the resonant controllers enable an almost perfect match of the actual harmonic

amplitude with the desired one;
• the digital acquisition filters represented in Fig.4.5 guarantee a low disturbance

in the reconstructed harmonic quantities, which result to be fairly constant and
lowly distorted during both the conditions imposed by the control.
• From the graphs, it is also possible to highlight the introduction of a transition

ramp between the two states; this allows to reduce the harmonic transients and
prevents from the occurrence of lowly-damped overshoots associated to the reso-
nant controllers dynamical response.

All these aspects allow to keep a limited intentional disturbance caused by the esti-
mation algorithm (and thus a low impact on the rest of the network), while guaranteeing

Figure 4.6: Detail of the 5th order harmonic current as seen by the dq5 frame. The
algorithm imposes two steady state conditions. The ramp between the two steady states
has been introduced to avoid the insurgence of transients on the reconstruction. In (a)

the filter current ī5thdq5 is represented while in (b) the output current ī5tho dq5.

Figure 4.7: Detail of the 5th order harmonic voltages as seen by the dq5 frame.
In (a) the profile associated to the instantaneous harmonic voltage v̄5tho dq5 is reported,
while in (b) the open-circuit harmonic voltage estimation used in the reconstruction
process is reproduced: the estimated open-circuit harmonic component matches with

the instantaneous one only during phase T1, where the harmonic current is zero.
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an acceptable resolution of the reconstructed quantities. In order to validate this affir-
mation, consider the time profiles associated to the phase current and voltages (Fig. 4.9)
in correspondence to the same transition reported in 4.6 between the time-ranges T1 and
T2: from a macroscopic perspective, the system operates sinusoidally independently of
the estimation algorithm. A more numerically-consistent analysis can be done referring
to the spectral profiles of the quantities in three different conditions:
• when the converter is operated with a simple droop control, with no impedance

estimation enabled;
• during the algorithm operations, in the time-ranges T1 and T2 respectively.
The comparison between the harmonic amplitudes in the three conditions is reported

in Fig.4.8, where the normalized widths of each component are referred in per-unit: look-
ing at the numerical values, it is possible to see the substantial correspondence of the
order of magnitudes during the alternation of the algorithm phases, both as regards the
harmonic voltage and the corresponding currents. The complete spectra associated to
these conditions are reported in Fig.4.10 for verification: the profiles verify the regulation
capability of the system in imposing the desired harmonic profile and, furthermore, high-
light the practical absence of spurious components which would negatively significantly
impact on the network power quality.

Figure 4.11 and Figure 4.12 show respectively the spectra of the estimated param-
eters Rg - Lg obtained from the Least Square model and the time profile of the esti-
mation itself: in both graphs, the reconstructed quantities are compared with the ones
calculated from off-line measurement, which are assumed as benchmark for the on-line
algorithm assessment. Analysing the frequency profile of the reconstruction (Fig.4.11),
it is possible to observe the presence of low-order components, especially in the resis-
tance estimation; in the time profile, this corresponds to higher transitory phenomena
between one phase and the subsequent one. These terms are practically absent in the
equivalent inductance reconstruction, which exhibits a more regular profile both in the
time and in the frequency domain. The reason of these transitory phenomena lies in the
non-ideal dynamical decoupling between the internal controllers of the system.

(a) Harmonic voltage comparison (b) Harmonic current comparison

Figure 4.8: Harmonic comparison with the ones obtainable when the impedance
estimation is not active. The considered values are similar to the ones typically obtained
when the estimation algorithm is not applied: this is an index of the limited impact of

the technique on the network behaviour.
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Figure 4.9: Phase profiles of the voltage and current during impedance estimation: the
system continuously operates in sinusoidal conditions independently of the estimation

algorithm.

This aspect can be also seen introducing a controlled step-change in the equivalent
output impedance of the system (Fig.4.13), obtained from the commutation of converter
output terminals from a circuit with know additional inductance to a low-impedance
path. While the estimation L̃g shows a regular profile and it smoothly evolves from one
value to the subsequent one matching the expected values with an acceptable consistency,
the resistance reconstruction R̃g exhibits a more distorted profile, even though its average
value matches with the expected one.

Figure 4.13 also highlights that the harmonic current amplitude continues to differ-
entially operate between the desired levels, beside the changes in the actual converter
interface: this clearly represents the major advantage of the technique, as the identifica-
tion of suitable thresholds for the harmonic current in the two states (T1-T2) automat-
ically guarantees the compliance with those grid standards that impose limitations on
the amplitude of the absorbed current components from active loads.

Moreover it poses significant disadvantages and complexities in the control:
• even though in principle the compensation of the grid pole (4.4) guarantees con-

sistency to the method, in reality the adaptation procedure is critical and tends
to amplify the uncertainty of the estimation;
• the implementation of the technique on more converters in the same microgrid

produces wrong results; the reason is that the units have a different control strategy
at the 5th and 7th harmonics (harmonic current source) with respect to the one
carried out for the fundamental component (droop-controlled voltage source).

4.6.2 Voltage control mode

Figure 4.14 reports the results associated to the impedance estimation performed
by means of the harmonic voltage control mode, both in grid connected (condition
5) or when the converter is supplying a single local passive load operated in island
(conditions 1-4); the results from the real-time estimation are compared to the ones from
off-line measurement, assumed as benchmarks for the evaluation. The time profiles of
the estimations evaluated in Fig.4.14 are reported in Fig.4.15 for verification.

In order to evaluate the performances of the voltage-controlled approach against the
current-controlled one previously reported, some performance indexes are evaluated:
• the normalized estimation error, for the reconstructed resistance and inductance re-

spectively; this quantity takes into account the algorithm mismatch. The variables
R̃g 0 and L̃g 0 indicate the average values of the estimations, which are physically
located in correspondence to the DC components of the corresponding spectral
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(a) Droop control with no impedance estimation algorithm

(b) Null harmonic current reference I5 = I7 = 0 (that it the time frame identified by T1)

(c) Harmonic current reference I5 = I7 = 0.02 p.u. (that it the time frame identified by T2)

Figure 4.10: Spectra of the state variables during the three different conditions of
the system: (a) simple droop control, with no impedance estimation, (b) null harmonic
reference current condition and (c) non-null harmonic reference. The graphs show the
regulation capability of the control system, which is able to impose the desired values
of harmonic current in both phases (T1 and T2) of the algorithm and the absence of

spurious components.
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Figure 4.11: Spectra associated to the estimated parameters during constant op-
erating conditions. The analysis reveals the presence of a higher disturbance on the

reconstructed resistance R̃g at low frequencies with respect to the inductance L̃g.

Figure 4.12: Profile of the reconstructed quantities in time domain, under current-
controlled algorithm.

representations.

εRg =

∣∣∣R̃g 0 −Rg real
∣∣∣

Rg real
ε Lg =

∣∣∣L̃g 0 − Lg real
∣∣∣

Lg real
(4.15)

• The cumulative sum of the spectral components up to 100 Hz (with the exclusion
of the average term), normalized with respect to the real value; this quantity
measures the time-variability under constant operating conditions: the higher the
index, the highly-disturbed is the reconstruction.

CS Rg =
100Hz∑
h6=0

∣∣∣R̃g h∣∣∣
Rg real

CS Lg =
100Hz∑
h6=0

∣∣∣L̃g h∣∣∣
Lg real

(4.16)
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Figure 4.13: Time profile of the reconstructed values under step changes of the in-
terface inductance. It is possible to see that the reconstruction of the resistance is
heavily affected by slow oscillating components that compromise the effectiveness of

the reconstruction.

Figure 4.14: Equivalent system impedance estimation in island (conditions 1-4) or
with a single converter operated in grid-connected mode (condition 5). On-line esti-
mated values (asterisks) are compared to the ones obtained from off-line characteriza-

tion of the system (dots).
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(a) Condition 1 (Island mode) (b) Condition 2 (Island mode)

(c) Condition 4 (Island mode) (d) Condition 5 (Grid-connected mode)

Figure 4.15: Time profile of the impedance estimation with voltage controlled mode.
A low harmonic disturbance can be noticed on the estimation.

The spectral profile in Fig.4.11 is taken into account for what concerns the current-
controlled approach, while the spectral profile in Fig.4.16 (associated to the time-behaviour
in Fig.4.15-(d)) is used as a benchmark for the voltage-oriented architecture; the numeri-
cal comparison is carried out in Table 4.1. According to the definition of the performance
indexes, lower values stand for more precise and robust estimations. As a general
consideration, the voltage estimator shows better global performances both as regards
the absolute error and the cumulative sum of the transitory spectral components: the
simpler control scheme that characterizes this architecture enables a better coordination
of the internal controllers pass-bands and a higher dynamical decoupling between the
different control sub-functions. The limited number of loops for the voltage-oriented
scheme (Fig.4.3(b)), compared to the current-oriented one (Fig.4.4(b)), significantly
simplifies the algorithm design and enhances its dynamical performances.

The major negative aspect of the voltage-oriented architecture regards the impossi-
bility to guarantee, a priori, the control of the maximum value of the harmonic current
injection. At the current state, the technical standards typically used for the definition
of the maximum allowed disturbance from power converters present different approaches
and thus it is difficult to assess the predominance of one method over the other: the
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Table 4.1: Comparison of the impedance estimation techniques

Performance index Voltage-controlled est. Current-controlled est.

εRg 4.3% 22%
ε Lg 5.2% 2.6%
CS Rg 1.3 1.8
CS Lg 1.1 1.3

Figure 4.16: Spectral evaluation of voltage-controlled impedance estimation; values
refer to the time profile reported in Fig.4.15-(d).

updated version of the IEEE-519 [63] defines maximum harmonic values for the in-
jected currents (thus pushing towards techniques in which the disturbance acceptability
is evaluated in terms of current harmonics), while most of the European norms and grid
standards (e.g. [64]) express the admissible limits in terms of maximum harmonic volt-
ages at the interface. In this sense, the normative harmonization process will determine
the technical evolution of these techniques.

4.7 Conclusion

In this section of the thesis the problem of impedance estimation has been tackled;
two simple methods have been developed and tested, while their characteristic features
have been compared to the existing literature on the topic. Both proposed algorithms do
not require spectrum calculation and they are useful for the impedance reconstruction
in a limited frequency range. Even though these procedures do not configure as a
substitute to wide-bandwidth impedance characterizations, still they can represent good
alternatives to provide synthetic input values to adaptive schemes in grid-connected
converters. Moreover, the possibility to exploit natural harmonics of the grid allows to
reduce the disturbance produced by the method on the rest of the network.

Clearly the exploitation of a modulating disturbance to reconstruct the system be-
haviour is at the base of any identification technique and it is not a novelty: still it
is important to design both the control and the reconstruction algorithm to guarantee
sufficient precision in the estimation and limited impact on the rest of the system. The
proposed algorithms have been designed under these constraints: the exploitation of
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natural system harmonics and the small disturbance value guarantee a limited impact
for the rest of the system, while the differential structure and the inversion algorithm co-
ordination with the converter control allow a sufficient precision in the reconstruction.
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Part II

Frequency transients
improvement by means of

non-dispatchable units: inertia
emulation.
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Introduction to part II

In this part of the thesis, the problem of frequency transients in a microgrid is anal-
ysed . Even though for traditional power systems the balance between generated and
absorbed power is guaranteed by the high regulation energy availability, in microgrids
generally the margins are significantly reduced and it is necessary to understand if a
transitory power unbalance can be withstood or, on the contrary, may lead to unaccept-
able operating conditions. The mathematical and experimental analysis will show that
the typical case may be the last one: even though the theoretical steady-state power
balance may be easily guaranteed by the primary regulation performed on the system,
still the amplitude of frequency transients can lead to the intervention of protections
and, thus, to the microgrid shut-down.

In order to avoid this undesired situation, it is considered the possibility to heal
frequency transients by means of a smarter management of the un-dispatchable units
connected to the system: this approach goes under the name of synthetic inertia. Syn-
thetic inertia [1] consists in a derivative active power support from non-dispatchable
PQ units connected to small microgrids networks with weak regulation availability. The
proposed schemes allow to reduces frequency transients excursion during the initial in-
stants after the event, enabling the emulation of inertial physical behaviour by means
of the interface converters.

In the next chapters it will be shown the conceptual development of the control
technique and the aspects related to experimental implementation: starting from the
definition of typical case studies, it will be derived a mathematical model able to describe
the physical behaviour of the system and it will be shown how the introduction of inertia
control can significantly improve the system performances during transitory unbalances
between load and production. Different inertia emulation schemes will be taken into
account and compared. Moreover, it will be also taken into account the issue of angular
quantities estimation under disturbed network conditions.
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Chapter 5

System definition and case
studies for synthetic inertia

5.1 Introduction

This chapter will introduce the case studies and the foundational theoretical prin-
ciples associated to the provision of inertia support in weak grids. Starting from the
typical control structure of a grid-following converter, two different inertia schemes will
be introduced and lately analysed in the next chapters. A common design frame able to
keep into account both the case of a network with fast primary regulation, obtained by
static converters equipped with droop control, and the one with traditional generators
will be taken into considered.

5.2 Nomenclature

• Ta: external grid starting time [s];
• Kreg: regulating energy of the external grid primary frequency regulation [pu];
• τ : external grid internal regulation delay [s];
• θ, ω: angle and per-unit angular frequency of the voltage v̄o at the coupling point;
• θ̃, ω̃: angle and per-unit angular frequency as estimated by the phase-locked loop

(PLL);
• ωFLL: per unit angular frequency as estimated by the frequency-locked loop (FLL)

[pu];
• αFLL: per unit angular frequency derivative as estimated by the frequency-locked

loop (FLL) [pu/s];
• τFLL: time constant associated to the FLL estimation [s];

5.3 State of the art for synthetic inertia control

The concept of the synthetic inertia is a trending topic in power engineering and
power electronics research. From a normative perspective, ENTSO-E [1] identifies the
need of new regulation paradigms for modern power systems with a significant pene-
tration of electronically-interfaced units. The goal of this analysis is to identify some
control schemes able to increase the system robustness by providing regulation support
to the network during the natural variability of the generation and load.
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A preliminary analysis has identified the droop control as the best available tech-
nique to provide transitory and steady-state regulation to power systems and micro-
grids. The positive impact of droop regulation on network transients is well docu-
mented in literature [2]; nonetheless, this regulation scheme requires a constant DC
voltage source and thus it is not always applicable to distributed resources.

Several researchers have analysed the possibility to provide regulation services from
non-dispatchable units acting on the operating point of the distributed resource, even
though energetic constrains have to be taken into account. Some authors proposed to
keep a regulation margin with respect to the maximum production [3]-[4]: this approach
requires an on-line estimation of the theoretical available power, which may be somehow
critical [5]. A second approach, also implemented in most of the grid standards [6],
proposes a non-symmetrical regulation for increasing and decreasing angular frequency
transients [7]-[8]: the drawback of these architectures is the inherent sensitivity of the
regulation characteristics with respect to the disturbance sign.

In this perspective, synthetic inertia seems to be a good regulation scheme to provide
additional damping to frequency transients [9]. The technique consists in the emulation
of the dynamical characteristic of a rotating mass in the converter control and requires
an energy buffer to be used during transitory regulation: nonetheless, its derivative
nature allows the complete recovery of the energy buffer at the end of the transient.

The first example of synthetic inertia application has been introduced in [10] for
wind power systems, where it is possible to exploit both the natural kinetic energy
of the turbine or a local energetic buffer realised by means of a supercapacitors. A
similar approach is proposed in [11], even thought in this case the inertia regulation is
a consequence of the design of the converter synchronization system.

In [12]-[13] and [14], the inertia provision by means of HVDC systems is analysed,
while in [15] large-scale capacitors are considered. Nevertheless, in all these cases, a
complete and comprehensive state-space model of the converter under inertia support is
not developed and the identification of stability conditions is performed on a simulated
numerical base.

First experimental tests of the inertia control have been developed only recently
[16]-[17], even though the dynamical model that determines the stability properties of
the service provision is not identified and the characterization of the angular quantities
estimation under disturbed network conditions is not taken into account.

In the next chapters, the dynamical model of a power converter under inertia regu-
lation is developed and validated: this will be used to identify stability conditions for the
synthetic inertia parameters depending on the characteristics of the external network.
Furthermore, the proposed control strategies will be experimentally tested, with a focus
on angular quantities reconstruction under disturbed network conditions.

5.4 Case study definition

Consider two layouts reported in Fig.5.1. These architectures comprise:
• some non-dispatchable production units (e.g. photovoltaic generators) or loads,

whose power injection/absorption is typically independent of the external condition
of the microgrid;
• a certain number of dispatchable units, able to provide regulation services to the

grid during island operations by means of primary regulation.
In this chapter, the focus is on the control scheme of the non-dispatchable unit (PQ
architecture), when equipped with inertia provision schemes. Nevertheless, the dynam-
ical characterization of the grid-following system is influenced by the dispatchable unit
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that is actually performing primary frequency regulation on the network, thus the first
step is to identify the analysis case studies from the identification of dispatchable unit
configuration.

Depending on their nature, dispatchable units may be interfaced to the system by
means of power electronic converters (e.g storage) or traditional machines (e.g. diesel
generators or micro-turbines). Extreme cases reported in Fig. 5.1(a) and 5.1(b), in which
the regulation service is provided by a single typology of unit, are identified. The goal
associated to case studies definition is the following: determine a common and rigorous
mathematical model of the system able to predict frequency transients characteristics
under a certain power imbalance caused by the connection/disconnection of a local load
or by the transition from grid-connected to island mode. To do so, characteristic values
associated to the primary frequency regulation for the schemes in Fig.5.1(a) and 5.1(b)
are reported in Table 5.1 and 5.2 respectively. The same PQ unit has been considered
in the two case studies, whose values are reported in Table 5.3.

Values in Table 5.1-5.2-5.3 have been determined from physical and mathematical
considerations on the problem.

(a)

(b)

Figure 5.1: Typical layouts used for the analysis of frequency transients in low-inertia
systems. Case (a) corresponds to a microgrid in which all the production is interfaced
by means of electronic converters, while in case (b) it is considered the presence of
regulation units interfaced to the system by means of physical inertias (e.g. synchronous

generators).
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Table 5.1: Parameters for CASE STUDY 1 of the synthetic inertia analysis

Droop-controlled converter
Parameter Symbol Numeric value

Nominal power A1 2.4 kVA
Active droop coefficient m 0.020 per-unit
Droop time constant Tp 0.20 s

Internal voltage regulation time constant τdroop = ω−1
cV 3.2 ms

Table 5.2: Parameters for CASE STUDY 2 of the synthetic inertia analysis

Traditional regulation unit
Parameter Symbol Numeric value

Nominal power A1 2.4 kVA
Starting time Ta 10 s
Regulating energy Kreg 50 p.u.
Time constant of the internal regulation delay τ 500 ms

Table 5.3: Parameters for PQ converter, common to CASE STUDY 1 and CASE
STUDY 2

PQ unit
Parameter Symbol Numeric value

Base system (voltage, ang. fre-
quency, power)

Vb, ωb, Ab 200 V, 2π · 50 rad/s , 2.4 kVA

Nominal power A1 2.4 kVA
Current and DC voltage loops cut-
off ang. frequencies

ωcI , ωc dc 2π · 350 rad/s, 2π · 2.5 rad/s

FLL time constant τFLL 80−1 s

• Base voltage and design power for the PQ unit have been determined from the
available experimental microgrid setup.
• Droop parameters m and Tp in Table 5.1 have been chosen such as to provide a

tinier regulation on the grid with respect to the ones presented in Part I (m = 0.01
p.u. and Tp = 0.1 s), to better highlight the effect of frequency support from the
PQ unit under synthetic inertia control.
• The time constant of the internal droop delay τdroop in Table 5.1 is the inverse of

the AC voltage cut-off frequency regulation loop ωcV , according to the Table 2.1
in Part I.
• Regulating energy Kreg in Table 5.2 is the one required by code standards for

dispatchable units [18].
• Starting time Ta is independent of the physical nature of the primary source:

referring to [19] - [20] - [21], it ranges between Ta ∼= 6÷ 12 s; in the case study, it
was chosen Ta = 10 s.
• The equivalent time constant of the primary regulation delay τ derives from the

internal dynamics related to the insensitivity of the frequency controller. It is con-
sidered the maximum delay associated to the intervention of primary regulation,
around 500 ms, even though this value may be subject to a significant variability
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depending on the nature of the installed measurement apparatus.
The adopted methodology has followed the conceptual steps reported in the list

below.
1. A common analytical model able to contemporaneously take into account the pri-

mary regulation performed by the static units (as in Fig. 5.1(b)) and the traditional
ones (Fig. 5.1(a)) will be developed.

2. A detailed characterization for the PQ converter is introduced, which allows a
rigorous design of its control parameters.

3. Combining the models associated to regulation unit and the PQ one, a design
frame for synthetic inertia is carried out: two applicable schemes will be considered,
respectively acting of different loops inside the converter control.

The circuit in Fig. 5.2 is a common representation of the physical systems in
Fig.5.1(b) and 5.1(a). Neglecting the parasitic losses, the network instantaneous power
balance gives:

pg + pout + pconv = 0 (5.1)

where
• pg represents the independent accelerating power of the system;
• pout is the instantaneous contribution from the regulation units and physical iner-

tias of the system;
• pconv is the power injected by grid-following converters, which is typically indepen-

dent of the external state of the system, except when synthetic inertia is added.

If we refer to the differential model, (5.1) evolves in (5.2), where:
• ∆pg is the variation of load absorption (∆pg < 0 active load increase, ∆pg > 0

active load decrease);
• ∆pout is the contribution from physical inertias in the system and from primary

regulation;
• ∆pconv is the contribution from non-dispatchable units. If the converter is con-

trolled in grid-following mode ∆pconv = 0; if synthetic inertia is added, it becomes
∆pconv 6= 0.

∆pg + ∆pout + ∆pconv = 0 (5.2)

In this chapter, the base case without synthetic inertia is taken into account (∆pconv =
0). The first aspect regards the contribution of regulating units under load changes.

Figure 5.2: Equivalent circuit used for frequency transients analysis.
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5.5 Regulating units contribution

In this section, a common model of the grid-supporting unit able to keep into account
both the case of traditional generation and static converter is developed. The aim is
to derive a formal equivalence between droop control and primary frequency regulation
and analyse the different configurations by means of the same mathematical scheme.
Even though it is intuitive to underline a common behaviour of the two structures, still
it is interesting to derive an analytical parallelism between the two cases.

5.5.1 System regulation performed by traditional units

Consider the physical conditions reported in Fig. 5.1(b) and the circuit in Fig.5.2.
No synthetic inertia is provided from the PQ unit (∆pconv = 0).

Under a change of the local load ∆pg 6= 0, the system angular frequency undergoes a
transient and the grid-supporting unit changes its output ∆pout according to two effects:
• the kinetic energy variation from physical inertias in the system;
• the stabilizing effect provided by the primary frequency regulation.

∆pout = ∆pinertia + ∆preg (5.3)

The inertias effect can be considered referring to the swing equation [22], which
models the linearised behaviour associated to the kinetic energy derivative: an angular
frequency change ∆ω [p.u.] on the external system produces a variation of the injected
power ∆pinertia [p.u.] according to:

∆pinertia ·Ab = ∆p

[
1

2
J ·
(ωgωb

n

)2
]

= −
Jω2

b

n2
ω0p∆ω (5.4)

where:
• J is the total moment of inertia associated to the system in [kg m2];
• ω is the per-unit angular frequency in electrical degrees;
• n is the number of pole-pairs of the equivalent machine.
Assuming that the system was operating in nominal conditions before the transient

occurrence (ω0 ' 1) and defining the equivalent starting time of the system as Ta =
J ω2

b
n2 Ab

,

equation (5.4) becomes (5.5). As the dynamic is linear, Laplace variable s is considered.

∆pinertia = −Ta · s∆ω where Ta =
J ω2

b

n2Ab
(5.5)

The inertia contribution ∆pinertia is positive when ∆ω is negative, that is the ma-
chine injects power into the grid when the angular frequency reduces, as the kinetic
energy of the rotating mass decreases.

As regards primary regulation, it tends to compensate angular frequency dynamics
on the system injecting a differential power ∆preg according to a negative proportional
law, whose input corresponds to the angular frequency variation ∆ω; moreover the
physical modulation of the injected power from primary source happens only after a
delay associated to the internal plant dynamics. This effect can be taken into account
with the equivalent time constant τ . Thus the primary regulation effect can be expressed
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by (5.6) and (5.7) for time and Laplace domains respectively.

∆preg = −Kreg ·∆ω(t− τ) (5.6)

∆preg = −Kreg ·∆ω · e−sτ (5.7)

The first-order asymptotic expression of the delay according to Padè approximations
[23] leads to the equivalent transfer function in (5.8).

∆preg = −Kreg
1

1 + sτ
·∆ω (5.8)

Now it is possible to combine (5.5) and (5.8) in (5.9); substituting the result in (5.2)
(always under the condition ∆pconv = 0) leads to the dynamical model reported in Fig.
5.3 and expressed by equation (5.10). The direct branch of the loop takes into account
the inertia properties of the network, while the feedback models the primary frequency
regulation and its internal delay.

∆pout = ∆pinertia + ∆preg =

(
−s Ta −Kreg ·

1

1 + sτ

)
·∆ω (5.9)

as ∆pout + ∆pg + ∆pconv = 0 and ∆pconv = 0 :

∆ω = − 1 + s τ

s2 Ta τ + s Ta +Kreg
·∆pout =

1 + s τ

s2 Ta τ + s Ta +Kreg
·∆pg (5.10)

In case the nominal power is different with respect to the base ones, modified grid
parameters T ′a and K ′reg should be introduced rather than the original; the following

typical equivalences hold: T ′a = Ta · An1Ab
and K ′reg = Kreg · An1Ab

. This allows to model,
from the perspective of the PQ converter, to equivalent dynamics of a generic grid under
traditional primary frequency regulation (5.10).

5.5.2 Equivalence of traditional regulation with droop control

Comparing (5.10) with the dynamical behaviour associated to the droop control
as reported in Part I, it is possible to determine a formal equivalence between the
physical and control parameters included in the two formulations. As recalled in (5.11)
for clarity, droop control imposes an angular frequency ω for the three-phase reference
voltages proportional to the instantaneous active power pout; droop derivative coefficient

Figure 5.3: Dynamical model used for frequency transients in traditional grids. It
includes the effect of the system inertia and the primary regulation performed by dis-

patchable units.
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md is not considered in this analysis:

ω = ω∗ − m

1 + p Tp
· pout (5.11)

where m−1 =

(∑N
i=1

1

mi

)
and N is the number of units which are performing the

regulation. Considering the variations,

∆ω = − m

1 + p Tp
·∆pout (5.12)

In (5.12) it is also necessary to include the effect associated to the internal delay of
the voltage loop inside the converter, which can be roughly approximated as a unitary
gain single-pole function with a time constant τdroop equal to the inverse of the voltage
control loop cut-off frequency τdroop = ω−1

cV as designed in Part I. The numerical value
is reported in Table 5.1. Thus moving to the Laplace domain, (5.12) becomes (5.14).
As in this case we are assuming that the PQ converter is not providing any synthetic
inertia contribution (∆pconv = 0), the introduction of (5.2) in (5.14) leads to (5.15)

∆ω = − 1

1 + sτdroop
·
(

m

1 + s Tp

)
·∆pout (5.13)

= − 1

s2 TP τdroop
m + s

τdroop+Tp
m + 1

m

·∆pout (5.14)

as ∆pout + ∆pg + ∆pconv = 0 and ∆pconv = 0 :

∆ω =
1

s2 TP τdroop
m + s

τdroop+Tp
m + 1

m

·∆pg (5.15)

Pole comparison among (5.10) and (5.15) leads to the following formal equivalence.


τ =

Tp τdroop
Tp + τdroop

Ta =
Tp
m +

τdroop
m

Kreg = 1
m

(5.16)

As the internal delay τdroop is typically significantly smaller than the time constant
value Tp, the numerical correspondence of the droop parameters with the traditional
regulation model is given by:

τ = τdroop

Ta =
Tp
m

Kreg = 1
m

(5.17)

This procedure allows to interpret the droop control as a traditional primary fre-
quency regulation expressed by (5.10), provided that correct numerical values are used.
This enables the definition of a uniform design procedure for the synthetic inertia, in
which the system is always modelled as in (5.10). Applying (5.17) to the droop param-
eters reported in Table 5.1, the corresponding grid equivalents can be obtained:
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Case study 1
τ = τdroop = 3.2ms

Ta =
Tp
m = 10 s

Kreg = 1
m = 50 per-unit

(5.18)

5.6 Real control architecture for a photovoltaic scheme

Consider the general regulation schemes for a double-stage conversion photovoltaic
unit as reported in Figure 5.4.

In this introductory paragraph, a short description of each part of the control is
reported, to provide a general understanding of the analysed structure [24]. Later in the
chapter, all the design models used for the sizing of the regulators will be reported in
details.
• An external Phase Locked Loop (PLL) acquires a set of uncontrolled three-phase

voltages in correspondence to the Point of Common Connection (PCC) with the
external grid. The PLL defines the angle θ used for rotating-reference Park trans-
form and allows to maintain the converter-control synchronous with the external
grid.
• Linear controllers are used for the regulation of the DC voltage and of the injected

active and reactive powers. The DC bus controller generates a reference for the
current control, which is able to regulate the active power injection. As concerns
the reactive power, the reference signal may be considered an independent input
or can be generated from an external reactive-support algorithm (not included in
Figure 5.4).
• The system in Figure 5.4 also includes the Maximum Power Point tracking (MPPT)

algorithm [25]-[5]. In the double-stage conversion architecture, the MPPT acts on
the duty cycle of the intermediate DC-DC unit: this allows the introduction of an
additional degree of freedom for the system, as the DC bus voltage reference is not
defined by other sub-controls and can be exploited for inertia regulation.

5.7 Non-linear dynamical model of the converter

The goal of this section is to identify the dynamical system associated to the con-
verter when it is interfaced with the external grid by means of the PQ scheme reported in
Figure 5.5. The equivalent control structure in Figure 5.5 is independent of the primary

Figure 5.4: Functional structure of the control system for double-stage photovoltaic
unit. The introduction of an additional degree of freedom decouples the DC bus refer-

ence from the MPPT algorithm.
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source nature: the definition of the dynamical model allows to determine the correct
regulation parameters and identify the characteristic dynamics of the converter. The
non-linear reported in Fig. 5.5 can be obtained from the equations associated to the
control and to the physical system; it can be subsequently studied resorting to numerical
or analytical methods.

Consider the physical layout of the system as reported in Figure 5.6. On the AC
side, a typical LCL circuit is introduced to damp switching components introduced by
the modulation, similarly to what was already done for the droop control. The DC
side is modelled as a controlled current source in parallel to the physical DC bus of the
converter: the functional relation between the current source and the actual voltage on
the DC bus depends on the nature of the primary source.

Physical equations associated to the structure in Figure 5.6 can be easily obtained
from Kirchhoff current and voltage laws, and from the power balance performed on the
DC sections. As a notation, all the quantities on the AC side are expressed in the Park
domain; all the parameters and state variables are referred in per-unit, except for the
time derivative operator p in [s−1].

The dynamic associated to the DC bus capacitor can be obtained from the power
balance in Figure 5.6, assuming absence of losses for the converter:

(pdc −Re
[
v̄dq · ī∗dq

]
) ·Ab = p

(
1

2
Cdc · (vdc · Vb dc)2

)
(5.19)

where Cdc stands for the physical capacitance on the DC side expressed in [F], vdc
is the capacitor voltage in per-unit and Vb dc is the base voltage for the DC side in

Figure 5.5: Simplified block structure of the PQ control, obtained considering the
common architecture of the schemes in section 5.6. The regulation is realized with
an external DC-bus voltage control and an internal current control; an independent
phase-locked loop (PLL) determines the control frame, synchronous with the external

grid.

Figure 5.6: Equivalent control system associated to the converter, when it is operated
in PQ mode. As the DC-bus and the equivalent primary source idc = f(vdc) play a
role in the definition of converter dynamics, they have been included in the circuit

differently from the case of the droop-controlled unit.
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[V]. Additionally, pdc expresses the per-unit power produced by the primary source,
referred to the common base power Ab, which determines the charging/discharging of
the capacitor. Defining the time constant τdc = Cdc ·V 2

b dc/Ab, it is possible to derive the
non-linear model associated to the DC bus.

pdc −Re
[
v̄dq · ī∗dq

]
= τdcvdc · pvdc where τdc = Cdc · V 2

b dc/Ab (5.20)

pvdc =
1

τdcvdc
· (Idcvdc − (vdid + vqiq)) (5.21)

The equations associated to the physical AC side circuit can be written referred to
a synchronous reference dq, rotating with the angular frequency ω of the external grid,
and are formally equivalent to the ones derived for the droop case:

v̄dq = Rf īdq +
p

ωb
Lf īdq + jωLf īdq + v̄o dq (5.22)

v̄o dq = Rd · (̄idq − īo dq) +
īdq − īo dq

p
ωb
Cf + jωCf

(5.23)

v̄o dq = Rg īo dq +
p

ωb
Lg īo dq + jωLg īo dq + v̄g dq (5.24)

Thus:

p̄i =
ωb
Lf
· (v̄ − v̄o − jωLf ī−Rf ī) (5.25)

p̄io =
ωb
Lg
· (v̄o − v̄g − jωLg īo −Rg īo) (5.26)

pv̄o =
ωb
Cf
· (−jωCf v̄o + (1 + jωCfRd) · (̄i− īo)) +Rd · (p̄i− p̄io) (5.27)

The control system accepts in input the reference DC bus voltage vdc ref and the
injected reactive power reference qref . Two loops are respectively associated to the
control of the constant DC voltage and of the AC side current components. As regards
the design of current regulator, it is carried out following the same procedure (Appendix
B) adopted for the droop scheme. On the other hand, the characteristics of the DC-
voltage controllers will be analysed in Section 5.9, after having identified the linearised
characteristics of the dominant system dynamics.

The DC-bus control determines the active power reference prefdc according to a
proportional-integral (or simply proportion) linear regulator, expressed as in (5.28)-
(5.29); Edc in (5.28) represents the integral error associated to the PI regulator included
in the voltage loop, provided that ki dc 6= 0.

pEdc = (vdc ref − vdc) (5.28)

prefdc = [kp dc · (vdc ref − vdc) + ki dc · Edc] (5.29)

In case no synthetic inertia is included into the system, equation (5.29) defines the

active reference power for the internal current control (pref = prefdc ), while the reactive
qref is assumed as an independent input. From the active and reactive desired injections,
it is possible to obtain direct and quadrature current references simply dividing by the
voltage magnitude v̄o, which in normally close to one.
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∆irefo d =
∆pref

|v̄o|
(5.30)

∆irefo q = −∆qref

|v̄o|
(5.31)

A feed-forward compensation proportional to the coefficient HV is introduced in
order to compensate the effects associated to the filter capacitor. As it was done for
the derivation of the simplified linearised model of the droop control, also here it is
possible to neglect the effects of the damping resistor in the design of the feed-forward
compensation. Provided that the coefficient HV is close to one and the filter capacitance
Cf is known with a good accuracy, it is possible to control both active and reactive
injections into the grid with a reduced number of sensors and with no need to measure
the output current īo.

In Figure 5.7, it is provided a compact representation of the non-linear system
associated to the current and DC-voltage controls.

An interesting point is related to the definition of the reference frame of the control
d̃q̃ and its relationship with the real synchronous frame dq. To formalize the problem
mathematically, the dynamic properties of the PLL (which aligns the control frame d̃q̃
to the synchronous one dq, as shown in Figure 5.8) have to be identified. The first frame,
defined by the angle θ, corresponds to the one synchronous with the external grid and
aligned to the actual voltage v̄o; the second one corresponds to the control frame created
by the PLL algorithm, and it is defined by the angle θ̃.

The PLL design is reported in Appendix B; still it is possible to evaluate the effect
of the double reference frames (dq and d̃q̃). Consider a the voltage space vector v̄o αβ
referred to absolute fixed coordinate system αβ; from the control frame d̃q̃ perspective,
the space vector can be expressed as:

v̄o d̃q̃ = v̄o αβe
−jθ̃ (5.32)

while the one associated to the synchronous system dq is:

v̄o = v̄o αβe
−jθ (5.33)

Combining (5.32) with (5.33) leads to (5.34), where ∆θ = θ − θ̃

v̄o d̃q̃ = ej∆θ · v̄o dq (5.34)

The angular difference ∆θ = θ − θ̃ is determined by the dynamics of the PLL,
which aligns the control frame d̃q̃ to the synchronous one dq. Considering the PLL-SRF
structure introduced in Appendix B, the following set of algebraic-differential equations
(5.35)-(5.37) allows to determine the control angle θ̃.

ω̃ = (Kp PLL · vo q̃ +Ki PLL · Eq̃ PLL + ω∗) (5.35)

pEq̃ PLL = vo q̃ (5.36)

pθ̃ = ωb ω̃ (5.37)

On the other hand, the synchronous angle θ can be expressed according to the grid
state-space model obtainable from (5.10): this allows to represent network dynamics by
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Figure 5.8: Definition of the synchronous dq and control d̃q̃ frames. Synchronous
frame is associated to the angular frequency ω of the external grid, while the control
frame is characterized by the angular frequency ω̃. Even though at steady state the two
angular frequencies coincide, transient behaviour is affected by the non-ideal response
time of the PLL algorithm, which determines the difference in the angular frequencies.

means of the following set of equations:

pθ = ωb ω → p∆θ = ωb · (ω − ω̃) (5.38)

pω = α (5.39)

pα =
1

Taτ
· (−Taα−Kreg · (ω − ωgn) + τ · (p pg + p pconv) + (pg + pconv)) (5.40)

where Ta, τ and Kreg are the grid regulation parameters according to Table 5.2; pg is
the independent accelerating power of the network and pconv is the active injection from
the PQ unit.

The same angular error introduced by the PLL for the acquisition of the voltage
v̄o is also associated to the other measured AC state variables, like filter current ī. In
particular, this can be obtained considering complex power invariance with respect to
the rotation of the reference frame; thus, considering (5.34):

s̄o = v̄o dq · ī∗dq = v̄o d̃q̃ · ī
∗
d̃q̃

(5.41)

v̄o dq · ī∗dq = ej∆θ · v̄o dq · ī∗d̃q̃ (5.42)

ī∗o dq = ej∆θ · ī∗
d̃q̃

(5.43)

īd̃q̃ =
(
e−j∆θ · ī∗dq

)∗
= ej∆θ · īdq (5.44)

As regards the output of the control, on the other hand, the wrong estimation of
the angular position leads to a phase delay of the actual applied voltage v̄dq with respect

to the reference one imposed as input of the modulator v̄ref
d̃q̃

(Fig. 5.7). Thus:

v̄dq = e−j∆θ · v̄ref
d̃q̃

(5.45)

These considerations can be generalized:
• the measured quantities are perceived, from the control perspective, affected by a

rotation term ej∆θ with respect to the synchronous ones;
• outputs of the control algorithm are subjected to a phase delay equal to e−j∆θ
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Introducing in (5.45) the internal delay of the modulator expressed by (5.46), it is
possible to derive:

v̄dq =
e−j∆θ

1 + p · Tinv
· v̄ref
d̃q̃

(5.46)

The complete non-linear system in state-space form is reported in Appendix A. The
state space model, that includes all the dynamics of the system, will be used to evaluate
the correctness of the simplified design procedures proposed in the following.

5.8 Linearised system

The system in Figure 5.7 can be linearised in order to obtain a simplified design
model for DC bus control and, later, inertia support design. The following hypotheses
are introduced in the derivation:
• given the typically low value of the angular difference θ−θ̃ ∼= 0, the transitory error

introduced by the phase estimation algorithm is neglected. Thus it is possible to
assume a single rotating frame dq with angular frequency ω and consider d̃q̃ = dq.
• The converter output voltage v̄ is close to the filter one v̄o, both in terms of

magnitude and characteristic angle. The hypothesis is reasonable considering a
small voltage drop on the filter inductor and the converter far from the transmission
limit associated to the load angle δ. Hence

∣∣V̄o∣∣ = Vod =
∣∣V̄ ∣∣ and vo q = vq = 0.

• As the dissipative elements of the filter are characterized by a low value, lossless
behaviour is assumed for the LCL filter. Thus the power balance can be expressed

as Re
[
v̄dq · ī∗dq

]
∼= pconv = Re

[
v̄o dq · ī∗o dq

]
.

From (5.20), the dynamic equation associated to the DC bus can be linearised
resorting to the small variations method:

(Vdc+∆vdc)·(Idc+∆idc)−(Vod+∆vod)·(Id+∆id) = τdc·(Vdc+∆vdc)·p(Vdc+∆vdc) (5.47)

The time derivative of steady state solution is zero and also second order differentials
can be neglected in (5.47), leading to:

VdcIdc + Vdc∆idc + Idc∆vdc − (VodId + ∆vodId + Vod∆id) = τdcVdcp∆vdc (5.48)

The power balance at steady state can be expressed as VdcIdc = VdId. Moreover, the
variation of the voltage ∆vd is negligible with respect to other quantities as the voltage
drop on the filter remains limited. Considering all these simplifications, the final linear
model in the Laplace domain can be obtained.

∆vdc =
Vod

Idc − τdcVdcs
·∆id −

Vdc
Idc − τdcVdcs

·∆idc = (5.49)

=
1

Idc − τdcVdcs
· (Vod∆id − Vdc∆idc) (5.50)

Equation (5.50) shows that the linearisation of the DC bus dynamics introduces
a positive-real-part pole into the system, whose position depends on the value of the
steady state DC current produced by the primary source Idc, on the rectified voltage Vdc
and on the time constant τdc (which includes the value of the available capacitance).
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Additionally, a disturbance term proportional to the variation of the primary source
current ∆idc is present. Generally this term is characterized by slow dynamics, typi-
cally associated to the change of the physical conditions of the primary generator (e.g.
photovoltaic or wind unit), thus it does not significantly affect DC bus voltage loop
stability.

Figure 5.9(a) and 5.9(b) include the linearised models for the direct and quadrature
systems, respectively; as the PLL system imposes vo q ∼= 0, the two linearised models are
respectively responsible for the control of active and reactive powers injected into the
grid.

5.9 DC bus control

The main objective of the DC bus regulator is to define the reference active power
to be sent to the direct current control and maintain equal balance between production
and injection. Moreover, the definition of a stabilizing controller for the DC bus is more
critical than the one associated with current control as the linearised system in (5.50)
shows a pole with positive real part, whose position depends on the actual injection from
the primary source, on the physical installed DC bus capacitance and on the steady-state
value of the DC bus voltage.

In order to define suitable parameters associated to the regulator, it is important
to determine the characteristics of the equivalent load in the voltage loop. Consider
the loop Ldc(s) reported in Figure 5.10, used for the regulator design; the following
hypotheses are introduced:

(a)

(b)

Figure 5.9: Linearised direct (a) and quadrature (b) components of the control sys-
tem. As the PLL imposes vo q ∼= 0, direct and quadrature current components allow to
independently control active /reactive network injections at the point of common con-
nection, provided that a compensation term HV ' 1 is introduced in the quadrature

scheme and the filter capacitance value Cf is known with sufficient accuracy.
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• internal current loop has been approximated as a first order transfer function
according to Appendix B, where ωcI is the current cut-off angular frequency.

KI(s) =
1

1 + s/ωcI
. (5.51)

• Steady-state DC current from the primary source Idc can vary in the range Idc ∈
[0; 1]p.u.
• Time constant τdc = Cdc · V 2

b dc/Ab keeps into account the DC bus characteristics.
• Following steady state values are assumed: Vdc = Vdc ref = 1.2 p.u. and Vod = 1 p.u..

From Fig. 5.10, the equivalent load function can be identified (5.52): it is composed
by the high-frequency current control pole in ωcI and by the linearised model of the DC
bus as calculated in (5.50), which produces a slow pole whose angular frequency depends
on the current injected from the primary source Idc.

Gdc(s) = KI(s) ·
Vod

Idc − τdcVdcs
=

1

1 + s/ωcI
· Vod/Idc

1− τdcVdcs/Idc
(5.52)

Additionally, Fig. 5.10 shows the presence of the current disturbance Vdc
Vod

∆idc generated
by the variation of the primary source current: in general, the variation ∆idc is associated
to slow dynamics and thus its effect is negligible, provided that an integral effect is
included in the voltage loop [23].

Figure 5.10 shows the effect associated to the variation of the slow pole with respect
to the primary source current Idc: if Idc = 0 the equivalent load function includes
a natural integral associated to the capacitor dynamics. Thus in this case it would
be possible to control the system with a simple proportional regulator, obtaining null
steady state error thanks to the natural integrating effect of the capacitor. Intuitively,
the case with Idc = 1 is the most critical as the magnitude of the equivalent load
function decreases with the current: thus for increasing injections, a stronger controller
is necessary to obtain the desired pass-band and stability margins. In order to stabilise
the voltage loop, different structures are considered for the controller:
• a proportional regulator with negative coefficient kp dc;
• a proportional integral structure designed according to the Nyquist stability crite-

rion of the loop Ldc.

Figure 5.10: General model associated to the DC voltage control. Internal current
loop is approximated as a first order transfer function.
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Figure 5.11: Equivalent load function associated to the voltage control. The low
frequency pole included into the model depends on the current injected from the primary

source.

5.9.1 Proportional regulator

A first approach to the DC bus regulation consists in introducing a simple pro-
portional regulator into the voltage loop, thus referring to the following loop function:

Ldc(s) = kp dc ·
1

1 + s/ωcI
· 1

Idc − τdcVdcs
(5.53)

The design of the proportional regulator can be carried out considering direct and
inverse root-locus for the closed-loop function, as obtained in Fig.5.12 and derived ac-
cording to the tracing guidelines provided in [23].

From Fig. 5.12 it is evident the need to consider a negative proportional coefficient
kp dc < 0 for the voltage regulator to stabilise both closed-loop function poles. This
is reasonable from the physical point of view if we consider the control structure as
reported in Fig.5.10: when the actual voltage of the DC side is higher than its nominal
value, εdc = ∆vdc ref −∆vdc < 0, the converter has to inject more active power into the
grid in order to compensate the mismatch on the DC voltage. Hence a positive reference

prefdc > 0 should be considered and the proportional regulator Rdc = kp dc =
prefdc
εdc

, must
be negative.

Moreover, the mathematical modelling of the system allows to clearly define the
minimum value (in magnitude) that should be considered for the proportional regulator
to obtain stability. In fact, starting from the loop function expressed in (5.53), it is
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Figure 5.12: Root locus of the DC bus loop with proportional regulator. In black
bold it is reported the direct locus, in red the inverse one.

possible to identify the closed-loop system poles given by (5.55).

Ldc(s, kp dc) =
N(s, kp dc)

D(s)
→ Kdc(s) =

Ldc
1 + Ldc

(5.54)

Kdc(s) =
N(s, kp dc)

N(s, kp dc) +D(s)
(5.55)

whose characteristic equation is:

s2 · (−Vdcτdc/ωcI) + s · (Idc/ωcI − Vdcτdc) + (Idc + kp dc) = 0 (5.56)

The minimum value (in magnitude) for kp dc is obtained when the unstable closed-
loop pole is in the origin. Thus from (Idc + kp dc) = 0, the maximum value k′p that
guarantees the stability equals k′p dc = −Idc (Figure 5.12), where Idc = 1 p.u. represents
the most critical condition for the system.

Moreover, the position of the rightmost pole, once stabilized, determines the cut-off
angular frequency ωc dc associated to the voltage control loop. This can be imposed from
the loop function (5.53):

|Ldc(jωc dc)| = |kp dc| · |Gdc(jωc dc)| = 1 (5.57)

|kp dc| =
1

|Gdc(jωc dc)|
=

√
1 +

(
ωcI
ωc dc

)2

·
√
I2
dc + ω2

c dcτ
2
dcV

2
dc (5.58)

Typically the voltage cut-off angular frequency ωc dc should be chosen lower than the
current-loop one ωcI , thus avoiding mutual interferences of the two controls during regu-
lation. Under this condition, (5.58) exclusively depends on the capacitor characteristics:

kp dc = −
√
I2
dc + ω2

c dcτ
2
dcV

2
dc (5.59)

Furthermore, in case the DC voltage cut-off angular frequency ωc dc is chosen higher
than ωc dc >

Idc
τdcVdc

, expression (5.59) simplifies to:

kp dc = −ωc dcτdcVdc (5.60)

The Bode and Nyquist diagrams associated to this case are reported in Fig. 5.13.
The system is asymptotically stable provided that kp dc < −Idc: in fact the loop function
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shows a positive real-part pole (Np = 1), which is compensated by a single counter-
clockwise turn of the frequency response around the point (−1; 0) in the Nyquist diagram
(Ng = 1). Thus the system is asymptotically stable according to the Nyquist criterion.

Consider the values of the DC bus reported in Tab.5.1, with a desired cut-off angular
frequency ωc dc = 2π · 3.5 rad/s; worst-case conditions are introduced for the current
Idc = 1 p.u., while nominal grid value Vod = 1 p.u. and DC bus reference equal to
Vdc ref = 1.2 per-unit are assumed. The approximated expression of the proportional
coefficient kp dc as obtained in (5.60) leads to the coefficients in Table 5.4, compared to
the exact ones obtained from the load function inversion (5.58).

The advantage of the approximate coefficient kp dc calculation is mainly associated
to its independence with respect to the actual production Idc from the primary source.
Moreover also considering the numeric open and closed-loop transfer function of the
voltage control loop (Fig. 5.14) under the primary source current Idc variation (Idc ∈
[0, 1] per-unit), it is possible to see a small sensitivity of the angular cut-off frequency
under different injections.

The choice to introduce a simple proportional regulator in the voltage loop allows
an easy design of the control parameters, but introduces as a drawback the dependence
of the steady-state voltage value on the actual level of injected DC current Idc: the
reason lies in the absence of integral action in the loop Ldc when Idc 6= 0: the gain of
the transfer function Ldc is finite for s→ 0 and the control is not able to guarantee null
error at steady state, even for constant voltage references.

Consider a step change of the reference ∆vdc ref; actual steady-state voltage variation
can be obtained from the Laplace final value theorem applied to the closed-loop transfer

Figure 5.13: Bode diagram associated to the voltage loop under proportional control.
The system is stable provided that kp dc < −Idc as the positive-real-part pole of the
loop (Np = 1) is compensated by the counter-clockwise turn of the frequency response

around the point (−1; 0) in the Nyquist diagram (Ng = 1).

Table 5.4: Proportional DC regulator

Parameter Value

Approximated (5.60) kp dc = −7.03 p.u.
Exact (5.58) kp dc = −7.10 p.u.
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Figure 5.14: Numerical Bode diagram for the DC bus control - Proportional regulator.

function Kdc(s).

∆vdc(t→∞) = lim
s→0

(
s ·Kdc(s) ·

∆vdc ref

s

)
= Kdc(0) ·∆vdc ref =

=
Ldc(0)

1 + Ldc(0)
·∆vdc ref =

kp dc
Idc + kp dc

·∆vdc ref (5.61)

Equation (5.61) shows that the actual change in the voltage matches the reference
variation only if Idc = 0; in case of full current Idc = 1p.u. and with the calculated
regulator kp dc = −7.03 the expected steady-state DC from (5.61) under unitary reference
change would be equal to ∆vdc s.s. = 1.16p.u., compatible with the step response in Fig.
5.15.

5.9.2 Proportional-Integral regulator

A different option for DC bus controller design consists in introducing a proportional-
integral regulator in the scheme already reported in Fig. 5.10. The loop function Ldc(s)

is given by (5.62), where TR =
kp dc
ki dc

is the integral time of the PI controller. The follow-
ing procedure will be carried out to determine the conditions associated to the sign of
the control coefficients:
• as already mentioned, unitary primary source current Idc = 1 p.u. is the outmost

critical condition for loop stability. Thus, the design will be carried adopting
the conservative hypothesis Idc = 1p.u. , subsequently verifying that stability is
maintained also for Idc = 0.
• Four different cases corresponding to the combinations of the coefficients sign will

be considered according to Table 5.5: Bode and Nyquist diagrams associated to
each case are reported in Fig. 5.17.

Ldc(s) = ki dc ·
1 + sTR

s
· 1

1 + s/ωcI
· Vod
Idc − τdcVdcs

(5.62)
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Figure 5.15: Step response for the DC bus control - Proportional regulator.

Table 5.5: PI controller for DC bus voltage - Case definition

Case Integral coeff. ki dc Time constant TR

1 > 0 > 0
2 > 0 < 0
3 < 0 > 0
4 < 0 < 0

The structure in (5.62) shows two degrees of freedom respectively associated to the
proportional and integral coefficients. The design can be carried out imposing suitable
cut-off angular frequency ωc dc and phase margin φm for the open-loop Ldc. The system
in (5.62) is characterized by a negative real-part zero in ωz = 1

TR
, a slow positive-real-

part pole ωp1 = Idc
Vdcτdc

and a fast negative-real-part pole in ωp2 = ωcI .
Consider the four cases reported in Fig. 5.17. Even though all of them are charac-

terized by the same magnitude profile, phase profiles differ as consequence of the sign of
the parameters ki dc and TR.

Figure 5.16: System block diagram with proportional integral regulator. The closed-
loop stability for all the possible combinations of the coefficients sign has to be analysed.
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• cases A, B and D are unstable for all the possible absolute values of the coefficients,
as they do not meet Nyquist stability conditions.
• Case C is the only one which could lead to a stable closed-loop behaviour, provided

that the real axis intersection in the Nyquist diagram occurs left-ward with respect
to point (−1; 0). This condition holds only if the magnitude diagram intersection
with the 0 dB axis occurs after the zero in ωz = 1

TR
in the corresponding Bode

diagram.

Figure 5.17: Stability analysis of the voltage controller with different signs for the
control coefficients. Considering Nyquist stability criterion, only case C shows a stable

behaviour, which corresponds to ki dc < 0 and TR > 0.
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Thus the following condition can be derived for the controller, under the constraints
imposed by the case C:∣∣∣∣ 1

TR

∣∣∣∣ < ωc dc (5.63)

ki dc < 0 TR > 0 (thus it must be kp dc < 0) (5.64)

Provided that (5.63) is verified, the asymptotic behaviour of the DC voltage open-
loop function Ldc(s) close to the cut-off angular frequency ωc dc is given by (5.65); in the
calculation it is assumed that the voltage loop cut-off angular frequency ωc dc is lower
than the current loop one ωcI , as correctly imposed by the nested-loop structure of the
control architecture.

Ldc(s) = −
kp dcVd
τdcVdcs

for

∣∣∣∣ 1

TR

∣∣∣∣ < ω < ωcI (5.65)

Once defined the desired cut-off angular frequency ωc dc, the proportional coefficient
is determined by (5.67).

|Ldc(jωc dc)| =
|kp dc|Vd
τdcVdcωc dc

= 1 (5.66)

|kp dc| =
τdc Vdc ωc dc

Vod
(5.67)

Once verified that (5.63) - (5.65) lead to stable operations for the voltage loop when
primary source current is maximum Idc = 1 p.u., the verification of the stability in low-
production case should be evaluated. This can be done considering the constraints (5.63)
- (5.65) applied to the load function reported in Fig. 5.11 when Idc = 0 . Bode and
Nyquist diagrams in this case are reported in Fig. 5.18.

In these case studies, DC bus capacitance is chosen equal to Cdc = 8 mF (with max-
imum voltage 400V ) and, at this stage, it is assumed as an input of the problem. Later
in the analysis it will be shown how it is possible to correlate the available capacitance
with the maximum regulation performances of the inertia loop, focusing not only on
energetic considerations, but also on the inherent stability of the global system. The
numeric values referred to case study derived from Table 5.3 are reported in Table 5.6.

The numeric behaviour of the controller in terms of step change and frequency
response is reported in Fig. 5.19 and 5.20 respectively; Fig. 5.19 in particular shows

Table 5.6: PI DC regulator

Parameter Symbol Value

DC bus capacitance Cdc 8mF (@ 400V )

Time constant τdc = Cdc · V 2
dc b/Ab 0.267 s

Max. pole position Idc
τdcVdc

with Idc = 1 p.u. ∼= 3.1 rad/s

Desired cut-off angular freq. ωc dc 2π · 2.5 ∼= 15.7 rad/s

Proportional coeff. (5.66) kp dc −5.02 p.u.

Controller integral time (5.64) T−1
R 6 rad/s
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Figure 5.18: Verification of the voltage loop stability under low production. Condi-
tions derived in (5.63) - (5.65) have been applied to the case with Idc = 0.

the over-shoot due to a unitary step of the voltage reference ∆vdc ref , caused by the

contemporaneous action of the positive real-part pole Idc
τdcVdc

associated to the DC bus

dynamics and the slow zero T−1
R introduced by the regulator. Even though the over-

shoot may be significant especially for high values of the DC current, the unitary change
of the reference is practically not meaningful under nominal operations of the converter.

Figure 5.19: Step response for the DC bus control - Proportional-integral regulator.
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Figure 5.20: Bode diagrams for the DC bus control - Proportional-integral regulator.
Physical and control values refer to Table 5.6.

5.10 Inertia models

The schemes reported in Fig. 5.21(a) and Fig. 5.21(b) represent the two developed
architectures for the provision of inertia support to the grid: both the schemes are
derived from the grid-following topology presented in Fig.5.7. Moreover the typical PQ
configuration is modified with an additional feedback that introduces a dependence of
the injected power on the balancing state on the network, reducing the excursion of
frequency transients.

The two architectures can be interpreted considering the energetic behaviour of
the system. Firstly consider the current-controlled model (Fig. 5.21(a)): the inertia
feedback introduces an active power reference proportional to the frequency derivative,
thus the converter emulates the behaviour of a physical inertial body (5.5). Thanks to
its derivative nature, it does not affect the behaviour of the unit at steady state and can
be applied also to non-dispatchable sources. Intuitively the power reference pin should
be positive under negative values of the derivative, coherently to (5.5).

The decision to introduce the inertia signal as an additional power reference obvi-
ously allows to obtain very fast regulation and a straightforward design of the control
parameters, as all the internal dynamics show high cut-off frequencies and significant
robustness. Moreover it is evident the difficulty to extract the derivative of the signal
frequency from a set of voltages affected by disturbances. Thus in the next chapter
it will be shown how to improve the estimation of the fundamental angular frequency
derivative even under distorted network conditions.

Moving to the voltage-controlled model (Fig. 5.21(b)), the emulation contribution
can be obtained acting on the DC bus voltage reference. Here it may be more diffi-
cult to define the characteristics of the controller that has to be used to provide inertia
regulation. Consider a proportional behaviour between the DC bus voltage reference
∆vdc ref and the differential angular frequency ∆ω. Chapter 8 will show that a propor-
tional dependency between the actual frequency variation ∆ω and the DC bus voltage
reference has the same effect of an active power injection activated by the frequency
derivative; this formal equivalence can be maintained provided that a positive angular
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(a)

(b)

Figure 5.21: Control architectures for inertia support. In (a) the additional feedback
comprises a derivative estimator and a power reference (current-controlled model), while
in (b) the direct estimation of the system frequency produces a DC voltage reference

signal (voltage-controlled model).

frequency change ∆ω > 0 is counterbalanced by an increase of the DC bus voltage
reference ∆vdc in > 0.

5.11 Conclusion

In this chapter the main architecture associated to the PQ control has been intro-
duced starting from the definition of the complete non linear model of the system: the
followed approach is based on the derivation of a set of analytical equations from each
element included into the system. After that, all the subsets have been combined in or-
der to derive a model able to take into account different aspects of the control: current
and voltage loops, phase estimation by means of the PLL. Analytical guidelines for the
design of the internal control loops have also been provided.

Most of the concepts addressed in this chapter are known in literature, still their im-
portance lies in the definition of a common background for the synthetic inertia analysis
that will be carried out in the following. In particular, the analytical equivalence be-
tween the droop scheme and the primary frequency regulation (even though intuitively
reasonable from the energetic point of view) allows to highlight the role played by each
control parameter during system regulation.





Chapter 6

Angular quantities estimation for
the provision of inertia services

6.1 Introduction

A key aspect to be taken into account during the provision of transitory inertia ser-
vice regards the possibility to estimate the physical angular quantities in a fast and clean
way from the available voltage measurements. In particular, the presence of harmon-
ics and unbalanced components may cause a poor quality of the reconstructed signal;
on the other hand, a strong filtering effect may lead to a better signal-to-noise ratio,
even though slows down the reconstruction of angular variables, reducing the equivalent
phase margin of the interaction between dispatchable and non-dispatchable units.

In this chapter, a comparison between some angular quantity estimators will be
carried out. Moreover, a novel scheme based on the inverse sequence compensation will
be proposed and it will be shown experimentally how its performances represent a good
trade-off between fast estimation and high Signal-to-Noise ratio.

6.2 SOGI-FLL architecture

6.2.1 Description of the SOGI

Consider the architecture typically referred in literature as Second Order General-
ized Integrator (SOGI) [26], as introduced in [27] - [28] and [29] for the extraction of
the fundamental sinusoidal harmonic component ω from the input signal v(t). Typical
graphical representation of the SOGI is reported in Fig.6.1 in the Laplace domain.

Moreover, if we consider the analytical resolution of the feedbacks reported in Figure
6.1, it is easy to find out that the combination of all the control loops corresponds to
the application of two digital resonant filters D(s) and Q(s) to the input signal. The

Figure 6.1: Architectures of the Second Order Generalized Integrator (SOGI) in the
frequency domain
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expressions of the transfer functions V ′(s)
V (s) = D(s) and QV ′(s)

V (s) = Q(s) are given by:

D(s) = 2ξ · s/ωn
(s/ωn)2 + 2ξ(s/ωn) + 1

(6.1)

Q(s) = 2ξ · 1

(s/ωn)2 + 2ξ(s/ωn) + 1
(6.2)

The following notation is used:
• ωn: resonant angular frequency;
• ξ damping factor;
• ω: network fundamental angular frequency;
• s = jωs: Laplace operator and symbolic frequency response variable.

The filtering properties of the two transfer functions can be imposed simply acting on the
equivalent damping ξ = kSOGI

2 and resonance angular frequency ωn; the magnitude and
phase diagrams of the transfer functions in (6.1) and (6.2) are reported in Fig.6.2. Both
functions show a unitary gain at the resonance frequency ωn, while the phase delay is
respectively equal to 0◦ and −90◦ for D(s) and Q(s) in correspondence to the resonance
frequency ωn.

The physical interpretation of the output signals V ′(s) and QV ′(s) is straightforward
once determined the characteristics of the transfer function D(s) and Q(s) from Fig. 6.2:
in case ωn coincides with the fundamental angular frequency ω, V ′(s) coincides with the
Laplace transform of the fundamental sinusoidal component of the system voltage, while
QV ′(s) stands for the same signal delayed by a quarter of a period.

6.2.2 Interaction of the SOGI with the FLL loop

In this section the interaction of the SOGI with the Frequency Locked Loop (FLL)
will be analysed. The typical configuration is shown in the control diagram of Figure
6.3-6.4.

Figure 6.2: Bode diagrams of the transfer functions D(s) and Q(s).
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Figure 6.3: Equivalent control diagram of the SOGI-FLL algorithm

Figure 6.4: Representation of the FLL scheme for the SOGI architecture

In order to analyse the coordination of the SOGI scheme with the FLL algorithm,
consider the response associated to the transfer functions D(s) and Q(s). Assume a
normalized sinusoidal input signal vα with angular frequency ω (6.3), the output signals
v′α and qv′α from the resonant filters D(s) and Q(s) are given by (6.4) and (6.5); the
frequency response of v′α and qv′α at steady state shows that the two sinusoids are always
in quadrature with respect to each other, independently of the values of the input angular
frequency ω and the resonance one ωn.

vα(t) = cos(ωt) (6.3)

v′α(t) =

∣∣∣∣∣∣ j2ξωωn√
(ω2
n − ω2)2 + (2ξωωn)2

∣∣∣∣∣∣ · cos(ωt+ π/2− φd(jω)) (6.4)

qv′α(t) =

∣∣∣∣∣∣ j2ξωωn√
(ω2
n − ω2)2 + (2ξωωn)2

∣∣∣∣∣∣ · ωnω · cos(ωt− φd(jω)) (6.5)

where φd(jω) = atan( 2ξωωn
ω2
n−ω2 ). The difference εα = vα − v′α can be expressed by means

of the transfer function E(s) = Vα(s) · (1−D(s)).

E(s) =
s2 + ω2

n

s2 + 2ξωns+ ω2
n

Vα(s) (6.6)
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Likewise (6.4), the steady state condition for the error is obtainable as:

εα(t) =
ω2
n − ω2√

(ω2
n − ω2)2 + (2ξωωn)2

· cos(ωt− φd(jω)) (6.7)

It is possible to linearise (6.7) around the equilibrium ω ∼= ωn. Thus the numerator
of (6.7) becomes ω2

n−ω2 = (ωn + ω)·(ωn − ω) ∼= 2ωn·(ωn − ω); under the same condition
ω ∼= ωn, the denominator can be approximated as in (6.8) provided that ωn − ω < ξω:
this condition represents an index of the robustness of the linearised model with respect
to the non-linear one. Nevertheless, considering the typical limited excursion of the grid
angular frequency, this condition is generally verified.

εα(t) ∼=
2ωn · (ωn − ω)

2ξωωn
· cos(ωt− φd(jω)) (6.8)

According to the FLL scheme reported in [28] and in Fig. 6.4, the product εα(t) ·
qvα(t) is proportional to the angular frequency difference ωn − ω; this can be seen
considering that the magnitude of the transfer function |D(jω)| is almost unitary for
ω ∼= ωn:

εα(t) · qv′α(t) ∼=
2ωn · (ωn − ω)

2ξωωn
· |D(jω)| · ωn

ω
· cos2(ωt− φd(jω)) ∼= (6.9)

=
(ωn − ω)

ξωn
· 1

2
· [1 + cos(2ωt− 2φd(jω))] as ω ∼= ωn (6.10)

where the asymptotic behaviour ω ∼= ωn has been used for the coefficients simplification;
this allows to have a simpler control structure of the FLL, with a single input ω. The
quantity defined in (6.10) can be used to tune the resonance peak of the SOGI filters on
the fundamental component of the system. In a three-phase case like the one reported
in Fig. 6.4 and 6.3, the actual input of the FLL is given by the average between the
equivalent errors associated to the axes α and β, which is used as an input signal for the
frequency tuning. Assuming pure sinusoidal inputs, the same calculation performed on
the β axis gives (6.11); thus considering the sum of the two quantities as input of the
FLL allows to remove the component at two times the fundamental. Predictably, this
does not happen for the single phase case as reported in [16], where the pass-band of
the FLL should be chosen low enough to filter out the component at 2ω.

εβ(t) · qv′β(t) ∼=
(ωn − ω)

ξωn
· 1

2
· [1− cos(2ωt− 2φd(jω))] (6.11)

Thus:

εα(t) · qv′α(t) + εβ(t) · qv′β(t) =
ωn − ω
ξωn

(6.12)

Typically, a pure integral controller kFLL/s guarantees the absence of any steady-
state error between the fundamental angular frequency ω and the resonant one ωn. The
introduction of normalizing coefficients (ξ, kFLL) reported in Fig. 6.4 allows to define
the equivalent loop used for the tuning of the FLL parameter kFLL, obtainable from
Fig.6.5; a feed-forward compensation of the nominal angular frequency ω∗n = 1 p.u. is
also introduced to speed up the convergence of the algorithm.
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The equivalent closed-loop transfer function of the FLL (6.13) shows how the pa-
rameter kFLL actually coincides with the FLL pass-band, provided that the correct
normalization coefficients are introduced in Fig.6.5. The linearised relation between the
actual ω and estimated ωn system angular frequencies can be expressed by (6.13), which
has the typical form of a first-order low-pass filter with a known pass-band.

CLFLL(s) =
ωn
ω

=
1

1 + s/kFLL
=

1

1 + s τFLL
(6.13)

Figure 6.5 shows that the input of the FLL integral can be regarded as a good
estimate of the approximated angular frequency derivative associated to the fundamental
system component. In the perspective of inertia service provision, this is a crucial point:
it allows to have at disposal not only the information on the network balancing state
(represented by the angular frequency), but also an estimate of its time evolution given
by the derivative. This enables the design of fast control actions during transitory
condition of the network but null at steady state and thus compatible with the un-
dispatchable nature of the PQ units. Moreover, the natural presence of the angular
system derivative in the FLL loop allows to avoid the introduction of any numerical
derivation process that would bring to a poor Signal-to Noise ratio for the reconstructed
signal.

From Fig.6.5, the closed loop function associated to the actual derivative estimation
becomes (6.14); this can be used as an estimate of the actual angular frequency derivative
of the network.

ω̇n =
s

1 + s/kFLL
ω =

s

1 + sτFLL
ω (6.14)

6.2.3 Design of SOGI-FLL control parameters

The design of the control coefficients ξ and kFLL = τ−1
FLL can be done considering the

mutual internal dynamics of the SOGI and FLL; the expected convergence time of the
resonant controllers included into the SOGI can be obtained studying the time evolution
of the free motion of the system. From explicit calculation reported in Appendix C.1,
the estimated settlement time of the free response of the system is given by:

Tset =
4.6

ξωn
(6.15)

Typically the cut-off angular frequency of the external loop (the FLL in this case) should
be in the same order of magnitude of the settlement time of the SOGI, so as to guarantee

Figure 6.5: Derivation of the equivalent transfer function between system angular
frequency ω and ωn for the SOGI-FLL structure.
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that the inner dynamics are already at steady state when the external control starts to
operate: k−1

FLL = τFLL ∼= Tset.
This produces a necessary trade-off between the desired filtering properties of the

SOGI and the estimation convergence speed: a reduction of the damping coefficient ξ
gives higher filtering properties but, on the other side, the settlement time will increase
according to (6.15). Nevertheless, if we are able to provide a clean input signal, the
internal dynamics of the SOGI and FLL can evolve contemporaneously and it will be
possible to extend the fastness of the estimation keeping a good Signal-to-Noise ratio.

To compare the available SOGI architecture with newly introduced schemes, two
alternative designs are considered even though only the first one is mathematically com-
pliant with the condition expressed by (6.15). With a nominal angular frequency of the
fundamental component ωn = 2π ·50 rad/s and a damping factor ξ = 0.2, cases in Table
6.1 can be identified.

6.2.4 Sequence extraction

Fig. 6.3 highlights how it is possible to exploit the SOGI scheme for the identifi-
cation of phase angle θ associated to the first-order positive sequence component from
the determination of its space vector αβ components. Even though the obtained for-
mulas are available in literature, their derivation is often not provided in a formal way.
Nevertheless, it is possible to obtain them straightforwardly.

Consider a general complex signal vα(t) + jvβ(t) in the Park domain, obtained from
the superposition of rotating vectors at positive and negative sequences.

(vα + jvβ) =

(
N+∑
h=1

V̄ +
h · e

jhωt +
N−∑
h=1

V̄ −h · e
−jhωt

)
(6.16)

vα = v+
α + v−α (6.17)

vβ = v+
β + v−β (6.18)

Equations (6.17)-(6.18) define four independent time-signals, which are respectively
the α and β components of the separate positive and negative sequences: v+

α , v+
β , v−α

and v−β , given by (6.19)-(6.20).

v+
α =

N+∑
h=1

Re
{
V̄ +
h · e

jhωt
}

v+
β =

N+∑
h=1

Im
{
V̄ +
h · e

jhωt
}

(6.19)

v−α =

N−∑
h=1

Re
{
V̄ −h · e

−jhωt
}

v−β =

N−∑
h=1

Im
{
V̄ −h · e

−jhωt
}

(6.20)

Table 6.1: Design alternatives definitions for the SOGI algorithm

Case ξ Design criterion kFLL

Slow SOGI 0.2 (6.15) 8.0 rad/s
Fast SOGI 0.2 Fast estimation 80 rad/s
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Thus:

v+
α =

N+∑
h=1

{
|V̄ +
h | · cos

(
hωt+ φ+

h

)}
v+
β =

N+∑
h=1

{
|V̄ +
h | · sin

(
hωt+ φ+

h

)}
(6.21)

v−α =

N−∑
h=1

{
|V̄ −h | · cos

(
−hωt+ φ−h

)}
v−β =

N−∑
h=1

{
|V̄ −h | · sin

(
−hωt+ φ−h

)}
(6.22)

where φ+
h and φ−h are the arguments of the positive and negative phasors V̄ +

h and V̄ −h ,
while V +

h and V −h are their corresponding magnitudes.
Consider now a new set of voltages qvα(t) + jqvβ(t), characterized by two con-

straints::
• the corresponding phase displacements in qvα(t) + jqvβ(t) lag the ones of vα + jvβ

by π/2 for the positive sequence components , while lead by the same quantity for
negative sequences.
• The magnitude of qvα(t) + jqvβ(t) matches the one associated to vα+ jvβ for each

harmonic component, both at the direct and negative sequences.
As already pointed out in the previous analysis, resonant controllers in the SOGI produce
a −90◦ delay of the quadrature signal with respect to the direct one independently of
the angular frequency, provided that it is positive; for negative angular frequencies,
the outputs of Q(s) will lead by 90◦ the one associated to D(s) (Fig.6.6): thus the
first constraint is met. As regards the equal magnitude condition, the functions D(s)
and Q(s) do not show from a rigorous point of view the same magnitude profile: as a
consequence, the exploitation of D(s) and Q(s) for the positive and negative sequence
extraction is affected by an intrinsic error, even though numerically limited. Still this
is acceptable considering that in correspondence to the resonance frequency the equal
magnitude constraint is met and, out from the resonance, the mismatch is attenuated
by the significant filtering action introduced by the functions.

Thus if (6.21) and (6.22) are the output of transfer function D(s) according to the
scheme reported in Fig. 6.3, the quadrature signals will be given by (6.23)-(6.24), which

Figure 6.6: Extension of the transfer function D(s) to the negative frequency range.
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are approximatively equal to the output of Q(s).

qv+
α =

N+∑
h=1

{
|V̄ +
h | · cos

(
hωt+ φ+

h − π/2
)}

qv+
β =

N+∑
h=1

{
|V̄ +
h | · sin

(
hωt+ φ+

h − π/2
)}

(6.23)

qv−α =
N−∑
h=1

{
|V̄ −h | · cos

(
−hωt+ φ−h + π/2

)}
qv−β =

N−∑
h=1

{
|V̄ −h | · sin

(
−hωt+ φ−h + π/2

)}
(6.24)

The application of easy trigonometric equalities to (6.23) and (6.24), combined with the
definition in (6.21) and (6.22), leads to the following definitions:

qv+
α = v+

β qv−α = −v−β qv+
β = −v−α qv−β = v+

α (6.25)

Thus:

qv′α = qv+
α + qv−α = v+

β − v
−
β (6.26)

qv′β = qv+
β + qv−β = −v+

α + v−α (6.27)

The goal is now to derive the positive sequence components from the available signals
(v′α,v′β,qv′α and qv′β); equations (6.17)-(6.18) and (6.26)-(6.27) define a 4th order de-
termined linear system that can easily lead to the expressions of positive and negative
sequences from available signals.

v+
α =

vα − qvβ
2

v+
β =

qvα + vβ
2

(6.28)

v−α =
vα + qvβ

2
v−β =

−qvα + vβ
2

(6.29)

Equations (6.28)-(6.29) correspond to the block ”Sequence extraction” reported in Fig.
6.3. The quantities v+

α and v+
β practically retain all the informations of the positive

sequence component and thus can be used for the identification of the synchronization

angle, obtained as θ = arctan

(
v+β
v+α

)
. Regardless the widespread use of the SOGI scheme

as converter synchronizer, in this work it is exclusively adopted for the identification of
the angular frequency and its derivative, in the perspective of the synthetic inertia provi-
sion. Still the derivation of the sequence extraction formulas (6.28)-(6.29) will be used to
modify the frequency locked loop algorithm in the proposed estimation scheme, that will
be introduced in the next section: the combination of the highly disturbance-rejective
SOSOGI architecture, combined with the sequence extraction from (6.28)-(6.29) and an
additional compensation loop for the first-order negative component, will be the base
for the development of a robust and noise-free estimator.

6.3 Second-Order Second-Order Generalized Integrator with
inverse-sequence decoupling

Even though the SOGI architecture shows good filtering performances for high-order
harmonic components that may be present in the grid, in order to estimate the angular
frequency derivative with a good signal-to-noise ratio and in a fast way it is necessary
to extend the above presented architecture in order to solve several issues associated to
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the SOGI scheme. According to [30], the major critical point is the poor rejection of
low-frequency components for the transfer function Q(s), as the components with an
angular frequency lower than the resonance one ωn are only partially filtered by the
factor ksogi = 2ξ.

What it is generally not reported in literature regards the poor SOGI behaviour
when a first-order inverse sequence component is included into the input voltages. If we
refer to the Bode diagram extension in the negative frequency range (Fig.6.6), it is easy
to recognize that the SOGI treats the first-order negative sequence in the same way as
the fundamental one and does not provide any inner filtering effect for this component.

In this perspective, the architecture associated to the frequency-derivative estimator
has to be modified in order to make it insensitive with respect to possible negative
sequence components in the input voltage v̄o: the developed scheme is derived starting
from the architecture proposed in [30] to reduce the issues related to low-harmonics
and DC component rejection, with the addition of a negative-sequence compensation
cell that allows to reconstruct the angular frequency of the input signal v̄o in a robust
and fast way. The proposed control is developed to provide pure sinusoidal direct-
sequence signals to the FLL, thus allowing the extension of its internal pass-band and,
by consequence, an improved response-speed of the estimation process.

Consider the scheme reported in Fig. 6.7 and the corresponding FLL architecture
(Fig.6.8).

In the proposed architecture, the quadrature component qv′α is previously filtered
by D(s) before entering into the block associated to the quadrature generator Q(s), thus
giving higher rejections for disturbance terms both at low and high frequency.

The evaluation of the SOSOGI architecture is taken into account under distorted
grid conditions, in order to highlight the effects of the improvements with respect to the
simple SOGI scheme. Consider as input of the system a generalized three-phase voltage

Figure 6.7: Proposed architecture for the extraction of angular frequency scheme:
Second-Order/Second-Order Generalized Integrator with negative-sequence decoupling

cell.
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Figure 6.8: Representation of the FLL scheme, compliant with the SOSOGI archi-
tecture reported in Figure 6.7.

set in the Park domain, that can be expressed by the space vector vα+jvβ. The effect of
the in-phase filter D(s) defines the voltage set v′α+jv′β, while the subsequent application
of Q(s) produces qv′α + jqv′β

vα + jvβ =

N+∑
h=1

V̄ +
h · e

jhωt +

N−∑
h=1

V̄ −h · e
−jhωt (6.30)

v′α + jv′β =
N+∑
h=1

V̄ +
h · |D(jhω)| ejhωt+]D(jhω)+

+

N−∑
h=1

V̄ −h · |D(jhω)| e−jhωt−]D(jhω) (6.31)

qv′α + jqv′β =
N+∑
h=1

V̄ +
h · |Q(jhω)| |D(jhω)| ejhωt+]D(jhω)+]Q(jhω)+

+

N−∑
h=1

V̄ −h · |Q(jhω)| |D(jhω)| e−jhωt−]D(jhω)−]Q(jhω) (6.32)

where the generalized frequency response magnitudes and phase displacements are given
by:

|D(jωs)| =

∣∣∣∣∣∣ j2ξωsωn√
(ω2
n − ω2

s)
2 + (2ξωsωn)2

∣∣∣∣∣∣ (6.33)

|Q(jωs)| = |D(jωs)| ·
ωn
ωs

(6.34)

]D(jωs) = arctan
ω2
n − ω2

s

2ξωsωn
(6.35)

]Q(jωs) = arctan
ω2
n − ω2

s

2ξωsωn
− π

2
(6.36)

Unlike the traditional SOGI case, the relative angular displacement between each
harmonic component of v′α + jv′β and qv′α + jqv′β is not fixed, as it is given by the angle
]Q(jω). The combination of the filtering properties coming from the series connection
of D(s) and Q(s) guarantees the almost complete absence of disturbance terms at the
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FLL input, thus (6.31)-(6.32) simplify:

v′α + jv′β
∼= V̄ +

1 · |D(jω)| ejωt+]D(jω)+

+ V̄ −1 · |D(jω)| e−jωt−]D(jω) (6.37)

qv′α + jqv′β
∼=V̄ +

1 · |Q(jω)| |D(jω)| ejωt+]D(jω)+]Q(jω)+

+ V̄ −1 · |Q(jω)| |D(jω)| e−jωt−]D(jω)−]Q(jω) (6.38)

The representation of the signal inputs to the FLL is reported in Fig.6.8. According
to this scheme, the sequence extraction formulas introduced in (6.28)-(6.29) are exploited
to attenuate the effect of the remaining negative sequence component on the FLL dy-
namics; thus expressions (6.37)-(6.38) are substituted in (6.28)-(6.29) to reconstruct the
αβ components of the positive and negative sequences separately. Some easy trigono-
metric manipulations are applied during the substitution; furthermore, to simplify the
procedure, it is assumed |D(jω)| = |Q(jω)| = 1. This is reasonable considering the
transfer functions shapes and the fact that the FLL adapts the resonance frequency ωn
to be close to the fundamental ω. Nevertheless, the information related to the phase
displacements (]D(jω) and ]Q(jω)) is retained as it represents the quantity associated
to the resonance adaptation process in the FLL loop. The following expressions are thus
derived:

v+
α
∼=V +

1 cos(ωt+
3

2
]D(jω) + φ+

1 ) cos(
]D(jω)

2
)+

− V −1 sin(ωt+
3

2
]D(jω) + φ−1 ) sin(

]D(jω)

2
) (6.39)

v+
β
∼=V +

1 sin(ωt+
3

2
]D(jω) + φ+

1 ) cos(
]D(jω)

2
)+

+ V −1 cos(ωt+
3

2
]D(jω) + φ−1 ) sin(

]D(jω)

2
) (6.40)

v−α
∼=− V +

1 sin(ωt+
3

2
]D(jω) + φ+

1 ) sin(
]D(jω)

2
)+

− V −1 cos(ωt+
3

2
]D(jω) + φ−1 ) cos(

]D(jω)

2
) (6.41)

v−β
∼=− V +

1 cos(ωt+
3

2
]D(jω) + φ+

1 ) sin(
]D(jω)

2
)+

− V −1 sin(ωt+
3

2
]D(jω) + φ−1 ) cos(

]D(jω)

2
) (6.42)

If the input signal is distorted, v+
α retains the positive-sequence information included

in v
′
α, which are the ones of interest. Thus it is possible to use the signal v+

α instead
of v

′
α as input of the FLL, to reduce the algorithm sensitivity with respect to negative

sequence terms. According to the proposed scheme reproduced in Fig.6.8, the input of
the FLL is obtained as (v+

α · qv′α + v+
β · qv

′
β). Under the typical condition V1

+ >> V1
−,
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the calculation leads to the following expressions for the FLL input:

v+
α · qv′α ∼=

V +
1

2

2
· cos

(
]D(jω)

2

)
·
[
sin

(
]D(jω)

2

)
+ sin

(
2ωt+

7

2
]D(jω) + 2φ+

1

)]
(6.43)

v+
β · qv

′
β
∼=
V +

1
2

2
· cos

(
]D(jω)

2

)
·
[
sin

(
]D(jω)

2

)
+ sin

(
2ωt− 7

2
]D(jω) + 2φ+

1

)]
(6.44)

(v+
α · qv′α + v+

β · qv
′
β) = V +

1
2 · cos

(
]D(jω)

2

)
· sin

(
]D(jω)

2

)
(6.45)

Provided that the resonance frequency ωn is close to the fundamental one ω, the
displacement angle ]D(jω) is close to zero, thus it is possible to substitute the first
order asymptotic behaviour for the trigonometric functions in (6.45):

(v+
α · qv′α + v+

β · qv
′
β) ∼= V +

1
2 · 1

2
]D(jω) ∼=

V +
1

2

2
· arctan

(
ωn

2 − ω2

2ξωnω

)
(6.46)

As the FLL itself imposes ωn ∼= ω, the asymptotic behaviour for the inverse tangent
function leads to (6.47), where almost unitary amplitude of the fundamental positive-
sequence Park voltage is assumed (in per-unit).

(v+
α · qv′α + v+

β · qv
′
β) ∼=

arctan
(
ωn2−ω2

2ξωnω

)
2

∼=
ωn

2 − ω2

4ξωnω
(6.47)

(v+
α · qv′α + v+

β · qv
′
β) ∼=

(ωn − ω)(ωn + ω)

4ξωnω
∼=

2ω(ωn − ω)

4ξωnω
=
ωn − ω
2ξωn

(6.48)

The linearised expression (6.48) is exploited in order to tune the normalization
coefficients in the loop, which is reported in Fig.6.9; the normalization coefficients allow
to make the cut-off angular frequency of the FLL loop exclusively dependant on the
design parameter kFLL = τ−1

FLL.
As the FLL input exclusively depends on the filtered quantities (v+ , qv

′
), the esti-

mation is less sensitive to the external disturbances in the input voltage. This makes the
proposed configuration much better than the traditional SOGI-FLL scheme presented in
the previous section. Moreover, as it is possible to see from Fig. 6.7, it is also introduced
a decoupling network for the reduction of inverse sequence effect.

Figure 6.9: Linearised system for the SOSOGI-FLL architecture used for the regula-
tion coefficient definition.
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The previous analysis has shown that the main concern of the SOGI-FLL structure
is associated to its inability in discriminating positive and negative sequences at the
fundamental: the decoupling network allows to remove the inverse sequence by means
of a feed-forward compensation scheme, avoiding any delay in the main control branch.
The decoupling cell extracts the negative sequence from the input signal by means of an
inverse angular rotation from the reference frame αβ to dq−. Subsequently, the inverse
sequence is removed from the input signal to the SOSOGI architecture; the filter cut-off
angular frequency T−1

p is chosen (T−1
p << 2ωb, T

−1
p = 10 rad/s), as to avoid interferences

of the decoupling cell with the positive sequence component.
Under the conditions identified by the block diagram in Fig.6.9, the relation between

the actual angular frequency ω and the estimated derivative ω̇n is given by:

ω̇n =
s

1 + s/kFLL
· ω =

s

1 + sτFLL
· ω (6.49)

Case studies in Table 6.2 are identified to test the algorithms performances.

6.4 Experimental results associated to the estimation of
the angular frequency derivative

This section carries out an experimental comparison of the above presented estima-
tion techniques on a real test environment. The general representation of the physical
layout is provided in Appendix D, even though here the peculiar characteristics of this
test will be explained (Fig. 6.11).

Two independent converters are operated in island, supplying a high resistive load.
The first converter is operated in Grid-forming mode (Fig. 1.1(a)): according to this
control architecture, the unit imposes whichever voltage profile at its AC terminals
(both in amplitude and frequency), independently of the network conditions. The DC
bus of this converter is connected to an external infinite-power source which provides
the necessary capability for the system supply: in this case, the ideal source is obtained
from the rectification of a three-phase voltage set from the public network, according to
the scheme in Fig.6.11 (which is further explained in Fig.D.1). As in this case the entire
microgrid operates at no-load, the supplied power is practically null at steady-state.

The second unit is operated in PQ mode (Fig. 5.7): as its DC bus is not supplied
by any external source, at steady-state the reference active power is practically set equal
to zero by the DC bus regulation, except for the tiny internal losses of the converter
(pref dc = 0, in Fig. 5.7). The reactive reference is manually set to qref = 0. As no
current is flowing in any of the microgrid branches, the voltage profile is practically
equal in any position of the isolated network and it is exclusively determined by the
grid-forming unit (Converter 1).

Once all these conditions are set, the tests can be performed. The microgrid is
operated around the fundamental frequency (50 Hz) at almost unitary per-unit voltage.

Table 6.2: Design alternatives definitions for the SOSOGI algorithm

Case ξ Design criterion kFLL = τ−1
FLL

Slow SOSOGI 0.2 (6.15) 8.0 rad/s
Fast SOSOGI 0.2 Fast estimation 80 rad/s

Fast SOSOGI + dec. cell 0.2 Fast estimation 80 rad/s
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Even though the microgrid voltages are ideally sinusoidal, the unbalances of the physical
elements induce a tiny negative sequence component, whose amplitude is close to 2%
of the fundamental. Furthermore, the non-linearities naturally present in any set-up
produce other harmonic components (e.g. 5th order negative sequence component, 7th

order positive sequence component). The three-phase voltage spectra associated to the
steady-state microgrid voltages are reproduced in 6.10, respectively obtained from the
measurements of the grid-forming converter (on the left) and of the grid-following one
(on the right).

Two different conditions are tested. In the first one, the grid-forming converter
imposes a constant angular frequency close to the nominal: these results are identified
as steady state ones. In the second typology, the grid-forming converter imposes a non-
constant frequency reference on the microgrid, according to a second-order oscillatory
behaviour that exemplifies the typical transients experienced in power networks. The
proposed algorithms are evaluated at steady state to analyse the disturbance rejection
capabilities and during a frequency transient imposed by the grid-forming converter
to assess the convergence performances; the comparison is carried out considering the
estimated angular frequency, its derivative and the relative spectra.

It worth to highlight that no communication is established between the units; the
grid-forming converter simply imposes a pre-determined voltage profile on the network,
which is physically measured by the grid-following unit (Converter 2): as practically no
current is flowing in the system, there is no consistent difference in the voltage profiles
at the terminals of the two units.

The ideal angular frequency profile imposed by the first converter is known, as is set
by the grid-forming control. The second converter, on the other hand, simply measures
the quantities at its terminals (affected by the natural disturbances of the physical

Figure 6.10: Spectrum associated to the set of three-phase voltages at steady state.
Positive frequencies stand for the direct sequence components (space vectors in counter-
clockwise direction), negative ones are the inverse sequences (clockwise direction). The
left-side graph refers to the quantities as measured by the grid-forming converter, while

the right-side one elaborates the measurements from the grid-following unit.
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interface network) and reconstructs the angular quantities exploiting the above-presented
estimators. Thus each graph shows two different time-series: the plot labelled as real
corresponds to the ideal quantity imposed by the grid-forming unit, while measured
stands for the reconstruction as seen by the grid-following converter.

The second unit is active (even though practically at no-load, pref dc = 0 - qref = 0 )
and it is synchronized to the system by means of a traditional PLL; thus the estimation
performed by means of the proposed SOGI / SOSOGI schemes does not influence its
stability performances. This allows to carry out an equal and fair comparison between
the techniques.

In the following subsections, the results of the experimental tests will be reported.
The comments to the proposed results are included all together in Sect. 6.4.6; the
considered control parameters are the ones in Tables 6.1 and 6.2.

Figure 6.11: Scheme of the experimental set-up used for angular estimators compar-
ison.
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6.4.1 Slow SOGI (KFLL = 8.0rad/s)

(a) Steady state ang. frequency (b) Steady state ang. derivative

(c) Transient ang. frequency (d) Transient ang. derivative

Figure 6.12: Angular quantities for SOGI architecture with slow FLL. Plots report
the comparison between the state imposed by the grid-forming unit (real) and the one
measured by the grid-following converter. In (a) and (b) it is possible to see that the
steady-state quantities are characterized by low harmonic disturbances, even though

the estimation is slow during the transients (c)-(d).
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6.4.2 Fast SOGI (KFLL = 80rad/s)

(a) Steady state ang. frequency (b) Steady state ang. derivative

(c) Transient ang. frequency (d) Transient ang. derivative

Figure 6.13: Angular quantities for SOGI architecture with fast FLL. Plots report
the comparison between the state imposed by the grid-forming unit (real) and the one
measured by the grid-following converter. The harmonic content of the estimation is
particularly poor especially for the angular frequency derivative (b)-(d); nevertheless,

the estimation is fast also during transients (c).



Chapter 6. Angular quantities estimation for the provision of inertia services 160

6.4.3 Slow SOSOGI (KFLL = 8.0rad/s)

(a) Steady state ang. frequency (b) Steady state ang. derivative

(c) Transient ang. frequency (d) Transient ang. derivative

Figure 6.14: Angular quantities for SOSOGI architecture with slow FLL. Plots report
the comparison between the state imposed by the grid-forming unit (real) and the one
measured by the grid-following converter. In (a) and (c) it is possible to see that the
steady-state quantities are characterized by low harmonic disturbances, even though

the estimation is slow during the transients (b)-(d).
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6.4.4 Fast SOSOGI (KFLL = 80rad/s)

(a) Steady state ang. frequency (b) Steady state ang. derivative

(c) Transient ang. frequency (d) Transient ang. derivative

Figure 6.15: Angular quantities for SOSOGI architecture with fast FLL. Plots report
the comparison between the state imposed by the grid-forming unit (real) and the
one measured by the grid-following converter. Even though high-order harmonics are
cancelled, still the effect of the negative sequence produces a disturbance at 100 Hz,

both at steady-state (a)-(b) and during transients (c)-(d).
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6.4.5 Fast SOSOGI with decoupling cell (KFLL = 80rad/s)

(a) Steady state ang. frequency (b) Steady state ang. derivative

(c) Transient ang. frequency (d) Transient ang. derivative

Figure 6.16: Angular quantities for SOSOGI architecture with fast FLL and decou-
pling cell for the inverse sequence component. Plots report the comparison between the
state imposed by the grid-forming unit (real) and the one measured by the grid-following
converter. The proposed topology over-perform with respect to other techniques: the

real and measured quantities are almost coincident in all the tested conditions.

6.4.6 Analysis of the results

The steady state and transitory behaviour reported in Fig. 6.12-6.16 show the time
profiles and spectrum associated to the estimation techniques under test, both at steady-
state and during a known network frequency transient imposed by the grid forming unit.
The goal is to guarantee the best possible combination of noise rejection and convergence
speed: this ensures a good signal-to-noise ratio for the reconstruction, while limiting the
equivalent delay associated to the estimation.

Figure 6.12 refers to the case of a SOGI scheme, with slow FLL algorithm. Looking
at the steady state profiles of the angular quantities in Fig.6.12(a)-6.12(b), it is easy to
see that the algorithm guarantees a good rejection from system disturbances; nonetheless
its performances significantly deteriorate during the frequency transients imposed on the
network, as the slow pass-band of the FLL introduces a significant delay in the estimation
of system derivative. From a dynamical point of view this aspect should be taken into
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account carefully during the introduction of synthetic inertia, as a too high delay may
reduce the phase margin associated to the control. Thus it is reasonable to investigate
the possibility to a faster reconstruction of the derivative signal.

A first attempt reported in Fig.6.13 consists in the increase of the band-pass of the
FLL. As regards the angular frequency, both at steady-state Fig.6.13(a) and during tran-
sients Fig.6.13(c), the SOGI algorithm performs well; on the other hand, the correspond-
ing angular frequency derivative has a poor signal-to-noise characteristic 6.13(b)-6.13(d).
The analysis of the spectrum in Fig. 6.13(b) allows to identify major disturbance com-
ponents. The main criticality regards the presence of a strong inverse sequence: with
respect to the synchronous angular frequency, the inverse sequence appears as an equiv-
alent disturbance at 2fn = 100 Hz, which produces a highly-distorted behaviour on the
derivative signal. Furthermore, the spectrum in Fig. 6.13(b) highlights the presence of
a higher-frequency disturbance located in correspondence to 300 Hz: this is the effect of
the 5th and 7th components introduced by the physical non-linearities of the converter
interface, as seen by the rotating synchronous frame. Even though the convergence time
is acceptable, the reconstruction results ineffective because of the poor signal-to-noise
ratio.

Figure 6.14 shows the reconstruction carried out by the SOSOGI, with slow FLL
pass-band. Its noise rejection properties are good but the convergence time is charac-
terized by the same unacceptable delay already identified in Fig. 6.12: as a consequence
of its slow dynamic, it would induce a significant degradation of the phase margin in all
the controls it would be exploited in.

On the other hand, the pass-band increase results inapplicable in terms of signal-
to-noise ratio (Figure 6.15): if we compare the spectra with respect to the SOGI ones
in Fig.6.13 characterized by the same regulation parameters, it is possible to observe
a reduction of the disturbance terms at 300 Hz as a consequence of the higher filtering
properties of the SOSOGI architecture. Nevertheless, this scheme it is still not able to
completely cancel the impact of the first order negative sequence.

On the contrary, the introduction of the decoupling cell as proposed in Fig.6.7 guar-
antees a fast estimation of the angular quantities and an effective noise insensitivity:
not only it provides good rejection with respect to the disturbance at 300 Hz, it almost
completely cancel the effect of the negative sequence on the angular derivative estima-
tion. Furthermore, its convergence time is comparable to the one of the SOGI scheme
in Fig.6.12, even though it is possible to highlight the presence of a small oscillatory
transient in the estimation. This is due to the more complicated interactions of the
internal dynamics of the algorithm.

As a global consideration, it is possible to highlight that all the techniques guarantee
an acceptable estimation of the angular frequency: still, as soon as they are evaluated
in terms of frequency derivative, significant changes occur between the algorithms.

In order to assess in a numerical way the performances of the schemes, it is possible to
define some numerical performance indexes associated to the curves above. According to
the definitions, the higher it is the performance indexes, the better the system behaviour:
the subscript ”0” in the definition of the performance index indicates the average value
of the estimation, which is physically obtained in correspondence of the DC component
of the spectrum.
• Inverse of the Total harmonic distortion (THD) of the angular frequency signal (up

to 500 Hz, at steady state); ω0 is the value of the average fundamental component,
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as seen from the synchronous frame.

PI−1
1 = THDωg =

√∑
h6=0 ω

2
h − ω2

0

ω0
(6.50)

• Inverse of the harmonic content (HC) of the derivative signal (up to 500 Hz, at
steady state)

PI−1
2 = HCω̇g =

√√√√ 500∑
h6=0

ω̇2
h (6.51)

• Inverse of the cumulative integral error between actual and estimated angular
frequency:

PI−1
3 =

T = 5 s∑
t=0

|ωreal(t)− ωmeasured(t)| (6.52)

• Cumulative integral error between actual and estimated derivative:

PI−1
4 =

T = 5 s∑
t=0

|ω̇real(t)− ω̇measured(t)| (6.53)

Table 6.3 shows the comparison of performance indexes between tested algorithms,
highlighting how the developed technique is able to produce a fast and accurate estimate
of the desired angular quantities. It is possible to see that the proposed algorithm is
characterized by better performances in almost all the indexes: this means that the
reconstructed quantities are almost identical to the ones imposed by the grid-forming
converter and thus the estimation is minimally affected by physical disturbances.

Figure 6.17 shows the normalized performances indexes for each considered estima-
tion technique; a global index PIg, obtained from the arithmetic average of the single
indexes for each tested algorithm, is introduced for synthetic evaluation. The higher
value of this global indicator for the SOSOGI-N highlights the out-performances of
the proposed strategy: both in terms of response speed and disturbance rejection, the
developed scheme behaves better with respect to the available techniques reported in
literature. In this perspective, the possibility to estimate in a fast and reliable way
the evolution of the network represents the key enabling factor for the experimental
validation of the inertia schemes that will be proposed in the following.

Table 6.3: Numerical comparison between angular quantities estimation techniques.

Estimator PI1 PI2 PI3 PI4

(6.50) (6.51) (6.52) (6.53)

Slow SOGI 1.0 · 104 5.2 · 101 3.3 · 10−2 5.5 · 10−3

Fast SOGI 3.0 · 104 5.3 · 100 2.2 · 10−1 9.1 · 10−4

Slow SOSOGI 1.0 · 104 1.7 · 102 2.2 · 10−2 5.9 · 10−3

Fast SOSOGI 9.1 · 103 1.7 · 101 1.3 · 10−1 2.6 · 10−3

Fast SOSOGI + dec. cell 1.0 · 104 2.3 · 102 1.3 · 10−1 1.4 · 10−2
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Figure 6.17: Normalized performance indexes for the tested estimators.

6.5 Voltage amplitude variation

In this section, the robustness of the developed algorithm against changes of the
voltage amplitude (like the ones caused by short circuits and voltage sags) is analysed. In
order to decouple the estimation of the fundamental angular frequency from the variation
of input voltage amplitude, it is necessary to adopt the normalization scheme reported
in Fig.6.18. This allows also to make the dynamical performances of the algorithms
exclusively determined by the control parameters and not by the nominal voltage level.

Consider the set of three-phase voltages as acquired by the converter control system;
at t = 1 sec. (Fig.6.19), a voltage sag equal to 50% of the nominal occurs. In order
to prove the robustness of the estimation algorithm, a negative sequence component
equal to 2% of the fundamental is added to the voltage profile, as well as 5th and 7th

harmonics, with an amplitude of 2%. Additionally, a zero-sequence DC component of 1
V is added, in order to simulate voltage bias on the sensors, and a Gaussian noise with
standards deviation σ = 2.5V models the random non-biased errors in the acquisition
process. The profile of the acquired three-phase voltages is reported in Fig. 6.19.

In Fig.6.20(a) the system is simulated without on-line normalization; it is possible to
see that as soon as the voltage sag occurs, an undesired transient is measured both on the
angular frequency ω and on its derivative ω̇ = α. This leads to misinterpretation of the

Figure 6.18: Normalization scheme for input voltages.
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Figure 6.19: Actual zoomed profile of the three-phase voltages.

actual network status and to possible instability for the inertia provision. On the other
hand, the introduction of the normalization scheme (Fig. 6.18), makes the estimation
practically insensitive with respect to changes in the input voltage amplitude, allowing
the reconstruction of the real system state 6.20(b).

6.6 Conclusion

In this chapter, several alternatives have been considered for the estimation of the
system angular quantities; the analysis has been primarily focused on Generalized Inte-
grators schemes [27] combined with a Frequency Locked Loop algorithm: this schemes
are generally recognized as good solutions for angular quantities estimation as they do
not require numerical derivation processes. Several alternatives have been taken into ac-
count, comparing their performances in terms of convergence speed and rejection of the
disturbances (coming from the negative sequence and the harmonics naturally present
in the network); moreover, it is shown that the combination of a SOSOGI scheme with
a negative-sequence decoupling cell allows a very good reconstruction of the desired sys-
tem states. Analytical procedures for the control parameters design have been reported
in all the considered cases.

The proposed estimation scheme based on negative sequence compensation together
with the changes carried out in the FLL loop to properly adapt to the SOSOGI scheme
are new and unpublished. Furthermore, the representation of generalized integrators
schemes as resonant controllers allows an easy tuning of all the control parameters
involved in the estimation.
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(a) Without on-line normalization of the input

(b) With on-line normalization of the input

Figure 6.20: Comparison between estimated and real angular quantities without (a)
and with (b) the proposed normalization scheme. A 50% voltage sag is applied to the

voltages, to test the algorithm robustness.





Chapter 7

Current-controlled inertia

7.1 Introduction

In this chapter the control structure that provides inertia service to the system
by means of a current-controlled injection will be analysed. The non-linear model of
the system will be developed and design methods for the control coefficients will be
presented.

7.2 Non-linear model of the converter under current-controlled
inertia

Synthetic inertia function can be realised introducing an additional loop between
the evolving dynamical state of the system, represented by the derivative of the angular
frequency, and the injected power, as introduced in Sec. 5.10 (an reported again in Fig.
(7.1) for clarity).

This creates a mutual dependence between the converter and the external grid:
especially in case of comparable nominal power of the units, a wrong design of control
parameters may lead to instability for the global system. Thus it is necessary to define a
rigorous analytical model, able to predict the stability properties and design regulation
parameters correctly.

Starting from the non-linear system of the PQ converter as developed in Fig.5.7,
current-controlled inertia can be modelled as in Fig.7.2, where the additional feedback
includes the external grid dynamics by means of the transfer function (5.10), expressed
in the state-space form already introduced in (5.37) - (5.40).

Figure 7.1: Control architectures for inertia support: current-controlled mode.

169
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The inertia control acts as an additional power reference pin, proportional to the
angular frequency derivative as estimated by the FLL algorithm introduced in Chapter
6; a first order low-pass filter with time constant τin defines the operational frequency
range of the inertia support. The dynamical properties of the synthetic inertia loop are
expressed by:

pin = −Kin · αfilt (7.1)

pαfilt =
1

τin
· (αFLL − αfilt) (7.2)

pαFLL = τFLL · (α− αFLL) (7.3)

where the FLL behaviour in estimating the angular frequency derivative has been mod-
elled according to (6.49), as shown in Chapter 6. The filtered derivative of the grid
angular frequency, as estimated by the SOSOGI-FLL algorithm, represents the input
signal for the inertia regulator. The decision to refer to the SOSOGI-FLL algorithm
(Chapter 6) for the angular frequency estimation, instead of the available PLL used
for converter synchronization, allows to keep independent dynamics between the inertia
loop and the rotating control system.

Reference signals for the internal current loop are obtained, in the control frame d̃q̃.

iref
od̃

=
prefdc + pin∣∣∣v̄o d̃q̃∣∣∣ (7.4)

irefoq̃ = − qref∣∣∣v̄o d̃q̃∣∣∣ (7.5)

Combining equations (7.1) - (7.5) with the state-space model introduced in Section
5.7, it is possible to analytically obtain the non-linear dynamical state-space model of
the global system reported in Appendix A. This can be used for the identification of
the equilibrium states, internal dynamics and participation factors associated to the
control: in particular, it will be exploited to validate the approximated design models
of the inertia loops, guaranteeing that the introduced simplifications are consistent from
the dynamical perspective.

In Fig. 7.3 are shown the equivalent eigenvalues associated to the dynamical model
of the system for case study 1 (Fast primary regulation - Tab. 5.1): numeric values
associated to Fig. 7.3 are also reported in Table 7.1.

The determination of the dynamical dependence inside the system is crucial as
it allows to identify which states can be neglected in the design process of the inertia

Table 7.1: Eigenvalues calculation without synthetic inertia introduction, CASE
STUDY 1 with Kin = 0.

Eig. identifier Numeric value
[
s−1
]

Eig. identifier Numeric value
[
s−1
]

λ1 −5.14 λ2 −5.81
λ3 −16.2 λ4 −50.0
λ5 −80.0 λ6 −195
λ7−8 −405± 5.30i λ9−10 −661± 671i
λ11−12 −2520± 2150i λ13−14 −3210± 2630i
λ15−16 −6890± 5260i λ17−18 −6900± 5700i
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Figure 7.3: Eigenvalues position for CASE STUDY 1, without inertia (Kin = 0).
The zoomed view around the origin is reported in (b), for a better identification of the

slow dynamics.

regulation and which, on the other hand, should be taken into account. This can be done
referring to the participation factors calculation, according to the procedure reported in
[22]: results associated to the eigenvalues in Fig. 7.3 are reported in Fig. 7.4.

Three main time scales that can be studied independently of one another:
• Dominant eigenvalues (λ1−6) principally depend on the internal dynamics asso-

ciated to the grid swing equation (α, ω), to DC bus regulation (vdc, Edc) and
synthetic inertia control (represented by the estimated angular frequency deriva-
tive from the FLL αFLL and its filtered version αfilt).
• A second group of eigenvalues (λ7−10) identifies the effects of the internal current

regulator and of the synchronous angle definition by means of the PLL.
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Figure 7.4: Participation factors for CASE STUDY 1, without inertia (Kin = 0).
Null production from the primary source is considered: Idc = 0.

• Fastest eigenvalues (λ11−18) include high-frequency transients associated to the
physical circuit of the system. Even though they show significant mutual influence
caused by the physical circuit coupling, they are practically independent of the
other parts into the system.

This allows to define a simplified design model which includes only the dominant
dynamics identified by means of the reported participation factors analysis. Moreover,
it is worth noting the validity of the proposed approach independently of the actual
injection from the primary source: performing a similar analysis under maximum pro-
duction from the primary source (Idc = 1 p.u.), the pattern reported in Fig. 7.5 can be
obtained. Even though the dependence with respect to state variables differs from the
no-load case in Fig. 7.4, still it is possible to reduce the analysis of the problem to the
dominant eigenvalues λ1 − λ6.

All the considerations introduced up to now remain valid also for CASE STUDY
2 (where the regulation unit is a traditional synchronous generator, Tab. 5.2), consid-
ering the values in Fig. 7.6 and Tab. 7.2. The participation factor analysis in Fig.7.7
reveals the maintained dynamical conditions highlighted for case study 1, with three
state variable subsets associated to almost-independent ranges of the frequency spec-
trum. Moreover even though eigenvalues λ1 and λ6 remain the ones connected to the
internal dynamics of the grid, they show a different nature with respect to the ones in
CASE STUDY 1. In particular Table 7.2 highlights the presence of a slow couple of
complex-conjugate dynamics associated to the grid state (λ1−6).

Even though the equivalent nature of the grid is different, it is reasonable to derive
the simplified linearised model of the system associated to the current-controlled inertia
as reported in Fig. 7.8 for the direct component (the one related to the active power
balance). The introduced simplifying assumptions are consistent in the perspective of
the participation factor analysis reported before:
• the internal dynamics of the PLL and the damping filter ones have been neglected,

as they typically act in the high-frequency range of the spectrum.
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Figure 7.5: Participation factors for CASE STUDY 1 (Fast primary reg., Tab. 5.1),
without inertia (Kin = 0). Maximum production from the primary source is considered:
Idc = 1 p.u.; even though the participation pattern is different from the one reported
in Fig. 7.4, the independence of the slow grid dynamics with respect to the production

level Idc persists.

Table 7.2: Eigenvalues calculation without inertia introduction, CASE STUDY 2 with
Kin = 0 (Idc = 0).

Eig. identifier Numeric value
[
s−1
]

Eig. identifier Numeric value
[
s−1
]

λ1−6 −1.0± 3.1i λ2 −5.8
λ3 −16 λ4 −50
λ5 −80
λ7−8 −400± 5.3i λ9−10 −660± 670i
λ11−12 −2.5 · 103 ± 2.2 · 103 i λ13−14 −3.2 · 103 ± 2.6 · 103 i
λ15−16 −6.9 · 103 ± 5.2 · 103 i λ17−18 −6.9 · 103 ± 5.7 · 103 i

• Internal current loop is approximated as a first order transfer function, with pole
pulsation equal to the cut-off angular frequency ωcI of the current loop.

KI(s) =
1

1 + s/ωcI
(7.6)

• The internal dynamics of the SOGI-FLL are represented as an approximated
derivative, according to the model reported in (6.49). Thus the procedure to
extract the angular frequency derivative αFLL can be expressed by:

KFLL(s) =
αFLL
ω

=
s

1 + s τFLL
(7.7)
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Figure 7.6: Eigenvalues position for CASE STUDY 2 (Slow primary reg., Tab. 5.2),
without inertia (Kin = 0). The significant delay introduced by the primary frequency
regulation units produces a couple of low-damped complex conjugate eigenvalues at low
frequency; high pulsation dynamics are not reported as they are coincident with the

ones already plotted in Fig.7.3-(a).

Figure 7.7: Participation factors for CASE STUDY 2, without inertia (Kin = 0).
Null production from the primary source is considered: Idc = 0.
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• Grid dynamics are represented by the equivalent transfer function (5.10), here
recalled, which takes into account the primary frequency regulation effect by means
of the coefficient Kreg, the regulation delay τ and the equivalent starting time of the
system Ta, which includes the inertia properties of the network. Differently from
the case with no synthetic inertia, now also the converter power ∆pconv contributes
has an influence in the transient.

∆ω =
1 + s τ

s2 Ta τ + s Ta +Kreg
· (∆pg + ∆pconv) = Kg(s) · (∆pg + ∆pconv) (7.8)

Once the linearised model is derived, the design of the inertia loop is carried out
considering the mutual interaction of the dynamics included in the model of Figure
7.8, which can be simplified as in Figure 7.9. Open-loop function Lin(s) can thus be
determined as:

Lin(s) = KI(s) ·Kg(s) ·
Kin

1 + sτin
·KFLL(s) = (7.9)

=
1

1 + s/ωcI
· 1 + s τ

s2 Ta τ + s Ta +Kreg
· Kin

1 + sτin
· s

1 + s τFLL
(7.10)

The model in (7.10) will be analysed for the case of inertia support in a fast-
regulating microgrid for slow primary regulation, highlighting the frequency transients
improvements obtained with the introduction of synthetic inertia. Moreover, a new
equivalent transfer function K ′g(s) will be derived, which represents the modified grid
dynamics after the introduction of the emulated inertia.

Asymptotic stability conditions will be derived analytically from the dynamical
model of the system: in this case, it is possible to design the inertia loop taking into
account the characteristics of the external network in a robust and straightforward way.

Figure 7.8: Current-controlled inertia: linearised models for direct axis.

Figure 7.9: Simplified model for the design of the current controlled inertia loop: only
the direct axis is associated to the stability of the frequency support
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7.3 CASE STUDY 1: mathematical model

As already highlighted from the analysis of the participation factors for case study
1 reported in 7.4, both the eigenvalues λ1 and λ6 show a strong dependence on the
grid state variables (α, ω), even though their numeric values show different order of
magnitude. This behaviour can be easily explained considering the approximated sin-
gularities of transfer function (7.8), combined with the equivalence in (5.18) and with
the numerical values associated to case study 1 (Tab. 5.1). Given the limited value of
the equivalent delay τ associated to the external balancing of the network, a pole-zero
simplification occurs in the dynamical model of the grid at high-frequencies. Asymptotic
expression of the poles under condition τ << Ta

4Kreg
leads to (7.11).

p1,2 = − 1

2τ
·

(
1±

√
1− 4Kregτ

Ta

)
∼= −

1

2τ
·
[
1±

(
1− 2Kregτ

Ta

)]
=

{
p1 = −Kreg

Ta

p2 = − 1
τ

(7.11)

The equivalent grid function can be approximated as a first order system, with a
time constant determined by the primary regulation coefficient Kreg and the internal
inertia of the system defined by the starting time Ta. Thus, for τ << Ta

4Kreg
, the grid

function becomes:

Kg(s) ∼=
1

s Ta +Kreg
(7.12)

Thus it is possible to define a design model able to determine simplified stability condi-
tions for the inertia-controlled loop under fast primary regulation. The equivalent loop
function changes from (7.10) to (7.13), where also the effect of internal current loop is
neglected.

Lin(s) =
1

s Ta +Kreg
· Kin

1 + sτin
· s

1 + s τFLL
(7.13)

The modified grid function K ′g(s) is obtained considering the closed-loop dynamics
between the variation of the system accelerating power ∆pg and the angular frequency
∆ω. Thus from Fig. 7.9 one can obtain:

K ′g(s) =
∆ω

∆pg
=

Kg(s)

1 + Lin(s)
∼=

1

(Ta +Kin)s+Kreg
(7.14)

Figure 7.10 shows the effect associated to the introduction of inertia emulation on
the equivalent grid function K ′g(s), compared to the original one Kg(s). Increasing the
coefficient Kin moves the equivalent pole of the grid to a slower angular frequency (Fig.
7.10), contributing to the reduction of frequency transients derivative on the network.

Pole ωp =
Kreg
Ta

associated to the grid model moves to the pulsation ω′p =
Kreg

Ta+Kin
,

reducing the equivalent characteristic time constant associated to the frequency transient
(Fig. 7.10-(a)).

Moreover the identification of the asymptotic transfer function in Fig. 7.10-(b) al-
lows to define a set of design constraints for the system under study. The followed
approach is based on the inclusion of equivalent grid parameters into the model defini-
tion. In fact, these are typically affected by a low variability during normal operations
of the system.



Chapter 7. Current-controlled inertia 178

Figure 7.10: Asymptotic behaviour for the current-controlled inertia loop functions in
case study 1. In (a) the initial and modified grid dynamics are reported, represented by
Kg(s) and K ′g(s) respectively; in (b), the open-loop function Lin(s) allows to identify

the stability conditions for the control.

7.3.1 Design approach A

A too conservative approach for the design of maximum inertia coefficient Kin would
be based on the small-gain theorem: imposing the magnitude of the loop function |Lin(s)|
lower than one in its maximum value, asymptotic stability of the feedback loop is guar-
anteed by the absence of 0 dB intersections of the loop function Lin(s). From the
asymptotic behaviour reported in Fig. 7.10-(b), it is easy to recognize that the maxi-
mum magnitude for the loop function Lin(s) is obtained when the two poles associated
to the FLL and inertia time constant τin are located at a higher frequency with respect
to the grid singularity.

Thus a maximizer of the open-loop function magnitude in
[
ωp;

1
τin

]
can be easily

derived:

Lin(jωs) ∼=
Kin

Ta
for ωs ∈

[
Kreg

Ta
;

1

τin

]
(7.15)

Approximation (7.15) determines the following criterion for the coefficient Kin design:

|Lin(s)| < 1 ∀ωs → Kin < Ta (7.16)

Equation (7.16) clearly corresponds to a sufficient condition for the stability and
thus leads to a much conservative design of the maximum inertia gain Kin. Moreover
as τ−1

in approaches τ−1
FLL, the sufficient condition evolves toward a necessary one, to

avoid 0 dB intersection of the magnitude function with slope −2, according to the Bode
stability condition.

7.3.2 Design approach B

A less conservative definition of the maximum inertia coefficient Kin can be derived
considering the asymptotic behaviour of the open-loop function Lin(s). In particular:

• from (7.12), the grid function Kg(s) shows a single pole at the pulsation ωp =
Kreg
Ta

.
Typically this is the slowest singularity in (7.10).
• The pole associated to the inertia regulator should be chosen lower than the one

of the equivalent FLL function, thus:

τ−1
in < τ−1

FLL (7.17)
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Depending on the desired fastness of the inertia intervention, τin can determine
the maximum frequency range where synthetic inertia actively contributes to the
damping of the system dynamics. Moreover, in case of undesired disturbances
introduced in the derivative estimation from the FLL algorithm, a slower value of
the pulsation 1

τin
can introduce a stronger filtering effect.

Under condition (7.17), the maximum value associated to the inertia coefficient can be
obtained imposing an intersection of Lin(s) with the 0 dB axis with a maximum slope
equal to −2. Considering the asymptotic behaviour of the open-loop function, the inertia
coefficient Kin is obtained as:

Kin
∼= Ta ·

√
1 +

(
τ−1
FLLτin

)2
(7.18)

Considering τ−1
FLL = 80 rad/s as reported in Tab.5.3, a reasonable design of the inertia

time constant τin is τin = 1/50 [s]. Under these conditions, the maximum inertia coef-
ficient Kin can be obtained from (7.18) as Kin

∼= 1.9Ta. The proposed approach has
been numerically validated considering the complete transfer function associated to the
loop and the eigenvalues model already introduced in the previous sections.

7.3.3 Numerical validation of the design approaches

Figure 7.11 shows the exact phase margin of the transfer function Lin(s) under
different values of the synthetic inertia coefficient Kin: even a limited increase of the
coefficient leads to a significant reduction of the phase margin associated to the open-
loop function. Dominant eigenvalues of the system are plotted in Fig.7.12 where it is
possible to highlight the dynamical effects related to the inertia coefficient Kin increase.

Figure 7.11: Numeric Bode diagram associated to the current-controlled inertia loop
Lin(s).
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Figure 7.12: Current-controlled scheme: evolution of eigenvalues under variation of
the inertia coefficient Kin. Eigenvalues positions move from red to blue as the inertia

coefficient Kin increases.

Figure 7.12 confirms the validity of asymptotic behaviour reported in Fig.7.10: the
coefficient Kin increase moves the slow grid pole λ1 towards lower pulsations, while the
λ6 evolves in the opposite direction. This further confirms the validity of the simplifying
assumption introduced in (7.12), making the single-pole model of the grid even more
consistent for increasing values of the inertia coefficient Kin. Figure 7.12 allows also
to identify the evolution of other singularities into the system: as far as concerns poles
λ4−5, they evolve to complex conjugate values and towards instability. The result is
coherent with the proposed design method (7.18), in which the maximum allowable
inertia coefficient Kin has been correlated with the FLL characteristics and angular
frequency filter by means of τFLL and τin. Even though the analytical design model
in (7.18) seems to be more conservative than the numeric one expressed by Fig.7.12,
still in practical applications the effects of model uncertainties lead to prefer the most
conservative solution.

7.3.4 Dynamical model verification: simulated results

In this section the characteristics of the resulting frequency transients after synthetic
inertia introduction are analytically derived in terms of maximum measurable angular
frequency derivative. Theoretical results will be compared with experimental ones for
the validation of the model. The correctness of the dynamical model has been verified by
means of a Matlab/Simulink based simulation model. The C-code used for the laboratory
test has been exactly imported in the Matlab environment, thus to replicate the same
exact control dynamics. Reported results are also published in [31]. Figure 7.13 shows
the transients associated to the microgrid with different values of the inertia coefficient
Kin, under a unitary step reduction of the system accelerating power ∆pg = −1 per-
unit. The parameters used in the simulations are the ones reported in Tab.5.1 and the
numerical comparison is carried out in Table 7.3.
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The analysis of the values in Table 7.3 serves to verify the adherence of simulation
environment with the theoretical model, thus it represents an initial benchmark for
the correctness of the proposed analytical approach. For each considered case, two
data series (theoretical and simulated) are compared in terms of steady-state frequency
deviation and correspondence of maximum derivative measured from the FLL. The
reason of this choice lies in the measurement ease associated to these parameters; as
regards the maximum theoretic derivative case, the internal dynamic of the FLL is
included in the analytical model according to the procedure reported in Appendix C.2:
this enables a fair comparison between the theoretical results and the actual signal
processed by the FLL algorithm.

As regards the steady state behaviour, the difference between the theoretical model
and the simulated one is practically null; this validates the general behaviour of the sys-
tem as well as the correct implementation of the regulation settings for the dispatchable
generator: the network frequency shows a steady state deviation that can be easily pre-
dicted from the final value theorem applied to the modified regulation transfer function
(7.14).

A more interesting comparison regards the maximum derivative measured by the
FLL, as this term is directly influenced by the transitory inertia provided by the undis-
patchable PQ converter; nevertheless, because of the fast evolving dynamics that charac-
terize the system, the expected theoretical model needs to contemporaneously take into
account the system regulation (obtained from the mutual interaction of the dispatchable
and undispatchable system) and the convergence time of the angular estimator (FLL).
This can be easily obtained referring to the simple calculation reported in Appendix C.2,
whose final expression (C.18) is used in Tab.5.1 for the comparison with the simulated
case.

The limited values of the comparison errors (normalized with respect to the theoret-
ical value) confirm the general correctness of the dynamical representation: furthermore
it is possible to highlight that the higher residual is associated to the case in which no
inertia support is provided by the undispatchable converter. This is reasonable as this
case is the one characterized by the fastest rate of change: under this condition the role
of the fast system dynamics (neglected during the analytical derivation) becomes more
significant and the model accuracy reduces.

7.4 CASE STUDY 2: Mathematical model

Similar consideration introduced for the case study of fast primary regulation can
be done also in the case of slow primary regulation typically performed by a traditional

Table 7.3: Model validation for current-controlled inertia in CASE STUDY 1: com-
parison of dynamical quantities. Both the reported transients refer to the measurements

as acquired by the FLL.

Parameter Expression Kin/Ta Theoretic
value

Simulated
result

Error

Freq. deviation ∆ω = ∆pg/Kreg {0, 0.4, 0.8} −0.020 −0.020 < 1%

Maximum 0 −0.10 −0.086 14%
derivative (C.18) 0.4 −0.071 −0.067 5%
(FLL) 0.8 −0.056 −0.058 3.5%
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(a)

(b)

Figure 7.13: Transients associated to frequency regulation in CASE STUDY 1. The
synthetic inertia introduction changes the derivative of the fundamental frequency, even

though the modification is affected by the finite pass-band of the FLL.



Chapter 7. Current-controlled inertia 183

synchronous machine. The numeric values are the ones associated to CASE STUDY 2 in
Table 5.2. In these conditions, the complete system shows a couple of complex conjugate
weakly-damped poles located at the natural frequency of the system. Additionally,
synthetic inertia becomes particularly effective as the dynamical characteristics of the
frequency transients are exclusively determined by the physical (and thus not-modifiable)
construction parameters of the synchronous machine. Thus the interaction of the PQ
converter with the rest of the system may significantly improve transitory frequency
oscillations into the network.

From the mathematical point of view, the transfer function associated to the fre-
quency regulation Kg(s) shows a couple of complex conjugate poles with natural fre-
quency and damping given by (7.19) and (7.20) respectively.

ωn =

√
Kreg

Taτ
(7.19)

ξ = 0.5 ·

√
Ta

τKreg
(7.20)

In case τ > Ta
2·Kreg

(ξ < 1√
2
), the Bode diagram associated to the system shows a

resonance peak in correspondence of the grid natural frequency ωn (7.19) and the ac-
tive power transients on the system show a marked oscillatory behaviour. The model
reported in Fig. 7.9 again allows to retrieve the characteristics of the modified grid func-
tion after inertia introduction. Approximated behaviour for ωs < 1/τin is represented
by (7.21).

K ′g(s) =
1 + τs

s2 (Taτ +Kinτ) + s (Ta +Kin) +Kreg
for ωs < 1/τin (7.21)

which is characterized by a natural frequency and damping factor equal to:

ω′n =

√
Kreg

Taτ +Kinτ
(7.22)

ξ′ = 0.5 ·

√
Ta +Kin

τKreg
(7.23)

The introduction of inertia support by means of the coefficient Kin reduces both the am-
plitude and the natural frequency of the resonance peak associated to the grid dynamics,
as shown in Figure 7.14. Moreover the definition of the loop function as reported in 7.14
allows to determine the stability condition associated to the dynamical interaction of
the PQ converter with the grid supporting unit and to correlate the design of the control
parameters to the stability of the feedback. A very conservative design in (7.21) can be
obtained imposing the resonance peak amplitude lower than one, thus avoiding intersec-
tions with the 0 dB axis. As the resonance peak in the open loop function occurs close
to the natural frequency of grid dynamic (ωp ∼= ωn), the above condition |Lin(jωp)| < 1
corresponds to (7.24).

Kin

Ta
<

√
Ta

Kregτ
(7.24)

As for the time constant τin associated to the inertia, it determines the spectral range
of the angular frequency derivative signal where inertia is active and can be designed
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Figure 7.14: Asymptotic behaviour for the current-controlled inertia loop functions
in case study 2. In (a) the initial and modified grid dynamics are reported, represented
by Kg(s) and K ′g(s) respectively; in (b) the open-loop function Lin(s) is depicted. The
introduction of inertia support by means of the PQ converter damps the resonance peak

associated to the couple of complex conjugate poles of the system.

according ot the same procedure illustrated in section 7.3.2. In order to verify the
correctness of the predicted dynamical model, the properties of simulated transients are
compared with the analytical ones in Table 7.4, under a unitary step decrease of the
accelerating power ∆pg = −1 per-unit; the simulated transients values associated to
table 7.4 are reported in Fig. 7.15.

Similarly to what was done in Sect. 7.3.4, the comparison is carried out considering
some macroscopic quantities linked to the dynamical model of the network: beside the
steady state value, the transient oscillation period and its associated overshoot are anal-
ysed; the direct analytical derivation of these macroscopic quantities from the expected
transfer function of the network regulation is reported in Appendix C.3. The obtained
final expressions (C.28)-(C.30)-(C.31) are then exploited for the comparison in Tab. 7.4.

The analysis of Tab. (7.4) reveals a close correspondence of the theoretical model
with the simulated one: as regards the oscillation period, the correspondence between
simulated and theoretical models remains robust in all the considered cases. As for
the overshoot, the analysis reveals a higher sensitivity of the model with respect to the
high-order dynamics neglected during the derivation phase, especially for the case where
the transitory inertia support from the undispatchable unit is minimum (Kin = 0). It
is worth also to underline that in the last simulated case (Kin = 2Ta) the error results
significant mainly because of the normalization with respect to the low theoretical result:
the actual difference between the simulated and analytical overshoot remains limited.

Once assessed the correctness of the dynamical mode from the simulation perspec-
tive, the reproducibility of the same dynamical behaviour on an experimental set-up
needs to be tackled: thus in the next section, after an initial explanation of the opera-
tional test conditions, the validation of the proposed inertia model and its effectiveness
on a small-scale network will be analysed.
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(a)

(b)

Figure 7.15: Transients associated to the a unitary step change of absorbed power
(∆pg = −1 p.u.) in case study 2, for slow primary frequency regulation.
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Table 7.4: Model validation for current-controlled inertia in CASE STUDY 2: com-
parison of transients characteristic.

Parameter Expression Kin/Ta [s/s] Theoretic Simulated Error

Steady state ω∗ = ωo + ∆pg/Kreg {0, 1, 2} 0.98 p.u. 0.98 p.u. < 1.0%

Expected 0 3.16 rad/s - -
natural ω′n (7.22) 1 2.23 rad/s - -

frequency 2 1.82 rad/s - -

Expected 0 0.31 - -
damping ξ′ (7.23) 1 0.44 - -

factor 2 0.54 - -

Period of 0 2.09 s 2.13 s 2.0%
oscillation T = 2π

ω′n·
√

1−ξ′2
1 3.14 s 3.07 s 2.3%

(C.28) 2 4.12 s 4.21 s 2.2%

0 79% 85% 7.6%
Overshoot (C.30)-(C.31) 1 36% 35% 2.4%

2 18% 15% 18%

7.5 Experimental implementation of the current-controlled
synthetic inertia

7.5.1 Experimental set-up and protection scheme

One of the major criticality issues related to the experimental testing of the tran-
sitory inertia schemes regards the possibility to obtain measurable and repeatable fre-
quency events and, thus, verify the response of the converter to the disturbance. This
constraint excludes the possibility to exploit public network transients, as a consequence
of their intrinsic non-repeatability and due to the impossibility to measure the impact
of the single small-scale unit on the network regulation. Thus the natural environment
for the verification of the synthetic inertia performances is represented by a small-scale
microgrid operated in island and supplied by stand-alone units: this allows to induce
controlled and repeatable frequency transients on the network and, consequently, to
analyse the additional damping provided by the undispatchable units after a network
event. Appendix D provides a general description of the test set-up , as well as of the ac-
quisition and control architecture: still it is useful to point out some of the characteristics
of the synthetic inertia tests.

Consider the scheme reported in Figure 7.16: two converters are connected in parallel
to a high-impedance load. The first converter is operated in grid-forming mode and
imposes to the system a symmetrical set of voltages with an angular frequency ω. The
ω evolves according to the frequency regulation law equivalent to the one provided by the
dispatchable unit: this converter is supplied by a infinite-power source able to impose
a constant voltage between its DC-bus terminals. The regulation strategy provided by
this unit needs to take into account:
• the dynamical characteristics of the primary regulation (Ta, Kreg, τ);
• the value of the independent accelerating power ∆pg;
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• the instantaneous response of the PQ converter ∆pconv in case the synthetic in-
ertia control is activated, in order to correctly emulate the dynamical interaction
between the two units.

The second converter is operated in grid-following mode: in case no synthetic inertia
control is implemented, its injected active power is constant. Once the inertia support is
introduced, the unit responds to the system transient by modulating its active injection
profile ∆pconv according to the characteristics of the inertia regulator. Its control is thus
identical to the one that would have in grid-connected mode: this allows to operate
the converter in the same conditions of dynamical damping provision to a public power
network.

Instead of recurring to a physical load connection / disconnection, the control of the
grid-forming converter (inverter 1) has been designed to create a frequency transient on
the network: as the converter is operated in grid-forming mode, it is able to impose any
constant (or time-variable) profile to the network frequency, as the high-power source
at its DC side guarantees the necessary regulation capability. In order to derive ho-
mogeneous comparison with the previously-simulated transients, the imposed frequency
profile follows the dynamical model already introduced in (7.8), suitably discretized with
the bilinear transform (k = Tc/2 stands for the Tustin discretization coefficient).

The following elements determine the transient characteristics (Fig. 7.16):
• a fictitious change of the accelerating power ∆p̃g is introduced into the control sys-

tem of the grid-forming converter (inverter 1), which responds imposing a network
frequency ω transient determined by (7.8). The time behaviour of the network
angular frequency ω would be the same of a physical active load ∆p̃g connection
/ disconnection.
• The grid-following unit (inverter 2) identifies the transient by means of the fre-

quency estimation algorithm explained in Chapter 5 (FLL) by measuring the volt-
ages at the interface and modulates its power injection ∆pconv (provided that a
non-null inertia coefficient Kin is introduced). This second converter is blind with
respect to the original nature of the frequency transient: it exactly behaves as if
it were connected to a public power network.
• The response of the grid-following converter ∆pconv affects the angular frequency
ω transient as a consequence of the (real) power balance on the circuit. This
highlights the synthetic inertia effect on the equivalent network. In practice the
grid-forming units is controlled as a grid-emulator device, able to impose whichever
dynamical evolution (within its power capability) to its controlled network.

This architecture allows to identify the effect of the synthetic inertia under any
possible system unbalance ∆p̃g without the need of a physical load connection / discon-
nection, as the transient excitation quantity ∆p̃g is a fictitious control term rather than
a real power.

Furthermore, the presence of a limited available capacitance on the DC side of the
grid-following converter has to be taken into account, in order to avoid damage to the
installed components during the test evaluation. The scheme reported in Fig.7.17 allows
to inhibit the inertia contribution once the operational limits are reached. Even though
this protection scheme is quite simple, still it has a primary importance as it allows to
perform inertia services independently of the physical available capacitance: the grid-
following converter contributes to the regulation with the available energy stored on its
DC bus up to the safety thresholds represented by Vdcmin and VdcMax.
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Figure 7.16: Structure of the experimental set-up used for the testing.

Figure 7.17: Algorithm for DC bus protection under current-controlled inertia sup-
port.

7.5.2 Experimental results

In this section the experimental results related to the simulation of the frequency
transients modification after synthetic inertia introduction are reported. In particular,
the numeric values of the case study associated to the traditional network (slow primary
regulation, Tab. 5.2) have been considered: this is the case in which the additional
converter-provided inertia is more useful, as the grid dynamic shows an under-damped
behaviour: synthetic inertia introduction contributes to increase the equivalent system
damping (7.23) and reduces angular frequency excursion during the transient, avoiding
possible intervention of the over / under frequency protections of the power network.

The considered numeric values are reported here in Tab. 7.5, as a recall.

Table 7.5: Emulated-grid characteristics used for the experimental test.

Parameter Symbol Numeric value

Starting time Ta 10 s
Regulating energy Kreg 50 p.u.
Time constant of the internal regulation delay τ 500 ms
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Similarly to the simulated cases, the consistency of the theoretical and experimen-
tal results is assessed, referring to the steady-state conditions, the measured transitory
oscillation period and the corresponding overshoot: again, the evaluation of the theo-
retical response characteristics refers to the analytical procedure reported in Appendix
C.3, especially as regards the oscillation (C.28) period and overshoot (C.30)-(C.31). The
experimental profiles associated to an equivalent accelerating power ∆pg = 1 p.u. are
reported in Fig.7.18 for different values of the inertia coefficient Kin, while in Tab.7.6
and Fig.7.19 the comparison between the theoretical and analytical model is carried out.

The residuals between the experimental test and the analytical derivation are re-
ported in Fig.7.19 (normalized with respect to the theoretical model). Differently from
the simulated result, the residuals interpretation is more critical as it involves both the
physical uncertainty associated to the real set-up elements and the numerical approxima-
tion in the simplified model derivation. Nevertheless it is possible to derive the following
considerations.
• From the energetic perspective, the system behaves as expected: an increase of

the inertia coefficient Kin provides transitory damping to the system, reducing the
network frequency overshoot. This property represents the key advantage of the
inertia regulation: without affecting the steady-state behaviour of the system, it is
possible to reduce the amplitude of the frequency transient and thus avoid possible
intervention of the network protection relays by means of a zero-net-energy control.

Table 7.6: Experimental validation of the current-controlled inertia in CASE STUDY
2.

Parameter Expression Kin/Ta Theoretic Experim.

Steady
state
dev.

∆ω∗ = ∆pg/Kreg {0, 0.3, 0.6}0.020
p.u.

0.020 p.u.

Natural 0 3.16 rad/s -
frequency ω′n (7.22) 0.3 2.77 rad/s -

0.4 2.67 rad/s -
0.6 2.50 rad/s -

Damping 0 0.31 -
factor ξ′ (7.23) 0.3 0.36 -

0.4 0.37 -
0.6 0.40 -

Period of 0 2.09 s 2.04 s
oscillation T = 2π

ω′n·
√

1−ξ′2
0.3 2.43 s 1.98 s

(C.28) 0.4 2.67 s 2.07 s
0.6 2.74 s 2.34 s

0 79% 87%
Overshoot (C.30)-(C.31) 0.3 61% 82%

0.6 56% 77%
0.6 48% 67%
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Figure 7.18: Angular frequency profile under different values of the synthetic inertia.
An increasing of the regulation coefficient Kin provides additional damping to the

system, thus reducing the transient overshoot.

• Independently of the considered case, the normalized errors result limited and they
highlight the consistency and robustness of the proposed approach.
• Figure 7.20 reproduces the profile of the estimated angular frequency derivative

during the transient, as estimated by the FLL algorithm; this signal, once filtered
according to the scheme reported in Fig. 7.2, represents the input of the inertia
loop. The experimental tests show the reduction of maximum derivative (often
referred as Rate Of Change Of Frequency) as a consequence of the additional
damping provided by the undispatchable converter. Furthermore, the acceptable
signal-to-noise resolution of the derivative signal remarks the effectiveness of the
developed angular estimator (Chapter 6) even under disturbed network conditions.

Figures 7.22 and 7.21 show, respectively, the profile of the DC bus voltage and the
injected power from the grid-following converter in the three analysed cases. When the
inertia control is deactivated (Kin = 0) these quantities remain constant during the
transient of the grid frequency. Nevertheless, for Kin 6= 0, the converter absorbs power
from the network to counterbalance the frequency increase (Fig. 7.21); this causes an
increase of the DC voltage (Fig. 7.22). At steady state, after the extinction of the
transient, both the active power and the DC bus voltage recovers their nominal values:
synthetic inertia configures as an energy-invariant control and thus it is suitable also for
converters supplied by non-dispatchable units.

Beside the uncertainty associated to the physical set-up parasitic losses and the an-
alytical exemplification introduced in the dynamical model derivation, a further source
of mismatch is clearly represented by the presence of a limited DC bus in the exper-
imental setup. In particular, observing the power profile in Fig.7.21, it is possible to
highlight the presence of incipient oscillatory terms with a lower period with respect to
the network oscillations.

This is, indeed, one of the concerns generally considered for current-controlled inertia
regulation, that is the absence of easy-to-use analytical dependency between the DC bus
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Figure 7.19: Comparison between the derived analytical model and the experimental
one for the current-controlled inertia scheme. The limited value of the errors guarantees

the correctness of the proposed dynamical model.

Figure 7.20: Angular frequency derivative (as estimated by the FLL) under different
values of the synthetic inertia. The peak derivative reduces under increasing values of

Kin.
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Figure 7.21: Injected power under different values of the synthetic inertia. The
sign of the injected power is opposite with respect to the estimated angular frequency
derivative αFLL: under this condition, the converter behaves as a physical controllable

inertia.

Figure 7.22: DC bus voltage under different values of the synthetic inertia. The DC
bus behaves as an energy buffer.
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voltage variation and the imposed inertia provision coefficient Kin: even though some
approximated expressions are derivable from the resolution of the complete feedback in
Fig.7.9, still the heavy analytical derivation of these expressions often discourages from
their application. The actual problem is not related to the low predictability of the
maximum voltage peak (as this can be easily solved with simple protection schemes like
the one in Fig. 7.17), but rather the possible dynamical coupling between the external
DC voltage regulation loop and the inertia provision algorithm. This aspect may be the
base for future extensions of the model.

7.6 Conclusion

In this chapter, the model of the current-controlled synthetic inertia has been in-
troduced. The complete model of the system has been analysed in the initial part of
the chapter referring to eigenvalues and participation-factors analysis. Once identified
the dominant dynamics, a reduced order linear system has been developed: this allows
to derive simpler design models for the inertia parameters and to highlight the intrinsic
dynamical behaviour of the system. Experimental verification of the method feasibility
has been provided at the end.

The method used for the stability identification of the synthetic inertia is the main
novelty introduced by this chapter: the typical approach followed in literature addresses
this control as an open-loop reference signal, whose stability is exclusively determined
by the regulation properties of the PQ internal loop. In reality, the analysis highlights
the significant impact associated to the mutual dynamical interaction between the pri-
mary regulation (performed by dispatchable units) and the transitory frequency support
provided by PQ generators: even though for public network this represents a minor con-
cern due to their high regulation capability, for small-scale microgrids the effect becomes
predominant and could easily lead to un-damped mutual power oscillations between the
parallel connected units.

Furthermore, the experimental tests carried out on a small-scale microgrid reveal
the actual possibility to carry out derivative-based inertia schemes, provided that a
sufficiently elaborated angular estimator (like the one proposed in Chapter 6) is imple-
mented.





Chapter 8

Voltage-controlled inertia

8.1 Introduction

This final chapter will take into account the provision of inertia services by means
of the regulation of the DC bus voltage in a PQ converter (non-dispatchable unit is Fig.
5.3); the results associated with this control strategy will be compared with the ones
obtained for the current scheme. Experimental validation of the proposed method is
also provided.

8.2 Non-linear model of the converter under voltage-controlled
inertia

Starting from the architecture already presented in Fig. 5.21(b) (reported again in
Fig. 8.1 for clarity), consider the control scheme in Fig.8.2, which takes into account
the contribution of the inertia regulation performed by means of an additional DC bus
voltage reference proportional to the angular frequency displacement.

As regards the internal current and voltage regulation loops, the system is equal to
the one already introduced in Fig. 7.2; nevertheless, it is possible to highlight the pres-
ence of an additional feedback between the estimated angular frequency of the system
ωFLL and the DC bus voltage reference. This feedback takes into account the DC bus
capacitor power balance, as well as the characteristic dynamics of the network, which
determine the evolution of the angular frequency ω. The introduction of the inertia
regulator produces an additional voltage vdc in function of the grid frequency.

Figure 8.1: Synthetic inertia by means of the DC bus voltage control.
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The non-linear set of equations that describe the system behaviour can be identified
from Fig. 8.2; as the equations related to the internal current control and to the physical
systems have already been identified Sec. 5.7, in the following only the changes with
respect to the previous model will be highlighted. Nevertheless, the complete dynamical
model in state-space form is reported in Appendix A.

Consider, as a recall, the non-linear dynamic of the DC bus voltage (8.1) (recalled
from (5.21)). Once the inertia loop in voltage-controlled mode is introduced, the def-
inition of the integral error associated to the DC bus regulator is given by (8.2): the
additional reference vdc in determines the inertia contribution from the converter.

pvdc =
1

τdcvdc
· (idcvdc − (vdid + vqiq)) (8.1)

pEdc = (vdc ref + vdc in − vdc) (8.2)

prefdc = [kp dc · (vdc ref + vdc in − vdc) + ki dc · Edc] (8.3)

The inertia signal is determined by the difference between the estimated system
angular frequency ωFLL and the nominal one ω∗. Differently from the current-based
scheme, in which the input of the control was the angular frequency derivative, the
voltage-based scheme performs a proportional regulation; as the frequency estimation
shows a much better signal-to-noise ratio with respect to the derivative one, here it is
not included any additional low-pass filter effect. The estimated angular frequency can
be linked to the actual one by means of the FLL dynamics, expressed as a first order
system according to the scheme proposed in Chapter 6.

vdc in = Kin · (ωFLL − ω∗) (8.4)

Direct and quadrature current references are expressed as:

iref
o d̃

=
prefdc∣∣∣v̄o d̃q̃∣∣∣ (8.5)

irefo q̃ = − qref∣∣∣v̄o d̃q̃∣∣∣ (8.6)

The non linear model reported in Fig.8.2 also includes the losses associated to the
filter; the representation of the power balance contribution is taken from Fig.5.2.

8.3 Linearised model

From the complete non-linear system reported in Fig.8.2, it is possible to derive a
linearised-version of the system, useful to identify the design constraints for the control
parameters.

Referring to the scheme if Fig. 5.3, the following hypotheses are considered:
• a loss-less behaviour is taken into account both for the converter and for the

interface filter;
• it is assumed a constant power pdc from the primary sources, thus ∆pdc = 0;
• the control of the DC bus voltage is modelled as a first-order unitary gain system,

with a cut-off angular frequency equal to ωc dc = 2π · 2.5 rad/s (Tab. 5.6).

Kdc(s) =
vdc

vdc ref
=

1

1 + s/ωd dc
(8.7)
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The behaviour of the DC bus voltage is linearised as follows:

pconv ∼= pdc − τdc vdc pvdc (8.8)

∆pconv ∼= ∆pdc − τdc Vdc p∆vdc ∼= −τdc Vdc p∆vdc (8.9)

Moving to the Laplace domain, it is possible to obtain the equivalent loop system
reported in Fig. 8.3. This representation is particularly useful to identify the predom-
inant effect of each term on the system stability, as it includes: the characteristics of
the external grid Kg(s), the physical available energy on the DC bus voltage (related to
τdcVdc∆vdc), the synthetic inertia coefficient Kin and the characteristics of the DC bus
voltage regulation expressed by Kdc(s).

From the reported diagram, it becomes evident the choice to introduce a propor-
tional regulator on the voltage feedback instead of a derivative one (differently from
the current oriented scheme): the linearisation of the DC bus dynamics highlights a
natural derivative effect that plays the same role of the numerical one introduced in the
current-oriented scheme reported in Fig.7.2.

Once identified the open-loop function associated to the inertia provision Lin(s),

Lin(s) = Kin ·
1

1 + s/ωc dc
· (s τdcVdc) ·

1 + sτ

Taτs2 + Tas+Kreg
· 1

1 + sτFLL
(8.10)

the closed-loop function between the accelerating power ∆pg and the angular frequency
variation ∆ω is described by (8.11). The minus sign associated to the DC bus voltage
has not been included in the open-loop function Lin(s) (8.10) as it compensates the
positive feedback of the inertia.

K ′g(s) =
∆ω

∆pg
=

Kg(s)

1 + Lin(s)
(8.11)

Even though the stability definition only depends on the loop function Lin(s) and
the grid characteristic changes the modified grid function K ′g(s), still it is interesting to
correlate the accelerating power ∆pg with the one injected by the converter ∆pconv, as
well as with the DC bus voltage variation ∆vdc.

Figure 8.3: Simplified model for the design of the voltage-controlled inertia loop.
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∆pconv
∆pg

=
−Lin(s)

1 + Lin(s)
(8.12)

∆vdc
∆pg

= KinKg(s)KFLL(s)Kdc(s) ·
1

1 + Lin(s)
(8.13)

The steady-state condition of the state variables under a step-change of the acceler-
ating power can be reconstructed from the Laplace final value theorem applied to (8.12)
and (8.13).

According to the definition of the loop function provided in (8.10), the relation
between the accelerating power and the converter injection under a step-change ∆p∗g
becomes:

∆pconv(∞) = lim
s→0

s · −Lin(s)

1 + Lin(s)
·

∆p∗g
s

= 0 (8.14)

At steady state, the power injected by the converter results to be independent of the
excitation ∆pg, guaranteeing the applicability of the technique for undispatchable units.
The same analysis can be applied to link the output converter power ∆pconv under a
step change of the angular frequency variation ∆ω:

∆pconv(∞) = lim
s→0

s · −s τdc VdcKinKdc(s)KFLL(s)

1 + Lin(s)
· ∆ω∗

s
∼= lim

s→0
sKinτdcVdc∆ω

∗ = 0

(8.15)

From (8.15) it becomes evident the natural derivative effect introduced by the DC
bus dynamic; even though a proportional controller Kin is applied, still the relation
between the injected power ∆pout and the angular frequency variation ∆ω retains a
derivative nature, similar to the one of a physical rotating mass. Thus, at steady state,
the injection from the converter results to be independent of the actual grid frequency
∆ω, coherently with (8.14).

Now it is possible to consider the inertia effect on the DC bus voltage ∆vdc. The
steady-state conditions are derived from (8.13).

∆vdc(∞) = lim
s→0

sKinKg(s)KFLL(s)Kdc(s)
1

1 + Lin(s)
·

∆p∗g
s

= (8.16)

= KinKg(0)KFLL(0)Kdc(0) ·∆p∗g =
Kin

Kreg
∆p∗g = Kin ·∆ωss (8.17)

From (8.16), the dependency of the DC bus voltage from the steady state angular
frequency ∆ωss becomes evident, even though the injection remains exclusively deter-
mined by the un-dispatchable primary source. Thus, when the converter is operated
in island, the DC bus voltage converges to different values depending on the system
state; this may be acceptable or not depending on the primary source nature and on the
hardware constraints associated to the converter.

As regards stability analysis, two study cases can be identified according to the
definition already provided for the dispatchable unit: droop-controlled microgrid (Tab.
5.1) and traditional synchronous machine regulation (Tab. 5.2), according to Fig. 5.1
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8.4 CASE STUDY 1 (droop-controlled microgrid): math-
ematical model

Figure 8.4 represents the linearised simplified model of the converter used for the
design of the inertia coefficient. Under the hypothesis of a limited value of the regulation
delay τ << Ta

4Kreg
(same condition derived in Sec.7.3), the grid dynamics Kg(s) can be

represented as a single-pole function as already developed for the current-controlled
inertia. Thus:

Kg(s) =
1

Ta s+Kreg
(8.18)

and the open-loop function becomes:

Lin(s) ∼= Kin ·
1

1 + s/ωc dc
· (s τdcVdc) ·

1

Tas+Kreg
· 1

1 + sτFLL
(8.19)

Graph (b) in Fig. 8.4 represents the open-loop inertia function Lin(s) under this
hypothesis and allows to derive sufficient stability conditions for the feedback. Imposing
the magnitude of the loop function less than 0 dB, it is possible to obtain the following
sufficient stability limit, obtained from the asymptotic function behaviour expressed in
Fig. 8.4-(b):

Kin <
Ta

τdcVdc
(8.20)

Fig. 8.4-(a) depicts the modification introduced in the equivalent closed-loop grid
transfer function K ′g(s) (8.11) after the introduction of the voltage-controlled inertia
support. This can be obtained from them asymptotic approximation of Lin(s) in the
low-frequency range. For ωs ≤ ωc dc,

Lin(s) ∼= Kin · (sτdcVdc) ·
1

Tas+Kreg
(8.21)

The modified closed-loop function then becomes:

K ′g(s) =
Kg(s)

1 + Lin(s)
∼=

1
(Ta +KinτdcVdc) · s+Kreg (8.22)

In particular, limiting the analysis to ωs < ωc dc it is possible to observe that the
equivalent starting time of the system changes according to (8.23); thus the equivalent
cut-off angular frequency of the DC-voltage control loop determines the spectrum range
where synthetic inertia has an effect.

T ′a = Ta +KinτdcVdc (8.23)

8.5 CASE STUDY 2: mathematical model

Figure 8.5 reports the asymptotic diagrams of the closed K ′g(s) (a) and open-loop
Lin(s) (b) transfer functions associated to the voltage-controlled inertia applied to a
network with slow primary regulation τ ≥ Ta

4Kreg
(as derived in Sec.7.3). Similarly to the



Chapter 8. Voltage-controlled inertia 201

Figure 8.4: Bode diagram associated to the synthetic inertia loop in CASE STUDY
1. Kg(s) and K ′g(s) are the grid function before and after inertia insertion, while Lin(s)

is the open-loop function associated to the voltage-controlled scheme.

analysis reported in Section 7.4, the system shows a couple of complex conjugate poles
whose damping depends on the relative magnitude of the grid regulation parameters.

The closed-loop transfer function K ′g(s) in Fig.8.3 is obtainable from (8.11). In the
frequency range ωs < ωc dc the open Lin(s) and closed-loop functions K ′g(s) are given
by:

Lin(s) ∼= KinτdcVdc s ·
1 + sτ

s2Taτ + sTa +Kreg
(8.24)

K ′g(s) =
Kg(s)

1 + Lin(s)
∼=

1 + sτ

s2 (Ta +KinτdcVdc) τ + (Ta +KinτdcVdc) s+Kreg
(8.25)

The natural frequency and damping factor of (8.25) are respectively given by:

ω′n =

√
Kreg

τ (Ta +KinτdcVdc)
(8.26)

ξ′ = 0.5 ·

√
(Ta +KinτdcVdc)

Kreg τ
(8.27)

An increase of the inertia coefficient Kin reduces the natural angular frequency ω′n
associated to the transfer function K ′g(s) and increases its equivalent damping ξ′: in
this way it contributes to the reduction of the angular frequency oscillations on the
power network.

Furthermore, in order to have a positive impact on the system, the cut-off angular
frequency of the DC bus regulation ωc dc should be higher than the natural frequency of
the grid without synthetic inertia ωn. Thus, the following condition determines synthetic
inertia effectiveness:

ωn =

√
Kreg

Taτ
< ωc dc (8.28)
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Figure 8.5: Bode diagram associated to the synthetic inertia loops in CASE STUDY
2. Kg(s) and K ′g(s) are the grid function before and after inertia insertion, while Lin(s)

is the open-loop function associated to the voltage-controlled scheme.

8.6 DC bus voltage proportional inertia: experimental re-
sults

In this section, the results associated to the comparison of the experimental wave-
forms with the analytical ones are reported. In order to verify the effectiveness of the
inertia service provision, the experimental set-up already introduced in Section 7.5 has
been considered. A broader explanation of the physical layout (as well as of the acqui-
sition and control architectures) is reported in Appendix D.

Similarly to what was done for the current-controlled inertia, it is necessary to
define a suitable protection scheme for the converter DC-bus to avoid possible damage
to the installed capacitors. Nonetheless, in this case it is easier to coordinate the inertia
provision with the acceptable operating ranges, as the control directly acts on the state
variable under protection vdc; thus the simple saturation scheme proposed in Fig. 8.6
can be adopted, where Vdcmin = 1.05 p.u. and VdcMax = 1.35 p.u.

The comparison between the derived analytical model and the experimental tests
is carried out considering some macroscopic characteristics of the network frequency
and DC bus voltage transients; the following aspects have been taken into account for
the comparison: grid and DC voltage steady-state condition, natural oscillation period
for the network frequency transient and its corresponding overshoot. As regards the
DC bus steady state voltage, the comparison verifies the general energetic correctness
of the set-up and provides a numeric indication of the DC bus variability associated
to a network event. On the other hand, the procedure in Appendix C.3 correlates
the macroscopic transient index with the expected natural frequency and damping as
expressed by (8.26)-(8.27).

Consider the numeric results reported in Tab.8.1 and the experimental curves for
the network frequency and DC bus transient under different level of the inertial support

Figure 8.6: DC bus voltage protection scheme based on reference saturation.
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Kin, respectively reported in Fig. 8.7 and Fig.8.9, under a unitary step-change of the
accelerating power (∆pg = 1 per-unit).

The following consideration can be derived from the analysis of the results:
• comparing Fig.8.7 with the corresponding one of the current-controlled inertia

(Fig.7.18), it is evident that, from the network perspective, the two inertia schemes
are practically equivalent. The change introduced by the proportional DC bus
reference variability provides an equivalent damping behaviour equal to the one
associated to the current-controlled inertia: this can be observed from the reduc-
tion of the network oscillation overshoot and from the increase of the transient
period.
• The mismatch analysis between the proposed analytical derivation and the experi-

mental tests (Fig.8.8) highlights the general robustness of the developed model: the
correspondence represents a valuable result especially considering that synthetic
inertia techniques have been rarely verified on a real test-bench, even though its
simulated features have been extensively validated.
• The correctness of the simplified dynamical mode reported in Fig.8.3 (and veri-

fied through the comparison of the transients characteristics - Fig.8.8 ) allows to
derive easy-to-use analytical relations between all the state variables that appear
in the dynamical representation of the system, both in terms of the steady-state
behaviour and as regards the stability margins. The provided mathematical de-
scription of the system highlights the intrinsic feedback between the dispatchable
generation (modelled through Kreg, Ts and τ) and the transient support Kin from
the undispatchable units: as a results, the physical power exchanges between sys-
tem elements can be modelled in an analytical form, without recurring to complex
numerical models.
• Figure 8.9 highlights the DC bus voltage profiles during inertia support; the ma-

jor difference with respect to the current-controlled inertia regards the DC bus
voltage level after the transient extinction. Differently from Fig. 7.22, the voltage-
controlled scheme does not guarantee nominal steady-state behaviour for the DC
bus, coherently with the model reported in equation (8.17) and with the numerical
comparison carried out in Tab.8.8. Independently of the acceptability of a non-
nominal DC voltage level, it is clear the higher impact of this regulation scheme on
other system elements that may be connected in parallel to the converter bus (e.g.
a controlled rectifier in a double-stage conversion system or a physical generator in
single-stage photovoltaic interface): the modelling of these possible mutual effects
may be the topic for further prosecutions of the work.
• Figure 8.10 reproduces the power injection from the converter pconv under inertia

service provision. Beside the proportional characteristics of this architecture with
respect to DC-side quantities, as regards the AC side of the converter the control
maintains an intrinsic derivative nature, and thus a global null-net-energy be-
haviour. This can be seen considering that the null power injection at steady state
is not influenced by the inertia application, coherently with the model expressed
by (8.14).

As a final remark, Figure 8.11 highlights the behaviour associated to the DC bus
voltage protection under different inertia strength; in (a) the required DC bus voltage

reference vrefdc does not exceed the predetermined thresholds, while in (b) the saturation
limits the reference to avoid dangerous operating conditions. In (b) it is also possible to
observe the over-shoot produced by the DC bus regulation, even though at steady state
the actual voltage vdc coincides with the reference one. Even if the non-linear behaviour
associated to the implemented saturation scheme produces a mismatch between the
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Figure 8.7: Angular frequency profile under different values of the synthetic inertia.
The increase of the regulation coefficient Kin reduces the amplitude of the angular

frequency overshoot.

Figure 8.8: Representation of the residuals associated to the voltage-controlled inertia
regulation.
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Figure 8.9: DC bus voltage under synthetic inertia control. The steady-state level of
the DC bus differs from the nominal one, especially for high values of the coefficient

Kin.

Figure 8.10: Injected power under different values of the synthetic inertia. The
experimental system shows a lower phase margin with respect to the theoretical one,
as it is possible to see from the oscillation in the power injection for high values of Kin.
This is mainly due to the approximations carried out in the analytical development of

the model.
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Table 8.1: Model validation for voltage-controlled inertia in CASE STUDY 2: com-
parison of transients characteristic.

Parameter Expression Kin/Ta Theoretic Experim.

Steady state dev. ∆ω(∞) = ∆pg/Kreg {0, 0.4, 0.8, 1.6} 0.020 p.u. 0.0195 p.u.

0 0 0
DC bus voltage ∆vdc(∞) 0.4 0.080 p.u. 0.051 p.u.

steady-state (see (8.17)) 0.8 0.160 p.u. 0.103 p.u.
variation 1.6 0.320 p.u. 0.230 p.u.

0 3.16 rad/s -
Natural 0.4 3.01 rad/s -

frequency ω′n (8.26) 0.8 2.87 rad/s -
1.6 2.64 rad/s -

0 0.32 -
Damping 0.4 0.33 -

factor ξ′ (8.27) 0.8 0.35 -
1.6 0.38 -

0 2.09 s 2.08 s
Period of 0.4 2.19 s 2.17 s
oscillation T = 2π

ω′n·
√

1−ξ′2
0.8 2.35 s 2.70 s

1.6 2.61 s 2.78 s

0 80% 88%
Overshoot see (C.30)-(C.31) 0.4 73% 73%

0.8 64% 58%
1.6 53% 48%

theoretical and experimental models, still it allows to exploit the maximum available
energy buffer for the provision of grid regulation service in a safe and reliable way.

8.7 Comparison between current-controlled and voltage-
controlled inertia loops

In this final section, the main differences between the current-controlled and the
voltage-controlled inertia loops will be pointed out.

From the energetic point of view, both the techniques are clearly equivalent, as they
both exploit a physical energy buffer on the DC side. The experimental tests have proved
the correspondence of the two algorithms as regards the energetic impact of the network
damping: both the schemes provide a controlled transitory frequency support, reduce
the overshoot experienced by the system and avoid the possible undesired intervention
of the network over-frequency relays.

Both the techniques can be analytically modelled by means of a coupling loop be-
tween the dispatchable generation and the PQ converter: this representation allows to
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(a) Linear regulation conditions (b) Saturated regulation conditions

Figure 8.11: Comparison between reference and actual voltage under inertia support.
The protection scheme in Fig. 8.6 limits the maximum voltage reference, thus to protect

the converter.

predict the stability properties of the regulated network, as well as to predict the equiv-
alent natural frequency and damping of the resulting system. Some experimental tests
have been carried out verify the correctness of the developed analytical model in both
the configurations.

Even though from the AC side perspective the techniques are equivalent and both
characterized by a null average energetic contribution (apart from the intrinsic parasitic
losses experienced during the service provision), still from the DC side point of view the
voltage-controlled approach does not guarantee the mathematical convergence of the DC
bus to its nominal value after the transient extinction. This can give rise to possible
unwanted interactions with other elements of the system: these aspects will be studied
in further researches.

As proved by the experimental tests, the concern related to the fast and robust
angular frequency derivative estimation for the current-controlled scheme can be easily
solved recurring to sufficiently structured angular estimation techniques, like the one
presented in Chapter 6: the development of structured synchronization algorithm repre-
sents a general trend in the control of grid-interfaced power converters (also confirmed by
the increasing interest in Phasor Measurement Units, which combine the local angular
quantities estimation with a global GPS synchronization for phase angle reconstruction).

Often the nature of the system itself imposes one architecture over the other. If we
consider an electrochemical storage unit under PQ control with a single stage conversion
system, the current-controlled scheme turns out to be the only feasible option as a conse-
quence of the impossibility to directly control the DC bus voltage. In other applications
(e.g. super-capacitor installations or HVDC links), both the analysed schemes are fea-
sible and the choice of one architecture over the other mainly depends on the required
intervention fastness. In this perspective the identification of the mathematical models
as carried out in this thesis assumes an important role as it provides a technology-neutral
representation of the system, that can be later exploited for a vast range of engineering
applications.
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8.8 Conclusion

In this last chapter of the thesis, the synthetic inertia provision by means of a
proportional regulator acting between the grid angular frequency and the DC bus voltage
has been taken into account. The changes in the complete model of the converters
have been identified with respect to the current-controlled inertia scheme; later, some
simplified design models have been developed for the stability assessment. Finally, the
dynamical properties associated to the proposed inertia scheme have been validated
experimentally.

As done for the previous chapter, the novelty introduced by the inertia representa-
tion as an equivalent closed-loop scheme lies in the possibility to predict the modified
global regulation properties after inertia introduction, as well as its stability limits. In
the considered proportional voltage scheme, the identification of dynamical coupling
between the inertia provided by PQ converter and the dispatchable network frequency
regulation allows to correctly predict the steady state voltage deviation as a function of
the physical and control parameters.
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Conclusions

In this thesis, the main control strategies for power converters in microgrids applica-
tions have been analysed and developed, starting from the main architecture illustrated
in the first chapter, which also provided a description of the general normative context.

In the first part of the thesis the droop scheme has been analysed; starting from
the traditional regulation architecture reported in literature, the dynamical model of
the converter has been developed. This allows to determine the contribution of each
control element on the converter stability: in particular, the chapter has analysed the
effect of the feed-forward compensation in the voltage loop and the influence of derivative
droop terms. The adopted methodology is based on the development of simplified design
methods: the attempt is to highlight the intrinsic converter dynamics.

The second chapter has been focused on the analysis of the virtual impedance con-
trol; a new design method based on closed-loop stability has been developed and exper-
imentally tested, both in grid-connected and island mode. The analysis has revealed a
strong influence of the external converter impedance on the system stability; neverthe-
less, the effectiveness of the virtual impedance as regards balancing of island-operated
parallel converter has been assessed, as well as its positive impact on active / reactive
decoupling, both in grid-connected and island mode.

Clearly the impact of the external output impedance on system stability is a critical
task for the development of control system with fully-determined dynamical proper-
ties; in this perspective, the possibility to exploit natural system harmonics has been
analysed, to estimate the network state and thus to reconstruct the equivalent inter-
face impedance. Several alternatives have been analysed and experimentally tested,
even though the external network state reconstruction is still an open task in litera-
ture: clearly the proposed approach based on single-harmonics control is characterized
by a limited reconstruction capability, nonetheless it can be easily implemented on low-
computational-power controllers and allows a synthetic characterization of the system.

Even though the coordination of all the system sub-controls requires further analy-
sis, still the identification of the major dynamical characteristics of each sub-algorithm
represents a significant step towards the development of a more advanced (and adap-
tive) architecture able to maintain constant dynamical properties independently of the
external system characteristics.

The second part of the thesis has been entirely devoted to the analysis of the syn-
thetic inertia control. This algorithm configures as a regulation technique able to provide
transitory system support during frequency events; its derivative nature enables its im-
plementation also for un-dispatchable units, provided that they are equipped with a
small energy buffer.

A key aspect in the provision of inertia support regards the possibility to estimate
in a clean and fast way the angular quantities (angular frequency and its derivative)
associated to the network voltages, especially under disturbed and unideal operating
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conditions. Thus an advanced resonant-based estimation technique has been developed,
which allows the compensation of the disturbance terms inside the control; a comparison
between the proposed method and other algorithms available in literature has been
developed on an experimental base.

The final chapters of the thesis have analysed two possible architectures for the
synthetic inertia provision: the first one acts on the current-control loop and exploits
a derivative-based controller, the second produces a DC-voltage reference proportional
to the frequency deviation with respect to the nominal conditions. The current-based
approach is suitable when the internal grid dynamics are fast, but it requires a better es-
timation of the angular quantities and it is more susceptible of possible un-compensated
disturbances. On the other hand, the DC-voltage-based architecture guarantees a higher
robustness against angular quantities estimation uncertainties but is typically charac-
terized by a lower equivalent pass-band.

The methodology followed in the thesis deserves a final consideration: often the
design of the regulation algorithms for the control of power converters is performed on
a numerical base or resorting to simulations. In this thesis, the author’s attempt has
been to develop the design procedures on an analytical base. On one side, a drawback
of this approach is the necessary introduction of simplifying hypotheses that produce,
sometimes, differences between the prospected results and the obtained ones. Neverthe-
less, the advantages of this methodology are evident: it highlights the main dynamical
relations inside the system, allows the determination of simplified design constraints
and, more important, provides an intuitive but rigorous understanding of the physical
behaviour of the controllers. It keeps complicated things easy: this was, at least, the
attempt.



Appendix A

State space models

In this Appendix, the complete expressions of the dynamical models of the converter
under different regulation schemes are reported. It does not configure as a stand-alone
analysis: rather it is an extensive representation of the state-space models proposed
in the main chapters and allows to identify the actual set of equations numerically
implemented in the Matlab environment. For a physical interpretation of the included
quantities, the reader is invited to refer to the main chapters in which each dynamical
model is reported.

The combination of the physical and control elements determine a non-linear set of
equations, which include that stability properties of the converter. Typically the system
can be described by a set of differential-algebraic equations; direct substitution of the
algebraic equalities in the differential equations allows to obtain a model in state-space
form1:

ẋ(t) = f (x(t), u(t), t) (A.1)

where x is the state-vector and u are the inputs of the system. In the following, time-
invariant models are considered, so as to remove the direct dependency from time in
(A.1). The operator p is used to indicate the time derivative of a state variable, p = d

dt .
The reported state-space models can be used for equilibrium identification, eigenvalues
calculation and participation factors analysis; the solution of the non-linear numeric
system for the identification of the equilibrium point has been performed by means of
the Newton-Raphson algorithm.

A.1 Droop-controlled converter in grid-connected mode

State variables:

x = [ Po Qo Ev d Ev q Ei d Ei q id iq vo d vo q io d io q δ ]T (A.2)

External conditions and inputs:

u = [ ωpcc Vpcc ω
∗ V ∗ ] (A.3)

1P. Bolzern, R. Scattolini, N. Schiavoni, ”Fondamenti di controlli automatici”, McGraw-Hill 2008
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State model:

pPo =
1

Tp
· (vo d io d + vo q io q − Po) (A.4)

pQo =
1

Tp
· (vo q io d − vo d io q −Qo) (A.5)

pEv d =
(
vrefo d − vo d

)
(A.6)

pEv q =
(
vrefo q − vo q

)
(A.7)

pEi d =
(
irefd − id

)
(A.8)

pEi q =
(
irefq − iq

)
(A.9)

pid =
ωb
Lf
· (vd − vo d + ωLf iq −Rf id) (A.10)

piq =
ωb
Lf
· (vq − vo q − ωLf id −Rf iq) (A.11)

pio d =
ωb
Lg
· (vo d − Vpcc · cos (δ) + ωLgio q −Rgio d) (A.12)

pio q =
ωb
Lg
· (vo q − Vpcc · sin (δ)− ωLgio d −Rgio q) (A.13)

pvo d =
ωb
Cf
· (id − io d − ωCfRd · (iq − io q) + CfRd/ωb · (pid − pio d) + ωCfvo q)

(A.14)

pvo q =
ωb
Cf
· (iq − io q + ωCfRd · (id − io d) + CfRd/ωb · (piq − pio q)− ωCfvo d)

(A.15)

pδ = ωb · (ωpcc − ω) (A.16)

where the converter output voltage v̄dq ∼= v̄dq ref can be expressed as function of the
regulators equations:

vd ref = kpI ·
(
irefd − id

)
+ kiI · Ei d + vo d − ωLf iq (A.17)

vq ref = kpI ·
(
irefq − iq

)
+ kiI · Ei q + vo q + ωLf id (A.18)

id ref = kpV ·
(
vrefo d − vo d

)
+ kiV · Ev d +HIio d + ωCfHV vo q (A.19)

iq ref = kpV ·
(
vrefo q − vo q

)
+ kiV · Ev q +HIio q − ωCfHV vo d (A.20)

Moreover the following algebraic equalities associated to the droop hold:

ω = ω∗ −mPo −md · pPo (A.21)

vrefo d = V ∗ − nQo − nd · pQo (A.22)

vrefo q = 0 (A.23)
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A.2 PQ-controlled converter with synthetic inertia

The dynamical model of the converter under PQ regulation is introduced and com-
mented in Sec.5.7 and later extended for the current and voltage-controlled inertia
schemes, respectively in Sec.7.2 and Sec.8.2.

State variables:

x = [ vd vq id iq io d io q vo d vo q Ei d Ei q EPLL ∆θ vdc Edc ω αFLL αfilt ]T (A.24)

External conditions and inputs:

u =
[
pg pdc vdc ref q

ref Kin

]
(A.25)

State model:

pvd =
1

Tinv
·
(

+ cos (∆θ) vref
d̃

+ sin (∆θ) vrefq̃ − vd
)

(A.26)

pvq =
1

Tinv
·
(
− sin (∆θ) vref

d̃
+ cos (∆θ) vrefq̃ − vq

)
(A.27)

pid =
ωb
Lf
· (vd − vo d + ωLf iq −Rf id) (A.28)

piq =
ωb
Lf
· (vq − vo q − ωLf id −Rf iq) (A.29)

pio d =
ωb
Lg
· (vo d − Vg · cos(0) + ωLgio q −Rgio d) (A.30)

pio q =
ωb
Lg
· (vo q − Vg · sin(0) − ωLgio d −Rgio q) (A.31)

pvo d =
ωb
Cf
· (id − io d − ωCfRd · (iq − io q) + CfRd/ωb · (pid − pio d) + ωCfvo q)

(A.32)

pvo q =
ωb
Cf
· (iq − io q + ωCfRd · (id − io d) + CfRd/ωb · (piq − pio q)− ωCfvo d)

(A.33)

pEi d =
(
id̃ ref − id̃

)
(A.34)

pEi q = (iq̃ ref − iq̃) (A.35)

pEPLL = vo q̃ (A.36)

p∆θ = ωb · (ω − ω̃) (A.37)

pvdc =
1

τdcvdc
· (Idcvdc − (vdid + vqiq)) (A.38)

pEdc = (vdc ref − vdc − vdc in) (A.39)

pω = α (A.40)

pα ∼=
1

Taτ
· (−Taα−Kreg · (ω − ω∗) + pg + pconv + τ (p pg + p pconv)) (A.41)

pαFLL =
1

τFLL
· (α− αFLL) (A.42)

pαfilt =
1

τin
· (αFLL − αfilt) (A.43)
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where:

pconv = (vodiod + voqioq) (A.44)

The converter reference output voltage v̄ref
d̃q̃

can be expressed as a function of the

current regulators equations:

vref
d̃

= kpI ·
(
iref
d̃
− id̃

)
+ kiI · Ei d + vo d̃ − ω̃Lf iq̃ (A.45)

vrefq̃ = kpI ·
(
irefq̃ − iq̃

)
+ kiI · Ei q + vo q̃ + ω̃Lf id̃ (A.46)

The current reference īref
d̃q̃

is determined by the DC-bus control, reactive feed-forward

compensation and synthetic inertia signals.

iref
o d̃

=
prefdc + pin√
v2
o d̃

+ v2
o q̃

(A.47)

irefo q̃ = −
qref√

v2
o d̃

+ v2
o q̃

(A.48)

prefdc = (kp dc · (vdc ref − vdc + vdc in) + ki dcEdc) iref
d̃

= iref
o d̃
−HV Cf ω̃vo q̃ (A.49)

irefq̃ = irefo q̃ +HV Cf ω̃vo d̃ (A.50)

As regards the current-controlled inertia, the following relations hold:{
pin = −Kin · αfilt
vdc in = 0

(A.51)

while for the voltage-controlled inertia the references are determined as:{
pin = 0

vdc in = Kin · (ω − ω∗n)
(A.52)

The rotating control angular frequency ω̃ is determined by the PLL dynamics. The
PLL also determines the relationship between acquired and real quantities from the
perspective of the synchronous control, according to (A.54)-(A.57).

ω̃ = kpPLLvo q̃ + kiPLLEPLL + ω∗n (A.53)

id̃ = (+id cos(∆θ)− iq sin(∆θ)) (A.54)

iq̃ = (+id sin(∆θ) + iq cos(∆θ)) (A.55)

vo d̃ = (+vo d cos(∆θ)− vo q sin(∆θ)) (A.56)

vo q̃ = (+vo d sin(∆θ) + vo q cos(∆θ)) (A.57)



Appendix B

Current regulator and
Phase-Locked Loop (PLL) design

B.1 Current regulator

In this Appendix the complete procedure for the determination of the current loop
regulators is performed, as addressed in Sec. 2.6 and Sec.5.7.

The design of the regulator for internal filter current ī is based on the definition of
the equivalent phase margin and cut-off frequency for the closed-loop system. Consider
the base system and the physical parameters for the filter as reported in Table B.1.

Consider the equivalent structure of the feedback as reported in Fig. B.1(a). In
order to control the filter current, a traditional PI regulator is adopted; the presence of
the control integrator in the loop guarantees null error at steady-state in dq frame. A
unitary feed-forward compensation is introduced both as regards the capacitor voltage
v̄o and the inductor coupling term. The modulator of the converter is taken into account
by means of an equivalent time delay in the Laplace domain.

The equivalent transfer function associated to the modulator depends on the dis-
cretization carried out by the digital control system of the converter. A typical model
consists in the introduction of an equivalent time delay that takes into account the type
of modulation carried out by the converter (SPWM or PWM), the elaboration time of
the microelectronic controller and the signal acquisition method implemented by the
ADC converter.

The modulator introduces a highly non linear behaviour associated to the discrete
state of the controllable switch; anyway, from the perspective of slower control loops, it
is very common to model it as a time delay equal to half of the switching period Tsw

2 .
As for the control and acquisition system, the equivalent delay depends on the dis-

cretization technique of the ADC converter: typically, most of the acquisition systems

Table B.1: Parameters for filter current loop design

Quantity Symbol Value

Base system Vb [V], Ab [kVA], ωb [rad/s] 200; 2.4; 2π 50
Filter inductor param. Rf , Lf [p.u.] 0.0073, 0.045

Desired cut-off ang. freq. ωcI 2π · 350 rad/s
Desired phase margin φmI 60 ang. degrees
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are designed based on a Sample&Hold approach which, from the mathematical perspec-
tive, is a Zero-Order-Holder; generally this can be simplified as a pure delay equal to
half of the acquisition / elaboration time

Tsampling
2

1.
Combining the effect of the modulator with the ones of the acquisition system, a

pure time delay Tinv =
Tsampling

2 + Tsw
2 is obtained. Referring to the characteristics of the

experimental set-up, the following values are considered: Tsw = Tsampling = 100µs. Thus
the effect of the whole modulation process acts as a global delay of around Tinv = 100µs.

F (s) = e−s Tinv (B.1)

Instead of (B.1), the first-order ratio form corresponding to the Padè approximation
is typically exploited. In practice, as Tinv ∼= 0, the first order asymptotic equivalences
reported in (B.2) hold.

F (s) = e−sTinv ∼= 1− s · Tinv ∼=
1

1 + s · Tinv
(B.2)

Thus the linearised model associated to the current regulator can be obtained as in
Fig. B.1(b). The structures of the regulator and of the equivalent load are given by:

RI(s) = kpI +
kiI
s

= kiI ·
1 + sTiI

s
(B.3)

GI(s) =
1(

s

ωb
Lf +Rf

)
· (1 + s Tinv)

(B.4)

B.1.1 Analytical expressions for the regulator parameters

After defining the desired cut-off angular frequency ωcI and phase margin φmI ,
the parameters of the controller RI(s) are obtained analytically. Given the desired
control performances, the open-loop function LI(s) = RI(s) · GI(s) has the following
characteristics:

|LI(jωcI)| = 1 (B.5)

φmI = π + arg LI(jωcI) (B.6)

Thus:

LI(jωc) = 1∠(−π + φmI) (B.7)

Considering magnitude and angle separately, it is possible to obtain:

|GI(jωcI)||RI(jωcI)| = 1 (B.8)

arg(GI(jωcI)) + arg(RI(jωcI)) = −π + φm (B.9)

1P. Bolzern, R. Scattolini, N. Schiavoni, ”Fondamenti di controlli automatici”, McGraw-Hill 2008
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(a) Structure of the current control scheme

(b) Linearized model of the current control scheme

Figure B.1: Design of the filter current ī regulator.

From (B.9):

|RI(jωcI)| =
1

|GI(jωcI)|
(B.10)

arg(RI(jωcI)) = − arg(GI(jωcI))− π + φmI (B.11)

RI(jωcI) =
1

|GI(jωcI)|
cos(− arg(GI(jωcI))− π + φmI)+

+ j
1

|GI(jωcI)|
sin(− arg(GI(jωcI))− π + φmI) (B.12)

The complex equality of (B.12) with (B.3) leads to the following expression for the
coefficients:

kpI =
cos(− arg(GI(jωcI))− π + φmI)

|GI(jωcI)|
(B.13)

kiI = −ωcI
sin(− arg(GI(jωcI))− π + φmI)

|GI(jωcI)|
(B.14)

All the angles in (B.13) and (B.14) are expressed in radians.



Appendix B. Current regulator and Phase-Locked Loop (PLL) design 220

B.1.2 Current regulator: results

As regards the design of the current regulator the following values have been as-
sumed:
ωcI = 2200 rad /s
φmI = 70◦

obtaining the following values for the parameters
kpI = 0.30 pu
kiI = 110 pu/s

Once determined the parameters of the open-loop transfer function LI(s), the cor-
responding closed-loop dynamic KI(s) is easily obtainable as:

KI(s) =
LI(s)

1 + LI(s)
(B.15)

Asymptotic Bode diagram of the open and closed loop transfer functions associated
to the current controller are reported in Figure B.2. The controller zero introduces
a leading effect in the loop, increasing the phase margin at the intersection; thus a
sufficient condition for a stable operation of the current loop is the following:

1

TiI
< ωcI <

1

Tinv
(B.16)

In the frequency range ωs << ωcI (typically ωs <
ωcI
7 ) it is possible to approximate

the closed-loop behaviour as a single-pole function:

ī = KI(s) · īref =
1

1 + s/ωcI
· īref (B.17)

∆ī = KI(s) · īref =
1

1 + s/ωcI
·∆īref (B.18)

B.2 Phase-Locked loop (PLL) design

Consider the typical structure of a Phase-Locked loop architecture, combined with
an internal first-order filter used for high frequency damping. The representation of the
control algorithm is provided in the upper part of Fig.B.3.

The linearisation of Park transform leads to the simplified design model reported in
the lower part of Fig.B.3 2. The design of the control system can be performed referring
to the symmetrical optimum conditions, used for dynamical systems with two poles
in the origin: keeping equal the ratios ωc PLL

T−1
i PLL

=
ωf

ωc PLL
allows to maximise the phase

margin under a certain desired cut-off angular frequency ωc PLL (Fig. B.4). Consider
the equivalent open-loop function LPLL(s):

LPLL(s) = ki PLL
1 + sTi PLL

s
· ωb
s
· 1

1 + s/ωf
(B.19)

2R. Teodorescu, M. Liserre, P.Rodriguez, ”Grid converters for photovoltaic and wind power systems”,
Wiley and Sons, 2010
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(a) Asymptotic behaviour

(b) Real behaviour (MATLAB)

Figure B.2: Bode diagram of the open LI(s) and closed KI(s) transfer functions.

Figure B.3: Phase-Locked loop scheme, with internal first order filter.
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The design can be performed considering that:

g = ωc PLL · Ti PLL =
ωf

ωc PLL
(B.20)

ωc PLL =
(√

TfTi PLL

)−1
(B.21)

ϕm = π + ∠ (LPLL(jωc PLL)) = arctan (ωc PLL Ti PLL)− arctan

(
ωc PLL
ωf

)
= (B.22)

= arctan (g)− arctan

(
1

g

)
= arctan

(
g2 − 1

2g

)
(B.23)

tan (ϕm) =
g2 − 1

2g
(B.24)

g = tan (ϕm) +
√

tan2 (ϕm) + 1 (B.25)

From (B.23), it is possible to observe that the actual phase margin of the system
exclusively depends on the parameter g. Thus (B.25) allows to determine the value of g
starting from the desired phase margin.

As regards the cut-off angular frequency, it can be obtained as:

|LPLL(jωc PLL)| = 1 (B.26)
ωb

ω2
c PLL

· ki PLL ·
√

1 + g2 ·
ωf

ωc PLL
√

1 + g2
= 1 (B.27)

ωb · kpPLL · ωf
Ti PLL · ω3

c PLL

= 1 (B.28)

Considering the condition in (B.20), (B.28) becomes:

ωc PLL = kpPLL · ωb (B.29)

The condition reported in Table B.2 has been chosen for the design of the PLL:

Table B.2: Design parameters for the PLL loop

Quantity Symbol Value

Cut-off ang. frequency ωc PLL 2π · 40 rad/s
Phase margin ϕm 60 deg.
Margin coeff. g ∼= 4 p.u. (from (B.25))

Proportional coeff. kpPLL = ωc PLL/ωb 0.8 p.u.

Regulator integral time Ti PLL = g/ωc PLL (2π · 10)−1 s
Filter cut-off ang. frequency ωf = g · ωc PLL 2π · 160 rad/s
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Figure B.4: Bode diagram of the PLL dynamical model.





Appendix C

Time-response evaluation of
system dynamics

C.1 Resonant controllers: settlement time

This appendix analytically derives the convergence time value of a resonant second
order system, used for the coordination of the SOGI scheme with the FLL algorithm
(Sec. 6.2.3).

Two typical structures are considered for resonant controllers; the first one D(s)
introduces a null phase delay at the resonance frequency ωn, while the second Q(s)
produces a delay equal to ninety angular degrees.

D(S) = Kr · 2ξ ·
s/ωn

(s/ωn)2 + 2ξ(s/ωn) + 1
(C.1)

Q(S) = Kr · 2ξ ·
1

(s/ωn)2 + 2ξ(s/ωn) + 1
(C.2)

The properties of these transfer functions are determined by three parameters:
• the coefficient Kr determines the vertical translation of the function;
• the damping factor ξ defines the extension of the resonance peak;
• ωn determines the angular position of the peak.
The Bode diagrams associated to the resonant controllers are reported in Fig. C.1.

Consider the Laplace expression associated to D(s) under sinusoidal input signal.
Assume for simplicity that the angular frequency of the input matches the resonance
one in the controller. The Laplace transform of the output under co-sinusoidal input is
given by (C.3).

Y (s) = D(s) · U(s) = Kr ·
2ξωns

s2 + 2ξωns+ ω2
n

· s

s2 + ω2
n

(C.3)

By applying the Heaviside decomposition method to (C.3) it is possible to obtain:

Kr ·
2ξωns

s2 + 2ξωns+ ω2
n

· s

s2 + ω2
n

=
As

s2 + 2ξωns+ ω2
n

+
B s

s2 + ω2
n

(C.4)

Kr · 2ξωns2 = (As) ·
(
s2 + ω2

n

)
+ (B s) ·

(
s2 + 2ξωns+ ω2

n

)
(C.5)
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Figure C.1: Bode diagram of the transfer functions D(s) and Q(s).

Equating the polynomials at the two sides, it is easy to derive that condition (C.5) is
verified provided that A = −Kr and B = Kr. Thus:

Kr ·
2ξωns

s2 + 2ξωns+ ω2
n

· s

s2 + ω2
n

=
−Kr s

s2 + 2ξωns+ ω2
n

+
Kr s

s2 + ω2
n

(C.6)

The time response of the system is given by (C.7), where the first term represents
the periodic steady-state condition and the second one describes the transient behaviour
associated to the resonant response.

y(t) = L −1{Y (s)} = Kr cos(ωnt)−L −1

[
Kr s

s2 + 2ξωns+ ω2
n

]
(C.7)

The first term in equation (C.7) corresponds to the frequency response of the system,
while the second determines its transitory properties; in this analysis the focus is on this
last element as it determines the convergence time of the system.

If we refer to the Laplace inverse transform definition 1, the following equalities
hold:

L −1

[
s+ ξωn

s2 + 2ξωns+ ω2
n

]
= e−ξωnt · cos

(√
1− ξ2ωnt

)
· step(t) (C.8)

L −1

[ √
1− ξ2 ωn

s2 + 2ξωns+ ω2
n

]
= e−ξωnt · sin

(√
1− ξ2ωnt

)
· step(t) (C.9)

1P. Bolzern, R. Scattolini, N. Schiavoni, ”Fondamenti di controlli automatici”, McGraw-Hill 2008
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It is possible to perform some simple analytical substitutions to obtain the inverse
Laplace transform in (C.7) from (C.8)-(C.9).

L −1

[
Kr s

s2 + 2ξωns+ ω2
n

]
= Kr ·L −1

[
s+ ξωn

s2 + 2ξωns+ ω2
n

− ξ√
1− ξ2

·
√

1− ξ2 ωn
s2 + 2ξωns+ ω2

n

]
=

(C.10)

= e−ξωnt ·Kr

[
cos
(√

1− ξ2ωnt
)
− ξ√

1− ξ2
· sin

(√
1− ξ2ωnt

)]
(C.11)

The properties of the transients are mainly determined by the exponential, which
defines the convergence of the time response. If we refer to literature, a settlement time
of Tset = 4.6

ξωn
is generally indicated; thus the value of the exponential at t = Tset is:

e−ξωnTset = e−4.6 < 1% (C.12)

Nevertheless, the reported calculation is useful as it allows to verify the typically assumed
condition Tset = 4.6

ξωn
and to calculate the complete time-domain response of the system

as:

y(t) ∼= Kr cos(ωnt)−Kr e
−ξωnt·Kr

[
cos
(√

1− ξ2ωnt
)
− ξ√

1− ξ2
· sin

(√
1− ξ2ωnt

)]
(C.13)

C.2 Convergence time of the FLL

If we consider the most simplified model of the modified grid function under fast
primary regulation in (7.14),

K ′g(s) =
1

(Ta +Kin)s+Kreg
(C.14)

it is easy to derive the characteristics of the resulting frequency transient under a step
variation of the system accelerating power ∆p∗g in terms of maximum angular frequency.
Applying the inverse Laplace transform to (C.14), a simple first order transient is derived
(C.15); maximum derivative modified by the inertia introduction is given by (C.17) and
it is inversely proportional to the inertia coefficient Kin.

ω(t) = ωo +

(
1− e−

Kreg
Ta+Kin

t
)
·

∆p∗g
Kreg

(C.15)

pω(t) = α(t) =
1

Ta +Kin
· e−

Kreg
Ta+Kin

t ·∆p∗g (C.16)

pωmax = αmax =
1

Ta +Kin
·∆p∗g (C.17)

Assuming the internal dynamic of the FLL as a first order system with time constant
τFLL, coherently to the model derived in (6.14), it is possible to estimate the total
convergence time as 5 · τFLL; assuming uncoupled dynamics between the FLL and the
network evolution, the relation between the maximum measured value from the FLL
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and the actual angular frequency derivative can be expressed as (C.18).

αmax FLL = αmax · e
− Kreg
Ta+Kin

·5 τFLL → αmax = αmax FLL · e
Kreg

Ta+Kin
·5 τFLL (C.18)

The mathematical relation expressed by (C.18) is used to taken into account the FLL dy-
namics in the evaluation of the synthetic inertia effect for the microgrid case (Tab.(7.3)).

C.3 Synthetic inertia: expected dynamics of the network
frequency

In this section the time response associated to the network frequency evolution
during a power transient is analytically evaluated. As highlighted in (5.10), the sys-
tem evolves following a second order resonant dynamic with an additional zero at the
numerator, whose value depends on the delay τ associated to the primary frequency
regulation. The presence of this zero plays a major role in the transient characteristics
definition as it leads to a higher overshoot with respect to the one generally estimated for
simple resonant dynamics: this section will derive the explicit behaviour of the network
frequency as a function of time and serves as a benchmark to evaluate the correctness
of the synthetic inertia dynamical models.

Consider the dynamic associated to the network angular frequency ω(t) under a step
change of the accelerating input power ∆pg (5.10).

ω(t) = L−1

[
1 + sτ

T ′aτs
2 + T ′as+Kreg

· ∆pg
s

]
(C.19)

The Heaviside procedure can be used for the calculation of the inverse Laplace
transform. The expected steady-state value ∆pg/Kreg, obtained from the final value
theorem, is introduced as a normalization coefficient in the Heaviside procedure to get
compact expressions;

1 + sτ

T ′aτs
2 + T ′as+Kreg

· ∆pg
s

=
∆pg
Kreg

·
[
A

s
+

Bs+ C

s2 + 2ξ′ω′ns+ ω′n
2

]
(C.20)

The calculation of the coefficients leads to:

A = 1 B = −1 C =
Kreg

T ′a
− 2ξ′ω′n (C.21)

where the natural frequency ω′n and the damping ξ′ are function of the physical network
regulation characteristics (possibly modified by the synthetic inertia presence), whose
expressions are here recalled:

ω′n =

√
Kreg

T ′aτ
ξ′ = 0.5 ·

√
T ′a

Kregτ
(C.22)

and T ′a = Ta+Kin (current-controlled inertia) or T ′a = Ta+KinτdcVdc (voltage-controlled
inertia). Once obtained the coefficients, the inverse Laplace transform of (C.19) is
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obtained.

ω(t) =
∆pg
Kreg

·

[
1 + e−ξ

′ ω′nt ·

(
B cos(

√
1− ξ′2ω′nt) +

C − ξ′ω′nB√
1− ξ′2 ω′n

sin(

√
1− ξ′2 ω′nt)

)]
=

(C.23)

=
∆pg
Kreg

·

[
1 + e−ξ

′ω′nt ·

√
B2 +

(C − ξ′ω′nB)2

(1− ξ′2)ω′n
2 sin

(√
1− ξ′2 ω′nt+ atan

(
B
√

1− ξ′2 ω′n
C − ξ′ω′nB

))]
(C.24)

The free-response of the system shows an oscillatory sinusoidal behaviour with a period
of T = 2π√

1−ξ′2 ω′n
and a damped amplitude which depends on the coefficients calculated in

(C.21); substituting (C.21) in (C.24), the normalized sinusoidal free-response amplitude
is given by:

K =

√
1 +

(Kreg/T ′a − ξ′ω′n)2

(1− ξ′2)ω′n
2 (C.25)

The amplitude of the overshoot can thus be approximated as the product of the sinu-
soidal amplitude K with the decreasing exponential e−ξ

′ω′nt
∗
, where t∗ is the time instant

in which the sine function is maximum. Thus:√
1− ξ′2 ω′nt∗ − atan

( √
1− ξ′2 ω′n

Kreg/T ′a − ξ′ω′n

)
=
π

2
(C.26)

− ξ′ω′nt∗ = − ξ′√
1− ξ′2

·

[
π

2
+ atan

( √
1− ξ′2 ω′n

Kreg/T ′a − ξ′ω′n

)]
(C.27)

As a recap, the network frequency evolution is modelled as a second order sys-
tem with the introduction of an additional zero associated to the regulation delay. The
analytical evaluation of the time response highlights the values of two macroscopic quan-
tities which are used as benchmark for the model validation (in Table 7.6 and 8.1 for
the current and voltage-controlled inertia schemes respectively):
• Damped-oscillation period:

T =
2π√

1− ξ′2 ω′n
(C.28)

• Overshoot normalized amplitude

OS = K · e−ξ′ω′nt∗ (C.29)

where

K =

√
1 +

(Kreg/T ′a − ξ′ω′n)2

(1− ξ′2)ω′n
2 (C.30)

− ξ′ω′nt∗ = − ξ′√
1− ξ′2

·

[
π

2
+ atan

( √
1− ξ′2 ω′n

Kreg/T ′a − ξ′ω′n

)]
(C.31)
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Experimental set-up

In this appendix, the physical structure of the experimental set-up exploited for the
verification of the different topics included in the thesis will be analysed. Consider the
scheme reported in Fig. D.1, which depicts the major elements of the system under
study; in the following, a brief description of each element will be provided.

D.1 Power circuit

Figure D.1 includes the single-line diagram of the test set-up. As already introduced
in the thesis chapter, the system is composed by a couple of fully-controllable three-phase
power converters interfaced to the micro-grid by means of an LC filter for high-frequency
components damping. Each converter is interfaced to the system by a three-phase power
transformer, whose ratings and electrical characteristics are reported in Table D.1. The
presence of two transformers is fundamental in order to avoid differential mode between
the two converters, with the subsequent short circuit currents involving the DC bus of
the two units; this concept is explained in Fig. D.1, where several connection schemes
are represented and compared. These transformers also enable the direct connection
with the external 400 V public grid adapting the voltage level from the nominal 200 V
phase-to-phase voltages of the converters.

The connection at the DC side determines the converter control strategy. Inde-
pendently of the considered configuration, at least one unit must be operated in grid-
forming or grid supporting mode to impose the network angular frequency and voltage
amplitude: this role is carried out by converter 1, which is operated either in droop
(grid-supporting) or in grid-forming mode depending on the specific test. In order to
provide the necessary regulation capability to the unit, a constant voltage source should
be placed on the converter DC side: in real power systems, this is obtained by means of
high-energy storage units placed in parallel to the DC bus. In our experimental set-up,
this is obtained providing an external three-phase supply from the 400 V public network,
suitably rectified by a simple diode bridge; the variable autotransformer at the interface
allows to obtain the desired DC side voltage level.

The switch S1 state has to be handled taking into account the typology of the control
for converter number 2. In the first part of the thesis the droop converters parallel
operations are analysed, thus the switch S1 is kept closed to provide infinite-energy DC
bus supply also to the second unit similarly to what was done for converter number 1. In
the second part of the thesis, the second unit is operated as an undispatchable system;
in this configuration, the DC side of the converter is modelled as a constant current
source: the unit regulation is responsible of the power balance between the DC side
current generation and the AC absorption / injection. Nevertheless, the converter can
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provide transitory frequency regulation (synthetic inertia) dynamically acting on the DC
bus voltage level, within its acceptable operational limits; a slightly higher capacitance is
installed on the second converter DC side to amplify the undispatchable system effects.
This is the typical scheme adopted for renewable generators or fast-discharging super-
capacitor systems. In the experimental apparatus, a null DC side current is imposed as
a particular case keeping the contact S1 open.

As regards the AC side, the microgrid is realised by a local high-impedance balanced
resistive load, obtained by variable resistors. The switch S2 determines the connection
with the public network: in case S2 is open, the microgrid operates in island and the
regulation is provided by the grid-forming / grid-supporting converters, while in case
the S2 is closed the external public network defines the electrical values of the interface,
both in terms of angular frequency and voltage amplitude. Grid-following and grid-
supporting schemes can be interfaced to the public power network, while this is not the
case for grid-forming control (not explicitly analysed in the thesis).

Table D.1: Test set-up

Element Quantity Value

Power converters Power module Siemens IGBT BSM 50 GD 120 DN2
Nominal output voltage 200V
Nominal design power 2.4 kV A

DC bus capacitance (inv. 1) 3mF
DC bus capacitance (inv 2) 8mF

Max DC side voltage 400V
Transformers Nominal voltages 200V -400V

Design power 5 kV A

Figure D.1: Physical scheme of the adopted experimental setup
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D.2 Acquisition system

The acquisition of the physical quantities is carried out by means of a board con-
sisting of:
• six Hall effect transducers for the measurement of the filter inductor (iabc(t)) and

output (io abc(t)) current components; each transducer is characterized by a maxi-
mum measured current of 125 A and introduces a reduction factor of 1000:1, with
an accuracy of ±0.8% and a frequency bandwidth up to 100 kHz. An external
resistance connected to the mass guarantees the conversion of a the sensor current
into a voltage signal with a maximum value suitable for the following conversion
stage;
• three insulated electronic voltage transducers, with a maximum input of 10V, an

accuracy of ±0.5% and a frequency bandwidth up to 100 kHz. A high-impedance
resistive divider is introduced before the voltage input to reduce the measured
quantity to an acceptable level.

Once acquired, the analog signals associated to the real states of the system are
filtered by a fourth-order low pass Butterworth filter with a cut-off frequency set a
2.5 kHz, obtained by the monolithic switched-capacitor architecture TLC04/MF4A-50.
These devices guarantees the absence of aliasing phenomena in the signal management,
even though they may introduce significant delays in the frequency range close to the
cut-off. As the filter outputs a maximum voltage of 2.5V, its input signals from the
acquisition board should be scaled to this voltage level as to guarantee the absence of
saturation at the filter stage. As a further consequence, the filter practically reduces the
usable input range of the following ADC converter (±10V , 10 bit), as a significant part
of the acceptable input voltage range is practically unused. This worsens the acquisition
accuracy, especially as regards harmonic components which are generally characterized
by a limited amplitude and whose normalized level becomes closer to the ADC resolution.

D.3 Control system

The control of the system is carried out by means of the dSpace control platform.
The system allows the analog to digital conversion of a maximum of 20 independent
signals by means of internal ADC converters: the physical measured quantities for each
conversion unit are the ones reported in Fig. D.1 (vdc, iabc, vo abc, io abc). The dSpace
platform allows the programming of the control system in a Matalab/Simulink envi-
ronment, which is later compiled and synchronously executed with a sample time of
Ts = 100µs. The Matlab/Simulink block-approach has been exclusively used for the
Input / Output quantities management and for memory allocation during real-time op-
erations, as to simplify the hardware-related tasks inside the computation; on the other
hand, all the mathematical equations associated to the control laws have been intro-
duced in the form of compiled C-code, recurring to the available S-Function block in
Matlab, executed at any computation step Ts. The general architectures of the control
exploited for the first and second parts of the thesis are depicted in Fig.D.2 - Fig.D.3
respectively.

The advantages of this approach are the following:
• the operations related to the low-level hardware-related tasks (e.g. peripherals

management, synchronization and memory allocation) are automatically executed
by the and set by user-friendly graphical programming blocks;
• the definition of the control rules (that is the converter ”intelligence”) are rig-

orously coded in C, taking into account the time-discretization effects by means
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of the Tustin integration method for all the regulators inside the control. This
guarantees robust operations for the system and a direct controllability of each
computation step. Some of the exploited codes are reported as examples at the
end of this appendix, in a simplified and commented form.

The C-code associated to each converter outputs the modulating signals of the three-
phase AC voltages; nevertheless, the adopted control board is exclusively able to output
nine PWM signals, thus it is not possible to directly control the twelve controllable valves
in the network. To overcome this situation, the following solution has been adopted:
• the first converter IGBT are directly controlled by six of the available nine out-

put signals, corresponding to the switching signals S±a -S±b -S±c ; the dead time is
automatically introduced by the dSpace modulator.
• The remaining three channels define the switching pattern of the second converter

upper valves S+
a -S+

b -S+
c ; an intermediate custom electronic circuit, constituted by

the amplifiers LM311N and the drivers IR21844, defines the lower valves states
S−a -S−b -S−c and introduces a 1µs dead-time between the ON conditions for the
upper and lower switches. This intermediate stage is introduced in Fig. D.1 and
labelled ”3S to 6S”.

As regards the protections of the global system, they are obtained by an indepen-
dent sub-routine with self-retained characteristics that allows to inhibit the converter

Figure D.2: Functional structure of the code used for the two inverters in droop
operations (Part I of the thesis)
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Figure D.3: Functional structure of the code used for the experimental testing of the
synthetic inertia schemes (Part II of the thesis)

modulation as soon one of the currents / voltages in the microgrid exceeds its nominal
value. The protection code controls the state of a digital output, which is directly con-
nected to a programmable General Array Logic (GAL) element mounted on the power
converter: this integrated circuit allows to implement generic boolean operations be-
tween its inputs and, it this context, it is used to disable the converters IGBTs in case
of dangerous conditions on the network.
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