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ABSTRACT

For decades, Alternating Current (AC) has been the standard for most of electric power
systems worldwide; Direct Current (DC) was confined in few fields of interest, usually in
networks or grids designed for specific purposes (e.g. rail traction or very long distances
transmission lines).

Such paradigm is changing since the beginning of the 21*" Century, when technolog-
ical progress in power electronics made DC able to compete against AC in many fields:
presently, a huge number of DC power devices is used at every level of our society, in
private, business, industry and services.

This huge revolution only touched marginally the mentioned pre-existing DC net-
works; many remarkable improvements have been got in such areas, but the general
shape or function of those systems are still the same: in railway field, as example,
the most of DC distribution is still based on old-style diode rectifies; majority of High
Voltage Direct Current (HVDC) transmission lines are still based on classic Line Com-
mutated Converters (LCC) technology.

In recent years, both in AC and DC networks, a new set of critical issues is emerging:
higher load peaks are creating problems of voltage stability and power quality; grid
inertia is lowering by huge penetration of renewable-not-programmable energy sources.

This work analyzes railway grids and HVDC links, two of the most relevant DC
power systems of today; in both of them, evolved features are introduced by Energy
Storage Systems (ESS) and innovative Power Electronics Converters (PEC): energy
recovery and voltage stabilization about traction; synthetic inertia about HVDC. Due
to fast dynamic performances and high level of controllability, power converters and
ESS can mitigate above mentioned issues.

Investment costs are lowering but still relevant, thus technical-economical evaluation
is needed; because such analysis is extremely complex, some simplifications have been
introduced, using precautionary hypothesis.

Approach is top-down, considering equipment as part of a plant, mainly focusing
on functionalities; several configurations are tested and validated by simulations. Later
on, design solutions are analyzed, control algorithms are explained and compared, pre-
senting advantages and disadvantages.



INTRODUCTION

Since 1890, after the conclusion of the so-called ”War Of Currents”, Alternating Current
(AC) became the standard for most of electric system worldwide; the main reason for
such choice was definitely practical: the transformer at first, the induction motor later
on, made AC power the way to be transferred and used with low electrical losses and
high mechanical efficiency, driving the Second Industrial Revolution in the last years
of the 18" Century.

Main disadvantages of Direct Current (DC) respect to AC were the impossibility of
efficient voltage scaling by transformers, the difficulty in generating high voltages into
the dynamos and frequent maintenance required by DC motors (both due to collectors
wearing).

Such paradigm changed since the last decades of the 20" Century, for two main
reasons:

- Power electronics progresses: new solid-state based converters have been devel-
oped, by-passing both the problems of voltage scaling and defects of DC motors;

- Spread of information technology and microelectronics (Third-Fourth Industrial
Revolution): all Personal Computers (PCs), portable devices, modern electronic
gadgets, smart-phones and so on are DC based.

Due to previous reasons, nowadays great and growing interest is emerging about
DC power all over the world.

This huge revolution only touched marginally some pre-existing DC networks: DC
power, initially prominent respect to AC (see Appendix C), has been confined in few
fields of interest, usually in networks or grids specifically designed for specific purposes;
main examples are rail traction catenary supply (so-called DC-wayside distribution)
and very long distances transmission lines (so-called HVDC links).

In those fields, technological aspects as conversion efficiency and devices reliability
have been improved a lot, but the general layout of systems has remained almost the
same.

In 3 kV DC railways, as example, DC-wayside distribution is still mainly based on
old-style diode rectifies; they are very robust, reliable and quite efficient, but they are
not versatile, nor designed to adapt themselves to different energetic scenarios.

HVDC links have been developed because of necessity, in some cases, to overpass
specific technical limits of AC: high inductive and capacitive effects, need of inter-
mediate substations, infrastructure costs (pylons, cables) etc.; through years, systems
have been empowered a lot and technology became much more efficient, but most of
power converters worldwide (also brand new ones, in many cases) are still classic Line
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Commutated Converters (LCC), thyristor-based; they are robust and powerful, but
they cannot be operated as VSC (Voltage Source Converters), nor control reactive
power flow at AC side. Actually, HVDC are mainly intended as point-to-point links
between different AC areas, they are not fully integrated in a meshed network (even
multi-terminal HVDC links are very rare).

In recent years, both in AC and DC, a new set of critical issues about power
transmission and distribution is growing:

- higher and higher power loads are creating problems of voltage stability and power
quality, especially where network is weak; about traction, as example, modern
trains on 3 kV DC railway are high power demanding, they cause deep voltage
drops in acceleration and power waste during braking;

- low-carbon economic models generated the huge penetration of renewable-not-
programmable energy sources; the result was a progressive dismiss of the tradi-
tional AC rotating generators, or their different way of utilization (cold stand-by);
as a result, grid inertia is lowering and distributed power production makes net-
work control and stability much more complex than in the past.

Energy Storage Systems (ESS) technology is actually mature to provide a significant
contribution in supporting DC and AC grids; innovative power electronic converters,
due to their fast dynamic performances and high level of controllability, can modulate
power flows from and to ESS.

This work aims to introduce ESS in two of the most relevant power DC networks
of today, to get evolved features and mitigate above mentioned issues:

- energy recovery and catenary voltage stabilization in DC-wayside distribution
system of a 3 kV DC railway;

- synthetic inertia control in HVDC-VSC power stations.

Apart technological issues, railway field is traditionally quite conservative: insiders
definitely prefer proved and reliable equipment, even if less advanced; aware of that,
main focus of the project regards integration of new equipment with existing infras-
tructure; due to this, first part of the activity has been mostly organized as a feasibility
study, in which some solutions (hardware and controls) have been implemented, sized
and simulated in order to be included in actual or future installations; the main goal
is a smooth transition to new and evolved features, giving tangible gains in terms of
performance and/or functionalities.

Railway field id also extremely cost-effective: ESS prices are lowering but they
are still relevant, especially for innovative (non-standard) equipment. A technical-
economical evaluation is needed; because such analysis is extremely complex, target is
not a precise business plan, rather an expenses check; when simplifications have been
introduced, hypothesis were precautionary.

On the other way, HVDC field is presently changing a lot, new IGBT-based VSC
converters can compete against small-medium LCC in terms of rated power, providing
extra features; in this case, main project issues are implementing an effective control
algorithm for a given mission (eg. synthetic inertia action) and finding how to access
needed energy; due to this, second part of the work is not related to a specific case
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study; several solutions have been implemented and compared each other on the same
benchmark grid, highlighting positive and negative aspects. The learning process led
to achieve good results in terms of final performances.

In detail, activity is structured as follows.

Chapter 1 analyzes a 3 kV DC local railway with high penetration of modern (power
demanding) trains; main technological challenges are: save energy and boost catenary
voltage without oversizing the existing traction substations. After a preliminary anal-
ysis about recoverable energy, the problem is tackled by introducing DC-wayside ESS
to improve regenerative braking and catenary voltage stabilization; layouts and sizing
results then are validated by simulations. Brief economical scenarios are presented,
showing a reasonable technical-economical comparison of the solutions.

Chapter 2 studies a model of an IGBT-based HVDC grid, in order to stabilize AC
frequency with synthetic inertia algorithms; main technological challenges are: imple-
ment an efficient inertial algorithm into the VSC converter control and avoid frequency
fluctuations through different synchronous areas. After several studies and simula-
tions, target is achieved by means of innovative synthetic inertia algorithms and with
an oversizing of VSC converters DC filters.

In both chapters, approach is top-down, considering equipment as part of a plant,
mainly focusing on functionalities; later on (also in appendixes), system structures
are deepen considering in detail some aspects: design solutions are analyzed, control
algorithms are explained and compared.

A brief historical background about DC development through years is in appendix.

Nomenclature is summarized at the end of document.



CHAPTER 1

3 kV DC RAILWAY

Despite high-speed rails have been developed in AC, most of conventional and local
trains in Europe (Italy, Spain, Poland, Belgium, parts of Czech Republic, Slovakia,
Slovenia, Ukraine and Russia, see Fig. 1.1) and worldwide (Canada, Brazil, South
Africa, some parts of U.S.A.) still adopt 3 kV DC.
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Non-electrified
750 V DC

1.5 kV DC

3 kV DC

15 kV 162 Hz ’
25 kV 50 Hz
1.5-25 kV 50 Hz

Figure 1.1: Map of rail electrification systems in Europe. (Source: Wikimedia Commons).

Those grids are most certainly the widest and powerful DC distribution networks
in those areas, even if totally dedicated to traction purpose.

Continuing research is actually developed to increase performances at every level of
the system: infrastructure, rolling stock, communication, safety etc.

Internationally, one of main targets is the integration of several countries railways
in a common system to achieve higher level of interoperability; European Community
is a clear example of such trend, as described in following section.
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1.1 International scenario: European railway projects

As a member of European Community, Italy is involved in international projects whose
target is the integration and harmonization of different countries systems.

Merlin project of the EU 7*" Framework Programme has the main aim and purpose
to Zinvestigate and demonstrate the viability of an integrated management system to
achieve a more sustainable and optimised energy usage in Furopean electric mainline
railway systems.” [5]

The project produced a total of 33 deliverables in 36 months of activity, 13 of them
are public; after a general description and characterization of a generic mainline railway
system [6], several technical and economical challenges have been tackled by using real
scenarios as case studies.

In particular, scenario 3 investigated about reduction of power peaks consumption
and cost in a suburban 3 kV network in Malaga (Spain).

Project provided two different tools, SDMT (Strategic Decision Making Tool) and
REM-S (Railway Energy Management System) [7]; a wide number of simulations have
been performed, taking into account many constraints and variables, to define ESS best
configuration (sizing, displacement, cost etc.) to minimize power and energy peaks
along the line. After further optimization and CBA (Cost-Benefit Analysis), a pilot
case was then implemented on site, validating theoretical results.

Merlin project also highlighted some issues related to practical implementation; the
most relevant are:

- Energy meters calibration and interoperability among international railways is
still an open point, due to many different situations in all Member States;

- Energy savings algorithms and strategies are strictly dependent on permanent
communication links between trains, substations, railway operators etc.; the heav-
iest effort in term of expenses is therefore in communication technology.

Due to previous points, optimization tools and simulations must be compliance
with the specific track under test; in case of limited amount of data and/or lack of
communication, sophisticated analysis like SMDT/REM-S is not possible.

Another remarkable European railway project is the Horizon 2020 In2Rail, ended
in 2018 after 36 months of activity; its mission is summarized below:

” Buropean railways have to deliver increased productivity to fulfil the growth demand
across all modes in freight and passenger services by 80% and 50% respectively by
2050. In2Rail will pave the way for the optimisation of the design of core infrastructure
elements as well as improve the management of the railway system by adopting a holistic
approach.”

Those projects involved many main players in the international railway market,
including universities, research centers, manufacturers, operators and authorities; main
goal is making the future European railway network much more reliable, resilient,
cost-efficient and powerful: as example, the latest Shift2Rail initiative, as an ideal
prosecution of In2Rail [8], “aims to double the capacity of the European rail system and
increase its reliability and service quality by 50 %, all while halving life-cycle costs.”

A PhD thesis can approach only a little part of above mentioned project targets.
As example, Merlin Project scenario 3 in Malaga is quite similar to the one studied in
the followings: 3 kV DC supply, about 30 km of length, train average frequency about
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20-25 minutes, some sections with single track; main issue: lack of catenary receptivity
opposing wide train power peaks.

This work goes in the same direction, but analysis cannot be performed at the same
level of accuracy and with the same optimization tools. In comparison, results could
be intended as pilot (or exploratory) investigations prior to a punctual and detailed
analysis like Malaga case study.

1.2 Local scenario: 3kV DC railway in Italy

Previous section presented an overview of actual an future European Projects related
to railways development and optimization.

Italy has a strong historical background on 3kV DC traction, with a total electri-
fication of about 12000 km all over the country (Fig. 1.2). Most of national gird is
today owned by RFI (Rete Ferroviaria Italiana, Italian Railway Network), while some
local and regional lines are owned by private or mixed societies (e.g., in Northern Italy,

Ferrovienord).
Ind N
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Figure 1.2: Map of railway system in Italy in 2017. More than 70% is electrified at 3kV DC.
(Source: rfi.it).

By the technical point of view, prior to international standards and norms, RFI
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specifications (former Ferrovie dello Stato group) have been for decades the benchmark
for infrastructure design and operation, including power supplies characteristics, con-
verter topology, sizing and performances. Most detailed documentation is available
in [1, 2,9, 10, 11, 12], in Italian language only.

This work considers only a small part of such big scenario. It was decided to focus
on DC-wayside infrastructure of Italian regional and local 3 kV railways, because they
represent about 50% of the total railway traffic in Italy, with an average of almost 3
Million commuters per day (see Fig. 1.3).

Commuters per day on Italian railway system

7 T T T T
| I Regional trains [ Undergrounds
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Figure 1.3: Train commuters (blue) and metro passengers (red) per day in Italy from 2014 to
2017. (Source: Pendolaria 2017, Legambiente).

In ten years, apart minor downturn, the number of regional train passengers (com-
muters, for the most part) has increased (see Fig. 1.4).

Commuters per day on local railway systems
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Figure 1.4: Commuters on regional and local trains per day in Italy from 2007 to 2017.
(Source: Pendolaria 2017, Legambiente).
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Situation is not uniform in all the country; in Lombardy for instance (Northern
Italy), where railway system is well developed and electrification is capillary, increase
has been about +31.5% since 2009 [13]. Data demonstrate that, when investment
occurs and service is adequate, commuters choose railway respect to others way of
private transportation, more expensive and polluting (see Fig. 1.5).
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Figure 1.5: Production of CO5 (grams per passenger-kilometer) of the most common trans-
portation systems. (Source: EEA, European Environmental Agency, 2016).

More investments mean modern and comfortable trains but also improvements on
infrastructure; at first, make existing lines able to handle growing traffic.

Next section will shortly present state of the art about electrification in the Italian
3 kV DC railway network.

The aim is to better understand actual technology issues, in order to define im-
provement solutions.
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1.3 State of the art: DC railway layout in Italy

Fig. 1.6 shows the typical schematic diagram of actual 3 kV DC railway traction sub-
station (TSS) according to above mentioned Italian specifications (RFI).
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Figure 1.6: Schematic diagram of actual 3 kV DC railway traction substation (TSS) according
to RFI standard. (Source: rfi.it).

In the most general layout, a T'SS is equipped with two diode rectifiers and feeds a
double railway line. More complex solutions (more rectifiers/tracks) are possible.
Fundamental components are drawn in different colors:

- black: AC feeder and main AC busbars;
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- blue: HV/MYV rectifier transformer (T'G) and auxiliary power transformer (TSA);
- gray: AC and DC auxiliary power supply;

- red: diode rectification group (RZ), DC filter (L-C) and disconnectors (S);

- green: DC busbars, disconnectors and fast DC switches (IR);

- pink: DC feeders, disconnectors and rails;

- purple: DC catenary lines;

Each assembly contains other devices, like surge arresters (SC), earthing switches
(CC), measurement voltage transformers (TV), measurement current transformers (TA)
and power meter (kWh).

In general, each rectification group is designed to be fed independently through AC,
and it can energize every portion of catenary (right or left side, even and odd rail) by
means of proper disconnectors setup. All groups are put in parallel on DC busbars,
DC feeders are protected against fault by fast DC switches.

Actually, most of substations are fed by HV primary lines, rated voltage 132-150 kV
AC. Due to insulation and safety requirements, all AC equipment is installed outdoor
and overhead, as shown in Fig. 1.7.

Figure 1.7: Outdoor AC side of modern 3 kV DC traction substation. (Source: Wikimedia
Commons).

Needed space is relevant, and investment too (about 3 Million € for a ”standard”
double-group substation); this is a serious obstacle in realizing new substations, there-
fore sizing must be set carefully.

Next section shows substation power ratings and displacement along railways ac-
cording to RFI standard [10].

1.3.1 Power ratings

As said, HV lines feed T'SS power transformers. Each group is sized to fulfill power
ratings according to line traffic.
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Standard sizes are used by RFI [1, 2, 12], which essential data are listed in Tab. 1.1.

Table 1.1: TSS transformers data according to size.

Size Size Size
Parameter unit 66 132 150
Rated primary voltage (kV) 63 +5.6% 125 + 8% 150 £ 8%
Type - Yydll Yydl1 Yydl1
Transformation ratios
- Parallel rectifiers - 63000/2710 125000/2710 150000/2710
- Series rectifiers - 63000/1355 125000/1355 150000/1355
Rated power (kVA) 3880 5750 5750
Rated active power (kW) 3600 5400 5400
Total weight
- Ol type (kg) 18760 28000 28000
(Oil weight) (kg) 5500 8550 8500
- Dry type (kg) 17500 - -
Short circuit voltage (%) <13.5 <13.5 <13.5

Low power groups (3.6 MW) were used in early installations, presently high power
groups (5.4 MW) are preferred.
Besides rated power, overload prescriptions are demanding; RFI considers two cases:

a) +100% overload for 2 hours;
b) +133% overload for 5 minutes;

according to time diagram in Fig. 1.8.

p A
[Mw]
2,33 P, S 5 5
2 P,
P,
5h 55" 2h 05 5h 55" 2h 05 5h 55’ 2 h 05’
——tt——— 1 t[h]
0 6 12 18 24

Figure 1.8: Overload time diagram for T'SS power transformers. (Source: RFI [1, 2]).

Each rectification group is composed of two 6-pulse diode rectifiers, each one sup-
plied by a secondary winding of power transformer. On DC side, rectifiers can be
connected in series or parallel, to obtain a 12-pulse reaction (Fig. 1.9);
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Figure 1.9: Rectification group topology. a) Series. b) Parallel.

For parallel connection, inter-phase DC-inductor (black square in Fig. 1.9b) is
needed if leakage inductance between secondary windings is not enough to limit circu-
lating currents due to instantaneous voltage gap between rectifiers (DC output is the
same in mean value only).

About power electronics, considering limited overload margin of silicon devices re-

spect to transformers (especially oil type, that have huge thermal capacitance), rectifier
sizing is a little larger:

a) +100% overload for 2 hours;

b) +150% overload for 5 minutes;

with the same time digram of Fig. 1.8.
It means that each rectifier module must work at 200% of rated load for two hours,
then at 250% of rated load for fifteen more minutes; because five minutes is enough for

power electronics to reach steady state, in practice rectifiers are fully sized 2.5 times
rated power.

RFI specifies rectifiers capability cases with rms current limits, as shown in Tab. 1.2.

Table 1.2: Standard rms currents for every single TSS rectifier in overload cases.

P, Rectifier group I, casea) caseb)
(kW)  configuration (A) (A) (A)
3600 Series 750 1500 2100
3600 Parallel 375 750 1050
5400 Series 1500 3000 3500
5400 Parallel 750 1500 1750

Regarding DC voltage, prescriptions refer to ”average available voltage” and "min-
imum absolute voltage”, whose limits are listed in Tab. 1.3.

Abnormal conditions mean as example a line with a fail substation, or a line restart
after a catenary fail with many trains in queue; normal conditions mean a line in the
most crowded period of the day (rush hours).
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Table 1.3: Standard pantograph voltage limits.

Conditions normal abnormal
Average available voltage (V)  >3000 >2700
Minimum absolute voltage (V) 2500 2300

Transformers are equipped with tap-changers on secondary side, in oder to boost
DC voltage in case of rectifier heavy load.

1.3.2 Displacement and catenary

Before 1965, typical distance between 3 kV DC TSS was 40 km, with 4 MW of total
power (two mercury-arc rectifiers of 2 MW each); after 1965, new and more powerful
locomotives made necessary TSS empowering with silicon-based 3.6 MW groups, and
also reduction of average substation displacement at 20 km. In 1970s, general layout
of railway grid included 20 km displaced TSS, equipped with two silicon-based groups
of 3.6 MW each.

Engineering of ” Direttissima” Florence-Rome (very first project of high speed track
in Europe) led to increase further TSS power, with a third group of 3.6 MW or by
introducing new 5.4 MW rectification units. Up today, general RFI guidelines consider
a TSS every 20 km for standard lines and every 15 km on high speed lines (3 kV DC).

?Standard” TSS is equipped with two 5.4 MW groups as described above; in some
cases, a third back-up group is installed. Also catenary cross-section grew respect to
early installations.

Up to 1960, standard catenary had been composed by a copper supporting rope of
120 mm? and two copper contact wires of 100 mm?; total cross-section 320 mm?. Due
to traffic and speed growing (up to 150 km/h), section was increased to 440 mm? by
installing an additional supporting rope of 120 mm?. After 1976, speed on ”Direttis-
sima” Florence-Rome reached 250 km/h; to improve power collection from catenary,
section was raised to 540 mm? (2x120 mm? supporting ropes plus 2x150 mm? contact
wires). In particular cases (high slope of high traffic) cross-section can reach 610 mm?
(2x155 mm? supporting ropes plus 2x150 mm? contact wires).

According to explained evolution, actual RFI standard is summarized in Tab. 1.4,
where cross-section is function of line maximum speed and traffic.

Table 1.4: Standard catenary cross-sections for 3 kV DC lines.

Line type Catenary Supporting ropes Contact wires

Max. speed  Traffic Section ~ Number Section Number  Section

(km/h) intensity ~ (mm?) (mm?) (mm?)
200 Low 320 1 120 2 100
200 Medium 440 2 120 2 100
200 High 610 2 155 2 150
250 Medium 040 2 120 2 150
250 High 610 2 155 2 150
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Actually, DC-wayside infrastructure is stressed by two main trends of railway mar-
ket:

- growing power demanding of modern trains;
- line congestion due to increase of commuters traffic.

Such issues are much more relvant in local and regional lines, as described in detail
in next section.

1.4 Local and regional 3 kV DC railways issues

Typically, about 60% of the total propulsion energy of a train goes into kinetic energy;
for local and regional trains, due to continuous starts and stops, this leads strong power
peaks along the catenary line. As result, growing traffic makes DC load really unstable,
so big voltage drops occur during train accelerations.

Early solution to smooth such effect with conventional diode rectifiers was a gener-
ous equipment oversizing, both in terms of rated power and no-load voltage; since the
beginning of DC traction, substation had been designed with wide overload margins
(see Par. 1.3.1).

Due to traffic rising and trains empowering, rates of substation converters increased
constantly in the past decades; displacement, on the other side, became closer. Anyway,
in some lines, there are still issues: high voltage drops result in the need of much more
current, especially in acceleration phase, when it is more necessary. Facing the increase
of line power losses, this also led to upgrade catenary cross-sections. The result is a
strong impact on the infrastructure.

Besides economical considerations, increasing diode rectifier no-load voltage to face
short time power peaks has technical defects too: it reduces catenary receptivity.

Modern trains are regenerative, during braking phases energy can b