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Sommario

Questa tesi si inserisce all’interno di OpenNOSE, un progetto di ricerca
multidisciplinare il cui fine è la creazione di uno strumento, open source
e patient-specific, che affianchi i medici nelle diagnosi e negli interventi
chirurgici alle cavità nasali per ridurre tempi, costi ed effetti collaterali.
L’obiettivo specifico è l’esplorazione di un approccio alla valutazione della
corretta funzionalità delle cavità nasali mediante tecniche di ML (Machine
Learning). Il punto di partenza è stata la creazione di un modello CAD
(Computer-Aided Design) semplificato delle cavità nasali. In secondo luogo
alcuni parametri geometrici significativi sono stati definiti, insieme agli
otorinolaringoiatri dell’Ospedale San Paolo di Milano, e combinati per
generare 200 geometrie nasali diverse, metà delle quali affette da ipertrofia
dei turbinati in varie forme ed entità. Le simulazioni RANS (Reynolds-
Averaged Navier-Stokes) hanno permesso di ricostruire l’andamento del
flusso d’aria all’interno dei modelli durante la fase di inspirazione. Dai dati
così ottenuti sono state estratte delle features, caratteristiche della corrente
che riassumono i campi di velocità e pressione in pochi valori numerici da
usare come input per i modelli predittivi. La bontà delle caratteristiche
scelte è stata verificata con un processo di selezione delle features, basato
su algoritmi di ML. Questa procedura ha inoltre consentito di raccogliere
informazioni utili sul legame tutt’altro che banale tra la corrente fluida e la
geometria del modello. Infine un modello finale di regressione ha valutato
la reale capacità predittiva delle features scelte.

Parole chiave: cavità nasali, modello CAD, CFD, RANS, ML, dataset,
feature, ipertrofia dei turbinati
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Abstract

This thesis is part of OpenNOSE, a multidisciplinary research project
aiming at the development of an open source, patient-specific tool to
support medical personnel in the diagnoses and surgical procedures to
the nasal cavity, to reduce costs and collateral damage. The specific task
concerns the exploration of a novel approach to the evaluation of nasal
airflow quality, based on ML (Machine Learning) techniques. The first step
is the creation of a simplified CAD (Computer-Aided Design) model of the
nasal cavity. Secondly, some meaningful geometrical parameters are defined,
in close collaboration with the otolaryngology experts at San Paolo Hospital
of Milan, and then combined to generate 200 different nasal geometries, half
of which exhibit some version and degree of turbinate hypertrophy. RANS
(Reynolds-Averaged Navier-Stokes) simulations allow the reproduction of
the airflow inside the models during the inhalation phase. Some flow
features are extracted from the raw CFD (Computational Fluid Dynamics)
results, summarising the entire flow fields in a few numerical values to
employ as the predictive model input. The quality of the chosen features
is then tested in a feature selection process, based on ML techniques.
Additionally, this procedure allows the gathering of insights about the
non-trivial connection between model geometry and the airflow inside it.
Lastly, a final regression model assesses the real predictive value of the
chosen features.

Keywords: nasal cavity, CAD model, CFD, RANS, ML, dataset, feature,
turbinate hypertrophy
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Introduction

Almost a decade after it moved its first steps, the OpenNOSE project
has grown into a consolidated academic research reality. Among others, it
involves teams from the Dipartimento di Scienze e Tecnologie Aerospaziali
(DAER) of Politecnico di Milano, the Dipartimento di Elettronica, Infor-
mazione e Bioingegneria (DEIB) of Politecnico di Milano and the otolaryn-
gology department of San Paolo Hospital of Milan. Their final purpose
remains the creation of a reliable, patient-specific and open source tool to
help medical personnel come up with more precise diagnoses and perform
more effective surgical procedures. Most of the past years’ work, including
[8], has successfully focused on the development of ever improving method-
ologies to accurately reproduce the airflow inside the human nasal cavity
through Computational Fluid Dynamics (CFD): through fine tuning and
continuous validations, today the replication of nasal airflow is close to an
established practice, despite some limitations highlighted in [16].

This work represents the first step towards a practical application
of these methodologies, exploiting one of the most recent products of
innovation in the computing world: Machine Learning (ML). The main
idea is to train a ML algorithm to recognise different pathological conditions
of the nasal cavity by looking at some features of the simulated airflow.
Naturally, the job requires a large dataset, in the order of 103-104 cases,
which poses a number of complications. Most of all, collecting suitable CT
scans1 is a slow process: it requires strict procedures to ensure the patients’
privacy protection and is far from a daily procedure. Moreover, each scan
must be matched to a SNOT (Sino-Nasal Outcome Test), a patient filled
questionnaire asserting the perceived quality of their respiration. Therefore,
in the time frame of this thesis, it would be impossible to gather enough
scans. In light of these issues, this work aims at testing the feasibility of
the idea and at establishing procedures to jumpstart a subsequent attempt

1Computed Tomography scan is a diagnosis technique based on X-ray measurements
to investigate the interior of an object without opening it. It is mostly used for medical
applications
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2 Introduction

made with more realistic data.
The dataset was built using an artificial model of the air volume inside

the human nose, implemented through CAD (Computer-aided Design).
The model developed for this thesis takes into account several previous
articles, like [1], although it is largely of new design due to flow quality
considerations. In agreement with the open source logic of OpenNOSE, the
chosen software was FreeCAD. The anatomical modifications to generate a
wide variety of cases were suggested by the otolaryngology team of the San
Paolo Hospital and adapted to the CAD model. In particular, some aim at
modifying the geometry without introducing any pathological condition,
while a second group consists of variants of turbinate hypertrophy. This
was selected as the pathological state to be identified by the Machine
Learning model, due to its wide diffusion and easy modelling. The final
dataset amounts to 200 cases. The CFD task consists of steady-state
RANS (Reynolds-Averaged Navier-Stokes) simulations of the inspiration
phase, carried out on the clusters of CINECA2. As previous experience,
such as [8], recommends, the chosen turbulence model is k − ω SST .
The mesh size is roughly optimised as the best compromise between low
computational cost and result accuracy and the computation’s setup is
adjusted to fit the present needs. Finally, the resulting data is automatically
extracted on ParaView, an open source visualisation software. A further
reduction is necessary to obtain a suitable input for the ML algorithm and
it is carried out through the extraction of a few significant, handcrafted
flow features, via Python scripting. These undergo a feature selection
process, to assess their predictive value and to reduce the ML input size
for better performance. This task involves techniques and algorithms from
the Machine Learning field. The top ranked features are finally used to
train and test the ML model to evaluate turbinate hypertrophy. Despite
avoiding some of the issues presented by real life nasal geometries, this
thesis enters uncharted territory and lays a solid groundwork for the next
steps of the project, developing robust procedures while always aiming for
efficiency and automation.

This study is the result of a close collaboration with fellow candidate
Luca Butera and his supervising team at DEIB, who led the way in the
manipulation of data and in the building of the ML model and helped with
insightful ideas and on-point observations throughout the work. Although
they tackle the problem from different angles, both this thesis and [3] share
the same conclusive discussion.

2A High Performance Computing (HPC) centre, built by a consortium of Italian
universities for academic research purposes
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Outline

The work is structured as follows.

The first chapter introduces the concepts of Machine Learning.
After a general definition and classification of the methods, the
algorithms of interest are presented, generally explaining how they
work and how they are employed.

The second chapter summarises the bibliographical research stand-
ing at the base of this thesis. In particular, some fundamental notions
of anatomy and Computational Fluid Dynamics are briefly presented,
along with the current state of the art concerning nasal cavity mod-
elling and nasal airflow simulation.

The third chapter deals with the creation of the dataset, from
the model design to the CFD simulations. First off, it thoroughly
describes the standard CAD model, its main features and the anatom-
ical modifications introduced. Then, the modelling choices for the
CFD phase are illustrated.

The fourth chapter describes the process leading to the Machine
Learning model. It starts by outlining the data extraction from the
RANS results, a stage made necessary by their excessive size. Then,
the procedures for feature extraction and selection are depicted, along
with the final training of the ML algorithm. Finally, the results are
presented and discussed.

The conclusive chapter reviews the main steps of the work, in-
cluding a critical discussion of the accomplished results and sugges-
tions about possible developments.

Appendix A reports a further investigation, aimed at evaluating
the error introduced by the RANS approach. It is carried out by
comparing the results of a RANS and a LES simulation on the same
geometry.

Appendix B presents the most important listings and codes, im-
plemented to automatise post-processing operations.





Chapter 1

Machine Learning

Despite the impressively quick proliferation it is undergoing in an ever
larger number of applications and the huge amount of ongoing research
connected to it, Machine Learning remains an abstract concept in the
mind of many people. A rather formal definition is the one provided by
Mitchell in [13]: "A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experience
E". In other words, ML is concerned with finding the connection between
some input data and a desired output, without explicit instructions.

Among the most common ML tasks is Supervised Learning, which
specifically deals with cases where the output set is specified in advance.
In mathematical terms, given a dataset of the form {(xi, yi)|i ∈ (0, N)},
where xi ∈ X is an input vector containing M values, called features, and
yi ∈ Y an output vector to be predicted, Supervised Learning consists
in finding a function g : X → Y mapping the values in the input space
X to the ones in the output space Y . The selection criterion is usually
embodied by a scoring function f : X × Y → R, which assigns a score to
every input/output pair. Therefore the objective becomes finding:

g(x) = arg min
y

f(x, y) (1.1)

Practically speaking, f is usually modelled as a loss function, measuring
the distance between the predicted output ŷ = g(x) and the actual one y.

Supervised Learning settings can be of two kinds: classification or
regression. The main difference concerns the nature of the output: discrete
in classification problems and continuous in regression ones. For example,
given a set of road vehicles, distinguishing cars from motorcycles and trucks

5



6 Chapter 1. Machine Learning

would require a classification algorithm, whereas the prediction of the cost
of each vehicle would call for a regression algorithm. In this scenario,
an Unsupervised Learning application could consist in figuring out the
different types of vehicles in the set, since the algorithm would not be
given any information about the expected nature of the output.

Some vital concepts to understand the structure of a ML model and
correctly evaluate its performances are bias and variance, i.e. the main
sources of error in the predicting process. The former is caused by incorrect
assumptions in the algorithm and possibly leads to missing relevant rela-
tions between inputs and outputs, in a phenomenon known as underfitting.
The latter is due to sensitivity to fluctuations in the input set and can
result in the algorithm modelling these random fluctuations rather than
the actual input features. This behaviour is labelled as overfitting. Often
the design choices in a ML model are driven by a bias-variance trade-off,
since generally a reduction in the bias implies an increase in the variance
and vice versa.

The problem posed in this thesis clearly falls under the Supervised
Learning category and represents a regression problem. The input vector
can be generally identified as the output of the CFD simulations. The
desired output consists in the degree of severity of turbinate hypertrophy
in every nasal model, which is known in advance since the models are
artificially generated via CAD.

A fundamental step in the data processing is related to the feature
selection process. As suggested by the name, it consists in the reduction
of the initial dataset by means of a selection of the features, according to
some measurement of their significance. In the general frame of Machine
Learning methods, feature selection is an essential step when dealing with
small samples, like the one generated for this work. In fact, given a number
of instances N , where each includes a number of features M , problems
for which N 6�M are subject to several issues because the data does not
fill densely enough the input space X. A further practical advantage of
feature selection is the reduction in computational costs, due to the smaller
size of the input. With respect to other dimensionality reduction methods,
feature selection does not involve an alteration in the nature of the features,
thus maintaining their interpretability. This is a key aspect, especially in
the medical field, where features usually carry a physical meaning. The
value of a robust feature selection process is further discussed by Saeys in
[17].

There are essentially three different strategies to approach a feature
selection task: the filter methods, the wrapper methods and the embedded
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Figure 1.1: Decision tree example. Picture taken from [10]

methods. The filter methods are not related to any ML technique and
are simply based on ranking the features according to their correlation
to the output values. Unlike them, wrapper methods allow to take into
account the possible correlation between the features, repeatedly training
a ML model with different subsets of features and operating a selection,
based on which subset leads to the most accurate prediction. Finally,
embedded methods exploit the implicit feature evaluation mechanism that
some algorithm possess, as highlighted in the following section.

1.1 Algorithm overview

In the ever growing universe of Machine Learning algorithms, only a
few are suitable for the task at hand.

Decision Trees

Decision Trees algorithms are based on the generation of a branched
structure, made up of nodes. The main factors determining the shape of
the tree are the features, i.e. the values included in each input vector xi of
the sample. At every node, the sample is split, according to the value of a
certain feature, in a number of child nodes, each containing a subset of the
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(a) Low IG feature (b) High IG feature

Figure 1.2: Sample splitting at a decision tree node, according to different
features. Pictures taken from [10]

parent node set. The splitting occurs again at every child node, this time
according to a different feature, and so on until all features are used or,
ideally, every last-generation node only contains instances with the same
target output. Those last-generation nodes become the leaves of the tree.
Figure 1.1 clarifies the building process of a decision tree: at each node
the sample is split according to the value of features W ,X, Y , Z. Each
branch terminates when all the instances in its subsample are associated
to a single output A, B, C, D.

The criterion determining which feature drives the split at every node
usually consists in the maximisation of the IG (Information Gain), which
measures the correlation of each feature to the target outputs. Figure 1.2
shows two possible sample splits: split (a) is made according to a feature
with null IG, resulting in subsamples with the same variance as the original
sample. Split (b) considers a feature with maximum IG: the resulting
subsamples are associated to a single output value A or B. This way, the
most meaningful features are used first, thus offering an ideal strategy for
a feature selection task.

One of the main issues presented by the Decision Trees algorithm is the
instability in its predictions, especially when dealing with features that are
correlated to one another. A widespread solution involves ensemble models.
They consist in building many smaller decisional trees, employing different
random subsets of features. Then the correct input/output correspondence
is determined by mathematical average among them. The ensemble model
of choice for this work is Extremely Randomised Trees (also known as
Extra-Trees). For further information on it, the reader should refer to [5].
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Lasso

Lasso is based on the classical linear regression problem:

y = Xβ + ε (1.2)

where y is the output vector with N elements, X is the matrix where
the N rows are the input vectors and the M columns are the features,
β is the unknown vector of parameters determining the weight of each
feature and ε represents the noise. For a common ML problem, the number
of instances N is much larger than the number of features M , therefore
equation 1.2 represents an over-constrained problem, whose solution can
be easily found by means of a least square error approach. As suggested
by Tibshirani in [21], Lasso consists in introducing a penalisation term,
based on the L1-norm of the parameter vector β. The solution becomes:

β̂ = arg min
β


N∑
i=1

(
yi −

∑
j

βjxij

)2

+ λ
∑
j

|βj|

 (1.3)

The result of the Lasso regularisation is introducing a non-linearity
in the process, which directly tends to assign null value to the weights
of the less meaningful features, highlighting instead the most significant.
A consequence of this behaviour is that Lasso-based methods are easily
employable for feature selection.

Variants include Group Lasso and Sparse Group Lasso, which essentially
constrain the standard Lasso to employ user-defined groups of features.
For example, in a Group Lasso solution β̂, all the weights connected to a
certain group of features are either null or different from zero.

Gaussian processes

As opposed to the methods presented so far, Gaussian processes can not be
used in a feature selection process. Instead, they are a valid alternative for
the final Supervised Learning task. Among their favourable characteristics
are the high degree of interpretability of the results and the fact that, in
addition to the predicted value, they output its variance, thus providing
some measure of uncertainty of the prediction. The disadvantages include
an applicability issue: the covariance matrix grows according to the dataset
size and, since the method implementation requires its inversion, a large
dataset would entail unsustainable computational costs.

Gaussian processes basically consist in the generalisation of the Gaussian
distribution to the infinite dimension space of functions. Hence, the learning
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process becomes a fitting problem of the sample data on a mean function
and a covariance function, which fully describe the Gaussian process. A
more thorough description of Gaussian processes and their application to
Machine Learning tasks can be found in [11].



Chapter 2

State of the art

2.1 3D modelling of nasal cavity

The fact that only in recent years technological advancement made
the CFD simulation of human nasal airflow a concrete possibility says a
lot about the complexity of the geometry considered. A key factor is the
extreme variability it presents, making a patient-specific approach almost
a necessity and frustrating any attempt to use common sense to make
up generalised insights on how geometrical features are linked to efficient
nasal breathing. In fact, this is the very mission of this project: exploiting
the Machine Learning techniques to offer ENT1 specialists a valid aid to
their experience in the clinical choices they make.

Despite the great anatomical variety, there are some features of the
nasal cavity which are common to the vast majority of the human species.
They are briefly introduced to contextualise some terms and concepts,
which are necessary to describe the modelling efforts later on. For further
details, the reader should refer to [19].

The anatomic portion of interest is located beneath the skull base
and above the oral cavity. For simplicity purposes, it is assumed to be
symmetrical with respect to the median plane of the human body, even
though this is never the case in the real world. The nasal cavity begins
with the nares, two symmetrical openings leading into the nasal vestibules
and ends in the laryngopharynx, the portion of the throat where nasal
and oral cavity reconnect before the trachea. The nasal septum, a thin
structure lying approximately on the median plane, separates the first

1Ears, Nose and Throat. It is a branch of the medical field also known as otolaryn-
gology
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12 Chapter 2. State of the art

Figure 2.1: Human nasal cavity scheme (1). Picture taken from [20]

section of the airway in two symmetrical volumes, the nasal fossae, before
they are rejoined in the nasopharynx.

Each fossa undergoes a relevant section change in the nasal vestibules,
developing as a narrow channel enclosed between the septum and the nasal
lateral wall. This section includes the nasal valve, a point of constriction
along the passageway due to the overlap of the septum and the lateral
walls. It is responsible for the recirculatory character of the airflow in the
top part of the nasal cavity, which enhances olfactory functions. In fact,
this is the area where olfactory sensors are located.

Three long and curled bony structures stand out in the following section
of each nasal fossa: the turbinates or conchae, unfolding roughly parallel
to the flow and attached to the lateral walls. The inferior turbinate is
the largest, running almost the entire way from the vestibules to the
nasophariynx. The shorter middle turbinate is located above it and further
downstream and the same goes for the superior turbinate with respect
to the middle one. The nasal airway develops around the turbinates
in thin ducts known as meatuses, with each meatus lying beneath the
corresponding turbinate. This way, the mucosal surface is extended and
functions of humidification and heating of the incoming air are carried out
more efficiently by the hypervascular mucosa covering the turbinates.

As anticipated, the two nasal fossae reconnect in the nasopharynx,
following the posterior ends of the septum and turbinates. Subsequently,
the airway makes a corner and enters the section called laryngopharynx,
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Figure 2.2: Human nasal cavity scheme (2). Picture taken from [20]

which later turns into the trachea and finally leads into the lungs.

The initial part of this work deals with the creation of a database of
CAD modelled geometries, replicating the anatomical features described
above. Some of these models are modified to simulate a condition called
turbinate hypertrophy. As the name suggests, it consists in the swelling of
the turbinates, which leads to a constriction of the meatuses, up to the
point where the airway can be completely obstructed in the most severe
cases. It may have a variety of different causes, from allergic rhinitis to
sinus inflammation, or it can present itself paired with other pathological
deformations of the nasal cavity, like septum deviation2. Turbinate hy-
pertrophy can affect one or more turbinates in either of the nasal fossae
and it may involve the full length of the bone or just a portion of it. The
treatment of choice is often surgical turbinate reduction.

As of today, the design of a synthetic model of the human nasal cavity
is not entirely new: in the past ten years, many attempts were made
in that direction. Generally, their objective is the same that drives the
modelling effort in this work: to obtain a general, simplified geometry
while reproducing, as accurately as possible, the features of a real nasal
airflow.

2Physical condition involving the displacement of the nasal septum. It is very
common, but does not always implicate breathing difficulties
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Figure 2.3: Turbinate hypertrophy. Picture taken from [18]

According to a chronological criterion, the first work worth mentioning
is the one by Liu et al. [9] from January 2009. This article actually deals
with the creation of a standardised nasal model through an averaging
process of real nasal geometries obtained from CT-scans. The procedure
consists of a number of different steps, including the alignment and scaling
of coarse 3D geometries, the extraction of 2D coronal sections from each,
the creation of median sections through image processing and the final
reconstruction of a median 3D model, in accordance with individual mea-
surements like nasal volume and area. The most interesting part is the one
concerning the initial spatial adjustment of the coarse models: in order
to compensate for size difference between individuals, two landmarks are
defined in each one. One is the tip of the AMS (anterior maxillary spine),
which is set as the origin of the reference system, while the other is the
choana, the point where the two nasal fossae merge into the nasopharynx.
This point lies on the y-axis and the last rotational degree of freedom
is set by taking the plane minimising the projected area as the xy-plane.
Finally, the coarse model dimensions are normalised to the average distance
between said landmarks. According to their dataset, the average distance is
65.1mm. The resulting model is known in literature as the Carleton-Civic
standardised nasal model.

The work by Javaheri et al. [7] focuses on the creation of an idealised
infant nasal geometry for experimental studies on particle deposition. The
model is artificially built with CAD and adopts a number of simplifications,
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justifying each of them. Perhaps, the most relevant one is the approxima-
tion of the nasal septum as a flat plate, following the consideration that
its typical bumps and deviations are on a dimension scale too small to
significantly affect streamline curvature. Then, the effect of sinuses on the
airflow is deemed negligible, making their presence in the model redundant.
On the other hand, the article highlights the impact of the nasal valve
on the flow characteristics downstream from it. It should be noted that
these simplifications are considered with respect to their effect on particle
deposition, although, in part, they can be extended to a general simulation
of the nasal airflow.

In the work by Zhang [23], the modelling of the nasal geometry assumes
the same role as in this thesis: reducing computational costs through
the use of a simpler geometry. He builds a 3D model for each of the
real geometries in his dataset by extracting characteristic dimensions and
characteristic points’ positions from every instance and applying them
to a template model. He then compares CFD results on both the real
geometries and the synthetic models, in order to gain insights on the main
airflow patterns. Some of the flow features he identifies are consistent with
other studies, such as the velocity distribution on the coronal sections, but
the terminal portions of the meatuses appear too empty and might even
hide signs of backflow due to the abundant presence of sharp edges in the
geometry adopted.

The articles mainly taken as reference for the design of the model in
this work are the ones by Afiza et al. (2015) [1] [2]. Despite approaching
the issue from different angles, experimental and numerical, they both
strive towards the creation of a synthetic CAD model of the human nasal
geometry and they both achieve their goal by experimenting different
solutions and studying how each feature they focus on affects the simu-
lated airflow. In both publications, the authors analyse the effect of the
length of the turbinates and the presence of the nasal valve. Their results
look consistent between experimental and numerical part and even their
simplified model shows several flow features corresponding to those found
in the real geometries. Their artificial model is shown in figure 2.4 and
constitutes the baseline for the model used in this work, although several
modifications are necessary to produce a flow acceptably similar to the
real-life inhalation airflow.

A more recent attempt at obtaining an average upper airway geometry
was made in 2016 by Nejati et al. [14]. The process is essentially the same
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Figure 2.4: Synthetic model of human upper airways. Picture taken from [1]

as in [9], but the methods employed are more sophisticated: 2D coronal
sections are "skeletonized" using splines and a template model is deformed
to fit them, through control point matching. Finally, the control points
undergo the median-finding step, before reconstruction of the 3D median
model, based on the resulting sections. The improvements in this approach
include an increased robustness to heavier anatomical variations and the
possibility to artificially shape the synthetic model to one’s needs. For the
initial geometry adjustment, the article mostly replicates the procedure
described in [9], while using a normalisation length between AMS and
choana of 60mm.

Finally, the article by Xi et al. (2016) [22] eviscerates the effects of
nostril orientation on flow properties. The model used is a real nasal
geometry reconstructed from MRI (Magnetic Resonance Imaging) and
the numerical simulations used are of the LES (Large Eddy Simulation)
type. The results suggest that the preservation of the realistic oblique
nostril orientation in the modelling process is the best choice. In fact, a
downward-directed inlet leads to inaccurate flow distribution in the fossae,
while an anterior-directed inlet favours the generation of non-physical
vortices in the initial portion of the nasal cavity. Indeed, this turned out
to be a critical aspect in the design of the model used for this work.
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2.2 Numerical simulation of nasal airflow
The numerical simulation of the airflow in such a complex geometry as

the human upper airways is no ordinary deal. The difficulties it presents
and the great relevance from the clinical point of view encouraged several
studies during the past few years, involving any kind of CFD methods. In
the scope of this thesis, RANS simulations are the preferred choice, while
LES is marginally employed for validation purposes, as more extensively
described in Appendix A.

The incompressible steady-state Reynolds-Averaged Navier-Stokes equa-
tions are a set of PDE (Partial Differential Equations) describing the motion
of fluids. They are derived from the more general Navier-Stokes equations
by applying the Reynolds decomposition.

While the Navier-Stokes equations accurately describe the fluid motion
in most cases, a phenomenon known as turbulence often comes into play.
It can be defined as the chaotic behaviour displayed by the flow when its
Reynolds number is large enough, which is true for almost any relevant
real-life situation. Since the fluctuations continuously involve every length
scale, from the flow typical one to the microscopic Kolmogorov scales,
and since they all need to be computed for accurate results, the DNS
(Direct Numerical Simulation) approach is often deemed prohibitive in
terms of computational cost. Although it displays wide limitations and it
carries along several sources of error, the statistical approach introduced
by Osborne Reynolds still is the most widespread way of tackling the
turbulence issue. It results in a new set of PDE, the steady RANS:

∇ · 〈u〉 = 0 (2.1a)

∇ · 〈u〉〈u〉+∇ · 〈u′u′〉+
1

ρ
∇〈p〉 = ν∇2〈u〉 (2.1b)

In the notation used, u is the velocity vector, p is the pressure and ρ
is the density. The obtained set of equations is not a closed one. In fact,
there is no mathematical relation tying the mean fields 〈u〉 and 〈p〉 to the
term 〈u′u′〉, which is known as Reynolds stresses tensor and includes the
effect of the fluctuating motions on the mean flow field. Closure requires
the adoption of a model for the Reynolds stresses and the past fifty years
of research on the subject produced a wide variety of solutions in that
perspective.

In consistency with previous works, such as [8], the model of choice
for the present work is k − ω SST , a two equation eddy-viscosity model,
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first described by Menter in [12]. It originates from k − ω and k − ε
classic models, blending them according to a suitable weighing function, to
capitalise on their respective strengths and mitigate their weaknesses. In
particular, k − ω is dominant in the near-wall area, where its formulation
is particularly convenient. In free-stream regions, k − ε is preferred due to
its lower sensitivity to free-stream values of turbulent quantities.

Large Eddy Simulation is based on a spatial filtering operation, which
results in the following set of equations:

∇ · u = 0 (2.2a)
∂u

∂t
+∇ · uu +

1

ρ
∇p = ν∇2u (2.2b)

Similarly to the Reynolds stress tensor in the RANS approach, the SGS
(Sub-Grid Scale) stress tensor τsgs is defined as:

τsgs = uu− u u (2.3)

and accounts for the effect of the sub-grid scale motions on the filtered
quantities. The filtered equations 2.2 present the same closure problem
as the RANS equations 2.1, requiring the modelling of τsgs. Among the
most common models for sub-grid scale stresses is the Smagorinsky model,
which is also the one adopted in the present work. In analogy with many
RANS turbulent models, it is based on a fictitious eddy-viscosity.

One of the main features distinguishing a LES from a RANS simulation
is the improved accuracy and increased computational cost: the larger
turbulent scales are directly calculated, limiting the modelling process to
smaller scales. Furthermore, LES is intrinsically unsteady, requiring an
adequate time resolution and deferring a possible average operation to the
post-processing phase. For a more in-depth overview on RANS and LES
approaches, the reader should refer to [15].

The literature review on nasal airflow simulations starts with the ar-
ticle by Zhao et al. [25]. The study investigates the connection between
anatomical variations of the olfactory slit (upper-most part of the nasal
fossa) and the olfactory function efficiency. The laminar, steady-state CFD
simulations were carried out on approx. 1.8 million element meshes. The
objective of the study is, per se, of little relevance to this work, but it
remains one of the first attempts at applying CFD to the human upper
airways and to do so in a consistent manner, to the point that some of
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the procedures it establishes are still valid today. In a subsequent work,
Zhao et al. (2006) [26] examine both human and rat nasal airflow in a
sniffing condition. The increase in the flow rate with respect to the previ-
ous study [25] suggests that turbulence might play a role, so the laminar
simulations are paired with others employing turbulent models k− ε, k−ω
and Spalart-Allmaras. An interesting aspect in both works concerns the
boundary conditions: the flow is driven by a pressure difference imposed
between the nostrils and the nasopharynx, a similar solution to the one
adopted in this work.

Some interesting considerations about the hypothesis of steady-state
flow are included in the article by Hörschler et al. (2010) [6]. Their CFD
simulations are run on a simplified model and on a real upper airway geome-
try, obtained from CT-scans, and further corroborated by rhinomanometry3

measurements. The numerical methods involve a finite-volume method
and a Lattice-Boltzmann method and the flow-driving condition is of the
pressure difference type. In order to enhance the unsteady effects, the
Strouhal number is set to St = 0.791, while the Reynolds number lies in the
range Re ≤ 2900. Results show a significant discrepancy between steady
and unsteady conditions at low and increasing mass-flux conditions, while
the steady-state hypothesis seems to work adequately in high mass-flux
conditions i.e. in the middle of the inspiration or expiration act.

Works by Zubair et al. (2012) [27] and by Quadrio et al. (2014) [16]
highlight how the airflow is largely influenced by a number of factors, whose
effects are very difficult to account for. In fact, the nasal walls are usually
considered rigid and smooth and the flow incompressible. Despite these
hypotheses, the geometry of a patient’s nasal cavity is far from fixed: the
nasal cycle implies an alternate process of congestion and decongestion of
the nasal fossae, constantly altering the shape of the airway and postural
effects should be taken into account as well. Furthermore, the nasal mucosa
is rough and covered with cilia and the heat exchange between the blood
vessels in the nasal walls and the airflow suggests that a thermoaerody-
namic approach should be adopted. Although of great importance, such
issues fall outside the scope of this thesis: they constitute a different line of
research within OpenNOSE, focusing on the crucial experimental validation
of the numerical results obtained so far and described in article [4]. In any
case, plenty of empirical evidence collected over the years corroborates the

3Diagnosis technique adopted for nasal cavity and consisting in the direct measure-
ment of pressure and flow
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validity of the simulation procedures, making these procedures reasonably
well established and robust.

The article by Zhao et al. (2014) [24] finally tries to answer a funda-
mental question for the potential clinical value of any CFD-related upper
airway study: what is normal nasal airflow? In order to find an answer,
they ran their investigation on 22 healthy patients, mostly young Cau-
casian individuals, employing a k−ω model to account for turbulent effects
in their steady-state simulations. Despite the relative uniformity of the
sample, results showed great variability in the geometries, with volumes
and areas roughly varying by up to a factor 2. Some common features
were identified, but most, like flow distribution across the meatuses, appear
quite different even between healthy subjects such as these.
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Dataset generation

The initial step of the actual work consists in producing a simplified
model of the human upper airways, fulfilling the following specifications:
firstly, it needs to be simple, to make the CFD computations efficient.
Secondly, despite the limited degree of accuracy required, the computed
airflow should be qualitatively comparable to the one obtained in a real
nasal geometry. Lastly, the necessity to easily introduce some anatomical
variations calls for great versatility. The model is designed with FreeCAD,
a popular open source parametric design software.

3.1 Base model

The base model in figure 3.1 satisfies all the aforementioned require-
ments. It represents the air volume, acting as a negative of the bones
and tissues bounding the nasal cavity. As far as possible, the sharp edges
are filleted1 to discourage the formation of recirculation regions and the
model is perfectly symmetric, at least in this standard form. The reference
system has its origin between the nasal vestibules, for design purposes.
The x-axis acts as the frontal axis, the y-axis runs along the sagittal axis
and the z-axis represents the vertical axis. About 10− 15mm down the
y-axis from the origin lies the point corresponding to the AMS, taken as
reference in [9], [14]. Also, in compliance to these works, the choana was
located on the y-axis, 75 mm from the origin and about 60-65 mm from
the AMS.

1Mechanical engineering term which indicates the rounding of an edge and is com-
monly used in CAD

21
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Figure 3.1: Base model

Inlet sphere

The addition to the computational domain of a sphere, centred outside
the nostrils and intersecting the external nose surface, achieves accuracy
and robustness improvements of the CFD simulations. In fact, imposing
boundary conditions away from the nasal vestibules has beneficial effects
on the stability of the simulation and allows to already obtain an accurate
solution in the beginning portion of the airway. On the other hand, it does
not entail an important increase in the computational costs, due to the
limited mesh refinement it requires. Only the spherical cap itself acts as
an inlet surface, while the cut plane, which the nostrils are connected to,
simulates the external nose, where wall boundary conditions are imposed.

Fossa

Figure 3.2 shows the 2D sketch on the yz-plane defining the shape
of the two identical nasal fossae, from the vestibules (on the left) to the
nasopharynx (on the right). As anticipated, the general outline recalls the
one described in [1]. Its most interesting aspect is the nostril orientation.
Following the findings described in [22], nostril orientation is neither vertical,
nor anterior. The value of 45◦ guarantees a flow distribution qualitatively
similar to a real nasal airflow and avoids the presence of backflow in the
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Figure 3.2: 2D sketch of a nasal fossa

terminal portions of the meatuses.

Nasal valve

The nasal valve is designed as a section contraction in the nasal
vestibules area, as shown in figure 3.3. The dimensions are defined to
optimise the flow downstream: a more pronounced contraction causes a
non-physical recirculation zone right behind the valve, while a less evident
one implies a high velocity flow on the olfactory region, which is actually
a low-velocity area enhancing the olfactory function.

Turbinates

The turbinates are implemented in two steps: firstly, the meatuses
are extruded from the sketch in figure 3.4 and suitably smoothed. Then
the nasal fossa is carved in their correspondence, to compensate for the
increase in CSA (Coronal Section Area). The result can be observed in
figure 3.1. The inlet of the inferior meatus deserves a special mention, as
it is one of the most critical features for the overall trend of the flow. It is
obtained from the union and subtraction of four different blocks, so that
the fossa and the meatus are connected as harmonically as possible. The
middle meatus inlet and both outlets are less critical and could be obtained
via filleting or with the addition of simple volumes. The superior meatus
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Figure 3.3: CAD model detail: the nasal valve

Figure 3.4: 2D sketch of the inferior and middle meatus

is not vital to the general behaviour of the flow, but is mainly introduced
to give the model greater versatility: its position can be easily modified
without entailing abrupt changes in the airflow.

Central septum-like structure

This peculiar feature mimics the human nasal septum and serves two
purposes. One concerns flow quality: reducing the width of the main
fossa channel favours a more uniform flow distribution in the meatuses. In
addition to this, its position along the x-axis becomes the perfect parameter
to introduce asymmetry in the model. In figure 3.5 the reader can see the
artificial septum besides the main air volume of the fossa and the result of
their geometrical subtraction.
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(a) (b)

Figure 3.5: Nasal septum before (a) and after (b) volume subtraction

Nasopharynx and laryngopharynx

The nasopharynx and laryngopharynx are implemented as separate
volumes and fused with the two nasal fossae, as shown in figure 3.6. Apart
from the rounded corners, they do not display any notable detail, since the
airflow in these regions is not particularly interesting and the geometry
adopted does not have a significant impact on the flow upstream. The
main reason why they are included in the model is to impose more accurate
outlet boundary conditions, replicating the pressure difference generated
by the thoracic diaphragm in the lungs.

3.1.1 Airflow comparison on modelled and real geom-
etry

The base model described above is the result of several attempts.
The modifications at each step were determined by comparing the CFD-
simulated airflow in the model to the one obtained in a real nasal geometry.
The final comparison shows the good degree of qualitative accuracy accom-
plished, while also preserving properties of simplicity and flexibility. The
images are obtained on ParaView (5.0.1), an open source visualisation soft-
ware, which in recent years has become a standard for the post-processing
of fluid dynamics simulations.

Looking at figure 3.7, the reader can notice that the real geometry
includes the sinuses, which are missing in the model for simplicity purposes,
as suggested by [7]. The plotted quantity is the y-component of the velocity
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Figure 3.6: CAD model detail: nasopharynx and laryngopharynx

(a) Modelled nasal cavity

(b) Real nasal cavity

Figure 3.7: Coronal section plot of uy
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(a) Modelled nasal cavity

(b) Real nasal cavity

Figure 3.8: Sagittal section plot of p
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Figure 3.9: Modification 1: septum lateral position

vector, normal to the section plane. The range is slightly different, since
the comparison is purely qualitative, but the maximum values in both cases
is around 2m/s. The flow distributions are very similar, with the higher
flow-rate regions located in the central part of the fossa, in the middle
meatus and in the initial part of the inferior meatus. As for the pressure
distribution (figure 3.8), the CFD on the model reports quite different
results from the one run on the real nasal geometry. This is, in part, due to
the higher size of the modelled nostrils, which causes a high velocity flow
in the nasal vestibules. Still, the natural shape proves much more efficient:
with similar imposed total pressure-over-density difference (20m2/s2 in the
model, 20.5m2/s2 in the real nasal geometry) the volumetric flow rate in
the model is much lower, 10.7l/min against 18.3l/min

3.2 Anatomical modifications

In order to create a wide dataset of diverse geometries and airflows,
the following step was applying combinations of anatomical variations to
the base model. The variations introduced are eight, five of which behave
as harmless anatomical differences between healthy individuals, while the
remaining three have a pathological impact on the airflow, replicating the
condition known as turbinate hypertrophy described in an earlier chapter.
The modifications are defined with the help of the ENT experts of the
team.
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Figure 3.10: Modification 2: longitudinal position of superior meatus

1) Septum lateral position (non-pathological)

The first anatomical variation consists in the translation, along the x-
axis, of the septum volume described in the previous section. Figure 3.9
shows, from a top view, how the modification is practically implemented
by reducing it to a single parameter. In the present dataset, the considered
distance varies from 0.3mm to 0.7mm, 0.5mm being the neutral position,
which produces a symmetrical model.

2) Longitudinal position of superior meatus (non-pahological)

This modification focuses on the superior meatus and consists in translating
it along the y-axis, without affecting its size, as displayed in figure 3.10.
The range adopted for this feature is 30mm to 38mm from the origin of
the reference system.

3) Vertical position of superior meatus (non-pathological)

Similarly, a third variation is represented by the position of the superior
meatus on the z-axis, ranging between a 20mm and a 28mm distance from
the origin.

4) Section change steepness at inferior meatus inlet (non-pathological)

The fourth non-pathological variation focuses on the section change, which
appears on the nasal fossa in correspondence of the beginning of the
inferior meatus. In particular, the variation concerns the steepness of such
contraction, varying between 1.1mm (for volume overlap reasons) and
3.0mm. It is displayed in figure 3.11.
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Figure 3.11: Modification 4: section change steepness at inferior meatus inlet

Figure 3.12: Modification 6: head of inferior turbinate hypertrophy

5) Nasal valve position (non-pathological)

As suggested by the title, this alteration involves the location of the nasal
valve. The valve is moved along the upper edge of the nasal vestibules,
with a vertical distance from the origin of 6mm to 8mm.

6) Head of inferior turbinate hypertrophy (pathological)

As anticipated, the present model acts as a negative of the human nasal
cavity: the geometry replicates the air volume of the human upper airways,
while the tissues and bones constitute its boundaries. Therefore, the
hypertrophy of the inferior turbinate is modelled as a constriction of the
airways. The deformation can extend to the entire turbinate or just a
portion of it and the sixth modification mimics the hypertrophic condition
of the head (anterior portion) of the inferior turbinate. It is implemented
as a carve in the inferior meatus and in the corresponding area of the
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Figure 3.13: Modification 7: overall inferior turbinate hypertrophy

Figure 3.14: Modification 8: head of middle turbinate hypertrophy

vertical channel of the nasal fossa, and has width values ranging from
0.1mm to 0.7mm, which is about half of the original meatus thickness. It
is displayed in figure 3.12.

7) Overall inferior turbinate hypertrophy (pathological)

This modification, as shown in figure 3.13, exactly replicates the previous
one, although it affects the entire length of the inferior meatus, rather than
just its anterior part. Limit values are still 0.1mm and 0.7mm.

8) Head of middle turbinate hypertrophy (pathological)

The last anatomical variation essentially reproduces the sixth one, but
it is applied to the middle turbinate instead of the inferior one. It is
also reduced in size, proportionately to the lower size of the respective
turbinates, varying from 0.1mm to 0.4mm. For greater variability in the
dataset, this modification was applied in combination to either of the other
two pathological conditions. The result can be seen in figure 3.14.
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The eight modifications described are combined to generate 200 geome-
tries, each different from the other. In particular, 100 cases include just
the non-pathological variations, while 100 more also include combinations
of turbinate hypertrophy. This characteristic composition of the dataset
achieves an ideal 1:1 ratio of healthy and pathological cases, to guarantee
an optimal training base for the Machine Learning algorithms. The modifi-
cations corresponding to turbinate hypertrophy conditions are only applied
to the right (positive x-axis direction) nasal fossa, since altering the left
fossa would mostly produce mirrored images. In case a wider sample was
to be obtained, right side hypertrophies could be combined with left side
hypertrophies, leading to more geometries, but for the 200 cases of this
work it is deemed unnecessary.

3.3 Numerical simulations

The CFD simulations employed are of the RANS type. Because of the
huge computational cost they entail, they are executed on the powerful
clusters of CINECA, via SSH protocol2. The software used is OpenFOAM
(v1806+), a widely used open source CFD tool.

The setup of a RANS simulation on OpenFOAM is a delicate operation,
especially when dealing with such complex geometries. Apart from the
.stl3 files defining the geometry, all the simulations share the same settings.
The setup is similar to the one described in a previous thesis on the subject
by Lamberti-Manara [8], whose main focus involved the achievement of
an accurate numerical simulation of the nasal cavity airflow. Despite this,
many adjustments are necessary, mostly due to the different behaviour
of the model with respect to the real geometry and to the necessity to
make the computations as efficient as possible, while slightly relaxing the
accuracy requirements. As mentioned earlier, the turbulent model adopted
is k − ω SST and air is considered a Newtonian fluid, with kinematic
viscosity ν = 1.5 · 10−5m2/s.

Mesh generation

The starting point is the creation of an adequate computational grid. With
respect to the mesh specifications, the initial block mesh is comprised of

2Secure SHell is a standard cryptographic protocol for networks, usually operated
via command-line interface

3STereo Lithography is a file format used to describe triangulated surfaces. Widely
used in CAD applications
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Figure 3.15: Computational mesh detail: middle meatus

cubes of edge length 1mm. This is then refined and deformed around
the model surface by means of the snappyHexMesh4 utility. Using a
higher refinement level for nasal walls and a lower one for the spherical
cap boundaries allows to optimise the mesh quality, without excessively
increasing its size. A typical final mesh includes 1.0-1.1 million cells.

Boundary conditions

Since these are steady-state RANS simulations and the turbulence model
of choice is a variant of k − ω, the independent variables involved are k,
ω, p and u, while eddy viscosity νt is computed at every iteration from k
and ω. The boundary condition driving the inspiration flow into the nasal
cavity is a total pressure-over-density difference of 20m2/s2 between the
inlet, represented by the spherical cap, and the outlet, which is the lower
face of the laryngopharynx, normal to the z-axis. The value was chosen to
obtain flow conditions similar to a real nasal cavity airflow. The velocity
vector u has a no-slip condition on the solid boundaries and a null normal
gradient condition on the inlet and outlet. Boundary values for k and ω
are computed according to the criteria defined by Menter in the original
article [12] presenting his k − ω SST model.

Numerical settings

The computational grid is subdivided into 8 parts for parallel computing,
specifying equal weights since all processors are expected to have equal

4OpenFOAM built-in mesh generation tool. It takes as inputs a uniform block mesh
and a surface in .stl format and produces a new mesh, deformed around the input
surface
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Figure 3.16: Typical residual trend

performances. The numerical schemes adopted are first-order for stability
reasons and the convergence criteria are quite strict, since the steady-flow
hypothesis is not very sound for this kind of flow, as remarked by [6].
The solver of choice is an OpenFOAM built-in, steady-state algorithm for
incompressible flows: simpleFoam.

Convergence results

All the simulations met the convergence criteria in about 20 hours, including
the meshing, decomposition and reconstruction processes. This corresponds
to a number of iterations between 50000 and 60000. A typical residual
plot of the variables is displayed in figure 3.16. The slowest variable to
reach convergence is typically k, while the residual of p starts oscillating
around a very low value much earlier than the final convergence.
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Learning from data

After the conclusion of the RANS simulations on the CAD generated
models, the dataset is almost ready for the ML model training. A prelimi-
nary step is necessary and involves a significant reduction in the data size,
which in the present form is unsuitable to train an ML algorithm. At first,
this is done by switching from huge 3D scalar and vectorial fields to 2D
sections and other more manageable data structures. A further reduction
is then carried out through the extraction of handcrafted features, which
should summarise all the relevant information about the airflow in a few
bytes. Lastly, a more objective feature selection process is performed,
exploiting some ad hoc techniques from the Machine Learning field, before
the final training of the algorithm and the fine tuning of its parameters.
In this setting, the word "feature" refers to both the characteristics of the
nasal airflow and to the components of the input vectors of the training
dataset, as the two concepts end up overlapping. As far as the prediction
model is concerned, the data structure requires a Supervised Learning
approach. In particular, a regression setting will be adopted: even though
the pathological modifications are precisely introduced to 50% of the input
geometries, some of them show a moderate degree of turbinate hypertrophy
and assigning them a "healthy" or "pathological" label seems too sim-
plistic an approach. Moreover, in a future perspective where the dataset
will include more realistic nasal models with an increased level of overall
variability, an a priori evaluation of the functionality of a nasal geometry is
far from trivial. Therefore, the ability to predict the severity of turbinate
hypertrophy is deemed, in prospect, more useful than the one to distinguish
a healthy nose from an unhealthy one.

35
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4.1 Data mining

Data reduction represents one of the most important parts of this thesis.
On one hand, CFD typically involves huge amounts of data: in fact, for
the dataset considered here, a completed simulation output includes the
computed airflow fields and the mesh data and weighs on average 210MB.
This is valid for steady-state RANS simulations run on a relatively coarse
mesh, since the simplified geometry employed allows to relax the mesh
quality constraints and still robustly reach convergence. Of course, in future
developments, the need for accuracy will increase: the CFD simulations
will become LES or even DNS and the geometrical model used will be more
realistic, probably causing the size of CFD results to increase by up to 2-3
orders of magnitude. On the other hand, ML methods generally require
very large datasets, comprised of cases with a limited number of features.
The dataset used in the present work includes 200 instances, which is close
to a lower bound even for a Supervised Learning application. Therefore,
the size of every input vector should be at most in the order of some kB,
before the feature selection further reduces it to a few numerical values.
Clearly, the main obstacle to the application of ML techniques to CFD
results resides in the 5 (possibly more) orders of magnitude between what
one produces and what the other one needs.

The first step towards solving this issue is achieved through some typical
post-processing operations, replacing 3D fields with a more convenient, light
and interpretable data structure. The software for this job is ParaView,
which allows the user to easily automatise operations through Python
scripting. Three kinds of data are extracted from the raw CFD results: 2D
sections, streamlines and average pressure values along the stream.

1) 2D sections

Slicing a 3D field to obtain 2D representations of the flow is perhaps the
most intuitive way to reduce such a complex information, from an AI
(Artificial Intelligence) perspective as much as for a human viewer. In
fact, one of the advantages of this choice is the easy interpretation of the
obtained images, which is a key factor in the medical field, as stated in [17].
A total of six section planes, shown in figure 4.1, are chosen. They are all
roughly at equal distance from each other and are all approximately normal
to the main flow direction. Each section file contains the point coordinates
of the mesh and the field values for each cell. Since the turbulence variables
are not of any interest to the flow general aspect, only u and p fields are
saved, to further optimise data size. The section planes are named a
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Figure 4.1: Section planes selected for data extraction

through f according to the stream direction: plane a is the one sectioning
the nasal vestibules, the three coronal (normal to the y-axis) planes in the
turbinate region are respectively b, c and d, while the oblique planes across
the nasopharynx and laryngopharynx are named e and f .

2) Streamlines

Streamlines are a classical visualisation tool in the CFD world, although
their employment as ML input data is far from an established practice. De-
spite this, they show considerable potential, introducing a time-dependent
information in the mix. Naturally, dealing with steady-state RANS simu-
lations, time is just a dummy variable generated by numerical integration,
but in the future, with time-dependent simulations, the streamline data
will acquire even greater interest.

As displayed in figure 4.2, the streamlines are generated from a roughly
uniform grid on a ring placed upstream of the nostrils, for repeatability
reasons. The number of streamlines (100), the ring’s position and its size
are optimised for an efficient description of the airflow. The integration
scheme is a Runge-Kutta 4 (RK4) with a fixed step-length of 1.5 cells.
The choice of this non-adaptive scheme is due to robustness considerations:
because of numerical errors, only about 70% of the streamlines reach the
laryngopharynx and RK4 ensures the best success rate. The streamlines
data include all field values at each point of every streamline, including
the dummy-time produced in the trajectory integration.
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(a)

(b)

Figure 4.2: Ring with grid points (a) generating streamlines (b). Streamlines
are coloured according to velocity magnitude
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Figure 4.3: Mean pressure plot on y-axis

3) Average pressure trend

This idea lies on the consideration that pressure has a typical decreasing
trend along the direction of the stream, as imposed by the boundary
conditions, while it shows little variability in a generic coronal section.
Therefore, each instance is divided in 120 slices by coronal section planes,
each thick 0.5mm. The domain portion covered starts downstream of the
nasal valve, to avoid too large an influence on the first few slices, and ends
in the choana. In each slice, the integral pressure and volume are computed
and saved. The number of slices considered is arbitrarily high: with the
integral quantities available, the average pressure can be later computed in
any number of slices submultiple of 120. The result is displayed in figure 4.3.

The first step of data mining accomplished a reduction in data size
of almost 2 order of magnitudes, leading to post-processed instances ap-
proximately as big as 3MB. In addition, the data is now in a convenient
form for human visualisation as well, allowing a better understanding of
the general flow behaviour and facilitating a tailored feature extraction to
further synthesise the CFD results.

4.2 Handcrafted feature extraction

The issue tackled in this section is the extraction of a limited number of
flow features, enclosing the overall aspect of the nasal airflow. In this phase,
all the possibly significant features are generated: their actual relevance
is evaluated later in the feature selection process. The features should
be independent from morphological information and only focus on the
flow field: extrapolating geometrical information from geometry-dependent
features would result in a trivial problem.
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Figure 4.4: Arrival time histograms of streamlines

1) Arrival time histograms

Having plenty of space-dependent information in the 2D sections, some
time-dependent data is obtained from the streamlines. In detail, the
streamlines are separated from one another according to the dummy time
variable, which is reset to zero at the beginning of each line. Then the total
time each one takes to get from plane a to plane f is computed and the
results are distributed in a number of bins to generate the histograms shown
in figure 4.4. This procedure takes place after a selection of the streamlines:
the ones not reaching plane f are discarded to avoid contamination of the
valid data. The optimal number of bins for the histograms is determined
to be four. This allows to preserve some degree of interpretability: the
four values generated can be thought of as the ratio of early, mid-early,
mid-late and late arriving streamlines. After a suitable normalisation to
the total number of streamlines reaching plane f , the time-dependent
information carried by the streamlines is thus condensed in a few floating
point numbers.

2) Flow rate distribution along z-axis

This feature is based on the three coronal sections corresponding to planes
b, c and d. Firstly, each one is divided horizontally along the yz-plane, in
left and right nasal fossa and vertically in a number of bands along the
z-axis. Then, in every one of the resulting 2D regions, the y-component
of the velocity is integrated to compute the volume flow rate across that
surface. Considering every section plane file includes a matrix UY , whose
values correspond to the uy evaluated in each pixel, the flow rate percentage
in each region Rk is computed as:
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Figure 4.5: Flow distribution across sections b, c, d (left to right)

Figure 4.6: Mean values of |u| over sections b, c, d (left to right)

flowratek =

∑
(i,j)∈Rk

UY [i, j]∑
i

∑
j UY [i, j]

(4.1)

As reported in equation 4.1, the flow rate of every region is normalised
to the volume flow rate across the entire section (which naturally is the
same for all three planes), yielding the flow distribution along the z-axis
for each side of every coronal section. The optimal number of horizontal
bands is six, as later established by a feature selection process: a bigger
number implies too high a correlation among the features, causing the data
variance to increase excessively, while a smaller number can not describe
adequately the flow distribution. An example of this feature is displayed
in figure 4.5, where each region is coloured according to its flow rate share.

3) Average field values in low resolution grids

The idea behind this feature is similar to the previous one. The main
differences concern the grid generation strategy, the physical meaning of the
features produced and the quantities they involve. First, sections b, c and d
are divided vertically in three regions of equal height and horizontally in six
regions, three on each nasal fossa, as shown in figure 4.6. The output values
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Figure 4.7: Centres of gravity of coronal plots

computed in each region are the mean values of pressure p and velocity
magnitude |u|. The number of regions is determined by interpretability
reasons: the three vertical bands describe the flow behaviour in the lower,
middle and upper portion of the fossae, roughly corresponding to the
meatuses, while the three horizontal bands separate the vertical duct along
the septum from the closer and farther part of the meatuses.

4) Centres of gravity on coronal sections

This is the most synthetic feature of the lot and is extracted from each
of the three coronal sections. A centre of gravity (COG) is located in the
section for |u| and p, computing it as follows:

COGq(S) =

 ∑
i

(
i ·
∑

j Sq[i, j]
)

∑
i

∑
j Sq[i, j]

,

∑
j

(
j ·
∑

j Sq[i, j]
)

∑
i

∑
j Sq[i, j]

 (4.2)

where q is the quantity considered and Sq is the matrix containing
its values across section S. In figure 4.7 the reader can see the overall
COG (in red) and the COGs of each fossa computed separately (in green).
Additionally, a black dot represents the fixed centre of the image and serves
as reference point.
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Figure 4.8: Polynomial fitting of various degrees of the pressure trend along
y-axis

5) Average pressure polynomial coefficients

This feature is based on the average pressure data described in the previous
section. Directly using the average pressure values on an arbitrary number
of slices would result in highly correlated features, carrying local informa-
tion. Instead, the solution adopted consists in computing the coefficients
of a polynomial, which is fitted on the curve employing a classical least
squares method. This way, the data is reduced to a few floating point
numbers and each of them is representative of the general trend of the
pressure. The degree of the polynomial is empirically chosen to be six, as
a compromise between accuracy and feature lightness. Some alternatives
are displayed in figure 4.8.

All the 154 values summarising the extracted flow features are con-
catenated in arrays and become features in the ML sense, i.e. the values
forming the input vectors xi. The 200 resulting input vectors are organised
in a matrix, while the values of the three anatomical variations defining
the hypertrophic conditions in the turbinates of the initial geometries
constitute target output vectors yi. Even before the final feature selection
process, the input dataset has been reduced from the initial weight of 108B
per instance, to a more manageable size of 103B per case.

According to their nature, the features can be organised in the following
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groups:

• PPT: the coefficients of the polynomial fit of the pressure trend along
the y-axis ;

• FPd: the flow distribution along the z-axis on section d;

• FPc: the flow distribution along the z-axis on section c;

• FPb: the flow distribution along the z-axis on section b;

• APd: the grid averaged values for p on section d;

• AVd: the grid averaged values for |u| on section d;

• APc: the grid averaged values for p on section c;

• AVc: the grid averaged values for |u| on section c;

• APb: the grid averaged values for p on section b;

• APb: the grid averaged values for |u| on section b;

• AI: the arrival-time histograms.

4.3 Feature selection
The objective of the this step is establishing which features are most

significant in describing the general flow trend. This process is beneficial in
two ways: on one hand, it generates interpretable insights about the effects
of turbinate hypertrophy on the nasal airflow and, on the other, it reduces
the number of features used in the training process. In fact, as explained
in chapter 1, the number of features used for Supervised Learning tasks
should be limited, especially when dealing with small datasets.

4.3.1 Feature selection procedures

Practically, three separate regression environments are defined, one for
each turbinate hypertrophy version: anterior inferior turbinate hypertro-
phy, overall inferior turbinate hypertrophy and anterior middle turbinate
hypertrophy. This choice is driven by result interpretation reasons. For
each target value, a test set including 20% of the cases is set aside, while
the remaining 80% is used right away as a training set, in a cross valida-
tion (CV) frame. This consists in dividing the training set in L subsets
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and performing L training tasks on L − 1 subsets of data each, leaving
every time a different one out and using it as a test set. In particular, to
avoid generating subsets too small, L is set to 5. This strategy allows to
artificially expand the dataset, averaging the results for greater accuracy.
Throughout the work, both CV and regression results are evaluated on the
base of the R2-score, defined as:

R2 = 1−
∑N

i=1 (yi − ŷi)2∑N
i=1 (yi − ȳ)2

(4.3)

where i is the sample index, yi is the target value associated to the
i-th input vector, ŷi is the corresponding predicted target value and y is
the mean over all target outputs. The R2-score ranges between 0 and 1
and it can be thought of as the amount of variance in the target outputs
explained by the regression model. The algorithms used in this phase
include Extra-Trees and Lasso and the feature selection process is carried
out according to three different strategies.

Recursive Feature Elimination with Cross Validation (RFECV)

It falls under the embedded methods class and consists in performing
recursive training attempts of a chosen algorithm, eliminating at each step
from the input set the lowest ranked k features, until a minimum number
of features m is reached. In this work, k = 1 and m = 5.

Forward Feature Selection with Cross Validation (FFSCV)

This one belongs to the wrapper methods class: at every step, the feature
guaranteeing the highest score increment is added to an initially empty
set. The score is computed through CV by iteratively trying to include
in the set every unused feature. The process stops at M = 100 features.
This way, the score trend can be observed as each feature is added to the
set and used to define in retrospect the optimal subset.

Feature selection on all available data

An additional embedded feature selection task is carried out as a validation
step, training both Lasso and Extra-Trees algorithms with all the available
features and looking at the outcome of their internal feature ranking
mechanism.
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Figure 4.9: Bar plot of maximum importance per feature group for each se-
lection strategy. The target output is anterior middle turbinate
hypertrophy

4.3.2 Feature selection results

The first relevant outcome of the feature selection process is rather
unexpected: one of the groups of extracted features, the COG position of
p and |u|, shows a very strong correlation to the target output, i.e. the
turbinate hypertrophy severity degree. This makes the problem trivial and
leads to the exclusion of this feature group from the input set. The reason
is that the COGs are too strongly correlated to the geometry itself, rather
than to the airflow trend. Additionally, this spurious correlation is likely to
disappear when dealing with more realistic nasal geometries, which show
greater geometrical variability than the simplified models employed in this
setting.

A further consideration concerns the effectiveness of the two algorithms
chosen for the task: due to its intrinsic linearity, the Lasso regularisation
proves unable to recognise the correlation among features, thus producing
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Figure 4.10: Feature importance plots for anterior inferior turbinate hypertro-
phy, computed with RFECV method on Extra-Trees algorithm

inconsistent results when tested with different feature selection strategies.
On the other hand, Extra-Trees shows greater robustness, due to its
ensemble nature. Proof of this behaviour is given in figure 4.9: Lasso
assigns high importance to different feature types, depending on the method
used, while Extra-Trees is more consistent, at least across the RFECV and
All-features approaches. As for the feature selection strategy adopted, the
Recursive Feature Elimination method is deemed more reliable, as Forward
Feature Selection does not show any effect on the R2-score as the features
are added to the input set.

Figures 4.10, 4.11 and 4.12 report the outcome of the feature selection,
relative to each version of turbinate hypertrophy. For each, a bar plot
shows the maximum importance in each feature group. On the right-
hand side of the figures, the nine feature groups generated from coronal
sections b, c and d offer insights on which variables and flow regions are
most significant for every target output. Both arrival-time histograms and
polynomial fit of pressure trend are consistently discarded because of their
low predictive value. The results appear anything but trivial: every form
of turbinate hypertrophy shows correlation to different features and the
areas of interest are located both on the right-hand side, which is the one
where pathological deformations are introduced, and on the left-hand side,
suggesting that predictive value indeed resides in the simulated airflow,
rather than in the geometry.
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Figure 4.11: Feature importance plots for overall inferior turbinate hypertro-
phy, computed with RFECV method on Extra-Trees algorithm

Figure 4.12: Feature importance plots for anterior middle turbinate hypertro-
phy, computed with RFECV method on Extra-Trees algorithm
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(a) Healthy model (b) Slight anterior infe-
rior turbinate hyper-
trophy

(c) Severe anterior infe-
rior turbinate hyper-
trophy

Figure 4.13: Velocity magnitude distribution on section b

In detail, a highly relevant feature in the prediction of anterior inferior
turbinate hypertrophy is the pressure value in the inferior meatus of section
c, which is widely anticipated since it is just downstream of the introduced
variation. More surprisingly, the top ranked feature involves the velocity
magnitude in section b of both fossae. A simple explanation is that the
predictive value is not located separately in the two regions, but in their
difference, caused by the pathological shape. This is corroborated by figure
4.13: the flow in the left fossa is similar across all three cases, but its
discrepancy with the right fossa increases as turbinate hypertrophy gets
more severe.

As far as the overall inferior turbinate hypertrophy is concerned, it
is best predicted by the flow rate percentage across the lower part of
the inferior meatus on section b and c: this is not surprising, since the
geometrical deformation affects that exact region, reducing the passageway
width and, thus, the flow rate through it. A more unexpected occurrence
among the top features is the average pressure in the lower d section of
both fossae. Again, this is probably due to the significance of the difference
in the two flow regions. In fact, as displayed in figure 4.14, the difference in
pressure distribution between healthy, partially hypertrophic and severely
hypertrophic model is remarkable. The lower part of the fossa has probably
been chosen over the upper region because it is less heavily impacted by
the middle turbinate hypertrophy.

Finally, the anterior middle turbinate hypertrophy turned out to be the
most difficult pathological condition to identify: only a few features show
decisive predicting value and adding more results in a degradation of the
regression score. This small significant group mostly concerns the middle
and upper part of the right-hand fossa, where the geometrical modification
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(a) Healthy model (b) Slight overall inferior
turbinate hypertro-
phy

(c) Severe overall infe-
rior turbinate hyper-
trophy

Figure 4.14: Pressure distribution on section d

occurs. On the other hand, the pressure value in the middle meatus of the
left-hand fossa at section d also shows relevance. The additional difficulty
in the prediction of this pathological condition is probably due to the
fact that it always presents itself paired with either one of the other two
hypertrophy variants. This makes it harder for the model to identify how
middle turbinate hypertrophy alone affects the airflow.

4.4 Predictive model: training and results

The final prediction model is based on Gaussian Processes. This
choice is only possible because of the reduced size of the input sample:
as anticipated, the covariance matrix inverted in the prediction process
grows with the number of instances in the dataset and a larger sample
would entail excessive computational costs. Among the advantages of this
algorithm is the higher interpretability of the results. Moreover, a mean
value and a variance are predicted, thus allowing the evaluation of both the
accuracy and the confidence level of the prediction. The regression tasks
are carried out separately for each of the three target outputs and several
runs are made, in order to carefully tune the algorithm parameters and to
investigate how the prediction quality changes by varying the number of
features used from 1 to 5. The best features for each regression setting are
handpicked, according to the feature selection outcome reported previously.
The results are shown in figures 4.15, 4.16 and 4.17, reporting R2-scores
and the related mean square errors (MSE) of the predictions.
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Figure 4.15: R2-score and MSE trend for anterior inferior turbinate hyper-
trophy prediction with number of features varying from 1 to
5
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Figure 4.16: R2-score and MSE trend for overall inferior turbinate hypertrophy
prediction with number of features varying from 1 to 5
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Figure 4.17: R2-score and MSE trend for anterior middle turbinate hyper-
trophy prediction with number of features varying from 1 to
5
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The outcome looks promising: the R2-score is close to unity, confirming
the strong correlation between the chosen features and the target values.
In particular, the hypertrophic conditions of the inferior turbinate show
the best results, with a very accurate prediction of the target and very
low variance, especially when using all the top five features. On the
other hand, middle turbinate hypertrophy proves slightly more difficult
to predict: the R2-score is still very high, but its associated MSE is not
negligible as in the other cases. As anticipated, this is probably due to the
fact that anterior middle turbinate hypertrophy never occurs as the only
hypertrophic condition affecting the nasal geometries, making it tougher
for the model to find a clear correlation between flow features and this
pathological variation alone. The accomplishment of such high scores, in
spite of the fact that pathological modifications are often combined, is quite
impressive and constitutes further proof of the robustness and accuracy of
the procedures adopted.



Conclusions

This conclusive chapter is shared by this thesis and the one by Luca
Butera [3]. This choice highlights the interdisciplinary approach of this
work, which involved a collaboration between the CFD team of DAER,
the ML team of DEIB and the ENT clinical experts of San Paolo Hospital.

Firstly, the main steps of the work are briefly reviewed: according to
the exploratory character of the study, the real nasal geometries are set
aside, in favour of a simplified CAD model, with several advantages. From
the CFD perspective, a simpler domain facilitates numerical convergence.
On the ML side, the variability in the input dataset is reduced because
the geometries are obtained from local modifications of a single standard
model. This aspect helps the prediction of the pathological condition, since
variations in the airflow are imputable to either turbinate hypertrophy
or five other harmless geometrical variants. After the input models are
generated, a RANS simulations is run on each of them. The choice of
RANS is driven by the necessity to keep computational costs to a minimum,
to avoid high commitment in a preliminary study such as this. The CFD
output undergoes a significant size reduction, mostly through the extraction
of hand-tailored features. These are chosen for their high interpretability,
since black box approaches are widely distrusted in the medical field. A
feature selection task is carried out on the extracted flow characteristics. It
represents a key stage: on one hand, it solves the noise issue typical of small
samples and, on the other, it allows to gather insights about the significance
of the flow features, isolating and ranking the ones with predictive value.
Finally, a regression model is trained with the best features, to verify their
predictivity and to finally assess whether turbinate hypertrophy in a nasal
cavity model can be predicted by looking at the CFD simulated airflow.

Despite the preliminary nature of this study, the outcome is encouraging
and the procedures established look effective and robust. The achieved
prediction scores are remarkably high, but this does not mean that the
problem is trivial. In fact, the results show how even independent patho-
logical variations, when combined, are harder to predict. Moreover, the
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top ranked features often concern areas not directly influenced by the geo-
metrical modifications, again confirming that the predictive value resides
in the airflow, rather than in the geometry itself.

Future perspectives
The exploratory nature of this work puts great emphasis on future

development. The results achieved show considerable potential, but the
final objective is still quite far: the implementation of a tool that accurately
predicts how well a patient’s nasal cavity performs and identifies any
pathological state affecting it. This will result in more precise and reliable
diagnoses and will help validate surgical procedures.

A way to improve the performance of the ML model consists in generat-
ing a larger dataset. This would allow to experiment with fully data-driven
techniques, exploiting in a deeper way the informative potential hidden
in the data. A possible alternative is adopting more advanced Supervised
Learning approaches, such as Deep Learning, which need a huge amount
of input data, but are able to extrapolate higher level knowledge. A bigger
sample size would also allow switching to entirely different paradigms, such
as Unsupervised Learning: a large dataset could be clustered to allow
a posteriori identification of the important flow features. Moreover, the
sample increment will become crucial when dealing with more complex
nasal models. In fact, the next suggestions aim at increasing the accuracy
of the input data. On the one side, this could be accomplished by devel-
oping a more complicated and realistic nasal model, or even by directly
working with real geometries, depending on the availability of CT scan data.
The result would be a significant step towards real-life application: the
predictive models would face the variability and complexity typical of the
real human upper airways. On the other side, the nasal airflow simulation
could involve a different CFD approach: despite the clear advantages of a
RANS approach, the results it produces are inherently wrong. Therefore,
switching to LES or DNS would entail higher computational costs, but the
reliability of the simulation would increase accordingly.

All things considered, it is proven possible to successfully detect anoma-
lies in a nose-like structure using simulated airflow data. This represents
a solid first step towards the creation of a diagnostic tool based on Ma-
chine Learning techniques and CFD simulations, and, ultimately, towards
understanding what "good" nasal flow is.



Appendix A

LES and RANS comparison

The necessity to reduce computational costs to a minimum, on one
hand, and the limited accuracy required by the use of a simplified geometry
with no clinical value, on the other, leads to the selection of RANS as the
most suitable CFD technique. Although widely justified by the preliminary
nature of this study, the employment of RANS simulations is one of the
main sources of inaccuracy in the dataset generation process. In order to
quantify this error, a more accurate Large Eddy Simulation is run on the
standard CAD model depicted in chapter 3.

The simulation is run on OpenFOAM and the main features of its
setup are rapidly reviewed hereby, starting from the computational grid
specifications: the mesh is refined around the model surface, starting
from a block mesh consisting of cubes of edge length 0.5mm. The final
grid includes 8.6 million elements. The difference with the coarser mesh
generated for the RANS can be appreciated in figure A.1.

The model for sub-grid scale stress tensor is the classical Smagorinsky
model with Van Driest damping and the solver chosen for the task is

(a) LES (b) RANS

Figure A.1: Mesh detail comparison: middle meatus
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Figure A.2: Residual trend in the initial transient of LES simulation

pimpleFoam. Given the mesh size, the time step is set to 1 · 10−5s: this
way, the maximum Courant number across the mesh throughout the run
is around Co = 0.40. On the other hand, the time limit depends on the
typical time scales of the flow. Based on previous research, such as [8],
the total simulation time is 0.75s. In order to obtain a time-independent
solution to employ in the comparison with RANS, the LES solution is
averaged between 0.15s and 0.75s, excluding the initial transient.

As for the boundary conditions, they are equivalent to the reference
RANS settings, so that the results are comparable: wall conditions on the
nasal walls and null gradient at the inlet/outlet for the velocity. The total
pressure-over-density difference between spherical cap and laryngopharynx
is 10m2/s2 both for the LES and the reference RANS. This value is different
from the 20m2/s2 used in RANS throughout the dataset generation process:
the reason is that this investigation was conducted in a preliminary phase,
where the optimal simulation settings were yet to be determined.

Prior to the actual run, the computational domain is equally decom-
posed in 72 subdomains for parallel run. Despite this, the simulation
took approximately 80 hours. The residual trend in the transient phase
is reported in figure A.2. As anticipated, the transient terminates after
15000 iterations, corresponding to 0.15s, after which the residuals stabilise
around 10−7−10−8 and the solution is steady, as confirmed by intermediate
results.

A preliminary step is necessary before presenting the comparison of
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Figure A.3: Difference of pressure fields between RANS and LES solutions in
a sagittal section

the results and consists in the mapping of the RANS solution to the finer
computational grid used for the LES: this allows to compute difference of
velocity and pressure fields, which is the most representative and synthetic
way to get a full picture of the magnitude of discrepancy between the two.

The resulting differential fields displayed in figures A.3, A.4 and A.5
are quite far from the ideal null fields which would be obtained if the two
simulations produced equal outcomes. The difference in the pressure field
actually remains within 10% throughout the domain, with the exception
of very local peaks near the wall due to boundary effects, but the velocity
magnitude difference is much more significant, especially in the high velocity
regions at the inlet of the inferior meatus and in the lower part of the
nasal fossae. The coronal section in figure A.5 shows a consistent velocity
difference along the vertical channel close to the nasal septum. It is in the
order of 0.35m/s, which roughly corresponds to a 15− 20% discrepancy.
Additionally, difference of velocity peaks are present at the inferior meatus
entrance and are in the order of 100% of the values in the original velocity
fields.

Given that LES intrinsically produces a more truthful reconstruction of
the flow field, by largely reducing the impact of turbulence modelling, the
comparison remarks how the RANS approach limits the accuracy of the
results. The main conclusion drawn by this investigations is the potential
improvement margin, which can be achieved in the future, by switching to
more advanced CFD techniques.
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Figure A.4: Difference of velocity magnitude fields between RANS and LES
solutions in a sagittal section

Figure A.5: Difference of velocity magnitude fields between RANS and LES
solutions in a coronal section



Appendix B

Codes and listings

This section includes the main codes implemented in the automatisation
of the post-processing procedures, for a more thorough overview on the
procedures adopted.

Listing B.1: Automatic data download

1 #!/usr/bin/expect
2

3 # GRAB PASSWORD
4 stty -echo
5 send_user -- "Password for username: "
6 expect_user -re "(.*)\n"
7 send_user "\n"
8 stty echo
9 set pass $expect_out (1,string)

10

11 # DOWNLOAD
12 spawn scp -r username@login.galileo.cineca.it:/

path_to_file /path_to_folder
13 expect "password:"
14 send "$pass\n"
15 interact

Listing B.1 reports a short Expect script that makes the download (and
upload) of data on the CINECA servers more efficient. Expect is a typical
tool to automatise operations on SSH operations. The second part of the
code can be copied and pasted to download and upload several objects
at a time. The uploading version is simply obtained by exchanging the
destination and the source directories.
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Listing B.2: Post-processing operations including the extraction of coronal
sections and streamlines

1 from paraview.simple import *
2

3 for i in range (1 ,201):
4

5 case = str(i)
6 openPath = ’/path_to_folder_case_(i)’
7 savePath = ’/path_to_folder_case_(i)’
8

9 # create a new ’OpenFOAMReader ’
10 a1foam = OpenFOAMReader(FileName=openPath)
11 a1foam.MeshRegions = [’internalMesh ’]
12 a1foam.CellArrays = [’U’, ’p’]
13

14 # get animation scene
15 animationScene1 = GetAnimationScene ()
16 animationScene1.GoToLast ()
17

18 # Slice a
19 slice1 = Slice(Input=a1foam)
20 slice1.SliceType = ’Plane ’
21 slice1.SliceOffsetValues = [0.0]
22 slice1.SliceType.Origin = [0.0, 0.0, 0.004]
23 slice1.SliceType.Normal = [0.0, 1.0, 1.0]
24

25 SaveData(savePath + ’/a.vtm’, proxy=slice1 ,
Writealltimestepsasfileseries =1,DataMode=’
Binary ’)

26

27 # create StreamTracerWithCustomSource
28 disk1 = Disk()
29 disk1.InnerRadius = 0.004
30 disk1.OuterRadius = 0.011
31 disk1.RadialResolution = 3
32 disk1.CircumferentialResolution = 25
33

34 transform1 = Transform(Input=disk1)
35 transform1.Transform = ’Transform ’
36 transform1.Transform.Translate = [0.0, 0.0005 ,

-0.0065]
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37 transform1.Transform.Rotate = [-45.0, 0.0,
0.0]

38 transform1.Transform.Scale = [0.7, 0.9, 0.0]
39

40 streamTracerWithCustomSource1 =
StreamTracerWithCustomSource(Input=a1foam ,
SeedSource=transform1)

41 streamTracerWithCustomSource1.Vectors = [’
POINTS ’, ’U’]

42 streamTracerWithCustomSource1.
IntegrationDirection = ’FORWARD ’

43 streamTracerWithCustomSource1.IntegratorType =
’Runge -Kutta 4’

44 streamTracerWithCustomSource1.
InitialStepLength = 1.5

45 streamTracerWithCustomSource1.MaximumSteps =
8000

46 streamTracerWithCustomSource1.
MaximumStreamlineLength = 0.3

47 streamTracerWithCustomSource1.ComputeVorticity
= 0

48

49 SaveData(savePath + ’/st.csv’, proxy=
streamTracerWithCustomSource1)

Listing B.2 on page 59 shows the Python code used to automatically run
the main post-processing operations on Paraview. For synthesis purposes,
only the generation of section a is reported: sections b through f share the
same commands.

Listing B.3: Post-processing operations including the extraction of pressure
integral values in slices along y-axis

1 from paraview.simple import *
2

3 import csv
4

5 for i in range (1 ,201):
6

7 case = str(i)
8 openPath = ’/path_to_folder_case_(i)’
9 savePath = ’/path_to_folder_case_(i)’
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10

11 print(’Working on case ’ + case)
12

13 # create a new ’OpenFOAMReader ’
14 a1foam = OpenFOAMReader(FileName=openPath)
15 a1foam.MeshRegions = [’internalMesh ’]
16 a1foam.CellArrays = [’p’]
17

18 # get animation scene
19 animationScene1 = GetAnimationScene ()
20 animationScene1.GoToLast ()
21 renderView1 = GetActiveViewOrCreate(’

RenderView ’)
22 a1foamDisplay = Show(a1foam , renderView1)
23

24 # create a new ’Clip’
25 clip1 = Clip(Input=a1foam)
26 clip1.ClipType = ’Plane’
27 clip1.Scalars = [’POINTS ’, ’p’]
28 clip1.Value = -10.530899273231626
29 clip1.ClipType.Origin = [0.0, 0.0, -0.0035]
30 clip1.ClipType.Normal = [0.0, 1.0, 1.0]
31

32 # create a new ’Clip’
33 clip2 = Clip(Input=clip1)
34 clip2.ClipType = ’Plane’
35 clip2.Scalars = [’POINTS ’, ’p’]
36 clip2.Value = -11.296679854393005
37 clip2.ClipType.Origin = [0.0, 0.014, -0.0]
38 clip2.ClipType.Normal = [0.0, 1.0, 0.0]
39

40 # create a new ’Clip’
41 clip3 = Clip(Input=clip2)
42 clip3.ClipType = ’Plane’
43 clip3.Scalars = [’POINTS ’, ’p’]
44 clip3.Value = -13.614728450775146
45 clip3.ClipType.Origin = [0.0, 0.0145 , -0.0]
46 clip3.ClipType.Normal = [0.0, -1.0, 0.0]
47

48 IntegrateVariables1 = IntegrateVariables(Input
=clip3)
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49

50 finalFile = open(savePath + ’/clip’ + case + ’
.csv’,’wb’)

51 fd = csv.writer(finalFile)
52

53 fd.writerow ([’p’, ’Volume ’, ’Cell Type’])
54

55 writer = CreateWriter(savePath + ’/clip’ +
case + ’_tmp.csv’, IntegrateVariables1)

56 writer.FieldAssociation = "Cells"
57

58 list = range (0 ,120)
59

60 for j in list:
61

62 lb = 0.0140 + 0.0005*j
63 ub = 0.0145 + 0.0005*j
64

65 #Properties modified on clip3.ClipType
66 clip3.ClipType.Origin = [0.0, ub , 0.0]
67

68 # Properties modified on clip2.ClipType
69 clip2.ClipType.Origin = [0.0, lb , 0.0]
70

71 # create a new ’Integrate Variables ’
72 integrateVariables1 = IntegrateVariables(

Input=clip3)
73

74 # writes the integrated variable table to
the tmp file

75 writer.UpdatePipeline ()
76

77 # appends the integrated results of this
Clip to the final csv file

78 ftmp = open(savePath + ’/clip’ + case + ’
_tmp.csv’,’rb’)

79 reader = csv.reader(ftmp , delimiter=’,’)
80 row = reader.next()
81 row = reader.next()
82 fd.writerow(row)
83 ftmp.close()
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84

85 # destroy integrateVariables1
86 Delete(integrateVariables1)
87 del integrateVariables1
88

89 # destroy clip3
90 Delete(clip3)
91 del clip3
92

93 # destroy clip2
94 Delete(clip2)
95 del clip2
96

97 # destroy clip1
98 Delete(clip1)
99 del clip1

100

101 # destroy a1foam
102 Delete(a1foam)
103 del a1foam
104

105 # close case csv file
106 finalFile.close()
107 del(writer)

Listing B.3 on page 61 reports the extraction of the pressure and volume
integral values from thin slices distributed along the y-axis. They are later
manipulated to compute averaged pressure values and, eventually the
coefficients of a polynomial fit as described in chapter 4.
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