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“We shall not cease from exploration
and the end of all our exploring

will be to arrive where we started
and know the place fo the first time.”

T. S. Eliot, Little Gidding





Sommario

La presente tesi tratta dell’analisi delle proprietà magnetiche del CaIrO3 me-
diante l’uso di resonant inelastic x-ray scattering (RIXS). Il CaIrO3 appartiene a
una nuova classe di materiali fortemente correlati della serie 5d, chiamati iridati.
Negli iridati, ci aspettiamo che la correlazione elettronica sia debole, mentre l’accop-
piamento spin-orbita (SOC) risulta avere un effetto importante tanto da modificare
la struttura elettronica di questi composti, generando il cosiddetto jeff = 1/2 Mott
insulating state. La struttura cristallina del CaIrO3 è caratterizzata da ottaedri
IrO6 connessi tra loro condividendo sia i vertici che i lati lungo gli assi c e a rispet-
tivamente, a cui la teoria associa interazioni magnetiche di diversa origine e forza.
Inoltre, la forte distorsione tetragonale, la cui scala di energia è comparabile con
quella del SOC, modifica la struttura elettronica dello stato jeff = 1/2 e potrebbe
introdurre anisotropie negli accoppiamenti magnetici. Misurando con il RIXS al lato
di assorbimento L3 dell’iridio, siamo in grado di sondare le proprietà magnetiche
ed elettroniche del CaIrO3 grazie alla buona risoluzione in energia e ad una sezione
d’urto favorevole.

Ho effettuato gli esperimenti RIXS presso la beamline ID20 dell’European
Synchrotron Radiation Facility (ESRF). I dati RIXS mostrano una dipendenza in
temperatura fortemente correlata con la temperatura di Néel del sistema. Inoltre,
la dipendenza dal momento trasferito mostra una forte modulazione dell’intensità
e della forma degli spettri RIXS lungo l’asse c. Riferendomi alla letteratura, ho
concluso che la dinamica delle eccitazioni a bassa energia del CaIrO3 è dominata
da eccitazioni two-spinon, da cui deduco che il magnetismo di questo sistema ha
un carattere prevalentemente monodimensionale. Ho adottato il modello 1D della
catena di spin di tipo Heisenberg con s = 1/2 per estrarre le interazioni magnetiche
rilevanti nel CaIrO3. Per fare ciò, ho simulato e comparato il fattore di struttura
dinamico per le catene magnetiche accoppiate con i dati sperimentali. Ho ottenuto
così alcuni valori per gli accoppiamenti magnetici i quali risultano consistenti con
la letteratura.
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Abstract

In this thesis, I focus on the investigation of CaIrO3 by means of resonant inelastic
x-ray scattering (RIXS). CaIrO3 belongs to a new class of strongly correlated
electron materials of the 5d series, namely iridates. In iridates, the electron
correlation is expected to be weak, whereas spin-orbit coupling (SOC) is strong
and alters the electronic structure of these compounds, leading to the so-called
jeff = 1/2 Mott insulating state. The crystal structure of CaIrO3 features both
corner- and edge-sharing IrO6 octahedra along the c and a axes, respectively, which
are theoretically predicted to support magnetic couplings of different strength
and nature. Furthermore, the strong tetragonal distortion, whose energy scale is
comparable to that of SOC, modifies the electronic structure of the jeff = 1/2 model
and possibly introduces anisotropies in magnetic interactions of CaIrO3. Using
iridium L3 edge RIXS, we are able to probe magnetic and electronic properties of
CaIrO3 in view of the good energy resolution and the favorable cross section.

I performed RIXS measurements at the ID20 beamline of the European Syn-
chrotron Radiation Facility (ESRF). RIXS data show a characteristic temperature
dependence, strongly correlated with the Néel temperature of the system. In addi-
tion, the momentum transfer dependence is very peculiar, with strong intensity and
modulation of the shape of the RIXS spectra along the corner-sharing direction.
By comparison with literature, I conclude that the low-energy dynamics of CaIrO3
is dominated by a two-spinon continuum, thus suggesting that the magnetism in
this system has mostly one-dimensional character. I adopt a simple model based on
the 1D s = 1/2 Heisenberg chain to extract the relevant magnetic interactions in
CaIrO3. In order to do so, I compute, calculate and compare the magnetic dynamic
structure factor of a coupled spin chain to experimental data. I obtain values of
the magnetic couplings which are consistent with that of literature.
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Introduction

The interest over the last decades on the transition metal oxides (TMOs), in
particular on the 3d and 5d series, is raised due to discovering of some important
properties of these strongly correlated electron systems, such as superconductivity
in copper oxides (cuprates)2, colossal magnetoresistance in manganese oxides3 and
multiferroicity4. The scientific community has mainly focused its attention on the
3d TMOs, in which the electron correlation is strong, usually modeled using the
so-called (s = 1/2) Mott insulating state. Instead, 5d oxides possess a strong
spin-orbit coupling (SOC) and a weak electron correlation, due to the large spatial
extension of the 5d orbitals. However, study of Kim et al.5 demonstrated that
the joint action of the electron correlation and the SOC leads to a manifold of
unexpected effects, represented in the phase space in Figure 11. The left-hand
region is related to Mott insulators and simple metals, which includes 3d TMOs
(cuprates). Our interest focuses on the right-hand part characterized by high values
of SOC. The latter is divided into two main groups: topological insulators (or
semi-metals) and spin-orbit coupled Mott insulators. A large number of iridates
belongs to the latter group, where the combined action of the crystal field, the
electron correlation and the SOC yields to the so-called jeff = 1/2 Mott insulating

Figure 1: Generic phase diagram of transition metal oxides generated by the joint action
of electron correlation and SOC. [Figure taken from Witczak-Krempa et al.1].
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2 Introduction

state5. This theory was first invoked by Kim et al.5 to explain the unexpected
insulating character of Sr2IrO4 and then extended to many other iridates. The
magnetism of the jeff = 1/2 Mott insulators is heavily affected by their bond
geometry, leading to possible unconventional superconductivity6 and frustrated
magnetism7. In Chapter 1, I will shortly review the low-energy physics of iridates,
describing the jeff = 1/2 Mott insulating model and some important milestones in
the investigation of magnetic and electronic properties of iridates. I will particularly
focus on CaIrO3: it features a peculiar geometry made by corner- and edge-sharing
IrO6 octahedra8,9. Furthermore, CaIrO3 is characterized by a large tetragonal
distortion that leads to some modification of the classic jeff = 1/2 model10.

In Chapter 2, I will briefly present resonant inelastic x-ray scattering (RIXS),
the technique that will be used in my thesis to probe magnetic dynamics of CaIrO3.
Indeed, RIXS is one of the spectroscopic techniques used to investigate iridates
magnetic and electronic properties. The energy and momentum resolution of up
to date RIXS spectrometers is sufficient to analyze the magnetic and electronic
excitations in iridates. In Chapter 2, I will also describe the optical layout and the
spectrometer of ID20 beamline at the European Synchrotron Radiation Facility
(ESRF) where I carried out my experiments. Finally, I will introduce the finite
momentum transfer resolution of the ID20 spectrometer, analyzed in the recent
work of Moretti Sala et al.11, that will be used in the following.

In the first part of Chapter 3 (see Section 3.2), I will report the temperature
evolution of low-energy excitations CaIrO3 probed by RIXS. A peculiar trend
of the spectral weight in the elastic energy range is found, suggesting a possible
magnetic origin of such feature. The second part of Chapter 3 (see Section 3.3)
presents the momentum dependence of low-energy excitations, showing a spinon-
like dispersion that suggests us a potential one-dimensional spins chain character.
However, an actual coupling among chains may have to be considered to take
into account the tiny dispersion along the edge-sharing direction. The last part of
Chapter 3 (see Section 3.4) is entirely devoted to the description of a model for the
two-spin dynamic structure factor for coupled chains, which should reproduce the
experimental data. From this model, I will extract numerical values of magnetic
couplings along the corner- and edge-sharing direction and I will try to simulate
the magnetic dynamics of CaIrO3 (see Section 3.6).



Chapter 1

Physics of iridate compounds

Iridium oxides (iridates) are a class of correlated materials which show some
interesting features, such as novel quantum phases or excitations induced by spin-
orbit coupling.
In this Chapter, I review the low-energy physics of these fascinating compounds,
focusing on calcium iridate, CaIrO3.

1.1 Transition-metal oxides (TMOs) with strong
spin-orbit coupling

Transition-metal oxides are very interesting compounds because they display a
large class of peculiar phenomena, such as high-temperature superconductivity2,
colossal magneto-resistance3 and multiferroicity4. Great success has been achieved
in the study of 3d transition-metal oxides (TMOs), in which localized 3d states
yield strongly correlated narrow bands with a large on-site Coulomb repulsion U
and a small bandwidth W 2–4. In contrast, 4d and 5d orbitals have a larger spatial
extension and correlation effects are rather moderate due to a wider bandwidth
and a weaker Coulomb repulsion (U ≈ W )12. Such weakening is expected to induce
metallic behavior in 4d and 5d compounds13.

The observation of anomalous insulating character in some of the 5d transition
metal oxides (among which, for example, Sr2IrO4

14, Sr3Ir2O7
15, Na2IrO3

16, CaIrO3
8,

NaOsO3
17 and Ca2Os2O7

18) has been explained in the work of Kim et al.5, who
observed that the large spatial extent of 5d orbitals is accompanied by a strong
spin-orbit coupling (SOC).

The SOC is a relativistic effect due to the interaction between the spin of the
electron and its motion19. In the electron frame, the orbital motion of the charged
nucleus sets up a magnetic field proportional to the angular momentum l of the
electron. The spin-orbit Hamiltonian can be calculated by evaluating the interaction
between such field and the magnetic moment of the electron (proportional to the
spin angular momentum s) and it is equal to

HSOC = e2

8πε0m2c2
Z

r3 l · s, (1.1)

where Z is the atomic number and r is the orbital radius. It can be shown that the

3



4 Chapter 1. Physics of iridate compounds

Figure 1.1: Dependence of the SOC strength as a function of the atomic number Z. The
Z4 trend (dashed black line) for 3d series is compared to Hartree-Fock calculations (colored
lines), where for the outermost electrons (indicated with circles) the SOC interactions
increases more slowly, following a Z2 trend. [Figure taken from Shanavas et al.20].

expectation value 〈1/r3〉 is proportional to 〈Z/n〉3, from which we obtain a scaling
factor of Z4/n319. It must be noted that the Z4 proportionality is good when we
are considering hydrogen-like wave functions19. When we move towards heavier
atoms, considering only outer electrons, the SOC constant increases more slowly,
following a Z2 scaling, passing from a shell nd to the following (n+ 1)d shell20, as
it is shown in Figure 1.1. From calculations, the SOC strength is estimated to be
of the order of ∼ 50 meV for 3d compounds and of the order of ∼ 0.5 eV for 5d
compounds.

1.2 The jeff = 1/2 Mott insulating state in iri-
dates

In iridates, the large crystal field and the SOC modify the bandwidth of 5d
states and, together with electron correlation, induce an insulating state, as shown
below5.

We will use a local model, considering only one iridium ion within its local
environment5. In most iridates, iridium ion is tetravalent, Ir+4, surrounded by
oxygen anions in a octahedral package. Let us first consider the strongest interaction,
that is the cubic crystal field5,21, which splits 5d levels by ∼ 10 Dq (∼ 3 eV) into eg
and t2g orbitals22. Due to this large splitting, low-spin d5 electrons occupy t2g levels,
with a hole resident in the t2g manifold of |xy〉 , |xz〉 , |yz〉 orbitals, which has an
effective angular moment l = 123. It is convenient to express the t2g states as23∣∣∣t02g〉 = |xy〉∣∣∣t+1

2g

〉
= − 1√

2
(i |xz〉+ |yz〉)∣∣∣t−1

2g

〉
= − 1√

2
(i |xz〉 − |yz〉)

(1.2)
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Figure 1.2: Splitting of the t2g orbital into a filled lower-energy jeff = 3/2 and an
half-filled higher-energy jeff = 1/2 orbitals due to the action of the SOC. The electron
and the spin densities are also shown for the special case ∆ = 0. [Figure taken from
Rossi24].

Let us now include the effect of the SOC and the effect of octahedral irregularities,
such as tetragonal crystal field, that modify the Hamiltonian23:

H0 = λl · s + ∆l2z , (1.3)

where λ is the SOC constant and ∆ represents the strength of tetragonal distortion,
i.e. ∆ > 0 for elongation or ∆ < 0 for compression of the octahedron38.

The lowest energy level of H0 is a Kramer’s doublet of isospin states23:∣∣∣∣12 ,−1
2

〉
= sinϑ

∣∣∣t02g, ↑〉− cosϑ
∣∣∣t+1

2g , ↓
〉

∣∣∣∣12 , 1
2

〉
= sinϑ

∣∣∣t02g, ↓〉− cosϑ
∣∣∣t−1

2g , ↑
〉
,

(1.4)

where ϑ parameterizes the relative strength of the tetragonal distortion with respect
to the SOC, tan(2ϑ) = 2

√
2λ/ (λ− 2∆). The energy diagram in ∆ = 0 case is

reported in Figure 1.2. The t2g manifold is split into a full lower-energy jeff = 3/2
quartet and a singly-occupied higher-energy jeff = 1/2 doublet. These two bands
are separated by an energy of 3λ/2. Figure 1.2 also shows the electron and the spin
density wave functions in the case ∆ = 0. Their dependence on the relative strength
of the tetragonal crystal field ∆ and of the SOC λ is reported in Figure 1.3. As can
be seen, when ∆/λ� 1, corresponding to the case of strong octahedral elongation,
the jeff = 1/2 state is dominated by

∣∣∣t02g〉 orbital (or |xy〉), and the jeff = 3/2
states are mainly formed by

∣∣∣t±1
2g

〉
. In the opposite situation, when ∆/λ� −1, i.e.

strong octahedral compression, the ground state possesses mainly
∣∣∣t±1

2g

〉
character,

and
∣∣∣32 ,±1

2

〉
states have a dominant

∣∣∣t02g〉 distribution. We note that
∣∣∣32 ,±3

2

〉
wave

functions are independent on λ and ∆24.
The previous discussion can be extended to interacting ions in a crystal, consid-

ering electronic bands instead of atomic energy levels. This schematic model refers
to Figure 1.4. The partial filling of t2g levels should lead to a metallic behavior of
iridates (Figure 1.4(a)). A s = 1/2 Mott insulating state could, in principle, be gen-
erated assuming a large Coulomb repulsion5 (U � W ), splitting the t2g band into
a filled lower-energy and empty higher-energy sub-bands (Figure 1.4(b)). However,
realistic values of U are comparable to W and cannot lead to insulating state5. In a
strong SOC picture, instead, the t2g band splits into a filled jeff = 3/2-derived and
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Figure 1.3: Dependence of the electronic and the spin wave functions on the relative
strength of the tetragonal crystal filed (∆) and the SOC (λ). [Figure taken from Rossi24].

Figure 1.4: Schematic energy diagram of the outermost t2g band configuration (a)
without SOC and U, (b) without SOC and with an unrealistically large U, (c) with SOC
(ζSO) but without U, and (d) with SOC and U. [Figure taken from Kim et al.5].

an empty jeff = 1/2-derived sub-bands (Figure 1.4(c)). The large SOC effectively
reduces the bandwidth of the half-filled jeff = 1/2 band so that even a moderate
Coulomb repulsion can open a gap, leading to the realization of the jeff = 1/2
Mott insulating state (Figure 1.4(d))5.

The first experimental evidence of the existence of the jeff = 1/2 ground
state has been achieved on Sr2IrO4

5. In Sr2IrO4, angle-resolved photoemission
spectroscopy (ARPES) (Figure 1.5(a)) and optical conductivity measurements
(Figure 1.5(b)) confirm the insulating state and are consistent with the description
of the band structure in terms of the jeff = 1/2 ground state. In particular, the
sharp peak A of Figure 1.5(b) represents the transition from the jeff = 1/2 lower
Hubbard band (LHB) to the jeff = 1/2 upper Hubbard band (UHB); while the
broad peak B derives from the jeff = 3/2 to the jeff = 1/2 UHB transitions (as
can be seen in Figure 1.4(d)). Finally, in Figure 1.5(c), the spectral weights of
features in polarization dependent x-ray absorption spectra (XAS) are consistent
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with an even superposition of the |xy〉 , |xz〉 , |yz〉 orbitals in the ground state.

Figure 1.5: Experimental proof of the existence of the jeff = 1/2 Mott insulating
state in Sr2IrO4. (a) ARPES measurements show that bands disperse below Fermi level,
(b) optical conductivity shows the presence of a finite gap and two peaks, A and B,
corresponding to transitions from the occupied to the unoccupied bands, (c) Oxygen
K-edge polarization dependent XAS spectra (dotted lines), compared with expected
spectra (solid lines) under an assumption of equal-weighted orbitals. [Figures taken from
Kim et al.5].

1.3 CaIrO3

Among all iridate compounds, this work is focused on magnetic dynamics of
CaIrO3, an example of spin-orbit Mott insulator. In this section I will analyze some
important physical aspects of this material.

1.3.1 Crystal and magnetic structure
CaIrO3 single crystals are grown with the flux method of the group of Dr.

Ohgushi in the Insitute for Solid State Physics of the University of Tokyo9. CaIrO3
belongs to the orthorhombic space group Cmcm(63) with lattice constants a =
3.147Å, b = 9.863Å and c = 7.299Å25,26. The crystal structure, a post-perovskite
one, is reported in Figure 1.6(a). It is formed by IrO6 octahedra connected to each
other by sharing edge and corners along a and c axes, respectively, as shown in
Figure 1.6(b,c), and are separated by Ca layers along b direction. The octahedra
are compressed along the local z axis with a bond-length ratio of 0.97 and are
alternatively rotated by 23◦ around the a axis8.

Along the edge-sharing direction, pseudospins are ferromagnetically (FM)
aligned, while along the corner-sharing direction they are antiferromagnetically
(AFM) aligned, thus making CaIrO3 an antiferromagnet with a Néel temperature of
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a
b

c

Ir

O

Ca(a)

x

y
z yz

pz
xz

xz pz
yz

x

y
z xz

px

xz

yz

py

yz

(b) Edge-sharing bond (c) Corner-sharing bond

Figure 1.6: (a) Crystal structure of CaIrO3: the iridium ions (gray spheres) are packaged
in IrO6 octahedra with oxygen ions (red spheres), that are separated by Ca layers along
the b axis. The pseudospins (orange arrows) are ferromagnetically aligned along the a axis
and antiferromagnetically aligned along the c axis. (b) Edge sharing bond-geometry along
the a axis, with ferromagnetic alignment of pseudospins and C2h point group symmetry.
(c) Corner-sharing bond-geometry along the c axis, with antiferromagnetic alignment of
pseudospins and C2v point group symmetry. [Courtesy of M. Rossi].

TN ∼ 110K8,27. In addiction, magnetic moments are slightly canted along the b axis
by an angle of ∼ 2◦9,10, as can be understood from the parasitic ferromagnetism
along this direction9.

1.3.2 Bond-geometry dependent magnetic interactions

Iridates with jeff = 1/2 Mott insulating state show a strong bond-geometry
magnetic interactions. This is due to the fact that the jeff = 1/2 ground state
includes multiple orbitals with different hopping amplitudes to the neighboring ions.

Let us first consider corner-sharing geometry, where there is only one oxygen
in common with two IrO6 octahedra and the Ir-O-Ir angle is close to 180◦. In
this configuration only two t2g orbitals participate to the bond, e.g. |xy〉 and |xz〉
orbitals along a bond in x direction23 (look at Figure 1.7 (a)). It is predicted
that, in the limit of strong SOC, the dominant magnetic contribution to exchange
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Figure 1.7: Corner-sharing (a) and edge-sharing (b) geometries of an IrO6 octahedron.
Different colors represent different t2g orbitals, while large (small) dots stand for the
transition metal (oxygen) ions. [Figure taken from Jackeli and Khaliullin23].

Hamiltonian is an isotropic Heisenberg term, as23

Hij = JSi · Sj, (1.5)

where the spin moments are replaced by pseudospins with jeff = 1/2 magnetic
moment and J is the exchange constant. This Hamiltonian is well suited to describe
magnetic interactions in iridium oxides with layered-perovskite structures, where
iridium ions are arranged in 2D square lattices and the magnetic moments are AFM
aligned, like Sr2IrO4

14,28,29, Sr3Ir2O7
15,30,31 and Ba2IrO4

32,33.
In edge-sharing geometry, there are two oxygen in common with two IrO6

octahedra and the Ir-O-Ir angle is close to 90◦. Again, only two orbitals are active
on a given bond, e.g. |xz〉 and |yz〉 orbitals along bonds in the xy plane23 (look
at Figure 1.7 (b)). In this case, however there are two possible paths for a charge
transfer process, i.e. via lower or upper oxygen ion, whose amplitudes disruptively
interfere such that the isotropic Heisenberg term exactly vanishes23. So, an otherwise
negligible anisotropic part appears, depending on the spatial orientation of the bond.
It can be demonstrated that for a given bond lying in the plane perpendicular to
γ = (x, y, z), the corresponding Hamiltonian is23:

H(γ)
ij = −JSγi S

γ
j , (1.6)

where Sγi,j are the γ-components of the s = 1/2 operator for the pseudospins at
lattice site i, j and J is the exchange constant. This Hamiltonian is the quantum
analog of the compass model34, that is the building block of the Kitaev model. The
latter theory deals with s = 1/2 systems in honeycomb lattices, which interactions
between nearest neighbors are Ising-like (XX, YY, ZZ link)35. Kitaev-like behavior
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Figure 1.8: Schematic energy diagram of the outermost t2g orbital in iridates with
d5 configuration (a), with Coulomb repulsion (b), with SOC (c), with both SOC and
Coulomb repulsion (d), with SOC and tetragonal crystal field (e) and with all effects
(SOC, tetragonal crystal field, Coulomb repulsion) taken into account (f). [Figure taken
from Moretti Sala et al.10].

could be observed in A2BO3 compounds (where A and B are alkali and TM ions,
respectively)23, like Li2RuO3

36 and Na2IrO3
7.

CaIrO3 features both corner- and edge-sharing bond geometries, but it remain
to be understood if its magnetic interactions agree or not with previous models.

1.3.3 Beyond the jeff = 1/2 ground state
From Equation 1.3, we can see that there is a competition between SOC and

structural distortions of octahedral geometry, parameterized by constants λ and
∆, respectively. The theory developed by Jackeli and Khaliullin23 is based on the
following assumption

|∆| � λ� (10 Dq) , (1.7)

In CaIrO3, tetragonal distortions are more pronounced compared to other
iridates37. So the robustness of jeff = 1/2 Mott insulating state could be undermined
by the presence of this large distortion.

From RIXS (Resonant Inelastic X-ray Scattering) data taken at the L3 edge of
iridium ion, Moretti Sala et al.10 have evaluated the value of the SOC constant and
of the tetragonal crystal field, λ = 0.52 eV and ∆ = −0.71 eV, respectively. Since
they are comparable in modulus, the basic assumption of the jeff = 1/2 model is
no longer valid, so it would now be useful to analyze the effect of the departure of
the ground state of CaIrO3 from the pure jeff = 1/2 state.

Figure 1.8 shows the effect of adding electronic correlation (U) on the t2g in the
absence of SOC (a), with SOC (c) and also with the tetragonal distortion of the
crystal field (e). In particular Figure 1.8(e) is relevant to the case of CaIrO3 and
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shows that the narrowing of the bands introduced by SOC is preserved. Also in
this case, the introduction of a moderate U may drive the system into an insulating
state. The effect of a large tetragonal crystal field is the splitting of the jeff = 3/2
band, but has no impact on the width of the ground state. However the mixture
of |xy〉 , |yz〉 , |xz〉 orbitals into the CaIrO3 ground state is strongly uneven with
possible consequences on the magnetic interactions.





Chapter 2

Resonant Inelastic X-ray
Scattering

Resonant inelastic x-ray scattering (RIXS) is a photon-in photon-out spec-
troscopy and a powerful technique to investigate strong correlated electron systems.

In this Chapter, I will briefly review the general aspects of this spectroscopic
technique, focusing on its use in 5d correlated electron compounds. More detailed
reviews of RIXS can be found in Schülke39 and Ament et al.40.

2.1 General aspects of RIXS
RIXS is a technique that probes different types of excitations: in particular

magnons and phonons in the meV range, plasmons, crystal-field and charge-transfer
excitations in the eV range. Figure 2.1 sketches the characteristic excitations and
the corresponding energy scales.

In this thesis, I will mostly focus on magnetic and crystal field excitations, which
are the most informative on the nature of the magnetic and electronic correlations in
strongly correlated electron systems. Magnetic excitations result from a perturbation
of electron magnetic moment in the ordered magnetic lattice. Collective magnetic
modes are called magnons and disperse throughout the whole Brillouin zone. The
spectroscopic technique usually used to study magnetic properties of such materials

Figure 2.1: Energy scales of different elementary excitations in strongly correlated
electron materials such as TMOs. [Figure taken from Ament et al.40]

13
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is inelastic neutron scattering (INS)41,42. This technique has an energy resolution of
fractions of meV and its scattering cross-section has a clear connection to the sample
dynamical structure factor, which describes the magnetic dynamics in the system.
Unfortunately, inelastic neutron scattering requires large-volume samples (several
mm3) and it cannot be used when the compound contains a strong neutron-absorbing
material, such as iridium. In these cases, RIXS provides an alternative route6.
Crystal field excitations, instead, are due to transitions between crystal field split
states. In the case of TMOs, the active states are the transition metal nd orbitals
and the corresponding transitions are often called dd excitations. Particularly
interesting is the case of quasi-degenerate orbitals that give rise to orbital ordering.
Collective orbital excitations (orbitons) can emerge and disperse over the whole
Brillouin zone. It has been shown that RIXS can be used to probe orbitons43,44.

Some of the important RIXS features are listed below:

• Element and orbital specific: element sensitivity can be achieved by
tuning incident photons to a specific absorption edge of the material we
want to study. RIXS is also able to distinguish between different chemical
environments, in which ions have different valencies or occupy non-equivalent
crystallographic positions, provided that there is a measurable shift in the
absorption edge, i.e. larger than the experimental resolution. Figure 2.2
summarizes the main absorption edges of elements as a function of their
atomic number.

• Bulk sensitivity: the penetration depth of x-rays depends on both material
and scattering geometry, but is typically of the order of ≈ 50 µm for hard x-ray
photons with energy ≈ 10 keV and ≈ 0.1 µm in the soft x-ray range. Thus
we can, in first approximation, assume that RIXS mostly probe the bulk of
the material. Some degrees of surface sensitivity can be obtained by selecting
a suitable scattering geometry or by studying thin films or superlattices.

• Small sample volumes: photon-matter interaction is much stronger than
that of neutron. In this respect RIXS is more convenient than inelastic
neutron scattering because it does not require very large-volume samples. In
many cases, the lateral dimension of the sample is limited by the x-ray spot
size which typically amounts to ≈ 100 µm2.

• Charge neutrality: RIXS is a photon-in photon-out technique and no
charge is added to or removed from the sample, preserving charge neutrality
of the system. This is very important when we study insulating samples, since
charging issues are avoided.

• Momentum resolution: RIXS involves scattering of x-rays, with sizable
momentum which can be transferred to the system during the scattering
process. The momentum transfer ~|q| is equal to

~|q| ' 4π~
λ

sin(θ), (2.1)

where 2θ is the scattering angle, λi ' λo ' λ is the wavelength of the
incident and scattered x-rays. In hard x-rays, λ is comparable with the lattice
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Figure 2.2: Energy of K, L, M x-ray absorption edges and their dependence on atomic
number Z. X-rays below 1 keV are called soft x-rays, above hard x-rays40.

parameters of solids, ≈ 1 Å, thus allowing to probe excitations over a sizable
fraction of the Brillouin zone of the sample.

• Polarization analysis: the symmetry of excitations can be further inferred
by looking at the polarization dependence of the RIXS cross section. Unfor-
tunately, only few RIXS beamlines allow polarization analysis, at the expense
of throughput and energy resolution, but there are many efforts in trying to
overcome these difficulties.

There are two main limitations of the RIXS technique: it is photon hungry and
its energy resolution is far from the standard of inelastic neutron scattering. The
former limitation can be mitigated by performing experiments at third generation
synchrotrons which are extremely brilliant source of x-rays. Concerning the energy
resolution it should be noted that it has improved dramatically over the last
decades and we expect it to improve further in the years to come. Nowadays RIXS
experiments are routinely performed with energy resolution around 20 meV.

2.2 The RIXS process
During the scattering process, the incoming photon is scattered from a state with

wave vector k and polarization ε into a state with wave vector k′ and polarization
ε′. A typical scattering geometry is presented in Figure 2.3. The two x-rays belong
to the scattering plane. The polarization of the incoming (outgoing) photon can
be decomposed into components parallel επ (επ′) and perpendicular εσ (εσ′) to the
scattering plane. The angle between k and k′ is the scattering angle, 2θ.

The microscopic picture of the RIXS process is shown in Figure 2.4. The
scattering can be seen as a two-step process: starting from the ground state, the
absorption of an x-ray photon promotes a core electron into an empty valence level.
Since the energy of the incoming photon is very high (∼ 10 keV), the system is
left in an highly unstable state with a core hole. The lifetime of the intermediate
state is typically of the order of 1− 2 fs. In RIXS one looks at the radiative decay
of the core hole. From energy and momentum conservation follows that

~ω = ~ω′ + Eexc,

~k = ~k′ + ~q,
(2.2)
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Figure 2.3: Typical scattering geometry in RIXS experiments. The incoming (outgoing)
photons are described using their wave vectors k (k′) (orange arrows) and polarization
ε (ε′). The polarization can be decomposed into components parallel to scattering plane,
επ, and perpendicular to it, εσ. The sample is represented by light blue box.

Figure 2.4: Schematic picture of the RIXS process. The incoming photon excites an
electron from a core level to an empty valence band level. The empty core state is then
filled by a valence electron under emission of a photon. The RIXS process creates a
valence excitation with energy ~ωk − ~ωk′ and momentum ~k′ − ~k. [Figure taken from
Ament et al.40].



2.3. The RIXS cross section and the dynamical structure factor 17

Figure 2.5: Spin-flip transition during a RIXS process in the case of L3-edge of an
iridate. The excited electron is depicted as a red arrow.

where ~ω (~ω′) and ~k (~k′) are energy and momentum of the incoming (outgoing)
photon, respectively, Eexc is the energy transferred to the excitation.

An additional conservation law concern the angular momentum of the whole
system and sets constraints on the photons polarization. If an excitation carries a
finite momentum, the polarization of the scattered photons should be rotated with
respect to the incident one. This is, for example, the case of magnetic excitations.
The ability of RIXS of measuring magnetic excitations was not recognized in the
early stages of this technique, but eventually brought RIXS to its current success45,46.
The fact that spin-flip processes are allowed relies in the fact that the intermediate
state is strongly spin-orbit coupled and therefore the spin magnetic moment does
not need to be conserved (see Figure 2.5).

2.3 The RIXS cross section and the dynamical
structure factor

In this section, I will try to link the RIXS scattering amplitude and the dynamical
structure factor. To do that, I will first describe the formalism behind the RIXS
cross section calculation and the physical meaning of its components. A complete
and detailed derivation of the equation can be found in the reviews of Schülke39
and Ament et al.40.

The RIXS cross section can be expressed using the Kramers-Heisenberg general-
ized formula. In the dipole approximation, it leads to

dσ2

dΩ d~ωk′
≈ πe4

2ε20c4ωkω
3
k′
∑
f

∣∣∣∣∣∑
n

〈f | D† |n〉 〈n| D |g〉
Eg + ~ωk − En + iΓn

∣∣∣∣∣
2

×δ (Ef − Eg + ~(ωk′ − ωk)) ,

(2.3)
where |g〉 = |g,k, ε〉 is the ground state of the entire system, composed by the
sample and the photon field, with energy Eg = Eg + ~ωk. |n〉 is the intermediate
state with energy En and lifetime broadening Γn. |f〉 = |f,k′, ε′〉 is the final state
with energy Ef = Ef +~ωk′ . D (D†) is the dipole operator related to the absorption
(emission) of a photon.



18 Chapter 2. Resonant Inelastic X-ray Scattering

Figure 2.6: The RIXS cross section in different points in the reciprocal space at the
Cu L3 edge (top and middle panels) compared to the spin dynamic structure factor
S(q, ω) (bottom panels). In particular, top panels show calculated RIXS cross sections
for an incoming photon with polarization π and whatever outgoing polarization. Middle
panels selects only cross-polarized channel to stress the magnetic nature of the excitations.
[Figure taken from Jia et al.47.]

From Equation 2.3, we see that the resonance condition

~ωk ' En − Eg (2.4)

amplifies the RIXS cross section. The two-step nature of the RIXS process is
related to the term at the numerator: first the electron is excited from the ground
to the intermediate state, through the absorption of a photon (〈n| D |g〉), and then
the de-excitation to the final state occurs through the emission of another photon
(〈f | D† |n〉). The presence of the intermediate state is of fundamental importance
in RIXS, since it allows transitions of electrons belonging to the same shell (e.g. dd
excitations), even if they are dipole forbidden. Last thing to be noticed, the Dirac
delta function imposes the conservation of energy during the whole process: the
energy lost by the photon is entirely transferred to the excitation in the sample,
Eexc = Ef − Eg = ~(ωk′ − ωk).

Interestingly, in the specific case of Mott insulator with gapped charge excitations,
the RIXS cross section can be approximated by the dynamical structure factor
S(q, ω)47 which can be expressed as the imaginary part χ′′(q, ω) of a generalized
susceptibility48

dσ2

dΩ d~ωk′
∝ S(q, ω) = − 1

π

1
1− e−ω/kBT

χ′′(q, ω) (2.5)

This approach is still very much debated, but in the case of cuprates it was
widely used to compare calculations and experiments47,49. In Figure 2.6 Jia et al.47
compare the calculated RIXS cross section and the spin dynamical structure factor
in the case of Cu L3-edge.
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2.4 Experimental setup for resonant inelastic hard
x-ray scattering

RIXS experiments take place at third generation synchrotron facilities. Syn-
chrotron beamlines transport, focus and monochromatize the x-rays produced by
the source, while a spectrometer is used to analyze photons scattered by the sample.
In the following, I will provide the main figures of ID20, the hard x-ray RIXS
beamline at the European Synchrotron Radiation Facility (ESRF,Grenoble,France),
where I carried out my master thesis experiments.

The working principle of a synchrotron and the main figures of ESRF are
the following: electrons are accelerated in a linear accelerator by an high-voltage
alternating electric field to an energy of 200 MeV. The electrons then pass into
the Booster synchrotron which is a radio-frequency cavity with a ring shape that
accelerates electrons to 6.04 GeV. Once electrons have reached the target energy
they are injected in the storage ring, where the circular trajectory is maintained by
the action of several magnets that accelerate electrons, producing radiation.

The actual source of ID20 is a device called undulator, a periodic array of
dipole magnets with an alternating magnetic field in the direction perpendicular to
electron motion. Undulators emit linearly polarized radiation with a characteristic
wavelength λ given by50

λ(θ) ≈ λu
2γ2

(
1 + K2

2 + γ2θ2
)
, (2.6)

where λu = 26 mm is the periodicity of the undulators, γ = E/(mc2) ≈ 11.8 · 103 is
the relativistic Lorentz factor, K = eBλu/(2πmc) ≈ 0.61 is a parameter related to
undulators deflection and θ is the observation angle. The undulators of ID20 cover
an energy range between 4 and 20 keV.

2.4.1 Beamline ID20 at ESRF and the hard x-ray high-
energy resolution RIXS spectrometer

A beamline is a collection of consecutive optical elements that focus and
monochromatize the x-rays in their path from the source to the sample posi-
tion. The ID20 optical layout is shown in Figure 2.7. Focusing is mainly performed
by three optical elements: cylindrical mirror (CM1), toroidal mirror (FM2) and
Kirkpatrick-Baez system (KB). The cylindrical mirror takes the divergent x-ray
beam produced by the ondulators and collimate it in the vertical direction. The
toroidal mirror focuses the beam to ≈ 50 µm×300 µm (vertical × horizontal) at an
intermediate position along the beamline and finally the KB system re-focuses the
beam on the sample to a spot of ≈ 10 µm×20 µm size. In order to monochromatize
the beam, in the case of hard x-rays, monochromators exploit Bragg’s reflection
to narrow the bandwidth of the beam51,52. When one wants to operate in the
low-energy resolution high-flux mode, x-rays are monochromatized only by means
of nitrogen-cooled Si(111) pre-monochromator (pre-mono), whose intrinsic energy
resolution is ∆E/E = 1.1 · 10−4. If instead, one is interested in high-energy reso-
lution, a system of post-monochromators (post-mono) can be added. For specific
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Figure 2.7: Optical layout of ID20 beamline at ESRF.

x-ray energies, backscattering channel-cut post-monochromators are available. In
the case of Ir L3-edge, ID20 is equipped with a Si(844) backscattering channel-cut
post-monochromator with an intrinsic energy resolution ∆E/E = 1.6 · 10−6. All
the optical elements of the beamline are kept in ultra-high vacuum (≈ 10−8 mbar)
to maximize the photon flux on the sample. At Ir L3-edge the photon flux amounts
to ≈ 1012 photons/second in a bandwidth of ≈ 15 meV.

The focused monochromatic beam, whose polarization lies in the horizontal
plane, is scattered by the sample and is collected by the spectrometer shown in
Figure 2.8. The RIXS spectrometer is equipped with five Si(844) spherical diced
crystal analyzers, that Bragg reflect the beam close to backscattering condition
to select the scattered photon energy53. The choice of the analyzer depends on
working energy, energy resolution and flux needed. Available Si(844) analyzers
at ID20 have a diameter that ranges from 20 to 80 mm. The sample to analyzer
distance can be varied from 1 to 2 m. During my experiments, I have used only one
of the five analyzers, with 60 mm diameter, and sample to analyzer distance fixed
to 1 m, collecting a solid angle of ≈ 2.8 · 10−3 sr. The scattered beam is collected
by a pixelate detector that is needed when we require both energy and momentum
resolution in an experiment54. The sample (or the source of scattered radiation), the
analyzer and the detector, lie on the same circumference, exploiting the so-called
Rowland geometry, reported in Figure 2.9. Within this configuration, x-rays are
reflected from the whole analyzer surface with the same Bragg angle and are all
focused on the detector. So this geometry allows us to combine energy analysis and
focusing in a single optical element. Finally, the analyzers and the detector are
installed in a helium-filled chamber to reduce losses due to air scattering.

The spectrometer energy resolution is determined by different factors. The finite
pixel size of the detector p = 55 µm gives a contribution to energy resolution of54

∆Ep
E

= p

2R tan θB
≈ 1.03 · 10−6 ⇒ ∆Ep ≈ 24 meV, (2.7)

The contribution due to the finite source size is
∆Ea
E

= s

R sin(θB) tan(θB) ≈ 3.8 · 10−7 ⇒ ∆Es ≈ 8 meV, (2.8)

The incident photon bandwidth determined by the Si(844) backscattering
channel-cut post-monochromator gives an energy resolution contribution of 15
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Figure 2.8: Sketch of ID20 RIXS spectrometer. [Courtesy of C. Henriquet].

Figure 2.9: Rowland circle geometry used in ID20 RIXS spectrometer. The sample (or
the radiation source), the analyzer and the detector lie on the same circumference of
diameter R. The single cubes of diced crystal analyzer are colored in orange. In the figure
are reported only three cubes for simplicity. Different energy scattered photons reach the
detector at different positions due to dispersion properties of the analyzer. [Figure taken
by Rossi24]
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Figure 2.10: Possible scattering geometries of the RIXS spectrometer with R = 2 m
for γ0 = 0 and δ0 = 0 in both (a) and (b) panels. In (a) the RIXS spectrometer is in
the position to scatter in the horizontal plane, while in (b) the spectrometer is rotated
by 90◦ around the source-middle analyzer direction to scatter in the vertical plane. All
combinations of these two geometries are possible. [Figure taken from Moretti Sala
et al.11].

meV. Finally, the analyzer contribution is exactly the same of the previous one,
since analyzers are Si(844) crystals. The overall energy resolution is ≈ 35 meV (at
the Ir L3-edge).

2.4.2 Momentum resolution
As said before, the dependence of RIXS spectra on momentum transfer is not

negligible. The positions of the spectrometer fixes the scattered wave vector ko
and thus the scattering plane. The sample position defines the projection of the
momentum transfer into the sample reciprocal space. For these reasons, in order to
reach an arbitrary momentum transfer, the spectrometer has to rotate in both the
horizontal and the vertical direction, as depicted in Figure 2.10, and the sample
stage necessitate all the rotational degrees of freedom.

With the reference system defined in Figure 2.10, the momentum transfer in
the laboratory frame is given by11

q2θ = 2π
(

x̂
λi
− T

2θx̂
λo

)
, (2.9)

where T 2θ = Rẑ(γ)Rŷ(δ) is the transformation matrix describing the rotation of
the 2θ-scattering arm by an angle γ around the z axis and by an angle δ around
the y axis. Using the UB matrix formalism (see Appendix A), q2θ can be projected
in the sample reciprocal space by the following matrix multiplication11

qhkl = (T ωχϕUB) q2θ, (2.10)

where T ωχϕ = Rẑ(ω)Rx̂(χ)Rŷ(ϕ) describes the sample rotations, B defines a
Cartesian frame in the sample reciprocal space and it depends on lattice parameters,
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Figure 2.11: Momentum resolution distributions in the case of Ir L3-edge of CaIrO3
(a = 3.147Å, b = 9.863Å and c = 7.299Å). Sample and spectrometer are aligned to probe
a momentum transfer of Q = (0, 3, 9) r.l.u. Panels (a),(c) and (e) show the momentum
transfer spread along the reciprocal lattice directions over the analyzer surface with a
diameter of A = 60 mm and R = 1 m. Panels (b),(d) and (f) show the widths of the
momentum resolution functions.

and U connects laboratory and sample frames and it is determined during sample
alignment.

The finite opening of the crystal analyzers introduces uncertainties on scattering
arm angles, ∆γ and ∆δ, and so a finite momentum resolution. An estimate of the
momentum resolution is given below in the case of quasi-elastic scattering11

∆qhkl ' (T ωχϕUB)−1 T 2θ∆q2θ, (2.11)

where ∆q2θ = 2π (0,−∆γ cos(δi),∆δ) /λ. As an example, let us take the case
of CaIrO3 single crystal at the momentum transfer qhkl = (0, 3, 9) r.l.u.. Fig-
ures 2.11(a), (b) and (c) show the momentum transfer dispersion over the analyzer
surface. The corresponding momentum transfer distributions are reported in Fig-
ures 2.11(d), (e) and (f) for the three directions in reciprocal space and show that
the momentum resolution is small, but not negligible. Indeed, in this case, the
variation along H amounts to ±0.06 r.l.u., along K to ±0.26 r.l.u. and along L to
±0.14 r.l.u. I will show in the following that the momentum resolution should be
taken into account for a correct interpretation of the experimental data.





Chapter 3

Magnetic dynamics of CaIrO3
probed with RIXS

In this Chapter, I will focus on the magnetic dynamics of CaIrO3 making use of
RIXS spectra taken at Ir L3-edge and collected at ID20 at ESRF. In the first part,
I will look at the temperature dependence of the low-energy features of the RIXS
spectra of CaIrO3. After that, I will investigate their momentum dependence and I
will propose a model to interpret the magnetic excitations in this material.

3.1 Principal features of RIXS spectra of CaIrO3

A typical Ir L3-edge RIXS spectrum of CaIrO3 is shown in Figure 3.1 for energy
losses up to 1.8 eV. Excitations above 0.35 eV have already been discussed by
Moretti Sala et al.10. Features δ1 and δ2 are centered at ≈ 0.65 eV and ≈ 1.22
eV, respectively, and have been assigned to transitions between crystal field split
states10,55,56. In particular, using the energy diagram and notation of Figure 1.8,
the feature δ1 can be ascribed to the transition from |0,±〉 ground state to |1,±〉
excited state, while the feature δ2 to the transition from |0,±〉 to |2,±〉10. The
nature of feature ξ, centered at ≈ 0.42 eV, is still debated. Gretarsson et al.55
suggest that it comes from an excitation of an electron-hole pair across the charge
gap; however the energy of the excitations does not match the size of the charge gap
(≈ 0.34 eV)8, thus casting out this interpretation. Another theory from Plotnikova
et al.57 grants the origin of the feature ξ to a combined effect of superexchange and
Jahn-Teller interactions.

Here, I will only focus on the excitations below 0.35 eV. From Figure 3.1, we
notice that their intensity profile is highly asymmetric and shows a continuous dis-
tribution. In the next sections, I will investigate both temperature and momentum
dependence of such low-energy excitations.

25
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Figure 3.1: A generic RIXS spectrum of CaIrO3 at the Ir L3-edge measured at momen-
tum transfer Q = (0, 3, 8) r.l.u. and at temperature T = 40 K (black line and circles).
The red solid line reports the best-fit. The single function used in the fit (see Appendix B)
are also reported.

3.2 Temperature evolution of magnetic excita-
tions in CaIrO3

To understand the nature of low-energy excitations below 0.35 eV, I analyze the
evolution in temperature of their intensity. A collection of RIXS spectra of CaIrO3
at momentum transfer Q = (1, 2, 9) r.l.u. is plotted in Figure 3.2 as a function
of temperature, in a range from 20 K to 250 K. From the stack plot in panel (a),
I notice that the RIXS intensity clearly shows a strong temperature dependence.
In order to highlight this fact and to introduce the following data analysis, RIXS
spectra are reported in a map in Figure 3.2(b). From the RIXS map, we extract
two important observations:

i. the quasi-elastic (ε) line is peaked at the transition temperature, TN ≈ 110 K;

ii. the intensity of the feature centered at 45 meV energy loss, β1, is suppressed
above TN .

As for what concern the ε peak, a detailed analysis is reported in Figure 3.2(c),
which shows the normalized integrated intensity of the RIXS map in the energy
region between -0.02 and 0.02 eV (black solid line). For comparison, I report also
the AC dynamic magnetic susceptibility, χ′′m (red solid line), measured at 10 kHz
by Gunasekera et al.58. Below the Néel temperature, the temperature dependence
of ε resembles that of χ′′m. Above the transition temperature, instead, ε and χ′′m
behaves differently: the dynamic magnetic susceptibility rapidly vanishes, while the
ε peak has a much more pronounced tail. This comparison suggests that ε might
have magnetic origin.
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Figure 3.2: (a) Stack plot of the temperature dependence of RIXS spectra measured at
momentum transfer Q = (1, 2, 9) r.l.u. (b) Map of the temperature evolution of RIXS
spectra measured at momentum transfer Q = (1, 2, 9) r.l.u. The energy loss axis is limited
in the region (−0.1, 0.2) eV to highlight low-energy excitations. Top and bottom white
dotted lines represent upper and lower limits of integration, whereas middle dotted line
points out the 0 eV values. (c) Normalized integrated intensity of panel (a) from -0.02 eV
to 0.02 eV (black line). It is also reported the imaginary part of AC dynamic susceptibility
χ′′(Q, ω) measured at a frequency of 10 kHz (red line) by Gunasekera et al.58. Both
curves are normalized to unit area.
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Figure 3.3: RIXS spectra reported are recorded at T � TN (dark blue line) and T � TN
(dark red line). β1 and β2 curves are also reported for the two different temperatures
(blue and light blue curves at T = 20 K, red and orange lines at T = 250 K, respectively).
It is evident that β2 has a less pronounced dependence on temperature with respect to β1.
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Figure 3.4: (a) Map of evolution in temperature of intensity of the low-energy excitations
at momentum transfer Q = (1, 2, 9) r.l.u. Color scale is tuned to highlight the presence
of β1. Bottom and middle white dashed lines are the limits of integration. Bottom white
line indicates 0 eV. (b) Normalized integrated intensity from 0.02 eV to 0.06 eV of panel
(a). (c) Same as panel (a), but at momentum transfer Q = (0.5, 2, 9) r.l.u. (d) Normalized
integrated intensity from 0.02 eV to 0.06 eV of panel (c). Curves of panels (b) and (d)
are normalized to unit area.

The feature β1 broadens with temperature and becomes unresolved above T & 95
K because it overlaps in energy with features ε and β2. From Figure 3.4(a) and
(b), I note that features β1 and β2 overlap in energy. Instead, I observe that β2
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intensity (light blue and orange curves) is approximately constant in temperature.
In Figure 3.4 I report the RIXS map and the integrated intensity of β1 at both
momentum transfer Q = (1, 2, 9) r.l.u. and Q = (0.5, 2, 9) r.l.u. The latter is very
informative because ε is highly suppressed (see Figure 3.4(c)) thus making β1 more
visible. From Figure 3.4(d), it can be clearly seen that the temperature dependence
of β1 shows a broad peak slightly below the Néel temperature. Accordingly, also β1
might have magnetic origin.

Before concluding on the magnetic nature of the low-energy excitations in
CaIrO3, in the next section I will investigate their momentum dependence along
the principal crystallographic directions.

3.3 Momentum dependence of magnetic excita-
tions of CaIrO3

All the spectra treated in this section are collected at a temperature of 40
K, far below the Néel temperature of CaIrO3. Referring to Figure 3.5, it can be
observed that low-energy excitations present a characteristic dispersion relation
along the three crystallographic directions in the sample reciprocal space. Along the
edge-sharing H direction (Figure 3.5(a)), RIXS spectra display a modest momentum
dependence. The maximum of the low-energy distribution is peaked at ≈ 25 meV at
momentum transfer Q = (0.5, 2, 9) r.l.u. and disperses by about 17.4±0.7 meV with
a periodicity of 1 r.l.u. Along the K direction (Figure 3.5(c)), we do not observe any
momentum dispersion. Finally along the corner-sharing L direction (Figure 3.5(d)),
RIXS spectra show a peculiar momentum dependence: the low-energy boundary
of the broad intensity distribution (the β1 feature discussed above) is peaked at
≈ 44.4 meV at momentum transfer Q = (0, 3, 9) r.l.u. It has a dispersion of about
121.2± 3.0 meV with a periodicity of 1 r.l.u.. Instead the high-energy tail of the
distribution has a momentum dependence with double periodicity in reciprocal
space. Quantitative values for the dispersion of the β1 feature were extracted by
fitting the data using the method described in Appendix B. A summary of the
fitting results is reported in panels (b), (d) and (f) of Figure 3.5.

I note that the momentum dependence of CaIrO3 along the corner-sharing
direction (Figure 3.5(e)) is very similar to the inelastic neutron scattering spectrum
of CuSO4·5D2O, shown in Figure 3.6. Mourigal et al.59 assigned the origin of
the excitation to the two- and four-spinon continuum. Based on the temperature
dependence of RIXS spectra discussed above and in view of this analysis, I therefore
conclude that the origin of the low-energy excitations in CaIrO3 is magnetic, possibly
has a pronounced two-spinon like character.

Spinons are quasi-particles carrying a spin quantum number of s = 1/2 each
and are created from the fractionalization of magnons (s = 1)61. One can think
about spinons as one-dimensional domain walls confined within the chain, freely
to propagate along it61,62. If the spin chain is not perfectly Ising-like, the disper-
sion relation will exhibit some modulations. The two-spinon excitation forms a
continuous distribution, arising from the sum of the dispersion relations of two
single spinons, with characteristic momentum dependence and dynamic structure
factor59,60,63. Two-spinon excitations have been detected in many inelastic neu-
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Figure 3.5: Momentum dependence of the low-energy excitations of CaIrO3. Panels (a),
(c) and (e) report RIXS raw data measured along H, K and L, respectively, corresponding
to high symmetric directions of the sample reciprocal space. Panels (b), (d) and (f)
represent the energy positions of the dispersion of β1 (white squares). A simple sine
function simulate the dispersion (blue solid line). The blue areas around the withe squares
report the FWHM of β1. All these spectra have been recorded at T = 40 K.
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Figure 3.6: Inelastic neutron scattering spectrum of CuSO4·D2O (right panel) and two-
and four-spinon dynamic structure factor for the s = 1/2 Heisenberg antiferromagnetic
chain (left panel). [Figure from Mourigal et al.59].

tron scattering experiments on numerous compounds (among which, for example,
KCuF3

64, LiCuVO4
65 and the aforementioned CuSO4·5D2O59).

In the two-spinon model, excitations live on a magnetic chain and do not
interact with the magnetic moments on neighboring chains. Therefore, a simple
two-spinon model cannot explain the experimental observation of a small, but
finite momentum dependence of low-energy excitations along the H direction (see
Figure 3.5(a) and (b)), which is indicative of some coupling between the magnetic
chains. Moreover, resonant x-ray diffraction measurements by Ohgushi et al.9
show that magnetic moments belonging to different chains couple ferromagnetically.
In addiction, both a theoretical model by Jackeli and Khaliullin23 and ab initio
quantum chemical calculations by Bogdanov et al.66 predict a weak ferromagnetic
interaction along the edge-sharing direction, i.e. between the magnetic chains, in
agreement with experiments. However, an experimental estimate of the magnetic
couplings is missing and, despite the fact that CaIrO3 is a long-range ordered
magnet, it remains to be verified that the magnetism of CaIrO3 is mostly one
dimensional, i.e. largely dominated by a strong AFM interaction along the chain
direction.

In the following, I will try to model the RIXS cross section in terms of the
two-spinon dynamic structure factor in order to extract quantitative information
about the magnetic couplings of CaIrO3.

3.4 2D-extended two-spinon dynamic structure
factor

The dynamic structure factor of a magnetic chain depends on the detail of
the Hamiltonian describing the magnetic interactions. In the following, I base my
analysis on the work of Müller et al.67, and adopt the two-spinon dynamic structure
factor for the Heisenberg chain, in which magnetic interactions are isotropic. Then,
I will include the effect of a finite ferromagnetic coupling between the chains in the
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Figure 3.7: (a) Two-spinon density of states as calculated by Müller et al.67 and reported
in Equation 3.2. White dashed lines correspond to the lower and upper boundaries of the
two-spinon continuum, ωL and ωU , as given by Equation 3.3. (b) Two-spinon dynamic
structure factor Suc(q, ω) calculated from Equation 3.4

Random Phase Approximation68.
The 1D s = 1/2 Heisenberg chain is described by the following Hamiltonian

H = Jc
N∑
l=1

Sl · Sl+1, (3.1)

where Jc is the exchange coupling along the chain direction and S is the spin
operator. A special class of eigenvalues of such Hamiltonian is characterized by67

ωm(qz) = πJc sin
(
qz
2

)
cos
(
qz
2 −

qm
2

)
, (3.2)

where 0 ≤ qz ≤ π1 is the projection of the momentum transfer along the spin chains
direction and forms a continuum for 0 ≤ qm ≤ qz. Its density of states is mapped
in Figure 3.7 and it is bounded by the two curves67

ωL(qz) = π

2Jc sin(qz)

ωU(qz) = πJc sin
(
qz
2

) (3.3)

also reported in Figure 3.7(a) as white dashed lines. From the map, it is clearly
seen that the two-spinon excitation is gapless in this model.

The corresponding (approximated) dynamic structure factor Suc(q, ω) is given
by67

Suc(q, ω) = Θ(ω − ωL(qz))Θ(ωU(qz)− ω)√
ω2 − ω2

L(qz)
. (3.4)

and it is reported in Figure 3.7(b). I neglect the contribution of higher-order spinon
excitations (four-spinons, etc.) based on the fact that, from theoretical calculations,
the amount of spectral weight carried by higher order spinon amounts to 27 %.

1q is equal to the momentum transfer labeled by Q, expressed in units of π (q = πQ).
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Then, how could we take into account any possible coupling among the spin
chains? Following the work of Bocquet et al.68, I use the RPA model to calculate
the dynamic magnetic susceptibility of coupled spin chains (χcc(q, ω)) from that of
uncoupled spin chains (χuc(q, ω)). In the specific case of CaIrO3, χcc(q, ω) can be
expressed as

χcc(q, ω) = χuc(qz, ω)
1− 2Ja cos(qx)χuc(qz, ω) (3.5)

where Ja and qx represent the exchange coupling and the momentum transfer along
the edge-sharing direction. Since the dynamic structure factor is related to the
dynamic magnetic susceptibility by

S(q, ω) = − 1
π

1
1− e−ω/kBT

χ′′(q, ω), (3.6)

where χ′′(q, ω) is the imaginary part of the dynamic magnetic susceptibility, we can
calculate the dynamic structure factor for coupled chains Scc(q, ω). The Bose-like
factor takes into account the effect of finite temperature.

A similar model has already been applied in the study of magnetic interactions
of inelastic neutron scattering spectra of KTi(SO4)2 by Nilsen et al.69 and of
Sr3CuPtO6 by Leiner et al.70. They used the spin dynamic structure factor of
uncoupled spin chains (Suc(q, ω)) from Caux and Hagemans63 and Equation 3.6
to simulate the spin dynamic structure factor of coupled spin chains (Scc(q, ω)),
obtaining a satisfactory agreement between experiments and simulations.

3.5 The effect of the finite momentum resolution
on spin dynamic structure factor

The two-spinon continuum described above is gapless61,62, while experimental
data feature a finite gap in the excitation spectrum of CaIrO3. This effect cannot
be accounted for by the coupling between spin chains, as it can be seen in the
works of Bocquet et al.68 and Leiner et al.70. I anticipate that the origin of the
gap observed experimentally is likely due to the finite momentum resolution of the
RIXS experiment which I analyze in the following.

In Figure 3.8(a), I report the distribution of the momentum transfer across
the analyzer surface, when it is nominally centered at Q = (0, 3, 9) r.l.u., and the
corresponding momentum resolution along L (Figure 3.8(b)). I then calculate the
effect of the momentum resolution: Figure 3.8(c) shows the two-spinon excitation
lower and upper boundaries as given by the model (Equation 3.3), while, in
Figure 3.8(d), I show the effect of the finite momentum resolution. I note that the
effect is large at the Brillouin zone center where the momentum resolution makes
the lower-boundary of the two-spinon continuum look gapped.

In the next section, I will perform numerical simulations of the Scc(q, ω), includ-
ing the effect of a finite momentum resolution, to extract the principal magnetic
interactions in CaIrO3.
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Figure 3.8: (a) Distribution of the values of the momentum transfer over the analyzer
surface, nominally centered at momentum transfer Q = (0, 3, 9) r.l.u. in the case of
analyzer diameter of 60 mm and sample to analyzer distance of 1 m. (b) Frequency of each
momentum transfer value on the analyzer surface. (c) Two-parameters bounds reported
in Equation 3.3 (ωL in blue and ωU in red). (d) Boundary curves of the two-spinon
dynamic structure factor with the effect of finite momentum resolution of the analyzer
(ωL in blue and ωU in red).

3.6 Optimization of the magnetic couplings
In order to extract the best estimate of the magnetic couplings, I systematically

compare simulated and experimental spectra following the procedure below.
1. I simulate Scc(qi, ω) for a set of Jc > 0 eV and Ja < 0 eV with realistic values

of the experimental parameters at a specific momentum transfer qi within
the momentum resolution covered by the analyzer. Specifically, I:

(a) evaluate Suc(qi, ω) using Equation 3.4;
(b) extract χ′′uc(qi, ω) from Suc(qi, ω) using Equation 3.6;
(c) calculate χ′uc(qi, ω) using the Kramers-Kronig relations (KK) and deter-

mine χuc(qi, ω) as χuc(qi, ω) = χ′uc(qi, ω) + iχ′′uc(qi, ω);
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Figure 3.9: Maps of gap positions of Scc(q, ω) in the (Jc, Ja) phase space at different
transferred momenta: Q = (0, 3, 8.5) r.l.u. in panel (a), Q = (0, 3, 9) r.l.u. in panel (b)
and Q = (0.5, 2, 9) r.l.u. in panel (c). In each map, areas within the white solid lines
enclose (Jc, Ja) couples whose corresponding gaps are consistent with experimental ones.
The resulting intersection of selected (Jc, Ja) couples is reported in panel (d).

(d) calculate χcc(qi, ω) from χuc(qi, ω) using Equation 3.5 and extract
χ′′cc(qi, ω);

(e) determine Scc(qi, ω) using Equation 3.6.

The previous steps can be summarized in the following chain of operations

Suc(qi, ω) Eq. 3.6===⇒ χ′′uc(qi, ω) KK=⇒ χuc(qi, ω) Eq. 3.5===⇒ χcc(qi, ω) Eq. 3.6===⇒ Scc(qi, ω)
(3.7)

2. I simulate the measured RIXS spectrum Scc(q, ω) by summing Scc(qi, ω) over
all the qi’s covered by the analyzer

Scc(q, ω) =
∑

qi∈analyzer
Scc(qi, ω) (3.8)
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The values of the magnetic gaps of the simulated Scc(q, ω) are mapped in
Figure 3.9 for different values of the momentum transfer Q = (0, 3, 8.5) r.l.u.
in panel (a), Q = (0, 3, 9) r.l.u. in panel (b) and Q = (0.5, 2, 9) in panel (c);

3. From the whole (Jc, Ja) phase space, I retain the values of the magnetic
interactions that produce a gap consistent with the RIXS spectra at the
three transferred momenta, within some uncertainty (see Figure 3.9(d)).
In particular ≈ 170 ± 5 meV at Q = (0, 3, 8.5) r.l.u., ≈ 44.5 ± 5 meV
at Q = (0, 3, 9) r.l.u. and ≈ 25.5 ± 5 meV at Q = (0.5, 2, 9) r.l.u. The
corresponding areas are highlighted in Figure 3.9 by the white contours;

4. I compare the simulated Scc(q, ω), convoluted by the energy resolution of
the spectrometer, to the data and select the couple of (J̄c, J̄a) that better
reproduces the shape of the experimental spectra. In order to do that, I define
a parameter

∆(Jc, Ja) = min
c
‖yexp − c · Scc(q, ω)‖ (3.9)

for the selected (Jc, Ja) couples that quantifies the overlap between experi-
mental and simulated spectra. I then select (J̄c, J̄a) such that

∆(J̄c, J̄a) ≡ min
Jc,Ja

{∆Q=(0,3,8.5)(Jc, Ja) + ∆Q=(0,3,9)(Jc, Ja) + ∆Q=(0.5,2,9)(Jc, Ja)}
(3.10)

The best-fit couple is (J̄c, J̄a) = (100,−1.5) meV and produces gaps of 166, 47
and 28 meV at Q = (0, 3, 8.5), Q = (0, 3, 9) and Q = (0.5, 2, 9) r.l.u., respectively. A
comparison between the experimental spectra (red dashed lines) and Scc(q, ω) (blue
solid lines) at the three transferred momenta is reported in Figure 3.10 (Q = (0, 3, 8.5
r.l.u. in panel (a), Q = (0, 3, 9) r.l.u. in panel (b) and Q = (0.5, 2, 9) r.l.u. in
panel (c)). In order to highlight the effect of the finite momentum resolution and
of the coupling between the chains, I report the simulated spin dynamic structure
factors for Ja = 0 and finite momentum resolution (green dotted lines), Ja = J̄a
and ∆q = 0 (purple dotted lines) and Ja = 0 and ∆q = 0 (orange dotted lines). At
Q = (0, 3, 8.5) r.l.u. the effect of both Ja and ∆q is not so evident, At Q = (0, 3, 9)
r.l.u. the effect of momentum resolution and the coupling between the chains are
more pronounced. Indeed, the orange curve (Ja = 0 and ∆q = 0) is practically
gapless and so is the green curve (Ja = J̄a), but with a more asymmetric shape. The
opening of the gap, instead, is mostly due to the finite momentum resolution alone.
Finally, at Q = (0.5, 2, 9) r.l.u., Ja has no effect, as can be seen from Equation 3.5
with qx = π/2, in which case χcc(q, ω) = χuc(q, ω).

In Figure 3.11, I compare the full dispersion along the three principal directions
in the sample reciprocal space as measured by RIXS (panels (a), (b) and (c))
and as simulated (panels (d), (e) and (f)) for (J̄c, J̄a) at the actual experimental
resolution. I note that the main experimental features are well reproduced by the
simulations, including the small dispersion in the edge-sharing H direction and the
two-spinon like continuum along the corner-sharing H direction. In addiction, the
values obtained for (J̄c, J̄a) are consistent with the results of ab initio quantum
chemical calculations by Bogdanov et al.66, who predicted an AFM coupling of 121
meV along the corner-sharing direction and a FM coupling of -7 meV along the
edge-sharing direction.
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Figure 3.10: Comparisons between experimental data (red dashed lines) and spin
dynamical structure factor of coupled chains Scc(q, ω) with Ja = 0 and ∆q = 0 (orange
dotted lines), with Ja = J̄a and ∆q = 0 (purple dotted lines), with Ja = 0 and ∆q 6= 0
only (green dotted lines), with both Ja = J̄a and ∆q 6= 0 (blue solid lines). Different panels
refer to different transferred momenta: Q = (0, 3, 8.5) r.l.u. in panel (a), Q = (0, 3, 9)
r.l.u. in panel (b) and Q = (0.5, 2, 9) r.l.u. in panel (c).

However, we cannot expect that this model captures entirely the experimental
observations, in that many approximations are introduced. In particular:
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Figure 3.11: Panels (a), (b) and (c) report RIXS experimental spectra along H, K and
L directions, respectively. Panels (d), (e) and (f) show the two-spinon dynamic structure
factor of coupled spin chains Scc(q, ω) with (J̄c, J̄a) = (100,−1.5) meV along H, K and L
directions, respectively.

• The Heisenberg model assumes isotropic magnetic interactions. We know,
however, that the magnetism of CaIrO3 is certainly affected by anisotropies,
including a weak Dzyaloshinskii-Moriya interaction that cants the magnetic
moments away from collinearity8. Magnetic anisotropies are likely correlated
with the large tetragonal crystal field splitting of the electronic states as
observed by Moretti Sala et al.10;

• The magnetic dynamics of the Heisenberg spin chain includes higher-order
excitations than the two-spinon continuum. In particular, it was estimated
that the four-spinon excitations contribute to the full magnetic dynamic
structure factor amounts to 27 %, i.e. a sizable fraction of the two-spinon
continuum. Since an analytical solution for the magnetic dynamic structure
factor exists only for the two-spinon excitations, I decided not to complicate
the calculation of Suc(q, ω) by excluding higher-order excitations;

• Finally, it is not obvious that the dynamic structure factor can be compared
to the RIXS cross section. This is the subject of an ongoing debate47.

Given the limitations listed above, I believe that the agreement between experi-
mental and simulated spectra is satisfactory, meaning that the simple Heisenberg
model captures most of the physics of the magnetic excitations in CaIrO3. Further
targeted experiments and refinements of the theoretical model, however, might be
beneficial to isolate the effect of minor magnetic couplings and gain deeper insight
in the magnetism of CaIrO3.



Conclusions

In the present thesis, I focus on the magnetic dynamics of CaIrO3 as measured
by RIXS. CaIrO3 is an interesting compound: the presence of large SOC and the
important tetragonal distortion of the octahedra highly alter the jeff = 1/2 Mott
insulating state, usually adopted to describe other iridates10. CaIrO3 features both
corner- and edge-sharing IrO6 octahedra along the c and a axes, respectively. From
theoretical predictions, magnetic interactions are predominantly AFM along the
corner-sharing direction and FM along the edge-sharing direction23, thus making
CaIrO3 a quasi-1D magnet. However, a direct experimental proof is lacking.
Therefore, I carried out RIXS measurements of the magnetic dynamics of CaIrO3
to estimate its principal magnetic interactions.

RIXS measurements have been performed at ID20, the hard x-ray RIXS beamline
of the ESRF. The temperature dependence analysis of the low-energy excitations
reveals that their intensity evolution is closely correlated to the Néel temperature.
In particular, the temperature dependence of the quasi-elastic line resembles that
of AC dynamic magnetic susceptibility measured by Gunasekera et al.58, namely
it is also strongly peaked at the magnetic transition temperature. RIXS spectra
as a function of the momentum transfer show a strong evolution along the corner-
sharing L direction, a weak dependence along the edge-sharing H direction and no
dependence at all along the K direction. The profile of the low-energy excitations
is similar to that of a two-spinon continuum, as reported in various systems59,70, so
I conclude that the magnetism of CaIrO3 has mostly one dimensional character.

In order to extract quantitative information about the characteristic magnetic
interaction in CaIrO3, I adopt a simple model based on the 1D s = 1/2 Heisenberg
spin chain, characterized by an isotropic magnetic interaction Jc between neighboring
spins67. I introduce a finite coupling Ja between the magnetic chains within the
RPA approximation and simulate the RIXS response by calculating the magnetic
dynamic structure factor and by taking into account the finite energy and momentum
resolution of the spectrometer11,68.

By doing so, I extract values for the magnetic interactions that best described
experimental data, following the procedure described in Section 3.6. I obtain
(J̄c, J̄a) = (100,−1.5) meV, consistent with ab initio quantum chemical calculations
by Bogdanov et al.66. Despite the simplicity of the model, it nicely reproduces most
of the features observed experimentally.

Further improvements in the understanding of the magnetic dynamics of CaIrO3
may require in future experiments with better energy and momentum resolution.
Alternatively, one could perform RIXS experiments with polarization analysis of
the scattered radiation, which imposes additional constraints on the excitations

39
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visible in the RIXS process. Work in this direction is in progress.



Appendix A

The UB matrix formalism and the
calculation of momentum
resolution

In this Appendix, I will introduce the UB matrix formalism used to estimate
the finite momentum resolution of the ID20 spectrometer. In my analysis, I will
follow the work of Moretti Sala et al.11.

As already said in Section 2.4.2, the calculation of the momentum resolution
requires the knowledge of U and B matrices. The former connects the sample and
the laboratory reference frames. The latter defines a Cartesian reference frame
in the sample reciprocal space and so it depends on lattice constants. Using the
formalism of Busing and Levy71, B is given by

B =

a
∗ b∗ cos(γ∗) c∗ cos(β∗)

0 b∗ sin(γ∗) −c∗ sin(β∗) cos(α)
0 0 1/c

 (A.1)

The momentum transfer defined in Equation 2.10 depends also on U . In order
to find it, the following method has to be followed: we have to experimentally
find two non-collinear Bragg reflections and use them to derive the relative sample
orientation with respect to the laboratory frame. So ideally, given two Bragg
reflections expressed in the sample reciprocal space qhkl1 , qhkl2 , the following relation

qhkl1 = (T ωχϕ1 UB)−1 q2ϑ
1

qhkl2 = (T ωχϕ2 UB)−1 q2ϑ
2

(A.2)

holds, where T ωχϕ1 (T ωχϕ2 ) and q2ϑ
1 (q2ϑ

2 ) contain information about the scattering
geometry and the sample angles corresponding to the first and the second Bragg
reflections. Due to uncertainties on angle measurements and/or lattice constants,
it is not possible to find an orthogonal matrix U that satisfies both the previous
identities. So the method proposed by Busing and Levy71 is to require that qhkl1
must be parallel to q2ϑ

1 and qhkl2 has to lie in the plane generated by q2ϑ
1 and q2ϑ

2 .
By defining

t1 = Bqhkl1 ,

t3 = B(qhkl1 × qhkl2 ),
t2 = t1 × t3,

(A.3)
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Appendix A. The UB matrix formalism and the calculation of

momentum resolution

v1 = T ωχϕ
−1

1 q2ϑ
1 ,

v3 = T ωχϕ
−1

1 q2ϑ
1 × T

ωχϕ−1

2 q2ϑ
2 ,

v2 = v1 × v3,

(A.4)

and so
T = (t1/|t1|, t2/|t2|, t3/|t3|),
V = (v1/|v1|,v2/|v2|,v3/|v3|),

(A.5)

then the U matrix can be found as

U = VT −1. (A.6)

Finally, given the U and B matrices, the sample (ω, χ and ϕ) and the spectrom-
eter (γ and δ) angles, one can project q2ϑ into the sample reciprocal space qhkl,
using Equation A.2.

The momentum resolution is related to the uncertainties on the scattering
arm angles, ∆γ and ∆δ, due to the finite aperture of the analyzer, A. The finite
momentum resolution in the sample reciprocal space can be expressed as

∆qhkl ' (T ωχϕUB)−1
(
∂q2ϑ

∂γ
∆γ + ∂q2ϑ

∂δ
∆δ
)
, (A.7)

where both ∆γ and ∆δ are of the order of A/|A| if A� |A|. If we assume that the
scattering is quasi-elastic, so that λo ' λi ' λ, the previous equation becomes

∆qhkl ' (T ωχϕUB)−1T 2ϑq2ϑ, (A.8)

that is the finite momentum resolution of the spectrometer.



Appendix B

Fit of CaIrO3 RIXS spectra with
Pearson VII functions

In this Appendix, I will explain the computational method used to fit RIXS
spectra of CaIrO3. The principle I followed writing the fit program is the Occam’s
razor: the best fit is characterized by the lowest possible number of curves, each
one associated to a well defined physical phenomenon. The importance of the fit
resides in one particular aspect: the sizes of magnetic gap, used as fixed parameters
to extract the mangetic couplings in Section 3.6, correspond to the positions of the
fit functions.

The Pearson VII function is chosen to shape the experimental features. This
function belongs to the family of continuous probability distributions developed
by Pearson72 in 1916. In particular, the Pearson VII represents a continuous
modulation from a Gaussian to a Lorentzian extreme73. Its analytic expression is
given by

I(x)PV II = Imax ·

1 +
(
21/µ − 1

)
·
(

2 (x− x0)
Γ

)2
−µ , (B.1)

where x0 is its position, Γ is its full width at half maximum (FWHM) and µ is the
modulation parameter that control the gaussiniaty (or lorentzianity) of the Pearson
VII curve: µ = 1 yields to Lorentz function, whereas µ = ∞ leads to Gaussian
shape.

The energy resolution of a RIXS experiment is experimentally determined by
collecting a pure elastic line and extracting its width. Such value will remain as a
lower bound for all the subsequent spectra. The maximum value of the coefficient
µ is also fixed to that of the elastic peak, since all spectral feature will be more
Lorentzian than the elastic line due to the finite lifetime of the intermediate state.
In Figure B.1, it is reported the elastic peak collected at ID20 at ESRF (blue solid
line). The Pearson VII fit is also shown (red solid line).

I now investigate a generic RIXS spectrum of CaIrO3. In Figure B.2, I report
the spectrum recorded at the momentum transfer Q = (0, 3, 9) r.l.u. at T = 40
K. Raw data are plotted with black circled line and the red line is the total fit
function, equal to the sum of all curves described hereafter. The quasi-elastic line
is forced to be close to 0 eV energy loss and its width c and µ coefficient are fixed
to the values obtained before. The two curves labeled by β1 and β2 are related
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Figure B.1: The elastic line collected at ID20 at ESRF (blue solid line) is fitted with a
Pearson VII function. The values extracted from the fit are µ ≈ 3.64 and c ≈ 36 meV.

to magnetic excitations in the material (see Section 3.3). It can be seen that the
intensity profile under 0.35 eV is manifestly asymmetric towards higher energies. So
β1 is fitted with a symmetric Pearson VII function, while β2 is fitted by a strongly
asymmetric Pearson VII and is defined as

β2(x) =


Imax ·

[
1 +

(
21/µ − 1

)
·
(

2(x−x0)
(Γ+Ψ1)

)2
]−µ

, if x ≤ x0

Imax ·
[
1 +

(
21/µ − 1

)
·
(

2(x−x0)
(Γ+Ψ2)

)2
]−µ

, if x > x0

(B.2)

where Ψ1 and Ψ2 are left and right asymmetry respectively. At ≈ 0.4 eV, usually the
intensity of RIXS spectra of CaIrO3 shows a sudden increase. Furthermore, after
both the δ1 and δ2 curves, the intensity does not go to zero. Due to these reasons, I
assume the presence of a continuum of excitations modeled as the following sigmoid
function

Iσ = Imax
1

1 + e−α(x−x0) , (B.3)

where the α coefficient defines the slope of the initial ramp of the sigmoid and its
upper bound is defined as 2(ln

(
3− 2

√
2
)
)/c. x0 is the position of the sigmoid that

is constrained to be equal to the position of the “exciton” ξ, since it coincides with
the rapid increase of intensity. The exciton is located ≈ 0.42 eV. Its origin, as the
nature of δ1 and δ2 feature, has been already discussed by Moretti Sala et al.10. ξ,
δ1 and δ2 are all fitted with symmetric Pearson VII functions.

The goodness of the fit is evaluated using the coefficient of determination R2.
The fit process is divided in three steps:

1. the first fit is made by purely Gaussian curves and provide an initial set of
starting points for the subsequent fits;

2. the second step is done with Pearsons, including also the sigmoid. Once again,
starting points of the fit are adjusted;
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Figure B.2: RIXS spectrum of CaIrO3 collected at momentum transfer Q = (0, 3, 9)
r.l.u. and at T = 40 K (circled black line), reporting also the overall fit function (red solid
line). The spectrum is fitted with 6 Pearson VII curves and one sigmoid (σ, light blue
solid line). The brown solid line labeled by ε is the quasi-elastic line, the other curves
below 0.35 eV β1 (pink solid line) and β2 (green solid line) are fitted with symmetric and
asymmetric Pearson VII, respectively. The curve denoted by ξ is the debated “exciton”
at ≈ 0.42 eV, while the last two Pearson VII functions reproduce transitions between
crystal field split states.

3. last passage is identically to the previous one, but with a lower tolerance (of
the order of 10−10).

If the resulting coefficient of determination is larger than a certain value, usually
fixed to R2 & 0.98, the fit is accepted. Otherwise, starting point, lower and upper
bounds are manually changed and the three-step process is restarted.
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