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A B S T R A C T

Graph partitioning is a problem that interested scientists since the last cen-
tury. Many real-world applications can be modelled as graphs: social net-
works, telecommunication routing, images, circuitry design, etc. Over the
course of the last 60 years, an increasing variety of algorithm has been pro-
posed to solve the graph partitioning problem, adapting to its evolution. If
at the beginning the main goal was to divide graphs into equal sized groups,
the explosion of data occurred in the last decade shifted the focus on scalable
methods, capable of working on large graphs, trying to maintain balanced
solutions.

In this thesis, three new graph partitioning algorithms are presented, hav-
ing different purposes and working principles. These algorithms were thought
with multiple goals. First, they complete unused ideas, never fully explored
in the literature or that were simply discarded due to their inefficiency. Sec-
ond, these algorithms are created to reach results comparable with state of
the art algorithms, in terms of speed and quality. The last, and main, pur-
pose is to find solutions to specific real-world problems, as mesh partition-
ing or image segmentation, that in the last years moved towards real-time
requirements. With these algorithms, we were able to achieve three results: a
fast and scalable hybrid multi-level clustering; an incredibly fast tree based
partitioning, performing better than the state of the art algorithms, and a
slightly slower method, derived from the depth first search on graphs, to
obtain perfectly balanced partitions.

Our partitioning algorithms are tested against meshes derived from the
images belonging to publicly available EPFL dataset [3] and the images used
by the 3D reconstruction suite COLMAP [1, 2]; the mesh model collection
provided with the benchmark described in [4]; randomly generated labelled
graphs and images and some of the segmented images of the KITTI Vision
benchmark suite [5, 82].
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S O M M A R I O

Un gran numero di situazioni del mondo reale può essere descritto attraverso
grafi. Un grafo è un insieme di nodi interconnessi da lati. I nodi sono di solito
una rappresentazione astratta di oggetti e i lati sono le loro relazioni. Uno
dei problemi più studiati e documentati relativo ai grafi è il loro partiziona-
mento.

Il partizionamento di grafi viene utilizzato in molte applicazioni: i social
network fanno affidamento su di esso per elaborare richieste da parte di
utenti su sottoinsiemi di grafi più piccoli, distribuendo il carico di lavoro
su più dispositivi; le reti biologiche, che possono essere rappresentate uti-
lizzando l’astrazione del grafo (ad esempio l’interazione proteina-proteina
o i processi metabolici), usano il partizionamento per risolvere i problemi
di interazione biologica, rilevando comunità e gruppi di elementi simili; la
pianificazione del percorso nelle reti di trasporto sfrutta il partizionamento
per ottenere una maggiore velocità, utilizzando approcci di divisione e con-
quista (si pianifica un percorso su regioni più piccole e poi i risultati sono
combinati); i sistemi VLSI (integrazione su larga scala) fanno uso del par-
tizionamento di grafi per ridurre la connessione tra i circuiti nella loro pro-
gettazione; in computer vision le immagini sono rappresentate da grafi in
cui i pixel sono nodi, e sono partizionati in base alla loro somiglianza; nella
ricostruzione 3D, le superfici sono modellate come grafi, che devono essere
partizionati per applicare procedure di raffinamento in tempi ragionevoli.

La grande quantità di applicazioni è la ragione principale per cui, dal
secolo scorso, il problema del partizionamento di grafi coinvolse un numero
crescente di ricercatori ed esperti. Nel corso degli ultimi 60 anni, è stata
proposta una notevole varietà di algoritmi. Molti sono gli scopi di questi
metodi, come la scalabilità, il bilanciamento, la minimizzazione del taglio dei
bordi e una veloce computazione. Diversi approcci si sono evoluti, cercando
di risolvere le molteplici sfaccettature del problema di partizionamento di
grafi.

I primi grafi considerati furono quelli i cui nodi potevano essere rappre-
sentati con coordinate geometriche. Per suddividere questo tipo di strutture,
sono stati sviluppati algoritmi basati sulla geometria, il cui principio di fun-
zionamento è quello di dividere ricorsivamente il dominio dei nodi in più
parti. Sebbene questi algoritmi producano partizioni perfettamente bilanci-
ate, avendo tutti la stessa quantità di nodi, sono afflitti da molteplici incon-
venienti. Innanzitutto, non considerano la struttura del grafo, basandosi solo
sulle coordinate geometriche dei nodi: questo porta al partizioni contenente
componenti disconnessi. La Figura 0.1 mostra un esempio di questo prob-
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Figure 0.1: Uno dei problemi degli algoritmi di partizionamento geometrici è che
le partizioni ottenute sono formate da nodi disconnessi.

lema: le partizioni a sinistra, rappresentate come quadrati rossi, contengono
sottoinsiemi di nodi scollegati. In secondo luogo, con l’aumentare del nu-
mero di coordinate, i metodi geometrici diventano più lenti. Infine, essi sono
confinati a grafi i cui nodi possono essere rappresentati nello spazio Euclideo.

Successivamente, i lavori si spostarono verso i metodi spettrali, che invece
sfruttano l’insieme di lati nel grafo, ma possono essere applicati solo su pic-
cole strutture a causa della loro complessità temporale. Gli algoritmi di par-
tizionamento spettrale si basano su una delle rappresentazioni matematiche
di un grafo, la matrice di adiacenza, per studiarne le proprietà di connettiv-
ità e per eseguire partizioni basandosi su di esse. Sebbene i metodi spettrali
si traducano in partizioni ottimali, sia in termini di dimensioni che di nu-
mero di lati che le attraversano, non sono scalabili, diventando impossibili
da adottare anche su grafi di medie dimensioni (migliaia di nodi).

Nell’ultimo decennio, la maggior parte degli algoritmi si basò su euris-
tiche a più livelli, utilizzate per partizionare grafi di dimensioni consid-
erevoli. L’idea alla base di questi approcci è semplice e consiste in tre pas-
saggi consecutivi. In primo luogo, le dimensioni di un grafo sono ridotte,
aggregando nodi che soddisfano un criterio specifico: peso massimo del
lato che li collega, un numero simile di nodi adiacenti, ecc. Questo passo
viene ripetuto, approssimando il grafo iniziale fino a quando un nuovo grafo
con dimensioni sufficientemente piccole è ottenuto. Quindi, un algoritmo
di partizionamento viene applicato sul piccolo grafo, producendo risultati
accurati in breve tempo. Infine, le partizioni sono raffinate, propagando
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l’assegnazione di ciascun nodo dal grafio piccolo a quello iniziale. Questi
algoritmi producono risultati di alta qualità in tempi molto brevi, con par-
tizioni quasi perfettamente bilanciate, che superano i metodi geometrici e
spettrali. Devono, tuttavia, essere regolati con precisione in ogni fase, con-
siderando anche le possibili correlazioni tra esse. Ad esempio, se la seconda
fase viene eseguita con un algoritmo che sacrifica la qualità del partiziona-
mento per ottenere un tempo di esecuzione ridotto, il raffinamento dovrebbe
essere forte e preciso e viceversa. Al giorno d’oggi, l’obiettivo principale è
quello di sviluppare algoritmi sempre più scalabili e veloci, adottando tec-
niche di parallelizzazione, per muoversi verso le applicazioni in tempo reale.

contributo della tesi

Proponiamo tre nuovi algoritmi di partizionamento grafi con diversi prin-
cipi di funzionamento e associati a situazioni distinte. Il primo algoritmo,
Raggruppamento di Etichette (Label Clustering), ha l’obiettivo di ottenere
un partizionamento di grafo basato sulla somiglianza dei nodi, seguendo
un approccio multilivello. Un grafo viene prima raggruppato tramite ag-
gregazione dei nodi aventi la massima somiglianza, utilizzando una versione
modificata della Visita in Profondità su grafi, quindi viene ridotto di dimen-
sioni fino a ottenere una struttura sufficientemente piccola per applicare un
metodo di partizionamento diretto.

Il secondo algoritmo, il Partizionamento tramite Albero AD (AD-tree par-
titioning), sfrutta una nuova struttura dati per eseguire un partizionamento
rapido (lineare nel numero di nodi). La struttura menzionata è l’unione di
tre parti: un grafo diretto con più componenti connessi (chiamato grafo dei
discendenti), un albero normale derivato da un grafo e un albero diretto
(chiamato albero di Arianna), i cui nodi sono collegati come se fossero parte
di una catena (nel senso che ogni nodo, tranne il primo e l’ultimo, ha un lato
che punta a un solo altro nodo ed è puntato solo da un lato). L’algoritmo
è basato sulla propagazione del valore dei nodi dell’albero AD e sul loro
attraversamento, consentendo di tagliare gruppi di nodi con una velocità su-
periore agli algoritmi allo stato dell’arte, indipendentemente dal numero di
partizioni desiderate.

L’ultimo algoritmo, chiamato Partizionamento Orientato (Directed parti-
tioning), non si basa su alcuna struttura o similarità dei dati, ma funziona
direttamente sul grafo durante la sua esplorazione. L’idea alla base è quella
di utilizzare una procedura di visita simile alla Visita in Profondità, per ot-
tenere partizioni perfettamente bilanciate, avendo anche un’alta connettività
interna. Diversi problemi derivano dalla Visita in Profondità, come la for-
mazione di buchi nel grafo, causati principalmente dalla sua complessità
strutturale. Partizionamento Orientato risolve questi problemi, al costo di
una prestazione temporale leggermente peggiore rispetto all’algoritmo di
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partizionamento basato sull’Albero AD, ma fornendo partizioni perfetta-
mente bilanciate.

Riassumendo, i tre algoritmi proposti contribuiscono in modi differenti
alla letteratura relativa al partizionamento di grafi. Il primo partiziona grafi
con un approccio ibrido multi-livello, ottenendo gruppi contenenti nodi con
alta somiglianza, in tempi ragionevoli (pochi secondi per raggruppare grafi
con milioni di nodi e più lati). Il secondo sfrutta una struttura dati avanzata
per ottenere partizioni in un tempo di un ordine di grandezza inferiore al
tempo impiegato dagli algoritmi allo stato dell’arte, sacrificando un certo
bilanciamento nelle partizioni. Il terzo ottiene, in tempi brevi, blocchi perfet-
tamente bilanciati, una delle caratteristiche più desiderate di un algoritmo
di partizionamento grafi.

descrizione della tesi

La tesi è organizzata in due parti. Nella prima, forniamo i materiali di base
necessari per comprendere i contributi della tesi.

• Il Capitolo 2 introduce alcuni concetti matematici, come definizioni e
teoremi relativi a grafi e partizionamento di grafi. Poi viene presen-
tata una revisione della letteratura, descrivendo l’evoluzione degli al-
goritmi utilizzati per il partizionamento di grafi, concentrandosi su
alcuni di essi.

La seconda parte contiene il contributo principale di questa tesi, descrivendo
tre nuovi metodi per il partizionamento di grafi.

• Il Capitolo 3 illustra l’algoritmo multi-livello Label Clustering. Dopo
aver definito nuovi concetti matematici, ci concentriamo sulla descrizione
di ciascuna fase dell’algoritmo. Innanzitutto, consideriamo la riduzione
iniziale di un grafo, il cui scopo è quello di costruire, da esso, un nuovo
grafo tale che due suoi nodi adiacenti con la stessa etichetta non esis-
tano. Viene proposto poi un semplice schema di approssimazione, per
ridurre ulteriormente la dimensione del grafo ridotto. Infine, descrivi-
amo il metodo utilizzato per partizionare il più piccolo grafo ottenuto.

• Il Capitolo 4 presenta una nuova struttura dati per rappresentare grafi,
l’albero AD e un algoritmo di partizionamento basato sul suo attraver-
samento. L’albero AD deriva da altre tre strutture, ciascuna descritta
in dettaglio: l’albero corrispondente al grafo; il grafo formato da tutti
i nodi e i bordi non inseriti nell’albero, detto grafo dei discendenti;
l’albero che rappresenta l’ordine di inserimento dei nodi del grafo
nella prima struttura, detto albero di Arianna. Dopo una panoramica
delle proprietà dell’albero AD e dei metodi di creazione, l’attenzione
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si sposta sull’algoritmo di partizionamento, presentando e descrivendo
ogni routine che lo compone.

• Il Capitolo 5 rivisita la procedura di Visita in Profondità su grafi, derivando
un nuovo algoritmo, denominato Partizionamento Orientato, che sfrutta
la lista di adiacenza dei nodi del grafo per ottenere partizioni perfetta-
mente bilanciate aventi anche forme regolari. In particolare, mostriamo
alcuni dei problemi legati all’uso della Visita in Profondità, usata per
il partizionamento, risolvendoli e adattandoli all’algoritmo proposto.

• Il Capitolo 6 è diviso in due sezioni. Nella prima si considera un caso
d’uso specifico in cui gli algoritmi di partizionamento di grafi pos-
sono essere utilizzati per migliorare i risultati dello stato dell’arte: la
ricostruzione 3D. La sezione introduce brevemente il problema della
ricostruzione e la letteratura che ne è associata, concentrandosi su algo-
ritmi recenti. Poi, mostriamo come i nostri metodi di partizionamento
di grafi possono essere utilizzati per ridurre il tempo necessario per
ottenere ricostruzioni accurate.

La seconda sezione include tre miglioramenti dell’algoritmo di par-
tizionamento dell’albero AD, descritto nel Capitolo 4, tutti basati sul
grafo dei discendenti. Il primo è una tecnica di pre-elaborazione, che
migliora il bilanciamento della struttura dati ottenuta dal grafo (l’abero
AD). Il secondo è un’euristica greedy usata per supportare l’algoritmo
di partizionamento, aumentandone le possibilità di taglio. L’ultimo
miglioramento, di post-elaborazione, si basa sullo scambio di elementi
tra le partizioni, ancora una volta per migliorarne il bilanciamento com-
plessivo.

Infine, la tesi termina rivisitando brevemente il problema del partiziona-
mento di grafi e i tre algoritmi, compresi possibili miglioramenti e lavori
futuri.
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1
I N T R O D U C T I O N

A large number of real-world situations can be described with graphs. A
graph is a set of nodes interconnected by edges. Nodes are usually an ab-
stract representation for objects, and edges for their relations. One of the
most studied and documented problem related to graphs is their partition-
ing.

Graph partitioning is used in many applications: social networks rely on it
in order to process user queries on smaller subsets of graphs, distributing the
workload on multiple devices; biological networks, that can be represented
by using the graph abstraction (for example protein-protein interaction or
metabolic processes), use partitioning to solve biological interaction prob-
lems, detecting communities and groups of similar elements; route planning
in transportation networks exploits partitioning to obtain a speed up, using
divide and conquer approaches (plan a route on smaller regions and then
combine the results); VLSI (very large-scale integration) systems make use
of graph partitioning to reduce the connection between circuits in design-
ing them; in computer vision images are represented as graphs where the
pixel are nodes, and they are segmented according to their similarity; in 3D
reconstruction, surface meshes are modelled as graphs, which have to be
partitioned to apply refinement procedures in reasonable times.

The great amount of applications is the main reason that, since the last
century, the graph partitioning problem involved an increasing number of
researchers and experts. Over the course of the last 60 years, a considerable
variety of algorithms has been proposed. Many are the purposes of these
methods, such as scalability, balancing, minimisation of the edge cut and
fast computation. Different approaches evolved, trying to solve the multiple
facets of the graph partitioning problem.

The first graphs to be considered were the ones whose nodes could be rep-
resented with coordinates. To partition these kind of structures, geometry
based algorithm were developed, whose working principle is to recursively
split the node domain in multiple parts. Although these algorithms produce
perfectly balanced partitions, having all the same amount of nodes, they
are afflicted by multiple drawbacks. First, they do not consider the graph
structure, relying only on the geometrical coordinates of nodes: this leads
to partitions containing disconnected components. Figure 1.1 shows an ex-
ample of this problem: the partitions on the left, represented as red squares,
contain subsets of disconnected nodes. Second, as the number of coordinates
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2 introduction

Figure 1.1: One of the problem of geometric partitioning algorithms is that the
obtained partitions consist in disconnected nodes.

increases, geometric methods get slower. Lastly, they are confined to graphs
whose nodes can be represented in the Euclidean space.

Later, works shifted towards spectral methods, that instead exploit the
set of edges in the graph, but can be applied only on small structures due
their time complexity. Spectral partitioning algorithms rely on one of the
mathematical representations of a graph, the adjacency matrix, to study its
connectivity properties and performing partitions accordingly to them. Al-
though spectral methods results in optimal partitions, both in terms of size
and number of edges crossing them, they are not scalable, becoming unfea-
sible to adopt even on medium sized graphs (thousands of nodes).

In the last decade, the majority of algorithms relied on multi-level heuris-
tics, used to partition graphs of considerable dimension. The idea behind
these approaches is straightforward and consists in three consecutive steps.
First, a graph is reduced in size, aggregating nodes which satisfy a specific
criterion: maximum weight of the edge connecting them, similar number
of neighbours, etc. This step is repeated, coarsening the initial graph until
a new graph with small enough size is obtained. Then, a partitioning algo-
rithm is applied on the small graph, producing accurate results in short time.
Lastly, the partitions are uncoarsened and refined, propagating the assign-
ment of each node from the small to the initial graphs. These algorithms
produce high quality outputs in very short times, having partitions that are
almost perfectly balanced, outperforming geometric and spectral methods.
They need, however, to be finely tuned in each step, considering also the
possible correlations. For example, if the second phase is performed with an
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algorithm that sacrifices the partitioning quality to obtain low computational
time, the refinement should be strong and accurate, and vice versa.

Nowadays, the main goal is to develop algorithms increasingly scalable
and fast, adopting parallelisation techniques, to move towards real-time ap-
plications.

1.1 thesis contribution

We propose three new graph partitioning algorithms having different work-
ing principles and associated to distinct situations. The first algorithm, La-
bel clustering, has the goal to obtain a graph partitioning based on nodes
similarity, following a multi-level approach. A graph is first clustered aggre-
gating nodes with the maximum similarity, using a modified version of the
depth-first visiting on graphs, then it is reduced in size until a small enough
structure is obtained, to apply a direct partitioning method.

The second algorithm, AD-tree partitioning, exploits a new data structure
to perform a fast partitioning (linear in the number of nodes). The mentioned
structure is the union of three elements: a directed graph with multiple con-
nected components (named descendants graph), a normal tree derived from
a graph and a directed tree (named Ariadne’s tree), whose nodes are con-
nected as if they were part of a chain (meaning that each node, except from
the first and the last, has an edge pointing to only one other node and is
pointed by only one incoming edge). The algorithm is based on value back-
propagation and traversal of the AD-tree nodes, allowing to cut groups of
nodes with a speed superior to the state of the art algorithms, independently
from the number of desired partitions.

The last algorithm, called Directed partitioning, does not rely on any struc-
ture or data similarity, but works directly on the graph while exploring it.
The idea behind it is to use a visiting procedure similar to depth-first, to
obtain perfectly balanced partitions, having also high intra-connectivity. Dif-
ferent problems generate from the depth-first visiting, such as the forma-
tion of holes in the graph, mostly caused by the graph complexity. Directed
partitioning solves these problems, at the cost of a slightly worse time per-
formance with respect to the AD-tree partitioning algorithm, but providing
perfectly balanced partitions.

Summing up, the three proposed algorithms contribute in different ways
to the graph partitioning literature. The first partitions graphs with a hybrid
multi-level approach, obtaining groups containing nodes with high similar-
ity, in reasonable time (few seconds to cluster graphs with millions of nodes
and more edges). The second exploits an enhanced data structure to obtain
partitions in a time that is one order of magnitude less than the time taken
by state of the art algorithms, sacrificing some balance in the partitions. The
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third obtains perfectly balanced blocks, one of the most desired characteris-
tics of a graph partitioning algorithm, in short time.

Moreover, the tree based partitioning grants that if a graph is connected,
also the resulting partitions will have the same property, feature rarely showed
in literature. The first algorithm also maintains the graph connected, but only
for the reduction and coarsening phases: the direct partitioning algorithm
on the smallest graph can, instead, produce partitions corresponding to dis-
connected components in the original graph. The same goes for Directed
partitioning, that grants the property until all the holes are filled (including
this phase).

1.2 thesis outline

The thesis is organized in two parts. In the first, we provide the background
materials needed to understand the contributions of the thesis.

• Chapter 2 introduces some mathematical concepts, such as definitions
and theorems related to graphs and graph partitioning. Then, a review
of the literature is presented, describing the evolution of the algorithms
used for graph partitioning, focusing on some of them.

The second part contains the main contribution of this thesis, describing
three new methods for graph partitioning.

• Chapter 3 illustrates the Label Clustering multi-level algorithm. After
having defined new mathematical concepts, we focus on describing
each phase of the algorithm. First, we consider the initial graph re-
duction, whose purpose is to build, from a graph, a new graph such
that two adjacent nodes with the same label do not exist. Then, a sim-
ple coarsening scheme is proposed, to further decrease the size of the
reduced graph. Lastly, we describe the method used to partition the
smallest obtained graph.

• Chapter 4 presents a new data structure to represent graphs, the AD-
tree, and a partitioning algorithm based on its traversal. The AD-tree
is derived from three other structures, each described in detail: the tree
corresponding to the graph; the graph formed by all the nodes and the
edges not inserted in the tree, named descendants graph; the tree rep-
resenting the order of insertion of the graph nodes in the first structure,
named Ariadne’s tree. After an overview of the AD-tree properties and
methods of creation, the focus shifts on the partitioning algorithm, pre-
senting and describing each routine that form it.

• Chapter 5 revisits the depth-first procedure on graphs, deriving a new
algorithm, named Directed partitioning, that exploits the adjacency list
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of the graph nodes to obtain perfectly balanced partitions having also
regular shapes. In particular, we show some of the problems related
to the use of depth-first for partitioning, solving and adapting them to
the proposed algorithm.

• Chapter 6 is composed by two sections. In the first a specific use case
is considered, where graph partitioning algorithms can be used to im-
prove the state of the art results: 3D reconstruction. The section in-
troduces, briefly, the reconstruction problem and the literature behind
it, focusing on very recent algorithms. Then, we show how our graph
partitioning methods can be used to reduce the time required to obtain
accurate reconstructions.

The second section includes three improvements of the AD-tree parti-
tioning algorithm described in 4, all relying on the descendants graph.
The first is a pre-processing technique, that improves the balance of the
obtained data structure from the graph (the AD-tree). The second is a
greedy heuristic used to support the partitioning algorithm increasing
its cut possibilities. The last improvement is based on post-processing
exchange of elements between partitions, once again to improve their
overall balance.

Lastly, the thesis ends revisiting briefly the graph partitioning problem
and the three algorithms, including possible improvements and future works.





Part I

L I T E R AT U R E B A C K G R O U N D





2
G R A P H PA RT I T I O N I N G

In this chapter the graph partitioning problem is presented, along with the
common ideas behind the majority of algorithms developed to solve it. The
chapter begins introducing known mathematical concepts and definitions
about graphs. Then, the graph partitioning problem (GPP) is defined, fol-
lowed by an overview of the algorithms and heuristics proposed over the last
decades, distinguishing the approaches by purpose, output, performance
and methodology. Lastly, some of the algorithms described briefly in the
overview are discussed in detail, to show their working principle and imple-
mentation.

2.1 mathematical background

The focus on the thesis will be mainly on undirected graphs, both weighted
and unweighted. They are defined as:

Definition 2.1. Undirected weighted graph An undirected weighted graph
G(V, E,W) is a structure defined and characterized by:

1. a set of nodes, or vertices, V

2. a set of edges between nodes E ⊆ V × V , that represent the interaction
of vertices

3. a functionW : E→ < that assigns a weight to the edges, named weight
function

For each pair of nodes such that there is an edge between the first and the
second one, there is also an edge connecting the second to the first node,
making the graph undirected:

∀v, u ∈ V | ∃e = (v, u) ∈ E =⇒ ∃e ′ = (u, v) ∈ E

Definition 2.2. An undirected graph (unweighted) G(V, E) is an undirected
weighted graph for which the weight function is constant equal to 1.

W : E→ 1

9
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(a) Graph (b) Subgraph
(c) Subgraph with discon-
nected nodes

Figure 2.1: A graph with two possible subgraphs.

The first two elements of a graph are the fundamental parts: a set of nodes
and a set of edges that describe the relations between nodes. The third
element makes a graph weighted, associating each edge to a real number.
Weights can express different information, such as similarity, degree of con-
nectivity, distance, cost, capacity, etc.

A graph can be considered in its entirety or just within a subset of it, called
induced subgraph and defined as:

Definition 2.3. Induced subgraph Let G be a graph and let S ⊆ V be a
subset of the graph nodes. The induced subgraph GS is the graph whose
vertex set is S and whose edge are all the edges of E that have both extremes
in S. If the graph is weighted, the edges in GS have the same weights as in
the original graph G.

From now on, instead of using the term induced subgraph, only subgraph
will be used. Since the conditions on the subgraph are only relative to the
node and edge sets, one should also consider extreme cases: a graph is al-
ways a subgraph of itself, because it is defined over all of its nodes. Moreover,
a subgraph can have nodes not necessarily connected by edges, as showed
in Figure 2.1.

Each edge allows a node to interact with other vertices, that form its so
called neighbourhood, or adjacency set, defined as:

Definition 2.4. Adjacency set Given a node v, all the vertices connected to
it by edges are called adjacent nodes and are defined as the set

NG(v) = {u : (v, u) ∈ E}, {v, u} ∈ V

called adjacency set.

This is the first step towards a non-graphical representation of the graph,
that gives local information for every node. Considering Figure 2.1a, node
1 has 2 and 3 as neighbours; node 4 is adjacent to both nodes 3 and 5, and
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Figure 2.2: A small undirected weighted graph.

so on. The adjacency concept defines also the degree of a node, representing
the sum of all the weights associated to the edges that have the node as one
extreme.

Definition 2.5. Degree of a node The degree of a node vi, indicated as d(vi),
is the sum of all the weights of its incident edges:

d(vi) =
∑

vj:(vi,vj)∈E

W(vi, vj)

If a graph is unweighted, the degree of a node is the number of adjacent
vertices.

A graph can be represented it in different ways. Following, two of the
most important representations are reported:

• an adjacency list, that is a collection of unordered lists that describe
the set of neighbours of a node

• an adjacency matrix, that is a matrix of size n × n, where n = |V |,
where a cell of coordinates (i, j) contains the weight associated to edge
(vi, vj) (0 if no edge exists)

An example is given in Tables 2.1a and 2.1b, referred to the graph in Fig-
ure 2.2. It is important to notice that the adjacency list is represented in the
following way: v | ... vadji W(v, vadji ) ... This means that a node is followed
by the list of adjacent nodes, each with the weight of the edge correspond-
ing to them. It is intuitive that the matrix representation is preferred when
there are lots of edges (dense graphs), while the list is suggested when the
number of connections is limited (sparse graphs). The reason is that while
the matrix representation has quadratic space complexity with respect to the
number of nodes and the list has linear or, in the worst case, quadratic space
requirements, a search would be done in a constant time in the matrix but
linearly, in the worst case, in the list.
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vi\vj 1 2 3 4 5

1 0 1 0 0.6 0

2 1 0 0.7 0 0

3 0 0.7 0 0.4 0

4 0.6 0 0.4 0 1

5 0 0 0 1 0

(a) Adjacency matrix

vi

1 2 1 4 0.6

2 1 1 3 0.7

3 2 0.7 4 0.4

4 1 0.6 5 1

5 4 1

(b) Adjacency list

Table 2.1: Different representations of the same graph, showed in Figure 2.2.

The adjacency matrix can be defined in in a more suitable way:

Definition 2.6. Adjacency matrix Let G(V, E,W) be a weighted undirected
graph, with weight function W : E → <. We define the adjacency matrix
AG ∈ <V×V as follows:

Ai,j =

{
0 if i = j

W(i, j) otherwise

Matrix A has multiple properties. It is symmetric, because of the undirected
property of the edges, and from it one can recognize nodes with no connec-
tions, that correspond to rows (or columns) containing only zeros. From the
adjacency matrix one can also detect sequences of nodes and edges moving
alternately horizontally and vertically. Looking at the adjacency matrix in
Table 2.1 and starting from node 1, an example can be constructed to obtain
multiple, but not all, the sequences in the associated graphs.

1. From 1 one moves horizontally until a connected node is found. 2

is encountered, so one starts moving downward, until node 3 is met.
Going to the left does not add any node to the sequence, while going to
the right node 4 is found. Stop here, the sequence 1-2-3-4 is obtained.

2. From 1 one moves horizontally and surpasses node 2 until node 4 is
reached. From here one goes down towards node 5, that is a dead end.
The obtained sequence is 1-4-5.

Before, it was stated that each node has a degree dependant on its neigh-
bours (Definition 2.5). As adjacent nodes can be represented with a matrix,
also degrees can be expressed in a matricial form, in the following way:
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Definition 2.7. Degree matrix LetG(V, E,W) be a weighted undirected graph,
with weight function W : E → <. The degree matrix DG ∈ <V×V , of G, is
computed as:

Di,j =

{
d(vi) if i = j

0 otherwise

where d(vi) has been defined at 2.5.

It is easy to associate the adjacency and degree matrices. Because d(vi) is
the sum of all the weights of the incident edges of vi, then it is also true that
d(vi) is the sum of the values in the ith row of the adjacency matrix.

The sequences of nodes computed during the last part of the explanation
regarding the adjacency matrix are called paths, and are defined in the fol-
lowing way:

Definition 2.8. Path A path in a graph G(V, E) is a sequence of alternated
nodes and edges vi, ei, vi+1, ..., ej−1, vj such that:

• vi, vi+1, ..., vj ∈ V

• ei, ei+1, ..., ej−1 ∈ E

• ei is the edge connecting vi and vi+1

Paths in a graph indicate its density and degree of connectivity. For exam-
ple, a large number of edges allows to find an incredibly large amount of
distinct paths. Certain areas in graphs are characterized by all of their nodes
being connected by one or more paths. These areas are defined as connected
subgraphs.

Definition 2.9. Connected subgraph Given a graph G(V, E), a subgraph GS

of G, defined over vertex set S ⊂ V , is connected if for every pair of distinct
vertices in S there is a path in GS(S, E

′), with E ′ ⊆ E:

∀si, sj ∈ S, i 6= j, ∃(si, e ′i, si+1, ..., e ′j−1, sj) | si, ...sj ∈ S, e ′i, ...e ′j−1 ∈ E ′

Definition 2.10. Connected component A subgraph GS of graph G(V, E) is
maximally connected if it is connected and for all the vertices v ∈ V such that
v /∈ S, there is no other node u ∈ S for which edge (v, u) ∈ E. A maximally
connected subgraph is also known as connected component.

An example of these subgraphs is given in Figure 2.3a. Connected compo-
nents form stand-alone subgraphs, which share no interaction among each
other. This is important when analysing large and complex graphs because
it reduces the computational resources used when performing different ac-
tions on them such as researching a node, ordering or partitioning. The de-
tection of connected components is a well known problem and it has been
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(a) A connected subgraph (b) A maximally connected subgraph

Figure 2.3: The Figure on the left represents a possible connected subgraph, that is
not maximal. On the right, a connected component is showed.

(a) Graph with a generic cut (b) Graph with minimum cuts

Figure 2.4: On the left, the graph is divided by a cut of weight 7; on the right the
same graph is divided by multiple cuts, that are all minimum cuts, of weight 2.

intensively studied since the last century. A remarkable variety of algorithms
is available to find the connected components in an undirected graph: from
serial to parallel approaches, from small to large scaled graphs, as in [6–10].

The last concept seen in this background is the cut.

Definition 2.11. Cut A cut is defined as a pair (S, V \ S), with S ⊆ V . A cut
is characterized by a weight, that is the sum of all the weights of the edges
with one extreme in S and the other in V \ S.

The set of edges that cross the partitions is said cut-set. A cut is minimum if
its weight is the lowest between all the possible cuts on the graph; it is also
not true that, given a graph, the minimum cut is unique (as in Figure 2.4).

2.2 the graph partitioning problem (gpp)

One of the main problems that is associated to graphs is how to partition
them. A graph can represent any set of objects that interact in a specific way:
the objects are the nodes and their relations are represented as edges. Graph
partitioning is a way to distribute nodes and relations, to process them effi-
ciently for any possible application. Some examples of real-world problems



2.2 the graph partitioning problem (gpp) 15

Figure 2.5: A complex graph.

that can be represented using graphs are related to networks (transportation,
biological, social), image processing, security management [11], etc. Parti-
tioning is necessary when the amount of data to consider is too big (example
showed in Figure 2.5) to be analysed with single devices due to the computa-
tional resources needed, and should instead be distributed between multiple
communicating workstations, that can operate on smaller subgraphs.

The partitioning problem can be formally defined in the following way:

Definition 2.12. Graph partitioning problem Given a natural number k,
greater than 1, and an undirected graph with non-negative weightsG(V, E,W),
the graph partitioning problem is the task to divide G into k subsets (parti-
tions) V1, V2, ..., Vk ⊂ V , such that:

• V1 ∪ V2 ∪ ...∪ Vk = V

• Vi ∩ Vj = ∅, ∀i, j ∈ {1, ..., |V |}

The problem is also known as k-way partitioning.

Each subset of nodes Vi defines also a subgraph GSi
(Vi, Ei,Wi) with the

following properties:



16 graph partitioning

(a) Partitioned graph

(b) Quotient graph

Figure 2.6: A graph partitioned into three blocks, of four elements each, and its
quotient graph.

• Vi ⊂ V

• Ei ⊂ E

• Wi(u, v) =

W(u, v) if u, v ∈ Vi

0 otherwise

The partitioning problem can be seen as maximisation or minimisation
of certain objective functions, and can be constrained in different ways. The
most known constraint that can be added is to have balanced partitions:

Definition 2.13. Balanced graph partitioning A balanced graph partitioning
problem is a partitioning problem that must respect a balance constraint,
demanding that all the subgraphs obtained have about the same number of
nodes. In particular it requires that

∀i ∈ 1, ..., k, |Vi| 6 (1+ ε)d|V |/ke

for some imbalance parameter ε ∈ <>0.

To evaluate the quality of a partitioning, one can compute the maximum
imbalance of the partition, computed as:

maxi|Vi|/d|V |/ke

From the partitions a new graph can be built, called quotient graph, having
k nodes such that node i ∈ 1, ..., k corresponds to the node set Vi. An edge
between nodes in the quotient graph exist only if there is an edge that runs
between the node sets in the original partitioned graph (as in Figure 2.6). A
particular case of balanced partitioning is given by ε = 0, meaning that all
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(a) Balanced partition (b) Perfectly balanced partition

Figure 2.7: The left Figure represents one of the possible balanced partitions, while
on the right a perfectly balanced partition is showed.

the partitions contain the same amount of nodes. This is also known as per-
fectly balanced partitioning, and is a well studied problem in the scientific
community, especially from a theoretical point of view.

Two fundamental theorems describe the degree of complexity of the per-
fectly balanced partitioning.

Theorem 2.1. (Garey, Johnson, Stockmeyer) Perfectly balanced bipartition-
ing is NP-complete [12].

Theorem 2.2. (Andreev and Räcke) For k > 3 the perfectly balanced par-
titioning problem has no polynomial time approximation algorithm with
finite approximation factor unless P = NP [13].

Due to the fact that perfectly balanced partitioning is hard to solve exactly,
works in literature rely on heuristics and greedy algorithms that provide
non-optimal solutions, being satisfied with an outcome associated to ε > 0
(so using a relaxation of the perfectly balanced constraint). Following these
approaches two kinds of partitions are obtained: |Vi| < (1+ ε)d|V |/ke and
|Vi| > (1+ ε)d|V |/ke, respectively called underloaded and overloaded parti-
tions. Computational time is another metric used to evaluate an algorithm
for graph partitioning.

The example in Figure 2.7 can be used to summarize the concepts just
seen: the left graph is partitioned into 3 subgraphs and has a maximum
imbalance of 1.333 (meaning that ε > 0.333), while the right one is perfectly
balanced and each group has the same number of nodes.

After the brief introduction of the most important constraint that can be
applied to the graph partitioning problem, the focus can now shift on some
of the objective functions associated to it:

• minimisation of the total cut

• maximisation of the minimum sum of weights inside a partition
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The first objective function is used when a communication or transportation
problem is formulated with a graph, or simply when partitions isolated with
respect to each other are desired. The second objective function is instead
used when communities and common patterns in the data, represented as a
graph, have to be detected. The latter is usually associated to the clustering
problem, but differently from it, it requires k partitions, while clustering has
no balance constraint and no fixed number k (it dynamically changes during
the algorithms iterations).

2.3 the clustering problem

Although in this thesis the main focus will be on the GPP, it is also useful to
know how partitioning differs from clustering to proper understand one of
the proposed algorithms.

Clustering a graph still means partitioning it, but with the differences
that k is not fixed and there is no constraint over the size of the partitions.
Clustering is needed to group together nodes that share common traits and
to identify communities inside the data represented using a graph. For ex-
ample, one could want to bring together all the nodes that have at least n
neighbours, or that are connected to other nodes with edges that have a
weight above a certain threshold α.

A small example is given in Figure 2.8. There, a set of planar points is
represented as a fully connected graph such that:

• a node is characterized by two coordinates i, j ∈ <

• the weight of the edges is computed as the 2D Euclidean distance be-
tween the nodes

Suppose that the main goal is to cluster the graph such that all the edges in-
side a group of nodes have value < 1, meaning elements with small distances
should be together. What can be obtained is represented in Figure 2.8b.

2.4 graph partitioning algorithms in literature

The main ideas behind the algorithms used to solve the graph partitioning
problem can be distinguished between graphs nodes associated to geomet-
ric coordinates and graphs without them. Some methods work on entire
graphs and can compute a solution directly. These algorithms have been re-
cently used as subroutines of more complex procedures to add scalability
and perform partitioning on larger structures.

Few graphs are provided with n-dimensional coordinates, due to the data
that they are representing: meshes, elements with features that can be dis-
cretized in <n, etc. This peculiar category of graphs can be partitioned us-



2.4 graph partitioning algorithms in literature 19

(a) (b)

Figure 2.8: Figure 2.8a is the graph representation of some 2D points, considering
their Euclidean distance as weight for the edges. To the right, in Figure 2.8b, there
is the clustering obtained imposing a maximum distance between nodes of 1.

ing the associated geometry, so the first topic will be about algorithms that
partition spaces in which the graphs are embedded. Next, some advanced
concepts about the adjacency matrix, introduced in Definition 2.6, will be
deepened, seeing how a different category of algorithms is derived from it.
Lastly, the focus will shift on the commonly used approaches for graph par-
titioning: multi-level algorithms that work on a graph reducing its size to
partition a smaller version of it, trying to maintain its connectivity proper-
ties.

2.4.1 Geometry based graph partitioning

Graphs can be associated with geometric concepts, such as coordinates. For
example, a 3D polyhedral surface can be viewed as a graph having as many
nodes as the number of the surface vertices, with edges corresponding to
the edges of the multidimensional structure (Figure 2.9) Partitioning using
nodal coordinates is a well known problem in the old literature. Some of the
most famous algorithms are recursive coordinate bisection (RCB) [14] and
inertial partitioning [15, 16].

RCB is a recursive algorithm that at each step projects the graph nodes
onto the coordinate axis with the longest domain range (x, y or z direction).
The nodes are then separated into two groups, using the median of their pro-
jections, through a bisecting plane (or line, if we consider the 2D case) that
is orthogonal to the considered coordinate axis. It is a divide and conquer



20 graph partitioning

(a)
(b)

Figure 2.9: A cube and the graph representing it.

approach and has the interesting property that can be applied to any data
with features that can be discretised. Think, for example, to a representation
of a social network where each node is a person characterized by certain
features (height, age, grade of education and so on): they can be represented
as a graph with nodal coordinates, associating a value to each feature. The
graph can be then partitioned using RCB in a higher dimensional case (num-
ber of the features). Although the implementation is straightforward and
easy, RCB may output disconnected partitions. An example of how RCB
works is given by Figure 2.10.

Inertial partitioning can be considered an improvement of RCB in terms of
worst case performance, because its bisecting plane is orthogonal to a plane
L that minimizes the moments of inertia of nodes. In other words, the projec-
tion plane L is chosen such that it minimizes the sum of squared distances
to all nodes. Inertial partitioning retains the simplicity of RCB and improves
the quality of the partitioning, but shows the same problems: since the graph
connectivity is not taken into account, it may produce disconnected sub-
graphs.

Both RCB and inertial partitioning separate nodes according to their pro-
jected position with respect to computed hyperplanes, limiting the partition-
ing quality in terms of partitions connectivity and resulting shapes: nodes
are divided into rectangular blocks, without considering if there is a more
suitable geometric structure to represent them. Miller et al. further improved
RCB, proposing the random spheres algorithm [17, 18], summed up by the
following six steps, showed in Figure 2.11.

1. The nodes are projected stereographically from <d to the unit sphere
centred at the origin in <d+1 (Figures 2.11a,2.11b and 2.11c).

2. A centre point of the projected nodes in <d+1 is found.
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Figure 2.10: Example of how a planar graph is partitioned by the RCB algorithm.

3. The projected nodes are rotated around the origin in <d+1 so that the
centre point has new coordinates (0, 0, ..., 0, r) on the d+ 1st axis. Then
the nodes are dilated on the surface of the sphere so that the centre
point becomes the origin.

4. A random great circle is chosen (a d-dimensional unit sphere) on the
unit sphere in <d+1 (Figure 2.11d).

5. The great circle is then transformed to a circle in <d, undoing the
stereographic projection (Figure 2.11e).

6. Lastly, the circle is converted into a separator, that is a small set of
vertices that divides the graph in half (Figure 2.11a).

A different approach is given by using space-filling curves: continuous
curves which completely fill up higher dimensional unit hypercubes [19, 20]
(example in Figure 2.12). Due to their fractal nature, they possess locality
preserving properties: consecutive elements in the curve-induced order tend
to lie close to each other in space, and vice versa. Although space-filling
curves were originally defined on grids, later works [21] demonstrated that
they can also be used to partition graphs. The graphs nodes are separated
recursively and aligned according to the underlying curve structure. The
recursion is repeated until each subpart contains a single vertex.

All of these algorithms have a drawback: they do not exploit the connectiv-
ity of a graph. For this reasons, the focus shifted towards new approaches: ei-
ther the quality of the partitioning is improved (execution time and shape of
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(a) Graph to partition

(b) Geometric representation

(c) Stereographic projection (d) Great circle selection

(e) Nodes re-projection

(f) Partitioned graph

Figure 2.11: Example of how the random spheres algorithm works.
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Figure 2.12: Example of a space filling curve, increasing in precision and complex-
ity.

the resulting partitions), exploiting distributed algorithms, or the geometric
information is embedded into other types of graph partitioning algorithms
[22–24].

2.4.2 Spectral partitioning

Some concepts are needed to describe a different kind of algorithms used
for partitioning, based on spectral information of a graph.

Definition 2.14. Eigenvector and Eigenvalue An eigenvector of a square
matrix A ∈ <n×n is a non-zero vector v ∈ <n that, when A is multiplied by
v, yields the constant multiple of v.

Av = λv

The number λ ∈ < is called eigenvalue ofA corresponding to the eigenvector
v.

Certain matrices have special features concerning eigenvectors and eigenval-
ues, as the positive semi-definite matrices, defined as:

Definition 2.15. Positive semi-definite matrix Let A ∈ <n×n be a sym-
metric matrix. It is positive semi-definite if it verifies one of the following
properties:

• ∀x ∈ <n
6=0 : xTAx > 0

• all eigenvalues of A are > 0

From the adjacency and degree matrices, one can build a new matrix L,
called Laplacian matrix of a graph.
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Definition 2.16. (unnormalized) Laplacian Matrix Let G(V, E) be a graph.
The matrix L = D−A, where D is the degree matrix and A is the adjacency
matrix, is called (unnormalized) Laplacian matrix of G.

The Laplacian matrix has some important properties in the case of undi-
rected graphs.

Theorem 2.3. The Laplacian matrix L of a graph G is symmetric if and only
if G is undirected.

Proof. The sum, difference and element-wise multiplication of two matri-
ces are symmetric if both are symmetric. D is a diagonal matrix and con-
sequently is symmetric. A is symmetric only if representing unweighted
graphs (because each edge appears twice), hence L is symmetric only if the
associated graph is undirected. �

Theorem 2.4. The Laplacian matrix L is positive semi-definite.

Corollary 2.5. There is a trivial eigenvector 1 = (1, . . . , 1)T of the graphs Lapla-
cian. Its eigenvalue is 0.

The results of these theorems can be showed on the graph of Figure 2.2,
whose adjacency matrix is in Table 2.1:

L · 1 =



1.6 −1 0 −0.6 0

−1 0.7 −0.7 0 0

0 −0.7 1.1 −0.4 0

−0.6 0 −0.4 2 −1

0 0 0 −1 1


·



1

1

1

1

1


=



0

0

0

0

0


= 0 · 1

Lastly, another important theorem is enunciated (but not proved).

Theorem 2.6. The number of occurrences of the eigenvalue 0 in the set of
eigenvalues, known as spectrum, of the graphs Laplacian is the number of
connected components.

The partitioning problem can now be restated as follows: given an undi-
rected weighted graph that represents some data and whose weights indi-
cate the similarity between them, the graphs has to be partitioned such that
the edges between different partitions have a very low weight (which means
that separated nodes are dissimilar from each other) and the edges within a
group have high weight (which means that nodes within the same partition
are similar to each other). Two objective function can be associated to this
problem:
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• minimisation of the RatioCut [25], that is the sum of the cuts nor-
malised with respect to the size of each partition

RatioCut(V1, V2, . . . , Vk) =

k∑
i=1

cut(Vi, Vi)

|Vi|

• minimisation of the Ncut [26], that is the sum of the cuts normalised
with respect to the volume of each partition, that is the sum of the
weights of its edges

Ncut(V1, V2, . . . , Vk) =

k∑
i=1

cut(Vi, Vi)

vol(Vi)

where the cut between two sets of nodes has been defined at 2.11. The re-
laxation [27] of these problems lead to multiple algorithms that involve the
manipulation of the Laplacian matrix of a graph: unnormalized spectral clus-
tering if we relax RatioCut and normalized spectral clustering if we relax
Ncut.

The first, unnormalized spectral clustering, is described as follows. Given
the adjacency matrix A ∈ <n×n of a graph G, the nodes can be partitioned
into k groups with the following steps:

1. the unnormalized Laplacian L (Definition 2.16) of G is computed

2. the first k eigenvectors v1, . . . , vk of L, in ascending order by value, are
derived

3. the matrix V ∈ <n×k, containing the previously computed eigenvec-
tors as columns, is built

4. the rows of V , that are yi ∈ <k, i ∈ {1, 2, . . . , n} are taken singularly

5. the points yi are clustered with the k-mean algorithm into blocks
C1, . . . , Ck

Normalised spectral clustering is very similar and changes only the Lapla-
cian considered [26]:

1. the unnormalized Laplacian L (Figure 2.16) of G is computed

2. the first k eigenvectors v1, . . . , vk of the generalized eigenproblem Lv =

λDv, in ascending order by value, are derived

3. the matrix V ∈ <n×k, containing the previously computed eigenvec-
tors as columns, is build

4. the rows of V , that are yi ∈ <k, i ∈ {1, 2, . . . , n}, are taken singularly
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(a)

(b)

Figure 2.13: Example of image segmentation using the self tuning spectral algo-
rithm proposed in [29].

5. the points yi are clustered with the k-mean algorithm into blocks
C1, . . . , Ck

where the eigenproblem Lv = λDv correspond to the normalised Laplacian
L = I−D−1A. For both algorithms, once the clusters C1, . . . , Ck are com-
puted, one can obtain the desired partitions over the set of nodes of the
graph, as V1, . . . , Vk with Vi = {j|yj ∈ Ci}.

The main advantage of spectral clustering techniques applied to graph par-
titioning is that they are simple to implement and can be solved efficiently
by standard linear algebra methods, performing better than traditional clus-
tering algorithms. However, they cannot be considered good solutions of the
balanced partitioning problem (and in fact they are referred to as clustering
techniques), since they rely on algorithms that do not care about the size of
the partitions. Moreover, considering n nodes with f features/coordinates
it is trivial to see that spectral clustering algorithms are indifferent to the
number of features, while they suffer as n increases (they involve the manip-
ulation of n×n matrices).

Later, scientific literature focused on solving the problems, described in
[28], of spectral clustering, especially scalability, locality of information, eigen-
vector computation, etc. Zelink et al. [29] proposed an algorithm, named
Self-Tuning Spectral Clustering, that automatically detects k, moving even
further from the partitioning problem, going instead towards the clustering
problem (example in Figure 2.13a).
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In the last decade particular attention was directed towards the lack of scal-
ability of standard spectral clustering algorithms: in [30] the issue is faced
investigating two representative ways of approximating the dense similar-
ity matrix to distribute the computation on multiple devices, obtaining a
promising speed-up; in [31], instead, a large-scale multi-view spectral clus-
tering approach is proposed based on the approximation of similarity graphs
using bipartite graphs. Other works, such as [32] reduce the computational
time adopting results in the emerging field of graph signal processing: graph
filtering of random signals and random sampling of bandlimited graph sig-
nals.

Scalability and generalization are faced also adopting deep learning ap-
proaches to spectral clustering. In the recent SpectralNet network [33], a map
that embeds input data points into the eigenspace of their associated graph
Laplacian matrix is learned, followed by a standard clustering. SpectralNet is
trained using a procedure that involves constrained stochastic optimization,
that allows it to scale to large datasets. Moreover, the map learned by Spec-
tralNet naturally generalizes the spectral embedding to unseen data points,
allowing a dynamic modification of the original graph, feature that is not
present in other algorithms.

2.4.3 Multi-level graph partitioning

To improve spectral bisection, that is spectral clustering with k = 2, a new
idea for partitioning graphs was introduced in [34]: multi-level graph parti-
tioning. The motivation behind multi-level approaches is that the partition-
ing is easier and more efficient to perform on smaller graphs, hence the need
to find a way to shrink complex networks.

These coarse-to-fine algorithms consist of three steps. First, from the orig-
inal graph, smaller and smaller graphs are created, in the so called coarsen-
ing phase. Second, the smallest graph in the sequence is partitioned, having
particular attention to obtain balanced groups. Lastly, the partition is back-
propagated, expanding the nodes of the smaller graph until the original
structure is reached, including possible refinements over the partitions. The
last phase is called graph uncoarsening with refinement (see Figure 2.14).

2.4.3.1 Coarsening

The coarsening phase is obtained following reduction (or contraction) schemes:
edges are aggregated and replaced with a single weighted node. In this
phase, a hierarchy of graphs with decreasing number of nodes is created
in multiple ways.

One of the simplest and mostly used contraction scheme is the strict ag-
gregation SAG [35, 36, 64, 37] (also known as edge contraction), where nodes
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Figure 2.14: Multi-level partitioning scheme for bisection.

are inserted into small disjoint subsets, called aggregates. Two nodes vi and
vj belong to the same aggregate if their coupling is locally strong, meaning
that the weight of the edge connecting them is comparable to the maximum
weight of their incident edges, in particular to

min{max
k
W(vi, vk),max

k
W(vk, vj)}

An example is showed in Figure 2.15. Some of the known algorithms based
on this scheme are presented and explained in the following list.

1. HEM (heavy edge matching) [51]: this algorithm matches every un-
matched node with the free neighbours that share with it the maxi-
mum weight, considering the nodes in random order. Although this
method is easy to implement and fast (linear in the number of edges),
it does not guarantee high quality [36].

2. SHEM (sorted HEM): used and presented in the famous METIS parti-
tioner [38], it matches nodes in the same way as HEM, but considers
them in non-decreasing order of degree, randomizing in case of degree
equality. It provides better results, with the same time complexity as
HEM.

3. GEM (greedy edge matching) [41]: edges are ordered according to their
weights, in non-increasing order, and scanned from the first to the last.
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(a)
(b)

Figure 2.15: Example of a possible implementation of the SAG scheme; notice how
the reduction obtained, starting from the random node ordering {2,4,1,5,3,0,6}, is
not the best reduction possible.

Figure 2.16: Simple example of how a WAG scheme works.

An edge is inserted into a match if both of its extreme nodes are un-
matched. While it has increased time complexity (by a logarithmic fac-
tor), it provides better results than HEM and SHEM.

4. GPA (global path algorithm) [41]: it orders the edges as GEM, but
builds a collection of paths and cycles of odd length. With them a
matching is computed using linear programming. It has the same time
complexity as GEM, but considerably better results. GPA is used in the
partitioning tool KaHIP [39, 40].

Other aggregation schemes exist, such as the weighted aggregation WAG
(see Figure 2.16) [42, 43]. This scheme allows a fuzzy representation of nodes,
that can belong to different aggregates. This implies that at each iteration of
the coarsening phase, the node set is covered by subsets that may not be
disjoint. The WAG scheme propagates the connectivity of the nodes from
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the original graph through all the reductions up to the coarsest level, al-
lowing a fine yet small representation of the graph. Differently, SAG based
schemes can show problems when making global and local decisions on the
coarsened graphs, since some information is lost at each step. Chevalier and
Safro [44] compared the two schemes in details.

Recent works modify the two schemes to improve the resulting coarsening.
In [46], an efficient SAG based algorithm, MCCA, is proposed: the contrac-
tion phase is preceded by the edges weight computation, considering nodes
and edges weights; then, a score is assigned to all the nodes of the graph,
sorting them in descending order; the most important node is selected and
forms, along with the direct neighbours, a group; lastly, the group is marked
as contracted and after updating all the weights the steps are repeated, un-
til the initial graph reaches an acceptable size. Literature also includes: tree
based schemes, such as in [47], where an edge rating based on how often
an edge appears in relatively balanced light cuts induced by spanning trees
is introduced; a flow based coarsening algorithm [48] or even coarsening
frameworks whose goal is to retain the spectral properties of a graph [49].

2.4.3.2 Initial partition

Once the coarsening phase reaches an end and the resulting reduced graph
has a small enough size, an initial partition is defined. The algorithms that
can be found in literature can be grouped into three categories: random
partitioning, robust spectral partitioning [45, 14, 15] and greedy algorithms
[51, 52].

• Random methods are easy to implement and have a linear time com-
plexity, but produce very poor solutions in terms of maximum unbal-
ance. They are usually associated to strong refinement algorithms dur-
ing the uncoarsening phase.

• Exploiting eigenvectors of the adjacency matrix on a small graph, one
can use iteratively spectral bisection to obtain balanced results. Imple-
mentations using the Lanczos [50] method to find the second eigen-
value of the Laplacian of the graph, allows to run the algorithm in less
than quadratic time (O(mn), where m is the number of iterations).

• Greedy algorithms assign one of k different random nodes (seeds) of
the coarsest graph to each partition. The remaining vertices are as-
signed to partitions in a particular order, using greedy heuristics.

Some of the most used heuristics are the following. GGP [51] grows
a region around each seed until n/k nodes are added to the region.
GGGP [51] performs the same steps as GGP but differs from it assign-
ing vertices to a growing region minimising the total insertion gain,
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that is the increment in cut size for adding free elements to a partition.
The assignment is done in a circular order with respect to the parti-
tions, and not as a whole in a single partition. MMG [52] is based on
GGGP with the addition of tie breaking rules when selecting nodes to
assign to a partition.

2.4.3.3 Uncoarsening and refinement

The last step of the multi-level partitioning approach is the uncoarsening
and refinement phase. Uncoarsening is dependant on the method used for
reducing the graph size. If the graph is coarsened with strict aggregation,
the opposite action is easily done by unpacking the vertices in the groups
and rebuilding the original structure. The situation gets more complex if
instead a weighted aggregation method is used, because of the fractional
nature of the coarsened nodes: when uncoarsening, there is no longer any
information of the fraction of nodes assigned to higher levels. This can be
resolved interpolating the node values using the values of their neighbours,
to see of which aggregate they are part of.

Different refinement algorithms have been proposed over the course of
the last 50 years and are still used today given their precision (with obvious
enhancements). In the following paragraphs some of them are described.

kernighan-lin (kl) local search The algorithm, proposed in [53],
is an iterative, bisecting, partitioning heuristic based on swapping. For this
reason it does not improve the balance of a partition, but only quality metrics
associated to it. As long as the cut size keeps decreasing, the algorithm per-
forms the following steps: node pairs belonging to different partitions which
give the largest decrease or the smallest increase in cut value are exchanged
and such vertices are locked and cannot be swapped again.

A cost function is used to decide which nodes to swap.

Definition 2.17. Gain of a node Given two disjoint sets A and B, the follow-
ing concepts are defined.

• External cost of a ∈ A: Ea =
∑

b∈BW(a, b), that is the sum of the edge
weights crossing the set, starting from a

• Internal cost of a ∈ A: Ia =
∑

a ′∈AW(a, a ′), that is the sum of the
edge weights inside the set, starting from a.

The difference between the external and internal costs of a node is called
gain of the node.

The cost function used in the KL local search is the gain of swapping two
nodes a and b (not necessarily connected by an edge), computed as:

gab = ga + gb − 2W(a, b)
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Figure 2.17: Simple example of how the Kernighan-Lin local search algorithm
works.

The algorithm stops when the sum of the gains associated to the swapping
effectively done is less or equal than 0.

While the algorithm provides a local optimal solution (example in Figure
2.17), it has cubic time complexity and does not rebalance the partitions and
is limited to the 2-way settings, requiring modifications to be applied to the
general k-way graph partitioning problem. First, partitions are usually not
equally sized and a solution could be to add dummy nodes to the smaller
partition, only to remove them at the end of the algorithm. Second, it needs
an extension to k-way, that can be done applying the algorithm on each
pair of subsets. All the solutions further increase the time required by the
algorithm, although the most recent and optimized versions have quadratic
complexity [54].

fiduccia-mattheyses (fm) heuristic The FM heuristic [55] improves
the results of KL local search by moving single nodes between two partitions
A and B instead of swapping them. The algorithm is iterative, and at each
pass works as follows. FM starts by setting the state of every node to un-
marked. Then, an unmarked node v with maximum gain value is selected
from A and B in some way, that will be described later. The node is marked
and the gain values of its neighbours are updated. This leads to two ordered
sequences a1, . . . , ap and b1, . . . , bp with ai ∈ A and bi ∈ B. The algorithm
searches then for the smallest index such that the sum of all the node gains
is maximised. If such sum is positive, the node movement is performed and
the next pass begins, otherwise the algorithm stops.

The major modification with respect to KL local search is that Fiduccia
and Mattheyses provide a data structure such that the computation of the
node with best gain and the update of the gain values of a moved node
neighbours can be done in constant time (assuming that the edge weights
are non-negative integers): a priority queue (or bucket list, in Figure 2.18).



2.4 graph partitioning algorithms in literature 33

Figure 2.18: Representation of the bucket list structure used in the FM algorithm.
The vector B holds pointers to nodes with the same indices, stored in some bucket
of the A vector. The ith bucket holds the nodes that induce a gain of i when moved
to another partition.

The algorithm uses one bucket list for partition, leading to problems when
allowing a certain amount of imbalance: there are two lists that can have a
node moved. Holtgrewe, Sanders and Schulz [56] proposed some alterna-
tives about how to select the candidate node to be moved.

• Alternating: the node is selected alternately from each partition.

• TopGain: the node selected is the one that provides the maximum gain
among the possible movements. Ties are broken selecting a random
node.

• MaxLoad: the partition with the greatest sum of weights loses a node.
Ties are broken selecting a random node.

• TopGainMaxLoad: same as TopGain, but switches to MaxLoad in case
of a tie.

k-way fiduccia-mattheyses (kfm) heuristic An early improvement
to FM heuristic was made by Sanchis, Hendrickson and Leland [57, 35].
The proposed modification uses k(k− 1) priority queues, one for each move
(source block, target block). To move a node, all the queues maximising the
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Figure 2.19: V-cycle pipeline, from [39].

gain are found; then the movement with the highest gain that improves (or
maintains) the balance is performed. In other words, a node is moved to the
block which maximises the reduction in the cut when the node is moved.
The running time of this algorithm is, however, higher than the 2-way FM.
A linear time improvement was proposed later, by Karypis and Kumar: in-
stead of using multiple priority queues, it works with a global bucket list for
all the moves.

Another improvement to FM heuristic is presented in [58]. There, instead
of moving a single node for iteration, certain moves are not allowed for
a specific number of iterations. The method always moves a non-excluded
node with the highest gain. This algorithm is also known as Tabu based
Fiduccia-Mattheyses (TFM) heuristic.

2.4.3.4 Iterated multilevel approaches

The main idea behind improvements of the multi-level approach is to iterate
multiple times the three steps, using random different seeds for the coarsen-
ing and refinement phases, exploiting the information obtained at the end
of the uncoarsening at each iteration [59].

This approach, named V-cycle (represented in Figure 2.19) works as fol-
lows: after one pass of the multilevel scheme is done, additional iterations
are performed such that cut edges are not contracted; a partition can be then
used as initial guess of the coarsest graph (skipping the small graph parti-
tioning phase, done only in the first iteration). This ensures non-decreasing
partition quality, given that the refinement step does not degrade the results.

In multigrid linear solvers, Full-Multigrid methods are preferable to sim-
ple V-cycles. New global search strategies were elaborated, called W-cycles
and F-cycles, whose working principle differs from V-cycles in the fact that
at each iteration multiple (two for F-cycles, at least three for W-cycles) re-
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Figure 2.20: F and W cycles iteration pipeline, from [39].

cursive calls, to re-coarsen and refine an intermediate result, are performed
(showed in Figure 2.20).

In the last few years, the multilevel partitioning approach has been increas-
ingly studied, and multiple proposals have been made, all working towards
a distribute approach. The majority of the state of the art algorithms present
parallel characteristics: scalability is improved by performing the coarsening
and refinement on different machines, as in ParMETIS [60], KaHIP [40, 61]
and PT-Scotch [62].

2.5 implementation of three partitioning algorithms

This section is dedicated to the detailed description of some of the state of
the art algorithms described before 2.4. The first is a parallel implementation
of the RCB geometric partitioning algorithm, included in the Zoltan software
toolkit [66, 14]. The second and third described algorithms, ParMETIS [64,
65, 63] and KaFFPa [39], are both multi-level methods.

2.5.1 Zoltan Parallel Recursive Coordinate Bisection

The parallel RCB included in the Zoltan toolkit [66, 14, 75], starts with an
uneven distribution of points over a number of k threads (remember, graphs
with nodal coordinates can be represented as a set of geometric points), that
are clustered into two groups. The initial assignment of the points can either
be defined by the user (for example, the first processor holds n/3 points,
the second n/3 of the remaining points and so on, without caring about
the balance constraint) or respecting the proportion of computational power
allowed by the threads.

The initial computation domain, that considers all the points, is split using
a plane orthogonal to the axis corresponding to the maximum points elon-
gation, and points are arranged according their positioning with respect to
the cutting plane. For every stage, each subdomain of threads and the points
that are contained in them are divided into two sets, based on which side of
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the current cutting plane they belong to. Either or both of these sets may be
empty.

Each thread is associated to a position in the space, determined by the cuts
done. The set of points which are located in the same position in the space
as the thread they are currently on, are retained on it. The remaining points
are sent to the corresponding threads, on the other side of the cut. When
needed, a group of threads can be further split (one common approach is to
use as many threads as the number of desired partitions) and assigned to
a particular region of points. To better understand this concept an example
will be used, represented in Figure 2.21. Imagine a 2D case of n points (see
Figure 2.21a) and 4 threads. The initial configuration is characterized by two
groups, A and B containing each two threads, and the points assigned to
them with a certain criterion (Figure 2.21b). The first cutting line, suppose
vertical, is computed and used to partition the points (Figure 2.21c). Each
group of threads is then assigned to a side of the cut (in the example groupA,
with threads 1 and 2, corresponds to the space to the left of the cutting line,
while B to the right space). Lastly, the points are sorted parallelly among
the groups, according to their positioning with respect to the separation
computed (Figure 2.21c).

In order to minimize the maximum memory usage, the points that are
being sent to each set of threads are distributed such that each thread in a
set has about the same number of points. In the case when a processor has
more points than the average number of points that the rest of the threads,
belonging to the same set, have, then that thread will not receive any objects.

2.5.2 ParMETIS k-way partitioning

ParMETIS is an MPI-based parallel library that implements a variety of al-
gorithms for partitioning and repartitioning unstructured graphs and for
computing fill-reducing orderings of sparse matrices, showed in Figure 2.22.
The procedure described here will be the one used to partition graphs [64,
65, 63].

This routine takes a graph and computes a k-way partitioning while at-
tempting to minimize the number of edges that are cut during the execution.
In the coarsening phase all the threads collaborate to compute a matching
of the vertices, in parallel. More precisely, each thread computes a possi-
ble matching for the nodes in it (in particular, heavy-edge matching scheme
with a balance-edge tie-breaking rule). To avoid contentious situations, such
as the possible matching between points belonging to different threads, effi-
cient communication protocols are used.

The partitioning over coarsest graph is also parallelised: threads are split
into four groups, each performing a different partitioning using a task de-
composition method scheme, where each processor calls the multi-constraint
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(a)

(b)

(c) (d)

Figure 2.21: The points in Figure 2.21a are unevenly distributed to two groups of
threads (groups are red boxes, threads are black boxes) in Figure 2.21b. After a
cutting line is found, in Figure 2.21c, with respect to the whole points set, the nodes
are reallocated to the corresponding group, in a random way, Figure 2.21d.

bisection algorithm implemented in METIS [38]. The best partitioning is then
selected and communicated to all the other threads.

Lastly, the refinement phase, based on a KL/FM-type algorithm, is en-
hanced as a two steps heuristic. In the first step, refinement operations are
made concurrently (as in the serial case), but only temporary structures are
updated and used. Then, a global reduction operation is performed to check
if the balance constraints are violated. If they are, each processor is required
to disable a portion of its proposed node movements. An example of the
refinement phase is showed in Figure 2.23.
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Figure 2.22: ParMETIS routines.

2.5.3 KaHIP/KaFFPa

Also KaHIP [40] is a collection of algorithms for partitioning and repartition-
ing graphs, inspired by numerous techniques (evolutionary methods, label
propagation algorithms, etc.), showed in Figure 2.24.

KaFFPa [39], the algorithm that is described, is a multi-level graph parti-
tioning framework that includes several improvements: flow-based methods,
improved local search and repeated runs similar to the approaches used
in multigrid solvers. As many other multilevel partitioning algorithms, the
local improvement adopted in KaFFPa is a variant of the FM heuristic de-
scribed before.

KaFFPa’s refinement phase is organized in rounds. In each, a priority
queue P is initialized with all nodes that are incident to more than one parti-
tion, in a random order. The priority is based on the gain g(i) = maxPgP(i)
where the nodal gain gP(i) was defined in 2.17. A local search then repeat-
edly looks for the highest gain node and moves it to the partition that maxi-
mizes the total gain. In each round a node is moved at most once and after a
node is moved its unchanged neighbours are inserted into the priority queue.
When a stopping criterion is reached, all movements after the best-found cut,
that occurred within the balance constraint, are undone. This process is re-
peated several times until no improvement is found.

KaFFPa additionally uses more advanced local search algorithms. The
first method is based on max-flow min-cut computations between pairs of
partitions. This improvement method is applied between all pairs of blocks
that share a non-empty boundary (like the k-way extensions of KL and FM
heuristics, it is applied to pairs of partitions). The algorithm constructs a
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Figure 2.23: Example of the refinement scheme used in ParMETIS. In Figure (a) the
represented partitions are unbalanced. Each processor (only three are considered
for this case) concurrently elaborates and proposes a set of refinement moves (b).
If all of them were accepted, the unbalance problem would still remain. For this
reason, about half of the movements proposed are disabled, resulting in balanced
partitions (c). The Figure is taken from [63].

flow problem by growing an area around the given boundary nodes of a
pair of temporary partitions such that each cut in this area yields a feasi-
ble bipartition of the original graph within the balance constraint. One can
then apply a max-flow min-cut algorithm to obtain a min-cut in this area
and therefore a non-decreased cut between the original pair of partitions.
The second method for improving a given partition is called multi-try FM.
This local improvement moves nodes between partitions in order to decrease
the cut. While other k-way methods are initialized with all boundary nodes,
the multi-try FM algorithm is initialized with a single boundary node, thus
achieving a more localized search, repeatable for several iterations. The al-
gorithm has a higher chance to escape local optima than the KL and FM
heuristics, that can get out of holes, but only to a certain extent.

It is interesting to notice that KaFFPa coarsening/refinement iteration
scheme belongs the F-cycles iterative multilevel approaches described be-
fore.
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Figure 2.24: Techniques used in the KaHIP graph partitioning toolkit.
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3
L A B E L C L U S T E R I N G

The idea behind graph partitioning algorithms based on clustering is to ex-
ploit similarities between nodes, expressed as weighted edges. This similar-
ity can be computed in different ways: number of adjacent nodes, kernels,
semantic information, etc. We propose a hybrid multi-level clustering graph
partitioning algorithm, where the similarity between nodes is expressed by
the semantic information of the node labels. The algorithm is used to par-
tition a graph into k components, reducing it using clustering techniques.
After a brief description of the proposed algorithm, named Label Cluster-
ing, and a comparison with multi-level approaches, the chapter will contain,
presented in order, the detailed steps to perform Label Clustering: graph
reduction, graph coarsening and spectral clustering. Finally, experimental
results to evaluate the quality of the algorithm are presented.

3.1 brief algorithm description

Label Clustering works on a graph reducing its size clustering the nodes
in two phases, then it partitions the smallest graph into k blocks, that are
expanded and uncoarsened up to the original graph. The first phase consists
in taking a labelled graph G(V, E, L), where L is a labelling function defined
over the set of nodes, and reduce it to a new labelled graph GR(VR, ER, LR)

that has the following properties:

• To each element vRi
∈ VR corresponds a subset Vi ⊆ V , such that

∪iVi = V and for each distinct vRi
, vRj

∈ VR, it holds Vi ∩ Vj = ∅

• Each element vRi
∈ VR has a label that differs from the ones of its

adjacent nodes, determined by the label the nodes in the corresponding
subset Vi ⊆ V

• The labelling function LR has the same codomain of L

The first property guarantees that a correspondence holds between the nodes
of the old and new graphs: all the nodes of G are clustered into the nodes
of GR, and all the clusters must be independent from each other. The sec-
ond property is the most important, since it describes the idea behind the
first reduction step: obtaining a minimized graph with respect to the node
labels, such that two adjacent nodes with the same label do not exist (ex-
ample in Figure 3.1). The third property grants that no label is lost in the
reduction process: if in the original graph there are three labels, say red,

43
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Figure 3.1: The first phase of label clustering takes the left graph as an input, that
has 3 labels and 4 distinct groups of nodes, and outputs the right graph that has as
many nodes as the number of groups in the input graph.

blue and green, the reduced graph will still have the same labels. The size
of the reduced graph depends entirely on the initial label distribution: if the
graph is labelled such that the second property mentioned before is already
satisfied, the reduction is useless, since there it would be no improvement.
This is an extreme case that can be considered from a theoretical point of
view, but that in practice is not relevant: such graph would provide very lit-
tle information with respect to an unlabelled graph, and better partitioning
algorithms should be used instead.

Once the initial graph G has been reduced to GR, depending on the ob-
tained graph size, the second phase begins. If GR has more than a few hun-
dreds of nodes, a coarsening strategy is iteratively used to diminish its size.
The adopted coarsening algorithm is a classic SAG max-weight reduction
scheme, similar to HEM: cluster adjacent nodes with highest weights until
the desired size is reached.

After a small graph is obtained, either from the reduction phase only or
also with the coarsening algorithm, the low number of nodes allows a direct
partitioning method. Label Clustering makes use of a version of Normalised
Spectral Clustering [67], dividing the graph into k blocks, where k is a choice
of the user.

3.2 similarities with multi-level approaches

Label clustering is heavily inspired by the multi-level graph partitioning al-
gorithms described before. The three main phases are preserved, with some
important differences. The fundamental one is related to the balance prob-
lem: as it is now, label clustering main goal is not to obtain balanced par-
titions, but to create k blocks whose nodes share the highest amount of
similarity. This can be either expressed as the edge weights, representing the
similarity between nodes, or some external knowledge about the label rela-
tionships (see Figure 3.2). The second difference is how coarsening is done.
Instead of using a single strategy to reduce, step by step, the graph size, we
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(a) (b) (c)

Figure 3.2: Bipartition example. Given the graph in Figure 3.2a and the knowledge
that blue is more similar to red than azure, the graph is reduced aggregating nodes
with the same label (Figure 3.2b) and then group aggregates according to their
likelihood to be together (Figure 3.2c).

adopt two consecutive iterated phases. First, the graph is reduced in size ac-
cording to the label equality, then the new smaller graph is coarsened going
trough an aggregation heuristic, maximizing the similarity between nodes.
The third difference is the algorithm used for partitioning the coarsest graph:
Normalised Spectral Clustering [67] instead of random methods or greedy
algorithms. Lastly, uncoarsening is direct with no refinement: aggregated
nodes from the original graph are unpacked and associated with a partition.

3.3 graph reduction

Label Clustering begins grouping together all the nodes in a graph that share
the same label and are connected to each other. The general concept of con-
nection between nodes is defined as follows:

Definition 3.1. Connectivity of nodes Given an undirected graph G(V, E),
two distinct nodes va, vb ∈ V are connected if there exist an alternated se-
quence of vertices and edges v0, e0, v1, e1, ..., vn such that:

• vi ∈ V , with vi ∈ v0, v1, ..., vn

• ei ∈ E, with ei ∈ e0, e1, ..., en

• v0 = va and vn = vb

• ei is an edge connecting vi and vi+1

In other words, two vertices are connected if a path between them exists.

This definition of connection does not make any distinction between the
paths connecting two nodes and creates ambiguous situation, as showed in
Figure 3.3: a path may include only nodes with the same label or a mix-
ture of different elements. For this reason, stricter concepts and definitions
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(a) (b)

Figure 3.3: In Figure 3.3a the nodes A and B are connected directly, while in Figure
3.3b the paths between them passes through nodes with different labels.

regarding the connectivity to use when reducing a graph, are needed. First,
the concept of connection between labelled nodes and labelled components
are defined as follows:

Definition 3.2. Label connection Given a labelled undirected graphG(V, E, L),
two distinct nodes va, vb ∈ V , with same label l, are label connected if there is
at least a path P such that all of its nodes have the same label l.

Definition 3.3. Labelled component Given a labelled undirected graphG(V, E, L),
a labelled component C(Vl

c, E
l
c, L

l) is a subgraph of G such that:

• All vertices vi ∈ Vl
c have the same label l

• Vl
c ⊆ V

• Elc ⊆ E

• Ll is a constant labelling function that assigns to each node the label l

• ∀vi, vj ∈ Vl
c, i 6= j, exists a path P between them whose vertices and

edges are subsets of Vl
c and Elc respectively

Two important considerations can be done. First, a labelled undirected
graph can always be decomposed into disjoint labelled components. Second,
there is no constraint over the number of labelled components with the same
label, as showed in Figure 3.4. In fact, a labelled component is determined
not only by the associated label but also by its vertex and edge sets.

Two theorem can now be enunciated, one dual of the other, that will be
important for the reduction algorithm explanation.

Theorem 3.1. All the nodes vi ∈ Vl
c of labelled component C(Vl

c, E
l
c, L

l) are
label connected.

Proof. The proof is direct consequence of Definitions 3.3 and 3.2. All the
nodes in C have the same label, and this guarantees the first requirement
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(a) (b)

Figure 3.4: A graph with the corresponding reduction: notice how different groups
have the same label.

of label connectivity. The last property of a labelled component implies that
each path that can be found in it, and we can find at least one for pair of
nodes, contains only nodes having the same label l, since they all belong to
Vl
c. But this is exactly the second and last requirement of two nodes to be

label connected. �

Theorem 3.2. If two nodes vi, vj ∈ V of graph G(V, E, L) are label connected,
then they belong to the same labelled component.

Proof. The proof can be derived by contradiction. Let’s consider two nodes
vi, vj that are label connected, but not in the same labelled component. Being
label connected, vi and vj have the same label, so they potentially belong to
the same labelled component (see 3.3). Since the opposite is assumed true,
it must hold that there is no path between vi and vj such that all the nodes
belonging to the path have the same label (because it is required for all the
pairs of nodes in the labelled component). But this can never be satisfied
because it goes against the second part of the definition of label connectivity,
granted in the initial statement. �

The task of reducing a graph using the label can be now reformulated.
Given an undirected labelled graph G(V, E, L) its label reduction consists
into creating a new graph GR such that:

1. The nodes of GR are the labelled components of G

2. If two vertices of G, belonging to different labelled components, share
an edge, then there exist an edge in GR that connects the nodes corre-
sponding to labelled components

The obtained graph is now minimal with respect to the number of nodes that
share the same label and preserves the connectivity of the original graph.
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Figure 3.5: Nodes exploration, starting from the node with thick black border. Solid
arrows correspond to the exploration order, dotted arrows to the visited nodes.

Figure 3.6: If the algorithm considered only one connected component, starting
from the green node would result in a wrong output, described in the text.

3.3.1 Basic Reduction algorithm (recursive)

The algorithm working principle is very similar to the depth-first search on
graphs and trees [70–72]. However, because the goal is to reduce a labelled
graph, the algorithm must give priorities when visiting and exploring nodes,
as showed in the mini-example in Figure 3.5.

The first part of the algorithm, described in the ReduceGraph procedure at
line 1 of Algorithm 1, breaks the initial graph into its connected components,
each used in the reduction phase. This is needed because the algorithm relies
on the adjacency of the graph nodes: starting the reduction algorithm on the
whole graph may lead to wrong outputs if it is not connected, violating
the desired properties of minimality in terms of label connectivity. Figure
3.6 provides an example: if only one connected component was considered,
the algorithm may start reducing from the green node, ending immediately
because it is alone; however another component of the graph should have
been reduced (the red nodes). Moreover, the reduced graph GR is initialised
with the addition of a node to indicate that a new labelled component is
detected (defined as group in the algorithm).
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The second procedure of Algorithm 1, ReduceConnectedComponent, is
the core of the reduction algorithm. For each node the adjacency set is bi-
sected into two disjoint sets: nodes with same label and nodes with different
labels. The former are associated to the same labelled component, the cur-
rent group, and are explored immediately. This visit and explore priority is
related to Theorems 3.1 and 3.2, enunciated before. Exploring in depth-first
nodes with the same label is a subtle way to search the set of nodes that sat-
isfy the properties of a labelled component. When exploring, paths between
nodes going through only sequences with the same label are enumerated,
hence creating a labelled component. When the exploration of nodes with
the same label is exhausted and ends, it means that a labelled component
has been found and fully populated. After this, the nodes with different la-
bels are explored: they represent initial seeds for the construction of new
labelled components.

It is important to point out that in the reduction algorithm no visited node
is marked. When a node searches its neighbours, it stores them distinguish-
ing the ones with same label and the ones without it. This information is
local to the node and is not propagated through the graph. While nodes
with the same label are immediately explored, the ones with different labels
can be seen as quarantined. Let’s consider a generic node vl, with label l.
Suppose that it has adjacent nodes both with the same and different label,
all not yet explored. Let also vdladj be one of the neighbours with different
label. Then vdladj is considered visited only for vl. If, during the exploration
chain, a node v ′l explores vdladj, that can happen either because they have
the same label or v ′l has no neighbour with same label to explore and vdladj
is an adjacent node with different label, then when passing through vl, vnl

adj

won’t be explored. If no node as v ′l exist, vl itself will explore vnl
adj. With

this explanation it can be understood how the visiting of a node is local to
the nodes adjacent to it, while the exploration is global and known to all the
nodes.

This property of the graph reduction algorithm is needed to avoid erro-
neous situations, where labelled components may result undetected or bro-
ken into multiple subsets. Such cases can still happen, depending on the
graph structure and the way nodes are labelled. An example is given in Fig-
ure 3.7. Starting from node 0, nodes 1 and 3 are assigned to the same group,
having equal label. Suppose that 1 is the first to be explored in the recursion:
it has no neighbour with same label, but only node 2, with different label. A
new group is formed and node 2 is in the same situation: its only available
neighbour is 4, sharing no equality with it. Thus, the third and last group is
detected. However, only two labelled components can be seen in the graph.

To solve this problem, the algorithm is applied repeatedly, until conver-
gence. In other words, the algorithm is applied until the size of the new
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Algorithm 1 Basic graph reduction (recursive)

1: procedure ReduceGraph(G) . Reduction of G to GR

2: initialise reduced graph GR

3: current group cg← 0

4: for all connected component Ci ⊆ G do
5: select random node vj ∈ Ci

6: vj.group← cg . Group initialisation
7: add node to GR

8: ReduceConnectedComponent(G, v, group, GR)
9: end for

10: return GR

11: end procedure

1: procedure ReduceConnectedComponent(G, v, currGroup, GR)
2: initialise same label nodes container SLNC
3: initialise different label nodes container DLNC

4: for all adjacent node vadj of v do
5: if vadj.group = −1 then . vadj does not belong to any group
6: if vadj.label = v.label then
7: put vadj into SLNC
8: vadj.group← v.group
9: else

10: put vadj into DLNC
11: end if
12: end if
13: end for

14: for all vi ∈ SLNC do
15: if vi.group = −1 then
16: ReduceConnectedComponent(G, vi, currGroup, GR)
17: end if
18: end for

19: for all vi ∈ DLNC do
20: if vi.group = −1 then
21: currGroup← currGroup+ 1

22: vi.group← currGroup

23: add node to GR

24: ReduceConnectedComponent(G, vi, currGroup, GR)
25: end if
26: if @ edge e = (vi.group, v.group) then
27: add edge e = (vi.group, v.group) to GR

28: end if
29: end for
30: end procedure
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Figure 3.7: Example of how the structure of the graph and order of exploration
produces more than the desired labelled components.

generated graph does not change, meaning that a minimal structure has
been found.

Considering Figure 3.8, the small graph in Figure 3.8a can be reduced into
two labelled components, as showed in Figure 3.8b. Suppose also that if a
node has a neighbour that has already been visited, but not explored, by
some other node, it does not visit it. This would lead to wrong reductions.
As example, in Figure 3.8c the first node (marked in red) visits the blue node
on the left and starts the exploration chain on the red adjacent node (having
same label). When reached by the algorithm, the other blue node (rightmost)
would like to explore its neighbour with the same label, but it fails, since it
already visited. The obtained reduced graph has 3 nodes and it does not sat-
isfy the minimality property mentioned in the introduction. Using instead
local visiting and global exploration, as in the proposed algorithm, the de-
sired reduction is obtained (showed in Figure 3.8d).

3.3.2 Reduction example

Let’s now illustrate the graph reduction algorithm with an example on a
simple graph. Figures 3.9 and 3.10 will be used to follow step by step the
algorithm. The graph in Figure 3.9a is characterized by three labels (red, blue
and green) and nine nodes. It is intuitive that the graph can be reduced into
four different labelled components: this will be the main goal to pursue.

Starting from node 1, three adjacent nodes are found: 6 and 7 with the
same label and 8 with different label (Figure 3.9b). Selecting the nodes mov-
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(a) Simple graph
(b) Simple graph with labelled compo-
nents

(c) Marking visited nodes (d) Not marking visited nodes

Figure 3.8: Labelled components can be detected incorrectly if marking the visited
nodes, as in Figure 3.8c. Our algorithm avoids marking them and produces a correct
result, in Figure 3.8d.

ing counter-clockwise, the next to be explored is node 7 (Figure 3.9c). From
7, its neighbours are visited, considering that 1 is already explored: 6 with
the same label and 3 with different label (Figure 3.9d). At this point, it is im-
portant to notice that nodes 1 and 7 are considered explored for every other
node in the exploration set, while node 6 is considered visited for 1 and 7,
that have distinct sets for visited nodes. This demonstrates the concept of
local visiting and global exploration described in the previous subsection.

Continuing with the algorithm, the only candidate node for the explo-
ration is 6, that is selected and explored (Figure 3.9e). 6 has four neighbours,
but the ones with same label are already explored, so the remaining candi-
dates for the exploration are two nodes with different label: 3 and 5 (Figure
3.9f). This means that a labelled component has been detected and populated
(nodes 1,7 and 6) (Figure 3.9g).

Still going counter-clockwise, the next node to be explored is 3, being also
the initial node to be part of a new potential labelled component (Figure
3.9h). Node 3 has two adjacent nodes not yet explored: 5, that has the same
label, and 4, with different label (Figure 3.9i). Consequently, 5 is explored
(3.9j) and its available adjacent nodes, 2 and 4, are all characterized by dif-
ferent labels (Figure 3.10a). Since no other node with the same label can to
be explored, the second labelled cluster is detected and populated (nodes 3

and 5, Figure 3.10b).
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The algorithm proceeds then in the same way as described until now: 4 is
explored (Figure 3.10c) and it has only one adjacent node, 2, with same label
(Figure 3.10d). 2 is then explored and no further neighbour is found (Figure
3.10e. The first depth search ends with the detection and population of the
third labelled cluster (Figure 3.10f).

Now begins the backtrack through the explored nodes (in reverse order)
until an element with visited neighbours that are not yet explored is found.
The first and only node to have such characteristic at this point in the al-
gorithm is node 1, whose adjacent node 8 remains isolated and unexplored
(Figure 3.10g). 8 is selected but has no adjacent node. This means that 8 alone
is the fourth labelled graph (Figure 3.10i). Backtracking one last time, node
1 is reached again, only to find that all the nodes have been explored. The
algorithm ends (Figure 3.10j) having assigned all the nodes in the graph to
a cluster.

3.3.3 Advanced Reduction algorithm (iterative)

As the size of the original graph increases, performing reduction recursively
becomes unfeasible. Moreover, the recursive version of the algorithm pre-
sented before have, in the worst case, to be applied more than one time
to reach a graph with no neighbours with the same label. We propose an
iterative variant, described in Algorithm 2, that exploits a particular data
structure and reduces the graph in only one pass (so that there is no need to
use it more than one time). Each node is no longer associated to just its label,
but to different variables that must be remembered through the iterations,
even if the considered node is different. In particular, this data structure,
called SnapshotIteration, contains: the node descriptor, the stack of adjacent
nodes with same label, the list of adjacent nodes with different labels, the
iterator of the previous list and the current stage of the snapshot.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.9: First part of the reduction algorithm example.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.10: Second part of the reduction algorithm example.
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Algorithm 2 Advanced graph reduction (iterative)

1: procedure ReduceGraph(G) . Reduction of G to GR

2: initialise reduced graph GR

3: current group cg← 0

4: for all connected component Ci ⊆ G do
5: select random node vj ∈ Ci

6: vj.group← cg . Group initialisation
7: add node to GR

8: ReduceConnectedComponentIter(G, v, cg, GR)
9: end for

10: return GR

11: end procedure

1: procedure ReduceConnectedComponentIter(G, vIn, currGroup, GR)

2: initialise list of SnapshotIteration structures SIL with first structure
containing vIn

3: while SIL is not empty do
4: SI← current structure considered in SIL
5: current node v← SI.currNode
6: switch SI.stage do
7: case 0
8: for all adjacent node vadj of v do
9: if vadj.group = −1 then

10: if vadj.label = v.label then
11: put vadj into SI.SLNC
12: vadj.group← v.group
13: else
14: put vadj into SI.DLNC
15: end if
16: end if
17: end for
18: initialise SI.DLNC iterator SI.DLNCIT
19: SI.stage← 1

20: case 1
21: for all vi ∈ SI.SLNC do
22: if vi.group = −1 then
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23: put new structure for vi into SIL
24: end if
25: end for
26: SI.stage← 2

27: if SI is not the last structure in SIL then
28: consider next SnapshotIteration in SIL
29: end if

30: case 2
31: if SI.DLNCIT points to a valid node then
32: let vi be the node pointed by SI.DLNCIT
33: if vi.group = −1 then
34: currGroup← currGroup+ 1

35: vi.group← currGroup

36: add node to GR

37: put new structure for vi into SIL
38: consider next SnapshotIteration in SIL
39: end if

40: if @ edge e = (vi.group, v.group) then
41: add edge e = (vi.group, v.group) to GR

42: end if
43: else
44: SI.stage← 3

45: end if

46: case 3

47: if SIL has more than 1 element then
48: consider previous SnapshotIteration in SIL
49: end if
50: remove last element of SIL
51: end while
52: end procedure

The only difference with Algorithm 1 is in the third phase of the main pro-
cedure, corresponding to stage 2 of a considered SnapshotIteration structure
(line 20, Algorithm 2). For the first, it has been seen that nodes are visited in
succession (due to the recursive nature of the algorithm), and that their or-
der can lead to non minimal clusterings (see previous Figure 3.7). The new
algorithm proposed visits and assigns to a cluster all the nodes with the
same label, before creating a new group when a node with different label is
encountered. This means that each labelled component is completely filled



58 label clustering

before starting the exploration of another one, differently from Algorithm 1,
where the complete filling is determined by the order of exploration (if we
are lucky, nodes are visited such that a labelled component is fully consid-
ered. thing that most of the times does not happen).

The time complexity of the algorithm can be easily derived from the itera-
tive version, with the same reasoning that are done for depth first. For each
node in the graph, there are 4 iterations of the big while loop, since all the
nodes pass through 4 stages. Considering an adjacency list used to represent
the graph, case 0, case 1 and case 2 have at most complexity O(2deg(i)), if
we consider node vi (deg(i) for case 0 and deg(i) as sum of case 1 and case 2,
since they are mutually exclusive regarding the explored nodes). Since each
node will pass through all the cases cases exactly once, the complexity can
be written as:

O(

|V |∑
i=1

(1+ deg{i}+ deg{i})) = O(

|V |∑
i=1

(1) +

|V |∑
i=1

(2deg{i}))

For undirected graphs, it holds that
∑|V |

i=1(deg{i}) = 2|E|, hence the total
complexity is

O(|V |+ 4|E|)

3.3.4 True nature of the algorithm: α-reduction

If instead of labels, their similarity values are considered, the graph reduc-
tion problem can be interpreted and described in a more complete way. In
the algorithms presented earlier, the node clustering condition is having the
same label. One can give a numerical interpretation to this concept. Two
nodes belong to the same labelled component if they represent the same
object and they are connected. If such similarity is represented with values
attached to the edges of a graph, weighting them, a new structure is derived:
the similarity graph. Considering a range (0, 1], a small value is assigned
to edges that connect nodes that are semantically distant (meaning that the
corresponding labels are associated to different objects) while the weights
of the edges connecting nodes that represent the same object are set to the
maximum value of 1. This interpretation can be data driven (meaning that
a prior knowledge of how labels are related is available), fuzzy (when a nu-
merical value cannot be assigned to express the similarity between labels,
substituted by an indicative quantity, such as low, medium or high interac-
tion), or a mixture of the two (see Figures 3.11 and 3.12).

Although until now only nodes with the same label were aggregated, with
the given interpretation this grouping constraint can be relaxed, introducing
the concept of graph α-reduction. It is the same procedure described in this
section, but including in the same aggregate also nodes that have a less tight
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l\l R G B

R 1 0.76 0.21

G 0.76 1 0.5

B 0.21 0.5 1

(a)
(b)

Figure 3.11: Considering the similarities between labels, expressed in Table 3.11a,
one can assign weights to a labelled graph to express the similarity between nodes,
showed in Figure 3.11b.

Figure 3.12: If no matrix is available to express what is the similarity between labels
with a precise value, an approximation, using fuzzy values, can be imposed. For ex-
ample, suppose that the similarity between labels can be Optimal(1), Good(0.66),
Mediocre(0.33) or Inexistent(0). Nodes with the same label have optimal similar-
ity, red and green share a good similarity, while green and blue have a mediocre
relationship.

degree of similarity. The algorithm proposed was the strictest case: graph
1-reduction, because only the nodes with maximum similarity (same label)
are grouped together.
α-reduction is extremely useful when the size of the initial graph has to be

reduced quickly, retaining most of the node connectivity information. The
major advantage is that, at the same cost (the algorithm remains mostly
unchanged, with the exception of the weights check, that now replaces the
label equality conditions), the amount of reduction that obtained from the
graph can be selected. However, not all the things that shine are gold, and
this relaxation brings problems.

Using α-reduction, with α < 1, new undesired situations can happen.
Consider four labels, R, G, B and O for which it is known that R and G are
highly similar, as G and B are, while R and B are semantically distant and O
is different from all the other labels. What may happen is that, running the
algorithm, labelled components associated to different labels are aggregated
together, but should not stay in the same group because of the low similarity.
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(a) (b)

Figure 3.13: The figure represents one of the problems of the α-reduction relaxation
and one way to avoid it.

An example of this is showed in Figure 3.13a: the same aggregation, obtained
through the red arrows, is formed by nodes that should not belong to the
same group (edge of low weight between red and blue node). A simple
solution, as in Figure 3.13b, is to keep memory of the labels inserted in the
current aggregation and insert a new one only if it does not conflict with
them.

Another problem is related to the value of the weights associated to each
aggregation. When considering 1-reduction, it is trivial to see that the groups
that are formed have maximal inner weights. There is, in fact, no other way
to detect labelled components with greater inner weights, since they are
unique parts of a graph and the algorithm used grants maximal groups. In
other words, the number of cuts to obtain the aggregations is minimal. How-
ever, the same cannot be said for α-reduction, with α < 1. Consider Figure
3.14. There are four labels, that are all highly similar, with the exception of
red-blue and red-orange. Starting from a red node, one obtains the cluster-
ing on the left, since the algorithm stops as soon as a node conflicting with
one already inserted (blue conflicts with red in the example) is encountered.
Such partition cuts 4 edges. Instead, if the algorithm started on a blue or or-
ange node, the obtained clustering would be the one on the right, to which
corresponds also the minimal cut.

The last problem that originates from α-reduction, with α < 1, is how to
weight the edges of the reduced graph. For 1-reduction, weights are simply
the similarities between labels, since each aggregate corresponds to a single
label. To solve this problem, one should consider the number of edges in-
side each group, the relationships between labelled components in different
groups, the inner weights, etc.

Since α-reduction should be used only when the graph size is particularly
big (more than a million of nodes), in the experimental section only its base
form will be used on a small graph, without considering the three prob-
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(a) (b)

Figure 3.14: The figure represents another problem of the α-reduction relaxation
and one way to avoid it.

lems and possible solutions, to provide a comparison with the 1-reduction
algorithm.

3.4 graph coarsening

Once the initial graph G has been reduced to GR, it has to be decided how
to proceed. If GR is not coarse enough, meaning that the size is still too big
to apply a direct partitioning method, there is a need to further cluster the
nodes. We adopt a variation of the HEM coarsening heuristic described in
Chapter 2, Section 2.4.

Starting from a reduced/coarsened graph GR, a new graph GC is created,
with smaller size (best case, half of GR). At each iteration, the nodes of GR

are randomly selected and aggregated with the neighbour connected with
the edge having highest weight. If all the neighbours of a node have already
been aggregated, the node is considered as a single element group. The new
nodes are connected by edges if they contain respectively two nodes that are
connected in the original graph GR. The weight of the new edge defined in
the following way:

Definition 3.4. Weights of edges in the coarsened graph The edges in
the coarsened graph have weights calculated as the capped product of the
weights of the edges cutting the aggregates. Suppose that nodes a and b

in the coarsened graph correspond to the disjoint subsets Va and Vb in the
original graph, then it holds:

W(a, b) =


∏

a ′∈Va,b ′∈Vb
W(a, b) if this value is lower than a threshold C

C otherwise

The weight cut is needed when considering weights in range (0, 1], that
degrade quickly as the number of iteration increases. An example of how
each pass of the algorithm works is described in Figure 3.15.
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(a) (b) (c)

Figure 3.15: The initial graph of Figure 3.15a is coarsened (Figure 3.15b) considering
the nodes in the following order: {2,9,4,7,1,3,8,5,6}. The capping rule of the example
is: if the weight of an edge, calculated as product of edges crossing the cuts, is less
than 0.15, bound to 0.15. Figure 3.15c shows the capped weights in red.

3.4.1 Coarsening algorithm

Algorithm 3 coarsens the graph until it reduces to the desired size. Each
pass is composed of two steps: first, the algorithm aggregates nodes with
high similarity; second, the aggregates, that are the nodes of the coarsened
graph, are connected by edges.

3.5 normalised spectral clustering

Once the coarsest graph is obtained, a direct partitioning algorithm can be
applied on it. Instead of the methods used in the majority of multi-level
graph partitioning algorithms, that are greedy or random, we use the nor-
malised spectral clustering k-way algorithm, described in [67].

The algorithm is ill conditioned with respect of the size of the connected
components in G. If there is at least one connected component formed by
a single node, the corresponding rows in the similarity matrix of the graph
will contain all zeros, meaning that the degree matrix will have zeroes in
some spots on the diagonal. This is a problem because such matrix cannot
be inverted, hence Lsym cannot be computed and the algorithm fails. The
first solution simply puts an arbitrarily small value on the spots of the di-
agonals having zeros, to allow the inversion. Another more elegant solution,
separates the connected components of the coarsest graph and applies spec-
tral clustering in parallel on each. This is preferred for different reasons:

• The computational bottleneck changes from the coarsest graph size to
the maximum size of the connected components of the coarsest graph,
allowing to stop prematurely the coarsening phase

• Spectral clustering can be applied in parallel on the smaller sub-graphs,
reducing the computational time
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Algorithm 3 Graph coarsening algorithm

1: procedure CoarsenGraph(G, MinSize)
2: initialise coarsened graph GC ← G

3: while size of GC > MinSize do
4: current group cg← 0

5: for all connected component Ci ⊆ GC do
6: initialize container CRNodes
7: fill CRNodes with the shuffled nodes of Ci

8: GC = CoarsenConnectedComponent(GC, CRNodes, cg)
9: current group cg← cg+ 1

10: end for
11: end while
12: return GC

13: end procedure

1: procedure CoarsenConnectedComponent(G, CRNodes, cg)
2: initialise coarsened graph GC

3: for all vi ∈ CRNodes do
4: initialise maxNodeValue← 0

5: initialise maxNode← −1

6: for all adjacent node vadj of vi do
7: if W(vadj, vi) > maxNodeValue then
8: maxNode← vadj
9: maxNodeValue←W(vadj, vi)

10: end if
11: end for
12: if maxNode 6= −1 then
13: maxNode.group← currGroup

14: end if
15: vi.group← currGroup

16: currGroup← currGroup+ 1

17: add node to GC

18: end for

19: for all vi ∈ CRNodes do
20: for all adjacent node vadj of vi do
21: if vadj.group 6= vi.group then
22: add edge to nodes vadj.group and vi.group of GC if it

does not exist
23: end if
24: end for
25: end for

26: return GC

27: end procedure
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Algorithm 4 Normalised spectral clustering

1: procedure NormSpectralClustering(G,SimMatrix,k)
2: using SimMatrix, build the similarity matrix of graph G, SG
3: compute the degree matrix of SG, D
4: compute the normalised Laplacian

Lsym = In −D− 1
2SGD

− 1
2

where In is the identity matrix and n indicates the number of nodes in
G

5: compute the first k eigenvectors v1, v2, . . . , vk of Lsym, in ascending
order

6: build the matrix V ∈ <n×k containing the eigenvectors as columns
7: form the matrix U ∈ <n×k from V by normalising the rows sums to

have norm 1, that is
uij =

vij√∑
k v

2
ik

8: consider yi ∈ <k, i = 1, . . . , n, that is the vector corresponding to the
ith row of U

9: cluster the points (yi)i=1,...,n using the k-means algorithm into clus-
ters C1,. . . , Ck

10: compute the partitions A1,. . . ,Ak such that Ai = {j|yj ∈ Ci}

11: return A1,. . . ,Ak

12: end procedure
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• No ill conditioning checks have to be done, since the connected com-
ponents never translates into a non invertible degree matrix

3.6 label clustering results

To evaluate the results of label clustering, we use images, randomly gen-
erated connected graphs and labelled meshes. In the section, one for each
category is presented and briefly described.

The following configuration is used.

• Values are taken as average over different runs on a 64-bit laptop with
Intel® Core(TM) i5-3337U CPU @ 1.80GHz x 4 processors, each with
3072Kb of cache size.

• The advanced reduction of Algorithm 1 is used, because we consider
graph with a quite large amount of nodes.

• When performing α-reduction, α < 1, none of the corrections de-
scribed before is applied.

• If after the initial graph reduction, the obtained graph has more than
400 nodes, graph coarsening is performed.

• If a reduced graph goes through the coarsening phase, this stops when
the size of the coarsened graph reaches 150 nodes.

3.6.1 Image clustering

Consider one of the images of KITTI benchmark suite used for instance
level image segmentation [82], for which each pixel is associated to a label,
in Figure 3.16.

From the image, a graph is built such that each pixel corresponds to a
node, and nodes are connected if the corresponding pixels in the image
are adjacent. Since the image has dimension 1242× 375, the corresponding
graph has 465750 nodes and 929883 edges. The reduction is done in 0.762
seconds, and the obtained graph has only 92 nodes, corresponding to a
diminishing in size of around five thousand times. The nodes corresponds
to clusters of pixels having the same image, and are represented in Figure
3.17.

Since the graph is small enough, we can apply spectral clustering with
inferred knowledge about the similarity between labels. Since they repre-
sent urban elements, it is trivial to associate a degree of similarity, to be
interpreted as how much are two labels likely to represent objects near to
each other in the real world. For example, cars should appear together with
roads or parking slots, lamps have to be attached to lampposts and so on.
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Figure 3.16: Image used to show the results of label clustering.

Figure 3.17: The 92 nodes obtained after one iteration of the reduction algorithm.

Figure 3.18: Image obtained back propagating clusters on the original image.

Given these considerations, the coarsest graph is partitioned into 8 groups
(in 0.00831 seconds), and uncoarsened on the original image, obtaining Fig-
ure 3.18.

Consider now a randomly generated image with five labels: red, yellow,
green, cyan and blue. The image, represented in Figure 3.19 has 1166400

nodes and more than 2 million edges (size 1080× 1080). Taking into account
the similarity matrix showed in Table 3.1, the application of α-reduction,
with different values of α, produces the following results.

• Using α = 1, the reduction is performed in 1.882 seconds, obtaining a
new graph with 1779 nodes. This means that the original size has been
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SimMatrix R Y G C B

R 1 0.7 0.5 0.2 0

Y 0.7 1 0.3 0.1 0

G 0.5 0.3 1 0.8 0.9

C 0.2 0.1 0.8 1 0.9

B 0 0 0.9 0.9 1

Table 3.1: Label similarity matrix used to reduce the graph derived from 3.19.

reduced by a factor 656. The new graph corresponds to an image of
clustered pixels, showed in Figure 3.20.

• Using α = 0.6, the reduction is performed in 2.095 seconds, obtaining
a new graph with 400 nodes. This means that the original size has been
reduced by a factor 2916. The new graph corresponds to an image of
clustered pixels, showed in Figure 3.21a.

• Using α = 0.4, the reduction is performed in 2.101 seconds, obtaining
a new graph with 181 nodes. This means that the original size has been
reduced by a factor 6444. The new graph corresponds to an image of
clustered pixels, showed in Figure 3.21b.

Decreasing the value of α greatly increases the reduction on the initial
graph, with the cost of altered quality. With α = 1, it is obtained a pure
graph, where each node correspond to a cluster of elements in the original
graph having the same label (or being connected by an edge with weight 1).
With α < 1, however, we are dirtying the reduced graph, mixing together
nodes that are similar but not equal. The lower is alpha, the greater is the
reduction obtained, but the worse is the mixture of elements in the new
cluster.

Since with α = 1 we obtained a graph whose size exceed the threshold
fixed at the beginning of Section 3.6, we now perform graph coarsening.
After several iterations, in 0.02 seconds, the reduced graph of 1779 nodes is
coarsened into a new graph of only 122 nodes. The new graph corresponds
to an image of clustered pixels, showed in Figure 3.22.

It is interesting to compare the clustering obtained from the α = 1 plus
coarsening combination against the results from α-reduction with α < 1.
Thanks to the first, we obtain clusters that grows in size searching for avail-
able maximal neighbours (adjacent nodes with highest similarity), so that
their representation is organized and systematic. Using the second, instead,
we obtain smaller graphs in less time, but having a chaotic clustering of
nodes.
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Figure 3.19: Random image with five labels.

Figure 3.20: Image obtained from α-reduction, α = 1, on the graph derived from
Figure 3.19.

3.6.2 Random graph clustering

On random graphs, it is highly probable that more than one applications of
the reduction algorithm are needed. As example, consider the chaotic graph,
represented in Figure 3.23.

The graph is formed by 5000 nodes and 62870 edges, meaning that it has
a discrete degree of connectivity. Moreover, 5 labels are randomly assigned
to each node. In 0.0341 seconds, the reduced graph is created, having 29

nodes (corresponding to a reduction of factor 172). The resulting graph is
represented in Figure 3.24. The low number of nodes in the reduced graph
is related to the fact that each node has more than ten neighbours, on av-
erage, making the graph connected and decreasing the number of labelled
components.
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(a) (b)

Figure 3.21: Images obtained from α-reduction, α = 0.6 and α = 0.6 (left to right),
on the graph derived from Figure 3.19.

Figure 3.22: Image obtained after coarsening the graph derived from Figure 3.20.

3.6.3 Mesh clustering

Lastly, we show the results on two labelled meshes obtained by triangulation
and refinement [78–80] of the images belonging to the EPFL [3] and South
building datasets [1, 2].

The first mesh is the one derived from the fountain-P11 image sequence,
in Figure 3.25. It consists in 1805233 faces associated with three labels (wall,
fountain and base). From it, we obtained a new graph with 44 nodes in
4.635 seconds, corresponding to a reduction factor 41028. The clusters can
be visualised on the mesh, in Figure 3.26.

The second mesh comes from the South Building image sequence (3.27).
It has 3000590 faces, associated with 3 labels (building, bushes and ground).
The reduction algorithm decreases its size to a graph with only 112 nodes
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Figure 3.23: Random graph used to show the results of label clustering.

(corresponding to a factor 26791), in 7.638 seconds. The clusters can be visu-
alised on the mesh, in Figure 3.28.
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Figure 3.24: Reduced graph obtained from the graph in figure 3.23.
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Figure 3.25: Mesh from the fountain-P11 image sequence.

Figure 3.26: Clustered mesh (fountain-P11).
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Figure 3.27: Mesh from the South building image sequence.

Figure 3.28: Clustered mesh (South building).





4
A D - T R E E PA RT I T I O N I N G

From graphs, multiple data structures can be derived, retaining all their
information (node connectivity, edge weights, . . . ) or reducing their size.
One of the latter structures is the tree, defined as:

Definition 4.1. Tree A tree T is an undirected graph in which any two nodes
are connected by exactly one path.

The definition is equivalent to the following conditions:

• T is connected and with no path starting and ending in the same node

• T is connected and has as many edges as the number of nodes minus
1

Trees present different specialisations. One of them, called directed rooted
tree, will be considered:

Definition 4.2. Directed rooted tree A directed rooted tree is a tree having
the following properties:

1. A node is designated as root, meaning that all the other nodes generate
from it

2. The edges have an assigned natural orientation

3. The level of a node is the length of the path connecting it to the root

4. The parent of a node is the node connected to it on the path to the root;
every node except the root has a unique parent

5. A child of a node is a vertex that has it for parent

Moreover, the directed rooted tree can be further specialised in the follow-
ing way:

Definition 4.3. Arborescence A directed rooted tree whose edges are di-
rected away from the root is called arborescence.

An example of tree, arborescence and arborescence drawn by node levels
is given in Figure 4.1. For the rest of the chapter, only arborescence are
considered, and will be named trees for simplicity.

75
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(a) (b)
(c)

Figure 4.1: From left to right, the figures represent a generic tree, a directed rooted
tree (root in red) and a well structured arborescence with levels.

4.1 problems of the standard tree partitioning

Using trees to partition graphs is usually avoided for different reasons. First,
if undirected graphs are considered, their corresponding tree has to be built,
selecting a root and spanning through all the nodes: this is an additional op-
eration to be done aside the partitioning, worsening the time performances.
Second, when building a tree from a graph some information is lost be-
cause edges and possible paths are discarded (remember, the number of
edges becomes |V |− 1): two nodes that are connected may belong to differ-
ent branches of the corresponding tree, making them oblivious of each other.
Third, depending on the algorithm used to convert a graph into a tree, there
may be uneven branches with different node distribution. Lastly, the bal-
anced constraint is almost never satisfied, because of the difference of nodes
contained at each level of the tree.

These problem are represented in the following figures. Consider the graph
showed in Figure 4.2: it contains 10 nodes and 17 undirected edges. A pos-
sible way to build a tree from it is to select a root and visit the graph nodes
using the well known breadth-first algorithm, first seen in [68, 69] (Figure
4.3). The number of edges is reduced to 9, almost half of the initial quantity.
Moreover, the majority of nodes ignores the original neighbours, making
them disconnected from branch to branch. As example, consider node 2: in
the original graph it is adjacent to nodes 1, 4 and 7, but in the tree the node
is only connected to its parent, 1. Lastly, think about partitioning the graph
into five parts. It is trivial to see that all the possible cuts bring heavily un-
balanced partitions: either one cuts the edge (0,7), being forced to cut all the
remaining edges in the other branches, or nodes 3, 4, 6 and 8 are cut, leaving
the rest as a single partition. Both results are unacceptable.

Another way to build the corresponding tree is to visit the graph nodes
using depth-first [70–72], already seen in Chapter 3, after having selected a
root. The number of edges is once again reduced to 9, confirming what has
been said before regarding the cardinality of the tree edge set (also indepen-



4.2 enhanced tree data structure : ad-tree 77

Figure 4.2: Simple graph.

(a)
(b)

Figure 4.3: The left figure represents the tree construction on the graph using
breadth-first in lexicographic order; the right figure shows the corresponding tree.

dent from the way the tree is built). Considering once again a partitioning
on the tree, it is easy to notice that the balance can be satisfied, although
it is not guaranteed, especially when the complexity of the graph increases.
Moreover, the partitions are not minimal with respect to the cut: considering
k = 2 in the example (Figure 4.4), perfectly balanced partitions can be ob-
tained cutting the edge from 2 to 4, with 7 cuts in the original graph, while
a better direct solution cuts only 5 edges ({0,1,2,5,9} and {3,4,6,7,8}).

To mitigate these problems, we propose a new data structure to represent
a graph as a tree, retaining most of the information regarding the connec-
tivity between nodes. This data structure is used in a new partitioning algo-
rithm based on the propagation of subtrees size and tree traversal, whose
purpose is to achieve fast results, independently from the number of desired
partitions, and a good balancing.

4.2 enhanced tree data structure : ad-tree

As seen before in Section 4.1, considering a naive tree construction from a
graph is not sufficient to obtain good partitions, because the majority of the
information related to the graph connectivity is lost. We present a new data
structure, the AD-tree, used to support the proposed tree based partition-
ing algorithm. To improve a normal tree two considerations are made. First,
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(a)

(b)

Figure 4.4: The left figure represents the tree construction on the graph using depth-
first in lexicographic order; the right figure shows the corresponding tree.

every edge of the original graph should be considered, retaining the whole
connectivity of it. Second, a tree should be traversed in a fast way, allowing
the nodes to have not only parent and children, but also connections to other
nodes, respecting the order of insertion in the tree. These improvements are
named descendants graph and Ariadne’s tree, and are described in the two
next following subsections.

4.2.1 Descendants directed graph

The first enhancement that we propose on the standard tree data structure
is relative to the connectivity. When building it the tree, instead of cutting
edges when encountering already inserted nodes, a pseudo-link is inserted
between the nodes.

Given an undirected graph G(V, E), the corresponding tree TG is built with
a visiting algorithm, like breadth-first or depth-first. Focusing on one step of
the construction, let v ∈ V be the current node that is explored. One of its
adjacent nodes is its parent (except the case where v is root, since it has no
parent), and should not be considered. Suppose that another neighbour, u,
is already part of the tree built up to that moment, before v is reached, in a
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Figure 4.5: Descendant example.

different branch. Instead of not considering the edge connecting them, as in
the normal tree building procedure, a directed pseudo-link is created, such
that:

• u points to v if the level of u is lesser than v

• v points to u if the level of u is greater than v

The pointed node is called descendant of the pointing node. For duality rea-
sons, the pointing node is called ancestor of the pointed node.

Consider again the graph in Figure 4.3a. When reaching node 2, one of its
neighbours is node 7, but it already belongs to the tree. Since 7 has lower
level (closer to the root) than 2, we insert a pseudo directed edge from node
7 to node 2; 2 is considered a descendant of 7, and 7 is an ancestor of 2

(showed in Figure 4.5).
Different rules are needed regarding how to insert these pseudo-edges:

1. A pseudo-edge connects two nodes in the tree if they are not one par-
ent of each other and in the original graph they are connected by an
edge

2. A pseudo-edge is always directed from the node with lowest level to
the one with highest level

3. If two nodes, connected by a pseudo-edge, have the same level, the
edge is directed towards the node that is explored last

Referring again to the graph in Figure 4.2, the fully enhanced tree with
pseudo-edges is represented in 4.6.

Considering only the nodes and the pseudo-edges, a new structure is ob-
tained: the descendants graph. It is a directed graph with multiple connected
components. At least one of these is formed by a single node: the root, that
explores all the adjacent nodes and is never associated with descendants or
ancestors. Another interesting property is that the degree of each node in the
enhanced tree is the same as the degree of the same node in the graph: this
is important because we retain the knowledge of all the edges in the graph,
increasing the number of total edges of the tree from |V − 1| to |E|.
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Figure 4.6: Tree enhanced with pseudo-edges indicating the descent of the nodes.

The following theorem demonstrates that a pseudo-edge cannot appear
across nodes belonging to the same branch.

Theorem 4.1. Given two nodes u, v ∈ V such that u belongs to the path con-
necting v to the root, no pseudo-edge can connect u and v, in any direction.

Proof. We prove the theorem by contradiction. Consider two nodes u, v ∈
V , such that u belongs to the path connecting v to the root and there is a
pseudo-edge between them. In particular, following the rules stated before,
the pseudo-edge is known to be directed from u to v, because u has lower
level. The fact that a pseudo-edge exists implies that u and v are adjacent
nodes in the original graph. This situation is possible only if u is the parent
of v, because otherwise the construction of the tree would be faulty: u visits
all of its neighbours that are not already in the tree and that are not its parent.
v is neither its parent, because u belongs to the path connecting v to the root,
nor it is already present in the tree for the same reason, so it must be one
of the children of u. But this violates the rule stated before that parent and
child cannot be connected by a pseudo-edge. �

4.2.2 Ariadne’s tree

Everyone knows the story of princess Ariadne, in Greek mythology. King Mi-
nos attacked Athens after his son was killed there. The Athenians asked for
terms, and were required to sacrifice seven young men and seven maidens
to the Minotaur inside a labyrinth, which construction was ordered by Mi-
nos itself, every seven or nine years. One year, the sacrificial party included
prince Theseus who volunteered to come and kill the Minotaur. Ariadne,
that was put in charge of the labyrinth by her father Minos, fell in love at
first sight, and helped him by giving him a sword and a ball of thread so
that he could find his way out of the Minotaur’s labyrinth.

In the same way, the tree is enhanced with a thread that connects every
node, in order of expansion, starting from the root. This chain is itself a di-
rected tree, having a root (the same of the normal tree), and |V |− 1 directed
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Figure 4.7: Normal tree enhanced with the Ariadne’s tree.

edges, hence the name Ariadne’s tree. Ariadne’s tree is important when par-
titioning the normal tree, because it allows to quickly traverse it from the
last node explored to the root. Its usefulness can be understood better when
explaining the partitioning algorithm working principle. Considering one
more time the graph in Figure 4.2, with the corresponding tree, showed in
Figure 4.3b, its Ariadne’s tree is represented in Figure 4.7.

The most important property of the the new data structure is that, given
a graph and an algorithm to build a tree from it, there is one and only one
Ariadne’s tree that can be built on it. Obviously, changing the algorithm used
to derive the tree from a graph also changes the corresponding Ariadne’s
tree.

4.2.3 AD-tree and its properties

Summing up all the improvements, we created a new data structure to repre-
sent a graph, the AD-tree (Ariadne/Descendants tree), formed by three com-
ponents: the standard tree, the Ariadne’s tree and the descendants graph. To
build the AD-tree the breadth-first visit of the graph is used, starting from
a random node. If the original graph has multiple connected components as
many AD-trees as their number are obtained.

Before describing the algorithm used to create the AD-tree, few words
should be spent to describe the single node of the new structure. Consider
Figure 4.8. A node of the AD-tree is a composed by the following elements:

• A reference to the node parent (node->parent)

• A reference to each children (node->children[i])

• A reference to each descendant of the node (node->descendants[i])

• A reference to each ancestor of the node (node->ancestors[i])

• A reference to the next node in the Ariadne’s tree (node->next)

• A reference to the previous node in the Ariadne’s tree (node->prev)
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Figure 4.8: Single node of the AD-tree.

• An identifier of the node

As for every other type of tree, the root does not have a parent and the
leaves do not have any child. Moreover, the root does not have descendants
and ancestors, because by construction it visits immediately all the adjacent
nodes. The root of the AD-tree is the same root of both Ariadne’s tree and
the normal tree derived from the graph. Figure 4.9 shows, for graph in 4.9a,
the corresponding tree, descendants graph and Ariadne’s tree, including all
three together to form the AD-tree.

Considering a graph G(V, E) with a single connected component, the cor-
responding AD-tree ADT manifests the following properties, that can be
easily extended for graphs with multiple connected components:

1. ADT has the same nodes of G

2. ADT has |E|+ |V |− 1 edges, both directed and undirected

3. For every node of ADT , the sum of the number of children, descen-
dants, ancestors and the parent is equal to the degree of the same node
in G

4. The level of a descendant is always greater or equal than the level of
the corresponding ancestors, because the descendant is farthest from
the root

5. The level of an ancestor is always lesser or equal than the level of the
corresponding descendants, because the ancestor is closest to the root

6. The descendant of a node cannot be also the node ancestor: the first
node that is explored during the creation is considered the ancestor

The first property is trivial, since creating a tree from a graph preserves
the number and identity of the nodes. The second property can be derived
by the combination of the AD-tree components. The naive tree is a directed
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(a)
(b)

(c) (d) (e)

Figure 4.9: From left to right. In the top row, a graph and the corresponding AD-
tree. In the bottom row, the AD-tree is broken into its components: the standard
tree, the descendants graph and Ariadne’s tree.

rooted tree, that has |V |− 1 edges; the descendants graph is formed by the
edges that are not part of such tree, so it has |E| − (|V | − 1) connections;
Ariadne’s tree is also a tree, hence having |V | − 1 edges. Summing all the
three values together, since the AD-tree is obtained as superimposition of
the three components, |E|+ |V |− 1 edges are obtained.

The third property reflects the fact that all the edges outgoing a node in a
graph are reported either in the naive tree or in the descendants graph, that
by definition is the set of edges of the original graph that are not inserted into
the normal tree. The fourth and fifth property have already been described
when introducing the descendants graph.

The sixth and last property, implies that there cannot be a cycle of descen-
dant elements, that may happen if they have the same level. A convention
is adopted to solve ambiguous situations: the node visited first during the
AD-tree construction algorithm is considered the ancestor. In other words,
if two nodes u and v have the same label and belong to the descendants’
graph, if u belongs to the path starting from the root and ending in v, on
Ariadne’s tree, then u is an ancestor of v, and v is one of its descendants.
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Algorithm 5 Construction of the AD-tree(s) of a graph

1: procedure ADTreesCreation(G)
2: initialise container of roots ADRoots

3: for all connected component Ci ⊆ G do
4: select random node vj ∈ Ci

5: ADTreeCreation(G,vj)
6: insert vj into ADRoots
7: end for

8: return ADRoots
9: end procedure

4.3 ad-tree construction

Now that the new structure has been defined and described, this section will
explain the algorithm used for its construction, including possible variants
and improvements.

4.3.1 Construction algorithm and time complexity

The algorithm used to create the AD-trees from a graph first breaks it into
it connected components (Algorithm 5). For each component, it builds si-
multaneously all the components of the corresponding AD-tree (Algorithm
6). The working principle is the same as breadth-first: simulating a queue
to store the nodes of the graph/tree, it takes the front element and searches
the neighbours not visited, making them children of the front node (and
conversely, the front node is made their parent).

The difference from breadth first is that a cursor is used to build both the
normal tree and Ariadne’s tree while the nodes are visited and explored:
when a new node is inserted into the tree, the last element of Ariadne’s tree
is chained to such node, that becomes the new tail (lines 14, 15 and 16 of
Algorithm 6): this is the same as a queue. In other words, nodes are inserted
into Ariadne’s tree according to their visitation order, using the structure as
the queue used in breadth-first.

If a neighbour is already inserted, it means that it is either a descendant
or an ancestor, depending on its level. Particular attention should be given
to the special case of level equality: as already stated, the convention used
is that if two nodes have the same level and have the ancestry-descent req-
uisites (belonging to different branches, not children of each other and con-
nected in the original graph), the one that is explored first is the ancestor.
The algorithm works checking if this convention is followed. Suppose that
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Algorithm 6

1: procedure ADTreeCreation(G,vInit)
2: initialise Ariadne’s tree cursor atc← vInit

3: initialise Ariadne’s tree tail cursor attc← vInit

4: initialise flags (to false) to see if a node is already in the tree or not
isNodeInTree

5: isNodeInTree[vInit]← true

6: vInit.level← 0

7: while atc points to an existing node do
8: current node v← atc

9: for all adjacent node vadj of v do
10: if isNodeInTree[vadj] is false then
11: insert vadj into v.children
12: vadj.parent← v

13: vadj.level← vadj.parent.level+ 1
14: vadj.prev← attc

15: attc.next← vadj
16: attc← vadj
17: isNodeInTree[vadj]← true

18: else
19: if v.level < vadj.level then
20: insert v into vadj.ancestors
21: insert vadj into v.descendants
22: else
23: if v.level > vadj.level and v.parent is not vadj then
24: insert v into vadj.descendants
25: insert vadj into v.ancestors
26: else
27: if v.level = vadj.level then and vadj /∈

v.descendants and vadj /∈ v.ancestors
28: insert v into vadj.ancestors
29: insert vadj into v.descendants
30: end if
31: end if
32: end if
33: end if
34: end for

35: atc← atc.next
36: end while
37: end procedure
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(a)
(b)

(c)

Figure 4.10: Example of how the descendants and ancestors are handled, described
in the text.

we are exploring node v, and one of its neighbour, u, is already inserted in
the tree. Moreover, both v and u have the same level. The possible outcomes
are two:

1. u has been already explored before v: this means that v is a descendant
of u and nothing should be done

2. u has been visited, but not yet explored: this means that u is, up to
that moment, neither a relative nor a descendant of v

Figure 4.10 shows what must happen. The first node to be explored is v
(Ariadne’s tree, in red, imposes an ordering during the exploration), and one
of its adjacent node, u, is already in the AD-tree (Figure 4.10a). Since u does
not belong to the descendants and ancestors of v, it means that v precedes
u in the exploration and v should be appointed as ancestor of u and, vice
versa, u has to be included into the descendants of v (Figure 4.10b). When
reaching node u during the exploration, it finds v as a candidate descendant,
but since u is already connected to v in the descendants graph, nothing is
done (Figure 4.10c).

These considerations highlight a peculiar property of the AD-tree, not
disclosed in the previous subsection. Each node of the tree is self conscious
of its location inside the tree itself. For a normal tree, a node only knows that
it has been explored after its parent, grandparent, and all the nodes that can
be found in the path connecting it to the root. Let’s say that nodes belonging
to different branches are cousins; then, the vertices of the AD-tree know their
exploration order also with respect to their cousins.

Consider Figures 4.9 and 4.9c, representing a graph and its corresponding
tree. Node 3 knows that it has been explored after nodes 1 and 0, but nothing
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more: what about nodes 2 or 9, that are at the same level? Both Ariadne’s tree
and the descendants graph improve the connectivity scope of the node. From
the former it knows exactly the nodes that are explored before and after it
while from the latter it acknowledges the presence of nodes belonging to
other branches.

Looking at Figure 4.9b, node 3 realizes that it is explored after 2 and before
6, but also after 7 and before 4, considering a range of one connected node.
The expressed concept is extremely easy but very important: in a standard
tree a node is equipped only with a vertical knowledge (parent, grandparent,
children, grandchildren), but in the AD-tree the same node knows all the
positions of the elements of the tree itself, exploiting the two enhancing data
structures.

Lastly, the complexity of the construction algorithm should be considered.
All the operations in the if and else branches in the main loop (lines 10 and
18 of Algorithm 6) are done in constant time, and it is clear that for each
pass, the complexity is dependant on the degree of the node considered.
Since exactly |V | iterations are done, because we move along Ariadne’s tree
that includes all the nodes in the graph, the complexity is derived in the
same way as breadth first and is

O(|V |+ |E|)

4.3.2 Construction example

Consider the graph in Figure 4.11, and let node 0 be the root of the AD-tree.
The root has three adjacent nodes, that are inserted in the tree as its children
(we adopt a lexicographic order of insertion) and linked with Ariadne’s tree,
represented as a series of red arrows (Figure 4.12b).

The next node considered is 1, successor of node 0 in Ariadne’s tree. The
free adjacent nodes of 1 are nodes 2 and 3 (node 1 is already in the tree, and
is its parent), that are consequently inserted as its children (Figure 4.12c).
Node 5 follows, visiting nodes 6 and 9 (Figure 4.12d). Node 7 is the first
explored node that has adjacent nodes already inserted: 3 and 6. Since their
level is greater then the level of node 7, they are considered its descendants
(blue arrows), and 7 is the ancestor of both of them (Figure 4.12e).

The steps repeat in the same way for the following nodes. Node 2 has one
free child, 4, and one descendant, 9, that is at the same level (Figure 4.12f).
The only child becomes the new tail of Ariadne’s tree and the next node is
considered. 3 has no free children, but has an ancestor, already determined
when exploring node 7, and a descendant, node 4 (Figure 4.12g). Follows
node 6, that has one free child, 8, and an ancestor, 7 (Figure 4.12h).

Node 9 is in the same situation as node 3: no free children, one ancestor
and one descendant, 8 (Figure 4.12i). Node 4 is the last but one node to be
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Figure 4.11: Graph considered for the AD-tree construction example.

explored, once again having all of its adjacent nodes already inserted into
the tree, either as an ancestor, node 3, or as a descendant, node 8 (Figure
4.12i). Lastly, node 8 is reached and the exploration ends, since the node is
also the last element of Ariadne’s tree, meaning that all the nodes in the
graph have been inserted in the AD-tree.

4.3.3 Exploration variants

The presented algorithm explores nodes in the classic breadth-first fashion.
Since a lexicographic ordering is imposed, the exploration can be visualised
as top-down, from left to right. Other three variations are now described,
each with pros and cons.

4.3.3.1 RtL AD-tree

The Right to Left AD-tree is built as the normal AD-tree, but with inverse
lexicographic order (for this reason, the latter is also called Left to Right
AD-tree). While it may seems equivalent to the standard AD-tree, the gen-
erated structure may differ heavily due to the topology of the associated
graph. Considering the graph used in the example before (Figure 4.11), the
corresponding RtL AD-tree is represented in Figure 4.13

The RtL AD-tree is computed easily and as the standard structure it suffers
of two problems: first its node distribution is uneven among the branches;
second, the minimum and maximum distances from the root to the leaves
can differ greatly.

4.3.3.2 Alternated AD-tree

Instead of picking a fixed lexicographic order, the alternated AD-tree inverts
it at each level. For example if, as in Figure 4.14, level 1 has a left to right
order, level 2 will have a right to left order, and so on. This version of the AD-
tree is the most difficult to implement, because the corresponding Ariadne’s
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(a)
(b)

(c) (d)

(e)
(f)

(g) (h)

(i) (j)

Figure 4.12: Construction of the AD-tree for graph showed in Figure 4.11.
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Figure 4.13: RtL AD-tree of the graph showed in Figure 4.11.

Figure 4.14: Alternated AD-tree of the graph showed in Figure 4.11.

tree cannot be used directly when exploring nodes. The adopted solution
resembles the way DNA is replicated on the lagging strand: at each level of
the AD-tree, nodes are linked through pieces of Ariadne’s tree, that are later
combined to form the whole structure.

For example, in Figure 4.14 mentioned before, we start with a inverted
order, hence the first part of Ariadne’s tree consists of nodes {0,7,5,1}, in this
order. 7 is the first node to be expanded, with children 3 and 6. They are
connected to form the Ariadne’s tree fragment of the second level. Then 5

visits 9, and 1 visits 2, leading to the fragment {6,3,9,2} (moreover, they have
descendants already in the tree, respectively nodes 6 and 3). After node 1, no
node is available to be explored. This starts the merging phase, that consists
in inverting the sequence of edges of the found fragment ({2,9,3,6}), and
chaining the last explored node and the first of the inverted fragment. Now,
the partial Ariadne’s tree is formed by the series of nodes {0,7,5,1,2,9,3,6}.
The process repeats in the same way: 2 visits 4, becoming ancestor of 9, and
3 becomes parent of node 8 (having 4 as a descendant), creating fragment
{4,8}. Nodes 3 and 6 have to children but only descendants. The fragment
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Figure 4.15: Flippant AD-tree of graph showed in Figure 4.11.

is then inverted and attached to the remaining Ariadne’s tree, obtaining the
desired snake-like structure.

Although the alternated AD-tree is harder to build, it provides a structure
with more evenly distributed nodes and shorter paths from the root to the
leaves.

4.3.3.3 Flippant AD-tree

The RtL AD-tree inverts the visit/expansion ordering once for all the struc-
ture; the alternated AD-tree does the same thing but once at each level of
the tree. The flippant AD-tree changes the lexicographic ordering of nodes
whenever a node is explored, meaning that it changes |V |− 1 times.

Considering the graph in Figure 4.11, the expansion and visiting follow
the usual rules. Node 0 has children 1, 5 and 7, connected together and
expanded in this order. The first node expanded is 1, with heirs 2 and 3.
Since the first expansion (of node 0) had ascending order, now we link nodes
2 and 3 in descending order to the rest of Ariadne’s tree. The next node to
be explored is 5, with children 6 and 8. The order returns ascending, so the
nodes are inserted as presented in the last sentence, and so on (Figure 4.15).

The flippant AD-tree is a compromise between the RtL/LtR tree and the
alternated tree. It is slightly harder to implement than the first, but provides
a good distribution of nodes, similarly to the latter.

4.3.4 Parallel construction algorithm

The construction of an AD-tree can be parallelised in a clever way: instead
of applying the procedure described in Algorithm 6 starting from the root
of the tree, children nodes can be used as temporary roots to be explore in
parallel. This breaks the algorithm into two phases. First, it starts exploring
nodes from the root in serial, as described before. Then, instead of exploring
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Algorithm 7 AD-tree linking

1: procedure ADTreeLinking(root)
2: initialise Ariadne’s tree cursor atc← root

3: initialise Ariadne’s tree tail cursor attc← root

4: while atc points to an existing node do
5: current node v← atc

6: for all vc ∈ v.children do
7: vc.prev← attc

8: attc.next← vc
9: attc← vc

10: end for
11: atc← atc.next
12: end while
13: end procedure

the whole set of nodes in the graph, it stops at a certain level of the tree. All
the nodes belonging to that level will be considered temporary roots, and
the tree creation will proceed separately on each of them.

For example, in Figure 4.16, the standard LtR AD-tree construction algo-
rithm is adopted, beginning with node 0. After having filled the first level,
the serial phase is interrupted and each of the elements in the level are now
considered separate roots. The building procedure is then used separately
on nodes 1, 5 and 7, having attention to not insert nodes already present
into another branch of the main tree (meaning that some degree of commu-
nication between processors is needed).

Parallelisation makes the construction faster, but requires two additional
steps. First, as it can seen in the example of Figure 4.16, Ariadne’s tree is
built incorrectly, letting them have more than one children, while the correct
tree consists in nodes with only one child and one parent, except the root
and the last node. For this reason the whole tree has to be revisited, from
root to leaves, and connect the nodes as if they were built in the serial way.
This procedure is very fast because it only needs to explore nodes, that are
already existent, in the tree.

What presented in Algorithm 7 is the left to right approach (following
lexicographic order) to reconstruct the Ariadne’s tree, but the same variants
described previously for building the AD-tree can also be repeated here, ob-
taining multiple combinations. For example, the AD-tree can be constructed
left to right, but Ariadne’s tree is recreated right to left on the already built
AD-tree. Moreover, the algorithm allows to change the Ariadne’s tree at any
time, even after the AD-tree is complete.

The other problem is related to descendants and ancestors, that cannot
be inserted while the construction algorithm is ongoing, due to concurrency
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Figure 4.16: One of the possible parallel AD-trees of graph showed in Figure 4.11.

reasons. The solution is straightforward: mark nodes that should be part of
a descent/ancestry relationship and, after the tree is built, connect them.

Overall, the parallel construction decreases the computational time re-
quired to form an AD-tree and also allows an even distribution of nodes
among the branches. However, it requires further steps, differently from the
serial algorithm where all the components of the AD-tree are built simulta-
neously.

4.4 ad-tree partitioning

In this section, the partitioning algorithm of the AD-tree will be described,
along with an example on a small graph.

4.4.1 Partitioning algorithm

Starting from the last node of Ariadne’s tree, that is the node with no next
element, the tree is backtracked and each node propagates the size of rooted
subtree in it to its parent, until cutting conditions are met. Precisely, hav-
ing a tree of |V | nodes that should be partitioned into k sets, the tree is cut
when a node is the root of a subtree having about |V |/k elements. The rooted
subtrees are not to be intended as composed only by children and grandchil-
dren, but augmented also with descendants. Propagations and cuts continue
until the (k− 1)th partitioning is done: the last node to cut will surely be the
root of the tree.

The main body of the partitioning algorithm, showed in Algorithm (8,
consists in a series of conditions that are checked on the tree nodes.
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Algorithm 8 AD-tree partitioning main body

1: procedure ADTreePartitioning(root,k)
2: initialise current node pointer cnp with the last element of Ariadne’s

tree, computed starting from root

3: initialise cut threshold cutThresh← |V |/k

4: current partition cp← 0

5: while cnp points to a node do
6: cnp points to current node cn
7: if cp = k− 1 then
8: CutSubtree(root,cp)
9: end the algorithm

10: end if
11: if cn.isValid = false then
12: cnp← cnp.prev
13: jump to next iteration
14: end if
15: if cn.value > λ ∗ cutThresh then
16: SearchDescendants(cn,cp,cutThresh)
17: if the previous call ended with a cut then
18: cp← cp+ 1

19: cnp← cnp.prev
20: jump to next iteration
21: end if
22: end if
23: if

∑|cn.parent.children|
i=0 (cn.parent.children[i].value) > ε ∗

cutThresh, with cn.parent.children[i] preceding cn in Ariadne’s tree
then

24: CutSubtree(max between these cn.parent.children,cp)
25: cp← cp+ 1

26: if cn is the cut node then
27: cnp← cnp.prev
28: jump to next iteration
29: end if
30: end if
31: if cn.value > α ∗ cutThresh then
32: CutSubtree(cn,cp)
33: cp← cp+ 1

34: else
35: Propagate(cn)
36: end if
37: cnp← cnp.prev
38: end while
39: end procedure
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• If k− 1 partitions have already been created, it means that the remain-
ing nodes form the last partition. Consequently there is no need to
continue backtracking along Ariadne’s tree and the root of the tree can
be immediately cut, ending the algorithm (line 7 of Algorithm 8). If
less than k− 1 partitions are identified, the algorithm continues.

• If the current node is invalid (line 11 of Algorithm 8), meaning that is
already assigned to a partition, all the other checks can be bypassed
ignoring the node and moving to the next one (that is the previous
in Ariadne’s tree, current node prev). If the current node is valid, the
algorithm continues.

• If a node value, meaning the number of nodes in the rooted sub-
graph in it, is greater than a certain number λ ∗ cutThresh, with 0 <
lambda < 1, the descendants of that node are searched. This (from
line 15 of Algorithm 8) has the goal to find a series of consecutive de-
scendants (a has b as descendant, that has c as descendant, that has
d as descendant, and so on) such that the sum of their values and the
node value is greater than the cut threshold, identifying a new par-
tition. The search is done with a variant of depth first, because the
algorithm searches for paths (beginning in the current node and end-
ing in a descendant or descendant of descendant, and so on). If the
search ends successfully and a cut is performed, the algorithm moves
to the next node, otherwise it continues.

• If the sum of the current node value and the values of its valid siblings
(nodes with the same parent) that have yet to be traversed by the al-
gorithm exceeds the cut threshold by a factor ε > 1, the node having
maximum value is cut, upper bounding the dimension of the created
partitions (step at line 23 of Algorithm 8). In particular if the cut node
is the current one, the algorithm jumps to the successive iteration, con-
sidering the next node to be traversed. Otherwise, it continues.

• Lastly, if the current node itself has value slightly greater than the cut
threshold by a factor α (at line 31 of Algorithm 8), it is cut to form
a new partition. If a cut cannot yet be performed, the node’s value is
propagated to the parent, and the next node is considered, ready to
begin a new iteration of the algorithm’s main cycle.

Each subroutine called by the body of the procedure is now be described.
The CutSubtree subroutine (Algorithm 9) is straightforward: in a depth-first
fashion, it visits all the nodes of a subtree and assigns them to a partition.
It should be pointed out that although the procedure is called CutSubtree,
there is no real cut in the AD-tree data structure, but simply a colouring
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Algorithm 9 CutSubtree routine

1: procedure CutSubtree(root,currPartition)
2: initialise stack of nodes NS
3: insert root into NS
4: while NS is not empty do
5: current node cn← NS.top
6: remove NS.top
7: cn.group← currPartition

8: mark cn as invalid
9: for all child ∈ cn.children do

10: if child is valid then
11: insert child into NS
12: end if
13: end for
14: end while
15: end procedure

Algorithm 10 Propagate routine

1: procedure Propagate(v)
2: mark v as propagated
3: v.parent.value← v.parent.value+ v.value
4: end procedure

of the nodes, so that no connection is altered. During the main algorithm
execution each node goes through this procedure exactly once.

The second routine is Propagate (Algorithm 10), consisting only of two
instructions: mark the node as propagated and add its value to its parent’s
value.

The third and last routine is the most complex. Given a node, if descen-
dants are present, they define a tree. Consider the example used to show
how the construction algorithm works and focus on the complete AD-tree,
in Figure 4.12j. Node 7 has associated a small tree of descendants, consisting
of nodes 3 and 6 for the first level, node 4 for the second and node 8 for the
last level.

The SearchDescendants procedure (Algorithm 11) searches for a path,
starting from the root of the descendants graph of a node, that actually is
the node itself, such that the sum of the values of all the nodes in the path is
greater than the cut threshold, meaning that they can form a new partition.

The procedure uses two stacks: one contains the candidate roots to be cut,
while the other contains stacks of explored descendants, that is the main dif-
ference from classic depth first. The stack of stacks is needed because during
the procedure there is the need to know which descendant is currently being
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Algorithm 11 SearchDescendants routine

1: procedure SearchDescentands(v,currPartition,cutThresh)
2: initialise container DS (descendants stack of stacks)
3: initialise container CS (stack of nodes to cut)
4: put v into DS as a single element stack
5: put v into CS
6: for all des ∈ v.descendants do
7: if des is valid then
8: put des in a temporary stack TS
9: end if

10: end for
11: put TS into DS

12: while DS is not empty do
13: if DS.top is empty then
14: remove DS.top
15: end if

16: if DS.top.top = CS.top then
17: remove DS.top
18: remove CS.top
19: end if

20: current descendant cDesc← DS.top.top
21: put cDesc into CS
22: if

∑
iCS(i) > α ∗ cutThresh then

23: for all node ∈ CS do
24: CutSubtree(node,currPartition)
25: DepleteSubRoot(node,v.level)
26: stop the procedure
27: end for
28: end if

29: for all des ∈ cDesc.descendants do
30: if des is valid then
31: put des in a temporary stack TS
32: end if
33: end for
34: put TS into DS
35: end while
36: end procedure
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Algorithm 12 DepleteSubRoot routine

1: procedure DepleteSubRoot(v,stopLvl)
2: while v.level <= stopLvl do
3: if v is propagated then
4: v.parent.value← v.parent.value− v.value
5: v← v.parent
6: else
7: stop the procedure
8: end if
9: end while

10: end procedure

explored at each level. In fact, considering the recurrent case of failed search
(a path root-leaf is explored but the sum of its nodes values is not enough to
start the cutting phase), the procedure needs to remove some of the candi-
date nodes. This implementation allows a connection between the two data
structures: the single stack of candidates contains the tops of each stack in
the other structure. When a search fails, there is a correspondence between
the top elements, so that the node candidates can be easily handled.

A small example of how the procedure works is represented in Figure
4.17, referring to the small descendants tree rooted in node 7, in Figure 4.12j.
Moreover, in the example the search is supposed to fail, leading to no cut.
The two main structures, DS (descendants stack of stacks) and CS (stack
of nodes to cut) are filled with the tree root, 7 (Figure 4.17a). Then, the
descendants of 7 are inserted in DS, but only its top node candidates for a
cut. So, node 3 is put in CS and will be the next node to be explored (Figure
4.17b). Node 4 is its only descendant, inserted both in DS and CS (Figure
4.17c), and the same goes for 8 (Figure 4.17d). Since it has been assumed that
all the searches fail, added to the fact that 8 has no descendant, the algorithm
begins to pop nodes from the two main structures. 8 is the first (Figure
4.17e), followed by 4, both in DS and CS (Figure 4.17f). Node 3 is popped
and substituted by node 6 in CS. (Figure 4.17g). 6 has no descendants and,
after having emptiedDS and CS two more times, the procedure ends (Figure
4.17h).

When a search is successful, after the cut, it is also necessary to remove
the values of already propagated nodes, because they no longer contribute
to the rest of the AD-tree. This is done in the DepleteSubRoot procedure
(Algorithm 12).

Before making an example of how the AD-tree partitioning algorithm
works, few words must be spent about the meaning and assignments of
the tree parameters in it.
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(a)

(b)

(c)
(d)

(e) (f)

(g) (h)

Figure 4.17: Example of how the SearchDescendants procedure works, described
in the text.

• λ, usually fixed to 0.33, is a dampening factor of the cut threshold,
marking a node available for the SearchDescendants procedure (Algo-
rithm 11). If a node value is greater than the quantity λ · cutThresh, the
procedure is called. The purpose of this parameter is to avoid calling
the routine unnecessarily, in the early iterations of the AD-tree parti-
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(a)
(b)

Figure 4.18: Graph and corresponding AD-tree used in the algorithm demonstra-
tion.

tioning algorithm (Algorithm 8), when the node values are still to low
to perform a cut.

• ε determines the upper bound of the partitions, meaning that no group
(except the last one, that is formed by the remaining nodes of the tree)
should exceed in size the quantity ε · cutThresh; it is usually set to 1.3
or 1.4.

• α grants some unbalancing in the partitions, allowing a cut with size
different from the cut threshold; it is greater than 1 and lesser than ε

4.4.2 Partitioning example

To see in practice the partitioning algorithm, the graph represented in Fig-
ure 4.18a is considered, along with the corresponding LtR AD-tree, of Figure
4.18b. Suppose that the tree should be partitioned into 5 sets, meaning that
each should have 2 nodes in it. At the beginning of the algorithm, all the
nodes have value equal to 1, since no traversing has been done. The param-
eters are fixed in the following way: λ = 0.4, ε = 1.4 and α = 1.

Node 8 is the last of Ariadne’s tree and the first to be considered in the
partitioning algorithm (Figure 4.19a). It is valid, it does not exceed the cut
threshold and is an only child: it can only propagate to the parent, increasing
its value (Figure 4.19b). The next node to be considered is 4 (Figure 4.19c).
The value of this node enables the SearchDescendants procedure (being 1 >
λ · cutThresh = 0.4 · 2 = 0.8). The only descendant is 8, and together they
reach the cut value (being 2 > α · cutThresh = 1 · 2 = 2). The two nodes are
cut and the value of node 8 is taken away from its parent (Figure 4.19d).
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The backtracking continues with node 9, the first node with a sibling (Fig-
ure 4.19e). Together they do not surpass the max size bound ε ∗ cutThresh =

1.4 · 2 = 2.8, hence 9 is just propagated to the parent. The same is done for
node 6, propagated to the same parent (Figure 4.19f) and node 3, whose
value is added to the value of node 1 (Figure 4.19g). However, node 2 (Fig-
ure 4.19h) is eligible for the SearchDescendants procedure, that pairs it with
node 9, forming a new group (Figure 4.20a).

The value of node 9 is subtracted to its parent value and the new pass
of the algorithm begins with node 7 (Figure 4.20b). It has two descendants,
nodes 3 and 6, but already considering the first, the cut value is reached,
hence 7 and 3 form a new partition (Figure 4.20c). The first is not propagated
to the parent, while the value of the latter is taken away from node 1.

The new iteration sees 5 as its current node (Figure 4.20d). The node is
valid and has no descendants, but has node 1 as a sibling. Together their
values exceed the max size acceptable for a partition (1+ 2 > 2.8) and the
node with max value is cut: 5. Since node 5 has only one free child, they
form the fourth partition (Figure 4.20e).

The last but one node to be considered is now 1 (Figure 4.20f), but since
the algorithm has already performed k− 1 cuts, there is no need to do any
check: the root, node 0, is directly cut and assigned to the last partition,
containing also node 1 (Figure 4.20g).

The partitions obtained in this example are perfectly balanced, but this
is due to the small dimension of the original graph. In real situations, con-
sidering structures containing from ten thousands to millions of nodes, the
proposed algorithm achieves reasonable, and not perfect, balance.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.19: First part of the example describing how the partitioning algorithm
works.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.20: Second part of the example describing how the partitioning algorithm
works.
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4.5 ad-tree partitioning results

To demonstrate the results of the AD-tree partitioning algorithm, we use
the graphs derived from the mesh collection provided with the benchmark
described in [4] (considering their faces as nodes), comparing them with the
partitioning obtained from Zoltan RCB [75], Zoltan RIB [75], Zoltan HSFC
[75], Zoltan PHG [74], KaFFPa [39], METIS [38, 76] and ParMETIS [64, 65, 63,
60], for k = 8.

The following configuration is used.

• Values are taken as average over different runs on a 64-bit laptop with
Intel® Core(TM) i5-3337U CPU @ 1.80GHz x 4 processors, each with
3072Kb of cache size.

• All the algorithms from the Zoltan toolkit are set to work in parallel
using as many threads as k.

• ParMETIS uses the ParMETIS_V3_PartMeshKway routine to compute
the partitions directly on the surface mesh. Default parameter values
are used, as suggested in the toolkit manual [60]. Only one thread is
considered.

• METIS uses the METIS_PartMeshDual routine to partition a mesh into
k parts based on a partitioning of its dual graph. Also here, default
parameter values are used, following the toolkit manual indications
[76].

• The AD-tree partitioning parameters are set as follows: λ = 0.33, ε ∈
{10, 15, 20}, α = 15. In figures, the best partitions are showed, while in
the tables values are taken as average over the results corresponding
to each ε.

• The AD-tree construction is done in serial and its time is computed as
average over the tree possible implementations (LtR, RtL, Alternated
and Flippant).

To evaluate the algorithms, three metrics are considered:

1. Execution time consisting in partitioning plus eventual data conver-
sions (only for the proposed algorithm, that relies on the AD-Tree,
showed in two lines: top represents tree conversion plus partitioning,
bottom is their sum)

2. Maximum and minimum imbalances, useful to judge the ability of
a procedure to obtain balanced partitions; they are respectively com-
puted as

max |partitioni|
|perfectly balanced partition|
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and
min |partitioni|

|perfectly balanced partition|

3. The percentage of border nodes of a partition with respect to its size,
defined as

num border nodes of partitioni

|partitioni|

Lower values of the three metrics correspond to high quality partitioning.
It should be noticed that the execution time presented includes data con-

versions only for the proposed algorithm. This does not mean that the other
compared methods are good to use directly on the meshes. Zoltan, ParMETIS
(with METIS) and KaFFPa requires each further step to convert the initial
meshes to the format accepted by them, further increasing the execution
time. We do not consider these times to strengthen the fact that our proposed
algorithm, considering data conversion plus partitioning, is faster than their
partitioning alone.

Figures 4.21, 4.22, 4.23, 4.24, 4.25, 4.26 and 4.27 represent the resulting par-
titions of the considered meshes, showing the outcome of each algorithm. As
it can be seen by the figures, the geometric methods (RCB, RIB and HSFC),
METIS and PHG generate disconnected partitions. KaFFPa, ParMETIS and
our proposed method produces instead connected blocks. Also, to geometric
methods correspond hard partitions, meaning that visually they are rectan-
gular blocks (motivated by the fact that these methods partition the space
and not the mesh itself). The other algorithms, including the one proposed,
produce smooth and enveloping partitions.

Let’s consider now the metrics associated to the meshes considered, de-
scribed in Tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7. AD-tree partitioning excels
over all the other algorithms in terms of execution time (between round
brackets), being about one third of the best performant method within them,
ParMETIS. Moreover, if we consider only the partitioning time, we reach a
result one order of magnitude cheaper than the state of the art. It is trivial
to see that, for every algorithm, the time complexity is linear with respect to
the number of nodes of the graph to partition.

In terms of unbalance, our algorithm classifies in the last but one place,
right above METIS and below Zoltan PHG. It should be however noticed
that the gap between AD-tree partitioning and METIS is quite large, making
it acceptable compared to the rest of the algorithms (see Figures 4.28 and
4.29).

Lastly, consider Tables 4.8 and 4.9, representing the third metric, in per-
centage. With the exception of the mesh hand, whose AD-tree partitioning
(Figure 4.25h) is quite peculiar, the ratio number of border elements and size
of the considered partition is in the same range for all the algorithms.
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(a)
(b)

(c) (d)

(e)
(f)

(g)
(h)

Figure 4.21: From top to bottom, left to right: Zoltan RCB, Zoltan RIB, Zoltan
HSFC, Zoltan PHG, KaFFPa, METIS, ParMETIS and AD-tree partitioning on the
mesh bunny.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.22: From top to bottom, left to right: Zoltan RCB, Zoltan RIB, Zoltan
HSFC, Zoltan PHG, KaFFPa, METIS, ParMETIS and AD-tree partitioning on the
mesh casting.
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(a)
(b)

(c)
(d)

(e) (f)

(g) (h)

Figure 4.23: From top to bottom, left to right: Zoltan RCB, Zoltan RIB, Zoltan HSFC,
Zoltan PHG, KaFFPa, METIS, ParMETIS and AD-tree partitioning on the mesh cow.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.24: From top to bottom, left to right: Zoltan RCB, Zoltan RIB, Zoltan
HSFC, Zoltan PHG, KaFFPa, METIS, ParMETIS and AD-tree partitioning on the
mesh dragon.
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(a) (b)

(c) (d)

(e)

(f)

(g) (h)

Figure 4.25: From top to bottom, left to right: Zoltan RCB, Zoltan RIB, Zoltan
HSFC, Zoltan PHG, KaFFPa, METIS, ParMETIS and AD-tree partitioning on the
mesh hand.
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(a) (b)

(c) (d)

(e) (f)

(g)
(h)

Figure 4.26: From top to bottom, left to right: Zoltan RCB, Zoltan RIB, Zoltan
HSFC, Zoltan PHG, KaFFPa, METIS, ParMETIS and AD-tree partitioning on the
mesh horse.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 4.27: From top to bottom, left to right: Zoltan RCB, Zoltan RIB, Zoltan HSFC,
Zoltan PHG, KaFFPa, ParMETIS and AD-tree partitioning on the mesh ramesses.
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BUNNY |Nodes| Time (secs) Max imb. Min imb.
Zoltan RCB

69666

3.926 1.000 1.000

Zoltan RIB 3.970 1.000 1.000

Zoltan HSFC 4.113 1.000 1.000

Zoltan PHG 4.603 1.021 0.832

KaFFPa 5.401 1.023 0.964

METIS 0.0953 1.470 0.686

ParMETIS 0.165 1.010 0.994

AD-tree part. 0.0241 + 0.0126
(0.0367)

1.118 0.799

Table 4.1: Comparison between partitioning algorithms on the mesh bunny.

CASTING |Nodes| Time (secs) Max imb. Min imb.
Zoltan RCB

10224

3.819 1.000 1.000

Zoltan RIB 3.666 1.000 1.000

Zoltan HSFC 3.665 1.000 1.000

Zoltan PHG 3.654 1.041 0.967

KaFFPa 1.108 1.016 0.959

METIS 0.0165 2.353 0.524

ParMETIS 0.0411 1.029 0.971

AD-tree part. 0.00254 + 0.000819
(0.003359)

1.146 0.858

Table 4.2: Comparison between partitioning algorithms on the mesh casting.

COW |Nodes| Time (secs) Max imb. Min imb.
Zoltan RCB

5804

3.701 1.000 1.000

Zoltan RIB 3.740 1.000 1.000

Zoltan HSFC 3.872 1.000 1.000

Zoltan PHG 3.778 1.062 0.982

KaFFPa 0.972 1.017 0.972

METIS 0.0142 1.522 0.566

ParMETIS 0.0306 1.028 0.957

AD-tree part. 0.00276 + 0.000445
(0.003205)

1.141 0.866

Table 4.3: Comparison between partitioning algorithms on the mesh cow.
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DRAGON |Nodes| Time (secs) Max imb. Min imb.
Zoltan RCB

100000

4.014 1.000 1.000

Zoltan RIB 3.943 1.000 1.000

Zoltan HSFC 3.956 1.000 1.000

Zoltan PHG 4.822 1.085 0.869

KaFFPa 5.621 1.026 0.934

METIS 0.188 1.080 0.922

ParMETIS 0.201 1.016 0.979

AD-tree part. 0.0458 + 0.018
(0.0638)

1.261 0.826

Table 4.4: Comparison between partitioning algorithms on the mesh dragon.

HAND |Nodes| Time (secs) Max imb. Min imb.
Zoltan RCB

72958

3.998 1.000 1.000

Zoltan RIB 3.834 1.000 1.000

Zoltan HSFC 3.992 1.000 1.000

Zoltan PHG 4.723 1.090 0.969

KaFFPa 5.384 1.028 0.967

METIS 0.156 1.256 0.778

ParMETIS 0.169 1.021 0.978

AD-tree part. 0.0259 + 0.0129
(0.0388)

1.032 0.969

Table 4.5: Comparison between partitioning algorithms on the mesh hand.

HORSE |Nodes| Time (secs) Max imb. Min imb.
Zoltan RCB

225280

4.346 1.000 1.000

textZoltan RIB 4.654 1.000 1.000

Zoltan HSFC 4.62 1.000 1.000

Zoltan PHG 6.868 1.077 0.981

KaFFPa 19.351 1.014 0.979

METIS 0.352 1.116 0.915

ParMETIS 0.381 1.002 0.998

AD-tree part. 0.0464 + 0.0428
(0.0892)

1.037 0.936

Table 4.6: Comparison between partitioning algorithms on the mesh horse.
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RAMESSES |Nodes| Time (secs) Max imb. Min imb.
Zoltan RCB

1652528

10.935 1.000 1.000

Zoltan RIB 10.905 1.000 1.000

Zoltan HSFC 11.824 1.000 1.000

Zoltan PHG 33.522 1.089 0.884

KaFFPa 200.848 1.029 0.919

METIS n.c. n.c. n.c.
ParMETIS 2.883 1.001 0.999

AD-tree part. 0.701 + 0.309
(1.010)

1.147 0.786

Table 4.7: Comparison between partitioning algorithms on the mesh ramesses.

Figure 4.28: Graph representing the maximum imbalance of the partitioning algo-
rithms on the considered meshes.

Figure 4.29: Graph representing the minimum imbalance of the partitioning algo-
rithms on the considered meshes.
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RCB RIB HSFC PHG

bunny 3.73 3.49 5.26 2.89

casting 10.4 9.9 13.8 8.33

cow 13 13 14.3 8.74

dragon 3.56 3.55 4.88 1.82

hand 3.56 3.56 5.4 3.41

horse 2.09 2.09 3.33 1.49

ramesses 0.72 0.71 1.32 0.579

Table 4.8: Average percentages of border nodes with respect to the partitions size,
part 1.

METIS ParMETIS KaFFPa AD-Tree part.

bunny 3.01 2.75 2.39 4.31

casting 9.62 8.16 6.85 13.5

cow 15.63 7.51 7.22 11.3

dragon 1.72 1.45 1.24 4.35

hand 3.39 3.05 2.7 7.1

horse 2.73 1.48 1.33 2.25

ramesses n.c. 0.5 0.462 1

Table 4.9: Average percentages of border nodes with respect to the partitions size,
part 2.

One metric that has not been considered is the scalability with respect
to the number of partitions. Differently from all the other algorithms, AD-
tree partitioning is impervious to a change in k, as showed in Table 4.10

(considering, this time, only the partitioning time, since the tree creation
does not change), for the mesh bunny.

The section is concluded with the partitioning obtained on the mesh de-
rived as in [78–80], from the image sequence castle-P30 (Figures 4.30 and
4.31), belonging to the EPFL dataset [3]. The mesh obtained has around 4.1
million faces and is divided, with k = 8 in about 3 seconds (considering the
conversion graph to AD-tree plus the partitioning).
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Time k = 8 k = 16 k = 32 k = 64

RCB 3.93 7.92 15.09 38.49

RIB 3.97 7.65 15.051 37.22

HSFC 4.11 7.54 14.62 28.26

PHG 4.60 10.69 18.77 37.32

KaFFPa 5.40 13.032 15.38 20.62

METIS 0.095 0.10 0.12 0.14

ParMETIS 0.165 0.17 0.176 0.185

AD-Tree part. 0.0126 0.0129 0.0131 0.0131

Table 4.10: Time difference with different k, for the mesh bunny.

Figure 4.30: Mesh obtained from the castle-P30 image sequence.
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Figure 4.31: Mesh of Figure 4.30 partitioned into 8 parts.



5
D I R E C T E D PA RT I T I O N I N G

In Chapters 3 and 4 we proposed an algorithm that exploits additional in-
formation of the graph, Label Clustering, and an algorithm that represent
the graph with an augmented data structure. In this chapter we propose a
partitioning algorithm that works directly on the graph, without needing
additional data structures.

The idea behind the method is, once again, the depth-first algorithm, used
to visit all the nodes of the tree. To partition a graph with |V | nodes into k
groups, the proposed method starts going through the nodes counting them,
stopping when |V |/k vertices are explored.

For example, given the graph in Figure 5.1a, a partition of size 5 can be the
one represented in 5.1b. The partition is perfectly balanced, and depth first
is used for this reason: as soon as the desired size is reached, the exploration
stops. However, the obtained partition does not have fully connected nodes,
but is characterised by a low amount of edges, so that the sum of weights
inside the block is not maximised.

Another solution, more likeable, is instead the one represented in Figure
5.1c. The showed partition is compact and with a high amount of inner
edges, and is the result that should be reached. Unfortunately, depth first
does not discriminate between the two cases, since no spatial information
is considered. In the next two sections, modifications to the depth-first algo-
rithm to solve this problem are proposed. Then the partitioning algorithm,
called Directed partitioning, is described, followed by experimental results.
For all the rest of the chapter, it is assumed that the adjacency list of a node
expresses neighbours ordered with a counter-clockwise sense, and not ran-
domly. For example, one possible adjacency set for node 0 in Figure 5.2 is
given by the sequence {1,3,5,2,4}.

5.1 local (exploration) strategy

Looking at Figure 5.3, one can easily understand how a node should be
selected for the exploration. The initial seed of the partition, painted in red,
explores all of its adjacent nodes and selects one randomly, the orange one.
This node is now explored, having all the neighbours visited.

To obtain the desired partition, assuming the exploration counter-clockwise,
the green node must be selected as the next element to be explored, but
the adjacency list of the orange node does not give any indication about the
green node position. However, since the adjacency list is ordered, it is known

119
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(a) (b)

(c)

Figure 5.1: If pure depth-first is applied on the graph to the left, any kind of par-
tition could be obtained, like Figure 5.1b, while instead a more patch-like block is
desired, as in Figure 5.1c.

that the green node is right behind the red one in the list (because it is the
first clockwise). In the same way, the green node is the most distant from
the red node in the list, going circularly left to right. The idea is then to shift
the elements of the adjacency list such that the first element in the list is the
node from which the current node comes from (in the example, we want the
red node to be the first in the adjacency list of the orange node). The shifting
operation can be done because it does not change the order of the elements
in the list. In this way, it is known both which node should be explored next,
i.e. the last of the list, and the order in which all the other neighbours should
be explored later.

It is obvious that going clockwise inverts almost all of what as been said
until now. While the adjacency list has the same meaning, the first node to
be explored will be the second of the shifted list (not the last, considered
before).

Let’s see with an example how this procedure, called local strategy, works,
considering the graph in Figure 5.4a. Node 1 is the seed that starts the explo-
ration, and visits its adjacent nodes, say that they are ordered as {0,5,6,2,3}
(Figure 5.4b). Since it is the first node explored, the next node is selected
randomly, suppose node 2 (Figure 5.4c). Let the neighbours of it be ordered
as {12,9,3,0,1}. Following the local strategy, we shift the adjacency set until
the previous node is first in the list: {1,12,9,3,0}. In this way we know that
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Figure 5.2: Simple graph to demonstrate how the adjacency set considers nodes.

Figure 5.3: Representation of the ideal order of exploration: red, orange and then
green nodes.

the next node to be explored is the last of the list, 0 (Figure 5.4d). The same
reasoning can be applied for this node: supposed that its adjacency list is
{6,1,2,3,7,4,8,5}, it is shifted to obtain the sequence {2,3,7,4,8,5,6,1}. Node 1 is
already explored, so the algorithm selects the last but one from the end of
the shifted adjacency list (Figure 5.4e). The local strategy is then applied for
all the other nodes in the same way.

5.2 global (exploration) strategy

It has been seen how each node selects the next element to be explored, shift-
ing its adjacency list to understand the relative position of the neighbours. In
this section four global strategies representing how the exploration proceeds
in the whole graph are described. The strategies are applied on the graph
associated to the faces of an icosahedron, represented in Figure 5.5.

5.2.1 Depth first with no visiting

When, using depth-first, a node goes through its neighbours, it marks all of
them as visited and selects one to explore, using the local strategy described
before. In this modification of the algorithm, instead of being marked as
visited, nodes are immediately explored.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Example of how the local strategy works.

Consider the graph represented in Figure 5.5c, starting from node f0. The
node marks all of its neighbours as explored, and selects one randomly to
continue the algorithm, let’s say f5, whose free adjacent nodes are f3 and f6.
Both are marked as explored, but only the latter is used to continue. This
procedure goes on until the desired number of nodes is explored (consid-
ering all the marked nodes, and not only the ones used to go around the
graph). Figure 5.6 shows the whole exploration of the considered graph.

The main advantage of this algorithm is the speed and low memory usage:
nodes are immediately marked as explored so that there is no need to insert
them into a stack (as in pure depth first). However, frequent holes can be
created in the graph, as showed in Figure 5.7, and the obtained partition can
be elongated in shape.

The hole generation problem heavily depends on the graph structure and
happens when all the nodes around a subset are explored before reaching its
elements during the algorithm. The second problem is related to the explo-
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(a) (b)

(c)

Figure 5.5: Icosahedron used to explain different global strategies. The graph rep-
resenting its faces, to the right (Figure 5.5c), will be the on which such strategies are
applied.

Figure 5.6: Depth first with no visiting on the icosahedron’s graph.
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Figure 5.7: Depth first with no visiting can create multiple holes in the graph, as
node 6. Red nodes are explored while orange nodes are marked as explored.

ration order in the graph, partially enforced by the fact that for each node,
all the neighbours are explored and only one continues the exploration.

5.2.2 Depth first with alternated expansion sense

Let v be the node being currently explored, whose adjacent nodes are {a0,
a1, . . . , an}. In pure depth first, if an is already explored, the next node in
the algorithm would be an−1. A variant of the procedure handles differently
the nodes already explored. If up to the moment v is reached, nodes were
traversed counter-clockwise, the sense changes to clockwise, and the first
explored node will be a1. Vice versa, if the traversing sense was clockwise, it
changes to counter-clockwise and the next node to be explored will be an−1.

An example is showed in Figure 5.8. Starting from node f0, the explo-
ration starts counter-clockwise, until node f1 is reached. The candidate to be
explored is f0, that is already explored. The new traversing sense changes to
clockwise and the next node to be considered is f2.

The main advantage of this algorithm is that the partitions created have
regular shapes, patch-like or with flowers. However, it creates frequent holes,
as it can be seen in the example.

5.2.3 Depth first and last

Moving only counter-clockwise, nodes are visited and expanded as the nor-
mal depth-first algorithm describes. A queue is used to support the algo-
rithm. The front element in the queue is the current explored node, and
each time a node is visited (but not explored), it is inserted in the queue.
When a node is explored, it replaces the front element of the queue. When
the algorithm encounters a node that is already explored, the front element
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Figure 5.8: Depth first with alternated expansion sense on the icosahedron’s graph.

Figure 5.9: Depth first and last on the icosahedron graph.

of the queue is removed instead of being replaced. The new front element is
the next node that will be explored by the algorithm.

An example is given by Figures 5.9 and 5.10. The seed starting the algo-
rithm is node f0, inserted in the queue (Figure 5.10a). The node visits its
neighbours, and selects f5 to be expanded, replacing it into the front spot in
the queue and inserting the other visited nodes (Figure 5.10b). f5 has two
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(a) (b)

(c)
(d)

(e) (f)

(g) (h)

Figure 5.10: Status of the queue in the first iterations of the depth first and last
algorithm used on the icosahedron’s graph.

adjacent nodes: f6 replaces it and f13 is inserted in the queue (Figure 5.10c).
The same is done for node f6, replaced by f7 and allowing the insertion of
f15 in the queue (Figure 5.10d). The algorithm continues exploring f7, that
selects f1 as next node, putting f8 at the end of the queue (Figure 5.10e).
However, the candidate node for the next expansion, f0, is already inserted.
The front of the queue is popped after having added the visited nodes (Fig-
ure 5.10f) and the new front is considered the node to be explored. Since it
is already part of the current group, the queue front is once again popped
(Figure 5.10g), leading to the new explored node f4. The same steps are re-
peated: the visited node, f3, is added to the queue and the explored node
is replaced with the new candidate f14. These procedure continues until the
desired number of explored nodes is reached.

It is interesting to notice that a closure, meaning the action that would
explore a node already considered, is detectable in the queue even before
checking the neighbours of a node. If the front element is also located in
another position of the queue, a closure is found, meaning that a full counter-
clockwise path has been traversed.
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Figure 5.11: Ring-like partition created with pure depth first.

While the algorithm is easy to implement and has some interesting prop-
erties, like the pre-emptive closure detection just described, it can still create
holes in the graph, and the shape of the obtained partition can be irregular.

5.2.4 Depth first with border detection

This algorithm is particularly suited for graphs whose nodes have mostly
the same degree, like graphs derived from meshes. It works the same way
as depth-first, starting to expand nodes counter-clockwise. Each time a bor-
der of the graph is encountered, meaning a node with degree less than the
maximum one in the graph, the sense of exploration is inverted, and the algo-
rithm proceeds in the usual way, without other modifications. This shrewd-
ness is needed to avoid partitions that show ring-like structures, as in Figure
5.11. This variant of depth first is the one used in the partitioning algorithm
as global strategy, for two reasons. First, it generates patch-like blocks, ex-
ploring nodes attached to the subset of elements already explored. Second,
it generates a limited amount of holes, for the same reason.

5.3 holes and how to remove them

All the algorithms described in the global strategy section presented a ma-
jor drawback: they generate holes. Holes are visual artefacts that cannot be
avoided, since they depend on the structure of the graph, often having convo-
luted and intricate connections. Giving a proper definition of hole is difficult,
because one should consider ambiguous situations, like in Figure 5.12.

Anticipating how the partitioning algorithm works, if a graph has to be
divided into k blocks, a viable solution is to bisect it recursively, halving the
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Figure 5.12: Given the partition in red, which of the two blue sub-graphs can be
considered hole?

size at each iteration. The bisection of a graph, using the global and local
strategies described before, induces three components:

• The main partition, obtained through the visiting algorithms and seen
strategies

• The other-partition, that is the set of vertices that do not belong to the
main partition

• Holes, that are sets of nodes that should belong to the main partition,
but are separated from both the main partition and other-partition

While distinguishing the first component is an easy task, since it is deter-
mined univocally by the exploration procedure, currently there is no way
to distinguish the other-partition from the holes. Consider again Figure 5.12,
that shows the main partition in red. One cannot say if the hole is the bottom
set of blue nodes or the top one. A convention is needed, described with new
concepts.

The first entity that is necessary to distinguish holes from the other-partition
is the border of the main partition, that visually is the set of nodes surround-
ing it.

Definition 5.1. Border The border of the main partition is the set of nodes
obtained through the following steps.

1. The last and the second to last explored nodes, vlast and vlast−1 are
considered respectively the first and second elements of the border.
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Figure 5.13: Given the partition in red and the last two inserted nodes 6 and 1, the
border is detected going counter-clockwise from 1, considering 6 as its originator
node.

2. Using the local strategy, the main partition is traversed again, with
pure depth first and starting from vlast−1 going only counter-clockwise,
considering vlast as the node from which it came from. This means
traversing the nodes of the partition in alternated direction with re-
spect to the main exploration (if the last nodes visited are, in order,
1, 2 and 3, the new traversal explores 3, 2 and 1), to obtain a ring-
like structure. This is done until vlast or an already explored node is
encountered, meaning that the algorithm looped through the utmost
nodes of the partition.

An example is given in Figure 5.13, where the border of the red partition
(made unbalanced to explain the example) is detected starting from nodes 6

and 1, and is indicated with red arrows.
The border of the main partition defines an ordered sequence of nodes.

As seen before, each node of the graph belongs to a certain group: the main
partition, the other-partition or the holes. Having defined the border of the
main partition, it is easy to see how the other-partition can be detected.

For each element of the ordered sequence of nodes that defines the border,
its neighbours are computed. The first neighbour found that does not belong
to the partition is the initial seed of the other-partition. Applying any visiting
algorithm, like depth-first or breadth-first, from the initial seed and with the
condition of exploring only nodes not belonging to the main partition, a set
of vertices is obtained: this is the other-partition.

Continuing with the example started in Figure 5.13, the following step is
to go through the ordered sequence of nodes forming the border. Its first
element, 6, has seven neighbours. At least one of them does not belong to
the main partition, say node 16, and such node is entitled as initial seed
of the other-partition (5.14a). Then, a visiting algorithm is applied, suppose
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(a) (b)

Figure 5.14: Detection of the initial seed and other-partition for the graph of Figure
5.13.

breadth-first, starting from the initial seed (node 16). The set of nodes ex-
plored in this way determines the other-partition, showed in Figure 5.14b.
Two of the three components of graph bisected through visiting methods
have been found, namely the main partition and the other-partition. By ex-
clusion, the remaining one can be now defined.

Definition 5.2. Hole A hole is a set of nodes in a graph such that they do not
belong to the main partition or the other-partition obtained through bisec-
tion, following local and global strategies. These nodes and are surrounded
by nodes belonging to the main partition.

The number of nodes |V | to the size of each component are related in the
following way:

|V | = |main partition|+ |other-partition|+
∑
i

|holei|

Let notice that there is no constraint over the size of the other-partition and
the size of the holes. It may happen that the other-partition is incredibly
small with respect to the size of the holes. This is a problem because holes
are added to the main partition (as in Figure 5.15), increasing its size and
straying from the balanced property that was originally respected.

5.4 unravelling

When "filling the holes" of the main partition, its size increases, often dra-
matically, destroying the balanced property. To regain it, a process similar to
osmosis can be applied between the main partition and the other-partition.
If solvent molecules go through a selectively permeable membrane into a
region of higher solute concentration, in the direction that tends to equalize
the solute concentrations on the two sides, in the same way nodes migrate
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Figure 5.15: The hole detected in 5.14b is filled and assigned to the main partition.

from the zone with greater size to the smaller one, to balance both partitions.
This migration is not random, as it happens for the solvent molecules, but
follows a defined criterion.

Let v be the last node explored in the main partition. From v, the main
partition is visited again, in a way similar to the one described when de-
tecting its border: moving on the partition contour. Each explored node is
transferred to the other-partition, until the main partition is once again bal-
anced. This procedure is named unravelling since it removes a sequence of
nodes as if they where a single long thread, detached from the rest of the
hank that is the main partition.

Differently from border detection, unravelling must not go around the
main partition contour, since this would produce ring-like structures in the
other-partition. For this reason, when reaching the graph border (not to be
confused with the partition border), the exploration sense is inverted (from
counter-clockwise to clockwise and vice versa).

The example started in the last section, in Figure 5.13, can now be con-
cluded. The graph has twenty five nodes and the main partition, now aug-
mented with nodes that belonged to holes, has 17 elements. Starting from
node 6, immediately assigned to the other-partition, nodes are unravelled in
the following order: 1, 3, 11 and 24, all migrated to the other-partition. In
particular, when reaching node 11, that is a node belonging to the graph bor-
der, the sense of exploration is inverted from counter-clockwise to clockwise
(meaning that if the procedure continued, the next node to be unravelled
would be 10 and not 23). In this way, two perfectly balanced partitions have
been obtained, represented in green and red in Figure 5.16.
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Figure 5.16: Partitions obtained after the unravelling procedure.

5.5 directed partitioning

Local and global exploration strategies, holes detection, filling and nodes
unravelling form, together, the steps of the proposed Directed partitioning
algorithm. In this section, the method is explained avoiding repetitions, fol-
lowed, as usual, by an example on a small graph.

5.5.1 Partitioning algorithm

In the previous sections problems and solutions regarding the partitioning
of a graph, using visiting algorithms, have been seen. All the presented con-
cepts can be grouped in the main partitioning algorithm, called directed
partitioning. The idea behind direct partitioning is recursive bisection. To
obtain k partitions, the graph is first divided into two blocks. Each partition
is then broken again into two other parts, and so on.

The core of the algorithm is the bisection procedure described in Algo-
rithm 13. Starting from an initial node, following the local depth-first with
border detection strategies, the first bisection of the graph is computed, ex-
ploring a certain amount of nodes (starting at line 3, Algorithm 13). Then,
the border of such partition is detected and the initial seed for the other-
partition is selected (starting at line 9, Algorithm 13). Next, the initial seed
is used to explore all the nodes that do not belong to the main partition,
assigning them to the other-partition (starting at line 12, Algorithm 13). Hav-
ing both the main partition and the other-partition, the remaining nodes of
the graph that are not yet assigned to any group represent the main parti-
tion holes. They are assigned to it, filling the partition (starting at line 24,
Algorithm 13). This increases the size of the main block, that has to be re-
duced through the osmosis/unravelling procedure, removing nodes from it
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Algorithm 13 Directed Bisection

1: procedure DirectedBisection(G,initV ,cutThresh)
2: number of explored nodes numEN← 1

3: mark initV as the first explored node
4: while numEN 6 cutThresh do
5: explore a new node cn on the graph, following the local and

depth first with border detection global strategies
6: assign the node to the main partition, cn.group← 0

7: numEN← numEN+ 1

8: end while

9: let ln be the last node explored on the graph and assigned to the
main partition

10: detect the set of nodes B that form the main partition’s border, start-
ing from ln

11: detect the initial seed is of the other-partition, using the nodes in B

12: initialise the stack of the other-partition’s nodes OPN
13: insert is into OPN
14: while OPN is not empty do
15: current node cn← OPN.top
16: remove the top of OPN
17: for all adjacent node cnadj of cn do
18: if cnadj.group = −1 then
19: cnadj.group← 2

20: push cnadj on OPN
21: end if
22: end for
23: end while

24: insert all the nodes that do not belong to group 1 or 2 into the set
HOLES

25: for all v ∈ HOLES do
26: v.group← 1

27: end for

28: let sizeMain be the number of nodes with group field equal to 1

29: starting from ln, unravel nodes (assigning them to group 2) until
sizeMain < cutThresh

30: end procedure
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Figure 5.17: Graph used in the bisection example.

and assigning them to the other-partition (starting at line 28, Algorithm 13),
until the desired dimension is reached.

5.5.2 Partitioning example

The section ends with an example of the bisection procedure applied on the
graph showed in Figure 5.17. The following convention is used: red nodes
are explored, orange nodes are visited and green nodes belong to the other-
partition.

The algorithm starts considering node 7 as the first explored node, having
neighbours {2,6,13,14,8,3} (Figure 5.18a). Remember that it is assumed that
the adjacency list is ordered counter-clockwise. The next node is selected
randomly, 14, and visits nodes 13, 15 and 8 (Figure 5.18b). Following the
local strategy, the successive node to be explored is 8, because it is the last
node considering counter-clockwise the adjacent nodes of 14, starting from
its originator 7. Node 8 has only two unexplored adjacent nodes to visit: 3

and 9 (Figure 5.18c). Again adopting the local strategy, the next explored
node is 3, having neighbours {9,4,0} (Figure 5.18d), followed by node 2 with
neighbours {1,5,6} (Figure 5.18e).

The next explored node is 6 (Figure 5.18f), that has only 5 as unexplored
neighbour. 6 is the first node of the graph border whose desired neighbour, 7,
is already explored: the exploration sense changes from counter-clockwise
to clockwise. 5 is the next node, with two neighbours: 1 and 12 (Figure
5.19a). The exploration sense is now clockwise, so next node to be considered
during the exploration is 1 (instead of 12, that would erroneously continue
the algorithm selecting the border nodes, leading to a ringed partition). Its
adjacent nodes are {0,4,11,12} (Figure 5.19b). Still going clockwise, the next
node to be explored is 0, that is also the last since nine nodes have already
been explored (half of the number of vertices in the graph, Figure 5.19c).

The first phase of the bisection algorithm is concluded, and now the par-
tition border must be detected. Since the graph is small, the border coin-
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(a) (b)

(c) (d)

(e) (f)

Figure 5.18: First part of the graph bisection example.

cides with the partition itself. Starting from the last node inserted, 0, the first
neighbour that is not member of the main partition is 4, marked as the initial
seed of the other-partition (Figure 5.19d). Starting from it, graph is explored
using pure depth first, not considering the nodes belonging to the main par-
tition. In this way, the other-partition is obtained (Figure 5.19e), containing
six nodes.

A hole is detected, formed by nodes {13,15,16}, and is added to the main
partition (Figure 5.19f), that now has twelve elements, more than the desired
size. The last action to do is unravelling. Starting again from the last explored
node, 0, the main partition is traversed, and each node passed is assigned to
the other-partition. Nodes 0, 1 and 5 are detached from the main partition,
that reaches the desired size of nine elements (Figure 5.19g). The bisection is
now complete and results in perfectly balanced partitions.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.19: Second part of the graph bisection example.
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5.6 directed partitioning results

To demonstrate the results of the Directed partitioning algorithm, we use
the graphs derived from the mesh collection provided with the benchmark
described in [4] (considering their faces as nodes), comparing them with the
main competitors in terms of perfect balance of the partitions: Zoltan RCB
[75] and ParMETIS [64, 65, 63, 60], for k = 4.

The following configuration is used.

• Values are taken as average over different runs on a 64-bit laptop with
Intel® Core(TM) i5-3337U CPU @ 1.80GHz x 4 processors, each with
3072Kb of cache size.

• Zoltan RCB is set to work in parallel using as many threads as k.

• ParMETIS uses the ParMETIS_V3_PartMeshKway routine to compute
the partitions directly on the surface mesh. Default parameter values
are used, as suggested in the toolkit manual [60]. Only one thread is
considered.

• Directed partitioning is applied three times sequentially. With the first
pass, a mesh is bisected into two parts. Then, each partition is bisected
into other two blocks, forming four partitions in total.

• The first pass of directed partitioning starts on a random node of the
mesh, while the others begin from a random node of the partitions
borders, providing a better result.

• Multiple instances of the partitioning algorithm are run in parallel. The
one that ends first (providing also the best result) is considered, dis-
carding the remaining ones.

To evaluate the three algorithms, the same metrics adopted in Chapter 4

are used:

• Execution time, computed for Directed partitioning as the sum of each
pass

• Maximum and minimum imbalance, useful to judge the ability of a
procedure to obtain balanced partitions; they are respectively com-
puted as

max |partitioni|
|perfectly balanced partition|

and
min |partitioni|

|perfectly balanced partition|
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• The percentage of border nodes of a partition with respect to its size,
defined as

num border nodes of partitioni

|partitioni|

Lower values of the three metrics correspond high quality partitioning.
The first contribution of the proposed algorithm is that it works directly

on the data structure, be it meshes rather than graphs, without the need of
a conversion of an auxiliary data structure.

Figures 5.20, 5.21, 5.22, 5.23, 5.24, 5.25, 5.26, 5.27, 5.28 and 5.29 represent
the resulting partitions of the considered meshes, showing the outcome of
each algorithm. As it can be seen by the figures, to RCB corresponds hard
partitions, meaning that visually they are rectangular blocks (motivated by
the fact that these methods partition the space and not the mesh itself).
ParMETIS and Directed partitioning produce, instead, smooth and envelop-
ing partitions.

Let’s consider now the metrics associated to the meshes considered, de-
scribed in Tables 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9 and 5.10. Directed
partitioning excels over all the other algorithms in terms of execution time.
If all the partitions are executed serially, as considered in the tables, the
complexity is linear with log2 k, meaning that with more partitions we want
to obtain, the computational time increase. To mitigate this problem, each
partition can be assigned to a thread and executed in parallel, changing the
bottleneck to the slowest thread.

Considering the imbalance, all the partitions are obtained with perfect or
almost perfect size. In particular, both Zoltan RCB and Directed partitioning
provide excellent results: each partition Vi has size equal to |Vi|/d|V |/ke, that
is the desired threshold. ParMETIS blocks are slightly imbalanced, but the
amount is negligible if compared to Zoltan RCB and Directed partitioning.

Lastly, consider Table 4.10, showing the average ratio of the number of ele-
ments in a partition border and the size of the partition. Directed partitioning
ratios are placed between ParMETIS and Zoltan RCB values, meaning that
the obtained partitions are patch-like and compact.
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(a)

(b)

(c)

Figure 5.20: From top to bottom, left to right: Zoltan RCB, ParMETIS and Directed
partitioning on the mesh bunny.
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(a)

(b)

(c)

Figure 5.21: From top to bottom, left to right: Zoltan RCB, ParMETIS and Directed
partitioning on the mesh casting.
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(a)

(b)

(c)

Figure 5.22: From top to bottom, left to right: Zoltan RCB, ParMETIS and Directed
partitioning on the mesh cow.
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(a)

(b)

(c)

Figure 5.23: From top to bottom, left to right: Zoltan RCB, ParMETIS and Directed
partitioning on the mesh crank.
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(a)

(b)

(c)

Figure 5.24: From top to bottom, left to right: Zoltan RCB, ParMETIS and Directed
partitioning on the mesh dragon.
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(a)

(b)

(c)

Figure 5.25: From top to bottom, left to right: Zoltan RCB, ParMETIS and Directed
partitioning on the mesh hand.
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(a)

(b)

(c)

Figure 5.26: From top to bottom, left to right: Zoltan RCB, ParMETIS and Directed
partitioning on the mesh horse.
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(a)
(b)

(c)

Figure 5.27: From top to bottom, left to right: Zoltan RCB, ParMETIS and Directed
partitioning on the mesh rabbit.



5.6 directed partitioning results 147

(a)
(b)

(c)

Figure 5.28: From top to bottom, left to right: Zoltan RCB, ParMETIS and Directed
partitioning on the mesh ramesses.
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(a)

(b)

(c)

Figure 5.29: From top to bottom, left to right: Zoltan RCB, ParMETIS and Directed
partitioning on the mesh venus.
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BUNNY |Nodes| Time (secs) Max imb. Min imb.

Zoltan RCB
69666

2.564 1 1

ParMETIS 0.122 1 1

Directed part.
0.0245 + 0.0175 + 0.0112

(0.0532)
1 1

Table 5.1: Comparison between partitioning algorithms on the mesh bunny.

CASTING |Nodes| Time (secs) Max imb. Min imb.

Zoltan RCB
10224

2.169 1 1

ParMETIS 0.0457 1 1

Directed part.
0.00271 + 0.00216 + 0.00234

(0.00721)
1 1

Table 5.2: Comparison between partitioning algorithms on the mesh casting.

COW |Nodes| Time (secs) Max imb. Min imb.

Zoltan RCB
5804

2.267 1 1

ParMETIS 0.0441 1.028 0.972

Directed part.
0.00231 + 0.00218 + 0.00176

(0.00625)
1 1

Table 5.3: Comparison between partitioning algorithms on the mesh cow.

CRANK |Nodes| Time (secs) Max imb. Min imb.

Zoltan RCB
100056

2.489 1 1

ParMETIS 0.202 1 1

Directed part.
0.0368 + 0.0184 + 0.0156

(0.0708)
1 1

Table 5.4: Comparison between partitioning algorithms on the mesh crank.
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DRAGON |Nodes| Time (secs) Max imb. Min imb.

Zoltan RCB
100000

2.189 1 1

ParMETIS 0.229 1.001 0.998

Directed part.
0.0419 + 0.0324 + 0.0289

(0.103)
1 1

Table 5.5: Comparison between partitioning algorithms on the mesh dragon.

HAND |Nodes| Time (secs) Max imb. Min imb.

Zoltan RCB
72958

2.176 1 1

ParMETIS 0.187 1.001 0.997

Directed part.
0.037 + 0.0118 + 0.0154

(0.0642)
1 1

Table 5.6: Comparison between partitioning algorithms on the mesh hand.

HORSE |Nodes| Time (secs) Max imb. Min imb.

Zoltan RCB
225280

2.443 1 1

ParMETIS 0.395 1.003 0.998

Directed part.
0.0788 + 0.0511 + 0.0563

(0.186)
1 1

Table 5.7: Comparison between partitioning algorithms on the mesh horse.

RABBIT |Nodes| Time (secs) Max imb. Min imb.

Zoltan RCB
141312

2.491 1 1

ParMETIS 0.284 1.001 0.999

Directed part.
0.0512 + 0.0313 + 0.0297

(0.112)
1 1

Table 5.8: Comparison between partitioning algorithms on the mesh rabbit.



5.6 directed partitioning results 151

RAMESSES |Nodes| Time (secs) Max imb. Min imb.

Zoltan RCB

1652528

7.929 1 1

ParMETIS 3.578 n.c. n.c.

Directed part.
0.758 + 0.319 + 0.359

(1.436)
1 1

Table 5.9: Comparison between partitioning algorithms on the mesh ramesses.

VENUS |Nodes| Time (secs) Max imb. Min imb.

Zoltan RCB
201515

2.453 1 1

ParMETIS 0.423 1.003 0.998

Directed part.
0.0754 + 0.0426 + 0.0404

(0.158)
1 1

Table 5.10: Comparison between partitioning algorithms on the mesh venus.

Zoltan RCB ParMETIS Directed part.

bunny 2.82 1.72 3.10

casting 8.23 5.27 7.39

cow 10.67 4.88 5.53

crank 2.92 0.94 3.01

dragon 2.46 0.80 2.95

hand 2.62 1.86 2.32

horse 1.57 0.87 1.08

rabbit 1.75 1.46 1.44

ramesses 0.44 0.29 0.38

venus 1.57 1.13 1.43

Table 5.11: Average percentages of border nodes with respect to the partitions size.





6
U S E C A S E A N D A D - T R E E PA RT I T I O N I N G
I M P R O V E M E N T S

In this chapter we present one of the possible applications of graph parti-
tioning: 3D reconstruction. To obtain accurate representation of real world
scenes, a reconstruction undergoes different steps of a pipeline: scene point
estimate, 3D reconstruction (usually in the form of 3D surfaces, named
meshes) and refinement of the created reconstruction. The last step is usually
computationally expensive, since it is done on the whole mesh. Graph parti-
tioning can be used to break it into multiple smaller parts and refine them
separately and in parallel. Then, we discuss three possible improvements for
the AD-tree partitioning algorithm presented in Chapter 4: a pre-processing
tree rebalancing, an enhancement of the algorithm and a post-processing
method to improve the balance of the obtained partitions.

6.1 use case : 3d reconstruction

3D Reconstruction represents a long-standing research topic in both Com-
puter Vision and Robotics, used in different applications in the field of
medicine, gaming, civil engineering, autonomous driving, tourism, etc. In
the last decades, there was an important demand for 3D content for com-
puter graphics, virtual reality and communication, further increasing the
focus dedicated to the reconstruction problem.

In Computer Vision, researchers try to recover the poses of the camera
used to obtain the scene images, together with the structure of the map, in
a batch fashion, with Structure from Motion (SfM) algorithms. Many works
in Robotics focus, instead, on the real-time creation of maps of large scale
areas, having a camera navigating through the environment to be mapped,
leading to the so called Visual Simultaneous Localization and Mapping (V-
SLAM) algorithms. Simultaneous Localization and Mapping (SLAM) aims
at rapidly understanding how the surrounding world looks like, chasing a
trade-off between accuracy and computational feasibility.

SfM and Visual SLAM algorithms build a point-based map of the environ-
ment that is often very sparse, except in the case of recent semi-dense SLAM,
such as LSD-SLAM [83]. Only few Dense-SLAM proposals, as DTAM [84],
are able to recover a dense representation of the scene. However, they scale
badly in large-scale environments.

Structure from Motion algorithms evolved into the so called Multi-View
Stereo (MVS) algorithms that recover a dense accurate reconstruction of the

153
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environment from a set of unordered images. MVS algorithms decouple the
camera pose estimation and the model computation: they delegate the for-
mer task to an external algorithm, such as a SfM, and they focus on the
latter to estimate a detailed model of the environment. As for the early SfM,
Multi-View Stereo focuses on accuracy but it has limited its application only
to offline batch settings.

Nowadays, the Multi-View Stereo community turned to volumetric and
mesh-based representations, that was boosted thanks to the widespread
availability of GPU hardware which enables massive parallel processing. Vol-
umetric algorithms partition the scene into voxels or tetrahedra and estimate
a subset representing the free space and a subset representing the matter.
The boundary between free space and matter represents the final 3D model
of the scene. Volumetric algorithms achieve very accurate results but their
application is limited to small scenes, since their data structure is not scal-
able.

Very recent works [77–79, 81] represent the scene as a triangular manifold
mesh, allowing to reconstruct large-scale scenes through continuous meshes.
These are refined using photometric techniques, maximising the likelihood
of the reconstruction according to the images. Their work can be divided
in two contributions: first, they propose an incremental reconstruction from
sparse points, obtaining a mesh; then, they explain how a mesh can be re-
fined incrementally. The former step estimates a manifold mesh from the
output of a Structure from Motion algorithm or any algorithm providing
camera poses, sparse point clouds, and camera-to-point viewing rays (e.g.,
RGB-D and laser based systems). The latter step refines the resulting mesh
according to the appearance provided by the images.

More in detail, their incremental pipeline combines three phases to recon-
struct a photo-consistent model of the environment, represented in Figure
6.1: manifold reconstruction, mesh merging and windowed photo-metric re-
finement. The inputs of their proposed system are the 3D points position,
the camera poses and the visibility rays, estimated by any incremental SfM
or SLAM algorithm such as the method implemented in openMVG [85] or
ORB-SLAM [86]. Every W frames the system outputs the available recon-
struction.

The first step builds incrementally a manifold mesh from Structure from
Motion 3D points and camera poses up to time t. In this step the mani-
fold property is enforced, to consistently apply the mesh evolution process.
The second step is dedicated to the windowed variational refinement of the
current mesh, which evolves the surface to maximize the photo-consistency
between pairs of cameras. The output of this module is the current incre-
mental optimized mesh, i.e., the output of the whole system. In the third
step the output of refinement and the new manifold are merged with a novel
approach that keeps the manifold property and updates the topology. The
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Figure 6.1: Pipeline of the 3D reconstruction method described in [77–79, 81]

Figure 6.2: Complete 3D reconstruction pipeline. From left to right: sparse point
estimate, densification of the points, manifold reconstruction and mesh refinement.

output of this module is the multi-resolution merged mesh that feeds the re-
finement module. After such multi-resolution merging step the refinement
algorithm is able to jointly refine both the newly added region together with
the refined part.

Instead of considering as input sparse points, one can also give a dense
representation of the scene using sweeping methods, as in [87]. Although
very costly, this improvement allows to obtain a better 3D reconstruction.
Considering all the improvements, the general reconstruction pipeline is
represented in figure 6.2 (mesh derived from the castle-P30 sequence of
the EPFL dataset and built with the mentioned algorithms). After having
estimated a sparse point cloud from a SfM or SLAM algorithm, the points
are densified using sweeping methods, obtaining point clouds with a large
amount of elements. From these, an accurate manifold reconstruction is ob-
tained, successively refined through photometric or semantic techniques.

Although the output reconstruction is very detailed, the whole procedure
is extremely slow, especially the densification and refinement steps. The time
required to refine a mesh depends on its size, since it involves the movement
of vertices to maximise the likelihood of reconstruction with respect to the
images.

Instead of considering the whole mesh for the refinement phase, the pipeline
can be improved by breaking the initial reconstruction and feed each part to
multiple refinement modules, in parallel. Using either AD-tree partitioning
or Directed partitioning, the mesh is divided in k parts. All the sub-meshes
are then refined, in parallel and independently from each other. Lastly, the
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Figure 6.3: New proposed 3D reconstruction pipeline. From left to right: sparse
point estimate, densification of the points, manifold reconstruction and mesh refine-
ment on the partitions.

refined sub-meshes are stitched together to form again the entire mesh. An
example is given in Figure 6.3, where the considered mesh is divided in four
parts and each one is refined. Each step of the refinement on the full recon-
struction takes around 180 seconds. The mesh partition takes at most 1 or
2 seconds, and the refinement on each derived sub-mesh is done in around
100 seconds for each iteration, far less than the time required for the whole
mesh.

6.2 improvements of ad-tree partitioning

In this section, we propose three enhancements for the AD-tree partitioning
algorithm, to be implemented in future works. They all rely on the descen-
dants graph component of the main data structure, using different working
principles to improve the partitions balance.

The first enhancement consists in modifying the AD-tree before the par-
titioning, and is named adoption. The second improvement, greedy T-sum,
works instead during the partitioning algorithm, to support the SearchDe-
scendants routine of Algorithm 11, described in Section 4.4, Chapter 4. The
third and last improvement, called exchange is a post-processing refinement:
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once the partitions are obtained, they request and concede chunks of trees
to increase the overall balance of the results.

6.2.1 Adoption

For a node in the AD-tree, children, descendants and relatives represent
the adjacency in the original graph. The way these three parts interact is
determined by the order imposed by the construction algorithm. One can,
however, perform an operation that allows to change the roles: adoption.

A node with descendants can adopt one or more of them changing their
ownership. Suppose to have a node v, whose descendant is u. If v adopts u,
the following actions must be done:

1. u is removed from the descendants of v

2. u is added to the children of v

3. u’s level and the levels of all the nodes departing from it are upgraded
according to the level of v

4. Calling up the parent of u, up removes u from its children

5. If the new level of u is greater than the level of up, the latter becomes
ancestor of the first (and u is inserted in up descendants)

6. If the new level of u is lesser than the level of up, the latter becomes
descendant of the first (and u is inserted in up ancestors)

7. If the new level of u differs from its old level, all the nodes departing
from it must change their descendants and ancestors accordingly to
their new level (maintaining or inverting it)

8. Ariadne’s tree is rebuilt for the whole AD-tree

9. If the new level of u is equal to the level of up, their relationship is
determined by their visiting order, dictated by the new Ariadne’s tree,
with the usual convention that the first node to be visited is the ances-
tor

Conversely, a node with ancestors can be adopted by one of them, following
the same operations. The Ariadne’s tree reconstruction should be done just
one time, after having moved multiple nodes, because it has not any pur-
pose during the adoption phase: the only elements considered are ancestors,
descendants and children (so the standard tree and the descendants graph).

Let’s consider, again, the graph and corresponding LtR AD-tree in Figure
6.4. Suppose that node 7 wants to adopt node 6. The node is removed from
the children of node 5 and inserted into the children of node 7. 6 becomes
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(a)
(b)

Figure 6.4: Graph and corresponding AD-tree used in the adoption example.

Figure 6.5: AD-tree obtained after the adoption of node 6 by node 7.

descendant of its old parent, 5, and since its level does not change, no up-
date must be done on the nodes departing from it. Lastly, Ariadne’s tree is
reconstructed, obtaining the new AD-tree represented in Figure 6.5.

One can decide if an adopted node can be adopted again by a node belong-
ing to a different branch, or if it can itself adopt. This means that adoption
is bidirectional: it can be done by nodes belonging to all branches (moving
horizontally in the tree) or by nodes belonging to adopted subtrees (moving
vertically).

Indeed, adoption comes in different flavours, but should not be abused or
done indiscriminately. A good practice is filling the ranks: a node should be
adopted only if it is an only child or has only one sibling; a node should
adopt only if it has one or two descendants. First, this approach reduces
the computational time derived from adoption, since it greatly reduces the
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(a) (b)

Figure 6.6: Tree with values and one of the possible subtrees with sum 29.

number of candidates for the procedure. Second, it balances the tree, moving
thin branches and creating nodes with high fanout, leading to more balanced
partitions.

6.2.2 Greedy T-sum algorithm

In Section 4.4 of Chapter 4, the working principle of the AD-tree partition-
ing algorithm has been described. One particular subroutine, SearchDescen-
dants, is used to find a path that exceeds the cut threshold. Although this
procedure is fast, it is limited in the search space: suppose to have a very
dense descendants graph, searching for only a path would waste many pos-
sibilities to find better cuts.

Instead of considering a path, one can search a subtree with same root,
such that the sum of the values of all its nodes is the minimum sum among
all the possible subtrees, greater than a fixed threshold. If the selected sub-
tree has value val that is greater than the threshold, than there is no other
subtree whose value stands between the threshold and val. For example,
consider the tree in Figure 6.6a. If the threshold is 29, one of the many sub-
trees to have this value is represented in Figure 6.6b. The exact solution can
be found enumerating all the possible subtrees and stopping as soon as a
subtree with the desired value is found. This solution is acceptable for short
trees, but it becomes too difficult to compute for trees with many levels (as
in the AD-tree).

Without loss of generality, let’s consider a complete tree, where each node
has the same degree D. If the tree consists only in the root, only one possible
subgraph can be extracted: the root itself. If the three has two levels, the
number of possible subgraphs, named N2, is the number of combinations of
the nodes in the tree, computed as

N2 =

D∑
k=0

(
D

k

)
= 2D
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It is well known [73] that in case of infinite trees of degree D, the number of
rooted subtrees, with given size u, is given by

1

(D− 1)u+ 1

(
Du

u

)
For finite trees, an expression of the number of rooted subtrees is provided,

without proving it but giving an intuitive explanation. Let v be some node
which is not a leaf, and let its children be v1, v2, . . . , vd. Suppose that the
number of subtrees of the maximal subtree rooted at each child (i.e., which
include these but no parent) has already been counted. Considering that
these numbers are always the same, n, since each node has the same number
of elements, then the maximum number of subtrees rooted at v is (1+ n)D.
This concept is generalisable to the total number of subtrees rooted in a tree,
and can be explained recursively.

• The tree is only formed by the root: the only possible rooted subtree is
the tree itself, hence N1 = 1.

• The tree has two levels, meaning that the number of roots is given by
(1 + n)D, where n is the number of subtrees rooted in the leaves. n
coincides with N1, because it represents the first case (trees with only
one node), hence N2 = (1+ 1)D = 2D, as seen before.

• The tree has L levels, meaning that the number of roots is given by (1+

NL−1)
D, where NL−1 is the number of subtrees rooted in the children

of the root (that corresponds to subtrees of L− 1 levels).

Summing up, given a complete tree with level L and each node having D
children, the number of rooted subtrees is given by:{

N1 = 1

NL = (1+NL−1)
D

This number is exponential with respect to the levels of the tree, thus making
unfeasible the enumeration of subtrees.

We propose a greedy algorithm to find in feasible time an acceptable solu-
tion (minimum sum greater than a threshold T), called greedy T-sum. Given
a tree of L levels, the algorithm proceeds in the following way.

• A window W of size LW , that focuses on the portion of the tree en-
closed by levels 0 and LW − 1, is defined. LW depends on D, but usu-
ally small values like 2 or 3 are used.

• On the portion of the tree enclosed by this window, the algorithm enu-
merates all the possible rooted subtrees, ranking them by sum of the
nodes’ values and selecting the best three.
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• All the subtrees selected that do not have the same depth of the win-
dow are directly considered candidate solutions.

• The window is shifted by LW − 1 levels, such that the leaves of the
selected subtrees are now roots of the subtrees defined by the moved
window.

• For each root, enumerate all the possible subtrees and as before, rank
them, selecting the best three among all the subtrees.

• The last three steps are repeated until either the window reaches the
end of the tree or the exact solution is found.

The algorithm is not guaranteed to provide the best solution, but it greatly
reduces the number of enumerations.

Let’s end the subsection with an example of the algorithm application,
using the tree represented before (in Figure 6.6a) and considering the desired
T-sum of 29 and a window of size 2 (Figure 6.7a). The two best solutions are
considered, with value respectively of 16 and 17 (Figures 6.7b and 6.7c). The
window is then shifted, such that the leaves of the subtrees considered are
now roots of new subtrees (Figure 6.7d). All the subtrees are enumerated
and the best two solutions, that also are the exact T-sum, are found (Figures
6.7e and 6.7f).

6.2.3 Exchange

A more subtle way to exploit the adoption technique described before is to
consider partitions as big clusters, connected by edges crossing the cut bor-
der. When a tree is partitioned into multiple groups, each block has edges
(children, descendants and relatives) going both inside and outside the par-
tition itself (see Figure 6.8). While edges that belong to it are not so useful,
the ones crossing the cuts are the most interesting, because they allow an
interaction between partitions.

Since the groups have different sizes, one can try to balance them having
the partitions make requests and donations, following the idea behind the
refinement phase in multi-level graph partitioning approaches. If a partition
size is less than the desired value, it searches for possible adoptions in the
partitions connected to it by descendants edges. Vice versa, if a partition size
is greater than the desired value, it offers subtrees rooted in nodes that have
ancestors belonging to different partitions (example in Figure 6.9).

While this method sounds more appealing than the chaotic adoption de-
scribed before, it requires a global planning due to the fact that we need to
maximise the balance of all the partitions (not just of one). This involves con-
sidering all the crossing edges: for large graphs it is highly probable that the
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Example of how the greedy T-sum algorithm works.

number of such edges is elevate, leading to an increased execution time. The
exchange happens only with descendants and ancestors and not with chil-
dren. Indeed, while the edges associated to the last two can link any point
inside a partitions, children edges always connect a leaf of one partition to
a root of another group, because of how the partitioning algorithm works.
For this reason they are useless in the exchange procedure: they cannot be
exchanged because it would mean destroying an entire block.
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Figure 6.8: High level view of a partitioned AD-tree: partitions are connected by
edges representing descendants, ancestors and children.

Figure 6.9: Example of how sub-trees are exchanged among partitions to achieve
more balance.





7
C O N C L U S I O N S A N D F U T U R E W O R K S

In this thesis, we proposed three new graph partitioning algorithms. Al-
though each algorithm differs from the others by performance, usage, out-
put quality and working principle, they all allow to perform efficient and
fast partitioning on graphs.

The first algorithm is designed for hybrid clustering: it exploits the sim-
ilarities between nodes to divide a graph into k parts. It has the purpose
of breaking a graph into k blocks, typical requirement of graph partition-
ing algorithms, such that the nodes within them are highly similar, as any
clustering method. For this reason, the algorithm, Label clustering, can be
considered a hybrid between partitioning and clustering approaches.

The algorithm structure resembles the one adopted by multi-level parti-
tioning algorithms, that represent the current stream of scientific works. A
graph is first reduced using two procedures, the first applied directly and the
second repeated more than once. The first consists into clustering together
all the nodes having a very high similarity. The second is a coarsening al-
gorithm, applied only if the graph derived from the first procedure has a
high amount of nodes. On the small coarsened graph, a direct partitioning
method is used to obtain k blocks, that are than backtracked into the original
graph, in order to assign each node to one of the k partitions.

Each phase of the Label clustering algorithm has its advantages. The first,
mandatory, reduces a labelled graph to a new graph where each node is ad-
jacent to elements with different label (or adjacent to nodes having similarity
below a fixed threshold). This procedure is very fast, reducing graphs with
millions of nodes and edges in the order of seconds. The second, graph coars-
ening, further decreases the size of the reduced graph, if it exceeds a value.
Exploiting the neighbourhood similarities, it clusters nodes locally, retaining
organized groups. The last phase, Normalised Spectral Clustering is applied
on the smallest coarsened graph to obtain a high quality partitioning.

The second proposed algorithm, that is a form of tree partitioning, relies
on an augmented data structure to represent graphs using trees. This data
structure, the AD-tree, consists in three components:

• the standard tree representation of a graph, computed using the breadth-
first visiting algorithm on graphs

• the descendants graph, containing directed edges of the graph that are
not considered during the arborescence creation
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• Ariadne’s tree, that is the sequence of nodes connected through di-
rected edges during the breadth first visiting

The AD-tree partitioning algorithm works on the new defined data struc-
ture, starting from the last inserted element and backtracking through Ari-
adne’s tree, propagating the values (number of elements in the subtree rooted
in a node) of the nodes to their parents. When the value of a node exceeds
the cut threshold, all the nodes belonging to the rooted subtree in it, con-
sidering both the normal tree and the descendants graph, are assigned to a
partition. This is done until k cuts are made, obtaining as many blocks.

The algorithm shows an incredible speed, surpassing all the compared
algorithms, although being a serial method. Not just the partitioning is fast,
but also the tree creation, dividing graphs in one order of magnitude less
time than the state of the art methods. Moreover, on average the resulting
partitions have a small amount of border elements, meaning that the shapes
tend to be compact and patch-like, desirable property when partitioning
graphs derived by geometric entities, such as meshes. Lastly, the partitions
obtained from AD-tree partitioning are compact and do not have more than
one connected component.

The third and last proposed algorithm, Directed partitioning, is used mainly
for graphs derived by regular structures, as meshes or networks represent-
ing particular situations (for example, if one wants to describe the interac-
tions and purpose of the cells of a beehive). The idea behind it is straightfor-
ward: given a graph, explore its nodes with known algorithms going counter-
clockwise,until the desired count is reached. This is done to generate regu-
lar structures that translates into patch-like visual structures on the graph
(groups of connected nodes). The exploration procedure creates holes, that
are detected and filled, assigning them to the set of explored nodes. Then, to
maintain the perfectly balanced property, granted by the visiting algorithm,
some nodes of the partition are unassigned to it.

For small k, the algorithm is faster than the state of the art methods. More-
over, independently from k, it produces perfectly balanced partitions whose
number of border elements is a small fraction of their size. This means that
not only Directed partitioning divides a graph in blocks of equal size, but
these partitions are obtained with a very low number of cuts in the original
graph.

Each of the three presented algorithm can be improved in different way.
Considering Label clustering, the coarsening phase can be parallelised, to
further increase the algorithm’s speed, and a different heuristic can be used
to group together the nodes. Aggregation by maximum similarity, the method
adopted to cluster pairs of nodes, is easy to implement, but is limited to a
node surroundings, not considering the whole connectivity of the graph.
Moreover, a refinement step should be inserted after the direct partitioning,
to move group of nodes increasing the internal weight of all the clusters.
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Lastly, also the first reduction of the graph can be parallelised, since it is
based on depth-first search, in order to handle large graphs and increase the
scalability of Label clustering.

While the AD-tree partitioning is very efficient and fast, it divides a graph
in slightly imbalanced partitions. Moreover, the algorithm works on an aux-
iliary data structure, so to the partitioning time one need to sum also the
time spent in creating the AD-tree. Three improvements can be done on the
algorithm. First, the structure creation should be enhanced increasing the
degree of parallelisation, already present in a raw form. This is needed to
reduce the computational impact on the whole algorithm. Then, the parti-
tioning procedure can be revisited to increase the quality of the partitions,
for example introducing new checks on the nodes or modifying already ex-
istent routines. Lastly, a refinement done after the partitioning could greatly
improve the blocks quality, both in terms of maximum imbalance and mini-
mum cut (or maximum intra-partition weights).

Particularly interesting is another usage of the algorithm. In the thesis,
the concept of partitions was usually associated to the number of nodes.
Tree partitioning hides a further application. The value that is propagated is
not necessarily the number of nodes in the considered rooted subtree, but
can have many other interpretations, depending on the context of usage.
If one considers surfaces, the value can be an area or a dihedral angle; if
transportation and allocation problems are represented, the value can mean
something like the available space or quantity of a site, and so on.

Lastly, Directed partitioning results heavily depend on the structure of the
considered graph and the initial node selection to start the partitioning. The
algorithm can be improved by modifying the procedures used in the various
steps. For example hole detection is quite expensive, since it involves explor-
ing the half of the graph that does not belong to the partition. Moreover,
instead of bisection, the algorithm can be adapted to partition directly the
graph into k perfectly balanced blocks.

We conclude the thesis focusing on the use case presented in Chapter 6.
Refining the partitions instead of the complete mesh proved to be less com-
putationally expensive and more accurate (in terms of new vertices created
on the mesh) than refining the full mesh. It is still required to implement an
efficient form of stitching, that should preserve the manifold property of the
initial mesh.
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