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Abstract

Nowadays the use of Unmanned Aerial Vehicles (UAVs) is widespread for a
broad range of applications. At the core of their operation, different autopi-
lots and controllers are used. The first layer of an autopilot is the attitude
controller, meaning that its performance is essential for unmanned flight op-
erations.

Typically the controllers are synthesised by employing methodologies re-
liant on the knowledge of a model of the system to be controlled. Their
performance, however, depends on its fidelity. For this reason, robust con-
trol techniques allow accounting for model uncertainty or under-modelling,
which might hinder the performance of the real plant.

Data-driven methods represent an alternative approach. In fact, they do
not rely on a model of the system, but they are applied directly to experimen-
tal data, eliminating the aforementioned issues. In this thesis, a data-driven
synthesis method is proposed and tailored for the application on multirotor
UAV, formulated in a multivariable environment to allow considering cou-
pling effects which typically affect rotorcraft. The Virtual Reference Feedback
Tuning (VRFT) algorithm has been extended to cascaded control architec-
tures.

Experimental tests have been performed in flight using a baseline con-
troller in closed-loop conditions, ensuring safe and efficient data collection
tests. Testing on two different UAV platforms shows that this method delivers
consistent results, with a satisfactory level of performance when compared
to the decoupled axes approach of the VRFT scheme. An additional benefit
is represented by the reduction of algorithm input parameters, selected by
the user, simplifying the synthesis process. This result can pave the way to
automatic data-based tuning since it is a non-iterative algorithm, or the ap-
plication on helicopters, which feature coupling effects that generally require
a multivariable approach in designing a control law.





Sommario

Oggigiorno l’impiego di Aeromobili a Pilotaggio Remoto (APR o UAV) è sem-
pre più esteso, abbracciando una gamma molto ampia di applicazioni. Al
centro del loro funzionamento esistono una serie di controllori e sistemi di
autopilota la cui base è rappresentata dal controllo d’assetto, il cui corretto
funzionamento permette la definizione di leggi più avanzate.

Tipicamente la sintesi dei controllori è effettuata con metodologie che
si affidano alla presenza di un modello del sistema da controllare. Tecniche
di controllo robusto possono essere impiegate per considerare gli effetti
dell’incertezza o di un’errata scelta del modello, che possono inficiare le
prestazioni del sistema reale.

I metodi data-driven rappresentano un approccio alternativo in quanto
non richiedono un modello del sistema, ma sono applicati direttamente a
dati sperimentali, eliminando le problematiche esposte. In questa tesi, un
metodo di sintesi data-driven è proposto e adattato ad applicazioni su UAV
multirotore, formulato in una struttura multivariable per considerare i pos-
sibili effetti di accoppiamento tipici dell’ala rotante. L’algoritmo Virtual Ref-
erence Feedback Tuning (VRFT) è stato esteso per essere applicato a diverse
architetture di controllo.

I dati di prova sono stati acquisiti in volo in retroazione con un control-
lore di base, assicurando un’acquisizione efficiente e sicura. Prove su due
differenti piattaforme UAV mostrano come il metodo proposto restituisca
risultati consistenti, con un livello prestazionale soddisfacente comparato
con l’approccio VRFT su assi disaccoppiati. Un ulteriore beneficio è rappre-
sentato dalla riduzione del numero dei parametri dell’algoritmo selezionati
dall’utente, semplificando il processo di sintesi. Questo primo risultato può
rappresentare una base per metodi di taratura automatica basati sui dati, in
quanto l’algoritmo non è iterativo, o l’applicazione su elicotteri, dove gli ef-
fetti di accoppiamento richiedono un approccio multivariabile nella realiz-
zazione delle leggi di controllo.
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Chapter 1

Introduction

Multirotor systems allow for simpler construction and control of rotary-wing
aircraft, making their design extremely flexible in terms of configuration, size
and capabilities. For this reason, the interest for unmanned aerial vehicles
(UAVs) has overgrown in the recent years: their low cost has enabled their
use in a wide range of applications, even creating new ones, while also mak-
ing them readily available to consumers for recreational flying. A critical as-
pect of their design, as for any aircraft, is the attitude dynamics which require
thorough analysis and introduces a control problem.

The attitude control problem is relevant for the design of any automatic
controller on-board an aircraft, be it either fixed-wing or rotorcraft, since it
represents the first layer of more complex control laws, starting from attitude
rate control up to velocity and position controllers. Moreover, the angular
dynamics are the fastest and the most uncertain, due to assumptions and
different aspects that are involved.

Attitude variations in multicopter UAVs are easily obtained by suitably
reducing thrust on some of the rotors, typically by reducing angular speed
and increasing it on others, providing a torque around the desired axis of
rotation. This behaviour can be specialised to an indefinite number of rotors,
where configurations of 4 rotors (quadcopters) and 6 (hexacopters) are more
widespread. The generated torque is applicable to roll and pitch dynamics,
while the yaw dynamics are considered separately. By controlling the pitch
and roll angular rate, the attitude itself can be changed as desired, allowing
the resulting thrust to provide a lateral component which can accelerate the
aircraft linearly. By closing an additional feedback loop, the linear velocity
can be set, and finally, the position can be controlled with one last feedback
loop.

The dynamics of most aircraft, especially when considering fixed-wing,
can be decoupled under some assumptions, allowing for the simplification
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of the controller synthesis, not just in terms of complexity but also for the def-
inition of required performance and behaviour. The decoupling hypothesis
typically leads to the definition of separate single-input control problems for
the longitudinal, lateral and directional planes. In more complex machines,
e.g. helicopters, attitude variations arise from periodic local changes to the
angle of attack of the main rotor blades, introducing coupling effects that
cannot be neglected, and these interactions must be considered for stabil-
ity and other requirements, such as passenger comfort or necessary han-
dling qualities. Multirotor design generally features symmetric builds and
mass distribution, which allows for dynamics decoupling, making single axis
controller synthesis viable. However, when such symmetry is not present,
coupling effects arise, which can also be present in symmetric builds due
to imperfect mass distributions, deformation effects, aerodynamic interac-
tions and so on. The approach to study the couplings requires the definition
of a multivariable framework, both for the system to be controlled and the
controller itself. The controller synthesis can be carried out using a model-
based approach, where a model of the system is obtained. This model can
be obtained through model identification techniques, either via black-box or
grey-box methods.

The former determine a strictly mathematical relationship between in-
put and output data of the plant. The latter involves a physically-motivated
model of the system obtained from first principles, such as rigid body dy-
namics and energy conservation, and its parameters are then recovered from
experimental data. The main issues and limitations of model-based control
synthesis are related to:

• System under-modelling, that is the presence of dynamics in the
real system which are absent in the model, due to approximations,
wrong assumptions or errors in the mathematical derivation. Under-
modelling often occurs when the system is highly nonlinear or of a
very high order, and it is modelled as a low order linear system.

• Parameter uncertainty, that is the fact that the obtained parameters are
affected by uncertainty as they are the result of experiments, typically
afflicted by noise, disturbances or other operating conditions which
might have not been considered. This can also be from the propagation
of uncertainty of some physical parameters of the system, like mass or
dimensions.

• Identification errors, that is the identification of a model which can fit
the realisation of the single experiment, but it is not representative of
the system. For instance, if the input provided for identification is not
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able to excite the dynamics of the system, it might lead to wrongly as-
suming a different behaviour.

• Performance, which can be affected by the quality and derivation of the
system model. For instance, a model derived for a certain bandwidth
could lead to unpredictable result at higher frequencies.

• Poor adaptability in the case of parameter variations, for example,
components ageing or changes in operating conditions, requiring
the identification of parameter-varying models, the analysis of these
effects on the system or the introduction of model stitching. These
solutions introduce additional complexity and other issues, such as
the requirement for additional stability and performance analysis.

Data-driven methods aim to eliminate the requirement to define a sys-
tem model, and thus overcome these limitations, by casting the controller
tuning problem into a parameter optimisation one. The efficiency and per-
formance of these methods can be comparable to model-based controllers
[1], especially for systems that feature high parameter uncertainty or changes
in operating conditions or configurations, as it is possible to retune the con-
trollers easily.

Thesis structure

The scope of this thesis is to implement and validate a multivariable data-
driven method for fast retuning of the attitude controllers for multirotor air-
craft. The work has been structured as follows:

• Chapter 2 - Attitude control of multirotor UAV: an overview of the
attitude dynamics of an aircraft is presented, introducing the required
formalisms and deriving the equations of motion from first principles.
Furthermore, the actuator modelling is introduced for a quadrotor
UAV, without loss of generality. PID controllers are also briefly cov-
ered, introducing the discrete time realisation and the main issues
concerning their implementation.

• Chapter 3 - Data-driven methods: data-driven methods will be intro-
duced, illustrating the state-of-the-art of this approach and the main
limitations of model-based controller synthesis that these methods
can overcome. The model reference technique is illustrated, and
the structured control problem is explained, that is a fixed-structure
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controller opposed to an unconstrained optimisation problem. Fi-
nally, the method is extended to cover closed-loop experiments and
alternative controller architectures.

• Chapter 4 - Drone platforms: the multirotor platforms used for test-
ing and evaluation are presented, discussing their main construction
features. A detailed discussion on the existing controller structure is
proposed, along with the main modifications introduced as part of the
scope of this thesis.

• Chapter 5 - Simulation: the algorithm results are validated and com-
pared to other controller synthesis methodologies. The main bench-
marks used for validation of MIMO systems will be covered, as well as
results from a nonlinear simulator of the ADAM-0 platform.

• Chapter 6 - Experimental testing and results: the experimental test-
ing approach for the validation of the proposed algorithm is described.
The two UAV platforms mentioned above, ADAM-0 and ANT-R, will be
employed in a series of experiment to test the tracking performance of
the synthesised regulator using the SISO and the extended MIMO ver-
sion of the VRFT algorithm.

• Chapter 7 - Conclusions: conclusions are drawn in light of simulation
and experimental results, introducing ideas for future developments.



Chapter 2

Attitude control of multirotor UAV

The attitude controller aims at controlling the flight dynamics of the air-
craft, allowing to stabilise unstable modes, enhancing stability properties
and achieving predetermined levels of performance. In this chapter, an
overview of the attitude dynamics of an aircraft is presented, introducing
the required formalisms and deriving the equations of motion from first
principles. Furthermore, the actuator modelling is proposed for a quadrotor
UAV, without loss of generality. PID controllers are also briefly covered,
introducing the discrete time realisation and the main issues concerning
their implementation.

2.1 Rigid body dynamics

2.1.1 Reference frames

The description of the motion of a rigid body in space is bound to the choice
of reference frames, from which rotations and displacement can be defined.
In the case of aircraft, many reference frames have been defined in the liter-
ature to cope with different applications, as some allow to simplify the nota-
tion and to make the study of the attitude dynamics more intuitive.

Local NED Frame The local North-East-Down frame FN = {OB , N ,E ,D}
is widely used in aeronautics. Its origin OB coincides with the aircraft centre
of mass and, as the name suggests, features axes that are orientated such that
the N axis points to the geographic North, the D axis pointing downwards
towards the centre of the Earth, and the E axis such that it completes the
right-handed frame set.
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Figure 2.1: Body frame.

Earth Fixed Frame The Earth-Fixed Frame FE = {OE , N ,E ,D}, not to
be confused with Earth-Fixed Earth-Centred frame (ECEF), is a frame whose
origin OE is placed in a fixed point on the surface of Earth, and its axes are
orientated as defined in a NED system. This frame can be assumed to be
an inertial reference frame. It is noted that if small displacements from the
Earth frame are considered, the N and D axes of FE and FN can be assumed
aligned, so the local tangent plane of the Earth surface can be considered,
neglecting the effects of the Earth curvature. The position of the aircraft from
the inertial frame under this assumption can be easily determined as the axes
are aligned.

Body Frame The Body frame FB = {ON , XB ,YB , ZB } can be defined in
several ways. The most common way is to define origin OB coincident with
the aircraft centre of mass and the XB axis lying on the vertical plane of sym-
metry of the aircraft, pointing towards the front of the aircraft. The YB axis
is normal to the vertical plane of symmetry, pointing towards the right wing,
and ZB is such that it completes the set of axes, pointing downwards. A dif-
ferent definition, for instance, could consider the principal axes of inertia.

2.1.2 Three dimensional rotations

Another aspect related to rigid body kinematics is how rotations can be de-
scribed, as they can be referred to different frames. Rotations can be ex-
pressed by means of rotation matrix R such that it belongs to the 3D rotation
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group, also called Special Orthogonal SO(3).

SO(3),
{
R ∈R3×3,RRT = I ,det(R) = 1

}
. (2.1)

A rotation matrix can express different behaviours, in particular:

• it can express the orientation of a reference frame with respect to an-
other one;

• it can transform coordinates amongst coordinate frames;

• it can express the rotation of a vector around an axis.

The second property in Equation (2.1) indicates that rotation matrices must
be orthogonal, while the third property indicates that the magnitude of the
rotated object is left unchanged, as expected from a rotation. The fact that
rotations matrices are orthonormal grants them some interesting proper-
ties which can be exploited. Orthonormal matrices can be easily inverted,
as their inverse can be shown to be its transpose, such that R−1 = RT . This
property leads to a simple definition of the inverse rotation. For instance, by
indicating the rotation matrix from frame 1 to frame 2 as R21, the transfor-
mation from frame 2 to frame 1, R12, is its transpose R12 = RT

21.

Euler parametrisation

One additional step can be defining a complex rotation as several consec-
utive rotations: any given rotation can be decomposed in three consecutive
rotations around the axes of the frame as it is being rotated. This formulation
has the advantage of leading to a simpler definition of the rotation matrix,
as each rotation step can be easily described with a Director Cosine Matrix
(DCM). An example of the DCM for the rotations around each one of the axes
of the frame follows:

Rx(α) =
1 0 0

0 cos(α) sin(α)
0 −sin(α) cos(α)

 (2.2)

Ry (β) =
cos(β) 0 −sin(β)

0 1 0
sin(β) 0 cos(β)

 (2.3)

Rz(γ) =
 cos(γ) sin(γ) 0
−sin(γ) cos(γ) 0

0 0 1

 , (2.4)
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where α, β, γ are the angles by which the frame is rotated around the
specified axis, defined positive for counter-clockwise rotations as in a
right-handed frame. For example, if a consecutive rotation consisting of a
first rotation of α around the X axis and a second rotation of β around the
Y axis of the newly rotated frame is considered, then the complete rotation
matrix is R = Ry (β)Rx(α). It is noted that since each one of the rotation
matrices must comply with the definition in (2.1), the concatenated rotation
matrix is also compliant. The resulting matrix, however, is dependent on the
order of the rotations as the matrix product does not commute, meaning
that different orders lead to different rotation matrices.

The most common minimal representation of a rotation used in flight dy-
namics is the Euler parametrisation, which defines the rotation angles. This
convention is generally used to define the rotation matrix from the Earth or
local NED frame to the body frame and vice-versa. It is standard practice in
aeronautics to use the 3-2-1 right-handed rotation [2], that is a first rotation
around the Zb axis, followed by Yb and finally the Xb axis, defining the atti-
tude matrix:

RBE (φ,θ,ψ) = Rx(φ)Ry (θ)Rz(ψ), (2.5)

where φ is the pitch angle, θ is the bank angle and ψ is the yaw angle. The
subscript BE indicates the rotation from the Earth frame FE to the body
frame FB . For this purpose, the rotation from the Earth frame and the lo-
cal NED frame FN coincide. The attitude matrix terms can be expanded:

RBE (φ,θ,ψ) =
 cθcψ cθsψ −sθ

sφsθcψ− cφsψ sφsθsψ+ cφcψ sφcθ
cφsθcψ+ sφsψ cφsθsψ− sφcψ cφcθ

 , (2.6)

where cx = cos(x) and sx = sin(x). The rotation matrix from the body frame
to the Earth frame can be obtained by transposition REB = RT

BE .

2.1.3 Rotational kinematics

The Euler parametrisation can be used to describe the rotational kinematics
of the rigid-body. It is common practice to describe the attitude angles in
vector notation, the Euler angles vector:

Φ=

φ

θ

ψ

 . (2.7)
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Differentiation of (2.7) leads to the definition of the Euler angular rates:

Φ̇=

φ̇

θ̇

ψ̇

 . (2.8)

In kinematics, the body angular velocity vector is:

ωb =


p
q
r

 . (2.9)

The relationship between Euler rates and body rates is of practical interest, as
body rates can be measured with sensors installed on-board in a much easier
way. The relation can be obtained by analysing consequential rotations of
elemental vectors:

ωφ̇ =

φ̇

0
0

 , ωθ̇ =


0
θ̇

0

 , ωψ̇ =


0
0
ψ̇

 . (2.10)

Following the 3-2-1 rotation order, we can define the body angular rate from
Euler rates by summing the rotated components one at a time:

ω3 =ωψ̇ (2.11)

ω2 =ωθ̇+Ry (θ)ω3 =ωθ̇+Ry (θ)ωψ̇ (2.12)

ω1 =ωb =ωφ̇+Rx(φ)ω2 =ωφ̇+Rx(φ)
[
ωθ̇+Ry (θ)ωψ̇

]
. (2.13)

This product can be rearranged with the use of the Euler vector notation:

ωb = E(φ,θ)Φ̇=
1 0 −sθ

0 cφ sφsθ
0 −sφ cφcθ

Φ̇. (2.14)

It is noted that since the angular velocity is the sum of several angular veloc-
ities, rotated at each step for the sake of simplicity, it does not represent a
rotation matrix. It is not guaranteed that it has the same properties, in fact,
this matrix is not orthogonal, meaning that the inverse transformation is not
trivial. In addition, its inverse can become singular.

E−1(φ,θ) =
1 sφtθ cφtθ

0 cφ −sφ
0 −sφ cφcθ

 , (2.15)

where tx = tan(x). It can be shown that (2.15) is singular for θ = ±90 deg,
which is often referred to as gimbal lock. This parametrization can lead to
problems with highly manoeuvrable vehicles, such as military and aerobatic
aircraft and rockets. Other types of parametrization have been conceived to
solve this issue, for example the quaternion parametrization [2].
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2.1.4 Equations of angular motion

The multicopter motion can be described as the dynamics of a rigid body,
which can be derived from Newton-Euler equations, starting from the New-
ton’s second law:

Jbω̇b +ωb × (Jbωb) = Mext , (2.16)

where J represents the inertia tensor of the object and Mext is the external
moment. The inertia tensor is a positive definite matrix defined as:

Jb =
Jxx −Jx y −Jxz

Jy x Jy y −Jy z

Jzx −Jz y Jzz

 (2.17)

Jxx = ∫
(y2 + z2)dm Jy y =

∫
(x2 + z2)dm Jzz =

∫
(x2 + y2)dm

Jx y =
∫

(x y)dm Jxz =
∫

(xz)dm Jy z =
∫

(y z)dm
Jy x = Jx y Jzx = Jxz Jz y = Jy z

(2.18)

If the frame is symmetric by construction, it is possible to define a change of
basis which simplifies the inertia tensor components, yielding to the prin-
cipal axes of inertia. For principal axes of inertia, the products of inertia
Ji j , i 6= j are equal to zero, thus the tensor becomes diagonal:

Jb =
Jxx 0 0

0 Jy y 0
0 0 Jzz

 . (2.19)

The external moments Mext applied to the system about the body axes,
following the right-hand convention:

Mext =


L

M

N

 , (2.20)

where L is the roll moment, M is the pitch moment and N is the yaw mo-
ment.

When a diagonal inertia tensor is considered, the equations of attitude
dynamics shown in Equation (2.16) can be simplified into:

L = Jxx ṗ + (Jzz − Jy y )qr (2.21)

M = Jy y q̇ + (Jxx − Jzz)r p (2.22)

N = Jzz ṙ + (Jy y − Jxx)pq. (2.23)



2.1 Rigid body dynamics 11

Figure 2.2: Quadrotor X configuration, with motor numbering and sense of
rotation (CW clockwise - CCW counter-clockwise).

It must be noted that even for symmetric constructions, the dynamics are still
coupled. This undesired effect is related to the gyroscopic term ωb × (Jbωb)
in Equation (2.16). Furthermore, the external moment present nonlinearities
and couplings due to a number of dynamic and aerodynamic effects, which
might depend on attitude and angular rates.

2.1.5 Actuator model

Fixed-pitch propellers are used in the considered UAV platforms due to their
low cost and ease of maintenance. Variations of the rotational speed can
change the thrust generated by the fixed-pitch propeller. This change, in
turn, requires applying a torque to balance the effect of drag on each blade.
For near-hovering conditions, the static propeller action is studied using
non-dimensional coefficients through Buckingham’s π theorem, obtaining a
quadratic form of the propeller angular speed [3]:

Ti = KTΩ
2
i , KT =CTρAR2 (2.24)

Qi = KQΩ
2
i , KQ =CQρAR3, (2.25)

where Ti and Qi are respectively the thrust and torque generated by the i-th
propeller,Ωi is the rotational speed. CT and CQ are the dimensionless thrust
and torque coefficients, which are a property of the propeller. A and R are
the rotor disk area and the rotor radius, ρ is the air density.

The actuator model requires the definition of the geometry of the UAV,
in terms of number of rotors, their rotation direction and distance from the
centre of mass. For a symmetrical quadrotor with an X arrangement (shown
in Figure 2.2), an equal arm b for each motor can be defined. The force and
moments applied by the motors, expressed in the body frame, can be ob-
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tained:

Fpr op =−


0
0

KT (Ω2
1 +Ω2

2 +Ω2
3 +Ω2

4)

 (2.26)

Mpr op =


KT

bp
2

(−Ω2
1 +Ω2

2 +Ω2
3 −Ω2

4)

KT
bp

2
(Ω2

1 −Ω2
2 +Ω2

3 −Ω2
4)

KQ
bp

2
(−Ω2

1 +Ω2
2 −Ω2

3 +Ω2
4)

 . (2.27)

A mixer matrix is often used to describe the total thrust T and moments
generated by the motors as a function of the propeller speed:

T
L

M

N

=


KT KT KT KT

−KT
bp

2
KT

bp
2

KT
bp

2
−KT

bp
2

KT
bp

2
−KT

bp
2

KT
bp

2
−KT

bp
2

KQ KQ −KQ −KQ



Ω2

1

Ω2
2

Ω2
3

Ω2
4

 . (2.28)

This relation is then inverted to regulate the speed for a required thrust and
moment: 

Ω2
1

Ω2
2

Ω2
3

Ω2
4

=



1
4KT

−
p

2
4KT b

p
2

4KT b
1

4KQ

1
4KT

p
2

4KT b −
p

2
4KT b

1
4KQ

1
4KT

p
2

4KT b

p
2

4KT b − 1
4KQ

1
4KT

−
p

2
4KT b −

p
2

4KT b − 1
4KQ




T
L

M

N

 . (2.29)

Finally, the request on angular speed is transformed in voltage applied to the
motor.

In the framework of this thesis, the controller output is the required thrust
and moments, meaning that the mixer and electrical actuator dynamics will
be annealed in the system.

2.2 Attitude control paradigm

In this section, the main aspects involved in a feedback control problem are
explained. The actuator model for a fixed-pitch propeller quadrotor is pre-
sented, but it can be generalised to different configurations.

2.2.1 PID controller

The Proportional-Integral-Derivative (PID) controller is one of the most
common linear industrial controllers for its simple structure and good
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performance for most applications. An extensive literature, in particular
regarding linear systems, and methodologies covering the tuning of these
types of controllers are available, meaning that the behaviour and limitations
of PID controllers are well known and documented.

Several implementations and forms exist, which typically differ in how
the parameters are defined, as well as their digital, or discrete-time, counter-
part. The parallel, or non-interactive, continuous-time PID controller [4] can
be expressed as follows:

u(t ) = Ki e(t )+Ki

∫ t

τ=t0

e(τ)dτ+Kd
de(t )

d t
, (2.30)

where Kp , Ki , Kd are respectively the proportional, integral and derivative
gain, e(t ) represents the error at time t which feeds the controller, and u(t )
represents the output of the controller, which generally is the input of the
system to be controlled.

Ki
1
s

Kp

Kd s

G(s)
r e ++

+
y

−
u

Figure 2.3: Continuous-time PID block diagram.

The Laplace operator s is often used to express this form, which leads to
a simple definition of the transfer function of the controller C (s):

U (s) = Kp E(s)+Ki
1

s
E(s)+Kd sE(s) (2.31)

C (s) = U (s)

E(s)
= Kp +Ki

1

s
+Kd s (2.32)

The derivative action is typically filtered for implementation issues, but it
carries the advantage of reducing the effects of noise, which corresponds to
the high frequency content of the error signal.

Finally, the digital realisation of the PID controller is obtained by choos-
ing a suitable discretisation method. Online applications, such as feedback
controllers, need fast calculations; hence the Forward Euler discretisation
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Figure 2.4: Stability region of Forward Euler’s discretisation. The y-axis rep-
resents the imaginary part of λTs , while the x-axis represents the real part.

can be used:

z = e sTs ' 1+ sTs (2.33)

C (z) = Kp +Ki
Ts

z −1
+Kd

z −1

Ts
. (2.34)

Stability issues arise using forward differences, as stable continuous-time dy-
namics can be mapped into an unstable discrete-time system. This can be
seen from the stability region of the method, shown in Figure 2.4, as it covers
only a part of the left hand plane, whereas the stability region of a dynami-
cal system covers all of the left hand plane. This can be an issue for stiff sys-
tems, that are systems which feature clearly separated eigenvalue time scales.
These dynamics require a greater sampling frequency fs , thus a smaller sam-
pling time Ts = 1/ fs .

Amongst the main issues of the PID architecture there is the windup of
integrators and sudden setpoint variations, which can be solved through ad-
ditional logics:

• Windup: when the control action is saturated, the error might not be
reduced further. The integral action increases over time, and when the
error changes sign its contribution can significantly reduce the perfor-
mance. This nonlinear effect can be reduced by limiting the integral
action, but more advanced techniques can be used.

• Error discontinuities: when the setpoint is changed abruptly, e.g. a
step, a spike in error lead to a high derivative action, which could po-
tentially yield to excessive control inputs. This effect can be solved by
either limiting the reference rate of variation or by considering only the
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Kp

Ki
Ts

z−1 Kd
z−1
Ts

G(s)
r e +

+ −
y

−
u+

Figure 2.5: Discrete-time PI controller with derivative action on the output.

output for the derivative action. The latter solution has been imple-
mented for the attitude controller. The resulting controller diagram is
shown in Figure 2.5.

Advanced PID implementations have been studied to increase robust-
ness and performance of this controller, like gain-scheduling algorithms or
adaptive controllers, which however are outside the scope of this thesis.

2.2.2 Cascaded PID feedback loops

A cascaded PID structure is often used to increase the dynamic performance
of the controlled system when long dynamics between the control input and
the variable to be controlled are present. Improvements can be obtained
while different measurements of the process are available for a single con-
trol input [4].

The required roll or pitch setpoint represent the attitude controller input,
and the process variable is the roll and pitch angle. Measurement for both
the angular rates and attitude angles are available, making it possible to de-
fine multiple nested loops. Typically the attitude rate dynamic is significantly
faster than the angular dynamic, which determines the evolution over time
of the attitude. Two nested PID controllers are employed for which we can
define two different feedback loops, referred to as the inner (or primary) and
outer (or secondary) loops. The external loop controller provides feedback
for the attitude angle, defining the angular rate reference for the inner loop
regulator, which in turn provide input for the angular rate dynamics.

The resulting architecture is applied to both the roll and pitch axes as is
common practice in multirotor UAVs, thanks to the geometrical symmetry
of quadrotors. Focusing on the pitch axis, the outer loop (measured angle ϑ,
set-point ϑo) is a P controller, while the inner controller is a complete PID
with an additional feed-forward term. More specifically, the feed-forward
gain is directly calculated on the pitch angle setpoint and the derivative ac-
tion of the inner loop is computed starting from the pitch rate q and not from
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K O
p K I

p

K I
f f

K I
i

Ts
z−1 K I

d
z−1
Ts

UAV pitch
dynamics

ϑo qo + +
+ −

ϑ

q−−
M+

Figure 2.6: Block diagram of the pitch control system, with a feed-forward
gain and a derivative action based on angular rate feedback.

the pitch angular rate error (see the block diagram in Figure 2.6, where the
pitch control loop is represented), as seen in Section 2.2.1.

Until now only the pitch attitude controller was considered. The roll De-
gree of Freedom (DoF) is controlled with the same regulator scheme in Fig-
ure 2.6, but the involved signals are different: the user provides the roll angle
setpoint φo(t ) and the proportional outer controller generates the roll angu-
lar rate reference signal. The inner regulator, starting from this information,
computes the roll pitch moment L (t ).

This decoupled architecture for the pitch and roll axes is justified by the
fact that if the body axes are principal axes of inertia, then when the quadro-
tor is in near-hovering conditions the roll and pitch degrees of freedom could
be assumed decoupled. The aforementioned axes decoupling implies that
the pitch and roll axes can be tuned independently. If, however, the system
does not have decoupled attitude dynamics between the degrees of freedom,
the tuning problem is coupled, and the corresponding controllers must be
tuned at the same time.



Chapter 3

Data-driven methods

In this chapter, data-driven methods will be introduced, illustrating the
state-of-the-art of this approach and the main limitations of model-based
controller synthesis that these techniques can overcome. The model
reference framework is illustrated, and the structured control problem is
explained, that is a fixed-structure controller opposed to an unconstrained
optimisation problem.

Then the Virtual Reference Feedback Tuning (VRFT) algorithm is rigor-
ously derived for Single-Input Single-Output (SISO) Linear Time-Invariant
(LTI) problems, and the presence of measurement noise is accounted for by
employing Instrumental Variable (IV) methods. Finally, the method is gen-
eralised to cover Multiple-Input Multiple-Output (MIMO) LTI systems, and
some expedients are used to be specially adapted for cascaded controller
structures.

3.1 Introduction

Data-driven methods have been formulated to overcome limitations of
model-based controller synthesis, avoiding the definition of a system model,
either derived from first principles or experimental data. Other names
by which these methods are known include model-free and data-based,
highlighting the fact that only experimental data is used.

Current algorithms implementations of this concept have mostly focused
around open loop excitation of single variable systems which have obtained
significant results, e.g. in [1], [5], [6], [7]. In addition, all of the proposed
solutions apply to fixed-structure controllers, leading to a result which is a set
of parameters or gains for the given controller. The choice of the controller
structure is beyond the scope of this work, and the analysis of PID structures
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C (z,θ) G(z)
r e u y

−

Figure 3.1: Feedback problem.

will follow.
The most relevant state-of-the-art methods are Virtual Reference Feed-

back Tuning (VRFT), Iterative Feedback Tuning (IFT) and Correlation-based
Tuning (CbT). The former will be detailed in the following sections, for the
IFT method the reader might be interested in the following articles [8], [9],
while [10], [11], [12] can be consulted for the CbT method. The main dif-
ferences amongst them, other than their derivation and assumptions, boil
down to the nature of the optimisation algorithms, as IFT and CbT are it-
erative algorithms which require different datasets, while VRFT provides a
one-shot solution. This feature makes VRFT extremely interesting for fast re-
tuning of controllers, which could potentially be even carried out online.

IFT has some significant drawbacks, including the requirement for a
large number of experiments, needed to compute the cost gradient and
hessian. Furthermore, these algorithms do not guarantee optimal results as
they might converge to local minima, making IFT even less appealing. For
this reason, the IFT algorithm will not be covered. Since the aim of the thesis
work is to design a technique for the fast retuning of controllers, the CbT
algorithm was not considered as well, in favour of the VRFT method which
is a non-iterative scheme.

3.2 Model-reference control

Model-following or model-reference control is one of the possible ap-
proaches to define the desired behaviour of a closed loop system. An
example of traditional performance requirements could be a desired
maximum overshoot and a given settling time.

In model reference, the desired closed-loop behaviour is expressed as a
dynamical system, either in state-space form or as a matrix transfer function.
It is generally easy to express the requirements on the output complementary
sensitivity. The model-reference control problem can thus be formalised in
the following way:
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Problem 1. Given the system plant G(z), the reference model M(z), a fre-
quency weighting factor W (z) and controller C (z), find Ĉ (z) such that

JMR =
∥∥∥W (z)

[
M(z)− (

I +G(z)C (z)
)−1G(z)C (z)

]∥∥∥2

2
(3.1)

Ĉ (z) = argmin
C

JMR . (3.2)

A possible solution of this problem can be obtained directly if the con-
troller is not constrained, resulting in:

Ĉ (z) = [
G(z)

(
I −M(z)

)]−1 M(z). (3.3)

This solution might not be feasible to implement in real world applications,
due to its potentially high order, presence of high frequency dynamics, and
typically high control effort. Stability properties are also an issue, and finally,
the relative degree of the transfer function, that is the difference between the
number of poles and zeros, can be such that the system is not proper.

Model reduction of the obtained controller or system might not be a so-
lution either, due to the impossibility to guarantee the same performance
and stability properties. Thus, in most circumstances, the structure of the
controller is fixed, and only its parameters can be varied, leading to a weak
formulation of the optimisation problem. This formulation is also referred to
as a structured, as opposed to the unstructured one presented in Problem 1.
The structured problem can be formalised as follows:

Problem 2. Given the system plant G(z), the reference model M(z), a fre-
quency weighting factor W (z) and a controller family C (z,θ) with vectors of
parameters θ, find θ̂ such that

JMR (θ) =
∥∥∥W (z)

[
M(z)− (

I +G(z)C (z,θ)
)−1G(z)C (z,θ)

]∥∥∥2

2
(3.4)

θ̂ = argmin
θ

JMR (θ). (3.5)

There are some remarks to be made regarding the solution of this
problem. Firstly, in this criterion no stability requirement is imposed, only
the minimization of the discrepancy between the reference model and
the output complementary sensitivity. Secondly, this generally represent a
non-convex optimization problem, which means that a global minimum
might not be achieved as several local minima can be present. A convex
approximation of the problem can be achieved by making the following
assumptions:

Assumption 1. The sensitivity function S(z) = I −M(z) is close to the closed-
loop sensitivity function for θ = θ̂.
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Assumption 2. The controller family C (z,θ) can be linearly parametrized
with the vectors of parameters θ ∈Rn , such that C (θ) = {

C (z,θ) =βT (z)θ
}
.

Finally, by replacing these assumptions in equation (3.4), the cost func-
tion becomes:

JMR (θ) = ||M(z)− (I −M(z))β(z)θ)||22. (3.6)

Note that depending on the specific application, the chosen controller struc-
ture might lead to an error as low as zero. However, it is usually greater than
zero for structured problems. The assumptions that have been made should
be checked a posteriori. Assumption 1, for instance, states that the controlled
system could be made arbitrarily close the desired model behaviour, which
might not be the case for the structured case.

3.3 Virtual Reference Feedback Tuning

Virtual Reference Feedback Tuning (VRFT) is an alternative approach to
model reference problems for structured controller synthesis. It was intro-
duced in [13] for a generic nonlinear system, formally implemented and
specialised in [14] for LTI discrete SISO systems. This approach was further
developed in [5] for a generic MIMO LTI case, with a particular focus on
dealing with data affected by noise and a thorough analysis of data filtering.
The main features of this approach are:

• it only requires a single experiment, thus a single dataset of input and
output;

• it is developed into a non-iterative algorithm;

• it requires limited prior knowledge of the system.

The need for limited prior knowledge is required for the definition of a rea-
sonable reference model which must be compatible with the achievable sys-
tem dynamics. VRFT is named after the signal which is exploited to define
the model reference cost function to be minimised, the virtual reference. This
signal is recreated from output data as the equivalent setpoint applied to a
virtual closed-loop system that would be required to produce such output
for the given reference model. This idea was first introduced with open-loop
experiments in mind; however, such experiments can be dangerous in the
case of open-loop unstable dynamics. It is possible to extend the approach
to closed-loop experiments employing instrumental variable methods.
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3.3.1 Mathematical derivation

The SISO formulation will be presented and then, after some due consider-
ations, extended to the multivariable case. In the framework of data-driven
methods, the system G(z) is unknown, and a finite dataset of input u and
output y measurements dN = {

u(k), y(k)
}

k=1,...,N is available. The reference
signal can be reconstructed by imposing that the complementary sensitivity
of the closed loop is equal to the reference model, thus defining the setpoint
that would result in the same output of the experiment.

rV (t ) = M−1(z)y(t ) (3.7)

eV (t ) = rV (t )− y(t ) = (M−1(z)− I )y(t ). (3.8)

It is possible to define the virtual reference problem cost function JV R , de-
scribed in [5], as the square of the error between the applied system input
and the controller output, which represents the system input. The optimal
controller would lead to the same applied input:

JV R (θ) = 1

N

N∑
k=1

||uL(k)−C (z,θ)eL(k)||22, (3.9)

where uL and eL are the filtered input u and virtual error eV respectively.

eL(k) = L(z)eV (k) (3.10)

uL(k) = L(z)u(k). (3.11)

By defining suitable filters and frequency weights [14] it can be showed
that the cost function (3.9) is equivalent to the convex approximation of the
model reference problem shown in equation (3.6). The optimal filter L(z) is:

|L(e jω)|2 = |1−M(e jω)|2|M(e jω)|2|W (e jω)|2 1

Φ2
u(ω)

, ∀ω ∈ [−π,+π], (3.12)

whereΦu(ω) is the spectral density of u(t ).
Similarly, the controller can be defined by means of a linearly

parametrized class, such that C (θ) :
{
C (z,θ) =βT (z)θ,θ ∈Rn

}
, obtain-

ing:

JV R (θ) = 1

N

N∑
k=1

||uL(k)−βT (z)θeL(k)||22 =
1

N

N∑
k=1

||uL(k)−ϕT (k)θ||22. (3.13)

This minimization problem can be solved in closed form, resulting in:

θ̂N = argmin
θ

JV R (θ) =
[

N∑
k=1

ϕT (k)ϕ(k)

]−1 N∑
k=1

ϕT (k)uL(k). (3.14)



22 Data-driven methods

3.3.2 Closed-loop experiments

The introduction of additive noise in the realization would affect the output
of the system if the experiments are carried out in closed-loop:

ȳ(t ) =G(z)u(t )+ν(t ) (3.15)

eL(t ) = (I −M(z))G(z)u(t )+ (I −M(z))ν(t ). (3.16)

Thus, also the system input would be affected by noise, introducing correla-
tion which leads to a biased estimate of the parameter vector [15].

Instrumental Variable (IV) methods have been introduced to overcome
this problem, allowing for the reduction of the correlation between input and
output due to noise. IV methods can be implemented in two ways:

1. Second experiment: it is possible to achieve an asymptotically unbi-
ased estimate of the parameters by using output data of another exper-
iment with the same input. If noise is uncorrelated with the input that
is generated for the experiment, the noise realisation can be assumed
to be different, and in the case of Gaussian white noise the expected
value of the correlation would be zero for N →∞;

2. Instrumental variable: it is possible to reduce the correlation by recre-
ating the output data based on an estimate of the open-loop or closed-
loop system, thus creating a virtual signal unaffected by noise. Such
identification procedure would go against the rationale of VRFT; how-
ever, it may be argued that the identified system is not used to tune the
controller but to construct an instrumental variable.

The latter can be generated by injecting a known control input ū between
the controller and system, as shown in Figure 3.2. This input must be un-
correlated to the measurement noise and be able to excite the system in the
frequency range of interest. From this, the instrumental variable for the SISO
algorithm can be created, whose derivation is thoroughly presented in [16]
and [17].

3.3.3 Multivariable extension

The VRFT algorithm can be extended to the multivariable case [5], where the
initial formulation is the same, but an additional step is introduced. A differ-
ent instrumental variable method is employed, the Extended Instrumental
Variable (EIV), which is easily implemented for multivariable problems.

The discrete MIMO LTI problem requires a redefinition of the state ma-
trices and transfer functions, where u ∈ Rnu , y,r ∈ Rny , G(z) ∈ Rny×nu , C (z) ∈
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Figure 3.2: Feedback problem with measurement noise ν and input injection
ū.

Rnu×ny , T (z) ∈ Rny×ny . The model reference problem is then applied to the
input complementary sensitivity T (z), thus the reference model is such that
M(z) ∈Rny×ny .

By analysing the frequency-wise counterpart of the cost function defined
in (3.9) and the model reference one in Problem 1, the filters which make
them equivalent can be defined as:

Lu(z) = M(z)Φ−1/2
uu (z), Le =C−1(z,θ)M(z), Ly =C (z,θ)Φ−1/2

uu (z). (3.17)

These filters however require the knowledge of the controller, turning it into
a nonlinear problem. By choosing the filter above as:

Lu(z) = Le (z) = L(z) = M(z), Ly (z) = I , (3.18)

the cost function becomes linear in the parameter vector, and is equivalent
to the approximated model reference cost function [25] shown in equation
(3.6). Besides, this choice of the filters also ensures that the filtered virtual
error can be computed for any proper or strictly-proper reference model.

It is noted that the filters for the MIMO extension differ from the ones
derived for the SISO problem, shown in equation (3.12), due to Assumption
1 being used at the beginning of the derivation, obtaining the filter for the
convex model reference problem instead of deriving the optimal filter first
for the original model reference problem.

The regressor vector structure ϕ(k) must be redefined as well. Another
parametrisation of the controller class is introduced for the MIMO problem,
such that:

u(k) = u(k −1)+
n∑

i=0
Bi e(k − i ) (3.19)

= u(k −1)+B0e(k)+B1e(k −1)+·· ·+Bne(k −n), (3.20)

where Bi ∈ Rnu×ny , i = 1, . . . ,n. The linear parametrization PID class can be
obtained by exploiting the properties of the Kronecker product, denoted with
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⊗, as follows:

u(k) = u(k −1)+
n∑

i=0
Bi e(k − i ) = u(k −1)+ϕT (k)θ (3.21)

n∑
i=0

Bi e(k − i ) = [
eT (k)⊗ I , · · · ,eT (k −n)⊗ I

]
vec

(
[B0, · · · ,Bn]

)
=ϕT (k)θ,

(3.22)

where:

θ = vec
(
[B0, · · ·Bn]

)
(3.23)

ϕ(k) = [
eT (k)⊗ I , · · · ,eT (k −n)⊗ I

]T
. (3.24)

The vec operator is the standard vectorization operator for a matrix. The
definition of the regressorϕ and the parameter vector θ ∈Rnθ ,nθ = n×nu×ny

in Equation (3.22) can be further manipulated obtaining:

u(z) = 1

1− z−1
ϕT (z)θ = z

z −1
ϕT (z)θ =ϕT

F (z)θ. (3.25)

Now the extended IV is added to develop a new cost function. Unlike the
SISO case, the length of the instrumental variable is not the same as the input
vector. This is due to the fact that it is not built using data from another
experiment or an uncorrelated signal, as presented in Section 3.3.2. In the
case of EIV, the same control input is used with a window of length ± l :

ζ(k) =


u(k + l )

...
u(k − l )

 ζL(k) =


uL(k + l )

...
uL(k − l )

 . (3.26)

The previously mentioned instrumental variable can now be used to define
a decorrelation cost function, as described in [15]:

JD (θ) = (r −Rθ)T Ŵ −1(r −Rθ) (3.27)

R = 1

N

N∑
k=1

ζL(k)⊗ϕL(k) (3.28)

r = 1

N

N∑
k=1

ζL(k)⊗uL(k), (3.29)

where ϕL is the regressor defined from signals filtered with (3.18) and Ŵ is a
positive semi-definite weight, optimally a consistent estimate of the residual
covariance matrix W̄ :

W̄ = E[
(r −Rθ) (r −Rθ)T ]

. (3.30)
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Figure 3.3: Cascaded feedback control.

The decorrelation function in the absence of noise, for large windows l ,
leads asymptotically to Rθ− r = 0. Thus, the minima of the decorrelation
cost function (3.27) are equivalent to the minima of the virtual reference cost
function (3.9), and are given by:

θ̂ = argmin
θ

JD (θ) = (
RT W −1R

)−1 (
RT W −1r

)
. (3.31)

The length of the window for the EIV method represents a tuning knob of
the algorithm. However, an arbitrarily large number can be used, such that
R is an accurate sample-based estimate of the correlation matrix of ζ(t ) and
φ(t ).

By making suitable assumptions on the noise realisation, as detailed in
[15], it is possible to study the asymptotic behaviour of the parameters. For
instance, by assuming a filtered version of a white noise, which can cover
a wide variety of situations, for dataset length N → ∞, the IV estimate is
asymptotically Gaussian distributed around the optimal parameter. This
method is thus asymptotically unbiased, but it might be biased for finite
N . A lower-bound for the parameter variance for N → ∞ can also be
determined, which is dependent both on the optimal parameter and the
white noise filter. An estimate can still be obtained by substituting them
with the estimated values.

3.3.4 Cascaded controller structure

The direct tuning of cascaded control systems is tackled to allow for fast tun-
ing of nested loops. It may be necessary to control additional dynamics, typ-
ical of kinematics where velocity is derived from acceleration, and it is then
integrated into position. The desired model reference for each loop is de-
fined.

An intuitive way to approach this problem is presented in [18], where the
loops are tuned separately, starting from the inner dynamics. The system is
excited in this loop, and input and output data are collected. Once the in-
ner controller is defined, the outer feedback loop data must be determined.
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While the output data of the outer loop is saved during the data-collecting
experiment, the input data is affected by the change of controller, so the in-
put, which represents the setpoint of the inner loop, is reconstructed:

ri (k) = ei (k)+ yi (k) (3.32)

ei (k) =C−1
i (z, θ̂i )ui (k), (3.33)

where θ̂i is the estimate of the optimal controller for the inner loop. Note that
this operation can only be made if Ci (z) is of minimum-phase, that is that the
system and its inverse are stable and causal. After the inner reference signal
is obtained, the outer loop cost function is formulated in terms of the new
dataset:

J o
V R (θo) = 1

N

N∑
k=1

||ri ,L(k)−Co(z,θo)eo,L(k)||22. (3.34)

Finally, the complete MIMO formulation of the VRFT algorithm for the
cascaded structure can be summarised by presenting a pseudo-code.

Pseudo-code. MIMO VRFT for a cascaded controller.

1. Compute uLi (k) = Mi (z)u(k),

2. compute eLi (k) = Mi (z)(M−1
i (z)− I )yi (k),

3. compute Ri = 1
N

∑N
k=1 ζLi (k)⊗ϕLi (k),

where ϕLi (k) = z
z−1 [eT

Li (k)⊗ I , . . . ,eT
Li (k −ni )⊗ I ]T

and ζT
Li (k) = [uLi (k − li )T , . . . ,uLi (k + li )T ],

4. compute r i = 1
N

∑N
k=1 ζLi (k)⊗uLi (k),

5. compute θ̂i = (Ri
T Ri )−1(Ri

T r i ),

6. compute ri (k) =C−1
i (z, θ̂i )u(k)+ yi (k)

(check if minimum-phase, otherwise return to 1),

7. compute uLo(k) = Mo(z)ri (k),

8. compute eLo(k) = Mo(z)(M−1
o (z)− I )yo(k),

9. compute Ro = 1
N

∑N
k=1 ζLo(k)⊗ϕLo(k),

where ϕLo(k) = z
z−1 [eT

Lo(k)⊗ I , . . . ,eT
Lo(k −no)⊗ I ]T

and ζT
Lo(k) = [uLo(k − lo)T , . . . ,uLo(k + lo)T ],

10. compute r o = 1
N

∑N
k=1 ζLo(k)⊗uLo(k),

11. compute θ̂o = (Ro
T Ro)−1(Ro

T r o).

The inputs of the algorithm are made up of the input and output dataset
dN = {

u(k), yi (k), yo(k)
}

k=1,...,N , the reference models for the inner and outer
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Figure 3.4: An example of a PRBS input sequence.

loops Mi (z), Mo(z) and the respective instrumental variable lengths li , lo . In
addition, the order of the regulator has to be chosen as well for both feedback
loops, ni ,no . The outputs of the algorithm are the parameters for the inner
and outer controller θ̂i , θ̂o .

3.4 Experiment design

The excitation input for the experiment has to take into account several fac-
tors as they must provide a sufficiently informative dataset of the system dy-
namics, that is it should excite the system in the bandwidth of interest. This
aspect is complicated by the fact that the experiments must be carried out in
closed-loop, which negatively affect the outcome of the algorithm.

The experiment input is a Pseudo-Random Binary Sequence (PRBS)
which is a two-state pseudo-random excitation which can be characterised
in amplitude and bandwidth of excitation. The pseudo-random generation
seed allows for reproducibility of the input.

There are no requirements on the input other than allowing a sufficiently
informative dataset. In the experiments that have been carried out, two sep-
arated inputs have been injected, exciting only one axis at a time, in order to
provide a higher signal-to-noise ratio. This, however, is not a requirement.
The PRBS signal is interesting for various reasons, such as:

• ease of implementation, because as the name suggests it is a binary
sequence, meaning that its possible values are either +1 or -1. This
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class of inputs can also be easily automated.

• customizable, where the amplitude of the signal can be easily scaled;

• good harmonic content, which can be tailored to excite the system in-
side a specific bandwidth;

• reproducible, since a pseudo-random signal requires a seed which can
be reused.

While the rationale of data-driven methods is to overcome the need of
identifying a model of the system, such a model can be derived by using
the same dataset for the given bandwidth of excitation. Black-box identifica-
tion techniques are easily implemented for MIMO systems. Subspace Model
Identification (SMI) methods are a class of black-box techniques which is
suitable for data collected in closed-loop. An overview of SMI methods can
be found in [19]. Amongst SMI methods, the Predictor-Based System Identi-
fication (PBSID) can be a viable approach, as described in [20].

More refined inputs can be conceived in order to excite specific dynamics
of the system, achieving a desired power spectral density. Exciting a broad
bandwidth can be a good solution for identification purposes, however,
in data-driven methods, the data is not required to precisely describe the
mathematical structure of the model, but to obtain a desired closed-loop
behaviour. An optimal approach to input design for data-driven algorithms
has been followed in [21], applied to the SISO scheme of the VRFT and CbT
algorithms.

This approach was not implemented, as optimal input design was not
inside the scope of the thesis, whose primary objective is the definition of a
quick tuning methodology for UAV platforms, but it has been presented for
completeness and provide areas for future work.

3.5 Reference models

Reference models influence heavily the result of the algorithm, in particular
regarding stability, which is not guaranteed. Issues such as a non-minimum
phase plant, including the presence of time delays, can become critical.

Defining reference models in this framework is not simple, as this would
require knowledge of the system which data-driven methods aim to elimi-
nate. A simple approach to model reference would require the knowledge of
the system dominant dynamics, often expressed as a second-order system.
The desired crossover frequency can be defined, and an approximation of
the system damping ratio can be set.
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As seen in the mathematical definition of model-reference control,
the assumption that the optimal parameters for the given parametrised
controller class lead to the desired complementary sensitivity function
has to be verified. The structure of the data must be compatible with the
reference model, but also with the physical limitations of the system to be
controlled.

Simple reference models can be used when the required performance is
conservative, such that the collected data is sufficiently informative in the
objective bandwidth. However, when higher performance is required, the
reference model can be enhanced by suitably introducing additional poles
and zeros. The presence of time delays can also be determined to relax the
requirements on the control effort, making it more compatible with the
dataset.

In [22], an approach to defining an optimal reference model from data is
presented and applied to the SISO VRFT method. This approach is based on
a specific numerical optimisation technique called Particle Swarm Optimisa-
tion (PSO), useful when a small set of parameters have to be controlled. The
number of poles and zeros is defined, and then the optimisation is made by
suitably positioning them, changing their time constant. The choice of the
time constants is made by defining a cost function which is augmented by
terms which account for control effort, tracking error and model matching.

It might be argued that this approach is not suitable for a quick tuning
methodology, but it is instead aimed at improving performance. For this rea-
son, it was not implemented in the presented work. Once again, it was re-
ported in order to provide an overview of potential areas to be improved to
obtain higher levels of performance.
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Chapter 4

Drone platforms

In this chapter, the multirotor platforms used for testing and evaluation are
presented, discussing their main construction features. A detailed discussion
on the existing controller structure is proposed, along with the main modifi-
cations introduced as part of the scope of this thesis.

4.1 ADAM-0

The ADAM-0 multirotor platform (see Figure 4.1), is a fixed-pitch quadrotor
with the following characteristics:

• Take-Off Weight (TOW): approximately 1450 grams;

• Battery: 4S Lithium-Polymer (Li-Po) 4000 mAh;

• Flight time: 12 minutes;

• Motors: 4x Brush-less DC motors (BLDC);

• Propellers: 4x two-bladed, diameter 12";

• Frame dimensions (footprint): 500 mm (excluding rotors).

Its geometry makes it well suited for experimental research, reducing the
effort required for controller testing as gyroscopic couplings are relatively
small, and its behaviour is the same for both pitch and roll axes.

The medium size also makes it easy to maintain and introduce modifi-
cations. It is built with off-the-shelf components, making it affordable and
reliable.
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Figure 4.1: The ADAM-0 UAV platform.

Figure 4.2: The ANT-R UAV platform.

4.2 ANT-R

The ANT-R fixed-pitch quadrotor drone is one of the latest additions to the
Fly-ART laboratory. The ANT-R main features are:

• Take-Off Weight (TOW): approximately 745 grams;

• Battery: 4S Li-Po 2650 mAh;

• Maximum theoretical speed: 130 km/h;

• Flight time: 13 minutes;

• Motors: 4x racing-grade BLDC motors;

• Propellers: 4x three-bladed, diameter 5";

• Frame dimensions (footprint): 250 mm (excluding rotors).

It has been designed to provide a lightweight and high-performance ma-
chine optimised for forward flight, thus featuring a smaller cross-section.

The rotor disposition is an H configuration, which is identical to an X con-
figuration in terms of motor numbering and sense of rotation. This arrange-
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ment determines a different behaviour between the pitch and roll dynamics,
due to different inertia moments.

4.3 Controller structure

Concerning the control architecture, both the ADAM-0 and ANT-R platforms
adopt an attitude control scheme based on cascaded PID loops for the pitch,
roll and yaw axes, running at 250 Hz. This structure has been covered in
Section 2.2.1.

The MIMO implementation boils down to the same architecture, where
each input is now a vector of 2 components, one for the roll axis and the other
for the pitch axis. A block diagram representation is shown in Figure 4.3,
where each block represents a 2×2 transfer function, which in turn is char-
acterised by a 2×2 matrix containing the controller parameters since they
share the same unitary gain transfer function. For example, the integral term
transfer function can be described as:

Ci (z) = Ki
Ts

z −1
=

[
Ki (1,1) Ki (1,2)

Ki (2,1) Ki (2,2)

]
Ts

z −1
. (4.1)

The diagonal terms affect the control action over the same axis of the
measurement, for instance, pitch rate error leading to a pitch moment. The
off-diagonal terms lead to control action on the other channel. The i j -th
(i 6= j ) component of the controller gives an effect on input i for an error
on component j . These terms represent the decoupling action of the MIMO
controller. A diagonal matrix is consequently equivalent to a set of two de-
coupled controllers.

K O
p K I

p

K I
f f

K I
i
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Figure 4.3: Block diagram of the MIMO control system, with a feed-forward
gain and a derivative action based on angular rate feedback.

The default parameters of the controller are shown in Table 4.1, which
will be used for the dataset collection experiments that follow.
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Table 4.1: Default controller parameters.

KO
p KI

ff KI
p KI

i KI
d[

6.5 0
0 6.5

] [
0 0
0 0

] [
0.15 0

0 0.15

] [
0.05 0

0 0.05

] [
0.003 0

0 0.003

]

In Section 3.3.3, the regressor for the MIMO algorithm was defined for a
generic PID controller fed by error, while an unconventional PID structure is
employed for the considered UAV platforms. However, this type of structure
can be converted into a regressor form in a straightforward step, resulting in:

u(k) = u(k −1)+
ne∑

i=0
Bi e(k − i )+

ny∑
j=0

B j y(k − j )+
nr∑

m=0
Bmr (k −m) (4.2)

= u(k −1)+ϕT (k)θ (4.3)

A complete and formal derivation of the regressor can be found in Appendix
A.1.

4.4 Common hardware

The ADAM-0 and ANT-R platforms differ mainly for their propulsion system
and battery capacity; however, they share most of the off-the-shelf hardware,
such as electronics and sensors. The following components are used:

• Flight Control Unit, an electronic board which runs the control laws
and the Inertial Measurement Unit;

• Power Distribution Board, an integrated circuit which distributes cur-
rent to the components from the battery;

• Electronic Speed Controller, a component which controls the DC mo-
tor speed;

• Telemetry module, half-duplex communication link used to send de-
sired setpoints and recover real-time data;

• Receiver module, used for traditional radio control using an RC trans-
mitter;

• External safety switch, used to allow the drone to be armed;

• GPS receiver, used as an additional source for position and linear ve-
locity data;

• Magnetometer, used as an additional source for attitude data;



4.4 Common hardware 35

Figure 4.4: Illustration of the assembly of the various components.

• Companion board, used to publish and read data from a wireless net-
work.

An example of the wirings and connections required for these compo-
nents is shown in Figure 4.4.

Flight Control Unit Both platforms feature the use of the Pixhawk Mini
FCU. The FCU is an integrated circuit board that host the autopilot and con-
trollers. Its modular design allows distributing the various sensors and com-
ponents, which can help to reduce intrusiveness.

The autopilot runs the attitude and position flight control laws. A Kalman
Filter (KF) is present to improve the state estimation process, where informa-
tion provided by an external sensor, such as a GPS receiver and magnetome-
ter combination, is used to correct the information of the internal Inertial
Measurement Unit (IMU). The IMU is made up of Micro-Electro-Mechanical
Systems (MEMS) accelerometers and gyroscopes, which measure accelera-
tions and angular rates. The attitude is reconstructed by numerical integra-
tion of the angular rates. For this reason, the Kalman filter allows for a better
result which could otherwise be affected by drift due to error integration over
time.

The controller setpoint is either sent via a remote controller or using
a dedicated telemetry module, while the controller output is conditioned
into a Pulse-Width Modulation (PWM) signal which is sent to the Electronic
Speed Controllers (ESC).

Electronic Speed Controller Brush-less DC motors (BLDC), unlike
Brushed DC motors, cannot be powered directly by a constant DC source.
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(a) Pixhawk Mini FCU. (b) Electronic Speed Controller.

Figure 4.5: Common hardware.

They are synchronous motors, requiring the use of an inverter, which
transforms DC into a switching three-phase electric signal. This component
is also known as Electronic Speed Controller (ESC).

The ESC receives as input a constant DC from the Power Distribution
Module (PDB) and a PWM signal from the FCU, which is then used to reg-
ulate the switching speed of the three-phase output current.

Testing facility The testing environment is the Fly-ART laboratory, which
has a dedicated indoor (12 m × 6 m × 3 m) flying cage where the drones can
be flown safely.

Indoor testing limits the quality of acquired GPS data, requiring a differ-
ent source for the attitude, position and velocity for the long term correc-
tions of the state estimate. An OptiTrack motion capture system (MOCAP) is
used, with the help of reflective markers, to determine position and attitude.
Once the data has been acquired, it is sent wirelessly to a companion board
(NanoPi board) which is connected to the FCU.

Figure 4.6: The Fly-ART laboratory.
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4.5 Software and firmware

The framework of the attitude control law, shown in Section 4.3, is a Simulink
model, which is then converted into C++ code using code auto-generation.
This code is then compiled into a customised firmware. There is no need to
interact with the auto-generated code, and it is only needed to specify the de-
sired language, in this case C++, and the target hardware (ARM Cortex). The
Simulink implementation allows for flexibility in performing modifications,
as well as making it possible to validate the control law before the installation
on the FCU.

The OptiTrack camera system requires specific software, Motive, used to
publish the current velocity, position and attitude using ROS (Robot Oper-
ating System). ROS provides libraries, tools, hardware abstraction, device
drivers, visualizers, message-passing, package management, and more to
help software developers create robot applications, which include UAVs.

The companion NanoPi unit onboard the drone is a MAVROS node inside
the ROS network. In particular, MAVROS is a ROS node that can convert be-
tween ROS topics and MAVLink messages allowing the FCU to communicate
with ROS. Finally, using MAVROS, it is also possible to relay desired position
setpoints or to command the injection of a control input from a ground con-
trol station. In this case, a MATLAB script run on the ground control station
is used to publish the required topics over the ROS network.
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Figure 4.7: OptiTrack position data updates and MATLAB control setup using
ROS nodes.



Chapter 5

Simulation

In this chapter, the algorithm results are validated and compared to other
controller synthesis techniques. The main benchmarks used for validation of
MIMO systems will be covered, as well as results from a nonlinear simulator
of the ADAM-0 platform.

5.1 Benchmarks

5.1.1 LV100 gas turbine

One of the most common MIMO benchmarks is the LV100 Gas Turbine En-
gine, described in [23], which has been used for performance comparison
amongst data-driven methods.

The plant is modelled as a linear two-input, two-output, five-state min-
imum phase system. The inputs are the fuel flow and variable area turbine
nozzle. The outputs are the gas generator spool speed and temperature. The
five states are, in order, the gas generator spool speed, the power output, tem-
perature, fuel flow actuator level, and variable area turbine nozzle actuator
level. A state-space continuous time model for the system is given by:

ẋ = Ax +Bu y =C x +Du

A =


−1.4 −0.055 0 43.0 6.3
0.093 −0.11 0 4.2 −0.76
−7.8 −0.26 −3.3 300.0 −4.5

0 0 0 −25.0 0
0 0 0 0 −33.0

 B =


0 0
0 0
0 0
1 0
0 1

 (5.1)

C =
[

1 0 0 0 0
0 0 1 0 0

]
D =

[
0 0
0 0

]
.
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A small difference is applied in [5] with respect to [23] where the tem-
perature term contributing to the variation of the temperature, A(3,5), has
its order reduced by three to avoid numerical conditioning issues. Equation
(5.1) represents the actual system that has been implemented.

A PRBS input is used to provide an I/O dataset for the algorithm. The two
inputs have been excited separately. A total of 5000 datapoints are generated,
with a frequency bandwidth that comprise 0-30 rad/s. The test has been car-
ried out in closed loop, where the following initial controller has been em-
ployed:

C0(z) =
[ z−0.99

z−1
0.1z−0.099

z−1
−z+0.99

z−1
z−0.99

z−1

]
. (5.2)

Finally, measurement noise is introduced in the test and applied in
closed-loop. Noise has been modelled with a zero mean white noise with
variance 0.0025I .

For this benchmark, a PI controller fed by the tracking error is chosen.
The plant dynamic is expressed in continuous time, however, for this simu-
lation it has been discretised using Tustin’s (or trapezoidal) approximation,
with a sampling time of 0.1 s, corresponding to 10 Hz. A first-order reference
model, with a sampling time of 0.1 s, is chosen such that:

M(z) =
[ 0.4

z−0.6 0

0 0.4
z−0.6

]
. (5.3)

This reference model, thus, requires that the turbine spool speed is not af-
fected by temperature variations, and vice-versa, by suitably changing the
fuel flow and the turbine variable area.

Results from the multivariable extension of other data-driven methods
are considered, the Iterative Feedback Tuning (IFT) [24] and Correlation-
based Tuning (CbT) [12]. The time domain response to two subsequent steps
is shown in Figure 5.1.

From the step response, it can be highlighted that the VRFT method is
well able to decouple the dynamics, reducing substantially the effect that one
input channel has over the other. The requirement, represented by the refer-
ence model, is well satisfied, as the reference model is almost indistinguish-
able from the VRFT result.

It is noted that the IFT is the method leading to the worst performance
and it also the most demanding in terms of effort, requiring 6 iterations and
results from 500 different experiments. CbT comes close in terms of model-
following; however, it is still an iterative scheme, and it requires 8 different
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Table 5.1: LV100 parameter results.

VRFT

[0.3552z−0.07165
z−1

0.3997z−0.2918
z−1

19.8z−19.8
z−1

−3.151z+2.215
z−1

]

CbT

[0.3636z−0.09866
z−1

0.3653z−0.2691
z−1

18.69z−18.16
z−1

−3.453z+2.652
z−1

]

IFT

[ 0.248z−0.03
z−1

0.38z−0.199
z−1

16.47z−15.91
z−1

0.063z−0.054
z−1

]
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Figure 5.1: LV100: Step response comparison with different controllers.
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experiments, while VRFT provides satisfactory results using a single experi-
ment and no iterations.

Furthermore, a statistical analysis is performed using different noise re-
alisations to determine their effect on the parameters. The variance of the
parameters will be determined under these conditions by simulating the re-
sponse for different experiments. The same PRBS input will be used across
the experiments on the linear plant shown in Equations (5.1). Datasets with
1000 and 10000 data-points are compared. The parameters are described in
terms of mean values and standard deviation, detailed in Table 5.2. The ratio
between the parameter standard deviation and value is also included.

Table 5.2: LV100: parameters statistical analysis.

θ103 σ103 (σ/θ)103 θ104 σ104 (σ/θ)104

Kp (1,1) 0.070 0.116 1.651 0.075 0.031 0.418
(2,1) 14.037 1.172 0.083 18.698 0.925 0.049
(1,2) 0.310 0.022 0.072 0.288 0.014 0.047
(2,2) 1.477 0.175 0.118 2.149 0.117 0.054

Ki (1,1) 2.874 0.189 0.066 2.823 0.132 0.047
(2,1) 6.449 1.006 0.156 6.238 0.443 0.071
(1,2) 1.121 0.060 0.053 1.086 0.050 0.046
(2,2) 8.579 0.510 0.059 9.268 0.439 0.047

The difference in the mean values can be an indicator of bias of the esti-
mation, as this algorithm is only asymptotically unbiased for dataset length
N →∞. When the larger dataset is considered, the standard deviation is de-
creased on all parameters, halved in most cases. The parameter Kp (1,1) is
particularly affected by uncertainty, which in the case of the smaller dataset
is such that it leads to sign variations.

By comparing the step responses in Figure 5.2 it can be seen that for
smaller dataset there is higher uncertainty, seen from the thicker grey zone.
This result is coherent with the expected behaviour from the analysis of the
parameter variance. Besides, it is noticeable that a dataset of 1000 data-
points features more oscillations. As a result, it has inferior model-following
capabilities.
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Figure 5.2: LV100: Step response of 500 simulation runs (in grey) and the
mean result.
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5.1.2 Numerical example results

An additional MIMO benchmark is proposed in [25] and [26], where a dis-
crete system of first order transfer functions is introduced:

G(z) =
[ 0.09516

z−0.9048
0.03807

z−0.9048
−0.02974
z−0.9048

0.04758
z−0.9048

]
, (5.4)

with a sampling rate of 1 Hz. A first order transfer function is chosen as ref-
erence model, such that:

M(z) =
[ 0.1

z−0.9 0

0 0.1
z−0.9

]
. (5.5)

This example is purposely built to guarantee perfect tracking with 2×2
PI controller. Performance from the MIMO algorithm and the SISO one are
compared, using the same input/output dataset. The outcome of the algo-
rithms are detailed in Table 5.3, and the step response is shown in Figure 5.3.

Table 5.3: Numerical example controller parameters.

SISO MIMO[1.082z−1.023
z−1 0

0 2.223z−2.057
z−1

] [0.8406z−0.7606
z−1

−0.6726z+0.6086
z−1

0.5254z−0.4754
z−1

1.681z−1.521
z−1

]

Since significant coupling is present, the SISO algorithm is not able to
completely satisfy tracking requirements. It is noted that even if the decou-
pling regulators, namely the off-diagonal terms, are not present, the effect is
cancelled over time as a load disturbance. The disturbance rejection prop-
erty of the controller depends on numerous factors, including the controller
complementary sensitivity.

Thus, systems affected by significant coupling effects benefit from the
synthesis of a full MIMO regulator. It can be seen from Figure 5.3 that the
MIMO controller completely overlaps the requirement.

5.2 ADAM-0 simulator

A complete Simulink ADAM-0 nonlinear simulator has been used to vali-
date the results of the algorithm. The simulator uses the equations of motion
shown in Chapter 2, using some assumptions on the aerodynamic modelling
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Figure 5.3: Numerical example step response.

of the damping, also know as stability derivatives. It is built specifically for
preliminary testing of control laws before compiling it in the drone firmware.

The simulator can replicate the attitude dynamics under feedback con-
trol on all axes. An artificial inertial coupling has been introduced, where the
off-diagonal terms represent 10% of the diagonal terms. These terms will in-
troduce gyroscopic effects since the pitch and roll axis are no longer principal
axes of inertia.

Simulation data is collected in closed-loop in order to create the input
and output dataset required for the VRFT algorithm. Two PRBS excitation
signals, one for the pitch moment and one for the roll moment, are applied
consecutively. The input ū(t ) = {L̄ ,M̄ }T is injected in the system as shown
in Figure 3.2. The two signals are different, but they share the same PRBS
parameters (signal amplitude and min/max switching interval). In this case,
for each axis, a total excitation time of 20 s has been used, with a frequency of
50 rad/s and an amplitude of 0.15. The latter is a dimensionless amplitude,
referred to the maximum moment that can be applied.

As illustrated in Section 3.3.2, an initial controller C0(z) that stabilizes the
system must be available, with parameters collected in Table 4.1
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Figure 5.4: ADAM-0 Simulink model.

Reference models

For both the pitch and roll inner loops, the reference model is a second-order
system, with a desired bandwidth and damping ratio of 20 rad/s and 0.4 re-
spectively:

Mi (z) = 0.003131z +0.003065

z2 −1.932z +0.9380
. (5.6)

In this specific case no filtering action was required for the SISO algorithm,
thus the weighting function has been defined as Wi (z) = 1. Therefore, con-
sidering the MIMO case, the reference models are 2×2 matrices of transfer
functions, with the transfer function Mi (z) on the main diagonal and zeros
on the secondary diagonal, requiring full decoupling.

Similarly, requirements have been set for the outer loop, once again a
second-order model, and a slower response. The desired bandwidth is 10
rad/s with a damping ratio of 0.7:

Mo(z) = 0.0007852z +0.0007706

z2 −1.9440z +0.9455
. (5.7)

Controller parameters comparison

Results from the SISO algorithm applied to both pitch and roll data are then
compared to the controller obtained from the MIMO formulation shown in
Section 3.3.3 for the given set of reference models for the inner and outer
dynamics. Noise has been introduced in the system, modelled as white noise
with standard deviation obtained from hovering endurance tests to account
for the uncertainty of the state estimate.

In order to compare the results, a doublet benchmark has been con-
sidered, that is a quick consecutive variation of the attitude that has a zero
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mean. The doublet period T = 0.42 s and amplitude A = 22.5 deg is held
constant between tests. The simulated pitch doublet is shown in Figure 5.5,
where it is highlighted that the full MIMO controller can significantly reduce
the coupling effects. Couplings are reduced in both loops, almost cancelled
for the MIMO regulator, which is also able to provide a faster response in the
attitude dynamics.

The parameters of both algorithms are indicated side-by-side in Table 5.4.
The diagonal terms are almost the same, with the exception of the integrator
gains in the inner loop, which are significantly higher than the ones obtained
from the SISO method.

The outer loop gains of the P controller feature an almost identical term
on the diagonal. Conversely, the off-diagonal terms are smaller by two or-
ders of magnitude. This size means that the inner loop controller is able to
decouple the dynamics effectively from the attitude rate and making them
similar.

Table 5.4: ADAM-0: controller parameters for outer and inner controllers
considering the VRFT method with closed-loop simulation data.

SISO MIMO

KO
p

[
4.6650 0

0 4.6772

] [
5.2090 0.0104
0.0114 5.1874

]
KI

p

[
0.1490 0

0 0.1300

] [
0.1464 0.0094
0.0094 0.1275

]
KI

i

[
0.1765 0

0 0.1807

] [
0.2630 0.0038
0.0038 0.2555

]
KI

d

[
0.0001 0

0 0.0001

] [
0.0005 0

0 0.0004

]
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Figure 5.5: Simulation of a pitch angle doublet.



Chapter 6

Experimental testing and results

This chapter contains the experimental data that has been collected as part
of the proposed algorithm validation seen in Chapter 3. The two aforemen-
tioned UAV platforms, ADAM-0 and ANT-R, will be employed in a series of
experiments to test the tracking performance of the synthesised regulator
using the SISO and the extended MIMO implementation of the VRFT algo-
rithm.

For each platform, a data acquisition test is carried out in order to provide
the I/O dataset required by the method. A pitch and roll moment PRBS input
is injected in the control action, as described in Section 5.2. The collected
dataset comprise the control actions u(t ) = {L (t ),M (t )}T , the excitation in-
put ū(t ) = {L̄ (t ),M̄ (t )}T , the attitude angle yo(t ) = {φ(t ),ϑ(t )}T and, finally,
the angular rates yi (t ) = {p(t ), q(t )}T . A reference model is selected based on
the desired requirements, by making suitable assumptions on the achievable
performance.

Once the parameters have been obtained, a benchmark is chosen to
evaluate performance indicators and compare the results. For this purpose,
a doublet benchmark is adopted, with parameters changing based on
expected behaviour and safety considerations.

6.1 ADAM-0

In this section, the tests carried out on the ADAM-0 platform are described,
detailing the methodologies and specific test configuration. In particular, a
validation test based on the original architecture is performed and it will be
compared to traditional single-axis VRFT.

A second experiment feature the introduction of inertial coupling, ob-
tained by positioning a concentrated mass close to motor 3, in a way that the
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drone pitch and roll axis are no longer principal axes of inertia.

6.1.1 Nominal configuration

The experimental data is collected in the same way as presented for the sim-
ulation results, described in Section 5.2. The default controller parameters
are used as the initial regulator, illustrated in Table 4.1.

Figure 6.1a and Figure 6.1b show the involved signal in the data-driven
tuning procedure. These signals share the same specifications of the simu-
lated experiment in Section 5.2. For the sake of clarity, the signals are rep-
resented in two figures, but were carried out subsequently during the same
flight. Applying the inputs separately is not a requirement of the method, but
it can increase the signal-to-noise ratio.

Reference models

The chosen reference models are second-order systems with the addition of
a delay. The choice of the reference model in data-driven methods can affect
the stability of the regulator. Thus, it might need adjustments between tests
and lead to slightly different results, due to parameter uncertainty. In this
case, the reference model chosen for the SISO algorithm is different from the
one used for the simulation and MIMO formulation.

Table 6.1: Experimental data reference models for the inner and outer loops.

ω [rad/s] ζ Delay

MIMO Inner loop 18 0.3 1
Outer loop 10 0.8 1

SISO Inner loop 20 0.4 3
Outer loop 10 0.7 3

Controller parameter comparison

Given the reference models and closed-loop experimental dataset, the VRFT
method leads to the parameter values reported in Table 6.2.

Since the data-collecting experiments are conducted in near-hovering
conditions, the secondary diagonal of the parameters of the MIMO regula-
tor in Table 6.2 is always one or more orders of magnitude smaller than the
primary terms. This confirms an almost decoupled dynamics between the
degrees of freedom in the quadrotor platform. The symmetry of the build is
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Figure 6.1: ADAM-0: closed-loop experimental dataset.
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Table 6.2: ADAM-0: controller parameters for outer and inner controllers
considering the VRFT method with closed-loop experimental data.

SISO MIMO

KO
p

[
4.2505 0

0 4.2061

] [
4.4484 −0.1287
0.2364 5.2220

]
KI

p

[
0.1381 0

0 0.1495

] [
0.1187 −0.0004
0.0044 0.1252

]
KI

i

[
0.1039 0

0 0.3039

] [
0.1749 0.0023
0.0090 0.1164

]
KI

d

[
0.0015 0

0 0.0027

] [
0.0007 0.0001
0.0001 0.0011

]

more evident when the SISO results are analysed, since pitch and roll param-
eters are very similar.

The benchmark for the performance comparison is a doublet, with pe-
riod T = 0.45 s and amplitude A = 40 deg. Since the doublet experiment
requires the position and velocity outer feedback loops to be disabled, ex-
periments have been carried out by a pilot, leading to difficulties in replicat-
ing the exact input and conditions. For the sake of brevity, only one of the
excitations is shown, as in this platform the results are identical.

Preliminary tests are shown in Figures 6.2 and 6.3, where the roll doublet
response shows a coupling, which in both cases is very limited, as expected.
The pitch angle variations are about ± 3deg; however, they are smoother for
the MIMO solution. Note that the regulator obtained from the MIMO algo-
rithm leads to a quicker response.

The MIMO controller features a quick suppression of the oscillations in
the pitch rate loop, which can follow the rate setpoint given from the attitude
feedback loop. Finally, the control effort on the pitch axis is stabilised and
slightly reduced with respect to the SISO controller. To better evaluate the
performance on the roll axis, the reference models have also been simulated
for the measured attitude setpoint and compared to the responses of the roll
rate and roll angle, shown in Figure 6.4.

Two cost functions can be defined in order to compare the results, one for
the setpoint tracking error and one for the model tracking error, for which a
qualitative result, based on the time domain response, has been described.
The cost functions are defined for the roll performance, both for the angular
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Figure 6.2: ADAM-0: Roll doublet experiment with SISO method parameters.
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Figure 6.3: ADAM-0: Roll doublet experiment with MIMO method parame-
ters.
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rate and attitude:

JM ,o = 1

N

k0+N∑
k=k0

(
φ(k)−Mo(z)φo(k)

)2 (6.1)

Jr,o = 1

N

k0+N∑
k=k0

(
φ(k)−φo(k)

)2 (6.2)

JM ,i = 1

N

k0+N∑
k=k0

(
p(k)−Mi (z)po(k)

)2 (6.3)

Jr,i = 1

N

k0+N∑
k=k0

(
p(k)−po(k)

)2 , (6.4)

where k0 indicates the starting point of the doublet, while N is the number of
samples of the doublet. Mi (z) and Mo(z) are respectively the reference model
for the inner and outer loops. The same structure can also be applied to the
pitch axis, by substituting the measured pitch angle ϑ, the angle setpoint ϑo ,
the measured pitch rate q and setpoint qo . The subscript M indicates the
model tracking cost, while the subscript r the setpoint tracking cost.

The results for the nominal configuration of the ADAM-0 platform are
collected in Table 6.3. While the two inputs are not exactly replicated, some
considerations can be made about the response shown in Figure 6.4. The
MIMO controller performs better in the outer loop, both in terms of setpoint
and model tracking. The SISO algorithm achieves higher performance in the
inner controller model-tracking test, while setpoint tracking capabilities are
inferior to those of the MIMO controller, as seen from the cost Jr,i .

Table 6.3: ADAM-0: roll performance cost functions from experimental data.

JM,o JM,i Jr,o Jr,i

MIMO 0.0033 0.5542 0.1612 2.1705
SISO 0.0122 0.3145 0.2645 3.3345

6.1.2 Perturbed configuration

A gyroscopic coupling is artificially introduced in the system to evaluate the
decoupling capabilities of the MIMO algorithm on a real application. this
has been obtained by inserting a localised mass under one of the rotors. The
size of the frame permits the introduction of such effect with relatively small
masses due to the large arm between the rotor and centre of mass of the
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(c) SISO roll angle.
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Figure 6.4: ADAM-0: Roll axis performance of the nominal configuration.

drone. In this case, a mass of approximately 160 g is located close to motor
number 3, at a distance of approximately 20 cm from the centre.

Following the same procedure, a PRBS signal is applied to the input in
order to collect the required output data to run the algorithm. The same
PRBS parameters of the nominal configuration have been used. The col-
lected dataset is shown in Figure 6.6. It can be seen that coupling effects are
still limited, even after the introduction of the mass on motor 3. The main
effect that can be observed is the PWM signal sent to the motors, where mo-
tor 3 sees a greater speed request in order to provide the additional thrust,
shown in Figure 6.7. As a consequence, motor number 2 has a lower angular
speed to avoid roll imbalance, which leaves motors 1 and 4 almost constant.

Reference models

To reduce control effort due to the additional payload, the inner dynamics
reference model has been relaxed and had its natural frequency reduced to
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Figure 6.5: ADAM-0: perturbed configuration.

15 rad/s. Damping ratio has been slightly increased to ζ = 0.33. Due to the
slower dynamics, the effect of the time delay has not been considered, ob-
taining the following transfer function:

Mi (z) = 0.001776z +0.001753

z2 −1.958z +0.9612
. (6.5)

The outer loop (attitude) reference model is once again a second-order sys-
tem with a natural frequency of 10 rad/s and a damping ratio of 0.8. The
discrete transfer function that describes this dynamic is:

Mo(z) = 0.0007831z +0.0007666

z2 −1.936z +0.938
. (6.6)

Results

By providing the obtained dataset from the PRBS excitation and the reference
models above, the VRFT algorithm provides the parameter estimates shown
in Table 6.4. It is noted that the SISO algorithm is more susceptible to the
dataset and reference model, since using the collected dataset did not lead
to compatible parameters for the controller. For this reason, the regulator
obtained from the MIMO derivation will be compared to the controller ob-
tained from the SISO algorithm tuned with data collected from the nominal
configuration experiment. The same reference model of Equations (6.5) and
(6.6) is used.

For safety reasons, the doublet parameters have been lowered to reduce
potential risks related to actuator saturation, since the added mass has in-
creased the control effort in hovering conditions. The doublet magnitude
has been set to 15 deg, while the period has been increased to 0.8 s.
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Figure 6.6: ADAM-0: closed-loop experimental dataset of the perturbed con-
figuration.
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Figure 6.7: PWM input during the identification test flight.

Table 6.4: ADAM-0: controller parameters for outer and inner controllers
considering the VRFT method with closed-loop experimental data of the per-
turbed configuration.

SISO MIMO

KO
p

[
3.3546 0

0 3.3075

] [
4.0081 −0.0805
0.1154 4.6357

]
KI

p

[
0.0984 0

0 0.1028

] [
0.0964 −0.0065
−0.0076 0.0942

]
KI

i

[
0.2213 0

0 0.3496

] [
0.2286 0.1025
0.0034 0.2380

]
KI

d

[
0.0007 0

0 0.0015

] [
0.0005 0.0001
−0.0001 0.0005

]

From the doublet responses, shown from Figure 6.9 to 6.12, it can be ob-
served that the coupling effects are comparable on both plants, even for this
attempt at introducing them. The main visible effect is an offset of the con-
trol action, required to balance the effect of the mass positioned on one side.
Once again, the full MIMO regulator allows for a quicker setpoint tracking on
the attitude angle.

Analogously to the previous analysis of the nominal configuration, the
given reference models are simulated to evaluate reference tracking and
model tracking capabilities of the synthesised controllers. The numerical
results are shown in Table 6.5, while the time domain response is shown in
Figure 6.8.

The cost functions are consistent with the response shown in Figure 6.8,



60 Experimental testing and results

208.8 209 209.2 209.4 209.6 209.8 210 210.2 210.4 210.6 210.8

Time [s]

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Output
Setpoint
M

inner

(a) SISO pitch rate.

96.2 96.4 96.6 96.8 97 97.2 97.4 97.6 97.8 98

Time [s]

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Output
Setpoint
M

inner

(b) MIMO pitch rate.

208.8 209 209.2 209.4 209.6 209.8 210 210.2 210.4 210.6 210.8

Time [s]

-20

-15

-10

-5

0

5

10

15

20

Output
Setpoint
M

outer

(c) SISO pitch angle.

96.2 96.4 96.6 96.8 97 97.2 97.4 97.6 97.8 98

Time [s]

-20

-15

-10

-5

0

5

10

15

20

Output
Setpoint
M

outer

(d) MIMO pitch angle.

Figure 6.8: ADAM-0: Pitch axis performance of the perturbed configuration.

in particular for the outer loop performance. The performance inside the
inner loop is well captured in terms of model tracking for the MIMO regula-
tor, which is also slightly better in following the given setpoint, as confirmed
by the cost function. In the outer loop, the behaviour of the SISO controller
is much slower than the original request, whereas the MIMO algorithm is
quicker. Although it features some oscillations, it is more performant overall.

Table 6.5: ADAM-0: pitch performance cost functions from experimental
data of the perturbed configuration.

JM,o JM,i Jr,o Jr,i

MIMO 0.0006 0.0452 0.0158 0.2649
SISO 0.0457 0.3839 0.0581 0.3059
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Figure 6.9: ADAM-0: Roll doublet experiment with SISO method parameters
on the perturbed configuration.
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Figure 6.10: ADAM-0: Roll doublet experiment with MIMO method parame-
ters on the perturbed configuration.
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Figure 6.11: ADAM-0: Pitch doublet experiment with SISO method parame-
ters on the perturbed configuration.
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Figure 6.12: ADAM-0: Pitch doublet experiment with MIMO method param-
eters on the perturbed configuration.
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6.2 ANT-R

In this section, the ANT-R platform is tested to validate the algorithm on a
different machine. As seen in Section 4, ANT-R feature asymmetric inertia
properties for the pitch and roll axes. In particular, a higher inertia charac-
terises the pitch axis. Results from the SISO and MIMO algorithm will be
compared, with a focus on the discrepancy between the actual performance
and the desired one.

For the I/O dataset, a PRBS input has been used as well, with a frequency
range of interest between 0-50 rad/s, with a normalised moment of 0.1, that
is an injection of 10% of the maximum applicable moment, for a duration
of 15 s per channel. Experimental data is shown in Figure 6.13. The initial
controller for the plant has been slightly modified from the default values to
improve stability. The parameters are shown in Table 6.6.

Table 6.6: ANT-R: initial controller parameters.

KO
p KI

ff KI
p KI

i KI
d[

6.5 0
0 6.0

] [
0 0
0 0

] [
0.05 0

0 0.07

] [
0.05 0

0 0.05

] [
0.001 0

0 0.001

]

Reference models

A second-order system has been chosen as the reference model, similarly to
the ADAM-0 platform. Since this drone is much lighter and features higher
performance motors, quicker dynamics have been set. A natural frequency
of 30 rad/s and a damping ratio of 0.3 determine the angular rate desired
transfer function. The off-diagonal terms are set to zero, as coupling between
the roll and pitch rate dynamics is undesirable. The sampling rate of the con-
troller is the same as ADAM-0 (250 Hz), for which we obtain the following
transfer function:

Mi (z) = z−1 0.007022z +0.006855

z2 −1.917z +0.9305
. (6.7)

Similarly, for the outer attitude dynamics, a second-order model is se-
lected, with a natural frequency of 20 rad/s and a damping ratio of 0.8, since
overshoots of the setpoint are undesirable for the attitude angles. The trans-
fer function can be obtained:

Mo(z) = z−1 0.003066z +0.002938

z2 −1.874z +0.8799
. (6.8)
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Figure 6.13: ANT-R: closed-loop experimental dataset used by MIMO data-
driven method.
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6.2.1 Parameter results comparison

The reference models are the same for both algorithms, which provide results
summarised in Table 6.7.

Table 6.7: ANT-R: controller parameters for outer and inner controllers con-
sidering the VRFT method with closed-loop experimental data.

SISO MIMO

KO
p

[
6.1029 0

0 6.2546

] [
8.4068 0.1209
−0.0166 8.9678

]
KI

p

[
0.0300 0

0 0.0469

] [
0.0230 −0.0001

0 0.0396

]
KI

i

[
0.2157 0

0 0.2323

] [
0.0481 0.0152
0.0138 0.1265

]
KI

d

[
0.0004 0

0 0.0003

] [
0.0002 0

0 0.0002

]

The controllers are then tested on the drone, and their performance is
evaluated based on a doublet benchmark. The roll excitation is presented in
Figure 6.14, showcasing the response of the SISO controller, and the same in
Figure 6.15 for the MIMO controller.

It can be seen that the SISO controller is much slower in the angle dy-
namics than the MIMO regulator, especially after the change of sign of the
setpoint, when a variation of 30 deg is applied. The slower response of the
outer loop depends on the gains, as it is only a P controller: the gains for the
SISO implementation are smaller by at least 25% with respect to the diagonal
terms of the MIMO outer loop controller. An additional consideration can
be made regarding the control effort, as the MIMO controller uses a com-
parable input while achieving substantially better performance in terms of
attitude tracking.

Both regulators lead to small oscillations around zero on the pitch axis
when a roll doublet is executed. These oscillations are observed in both the
angle and angular rate, however, it may be considered well decoupled, as
expected. This result can be seen in the MIMO controller gains reported in
Table 6.7, wherein the off-diagonal terms are lower by one or more orders of
magnitude.

Finally, a comparison between the desired roll response and actual re-
sponse, as previously carried out, is shown in Figure 6.16. The cost functions,
defined in Equations (6.2) to (6.4), are evaluated and analysed. The results
are shown in Table 6.8.
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Figure 6.14: ANT-R: Roll doublet experiment with SISO method parameters.



6.2 ANT-R 69

85.4 85.6 85.8 86 86.2 86.4

-20

0

20 Output
Setpoint

85.4 85.6 85.8 86 86.2 86.4
-10

-5

0

5

85.4 85.6 85.8 86 86.2 86.4
Time [s]

-0.2

0

0.2

(a) Roll response

85.4 85.6 85.8 86 86.2 86.4
-5

0

5
Output
Setpoint

85.4 85.6 85.8 86 86.2 86.4
-1

0

1

85.4 85.6 85.8 86 86.2 86.4
Time [s]

-0.2

0

0.2

(b) Pitch response

Figure 6.15: ANT-R: Roll doublet experiment with MIMO method parame-
ters.
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(b) MIMO roll rate.
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Figure 6.16: ANT-R: Roll axis performance.

In both cases, in the angular rate dynamics, there are evident oscillations
around the setpoint. These are also present in the desired reference model
response as the damping ratio is small. It is noted that in this case, the SISO
controller has a better model-following capability for the attitude rate loop.
Conversely, the MIMO controller is much quicker in following the require-
ment for the attitude loop. This result is not limited to the model tracking
capabilities, but also in terms of setpoint tracking, where the SISO algorithm
is not able to reach the imposed reference angle. The response is coherent
with the cost function evaluations.

Table 6.8: ANT-R: roll performance cost functions from experimental data.

JM,o JM,i Jr,o Jr,i

MIMO 0.0047 1.4315 0.1024 4.8303
SISO 0.0130 0.3773 0.1103 2.5215



Chapter 7

Conclusions

The problem of data-driven design of the attitude control law for a multi-
rotor UAV has been considered. The VRFT method has been extended to a
more general class of controllers and by allowing the closed-loop execution
of data-collection experiments on the system. The class of PRBS input signals
has been selected which can be easily reproduced and lead to a sufficiently
informative dataset in terms of attitude dynamics. Experimental results show
that the in-flight tests can be conducted safely and that a satisfactory level of
performance can be achieved by using 20 seconds datasets.

The obtained regulators have been compared for both platforms, distin-
guishing between reference tracking and model following capabilities as part
of the framework of model reference control. From the experiments that
have been carried out, the couplings between inputs were limited, leading to
almost diagonal MIMO regulators for the nominal configurations of ADAM-0
and ANT-R, with a comparable off-axis response. Significant differences have
been observed when the channel response is considered: in the attitude loop
the SISO regulator always failed to match the requirements, while achieving
a comparable, but inconsistent, result in the angular rate loop. The ultimate
goal of the attitude control law is to regulate the attitude dynamics, meaning
that in this sense the MIMO formulation was able to provide a better overall
result with comparable control effort consistently.

In the perturbed configuration of the ADAM-0 platform, an artificial cou-
pling was introduced, but it was bounded for safety concerns due to the lim-
ited payload capabilities of the platform. This lead one off-diagonal compo-
nent of the integral gain to have a magnitude comparable to the main terms
on the diagonal, even if from simulations it was expected to affect both com-
ponents. However, couplings can arise from a number of dynamic and aero-
dynamic effects, not only from gyroscopic terms. In general, such influence
is difficult to model accurately, as most of the causes are bound to nonlinear
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behaviour. These effects make this class of synthesis methods very appeal-
ing, since almost no assumptions on the system are made. For plants that
feature high levels of coupling, such as the ones covered in the simulation
chapter, the MIMO algorithm can provide a satisfactory solution in terms of
performance, being able to significantly separate the dynamics.

As with other data-driven methods, no stability constraint is enforced on
the algorithm, making the solution of the method reliant on the choice of a
suitable reference model. The reference model is critical as it must be com-
patible with both the dataset and the physical system limitations. This means
that a build-up approach to experimental testing is suggested where even
limited prior knowledge is unavailable.

The main advantages over the SISO formulation are that the instrumen-
tal variable parameters (model order and past/future windowing of PBSID)
are not needed, reducing the number of algorithm tunable variables. Fur-
thermore, for one possible choice of the instrumental variable for the SISO
algorithm, the initial controller must be known, while in the MIMO formula-
tion it is no longer necessary.

To summarise the main findings, this method allows a more general ap-
proach to the attitude control problem, reducing the number of tuning pa-
rameters and removing the hypothesis of symmetrical builds and decoupled
dynamics, obtaining the same information as the result of the algorithm it-
self, while achieving good levels of performance.

Future developments

The derived method could be applied to an existing drone platform, where
a suitable reference model is chosen and proven, in a way that a quick ex-
periment can allow for the fast, or even automatic, retuning of the controller
parameters. For instance, it could be applied after an operating condition
change, e.g. a payload introduction, or to account for the ageing of compo-
nents, which cause a degradation of performance over time.

Future developments of this work could focus on the complete formula-
tion of the control laws of the UAV platform, thus including the simultaneous
tuning of the position and velocity feedback loops, which has been carried
out in [16] for the SISO VRFT algorithm.

Finally, the proposed approach has been developed in a multivariable
framework, which might be of little practical interest in UAVs due to inher-
ent symmetry. However, it constitutes an essential intermediate step towards
the application in helicopters attitude control design, for which closed-loop
testing in near hovering conditions could be feasible. This method is still



73

lacking a way to ensure closed-loop stability prior to the actual implemen-
tation, which might be unacceptable for crewed aircraft or even expensive
UAV platforms. The introduction of a constraint on stability should be inves-
tigated.
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Appendix A

Kronecker Product

If A is a m ×n matrix and B is a p × q matrix, then the Kronecker product
A⊗B is the mp ×nq block matrix:

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 . (A.1)

This product, unlike regular matrix product, can be always done, with no
requirements on the order of the two matrices, allowing the operation also
for vectors.

Important properties

1. Bi-linearity and associativity

A⊗ (B +C ) = A⊗B + A⊗B (A.2)

(A+B)⊗C = A⊗C +B ⊗C (A.3)

(k A)⊗B = A⊗ (kB) = k(A⊗B) (A.4)

(A⊗B)⊗C = A⊗ (B ⊗C ). (A.5)

2. Non-commutative: A ⊗B and B ⊗ A are in general different matrices,
however they are permutation equivalent, meaning that there exist
matrices P and Q such that

A⊗B = P (B ⊗ A)Q. (A.6)

If A and B are square matrices, then P =QT .



II Kronecker Product

3. Mixed product

(A⊗B)(C ⊗D) = (AB)⊗ (BD). (A.7)

4. Transpose

(A⊗B)T = AT ⊗B T . (A.8)

5. Spectrum: for square matrices A and B , respectively of order n and m,
it follows that

tr(A⊗B) = trA trB (A.9)

det(A⊗B) = det(A)m det(B)n . (A.10)

Notice that the exponent of det A is the order of B and vice-versa.

6. Inverse: A⊗B is invertible if and only if A and B are invertible, then

(A⊗B)−1 = A−1 ⊗B−1. (A.11)

7. Equivalence: Given AX B = C , with suitable orders to allow for matrix
multiplication, it can be rewritten in the following form

(B T ⊗ A) vec(X ) = vec(AX B) = vec(C ). (A.12)

In the case of two matrices, it can be showed that:

vec(AB) = vec(I AB) = (B T ⊗ I ) vec(A). (A.13)

This property can be exploited to transform a product between a ma-
trix and a vector. Given matrix A and vector b, such that multiplication
is allowed, then

vec(Ab) = Ab = (bT ⊗ I ) vec(A). (A.14)

A.1 PID output in linearised form

It is possible to write the output at time t , u(t ) = u(kTs) where Ts will be
omitted, of the MIMO discrete PID controller of order nu in a linearised form,
based on the current and previous errors e(k),e(k − 1), · · · , which represent
the input of the controller.

u(k) = u(k −1)+
n∑

i=0
Bi e(k − i ) (A.15)

= u(k −1)+B0e(k)+B1e(k −1)+·· ·+Bne(k −n). (A.16)



A.1 PID output in linearised form III

The Kronecker transformation equivalence property (A.14) will be used to
transform the product Bi e(k−i ):

Bi e(k − i ) = vec(Bi e(k − i )) = (
e(k − i )T ⊗ I

)
vec(Bi ). (A.17)

It is possible to write the summation that define the controller output:

n∑
i=0

Bi e(k − i ) = [
e(k)T ⊗ I , · · · ,e(k −n)T ⊗ I

]
vec

(
[B0, · · · ,Bn]

)
=ϕ(k)Tθ,

(A.18)

where:

θ = vec
(
[B0, · · ·Bn]

)
(A.19)

ϕ(k) = [
e(k)T ⊗ I , · · · ,e(k −n)T ⊗ I

]T
. (A.20)

The structure of the Bi matrices can be specialized for a given PID struc-
ture and discretisation form. The case of the parallel MIMO PID discretised
using Backward Euler’s integration will be carried out:

U (s) =
(
Kp +Ki

1

s
+Kd s

)
E(s) (A.21)

u(k) =
(
Kp +Ki

zTs

z −1
+Kd

z −1

zTs

)
e(k). (A.22)

After manipulating the above equation, it yields:

u(k) = u(k −1)+
(
Kp +Ki Ts +Kd

1

Ts

)
e(k) (A.23)

−
(
Kp +Kd

2

Ts

)
e(k −1) (A.24)

+Kd
1

Ts
e(k −2). (A.25)

By comparing Equation (A.15) and the above, the structure of Bi can be ob-
tained, as in Equation (A.19). This, in turn, allows the computation of the
regressor ϕ(k), used for the MIMO implementation of the VRFT algorithm,
as shown in Chapter 3.

B0 =
(
Kp +Ki Ts +Kd

1

Ts

)
(A.26)

B1 =−
(
Kp +Kd

2

Ts

)
(A.27)

B2 = Kd
1

Ts
. (A.28)



IV Kronecker Product

The obtained structure can be further extended for an unconventional
PID configuration, such that the derivative action is based on the output
dynamic, instead of the error, and a feed-forward action of the setpoint is
present, as seen in Section 2.2.1:

u(k) = u(k −1)+
n∑

i=0
Bi e(k − i )+

m∑
j=0

M j y(k − j )+
q∑

p=0
Np r (k −p). (A.29)

The regressor form of this architecture is now derived:

u(k) =
[

Kp +Ki
zTs

z −1

]
e(k)+Kd

z −1

zTs
y(k)+K f f r (k). (A.30)

An intermediate step is carried out to simplify the notation. The integral con-
tribution term is split by defining a fictitious input eF (t ):

ui (k) = Ki
zTs

z −1
e(k) = Ki Ts

z

z −1
e(k) = Ki TseF (k). (A.31)

It follows that:

u(k) = Kp e(k)+Ki TseF (k)+Kd
z −1

zTs
y(k)+K f f r (k) (A.32)

u(k +1) = Kp e(k +1)+Ki TseF (k +1)+Kd
1

Ts
(z −1)y(k)+K f f r (k +1).

(A.33)

By exploiting the shift invariance and by subtracting the input at the previous
tep u(k −1), it yields:

u(k) = u(k −1)+Kp
[
e(k)−e(k −1)

]+ (A.34)

+Ki Ts
[
eF (k)−eF (k −1)

]+ (A.35)

+Kd
1

Ts

[
y(k)−2y(k −1)+ y(k −2)

]+ (A.36)

+K f f
[
r (k)− r (k −1)

]
. (A.37)

This form is convenient as the final regressor form can be manipulated to
directly obtain the parameters of interest:

ϕ(k)T = [
(e(k)−e(k −1))T ⊗ I , (A.38)

(eF (k)−eF (k −1))T ⊗ I ,(
y(k)−2y(k −1)+ y(k −2)

)T ⊗ I ,

(r (k)− r (k −1))T ⊗ I
]

θ = vec
([

Kp ,Ki Ts ,Kd /Ts ,K f f
])

. (A.39)

One final step is to scale back the estimates for Ki and Kd by multiplying or
diving for the sample time Ts .
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