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Sommario

Lo scopo di questo lavoro è proporre un modello di potenziali elastici di defor-
mazione per cristalli bidimensionali con l’obiettivo di prevedere fenomeni elasto-
plastici così come trasformazioni di fase martensitica sia di tipo ricostruttivo che
distorsivo. In particolare, poichè l’effetto memoria di forma si manifesta nell’ambito
delle trasformazioni di fase di quest’ultimo tipo, uno dei modelli proposti è adatto
a predirne l’insorgere.
Sono proposti modelli di tipo variazionale non lineare di energie di deformazione
invarianti rispetto all’azione del gruppo di simmetria globale GL(2,Z). Queste
funzioni sono concepite tramite la teoria classica delle forme modulari sul semipiano
di Poincaré, che appare come l’ambiente più opportuno dove costruire densità
di energia che esibiscano l’invarianza tipica dei reticoli cristallini bidimensionali.
Il lavoro si conclude con la validazione numerica di tali modelli teorici tramite
l’implementazione di un codice a elementi finiti.
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Abstract

The purpose of this work is modelling a class of strain energy functions for
two-dimensional crystals in order to predict elasto-plasticity phenomena together
with martensitc phase transitions both of the reconstructive and weak type, with
the particular intention of forecasting the manifestation of shape-memory effect.
It proposes nonlinear variational models consisting of strain energies invariant
under the global symmetry group GL(2,Z). These functions are conceived by
exploiting the classical theory of modular forms on the Poincaré half-plane, which
appears as a the suitable framework to construct energy densities exhibiting the
correct invariance of two-dimensional lattices. Finally, the work comprehends the
numerical validation of the theoretical proposals through the implementation of a
finite-elements code.

x



Introduction

Crystalline solids provide an archetypal example of how microscopic symmetry
may influence and even determine the material response of macroscopic systems.
The ordered richness of their microstructure can be transparently represented by a
lattice and it enables the material to display bizarre phenomena as the shape-memory
effect or superelasticity. Both these effects exhibit in the context of martensitic
phase tranformations. Theselatter are solid to solid transformations which imply
cooling the crystal down from some high temperature very rapidly. The abrupt
change in temperature prevents the atoms to diffuse and allows for a new distorted
microstructure to generate.
Martensitic phase tranformations can be reversible under certain hypotheses; in
this case the new martensite microstructure disappears upon reheating and the
inital austenite phase is recovered. Reversibility is precisely what connotes the
behavior of Nitinol as other smart alloys which preserve the memory of their original
underformed shape and retrieve it when suitably heated. These alloys are known
as shape-memory alloys (SMA).
Figure 1 on page 3 schematically illustrates the response of these alloys upon
temperature variations and deformation. The material is initially in the austenite
phase (a); as it is cooled, the phase transformation happens and austenite turns into
martensite (b). However this tranformation occurs with no macroscopic change in
shape. Such a distinctive event, which takes the name of self-accommodation, finds
explanation in the crystallographic symmetry differences of the lattices underlying
the two phases. Since, by defintion, austenite phase has a greater symmetry than
martensite phase, during the transformation it encounters the possibility to trans-
mute into multiple symmetry-related variants of martensite. Different regions of the
crystal tranform to different variants; the coherent mixture of the variants precisely
allows for the absence of a net change in shape. The material then reacts to the
following deformation by rearranging the variants and preserving their symmetry
rather than distorting the lattice. Indeed, as the variants are symmetry-related
they have the same strain energy (this concept will be clarified in the first chapter)
while distorsion would imply an energy cost. As a further consequence we also
obtain that when the load is released the confuguration (c) is preserved as it did
not imply any change in energy from (b). Finally, there being a unique variant of
austenite, each variant of martensite transforms back to austenite upon reheating
and the original initial configuration in (a) is recovered as if the material drew
directly from the memory shielded during the process.
Most shape-memory alloys manifest the ability to recover large strains also under
isothermal conditions; this phenomenon is known as superelasticity or pseudoelas-
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2 Introduction

ticity. Figure 2 on the next page displays the associated stress-strain hysteresis due
to the loading-unloading process. The material is now completely in its austenitic
state as the temperature is kept constant above the martensitic transformation
value. When a mechanical load is applied, the material initially undertakes an
elastic behavior (segment OA) until it appereantly yields and undergoes a large
deformation (AB). However, we must speak about apparent yield because the
segment AB in fact represents a process of tranformation from austenite to stress-
induced martensite, which is triggered when reaching a critical load. After a certain
amount of deformation, the material recovers an elastic behavior (segment BC),
which coincides with the elastic response of the now-martensite phase. At last,
after releasing the load, the martensite phase being unstable at the considered
temperature the deformation is completely reabsorbed.
On the other hand, irreversible martensitic phase tranformations imply abandoning
elasticity and exploring the plastic domain, which characterizes the more common
industrial process of quenching exploited to harden steel for instance.
The difference in reversibility can be explained in light of the simmetry properties
of the lattice underlying the crystalline material. In a reversible tranformation the
symmetry group of the initial austenitic phase and the final martensitic phase are
included in a common finite symmetry group; this implies a symmetry-breaking
process which takes the name of weak martensitic phase tranformation. This group-
subgroup relation allows to restrict the domain of the energy of the transformation
to a neighbourhood of the reference configuration. This neighbourhood does not
contain arbitrarly large deformations, hence the tranformation occurs with no
plasticity.
When this hypothesis does not hold we label the transformation as reconstructive:
we cannot single out a similar neighbourhood hence the material experiences un-
bounded distorsions which create defects in the lattice that make the transformation
irreversible.
In this thesis we investigate the modelling of martensitic phase transformations
both of the weak and reconstructive type through general classes of strain-energy
functions obeying the symmetries of the two-dimensional crystal lattices. These
functions are conceived within the framework of the classical theory of modular
forms on the Poincaré half-plane.
The germ of this approach is due to Parry (1998). On the one hand he devised an
injection between the strain space and the Poincaré half-plane, which fully warrants
the use of this space as the domain of the strain energy functions. Furthermore,
the Dedekind Tessellation of this domain proves to be a limpid representation of
the constraints imposed by the symmetry of two-dimensional lattices on the energy
landscape.
On the other hand, he first suggests exploiting modular functions in order to con-
struct a class of strain energies obeying these constraints. The most representative
among modular functions is the Klein’s Invariant J, which after some manipula-
tions emerges as to be the essential building brick to conceive proper potentials.
Even though Parry conceived the original and blooming intuition, the final explicit
expressions of the energies were never provided.
This thesis adopts the mentioned approach by retracing the necessary manipulations
to obtain an explicit class of strain energy functions characterized in such a manner;
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Figure 1: The shape-memory effect. Here an exemplifying piece of wire in Nitinol
recovers the deformation to which it was subjected while cold upon reheating.
In (a) it is represented the initial austenite phase. In (b) we can observe
the multiple symmetry-related variants of martensite that rearrange after the
deformation (c). No net change in shape has occurred between (a) and (b).
Taken from Battacharaya (2004)

Figure 2: The superelastic stress-strain curve. Taken from Battacharaya (2004)

this path was mainly travelled by E.Arbib in his Master’s Thesis "Modular order
parameters in non linear elasticity" (2016). The main purpose of our work is to
exploit this class of functions in order to model martensitic phase transformations.
We present the precise outline of the work in the following lines.

Outline

The thesis follows this structure:

In the first chapter we retrace the theoretical path to obtain a general class of
energy densities exhibiting the correct invariance of two dimensional lattices.
This path was defined in the work done by E. Arbib in his Master’s Thesis
"Modular order parameters in non linear elasticity" (2016).

In the second chapter we exhibit and analyze an explicit expression of a strain-
energy function modelling reconstructive martensitic phase transformations.
This chapter together with the third one represents the original theoretical
contribution of this work.
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In the third chapter we tackle the modelling of weak martensitic phase tranfor-
mations. In particular, we propose an explicit expression of an energy density
devised to predict shape-memory effect and superelastic behavior.

In the fourth chapter we discuss the results of the numerical analysis on the
potential devised in the second chapter. In particular, we explore the pre-
dictions of this model on the behavior of a two-dimensional crystalline body
undergoing plastic deformations. This chapter contains the original numerical
results of the work.



Chapter 1

Modular order parameters in non
Linear crystal elasticity

In this chapter we mainly travel through the work done up to the present around
the possibility of exploiting modular forms in order to devise strain energy functions.
Parry (1998) first proposes this strategy, after suitably identifying the strains space
with the Poincaré half-plane H. His thought and line of research are used by E.
Arbib in his Master’s thesis "Modular order parameters in non linear elasticity"
(2016). His work represents the point of departure of this work, by rendering
a general class of strain energy functions for planar crystals. These potentials
are devised through the classical theory of modular forms on the Poincaré half-
plane, which provides a complete conceptual framework to obtain energy densities
exhibiting the correct invariance of two-dimensional lattices. This thesis’ work
spontaneously stems from that of Arbib with the intent to exploit this class of
functions in order to model both reconstructive and weak phase tranformations,
especially aiming at portraying the behavior of shape-memory alloys.
In the first section we recreate the theoretical skeleton to build such potentials,
while the second section discloses the essential steps that finally bring to the explicit
forms of the strain energy functions.

1.1 Continuum theory of crystalline solids

This section is devoted to develop a continuum theory of crystalline solids, which
demands to contemplate the presence of the realm of lattices at the microscopic
level.
Subsection (1.1.1) covers a review of lattices and their symmetry. Then we introduce
the classical action of the group GL(2,Z) on the space of lattice metrics, which
also provides a classification of planar simple lattices. Afterwards it is given a
fundamental domain for this action. Finally, by introducing the "Ericksen-Pitteri
Neighborhoods" it is possible to quantitatively differentiate weak and reconstructive
martensitic transformations. Some representative examples of phase tranformations
are presented in the final part of the subsection.
In subsection (1.1.2) we introduce the link between the lattices and the continumm
by using the Cauchy-Born hypothesis, which allows for the formulation of the strain
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6 Chapter 1. Modular order parameters in non Linear crystal elasticity

energy function in terms of the lattice metric. In this subsection we discuss the
properties that the energy must satisfy. Finally, it is presented an explicit expression
for the volumetric part of the energy.
The whole section draws heavily from the work of Parry (1998), Battacharya (2004),
Conti, Zanzotto (2004), Pitteri, Zanzotto (2001) and Arbib (2016).

1.1.1 Crystallography of 2D simple lattices

A 2D simple lattice is an infinite and discrete subset of R2, given by

L(ei) =
{
x = viei vi ∈ Z, i = 1, 2

}
(1.1)

where the sum over repeated indices is understood. The independent vectors
{e1, e2} are the lattice basis.
We define the metric C of the lattice basis {ei} to be the 2 × 2 symmetric and
positive-definite matrix with components

Cij = ei · ej (1.2)

where symmetry is a direct consequence of scalar product symmetry while the
relation ‖v‖2 = v.Cv where v = v1e1+v2e2 proves the metric to be positive-definite.
All lattice metrics can be collected in the space Sym+(R2) of positive-definite
symmetric 2 × 2 matrices. Sym+(R2) is a 3D cone, defined by the conditions
C11 > 0 and C2

12 < C11C22, within the space R3 with coordinates C11, C12, C22.
Given a 2D simple lattice, the basis and the metric that generate it are not uniquely
determined. Two bases {e1, e2} and {f1, f2} generate the same lattice if and only if

ẽj = mijei m = (mij) ∈ GL(2,Z) (1.3)

where GL(2,Z) is the group of 2× 2 invertible matrices with integral entries and
determinant ±1. Hence GL(2,Z) is the "global symmetry group" of 2D simple
lattices, because each lattice determines its bases up to a tranformation in this
group. The action (1.3) of this group reflects on the metrics of the associated bases
through this relation

C̃ = mTCm (1.4)

Hence (2.4) naturally defines the action of GL(2,Z) on Sym+(R2).
If C is the metric associated to the basis {ei}, we can identify the finite subgroup
of GL(2,Z) collecting the matrices m which leave the metric invariant under the
action (1.4)

L(ei) = {m ∈ GL(2,Z) : mijei = Qej,Q ∈ O(2)}{
m ∈ GL(2,Z) : C = mTCm

}
= L(C).

(1.5)

L(ei) is called "lattice group" or "arithmetic holohedry" and it gives the integral
representation of the elements of the point-group symmetry of the corresponding
lattice. This latter is the set of rotations that map the lattice back to itself.
The change of basis (1.3) for the same lattice transforms the lattice group through
the conjugacy relation in GL(2,Z):

L(mjiej) = m−1L(ei) m ∀m ∈ GL(2,Z). (1.6)
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Therefore a given lattice L(ei) determines an entire conjugacy class of lattice groups
in GL(2,Z). Furthermore, an orthogonal transformation does not change the lattice
group:

L(Qei) = L(ei) if Q ∈ O(2). (1.7)

In light of (1.5) and (1.6) we can define a classification criterium for 2D simple
lattices: two lattices L(ei) and L(e′i) are said to have the same "Bravais type" if

L(e′i) = m−1L(ei)m for some m ∈ GL(2,Z) (1.8)

i.e. they are associated to the same conjugacy class in GL(2,Z). Analogously,
we can subdivide the cone Sym+(R2) of lattice metrics. A classical result in 2D
yields five Bravais types in Sym+(R2) denominated oblique, rectangular, rhombic,
hexagonal andsquare.
Through the notion of a lattice group, we can give a precise definition of recon-
structive tranformations. The definition of weak tranformations will be discussed
later because it requires further notions. Consider a linear map T that defines a
tranformation of a lattice L(ei) onto the lattice L(fi), whose basis vectors is fi = Tei.
The tranformation T is said to be reconstructive when the group generated by
the union of the lattice groups of the initial and final bases, i.e. L(ei) ∪ L(fi),
in GL(2,Z) is infinite. Notice that this definition does not depend on the choice
of the lattice basis, because the basis change also reflects on the target lattice:
ẽj = mijei is mapped by T onto f̃j = mijfi. Then each of the lattice groups change
by conjugacy by (1.6). Hence the cardinality of the generated group is still infinity:

L(ẽi) ∪ L(f̃i) = m−1 (L(ei) ∪ L(fi))m (1.9)

We now define a fundamental domain for the action (1.4) to be a subset of Sym+(R2)
such that each GL(2,Z) orbit (that is, each Bravais lattice) in Sym+(R2) has one
and only one element in that subset. A simply connected fundamental domain in
2D is given by

D =

{
C ∈ Sym+(R2), 0 < C11 ≤ C22, 0 ≤ C12 ≤

C11

2

}
. (1.10)

The fundamental domain D is subdivided into six connected subsets, which are
obtained for five lattice types (see Fig. 1.1 on the following page and Fig. 1.2 on
page 9). Indeed, the rhombic lattice type is itself partitioned into two connected
subparts, one for "skinny" rhombi where one between the two diagonals is shorther
than the side and one for "fat" rhombi whose diagonals are both longer than the
side. The fundamental domain D together with its symmetry-related copies mTDm,
where m ∈ GL(2,Z), upholster the entire space Sym+(R2).

We now want to properly define weak tranformations, as we did for reconstructive
tranformations. The action (1.4) of the group GL(2,Z) on the space of lattice
metrics Sym+(R2) describes the global symmetry of planar lattices. This group
includes both rotations and large shears comparable to plastic deformation and
slip. However, alloys tipically exhibiting the shape-memory effect show very little
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Figure 1.1: The five Bravais types of 2D simple lattices, their intersection with the
fundamental domain D, with the corresponding lattice groups (only one
element of the pair (m,−m) is tabulated). Taken from Conti, Zanzotto
(2004).
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Figure 1.2: The two-dimensional intersection of the fundamental domanin D in (1.10)
with the plane C11 + C22 = 1 (metrics with trace 1), projected on the plane
(C11, C12). Taken from Conti, Zanzotto (2004).

plastic deformation and slip. Hence, when modeling weak tranformations, whose
a particular manifestation is precisely shape-memory effect, we seek to construct
a theory where we consider deformations of the lattice large enough to include
elastic deformations, but sufficiently moderate to exclude lattice shears associated
with slip and plasticity. Within suitable so-called "Ericksen-Pitteri neighborhoods"
(EPNs) in Sym+(R2) we have to precisely consider action and invariance only by
appropriate lattice subgroups of GL(2,Z).
Given any lattice metric C0, an open neighborhood N of C0 in Sym+(R2) is an
EPN if the following properties hold

1. ∀m ∈ L(C0), C implies mTCm ∈ N or, equivalently, mTNm = N ∀m ∈
L(C0)

2. if for some m ∈ GL(2,Z) there is C ∈ N such that mTCm ∈ N , then
m ∈ L(C0) or, equivalently, mTNm ∩N = ∀m ∈ GL(2,Z) \ L(C0)

Every C0 ∈ Sym+(R2) has a nonempty EPN. This set includes distorsions that
break the symmetry of the lattice: the second property guarantees that, given a
EPN NC0 associated to the metric C0, any C is mapped outside NC0 if m does not
belong to L(C0). Hence, the symmetry does not increase in NC0 . Finally, the EPNs
allow to formalize the notion of a weak tranformation as a phase change completely
taking place within one such neighboord. The metrics of the initial, final, and any
intermediate states belong to a single EPN, thus their symmetry groups are all
included in the symmetry group of the neighboord’s center. In particular shape
memory effect requires a further specification, i.e. an austenite whose symmetry is
cubic and consequently a martensite whose symmetry is a subgroup of the cubic.
However our vocabulary being two-dimensional as well as our context, if we choose
the austenite to be represented by a square lattice then the martensite exhibits at
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most either a rectangular, rhombic or oblique symmetry.
In order to obtain an explicit criterium to differentiate between reconstructive and
weak tranformations, we want to give a quantitative determination of EPNs. We
report a result taken from Conti, Zanzotto (2004), which describes the construction
of maximal EPNs starting from a given "good enough" fundamental domain.
Maximal EPNs are EPNs not strictly contained in any other open EPN.
Given a fundamental domain D whose boundary as measure zero (as (1.10)) and a
fixed metric C0 ∈ D, let

Ω =
{
mTC m : m ∈ L(C0),C ∈ D

}
. (1.11)

Then, the inner part Ω0 of the set Ω is a maximal EPN of C0.
Definition (1.11) implies constructing Ω by taking each metric in the fundamental
domain and applying to it a tranformation that appears as a rotation when applied
to the central metric C0.
Given this definition, every orbit has at least one representative element in the
closure of the maximal EPN Ω0. This representative element is in general not
unique, as each orbit in Sym+(R2) must have as many elements in an EPN N (C0)
as it is dictated by the local symmetry given the lattice group of the central metric
L(C0). However, not every orbit can have a representative in Ω0. This is the
case, for instance, of the hexagonal lattices orbit when C0 has a square symmetry:
as square and hexagonal metrics have symmetry groups with no finite common
supergroup, the hexagonal lattice lies on the boundary of Ω, which is not included
in Ω0.
We now want give some explicit examples of maximal EPNs in 2D, always con-
sidering as reference Conti, Zanzotto (2004). In order to do that we repre-
sent any C ∈ Sym+(R2) by means of the three coordinates C11, C12, C22, with
Cii > 0, C2

12 < C11C22. Then, considering only the metrics with trace 1 (i.e. the
section of the cone Sym+(R2) on the plane C11 +C22 = 1, given through coordinates
C11 and C12 ,0 < C11 < 1 and |C12| < C

1/2
11 (1 − C11)

1/2) amounts to giving each
element of Sym+(R2) up to a rescaling. On this plane, the trace of the fundamental
domain D in (1.10) has a particularly simple form: it is the triangle with vertices
S = (1/2, 0), H+ = (1/2, 1/4) and (0, 0), this latter not being included in D (see
Fig. 1.2 on the preceding page). The trace of Sym+(R2) on the plane C11 +C22 = 1
is covered by copies of D by means of the action (1.4)(see Fig. 1.3 on page 12).
Given this representation, we can describe some examples of maximal EPNs on
Sym+(R2). A maximal EPN for the square metric S = (1/2, 0) is the open rhombus
centered on S, composed by the four copies of D obtained through the action of the
lattice group L(S) on D; there are two distinct hexagonal metrics on the boundary
as Fig. 1.4 on page 12 shows. On the other hand, considering as a central metric
C0 the hexagonal metric H+ = (1/2, 1/4) a maximal EPN is an open triangle
containing six copies of D, with three distinct square metrics on its boundary. For
the least symmetrical oblique metric a maximal EPN coincides with the inner part
of the appropriate copy of D, as its lattice group contains just the identity tensor;
for a rhombic or rectangular metric, a maximal EPN is composed by two copies of
D whose common boundary contains the given metric.
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This picture yields the proper theoretical framework to characterize the differ-
ences between weak or symmetry-breaking phase tranformations and reconstructive
phase tranformations.
Let us consider the instructive exampe of a weak square-to-rhombic transition: this
involves the parent square metric S = (1/2, 0) and two product rhombic metrics
R± = (1/2,±r) with 0 < r < 1/4 where the choices ± indicate the two rhombic
metrics belonging to an EPN of S. These rhombic metrics play the role of two
"variants" of martensite that are obtained when rotating the greater symmetry
lattice, austenite, through a rotation in its lattice group (in this case L(S)) and
then tranforming it. In the homogeneous configuration with metric S the basis
vectors of the lattice are orthogonal: r = e1 · e2 = 0; when the lattice is tranformed
to one of the configurations R±, the implied distorsion breaks the orthogonality
relation r = 0, but leaves the basis vectors of equal length. This tranformation is
weak precisely because, for not too large r, the metrics involved do not exit from the
maximal EPN of S (we speak about "twinning" when the deformation is piecewise
homogeneous and it implies generating a configuration involving both the variants
R±). When the system is forced to tranform back to the square phase, which plays
the role of austenite, we expect it to go back to the metric S, because moving in the
direction of any other square metric is energetically not convenient as these are "far
away" from (that is, they are not in any EPN containing) the metrics S,R±. Hence,
there is one and only one variant of austenite. This reasoning is the basis of the
mathematical theory which models reversible phase changes, whose manifestation is
the shape-memory effect. Shape-memory alloys tipically exhibts twinning planes of
martensite crystals in their so-called "self-accomodated" structure, as the literature
quoted in the introduction of this chapter extensively explains.
On the other hand, a failure of the assumption about the existence of a unique vari-
ant of austenite leads to an infinite variants of both austenite and martensite, as the
next example proves. Let us suppose that the homogeneous lattice configuration is
tranformed from S to one or both variants H+ = (1/2,±r), with r = 1/4; the strain
is in this case so large that the deformed system with metric H+ has actually gained
full hexagonal symmetry. This is precisely the phenomenology of reconstructive
tranformation (which cannot be weak because the metrics S,H± cannot all belong
to a single EPN). Also in this case there can be twinning and the formation of a
microstructure in the tranformed lattice if this latter involves both the variant H+

and H−. However, when tranforming back to the square phase, neglecting elastic
interations the cells, in the configuration H+ have in principle equal chances of going
to any of the three neighboring square metricsS1 = S = (1/2, 0), S2 = (1/3, 1/3)
or S3 = (2/3, 1/3); likewise for H−. After a tranformation cycling the sample can
thus be found to have an underlying lattice corresponding to four square metrics
different from S1. This generates defects which can be either localized (interstitials,
vacancies) or long range (dislocations), making the reconstructive phase changes
irreversible.
Both tranformations will be explicitely modelled in the next chapters.
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Figure 1.3: Section of the space Sym+(R2) on the plane C11 + C22 = 1. The GL(2,Z)-
related copies of D in Fig. 1.2 on page 9 fill Sym+(R2). The full squares and
empty hexagons indicate a few metrics with square and hexagonal symmetry,
respectively. The dotted lines represent the rectangular metrics, the solid
lines the rhombic metrics. The dense open set of the other points represents
the generic oblique lattice metrics. Taken from Conti, Zanzotto (2004).

Figure 1.4: Examples of maximal EPNs on Sym+(R2), indicated as hatched areas for a
square-lattice metric on the left and for an hexagonal-lattice metric on the
right. Taken from Conti, Zanzotto (2004).
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1.1.2 Lattice-Continuum link: Energy density in crystalline
solids

The objective of this part is to link the lattice picture to the continuum picture,
in order to list the properties that the any class of energy densities for crystalline
solids should respect. These properties are the driving forces that led to formulate
the energetic model which will be presented in the next section, hence it is essential
to present them.
First and foremost we review the Cauchy-Born hypothesis, which dictates how the
deformation of lattice relates to the continuum body. Consider a crystalline body in
a 2D setting that occupies a region Ω in the reference configuration. Let us assume
that at each point x ∈ Ω there is a 2D simple lattice with lattice vectors {eo

i (x)}.
Now deform the body with some deformation y(x) such that the deformation
gradient is F(x). The Cauchy-Born hypothesis states that the lattice follows the
overall strain of the medium, hence the lattice vectors {eo

i (x)} also deform according
to the deformation gradient:

ei(x) = F(x) eo
i (x). (1.12)

Since we choose with homogeneous reference configurations, {eo
i } is independent of

x.
This hypothesis provides the crucial linkage between macroscopic and microscopic
world that alllows to formulate the energy density in terms of the lattice metric C.
The energy density is a function that depends on the the deformation gradient F and
possibly on external parameters, such as the temperature ϑ, since it describes the
stored energy density related to the deformation at a certain temperature. In general,
it needs to satisfy two properties. The first one is known as frame-indifference and
it requires that a rigid body rotation or a change of the observer does not change
the energy:

σ(QF, ϑ) = σ(F, ϑ) ∀ϑ ∈ R+ ∀ rotationQ. (1.13)

This property can be directly expressed by changing the dependence of the energy
through the tensor C = FTF = CT > 0. This tensor is known as right Cauchy-Green
deformation tensor and it is rotation-indipendent. Indeed C = U2 where U is the
positive-definite symmetric right stretch tensor that stems from the polar de-
composition of F = R U (R is a orthogonal rotation tensor, which is excluded
from C). Hence the strain energy can be defined as a function σ = σ(C, ϑ) :
Sym+(R2)×R+ → R . If we define the lattice metric associated with the current
configuration Cij = ei · ej, the Cauchy-Born hypothesis yields:

Cij = Feoi · Feoj = eoi FTF eoj = (FTF)ij. (1.14)

Equation (1.14) transparently displays that the energy can be interpreted to be
dependent on the lattice metric because of the invariance with respect to galilean
tranformations. Also, the lattice metric represents the right Cauchy-Green strain
tensor in terms of the basis of the reference configuration provided that it is a
orthonormal basis.
The second property that the energy must respect is material symmetry, which
states that the free energy density does not depend on the choice of lattice vectors,
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as long as they orginate equivalent lattices. In other words, this state function
ought to identify the different basis representation of the same lattice. We can
express this invariance in terms of metrics by the action (1.4):

σ(C, ϑ) = σ(mTCm, ϑ) ∀ϑ ∈ R+ ∀C ∈ Sym+(R2), ∀m ∈ GL(2,Z). (1.15)

Conventionally the strain energy is split into a convex volumetric part σv penalizing
the departure of detC from 1, plus a distortive term σd, which depends on the
unimodular strain C̄ = (detC)−1/2C:

σ(C, ϑ) = σv(detC, ϑ) + σd(
C√
detC

, ϑ). (1.16)

Notice that the volumetric part of the energy already satisfies (1.15), because det
C retains automatically the required invariance property. For the volumetric part
of the energy,we adopt an expression ensuring an infinite energy penalty both to
unbounded expansions and to increasing compressions. Temporarily neglecting the
thermal effects, the volumetric part is

σv(detC) = ν (detC− log (detC)) (1.17)

where ν is a positive coefficient. Expression (1.17) is suitable first and foremost
because it has a unique minimum for det C = 1. On the other hand, deformations
involving det C = 0 are hindered because σv would diverge supporting the physical
intuition. However, in most applications det C remains close to 1 hence we settle
for an alternative expression σv(detC) = ν(detC− 1)2.
We can easily incorporate the effect of the temperature in (1.17), which indulges
volume expansion:

σv(detC, ϑ) = ν

(
detC− α ϑ

ϑ0

log (detC)

)
. (1.18)

where α labels the volumetric thermal expansion coefficient. Expression (1.18) finds
its minimum at det C = α ϑ

ϑ0
, which is an increasing function of the temperature as

required.
Next sections are devoted to the discussion of a general class of functions for the
distorsive part.

1.2 A class of strain energy functions for 2D crys-
talline materials

The second section of this chapter is devoted to constructing of a class of strain
energy functions that exploits the classical theory of modular forms on the Poincaré
half-plane.
The first subsection tackles the problem of changing the setting for the distorsive
part of the energy (see (1.16)) to the Poincaré half-plane H, which parametrizes
the strain space because of the existing relation between H and the space of
metrics Sym+(R2). It is then investigated the action of GL(2,Z) on H, for which
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it is necessary to introduce the Mobius tranformations. The Dedekind tessellation
candidly translates the action of GL(2,Z) on H by covering it with mutually
congruent copies of the fundamental domain. This new approach is due to Parry
(1998), from which subsection (1.2.1) draws.
The follwing subsections (1.2.2) and (1.2.3) mainly summarize the original work
done by E. Arbib in his Master’s thesis "Modular order parameters in non-linear
elasticity" (2016). First, it is introduced the class of modular functions, which
suitably responds to most part of the requirements imposed on the strain energy
function. Among these functions, the most representative is Klein’s invariant J.
The subsection unfolds around the implications of choosing J to construct the
energy. Finally subsection (1.2.3) presents the final forms of strain potentials with
a unique minimizer in the fondamental domain D, which are suitable models for
crystal plasticity phenomena.

1.2.1 The parametrization on the Poincaré half-plane H
The Poincaré half-plane H is the subset of C given by

H = {z = x+ i y ∈ C : y > 0} . (1.19)

As the work unfolds, we will analogously call it upper-complex half plane. It is
endowed with the metric tensor [ 1

y2
0

0 1
y2

]
(1.20)

which can be rewritten in the form (ds)2 = ((dx)2 + (dy)2)/y2. (1.20) is the usual
Euclidean metric tensor (the identity tensor) scaled by the positive factor 1/y2,
which tends to infinity when the point approaches the line y = 0. This metric
makes it a model of hyperbolic geometry, since it does not obey Euclid’s parallel
postulate. It can be shown that geodesics are modeled by straight vertical lines
and half-circles whose origin is on the axis y = 0.
Parry (1998) established a surjective correspondance between the cone Sym+(R2)
and the Poincaré half-plane H by associating to any metric C ∈ Sym+(R2) the
complex number

ẑ(C) =
C12

C11

+ i

√
detC

C11

∈ H. (1.21)

The function ẑ(C) is surjective because one can easily check that ẑ(C) = ẑ(C′)
if and only if C and C′ are proportional. In order to make the correspondance
also injective, it is sufficient to reduce the space Sym+(R2) to a two degrees of
freedom space by introducing a further constraint on the space of symmetric and
positive-definite 2× 2 matrices, i.e. det C = 1. This means changing the domain
of ẑ to SPsym+(R2), which precisely denotes the space of symmetric and positive-
definite matrices with unitary determinant. The inverse of (1.21) can be explicitely
computed by associating uniquely to a point z = x + i y ∈ H the metric C ∈
SPsym+(R2) defined by

C =

[
1
y

x/y

x/y (x2+y2)
y

]
. (1.22)
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As (1.4) describes the action of GL(2,Z) on Sym+(R2), hence also on SPsym+(R2),
this action also naturally reflects on H. We first analyze the action of the subgroup
SL(2,Z), which collects the 2 × 2 invertible matrices with integral entries and
positive determinant +1 that describe orientation-preserving elements of GL(2,Z).
Each m ∈ SL(2,Z) induces the following mapping of z ∈ H

Γm(z) =
m22z +m12

m21z +m11

where m11m22 −m12m21 = 1. (1.23)

Since
Im(Γm(z)) =

detm Im(z)

|m21z +m11|2
=

Im(z)

|m21z +m11|2
> 0 (1.24)

Γm maps H to itself. If m ∈ GL(2,Z) \ SL(2,Z), this is not true because det
m = −1. In this latter case, action (1.23) must be modified so that each m ∈
GL(2,Z) \ SL(2,Z) induces the following mapping of z ∈ H:

z 7→ (
m22z +m12

m21z +m11

) =
m22z̄ +m12

m21z̄ +m11

. (1.25)

Action (1.25) can be rewritten as

Γm̃(γ(z)) where γ(z) = −z̄ and m̃ =

[
m11 m12

−m21 −m22

]
. (1.26)

Hence, if we associate to each matrix m ∈ GL(2,Z) the linear fractional tranforma-
tion Γm(z) = (m22z +m12)/(m21z +m11) the action of GL(2,Z) on H is

m(z) =

{
Γm(z) if detm = 1

Γm̃(γ(z)) if detm = −1
. (1.27)

Few words should be spent around the linear tranformations Γm(z). They belong
to the group of Mobius transformations Γ : H → C of the form

Γ(z) =
a z + b

c z + d
(1.28)

where the coefficients a, b, c, d are complex numbers satisfying ad− bc 6= 0. Mobius
tranformations are rational, analytic in H and it can be easily proven that they
are also bijective (see Arbib (2016)). Furthermore, they are confomal map on H,
endowed with the metric (ds)2 = ((dx)2 + (dy)2)/y2. If coefficients are integer, we
speak about unimodular group; unimodular transformations are isometries on H.
They leave the distance between two points in H invariant and they map geodesics
on geodesics.
Thus, action (1.27) generates orbits and fundamental domains on H coherently with
the picture that takes shape on the specular space SPsym+(R2). The Dedekind
tessellation of H is the product of the action (1.27) (see Fig. 1.5 on page 19). This
involves all the GL(2,Z)-related mutually congruent (in the sense of the hyperbolic
metrics) copies of the fundamental domain, which is the strip

F∗ = {z ∈ H : |z| ≥ 1, 0 ≤ Re(z) ≤ 1/2} . (1.29)
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On the other hand, F ∗ ∪ γ(F̊∗) is a fundamental domain in H for the action of
SL(2,Z). Since F∗ and D in (1.10) are in a one-to-one correspondance, we will
indifferently call F∗ as D from now onwards. The points in the interior of D
correspond via (1.21) to metrics with trivial symmetry (oblique metrics), while the
points that lie on the boundary ∂D correspond to metrics possessing nontrivial
symmetries as it follows: rectangular lattices are points on the imaginary axis, while
"fat" and "skinny" rhombic lattices correspond respectively to points z ∈ ∂D such
that |z| = 1 and Re(z) = 1/2. Finally the two maximally symmetric points, which
are associated to a square and hexagonal lattice metric, are the two vertices of ∂D,
respectively z = i and z = 1/2 + i

√
3/2. These can be obtained applying (1.21) to

the metrics at the vertices of (1.10), which are precisely the square metric:

S =

[
1/2 0
0 1/2

]
(1.30)

and the hexagonal metric

H =

[
1/2 1/4
1/4 1/2

]
. (1.31)

All infinitely many copies of each point of the fundamental domain D can be
obtained through a tranformation of the group GL(2,Z). On the other hand,
(1.27) guarantees that any of these transformations can be eventually seen as a
a proper combination of the Mobius tranformation (1.23) associated to a matrix
m ∈ SL(2,Z) and the reflection with respect to the imaginary axis γ(z) = −z̄.
Since the modular group associated to m ∈ SL(2,Z) is generated by the two
tranformations z 7→ −1/z and z 7→ z + 1, by considering these mappings together
with γ(z) = −z̄ we are equipped with whatever it takes to obtain any z ∈ H
from each z ∈ D. For instance, it is worth mentioning that the equivalent square
point z = ζ = 1/2(i + 1) that appears in Fig. 1.5 on page 19 can be obtained
by subsequently applying to z = i those three mappings in the following order:
z 7→ z + 1, γ(z) and finally z 7→ −1/z. On the other hand, the equivalent square
point i+ 1 can be trivially obtained applying z 7→ z + 1 to i.
Since we will heavily draw on the transformations z 7→ z + 1, z 7→ −1/z and
z → γ(z) = −z̄, we ought to specify their physical meaning following the procedure
also reported in Arbib (2016).

Let us consider the following mapping z0 = x0 + i y0 7→ z0 + 1. By setting
this transformation in the space SPsym+(R2) through (1.22) we obtain:[

1
y0

x0
y0

x0
y0

x20+y20
y0

]
7→

[
1
y0

x0+1
y0

x0+1
y0

(x0+1)2+y20
y0

]
. (1.32)

The physical meaning of (1.32) can be extrapolated by interpreting this tranfor-
mation in terms of the deformation gradient F, whose relation with the metric
tensor C is expressed through (1.14). However, C neutralizes the effect of the
rotation hence the deformation gradients associated to the inital and final metrics
of transformation (1.32) are unique up to a rotation. They are:[ 1√

y0

x0√
y0

0
√
y0

]
7→
[ 1√

y0

x0+1√
y0

0
√
y0

]
. (1.33)
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The resulting F can be decomposed as:[ 1√
y0

x0+1√
y0

0
√
y0

]
=

[
1 1

y0

0 1

] [ 1√
y0

x0√
y0

0
√
y0

]
(1.34)

This expression transparenly shows that z0 7→ z0 + 1 can be interpreted as a simple
shear F = I + 1/y0i1 ⊗ i2 applied to a reference configuration whose deformation
gradient F0 is the second one on the right-hand side of (1.34).

Let us consider the mapping living in H z0 = x0 + i y0 7→ −1/z0 = −x0/(x
2
0 + y2

0) +
iy0/(x

2
0 + y2

0). This reflects on SPsym+(R2) thorugh (1.22) in the following way:[
1
y0

x0
y0

x0
y0

x20+y20
y0

]
7→

[
x20
y0

+ 1 −x0
y0

−x0
y0

1
y0

]
. (1.35)

The associated deformation gradients are:[ 1√
y0

x0√
y0

0
√
y0

]
7→
[ x0√

y0
− 1√

y0√
y0 0

]
. (1.36)

The final matrix can be decomposed as:[ x0√
y0
− 1√

y0√
y0 0

]
=

[ 1√
y0

x0√
y0

0
√
y0

] [
0 −1
1 0

]
. (1.37)

Hence the tranformation corresponds to a π/2-prerotation as it precedes F0 (which
is now the first matrix on the right-hand side of (1.37).

Finally it can be proven through an analogous computation that the mapping
z0 7→ γ(z0) corresponds to a reflection with respect to the horizontal axis x which
precedes F0.

1.2.2 Modular functions: The Klein Invariant J

The previous discussion allows to set the construction of an explicit expression
for the distorsive part of the strain energy function (see expression (1.16)) in a
new domain, which is precisely the Poincaré half-plane H, in light of the existing
bijective relation with the space of metrics SPsym+(R2). Hence H now parametrizes
the strain space and the Dedekind tessellation transparently displays the constraints
imposed by simmetry on the material’s energy landscape. As a consequence, it
emerges that potentials for 2D crystalline materials are closely related to the classical
modular functions as follows.
First, by exploting bijection (1.21) we rigorously reformulate σd(C̄, ϑ); we think of
it as a function ϕ : H× R+ → R such that

ϕ(z, ϑ) := σd(C̄, ϑ),where z = ẑ(C̄) =
1

C̄11

(C̄12 + i). (1.38)

While the property of frame-indifference is intrinsically satisfied by expressing the
energy in terms of the lattice metric (this dependence translates now into the
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Figure 1.5: The Dedekind tessellation of a portion of the Poincaré half-planeH generated
by the action of the group GL(2,Z). Three equivalent square points (i,i+ 1,
and ζ = 1

2(i+ 1)), and one hexagonal point (ρ = eiπ/3 = 1/2(1 +
√

3)) are
indicated.

dependence on z ∈ H), GL(2,Z)-invariance property (material symmetry) must be
revised through (1.27) as{

ϕ(z, ϑ) = ϕ(Γm(z), ϑ) ∀m ∈ SL(2,Z),∀z ∈ H,∀ϑ ∈ R+

ϕ(z, ϑ) = ϕ(Γm̃(γ(z)), ϑ) ∀m ∈ GL(2,Z) \ SL(2,Z),∀z ∈ H,∀ϑ ∈ R+
.

(1.39)
Since det m̃ = 1, the second requirement in (1.39) can be equivalently seen as
the composition of a orientation-preserving tranformation and the function γ(z).
Hence, (1.39) can be rewritten as{

ϕ(z, ϑ) = ϕ(Γm(z), ϑ) ∀m ∈ SL(2,Z),∀z ∈ H,∀ϑ ∈ R+

ϕ(z, ϑ) = ϕ(γ(z), ϑ) ∀z ∈ H,∀ϑ ∈ R+
. (1.40)

There exists a class of complex-valued functions on the upper half-plane H that
precisely serves the first purpose of (1.40), i.e. SL(2,Z)-invariance, known as
modular functions. These functions are classified stemming from their behavior
at infinity. Thus, a further reformulation occurs: Φ(K(z), ϑ) := ϕ(z, ϑ) where
Φ : C × R+ → R and K : H → C is a complex-valued operator on the Poincaré
half-plane H Γ-invariant

K(z) = K(Γm(z)) ∀m ∈ SL(2,Z). (1.41)

The second requirement in (1.40) will be discussed later.
Besides the already mentioned properties, the strain energy function has to satisfy
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a list of further hypotheses in order to be mathematically and physically consistent.
These properties are imparted on the operator K through which the energy is
constructed. We now want to list them for good in order to properly justify any
prospective choice.

1. K(z) has to be periodic under the action of the group GL(2,Z) on H, as
(1.41) already partially expresses for the subgroup SL(2,Z).

2. K(z) has to be one-to-one when restricted to the fundamental domain D,
thus it has to have the property of mapping the fundamental domain to the
entire complex plane.

3. K(z) has to be holomorphic on H, except at most isolated singularities.
Such a regularity is required in order to eventually be able to properly
differentiate the strain energy function. On the one hand, stress tensors are
computed by conveniently differentiating the strain energy density function.
On the other hand, under the hypothesis of small displacements around the
equilibrium configuration, by substituting the energy with its second-order
Taylor expansion around this position it is possible to derive the linear theory
of elasticity from the non-linear framework. Hence the energy has to be
sufficiently regular; when moving to the complex context, we directly require
holomorfism for the sake of semplicity.

4. K(z) diverges when z → i∞ with a simple pole at infinity. Therefore, we
assign infinite energy to the configurations in the neighbourhood of z = i∞.
These are configurations such that one lattice vector length is extremely larger
than the other one, i.e. a certain "aspect ratio" of the cells of the lattice
diverges. Geometrically, this involves an unbounded distortion of the lattice.

There are not that many functions which satisfy the requirements 1. to 4. In fact,
they can all be built up (via rational functions) from the Klein’s invariant J, which
is thus the most representative among modular functions.
We briefly illustrate how it is defined; an extensive discussion upon it can be found
in Apostol (1976). Given τ ∈ H, let us define:

g2(τ) = 60
+∞∑

m,n=−∞
(m,n) 6=(0,0)

1

(m+ nτ)4
and g3(τ) = 140

+∞∑
m,n=−∞

(m,n)6=(0,0)

1

(m+ nτ)6
. (1.42)

These functions are called invariants. Through these functions we can define the
discriminant∆ = g3

2(τ) − 27 g2
3(τ) such that ∆(τ) 6= 0 for all τ ∈ H. Finally the

Klein Invariant J is a function J : H → C defined by:

J(τ) =
g3

2(τ)

∆(τ)
. (1.43)

As a modular function, the Klein invariant J(z) satisfies property (1.41). Further-
more, it satisfies property 2, 3 and 4. It attains respectively the values 0 and 1 at
the vertices z = eiπ/3 = ρ and z = i of D. Boundary points of the fundamental
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domain are mapped onto the real axis and J(z)→∞ also whenever z approaches
a rational point on the real axis, which would imply

√
detC/C11 → 0 (

√
detC/C11

describes again a certain aspect ratio with detC finite, hence it is analogously a
"large shear" condition).
In light of these considerations, K = J . Hereafter we restrict ourselves to the case
in which the distorsive part of the energy has a single minimizer. This allows us
to model crystal plasticity phenomena; we can imagine that the temperature ϑ is
fixed and thus we can drop the dependence on this parameter when writing explicit
expressions for the energy.
Assuming a defect-free homogeneus reference lattice, with metric C̄0 such that
z0 = ẑ(C̄0), to be an energy-minimizing state, the desired convex potential σd (see
(1.16)) can be now written in terms of J0(z) = J(z)− J(z0):

σd(C̄) = σd(J0(ẑ(C̄))). (1.44)

The first proposal for the simplest family of energy functions is then spontaneously:

Φ(J0(z)) = µ|J(z)− J(z0)|2 (1.45)

where µ > 0 is an elastic modulus, i.e. a parameter which could be easily measurd
experimentally and incorporated into the function. One important remark concerns
the presence of the absolute value in this expression. Among the several advantages
conveyed when using the Klein Invariant J to lay the foundation of the potential
energy, we did not mention the following fact:

J(z) = J(−z̄) ∀z ∈ H. (1.46)

Hence Φ(J(z)) = Φ(J(−z̄)). To have GL(2,Z)-invariance, which means satisfying
also the invariance with respect to the reflection γ(z) = −z̄ (see the second
requirement in (1.40)), the energy must depend on the square of the imaginary part
of J(z) in order to neutralize the undesired effect of the external complex conjugation
in (1.46). However, (1.45) complies with this demand only if Im(J(z0)) = 0, which is
the case of a reference minimizer z0 with non-trivial symmetry (z0 ∈ ∂D). Therefore,
when z0 ∈ ∂D, (1.45) exhibit full GL(2,Z)-invariance. When z0 belongs to the
interior of D, (1.45) needs to be suitably modified so as to obtain dependence on
Im2(J(z0)). This discussion is deferred to the next subsection.
Expression (1.45) gives the first model for a simplest class of GL(2,Z)-invariant
potentials with pre-assigned minimizers on ∂D. Yet, not all points on ∂D constitute
an admissible choice for the minimizer z0. Indeed, we will now examine what
implications the use of J prompts. As property 4 outlines, we should be able to
stem from the strain functions also the whole context of the linear theory of elasticity.
This implies that the energy must exhibit a correct positive-definite behavior of
linear elasticity for z near the minimizer z0 ∈ H and all its symmetry-related
copies, i.e σ(J0(z)) ≈ (z − z0)2. Although J perfectly suits most of the mentioned
properties, in this circumstance it flaws. Indeed, up to tranformations in the same
SL(2,Z)-orbit it holds

J ′(i) = 0, J ′(ρ) = 0, J ′′(ρ) = 0, J ′(z) 6= 0∀z /∈ {i, ρ} . (1.47)
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In other words, the two maximally symmetric points corresponding to a square
and an hexagonal lattice are the only predetermined stationary points of J forced
by modular invariance. Precisely J satisfies J(z) = J(i) +O(z − i)2 as z → i and
J(z) = J(ρ)+O(z−ρ)3 as z → ρ. This property would affect an energy of the form
(1.45) (being z0 a point representing either a square lattice or an hexagonal lattice)
by prompting the second derivative of the function to be zero in correspondance with
the maximally-symmetric metrics. Hence, (1.45) is not compatible with neither the
choice z0 = i nor z0 = ρ. It can be proven (see Arbib (2016)) that this issue occurs
for any Φ that is regular for z = i and z = ρ. In order to surmount this obstacle,
Zanzotto (unpublished work) proposes the introduction of suitable non-holomorphic
complex functions ψ to compose with J so as to eliminate higher-order zeroes of J
and not to lose the global regularity of Φ, with Φ = Φ((ψ ◦ J)(z)).
Let us consider the case of z0 = i. To make such functions explicit, we have to
precisely impose that i is not a critical point of the function ψ ◦ J . Hence:

lim
z→i

(ψ ◦ J)′(z) = κ 6= 0 (1.48)

which implies
lim
z→i

ψ′(J(z))J ′(z) = κ 6= 0. (1.49)

See Arbib (2016) for the technical requirements on ψ that allow to write expression
(1.49). Expression (1.49) suggests that ψ′(J(z)) must have a pole of order 1 in i so
as to eliminate the first order zero of J . Thus ψ′(J(z)) can be written as

ψ′(J(z)) =
h1(z)

z − i
h1(z) analytical inC, h(i) 6= 0. (1.50)

Since J − 1 has in i a zero of order 2, one can write J(z)− 1 = (z − i)2h2(z), with
h2(i) 6= 0 and analytical in C. By conveniently chosing h1(z) and h2(z), we are able
to write

ψ′(J(z)) =
1√

J(z)− 1
→ ψ(J(z)) =

√
J(z)− 1 (1.51)

up to some non-significant multopling constants.
Applying an analogous argument, we can obtain the result for z = ρ: ψ(J(z)) =
3
√
J(z). Both

√
J − 1 and 3

√
J are holomorphic functions on H on the assumption

that the branches of each complex function are properly combined (see Schoeneberg
(1974)). Hence, the global regularity of Φ is preserved.
However, a further pitfall occurs. The combination of holomorphism and SL(2,Z)-
invariance prove to be conflicting with the requirement that (ψ ◦ J)′(i) 6= 0 where
ψ◦J : H → C. Indeed, it holds that if f : H → C is analytic and SL(2,Z)-invariant,
then f ′(i) = 0. The proof is straightforward. From SL(2,Z)-invariance, it holds:

f(z) = f(−1

z
) ∀ z ∈ H. (1.52)

Notice that the transformation z 7→ −1/z together with the tranformation z 7→ z+1
generate SL(2,Z). Since f is analytic, we are allowed to differentiate (1.52). We
obtain

f ′(z) = f ′(−1

z
)

1

z2
∀ z ∈ H → f ′(i) = f ′(i)(−i). (1.53)
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Hence f ′(i) = 0. An identical result holds also when considering z = ρ and when
restricting the codomain of f to R.
As a consequence, we obtain that we should not try to avoid the properties J ′(i) = 0
and J ′(ρ) = 0 by composing it with a ψ function as these properties are in agreement
with our request on the energy to be regular and SL(2,Z)-invariant.

The last remaining problem deals with the Hessian of the function being 0 whenever
we want the energy minimizer to correspond to one of the two maximally-symmetric
points z0 = i or z0 = ρ.
Let us consider the case of z = i. Furthermore, we indicate ψ1(z) =

√
z − 1,

i.e. the function that we obtained in the previous computations for this case (see
(1.51)). In order to avoid critical points predetermination of the function J ′, it is not
sufficient anymore to conveniently combine J with some complex operators. Arbib
proposes the introduction of a new regular operator ω : C→ R that is indifferent
to the choice of the branches of the

√
z. Under this latter hypothesis it can be

proven then that ω ◦ ψ̂1 ◦ J is also regular, where ψ̂1 is a function analogous to ψ1

that just preserves the principal branch of the square root. Thus, since ψ̂1 is not
holomorphic it allows to eliminate the pre-determined critical points without ever
discarding SL(2,Z)-invariance. One can see that if the operator ω is interpreted as
a function from R2 to R the condition of indifference to the branches of the square
root translates into:

ω̂(x, y) = ω̂(−x,−y) ∀(x, y) ∈ R2 (1.54)

where ω̂ precisely indicates ω when intepreting its domain as R2. Arbib proves that
if such an ω̂ has a minimum in (0, 0) with a positive-definite Hessian, then also the
Hessian of ω ◦ ψ̂1 ◦J is non-zero. Hence, in order to finally construct a strain energy
function with a minimum in the square lattice one can select a regular polynomial
function ω̂ respecting (1.54) and having a minimum in (0, 0) as

ω̂(x, y) = x2 + y2. (1.55)

Thus, retrieving formulation (1.38) this energy has the form

ϕ(z) = µ|
√
J − 1|2 = µ|J(z)− 1| (1.56)

where µ > 0 is an elastic modulus.
Now we consider the case of z = ρ. The ω̂ function has to be determined so as to
be regular, with a minimum in (0, 0) and invariant with respect to the branches of
the cubic root:

ω̂(x, y) = ω̂(−1

2
x−
√

3

2
y,

√
3

2
x− 1

2
y) ∀(x, y) ∈ R2. (1.57)

A polynomial expression satisfying this property is again (1.55). Thus a simple form
of a GL(2,Z)-invariant potential with pre-assigned minimizer on the hexagonal
lattice is

ϕ(z) = µ|J(z)|
2
3 . (1.58)
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1.2.3 Final forms of single minimizers strain potentials

We are now able to summarize expressions (1.45),(1.56) and (1.58) in a unique
expression. These energy forms all share the same restriction on the choice of z0:
this must be chosen on the boundary ∂D of the fundamental domain D. Hence,
when a single minimizer in ∂D is present the simplest functions σd can be given by
the unified expression

σd,plast = σd,z0 = µ|J(z)− J(z0)|2/χ(z0) (1.59)

where µ > 0 is an elastic modulus, and χ(z0) is the order of zero of J(z)− J(z0),
near the given z0. In particular χ(z0) = 1 if J ′(z0) 6= 0, i.e. for all z0 ∈ ∂D except i
and ρ, χ(z0) = 2 if z0 = i and χ(z0) = 3 if z0 = ρ. The subscript plast has been
added precisely to indicate that through (1.59) we can explore crystal plasticity.
The modeling of martensitic phase transformations require the re-introduction
of the dependence on ϑ. This will be discussed in the next chapters, which also
represent the original core of this thesis.
When we introduced expression (1.45) in the last subsection, we remarked that it is
possible to suitably modify it in order to obtain dependence on Im2(J(z0)), which
is the essential condition to ensure full GL(2,Z)-invariance when z0 belongs to the
interior of D. Hence, when a single minimizer is present in the interior of D the
simplest function σd is given by

σd,plast = σd,z0 = µ
[
Re2(J(z)− J(z0)) +

(
Im2(J(z))− Im2(J(z0))

)2
]
. (1.60)

In the next chapters we will just make use of the expression (1.59). This expression
holds for any z0 such that Im(J(z0)) = 0. This condition divides the points
depending on their symmetry. While the points on the boundary ∂D (recall
that Im(J(z))|∂D = 0) show non-trivial symmetry, those in the interior of the
fundamental domain correspond to oblique metrics that are preserved only when
undergoing trivial transformations (see Fig. 1.1 on page 8). On the other hand,
shape memory effect normally exhibits when the austenite phase presents a square
lattice and the martensite phase presents a rhombic or rectangular lattice hence a
certain symmetry is always maintained.
The last remark concerns the possibility to rewrite expression (1.59) so as to describe
an energy exhibiting square anisotropic elasticities. Since we are considering the
case of z = i we can directly consider expression (1.56). This energy can be modified
as follows

σd,sq,aniso = µRe2
√
J(z)− 1 + λ Im2

√
J(z)− 1 (1.61)

where λ > 0.
On the other hand, it can be proven (see Arbib (2016)) that for any regular
function g : H → R GL(2,Z)-invariant the Hessian evaluated at z = ρ is always
proportional to the 2 × 2 identity matrix, hence the energy can never exhibits
hexagonal anisotropic elasticities. Though, one can proceed in an analogous way
as we did for (1.61) for the elastic anistropies when the minimizer z0 has lower
symmetry than square or hexagonal by properly introducing a λ parameter.

————————————————————————



Chapter 2

A model for reconstructive phase
tranformations

In this chapter we present the first model for a strain energy function with two
pre-assigned minimizing lattices z0 and z1. The model of the energy needs to be
able to forecast a discontinuous variation of the equilibrium configurations from z0

to z1 and viceversa, according to temperature. Indeed, this is the physical context
of martensitic phase transformations, which can be classified as first-order phase
transformations.
In accordance with the mathematical hypotheses depicted in the previous chapters,
we reduce ourselves to work in the fundamental domain D and to choose the two
minimizers, z0 and z1, on its boundary ∂D, so that the corrisponding reference
lattices have some non-trivial point-symmetry.
We first explore the relevant case of the two maximally-symmetric points, square
and hexagonal lattices; hence, z0 = i and z1 = ρ = ei

π
3 . The choice of the

two maximally-symmetric points as minimizers complies with the representation
of reconstructive irreversible tranformations, whose essential hypothesis is the
impossibility of including the symmetry group of the parent and product phases
in a common finite symmetry group. The symmetry groups of the two maximally
symmetric lattices generate the entire global symmetry group of Bravais lattices
(see Bhattacharya, Conti, Zanzotto and Zimmer (2004)).
We will just take into account the distorsive part σd of the strain energy function
because the volumetric part σv can be kept as in (1.18). Since we want to describe
phase transitions, we now have to consider the dependence on the temperature.
In the first section we discuss the construction of the explicit expression of a
potential suitable for the square-to-hexagonal reconstructive tranformation.
In the second section we explore the variation of the character of z = i and z = ρ
according to the temperature regime.
In the third section we proceed to probe how the whole energetic landscape varies
with respect to the temperature and we analyze the bifurcations of critical points
in each temperature regime.
In the fourth and last section we investigate plastic phenomena; in particular the
computation of the energy barriers existing between adjacent square equilibrium
configurations will be relevant when adressing numerical simulations in the last
chapter.

25
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2.1 The simplest model

We are already equipped with a quite rich toolbox to devise a potential that
finds rest into square and hexagonal lattices. The most simple idea is to linearly
combine the potential with a unique minimum in z = i (expression (1.56)) and the
potential with a unique minimum in z = ρ (expression (1.58)), with the help of two
parameters:

σd(C̄, α, β) = α|J(ẑ(C̄))− 1|+ β|J(ẑ(C̄))|
2
3 . (2.1)

The simplicity of this expression is effective because of the favorable properties of
the Klein Invarant J , which ensure that the linear combination of two functions
with two single and different minimizers proves to be stationary in both these two
points as the next subsection will show. This is in general not true. Consider two
real functions f1, f2 : R→ R having a unique minimum in two different points, say
x = 1 and x = 2, as for instance f1(x) = (x− 1)2 and f2(x) = (x− 2)2; the function
resulting from the linear combination of f1 and f2, f(x) = α(x− 1)2 + β(x− 2)2,
does not have a stationary point neither in x = 1 nor in x = 2.
Collecting α, we highlight how this expression solely depends on one parameter,
which is the ratio β

α
. Indeed, α becomes a coefficient that changes the magnitude

of the energy but that does not influence its intrinsic shape:

σd(C̄, α, β) = α(|J(ẑ(C̄))− 1|+ β

α
|J(ẑ(C̄))|

2
3 ).

For this reason, we performed the whole analysis considering only one free parameter,
fixing one between α and β. As already discussed, one of the required hypothesis
on the energy is:

lim
z→+i∞

ϕ(z) = +∞.

Notice that we implied the reformulation of the energy ϕ(z) := σd(C̄), ϕ(z) : H → R
through the bijection z = ẑ(C̄) : SPsym(R2)→ H, where H is the Poincaré half-
plane. This correspondance will be considered as understood as this chapter unfolds.
In order to respect this hypothesis α needs to be strictly positive, because it is the
coefficient multiplying the dominant term:

σd(C̄, α, β) ∼ α|J(ẑ(C̄))− 1| ẑ(C̄)→ +i∞. (2.2)

Hence, we fixed α = 1. By emphasizing the dependence on the unique free parameter
β, the expression of the energy on which we performed the analysis is:

σd,rec(C̄, β) = |J(ẑ(C̄))− 1|+ β|J(ẑ(C̄))|
2
3 . (2.3)

The subcript rec stands for "reconstructive", as we will show that (2.3) models the
energy density of a reconstructive martensitic transformation. Hereafter for brevity
we avoid indicating the subscripts. Similarly, the dependence on the parameters α
and β will not be always explicit even though it is conceptually preserved.
The significance of α and β does not reduce to being the coefficients of the linear
combination and to controlling the divergence of the strain energy function. Besides
having a mathematical effect, they have a natural physical meaning thanks to the



2.2. The stability of the maximally-symmetric points 27

properties of the Klein invariant J ; this latter attains respectively the values 1 and
0 at the vertices z0 = i and z1 = ρ = ei

π
3 of D. Therefore α and β are respectively

the values of the height of the energy at the points representing the hexagonal
lattice and the square lattice:

ϕ(i) = β ϕ(ρ) = α = 1. (2.4)

Through the variation of the ratio β
α
, it is possible to control the relative heights

and to change the optimal configurations. The properties of the temperature are
thus discharged on this ratio and, by fixing α, they are ultimately discharged on β.
It will be clarified later how β is connected with the temperature.

2.2 The stability of the maximally-symmetric points
Such a simple form of the energy as the one presented ensures easily that the

characteristics required to represent a first-order phase transition are respected.
The strain energy function must depict the stability exchange between the square
and hexagonal lattice configurations as their temporary coexistence in the state of
minima.
The only free parameter β rules the character variations of the two maximally-
simmetric points. Once again, thanks to the properties of the Klein invariant J ,
these latter are always stationary points and β just influences the second derivative
of the energy, as we are about to show.

For the following computations, we will consider a further reformulation of the
energy Φ(J(z)) := ϕ(z), Φ(J(z)) : C→ R, which gives the two rules:

ϕ′(z) = Φ′(J(z))J ′(z) ϕ′′(z) = Φ′′(J(z))(J ′(z))2 + Φ′(J(z))J ′′(z). (2.5)

In order to simplify, we rewrite (2.3) to highlight that it was born from two separate
potentials:

ϕ(z, β) = ϕsq(z) + β ϕhex(z) (2.6)
where ϕsq is (1.56) and ϕhex(z) is (1.58).
Applying the first rule of (2.5) to both members of (2.6), the term J ′(z) appears.
Since J ′(i) = 0, J ′(ρ) = 0,

ϕ′(i, β) = 0 ϕ′(ρ, β) = 0 ∀β. (2.7)

For what concerns the second derivative, we recall that ϕsq(z) and ϕhex(z) have a
correct positive-definite behavior of linear elasticity respectively in the vicinity of
the minimizers i and ρ. Hence:

ϕ′′sq(z) =

{
> 0 if z = i

0 if z = ρ because J ′′(ρ) = 0
(2.8)

ϕ′′hex(z) =

{
Φ′hex(J(i))J ′′(i) if z = i because J ′′(i) 6= 0

> 0 if z = ρ
. (2.9)

We obtain:
ϕ′′(i, β) = ϕ′′sq(i) + β ϕ′′hex(i) (2.10)
ϕ′′(ρ, β) = β ϕ′′hex(ρ) (2.11)
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(a) β = 0 (b) β = 2 (c) β = −2

Figure 2.1: Energy surface in a neighboor of z = ρ for different values of β. For β = 0,
z = ρ is a monkey-saddle. For β = 2, z = ρ is a minimum. For β = −2,
z = ρ is a maximum.

2.2.1 The hexagonal lattice

We now want to investigate what expressions (2.10) and (2.11) involve. We first
focus on (2.11).
The articulation of the strain energy function in a different setting can be exploited
again to better express some concepts. The natural identification between Poincaré
half-plane H and {

(x, y) ∈ R2 | y > 0
}

(2.12)

grants us the right to reformulate the energy through ϕ̂(x, y, β) : R2×R+ → R such
that ϕ̂(x, y, β) := ϕ(z, β). As a consequence, we also adopt a different vocabulary.
As (2.9) expresses, the Hessian of the hexagonal member of the energy evaluated
in z = ρ is positive-definite. From (2.11) we thus know that β directly decides on
the nature of the hexagonal lattice with its sign. When β > 0, also the Hessian
of the total strain energy function evaluated in z = ρ is positive-definite, which
implies that z = ρ is a minimum. On the contrary, when β < 0, z = ρ turns
into a maximum. For what concerns the degenerate case β = 0, this makes the
energy relapse into the case of the square energy and transforms the hexagonal
point in a monkey-saddle (see Fig. 2.1) as a direct computation later shows. Indeed,
when β = 0 the energy (2.3) loses the term guaranteeing a correct positive-definite
behavior in the vicinity of ρ and modular symmetry forces ρ (and its copies) to be
a degenerate critical point with a null Hessian, specifically a monkey-saddle.

2.2.2 The square lattice

We now focus on (2.10). On the square lattice configuration, both the square
and hexagonal members of the energy act because the modular simmetry is weaker
on z = i. The analysis of the Hessian of the energy in z = i returns the following
about the dependence on β of its eigenvalues λ1 and λ2:

λ1(β) =

{
≥ 0 if − 3/2 ≤ β ≤ 3/2

< 0 if β < −3/2 ∨ β > 3/2
λ2(β) > 0 ∀β. (2.13)
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(a) β = 0 (b) β = 2 (c) β = −2

Figure 2.2: Energy surface in a neighboor of z = i for different values of β. For β = 0,
z = i is a minimum. For β = 2, z = i is a saddle. For β = −2, z = i is a
saddle.

If we released α from its fixed value, we would obtain that

λ1(β) =

{
≥ 0 if − 3/2α ≤ β ≤ 3/2α

< 0 if β < −3/2α ∨ β > 3/2α
λ2(β) > 0 ∀β. (2.14)

The value 3/2 is bound to the exponent of the hexagonal energy, which multiplies
ϕ′hex(z).
One of the eigenvalues is always positive (see Fig. 2.3 on the next page), hence z = i
is never a degenerate critical point for the strain energy function. It is a standard
saddle for external values of β with respect to the critical values β1,2 = {−3/2, 3/2}
and a minimum for internal values. When β attains its first critical value β = 3/2,
z = i is already a saddle, because the role of minimum is covered by z = ρ. When
β = −3/2, z = i is still entrusted with being a point of absolute minimum for
the energy, i.e. a minimum; indeed z = ρ is a maximum (see Fig. 2.2). It will be
interesting to observe what happens when both z = i and z = ρ are instable.
Thus, the position of the absolute minimum of the strain energy function exhibits
a discontinuity with respect to β, which is a thermodynamic variable with a
connection to temperature yet to be defined. We can legitimately label the ongoing
phenomenon as a first-order phase transition (see Fig. 2.4 on the next page).

2.3 The energetic landscape
Even though the model contains only one free parameter, z = i and z = ρ = eiπ/3

assume several different configurations. The energetic landscape which generates
according to the value of β is rather colourful; basins transform into peaks, favorable
passages need to be found elsewhere.
If we think about the Poincaré half-plane H as the domain where the energy
landscape develops, it is quite clear that points different to z = i and z = ρ will also
represent relevant morphological elements as the elevations change and move. This
could be observed already in a 2D-setting as the one of Fig. 2.4 on the following
page (observe for instance that when β = −2 the energy has an other relative
minimum beyond the hexagon).
We searched for further stationary points along the geodetic lines connecting
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Figure 2.3: Eigenvalues of the Hessian matrix of the strain energy function evaluated in
z = i. λ2 is strictly positive ∀β, while λ1 is strictly positive for −3/2 < β <
3/2, which is thus the range of values of β where the energy has a minimum
in the square lattice. For external values of β, the Hessian is indefinite
(non-degenerate) hence z = i is a standard saddle. We will explicitly prove
that both eigenvalues linearly depend on β in subsection 2.3.1.

Figure 2.4: Behavior of the strain energy function along the geodetic connecting z =
eiπ/3 = 1/2 + i

√
3/2 and z = 1/2 + i1/2 for different values of β. z =

1/2 + i1/2 represents a square lattice equivalent to i. The x-coordinate is
thus fixed, while the y-coordinate changes. Black dashed lines indicate the
values of y corresponding to the square and the hexagonal point. This picture
represent a first-order phase transitions, restricting β to β ≥ β0 = −3/2. β
would be the thermodinamic quantity according to which the equilibrium
configurations varies: for β ≥ 3/2 the hexagon is a minimum and the square
is unstable, for 0 < β < 3/2 they are both minima (for 1 < β < 3/2
the hexagon is the absolute minimum and the square is a local minimum,
viceversa for 0 < β ≤ 1), for −3/2 ≤ β ≤ 0 the square is a minimum and
the hexagon is unstable. When β belongs to the second range, for instance
β = 1, a new stationary point generates between the square and the hexagon;
this also happens when β belongs to the third range, for instance β = −1,
but the new stationary point generates between the hexagon and z = i∞.
To precisely depict a first-order phase transition we restricted to β ≥ −3/2,
because in the fenomenology of this physical event it is not envisaged the
new loss of stability of the square lattice for β < −3/2. This event produces
new interesting features discussed later on.
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(a) β = 2 (b) β = 1 (c) β = 0

(d) β = −1 (e) β = −2

Figure 2.5: A repeated portion of the Poincaré half-plane H. Two equivalent square
points (i, ζ = 1/2(i+ 1)) and one hexagonal point (ρ = eiπ/3) are indicated.
Red lines indicate ascent directions, while green lines indicate descent direc-
tions. According to the ongoing situation, modified by β, ascent or descent
paths leave from ρ, i, ζ. Blue and yellow points represent further stationary
points, which correspond respectively to rhombic lattices and rectangular
lattices. For instance: in (b) two equivalent stationary points lie on the
geodetics connecting the hexagonal point to the square points, as the two
ascent directions precisely culminate in a summit.

z = ρ and z = i to the infinity at z = i∞ or at z = 0, or those connecting
the two maximally-simmetric points themselves (see Fig. 2.5). The geodetic lines
respectively connecting i to z = i∞ and ρ to z = i∞ both belong to the fundamental
domain D (see (1.29)). The third part of the boundary of D precisely connects i
to ρ (this can be parametrized as {x = cosϑ, y = sinϑ;ϑ ∈ [π/3, π/2]}). However,
each point on this curve has a suitable copy on the straight segment connecting ζ
to ρ: {

x = 1/2

y = t
t ∈ [1/2,

√
3/2]. (2.15)

which can be obtained by subsequently applying the transformations z 7→ z + 1,
γ(z) and z 7→ −1/z precisely to this point. The new stationary points are easier to
detect by searching on a straight line rather than on a curve; for this reason the
research of further stationary points was performed on (2.15).

It turns out that in correspondance with the critical values β1,2 = {−3/2, 3/2}
new stationary points bifurcate from the equivalent square points z = i, z = 1

2
(1+ i).
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This also happens in correspondance with the other critical value β3 = 0, crossed by
a branch of rhombic unstable lattices generated from the two equivalent hexagonal
points z = ρ = 1

2
(1 +

√
3) and z = 1

2
(1 +

√
3

3
) (this latter can be obtained by

applying the usual three transformations in a suitable order) (see Fig. 2.6 on the
facing page). Bifurcations will be described more deeply in the following section.
According to GL(2,Z)-symmetry, each critical point in the fundamental domain
D has some suitable copies. Even when restricting to a portion of the Poincaré
half-plane H more than one branch of critical points meet each point representing
an hexagonal or a square lattice (see Fig. 2.7 on page 34)
In light of these diagrams, we are able to appoint β with a more definite physical
meaning. Energy in (2.3) perfectly suits the context of martensitic phase transfor-
mations. These latter are solid to solid transformations where the lattice changes
abruptly at some temperature. Diminishing the temperature the lattice reaches a
less symmetrical condition. The hexagonal configuration of the lattice exhibits more
simmetries than the square configuration; diminishing β our model thus exactly
depicts the passage to a less symmetrical condition. Hence, β is a growing function
of the temperature.

2.3.1 Bifurcations analysis

The aim of this section is to give an insight into the bifurcations of critical points
which generate from the maximally-symmetric points z = ρ and the equivalent
square points z = i, z = ζ = 1

2
(1 + i).

In order to describe analitically the behavior of the strain energy function and
not to work with modular functions, a good strategy is to restrict the analysis to
the neighbourhoods of those three points so that it is possible to characterize the
stationary points by studying the Taylor expansion of the strain energy in their
neighborhoods. We ought to consider the reformulation of the energy which exploits
the identification beteween the Poincaré half-plane H and R2 ϕ̂(x, y, β) := ϕ(z, β).
When considering the neighbourhood of z = i, we substitute the energy with its
Taylor expansion at the fourth-order precisely around z = i. We stopped at the
fourth-order because we need to capture the behavior of a pinchfork bifurcation
which requires at least a third-order expansion, as the system shifts from one to
three fixed points. This can be achieved by expanding around ε = 0 the function
f(ε) = ϕ̂(εu, 1 + εv), where u and v are the displacements from the position (0, 1)
on R2, equivalent to z = i on the Pointcaré half-plane H. This gives us

f(ε) = a1(u2 + v2) ε2(1− vε+ (
u2

2
− a2u

2

a1

+
a2v

2

a1

) ε2)+

β (1− 2

3
(a1u

2 − a1v
2) ε2 + (2 a1u

2v − 2 a1v
3

3
) ε3+

1

9
(−a2

1u
4 + 6 a2u

4 + 14 a2
1u

2v2 − 36 a2u
2v2 − a2

1v
4 + 6 a2v

4) ε4) + o(ε5)

(2.16)

where
a1 = 49152π4/Γ(−1/4)8 ' 14.3678
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(a) x = 1
2

(b) x = 0

Figure 2.6: Bifurcation diagrams for the energy (2.3). The bifurcation parameter is β
(on the abscissa). Solid and dotted lines indicate stable and unstable critical
points. Green and purple lines refer respectively to hexagonal and square
points, while blue and red lines refer respectively to rhombic and rectangular
points. Figure (a): the three horizontal lines indicate the behavior of the
two equivalent hexagonal points and the square point lying on x = 1

2 (they
are ρ, τ = 1/2(1 + i

√
3/3) and ζ = 1/2(1 + i)). There is a subcritical

pinchfork bifurcation between square and fat rhombic critical points around
the critical value β = 3

2 . The unstable branches of the bifurcation then
cross the hexagonal points turning into skinny rhombic critical points. The
slanting blue dotted branches do not have an asymptote for β → −∞
even though their growth is slow. Hence every fat rhombic is eventually a
critical point of the energy (2.3). Figure (b): the horizontal line indicates
the behavior of the square point z = i. There is a supercritical pinchfork
bifurcation between square and rectangular critical points around the critical
value β = −3

2 . The stable branches of the bifurcation also do not have an
asymptote for β → −∞.
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(a) (b)

(c) (d)

Figure 2.7: Two views of the three-dimensional bifurcation diagram for the energy (2.3)
together with the Poincaré half-plane model and the Poincaré disk model (see
Video "Rotation of 3D bifurcation diagram" in the Supplementary Material
for a detailed view). In particular, (a) shows a tiling of the Poincaré half-
plane H obtained drawing a number of geodesics. Each point lying on the red
geodesics corresponds to a rectangular lattice. Each point lying on the blue
geodesics corresponds to either a fat or skynny rhombic lattice according to
the thickness of the curve (which thus acquires an expressive role). Purple
squares and green hexagons respectively indicate equivalent square lattices
and equivalent hexagonal lattices. Every feature in (a) maps to the disk
model in (b), through the relation (x, y) 7→ (2x, x2 + y2 − 1)/(x2 + (1 + y)2)
where (x, y) is a point in the half-plane model. The 3D bifurcation diagram
((c) and (d)) describes the character of each critical point belonging to one
of the halfs of (b) with respect to the bifurcation parameter β which is
shown on the vertical coordinate. The basis of the 3D graphic is the disk
model and it lies at β = −1.8. This diagram adopts the graphic conventions
of the 2D bifurcation diagrams: green, purple and red solid/dotted lines
respectively indicate the stability/instability range of the hexagonal, square
and rectangular points while blue dotted lines indicate unstable rhombic
critical points. The bifurcations reflect specularly on the other half of the
disk model but they are not reported for the sake of readability. For the same
reason the tessellation of (a) (thus, also the one of (b)) is incomplete; the
picture, however beautiful, would have been mightily tangled (see Fig. 1.5
on page 19).
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and
a2 = 4096π4(753664π4 + 27Γ(−1/4)8)/3Γ(−1/4)16 ' 98.7013

where Γ is the Euler gamma function.
As expected, the only the 0-th order term of the expansion is β, which is the height
of the energy when z = i. Furthermore, the quadratic term deriving from the
expansion around z = i of the square member of the energy |J(z)− 1| is a convex
paraboloid whose vertex is in (u, v) = (0, 0); this term is indeed convex in the
neighbourhood of the square lattice. Hence, it is the quadratic term multiplying β
which wrecks the stability of z = i. The Hessian matrix of the quadratic term of
the Taylor expansion is finally[

2 a1 − 4
3
a1β 0

0 2 a1 + 4
3
a1β

]
. (2.17)

Expression (2.17) proves the linear dependence of λ1 and λ2 on β (see 2.3 on
page 30).
The values of β such that both the eigenvalues of (2.17) are strictly positive are

− 3

2
< β <

3

2
(2.18)

as expected.
In order to find critical points around z = i, chosing ε = 1, we imposed ∇f = 0
and we obtained three valid solutions{

u1 = 0

v1 = 0
(2.19)

u2 = 0

v2(β) =
9a1 (3+2β)+

√
3
√
a1 (3+2β) (32a21β+27a1 (3+2β)−96a2 (3+2β))

8(−a21β+a2 (9+6β))

(2.20)

u3 = 0

v3(β) =
−9a1 (3+2β)+

√
3
√
a1 (3+2β) (32a21β+27a1 (3+2β)−96a2 (3+2β))

8(a21β−a2 (9+6β))

. (2.21)

The other solutions found were not to be considered valid because either they were
living in the complex domain (u and v need to be real scalar values because they
describe displacements).
The three valid solutions share the coordinate u = 0, hence critical points scatter
just in the y-direction from z = i.
The first one is precisely z = i because it describes a zero displacement from the
point around which the Taylor series was expanded. (2.19) and (2.20) are the
branches of a supercritical pinchfork bifurcation where the critical value of the
bifurcation parameter is β = −3

2
(see Fig. 2.8 on the next page). They are both

defined for β ≤ −3
2
; any perturbation from z = i, which is an unstable position

in this range of β, makes the system jump on one of those two branches. When
β → −3

2

v2(β) ∼

√
(−2a1)(β + 3

2
)

a1

v3(β) ∼ −

√
(−2a1)(β + 3

2
)

a1

. (2.22)
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(a) (b)

Figure 2.8: The branches of the supercritical bifurcation around z = i described in
(2.19), (2.20). Red curves highlights the behavior close to β = −3/2, i.e. the
vertical crossing of the horizontal axis.

They describe analytically how stable rectangles generate from z = i when dimin-
ishing β, as represented on Fig. 2.6 on page 33(b).

An analogous procedure has been applied to give an analytical representation
of the results in Fig. 2.6 on page 33(a).
Let us consider z = ζ = 1

2
(1 + i). In this case we expanded at the fourth order,

around ε = 0, f(ε) = ϕ̂(1
2

+ εu, 1
2

+ εv) and we obtained

f(ε) = b1(u2 + v2) ε2(1− b2v ε

b1

+
(b2

2 u
2 + 2b1b3 u

2 − 2b1b3 v
2) ε2

2b2
1

)+

β (1 +
2

3
(b1u

2 − b1v
2) ε2 + (−2b2 u

2v +
2b2v

3

3
) ε3+

1

9
(−b2

1u
4 + 6b3 u

4 + 14 b2
1u

2v2 − 36 b3u
2v2 − b2

1v
4 + 6b3v

4) ε4) + o(ε5)

(2.23)

where b1 ' 4 a1, b2 ' 8 a1, b3 ' 1234.3944. Being ζ a square point equivalent to i,
expression (2.16) and (2.23) can be related; the change in the coefficients b1, b2, b3

can be explained in terms of the metric (1.20) with which the Poincaré half-plane
H is endowed.
ζ is a square lattice equivalent to z = i, thus there the previous remarks about
linear term and quadratic terms of the expansion still hold in this case. The Hessian
matrix of the quadratic term of the expansion is[

2b1 + 4
3
b1β 0

0 2b1 − 4
3
b1β

]
(2.24)

which is positive definite for the range of β in (2.18).
Setting ε = 0,∇f = 0 gave three valid solutions{

u1 = 0

v1 = 0
(2.25)

u2 = 0

v2(β) = −−9b2 (−3+2β)+
√

3
√

(−3+2β) (27b22(−3+2β)−32b1 (9b3+b21β−6b3β))

8(b21β+b3 (9−6β))

(2.26)
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(a) (b)

Figure 2.9: The branches of the subcritical bifurcation around z = ζ described in (2.26),
(2.27). Red curves highlights the behavior close to β = 3/2, i.e. the vertical
crossing of the horizontal axis.

u3 = 0

v3(β) =
9b2 (−3+2β)+

√
3
√

(−3+2β) (27b22(−3+2β)−32b1 (9b3+b21β−6a3β))

8(b21β+b3 (9−6β))

. (2.27)

The first solution is precisely z = ζ. The second and the third solution are the
branches of a subcritical pinchfork bifurcation where the critical value of the
bifurcation parameter is now β = 3

2
(see Fig. 2.9). The branches are the instable

saddles which generate from the square lattice corresponding to z = ζ which are
represented in Fig. 2.6 on page 33(a). They are defined for β ≤ 3

2
. For this range

of β, z = ζ is stable. The two unstable branches toghether with the stable branch
represented by the first solution will collapse to produce one unstable branch when
β > 3

2
. When β → 3

2

v2(β) ∼ −

√
(−2b1)(β − 3

2
)

b1

v3(β) ∼

√
(−2b1)(β − 3

2
)

b1

. (2.28)

Finally, let us consider z = ρ = eiπ/3. Expanding f(ε) = ϕ̂(1
2

+ εu,
√

3
2

+ εv) at the
fourth order around ε = 0

f(ε) = 1 + (−3c1u
2v + c1v

3) ε3 + (−c2u
4 + 6c2u

2v2 − c2v
4)ε4+

c
2/3
1 (u2 + v2)β ε2(1− 2c2v ε

3c1

+
(3c2

2u
2 − 6c1c3u

2 − c2
2v

2 + 6c1c3v
2) ε2

9c2
1

) + o(ε5)

(2.29)

where
c1 = J ′′′(ρ)/6 ' 26.4728

and c2 ' 45.8523, c3 ' 52.9457 (these latter being rather complex expressions
obtained combining higher order derivatives of the Klein Invariant J).
The only 0-th term is 1, which is precisely the height of the strain energy function
when z = ρ. The only quadratic term is

c
2/3
1 (u2 + v2)β (2.30)
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(a) (b)

Figure 2.10: The sloped branches of the bifurcation around z = ρ described in (2.33).
Red lines highlights the behavior close to β = 0, i.e. a slenting crossing of
the horizontal axis.

which is a convex paraboloid with center in (u, v) = (0, 0) when β > 0 and non
convex when β < 0. When β = 0, the quadratic term disappear and it remains the
third-order term, which defines as expected a monkey-saddle

c1(−3u2v + v3). (2.31)

In order to recover the analytical description of the transversal crossing of the
rhombic branch in Fig. 2.6 on page 33(a) we looked again at the solutions of ∇f = 0.
We obtained {

u1 = 0

v1 = 0
(2.32)


u2 = 0

v2(β) = −
−9c

4/3
1 +6c2 β+c

1/3
1

√
81c

8/3
1 +180c

4/3
1 c2 β+68 c22 β

2−192c1c3β
2

c
2/3
1

8(cb
4/3
1 c2+c22 β−6c1c3 β)

. (2.33)

The first solution is precisely z = ρ. The second one is the analytical description of
the transversal crossing of the rhombic branch (see Fig. 2.10). The displacement in
the horizontal direction u is 0 because rhombic critical points are on the straight
geodetic where also z = ρ lies. When β → 0

v2(β) ∼ − 2

3c
1/3
1

β (2.34)

which is a decreasing straight line as expected.

2.4 Energy barriers
What we have seen so far is every feature that could be predicted through the

proposed potential when varying its only free parameter β, which is an increasing
function of the temperature. Bifurcation diagrams thus depict the reaction of the
body to the change of temperature when the interpretation of its distorsive behavior
is entrusted to the strain energy function in (2.3).
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We finally want to address transformations that do not imply a change in temper-
ature, setting our model in the domain of cold mechanics and exploring crystal
elasto-plasticity. A particularly meaningful data in this field is undoubtedly the
yield strenght that marks the frontier between reversible elastic behavior and irre-
versible plastic behavior. Its significance is also bound to the fact that its value can
be easily obtainable through experimental tests. Adopting the energetic language,
it emerges that the yield strenght is related to the energy barriers existing between
two adjacent equilibrium configurations.
In these circumstances we define as adjacent equilibrium configurations points such
that one can be obtained as the image of the other through some SL(2,Z)-tensors,
hence they live in two copies of the fundamental domain sharing a portion of the
boundary. In this way, we can explore the plastic domain.
A tranformation that could be constructed with some SL(2,Z)-tensors is z 7→ z+ 1.
This tranformation together with z 7→ −1/z descend from the matrices that span
SL(2,Z) group. We have already proven that z 7→ z + 1 corresponds to a simple
shear in subsection (1.2.1).

2.4.1 Simple shear from i to i+ 1

In this chapter we first investigated which is the energetically optimal barrier-
crossing path from i to i+ 1 for each value of β. This is the transformation also
considered in the following numerical simulations. Since we want to consider i and
i+1 as adjacent equilibrium configurations, we need to restrict the range of β to the
values that actually guarantee that those points remain minima: −3/2 ≤ β < 3/2.
Furthermore, since the energetic landscape can vary significantly with β as we saw
previously, we need to define the energy barrier

∆Ebest(β) = min
∀paths

max
z∈path

ϕ(z, β)− min
z∈path

ϕ(z, β). (2.35)

For every value of β we choose the path from i to i+ 1 guaranteing a passage across
the lowest among the summits. Taking this road, it could happen to encounter
equilibrium configurations other than i + 1 that for some values of β represent
the absolute minimum for the strain energy function, being i + 1 just a relative
minimum. Once we chose the path, under the last clarification, the computation of
the energy barrier for every value of β becomes obviously the difference between the
maximum and the minimum along this path (see Fig. 2.11 on the following page)

2.4.2 Simple shear and prerotation of rectangular lattices

Our energetic model contains a supplementary information with respect to the
expected minima. There is a range of β, β < −3/2, where equilibrium configura-
tions move into rectangular lattices while both hexagonal and square lattices lose
stability. The rectangles generate above and under z = i, bifurcating towards the
geodetics that connect the square lattice to infinity.
In this section, we investigated the energy barriers between rectangular equilibrium
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(a) (b)

Figure 2.11: (a) Energy barrier of the simple shear from i to i+ 1 for each value of β.
For −3/2 ≤ β < 1 (red line), the absolute minimum of (2.3) is the square
lattice. For 1 < β < 3/2 (orange line), the square lattice is a relative
minimum and the hexagonal lattice is the absolute minimum, because
α = 1 < β. For β = 1, the value of the energy is the same for both square
and hexagonal lattice.
For 0 ≤ β < 3/2 the energetically optimal path from i to i + 1 goes
throughout the geodetic connecting i to the hexagon lattice z = eiπ/3 and
then throughout the one connecting z = eiπ/3 to i+ 1; here the summits to
cross are the two equivalent fat rhombic saddles which generate along the
two geodetics. For −3/2 ≤ β < 0, above z = eiπ/3 skinny rhombic saddles
generate. Thus, two passageways to get to i+ 1 could be possible. The first
is the one consisiting in the previous geodetics, which involves crossing the
maximum in the hexagon lattice z = eiπ/3 (blue dotted line is the energy
barrier for this passageaway). The second is the one through the corridor
of rhombic saddles, whose energy barrier is represented through the red
line. From the zoom in (b) it can be observed that the corridor of rhombic
saddles is more convenient. In the neighbourhood of β ' −0.55 (dashed
black line) to lower values of β, this becomes more evident. It is interesting
to observe that at this value of β the skinny rhombic saddle that creates
above the hexagon corresponds to z = 1/2 + i, hence it lies on the same
straight horizontal line as i. On the other hand, when the skinny rhombic
saddle is sufficiently far from the hexagonal point (as it is in this case)
this latter can be considered as a proper maximum. Indeed when β = 0
z = eiπ/3 is a monkey-saddle; when β slightly decreases still remaining in
the close neighbourhood of 0, ρ is not a exactly a maximum yet but it can
be considered as a deformed monkey saddle encircled by three equivalent
skinny rhombic saddles, i.e. a monkey area through which it might not be
so inconvenient to pass across to get to i+ 1 from i. At the critical value
β = 0 the skinny rhombic saddles merge into the monkey-saddle in ρ.
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configurations that can be said to be adjacent in the sense explained in the introduc-
tion of subsection (2.4). In particular, we compared the minimum energetic costs
of moving from one minimum to the neighboring one required in the previously
mentioned tranformation z 7→ z + 1 with respect to the tranformation z 7→ −1

z
,

which can be proven to correspond to a π
2
-prerotation as we did in subsection (1.2.1)

(see Fig. 2.12 on the next page). When β < −3/2 the energetic landscape involves
skinny rhombic saddles above z = eiπ/3, which form the energetically optimal
barrier-crossing path when moving from a rectangular lattice z0 to its tranformed
z0 + 1. On the other hand, the transformation z0 7→ − 1

z0
entails crossing the saddle

in z = i (the picture could be clarified when looking at Fig. 2.5 on page 31 (e)).
Plotting the energy barrier of the transformation z0 7→ z0 + 1 leads us to formulate
what follows. In this case the energy barrier is for each value of β

∆Ebest(β) = ϕ(zrhombi(β), β)− ϕ(zrectangles(β), β). (2.36)

It emerges that

∆Ebest(β) = ϕ(zrhombi(β), β)− ϕ(zrectangles(β), β) = k (2.37)

where k is a constant value k = 2. Exploiting the identification between Poincaré
half-plane H and R2, we reformulate ϕ̂(x, y, β) := ϕ(z, β). Since for each value of
β the rectangular minimum and the rhombic saddle are always respectively on the
straight lines x = 0 and x = 1/2, the dependence on β only acts on the y-coordinate.
It follows that

ϕ̂(xrhombi, yrhombi(β), β)− ϕ̂(xrectangles, yrectangles(β), β) = k (2.38)

which implies, differentiating with respect to β

∂ϕ̂

∂y
(xrhombi, yrhombi(β), β) +

∂ϕ̂

∂β
(xrhombi, yrhombi(β), β) =

∂ϕ̂

∂y
(xrectangles, yrectangles(β), β) +

∂ϕ̂

∂β
(xrectangles, yrectangles(β), β).

(2.39)

Since rectangles and rhombi are stationary points for the strain energy function,
the derivative with respect to y evaluated in these points is zero. Hence

∂ϕ̂

∂β
(xrhombi, yrhombi(β), β) =

∂ϕ̂

∂β
(xrectangles, yrectangles(β), β). (2.40)

Since we can divide the strain energy functon in its two members

ϕ̂(x, y, β) = ϕ̂square(x, y, β) + β ϕ̂hex(x, y, β) (2.41)

it is immediate to differentiate with respect to β, obtaining that

ϕ̂hex(xrhombi, yrhombi(β)) = ϕ̂hex(xrectangles, yrectangles(β)). (2.42)

Substituting the expression of the hexagonal member of the energy we obtain that

|J(xrhombi + i yrhombi)|2/3 = |J(xrectangles + i yrectangles)|2/3. (2.43)
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Figure 2.12: Energy barrier for each value of β of two transformations z0 7→ z0 + 1
(red line), z0 7→ − 1

z0
(blue curve), where z0 is the rectangle that generates

above z = i at the current β-value. For the first case, the energy barrier is
constant ∆Ebest = 2. When β = −3 (dashed black line), the transformation
z0 7→ z0 + 1 becomes more energetically convenient.

The evaluation of Klein Invariant J in rhombic points gives always a real negative
value, while the evaluation of Klein Invariant J in rectangular points gives always
a real positive value. Hence, raising to the power of 3/2 both members

− J(xrhombi + i yrhombi) = J(xrectangles + i yrectangles) (2.44)

The last expression implies that, when β < −3/2, the minima of the strain energy
function (rectangular lattices) and the skinny rhombic saddles, which form the
energetically optimal passageaway to reach a translated domain, give opposite
values of the Klein Invariant J . On the other hand, the rectangle that generates
above z = i for each value of β have the same height on the Poincaré half-plane
H of the rhombus that generates above the hexagon z = eiπ/3 provided that β is
distant enough from β = −3/2 (see Fig. 2.13 on the next page).

A second interesting observation which emerges from the comparison of the
energy barriers of the two transformations is that there exists a value of β such
that the transformation z0 7→ − 1

z0
becomes more energetically expensive than the

transformation z0 7→ z0 + 1 . This value is β̄ = −3 (see Fig. 2.12). When β
decreases, each minimum that generates above z = i is more and more deformed,
getting closer to z = i∞. Since there exists the value β̄, we can infer that, when the
rectangular lattice is deformed enough, the best adjacent equilbrium configuration
for the strain energy function turns the lattice into a parallelogram rather than
into a π

2
-prerotated rectangle. In order to quantify such critical deformation, we

computed the aspect ratio of the rectangular critical point that generates above
(and, in a specular manner, below) z = i for each value of β.
The aspect ratio is a parameter that can be easily computed when considering the
deformation gradient needed to turn a 2D-square into a 2D-rectangle, whose basis
measure is α and height measure is 1

α
. The aspect ratio is the ratio between the

basis and the height

AR =
α
1
α

= α2. (2.45)
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(a) (b)

Figure 2.13: (a) y-coordinate of rectangular lattices and rhombic lattices. The red curve
represents the variation of y-coordinate of rhombic critical points above
z = eiπ/3 with respect to β. The blue curve represents the variation of
y-coordinate of rectangular critical points above z = i with respect to β.
The two curves coincide after a transient zone. The delay is due to the
fact that rhombic points reaches the height of 1 + δ, i.e. the height of the
first rectangle that generate above z = i , for β = −0.55− ε while the first
rectangle generates for β = −3/2 − ε, where ε and δ are two arbitrarily
small quantities. As already mentioned in 2.6 on page 33, when β → −∞
both curves (which eventually correspond) do not have an asymptote. (b)
y-coordinate of rectangular and rhombic lattices when β → −∞. Color
conventions are the same as (a); the blue curve is now dashed for the sake
of graphical decipherability. Black dashed curve represents y(β) = (−β)

1
n ,

where n = 16; this is a function that approximately reproduce the trend of
both curves to −∞. It does not converge to a finite limit when β → −∞.
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Figure 2.14: Variation of the aspect ratio of rectangular points above and below z = i
with respect to β. The black dashed line indicates the value of β below
which the transformation z0 7→ z0 + 1 is energetically more convenient than
z0 7→ − 1

z0
. The corresponding α2 is 0.663.

The deformation gradient is

F =

[
α 0
0 1

α

]
. (2.46)

Since F is diagonal, the right Cauchy-Green deformation tensor is then

C = FTF = F2 =

[
α2 0
0 1

α2

]
. (2.47)

Thanks to the already mentioned Cauchy-Born hypothesis, C=(Cij) corresponds
to a metric that is in a one-to-one correspondance with a point in the Poincaré
half-plane H through the relation

z(C) =
C12

C11

+ i

√
detC
C11

= i
1

α2
=

{
> i if − 1 < α < 1

< i if α > 1 ∨ α < −1
. (2.48)

Hence, in order to find the aspect ratio of each rectangle it is sufficient to take the
reciprocal value of its y-coordinate on the Poincaré half-plane H(see Fig. 2.14). We
found that the aspect ratio corresponding to β̄ is ᾱ ' 0.663.



Chapter 3

A model for weak phase
tranformations

This chapter is devoted to presenting a second model for a strain energy function
with two pre-assigned minimizing lattices z0 and z1. These lattices are now chosen
in order to discuss martensitic (or solid-solid) phase transformations of the weak
type, which make them reversible as it is explained in both the introduction and the
second chapter of the thesis. As we discussed in subsection 1.1.1 of the first chapter,
the natural domains of these transformations are Ericksen-Pitteri neighbourhoods.
As a matter of fact symmetry-breaking (or weak) tranformations demand to consider
two lattices such that one has a higher crystallographic symmetry than the other
and the symmetry groups of both the parent and product phase are included in
a common finite symmetry group. The first one describes the crystallographic
structure of the austenite phase, while the second one the crystallographic structure
of the martensite phase. In particular, shape memory effect requires an austenite
whose symmetry is cubic, a martensite whose symmetry is a subgroup of the cubic
and a volume-preserving transformation.
In a 2D-setting as the one where we operate we choose the square lattice to model
the austenite phase and the rhombic lattice to model the martensite phase (we do
not reduce to the least symmetrical oblique type but we preserve some simmetry
also when the solid is exploring the martensitic phase). Thus, the metrics of the
inital, final and any intermediate states belong to the EPN of the square-lattice
metric.
As it is explained in the first chapter (section 1.2.1), the action of GL(2,Z)-group
on the Poincaré half-plane H, which parametrizes the strain space, generates
the Dedekind Tessellation; H is made up of mutually congruent copies of the
fundamental domain D, whose boundary ∂D accomodates points representing
metrics possessing nontrivial symmetries. As for the previous model z0 and z1 both
live on ∂D: z1 = i, while z0 is either a generic fat rhombic lattice, which lies along
the geodetic connecting i and the hexagonal lattice z = ρ = ei

π
3 or a generic skinny

lattice, which lies along the geodetic connecting ρ to z = i∞.
The first section of this chapter discusses the conception of the explicit expression of
an energy density that complies with the modelling of weak phase tranformations.
In particular the choice of the two minima makes the model suitable to represent
the behavior of shape memory alloys. Furthermore, by considering the temperature

45
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as a fixed parameter this model is also suitable to represent the phenomenon of
superelasticity, which has been illustrated in the introduction of the thesis.
The next sections analyze the mathematical implications of the chosen expression.
The second section explores the energetic landscape with all its relevant features at
a fixed temperature. In particular, subsection (3.2.2) investigates the character of
the hexagonal lattice according to all possible combinations of the free parameters
of the energy model.
The third section is devoted to exploring the energy barriers between adjacent
equilibrium configurations.
In the fourth section we investigate the morphological features of the energy
landscape imposed by our model at high and low temperatures when one single
phase between austenite and martensite is stable.
In the last section we investigate the formalization of the optimal paths which
connect the critical (stationarity) points of the energy landscape through a further
perspective offered by theoretical chemistry.

3.1 Three-parameters model
The Klein Invariant J is the main instrument used to construct a model for

the strain energy function because of its representativeness among modular func-
tions. Its characteristic behavior at the corners of the fundamental domain D was
exploited to generate a rather simple but still accurate model reconstructive phase
transformations, as the one presented in the previous chapter.
Now, we are partially moving from the corners; the energy that we want to derive
needs to have a minimum at one corner of the fundamental domain, z = i, and at a
point of the boundary z = z0, which is not a stationary point for J (unlike z = i,
for which it holds J ′(i) = 0). This latter detail entails that we need to impose a
further requirement on the model as we will show hereinafter, which suggests how
the analytical picture gets more complicated.
Two parameters are used to control the height of the energy at the stationary
points; they reduce to one, by speaking of relative height, which directly relates to
temperature. One extra parameter is used to impose ϕ′(z0) = 0 (since J ′(z0) 6= 0,
z0 is not a stationary point of the energy a priori). A linear combination of the
energy that guarantees a unique minimum in z = i (expression (1.56)) and of the
one guaranteing a unique minimum in z = z0 (expression (1.45)) is not sufficient
anymore. The simplest (in terms of order of the polinomial expressions involved)
expression is spontaneously

ϕ(z) = α1|J(z)− 1|+ β1|J(z)− J(z0)|2 + α2|J(z)− 1|2 (3.1)

where a priori we do not impose any condition on the sign of the coefficients.
However, this obviously plays a role in controlling the behavior of (3.1) at infinity,
which will be discussed in the following.
As already mentioned, the conditions to impose are

ϕ(i) = b0

ϕ(z0) = b1

ϕ′(z0) = 0

. (3.2)
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First condition in (3.2) implies

ϕ(i) = β1|J(i)− J(z0)|2 = β1|1− J(z0)|2 = b0. (3.3)

Hence
β1 :=

b0

|1− J(z0)|2
. (3.4)

Second condition in (3.2) implies

.ϕ(z0) = α1|J(z0)− 1|+ α2|J(z0)− 1|2 = b1 (3.5)

Thus
α2 :=

b1

|J(z0)− 1|2
− α1

|J(z0)− 1|
. (3.6)

Since J ′(i) = 0, from first expression in (2.5)

ϕ′(i) = 0. (3.7)

If we label |J(z) − 1| as ϕsq and |J(z) − J(z0)|2 as ϕrhmb, (3.1) can be rewritten
considering every member separately

ϕ(z) = α1ϕsq + β1ϕrhmb + α2ϕ
2
sq. (3.8)

Since J ′(z0) 6= 0, ϕ′sq(z0) 6= 0. Hence

ϕ′(z0) = ϕ′sq(z0)(α1 + 2α2ϕsq(z0)). (3.9)

By explicitely imposing ϕ′(z0) = 0 we obtain

α1 = −2α2|J(z0)− 1|. (3.10)

After having substituted the definition of α2, we obtain

α1 :=
2b1

|J(z0)− 1|
. (3.11)

The final expression of the energy is then:

ϕ(z, b0, b1, z0) =
b0|J(z)− J(z0)|2

|1− J(z0)|2
− b1|J(z)− 1|2

|J(z0)− 1|2
+

2b1|J(z)− 1|
|J(z0)− 1|

. (3.12)

However, this proposal for the energy strain function needs to be discarded for the
following two reasons. First and foremost, by checking the behavior of (3.12) at the
extreme borders of the Poincaré half-plane H

ϕ(z, b0, b1, ) ∼
b0|J(z)− J(z0)|2

|1− J(z0)|2
− b1|J(z)− 1|2

|J(z0)− 1|2
∼ (b0 − b1)|J(z)|2

|1− J(z0)|2
z → +i∞.

Thus, in order to guarantee the correct behavior when z → +i∞, b0 > b1. This
condition lavishly limits the model; recalling that b0 is the height of the energy in
the square lattice and b1 is the height of the energy in the rhombic lattice, this
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latter would never be assigned to the role of absolute minimum.
(3.12) intrinsecally guarantees that z = i and z = z0 are always stationary points.
Though, we should also be able to ensure a correct positive-definite behavior of
linear elasticity in the vicinity of the minimizers by conveniently combining b0 and
b1, wherever z0 is. Let us fix for instance z0 in order to represent a skinny rhombic
lattice z0 = 1

2
+ i(

√
3

2
− δ), where δ = 0.1. By numerically computing the Hessian

matrix of (3.12) evaluated at z = i, after having exploited the identification beteween
the Poincaré half-plane H and R2, which allows to reformulate ϕ̂(x, y) := ϕ(z), we
obtain

Hϕ̂(0, 1) =

[
−2 d b0 + 2 b1 d 0

0 2 d b0 + 2 d b1

]
(3.13)

where d ' 28.664. By imposing that the eigenvalue Hϕ̂(0, 1)1 1 > 0, we obtain the
condition b0 < b1 which is contrast with the condition that ensures the correct behav-
ior when z → +i∞. This second observation hence condemns (3.12) to be discarded.

The previous analysis led us to formulate a model for the energy that contains a
further parameter

ϕ(z) = α1|J(z)− 1|+ β1|J(z)− J(z0)|2 − α2|J(z)− 1|2 + α3|J(z)− 1|3. (3.14)

By applying first condition in (3.2), the result is the same as (3.3). Again

β1 :=
b0

|1− J(z0)|2
. (3.15)

The second condition in (3.2) requires that

ϕ(z0) = α1|J(z0)− 1| − α2|J(z0)− 1|2 + α3|J(z0)− 1|3 = b1 (3.16)

which implies

α3 :=
b1

|J(z0)− 1|3
− α1

|J(z0)− 1|2
+

α2

|J(z0)− 1|
. (3.17)

Being z = i stationary in both ϕsq and ϕrhmb, naturally ϕ′(i) = 0 as always. On
the other hand, the third condition in (3.2) imposes

ϕ′(z0) = ϕ′sq(z0)(α1 − 2α2ϕsq(z0) + 3α3ϕ
2
sq(z0)) = 0. (3.18)

Hence, we obtain an explicit expression for α2

α2 := − 3 b1

|J(z0)− 1|2
+

2α1

|J(z0)− 1|
. (3.19)

The final energy is

ϕ(z, b0, b1, z0, α1) =
1

|1− J(z0)|3
[
α1 |1− J(z0)|3 |1− J(z)|+

|1− J(z0)| (3 b1 − 2α1|1− J(z0)|) |1− J(z)|2+

(−2 b1 + α1|1− J(z0)|) |1− J(z)|3+

b0 |1− J(z0)| |J(z)− J(z0)|2
]

(3.20)
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or, in terms of the unimodular strain C̄:

σd,weak(C̄, b0, b1, C̄0, α1) =
1

|1− J(ẑ(C̄0))|3
[
α1 |1− J(ẑ(C̄0))|3 |1− J(ẑ(C̄))|+

|1− J(ẑ(C̄0))| (3 b1 − 2α1|1− J(ẑ(C̄0))|) |1− J(ẑ(C̄))|2+

(−2 b1 + α1|1− J(ẑ(C̄0))|) |1− J(ẑ(C̄))|3+

b0 |1− J(ẑ(C̄0))| |J(ẑ(C̄))− J(ẑ(C̄0))|2
]

(3.21)

where ẑ is (1.21) and C̄0 is any rhombic-lattice metric. The subscript weak indicates
weak phase tranformations.
The free parameters of (3.2) are four: b0, b1, z0, α1. The first two parameters can be
reduced to one to represent the relative height of the energy in the two minimizers
z0 and i; this unique free paramer is directly related to temperature.The parameter
z0 is determined by the specific metric of the martenstic phase. It should be noticed
that the simple proposed expression does not provide a smooth limit z0 → i or
z0 → ρ to study a second-order phase transition in which the martensitic phase
departs continuously from the austenite. Proper energies which deal also with this
case can be built from the Klein invariant, but we will not consider them in this
context. Thus we exclude i and ρ from the range of possible values for z0. α1 is an
additional parameter; according to the values of b0, b1, z0, we can describe it as the
control knob of some morphological features of the energetic landscape. On the
other hand, it must satisfy one condition, which originates from the usual control
on the behavior of the energy at infinity

ϕ(z, b0, b1, α1) ∼ −2 b1 + α1|1− J(z0)|
|J(z)− J(z0)|3

|1− J(z)|3 z → +i∞. (3.22)

The condition to guarantee that ϕ(z) ∼ +∞ when z → +i∞ is

α1 >
2 b1

|J(z0)− 1|
. (3.23)

It would be too long to discuss the conditions ensuring the conditions to ensure the
positive-definite behavior of linear elasticity in the vicinity of the minimizers for all
possible values of all the free parameters. In the following sections, however, by
choosing some specific, yet generic, values for some parameters, we will show how
this analysis can be conducted in general.
The last observation concerns what happens at the hexagonal lattice z = ρ = ei

π
3 .

Being z = ρ a third-order zero for the Klein invariant J , from (2.5) z = ρ (and
its equivalent copies) is not only a spontaneus stationary point for the energy in
(3.20) but also a degenerate critical point with a null Hessian, whose order will be
determined in the following sections through the Taylor expansion of (3.20) in the
neighbourhood of z = ρ.
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3.2 Critical energetic landscape at the thermody-
namic transformation temperature

Fixing the temperature of our model results into fixing the relative height b0
b1
.

A meaningful value is b0
b1

= 1. In this case, the height of the energy is the same
at both lattices. Adopting the martensitic phase tranformations vocabulary, we
call the temperature such that both minimizers have equal energy density the
thermodynamic tranformation temperature or simply the transformation temper-
ature (see Battacharya (2004)). Hence, there remain two leftover parameters. z0

controls the position of the less-symmetrical minimizer, which in our model is
etiher a fat or skinny rhombic lattice, mildly or extremely distorted. In other
words, z0 manipulates the extent of the symmetry-breaking property of the weak
transformation. The other parameter is α1, whose role will be clarified later on.
The first necessary observation deals with the convexity of the function in the vicin-
ity of the minimizers. It can be numerically proven that (3.23) and the conditions
which ensure the positive-definite behavior around i and z0 coincide when b0 = b1.
Let us fix for instance again z0 = 1

2
+ i(

√
3

2
− δ), where δ = 0.1. Then (3.23) is

α1 > f b1 (3.24)

where f = 2
|J(z0)−1| ' 2.066. On the other hand, numerical results of the Hessian

matrix of (3.20) evaluated at z = z0 and z = i give

Hϕ̂(
1

2
,

√
3

2
− δ) =

[
f b0 0
0 f b0 − 3 f b1 + 2α1

]
(3.25)

Hϕ̂(0, 1) =

[
−f h b0 + hα1 0

0 f h b0 + hα1

]
(3.26)

where h ' 28.735 and ϕ̂(x, y) := ϕ(z) is the usual formulation which exploits the
identification between H and R2.
Hence, if b0 = b1, the conditions the ensure that Hϕ̂(1

2
,
√

3
2
− δ) and Hϕ̂(0, 1) are

positive-definite both reduce to (3.24). This holds for any choice of z0 representing
a rhombic lattice. Being (3.24) an irrevocable condition (as it controls the behavior
of the energy at infinity), this implies that at a fixed temperature both z0 and i are
always relative minima (see Fig. 3.18 on page 73). On the other hand, this comes
as no surprise as we expect that both phases are stable when the height of the
energy is precisely the same at the two corresponding points, with such a simple
form of the energy as the one proposed. We will see in the next sections how the
stability of the two phases change when b1/b0 6= 1.
As soon as (3.24) is respected, the variation of α1 thus does not change the character
of stationary points. It intervenes on an other morphological aspect of the strain
energy function, which will be discussed later. For the moment we can imagine
that its value is chosen concurrently with the choice of z0 arbitrarly in the range of
those values respecting (3.24).
The first subsection (3.2.1) deals with the research of all stationary points of the
function (3.20) precisely under the hypothesis of equal height in the relative minima
i and z0, i.e. b1/b0 = 1.
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(a) Minimum in z = i (b) Minimum z = z0 = 1
2 +

i(
√
3
2 − δ)

(c) Restrictions on the axes of the min-
imum z = z0 = 1

2 + i(
√
3
2 − δ)

Figure 3.1: Energy surface in the neighbourhood of z = i and z = z0 when b1 = b0 = 1.
The last parameter α1 = 10 was chosen in order to respect (3.24)

The second subsection (3.2.2) discusses the variation of the character of the energy
surface (3.20) in the vicinity of the hexagonal point z = ρ according to the different
combinations of the free parameters b0, b1, z0, α1. The hexagonal point is special as
its character shows how modular symmetry acts on the topography of the energy
surface. The analysis will be rather involved because we are dealing with four
control parameters; the subsection thus initally presents the list of aspects which
will be treated, in order to hopefully guide the reader through the main steps.

3.2.1 Basins and mountain saddle passes

Since the energetic landscape embraces two relative minima z0 and i, we expect
natural passes to connect them. The area where those basins and elevations form is
the Poincaré half-plane H sectioned in congruent copies of the fundamental domain
D. Stationary points of (3.20) are searched all over D even though it emerges that
they tend to arrange along the boundary of D, which is thus the main research path
where we look for elevations. The square lattice i lies at one corner of D; the other
juction is at the hexagonal lattice forced by modular symmetry to be a degenerate
critical point with a null Hessian. A direct computation, whose details will be
discussed later, shows that z = ρ = eiπ/3 and its copies are degenerate critical points
of order 3 for every choice of z0, except for one z̄0 = x̄0 + iȳ0 corresponding to a
very distorted skynny rhombic lattice. Numerically, it can be found that ȳ0 ' 1.326
when b0 = b1 = 1. This latter makes them degenerate critical point of order 6. In
all other cases z = ρ = eiπ/3 is a monkey-saddle that sits at a bifurcating mountain
pass along the symmetry related minimum-to-minimum energetically optimal path
(see Fig. 3.2 on the next page). According to which of the paths leaving from
z = ρ = eiπ/3 are descent or ascent directions, elevations generate in different points
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Figure 3.2: Energy surface in the neighbourhood of z = ρ when b1 = b0 = 1 and
z0 6= z̄0. The last parameter α1 = 10 was chosen in order to respect (3.24).
It represent a typical monkey-saddle surface as a monkey could comfortably
seat on it by arranging its legs and tail along the descent directions of the
surface.

of the boundaries of D (see Fig. 3.3 on the facing page). As already mentioned,
the position of z0 is the parameter controlling the nature of ρ, hence whether the
paths leaving from it are ascent or descent; eventually it entirely manipulates the
morphology of the strain energy function with its peaks and basins (see Fig. 3.4 on
page 54). Those elevations forming along the relevant paths connecting the minima
turn out to be standard saddles (see Fig. 3.5 on page 55).

3.2.2 The energy surface in the neighbourhood of the hexag-
onal lattice

Modular symmetry forces the hexagonal points to be degenerate critical points
with a null Hessian. This condition does not derive from some particular values
of the free parameters of (3.20)(b0 , b1 , z0 , α1) but it occurs spontaneously because
(3.20) was not constructed in order to ensure a convex behavior in the vicinity of
ρ, but in the vicinity of i and z0. This opening statement justifies the temporary
neglect of the hypothesis that has guided the previous section b0 = b1 = 1.
We now want to carefully look at the behavior of (3.20) near ρ, in order to establish
the order of this degenerate critical point depending on the values of any free
parameter.
As already said, since the possible combinations of the free parameters are many
and have many implications (for instance on the correct behavior of the energy at
infinity) the discussion around the order of the degenerate critical point ρ turns to
be quite involved, hence the relevant steps of the analysis are here presented:

1. It is obtained the Taylor expansion of the potential around ρ by restricting
ourselves in the neighbourhood of this point. This expression hides the variety
of possible behaviors attainable by the surface in the vicinity of ρ according to
the values of the free parameteres b0 , b1 , z0 , α1. This expression is analyzed
through the help of a result taken from Peckham (2011); in particular it
emerges that ρ is a third order degenerate critical point, i.e. a monkey
saddle, for most combinations of the free parameters. However there are
some combinations which makes it a sixth order degenerate critical point.
The objective of the following steps is precisely to provide the combinations
of b0 , b1 , z0 , α1 that transform ρ from a monkey-saddle to a sixth order
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(a) ysquare < y0 < yhex (b) yhex < y0 < ȳ0 (c) y0 > ȳ0

Figure 3.3: A repeated portion of the Poincaré half-plane H. Two equivalent square
points (i, ζ = 1/2(i+1)), one hexagonal point (ρ = eiπ/3) and three equivalent
rhombic points are indicated. The second relative minimum (besides the
square) is located in z0 = 1/2 + i y0 where y0 belongs to the three different
ranges indicated in the caption. The relative minima heights are set to be
equal to: b0 = b1 = 1 while α1 is chosen in order to respect (3.24) for each
considered value of z0. Red lines indicate ascent directions, while green lines
descent directions.
(a) ysquare < y0 < yhex, i.e. z0 represents a fat rhombic lattice. The ascent
paths leaving from the rhombic minimum and the square minimum meet in
saddle points, identified by the blue spots. The hexagonal configuration is a
monkey saddle, with three descent directions leading towards the minimizing
rhombi.
(b) yhex < y0 < ȳ0 where ȳ0 is such that z = ρ is a 6-th order degenerate
critical point. z0 is now a mildly distorted skinny rhombic lattice. Notice
that ρ is still a monkey-saddle, but ascent and descent directions interchange
with respect to (a). Blue spots indicate fat rhombic standard saddles, which
generate at the summit of meeting ascent paths.
(c) y0 > ȳ0, thus z0 is a very distorted skinny rhombic lattice. Ascent
and discent paths leaving from ρ have interchanged again. Blue spots now
correspond to skinny rhombic standard saddles; the progressive departure
of z0 from ρ has caused the transfer of those stationary points beyond the
hexagon. When y0 = ȳ0 blue spots collide into the 6-th order degenerate
point, i.e. z = ρ.
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Figure 3.4: Position and character of the stationary points of (3.20) depending on the
position of z0 when b0 = b1 = 1. α1 is chosen so that for every choice of z0,
(3.24) is respected. All relevant features of the energy can be represented
by points lying on the straight line x = 1

2 . Thus, each curve of the graphic
represents the variation of the y-coordinate of the stationary points with a
constant x = 1

2 . The black solid horizontal line represents the stable behavior
of the square lattice, which is always a minimum. The dotted horizontal
line represents the unstable behavior of the hexagonal lattice z = ρ = eiπ/3,
which is for every y0 except ȳ0 a monkey-saddle: the grey zone indicate
the range of y0 such that the ascent paths are those that connect ρ to the
infinity and the descent paths are those that connect z = ρ to the three
square lattices around it, while the black zone indicate the range of y0 such
that the situation is reversed. Blue solid sloped line indicate stable behavior
of the rhombic lattice z0; it is the curve y = y0, which exactly bisects the
plane because y0 is the independent variable. White circles represent the
points of discontinuity in the values attainable by z0, i.e. i and ρ, for which
the model does not provide a smooth limit for z0 as it has been explained
at the beginning of section 3.1. Red dotted curve indicates the unstable
behavior of the rhombic saddles that generate along the path between the
two minima i and z0. Their position change according to the value of y0.
The first vertical dotted green line indicate y0 =

√
3

2 and the second one
y0 = ȳ0 ' 1.326, which are relevant values of y0. The first one indicates the
passage from z0 being a fat rhombic lattice to z0 being a skinny rhombic
lattice. The second one indicates the position of z0 such that saddles collide
into the hexagon lattice, which turns into a sixth order degenerate critical
point.
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Figure 3.5: Energy surface in the neighboor of the standard saddle corresponding to
z = −1

2 + iȳ, where ȳ ' 0.587. This saddle is the mountain pass to cross
along the path connecting the square minimum z = ζ = 1/2(i+ 1) and the
minimum z0 = −1

2 + i(
√

3
2 − δ), where δ ' 0.1 (y0 = 0.75).

degenerate critical point and to understand precisely what it a sixth order
degenerate critical point.

2. It is examined the expression of the Taylor expansion that controls the
behavior of ρ when it can be classified as a sixth order degenerate critical
point. In particular, we analyzed the dependence of this expression on the
control parameter α1: it turns out that there are some singular values of this
parameter which would make this expression further degenerate. However a
number of remarks leads to observe that these singular values are actually not
to be considered valid. The conclusion of this step is that when ρ does not
behave as a monkey-saddle it can be classified as a sixth order saddle surface.

3. The last step explicitely provides the combinations of values of b0 , b1 , z0 , α1

that make ρ a sixth order saddle surface both numerically and analytically.
Two hypothesis are adopted: b0 = 1 is fixed, hence the free parameters are
three and i and z0 have always to behave as relative minima. This latter
hypothesis generates some restrictions on the remaining free parameters α1

and b1.

This analysis is presented in all its details to be thorough. However the most
relevant information that has to be recovered is that the energy surface mostly
behaves as a monkey-saddle surface in the vicinity of ρ. On the other hand, there
are some combinations of the free parameters that makes it a saddle surface of
order six: Figure 3.11 on page 64 will provide these combinations.

1.
For the first step we ought to reconsider the reformulation we exploited several
times

ϕ̂(x, y) := ϕ(z). (3.27)

Notice that for convenience’s sake in (3.27) we dropped the dependence on the
four (which can be reduced to three) free control parameters z0, b0, b1, α1, but
conceptually it obviously remains.
Then, we expand around ε = 0 the function f(ε) = ϕ̂(1

2
+εu,

√
3

2
+εv) where u, v are

the displacements from the position (1/2,
√

3/2) on R2 equivalent to z = ρ = eiπ/3

on the Poincaré half-plane H.
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In the result we highlight again the dependence on the four free parameters.
However, the dependence on z0 transforms into the dependence on γ = J(z0).
Taylor expansion gives us

f(ε, b0, b1, γ, α1) =
b1(−1 + 3γ) + (−1 + γ) γ2 (b0 + α1)

(−1 + γ)3
+

a1 y(−3x2 + y2) γ (6 b1 + 2b0 (−1 + γ) + (−2 + γ + γ2)α1)

(−1 + γ)3
ε3−

a2(x4 − 6x2y2 + y4) γ (6 b1 + 2b0(−1 + γ) + (−2 + γ + γ2)α1)

(−1 + γ)3
ε4+

a3 y (5x4 − 10x2y2 + y4) γ (6 b1 + 2b0(−1 + γ) + (−2 + γ + γ2)α1)

(−1 + γ)3
ε5+

(a2
1 (x2 + y2)3(

b0

(−1 + γ)2
+
a2

1

2
)+

3a2
1 (x6 + 21x4y2 − 9x2y4 + 3y6) (2b1 + (−1 + γ)α1)

2(−1 + γ)3
+

a2
1 (x6 + 12x4y2 − 3x2y4 + 2y6)(3b1 + 2(−1 + γ)α1)

(−1 + γ)2
+

a4(−x6 + 15x4y2 − 15x2y4 + y6)
γ (6 b1 + 2b0(−1 + γ) + (−2 + γ + γ2)α1)

(−1 + γ)3
) ε6

(3.28)

where a1 ' 26.473, a2 ' 45.852, a3 ' 52.946, a4 ' 200.907. The first three
coefficients could already be found in the previous Taylor expansion (2.29) as
expected.
This expression could appear mightily contorted but hopefully few observations
will make it less confusing.
The only 0-th order term is precisely the height of (3.20) when z = ρ. The fact that
expression (3.28) lacks both linear and second order terms proves that z = ρ is a
degenerate critical point with a null Hessian. Higher order terms can be analyzed
with the help of an expression taken from Peckham (2011). It is a infinite sequence
that provides polynomial expressions for an infinite family of high order saddle
surfaces

fn(x, y) =
n∑
k=0
k even

(
n

k

)
xn−kykik. (3.29)

From this formula we can derive the normal expression for a second order saddle,
which is a standard saddle

f2(x, y) = x2 − y2. (3.30)

The description of a third order saddle, which is a monkey-saddle:

f3(x, y) = x3 − 3xy2. (3.31)

And so forth:
f4(x, y) = x4 − 6x2y2 + y4. (3.32)
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The fifth order saddle is called starfish saddle

f5(x, y) = x5 − 10x3y2 + +5xy4 (3.33)

f6(x, y) = x6 − 15x4y2 + 15x2y4 − y6. (3.34)

Each saddle in this family is characterized by the fact that it has precisely n
directions in which the function decreases and n directions in which it increases.
Moreover the graph is symmetric in such a way that all the descending and all the
ascending pahts are symmetric.
We observe that the polynomial expansion in (3.28) contains each of these expres-
sions. Third order term is the one characterizing the behavior of (3.20) in the
neighbourhood of z = ρ, provided that its multiplying coefficient is not zero. In this
case, the hexagonal point is a monkey-saddle. Though, as soon as the combination
of b0, b1, γ, α1 is such that

6 b1 + 2 b0(−1 + γ) + (−2 + γ + γ2)α1 = 0 (3.35)

the third order term disappears. However, the left hand side of expression (3.35)
also multiplies fourth and fifth order terms and a part of sixth order terms. Hence,
if (3.35) is zero, ρ degenerates from a third order to a sixth order critical saddle.
This is a consequence of the dimensions of the lattice group of the hexagonal
metric. If we solve (3.35) with respect to γ, we are able to predict for every value
of the relative height b0

b1
and of α1 which value of γ would tranform the hexag-

onal points into sixth order degenerate critical points of (3.20). In other words
we are able to forecast for every value of the temperature which choice of the
second minimum z0 would make the hexagon a sixth order degenerate critical point.
We will now discuss in which sense, taking into account also the role of α1 parameter.

2.
First and foremost, solving (3.35) gives us the following expressions

γ1(b0, b1, α1) =
−2 b0 − α1 −

√
4 b2

0 + 12 b0 α1 − 24 b1α1 + 9α2
1

2α1

(3.36)

γ2(b0, b1, α1) =
−2 b0 − α1 +

√
4 b2

0 + 12 b0 α1 − 24 b1α1 + 9α2
1

2α1

. (3.37)

Once we have substituted to γ expression (3.36) (or indifferently expression (3.36)),
the expansion (3.28) loses its dependence on γ. Sixth order terms, which controls
the behavior of the function in the vicinity of ρ, become

g(x, y, α1) =
1

3
a2

1 (x6 + x4 y2 (6− 9α1) + x2 y4 (1 + 6α1) + y6(
4

3
− α1)). (3.38)

This expression only depends on α1 and the dependence on the relative height is
lost. Though, it is not lost in the 0-th order term, which controls the altitude of
the potential when z = ρ. Once we fixed α1 we could be misled into infering that
the appearance of the strain energy function in the vicinity of ρ, which is controlled
by (3.38), is the same at every temperature. However, this would hold under the
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indispensable condition that γ, i.e. z0, was chosen at each temperature in order to
satisfy relation (3.36). Hence, there exists a dependence on the temperature, which
is hidden in the choice of γ.
To help us understand the dependence on α1 of (3.38), we perform the following
change of variable

h(ϑ, α1) := g(cosϑ, sinϑ, α1). (3.39)

The angle ϑ identifies the directions around z = ρ. According to the sign of
h(ϑ, α1), we are able to determine which of these directions are upward and which
are downward for every fixed value of α1. Observing (3.38), it is evident that for
certain values of α1 the expression loses one of its monomials accordingly. Indeed

g(x, y,
4

3
) =

a2
1x

6

3
− 2a2

1x
4y2 + 3a2

1x
2y4 (3.40)

g(x, y,
2

3
) =

a2
1x

6

3
+

5

3
a2

1x
2y4 +

2a2
1y

6

9
(3.41)

g(x, y,−1

6
) =

a2
1x

6

3
+

5

2
a2

1x
4y2 +

a2
1y

6

2
. (3.42)

For every other fixed value of α1, (3.38) can be traced back to (3.34). This latter
expression is the normal polynomial description of a sixth order saddle. We can
thus infer that the behavior of the strain energy function in the vicinity of ρ is
precisely the one of a sixth order saddle surface (Fig. 3.6 on the facing page). In
particular when α1 = 7

3
we recover the normal form

g(x, y,
7

3
) =

1

3
a2

1 (x6 − 15x4y2 + 15x2y4 − y6). (3.43)

A sixth order saddle surface is such that there are six relevant directions; along
three of them the surface has a maximum while along the three remaining directions
it has a minimum. The plot of (3.39) for different values of α1 best clarifies the
picture (see Fig. 3.7 on page 60).
So far we have been describing the meaning of (3.38) without ever considering
which implications stem from the dependence on the relative height. (3.38) is the
degenerate form of Taylor expansion’s sixth order terms, once γ is chosen to be
(3.36) or (3.37). These expressions do not exist for every value of α1. Setting b0 = 1,
their domain is defined as

0 < b1 < 1 ∨
{ (b1 ≤ 0 ∨ b1 ≥ 1)∧[
α1 ≤

2

3
(−1 + 2 b1)− 4

3

√
−b1 + b2

1 ∨ α1 ≥
2

3
(−1 + 2 b1)− 4

3

√
−b1 + b2

1

]
}

.

(3.44)

Hence, for every fixed value of the temperature, which produces a corresponding
fixed value of b1/b0, α1 needs to satisfy condition (3.44). As a consequence, not
all previously mentioned "singular" values of α1 are always valid. This is the
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(a) α1 = 10 (b) α1 = 7/3 (c) α1 = 4/3

(d) α1 = 2/3 (e) α1 = −1/6

Figure 3.6: Energy surface in the vicinity of ρ at different values of α1. (a) and (b)
are sixth order saddle surfaces. (c) , (d) and (e) show the behavior in the
degenerate cases (3.40), (3.41), (3.42).

first constraint to which α1 is subjected. High values (α1 ≥ 7
3
) tipically ensure

compliance with condition (3.44) for any value of b1/b0, which implies this would
be a more convenient choice.

3.
The previous paragraph unfolds from the hypothesis that γ satisfies either expression
(3.36) or (3.37). Since γ = J(z0), these expressions precisely allow us to forecast,
for every value of the temperature, which choice of the second minimum z0 would
make the energy surface in the vicinity of ρ convert from a monkey-saddle to what
we found to be a sixth order saddle.
In subsection (3.2.1), it is reported a value of z0 satisfying this property; we labelled
it z̄0. This value was obtained numerically starting from the full strain energy
function (3.20), under the hypothesis of the energetic landscape being paralyzed at
a fixed value of the relative height b1/b0 = 1. We recall that this latter condition
implies that α1 does not change the character of stationary points, as it is explained
at the beginning of section (3.2): we obtain the very same z̄0 for any value of
α1 satisfying condition (3.23). We can now recover and confirm this value also
analytically by exploiting expression (3.35). We obtain

γ1(1, 1, α1) = −2 ∀α1. (3.45)

This value is exactly the one attained by Klein Invariant J when z = z̄0 = x̄0 + iȳ0,
where x̄0 = −1

2
and y0 ' 1.326 :

J(−1

2
+ i 1.326) ' −2. (3.46)
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(a) h(ϑ, α1) (b) H around ρ

Figure 3.7: (a) h(ϑ, α1) for ϑ ∈ [0, 2π] at different values of α1. It is a periodic function,
whose period is π3 . Black dashed vertical lines indicate values of ϑ correspond-
ing to x-direction, gray dashed vertical lines indicate values corresponding
to y-direction. Blue and cyan dashed lines indicate ϑ values corresponding
to the round geodetics crossing ρ. (b) represents a portion of the Poincaré
half-plane H around z = ρ. We represented only the geodetics crossing
ρ. Black dashed horizontal line identifies x-direction: it is not a geodetic
belonging to Dedekind Tessellation, but simply a graphic device. Graphic
conventions are consistent with those adopted in (a).
For every value of α1 the function behaves identically along y-direction and
along blue and cyan geodetics (let us name these directions "first group").On
the other hand, it behaves identically along x-direction and along directions
corresponding to ϑ = π

3 +k π3 , k = 0, 1, 2, 3 ("second group"). At α1 = −1/6,
all directions are upward, with maximum ascents along the first group and
minimum ascents along the second group. Also at α1 = 2/3, every directions
is upward but maxima and minima interchange. At α1 = 4/3, the second
group of directions are upward and the first group locates directions where
the function is flat. At α1 = 7/3, along the first group of directions the
function descends at its highest steepness, while along the second group of
directions the function climbs up at its highest steepness. When α1 increases,
for instance α1 = 10, the picture is the same as for α1 = 7/3 but the descents
are steeper.
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Notice that we also confirmed the partial irrelevance of α1 since −2 holds ∀α1. We
named it partial because condition (3.23) must be respected, although evidently this
constraint does not come to the light when considering the polynomial expansion
of the potential. (3.23) is the second constraint to which α1 is subjected.

Polynomial approximation is a robust device, which allows to easily neglect some
of the hypotheses that can not be dropped when working directly with (3.20),
unless some numerical efforts. We consider again two relative minima with possibily
different heights, by fixing b0 = 1 and releasing b1, which becomes the main free
parameter. In this regard, we need to make one important remark.
Imposing b0 = b1 = 1 implies that the conditions to ensure that Hϕ̂(x0, y0) and
Hϕ̂(0, 1) are positive-definite both coincide with (3.23): together with (3.44), these
are the two "only" constraints imposed on α1. When b1 is a free parameter, a
further requirement intervenes, i.e. a third constraint. Let us analyze again the
case of z0 = 1

2
+ i(

√
3

2
− δ), where δ = 0.1. An easy computation shows that in order

to guarantee that the eigenvalues of (3.25) and (3.26) are all strictly positive α1

must respect a third constraint

α1 >
3

2
f b1 (3.47)

where f = 2
|J(z0)−1| . Expression (3.47) is not the proper condition for every choice

of z0. It has to be numerically retrieved every time; though, we can generally claim
that it will turn to be more restrictive than (3.23).

With this awareness, we can finally address the research of the values of z0 that
make the energy in the neighboor of ρ a sixth order saddle surface for each value of
b1 (recall that b0 = 1 has been fixed).
Since z0 represents either a fat or a skinny rhombic lattice, it can lie on two of
the three edges of the fundamental domain D. Those edges both can be found on
the straight line x = 1

2
, as well as on all its suitable copies because of GL(2,Z)-

invariance. By fixing x0 = 1
2
and varying y0 ∈ (1

2
,∞) \ {

√
3

2
}, we explore all the

possibilities for z0.
When considering the polynomial expansion, the research of the values of z0 fulfilling
the mentioned requirement is just a matter of plotting (3.35). Though, the result
has been obtained also numerically (see Fig. 3.8 on the following page). In other
words, adopting the labelling convention of subsection (3.2.1), we are seeking for
the relation J(z̄0)(b1). A priori, we can not know in which range it is suitable to
vary b1. Let us consider for instance b1 ∈ [−4, 4]. The numerical result shows that
J(z̄0) is approximately confined in J(z̄0) ≤ −1, hence it is always negative. As
a consequence, z̄0 represents for every value of b1 in this range a skinny rhombic
lattice (see Fig. 3.9 on the next page).
We need to ensure that z̄0 obtained for every value of b1 is truly a minimum, as well
as z = i. As we already mentioned, this results in choosing α1 so that it respects
the three depicted constraints. A rather high value of α1 safely guarantees that the
requirements are obeyed. Thus, Fig. 3.8 on the following page is obtained under the
hypothesis α1 = 10. Consequently, also the choice of the range b1 ∈ [−4, 4] gains a
proper significance; for this value of α1, (3.44) implies that b1 ≤ 64

15
' 4.27. Notice
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(a) J(z̄0)(b1) (b) J(z̄0)(b1) (c) ȳ0(b1)

Figure 3.8: Behavior of J(z̄0)(b1) when α1 = 10. (a) Result obtained analytically by
plotting (3.36). Blue dashed line locates the symmetry axis of the function.
Black dashed lines locate J(z̄0) in the case b0 = b1 = 1: this is −2, as
(3.45) shows. (b) The same result obtained numerically. (c) By inverting
the function in (b), we can obtain the behavior of ȳ0; this fully locates z̄0

because x̄0 = 1/2 is fixed.

Figure 3.9: J(z0) where z0 = x0 + iy0. We fix the x-coordinate, x0 = 1/2, and we vary
the y-coordinate, y0 ∈ (1

2 ,∞) \ {
√

3
2 }. When z0 represents a fat rhombic

lattice the Klein Invariant J attains values between 1 and 0, where 1 and 0
are to be excluded because they are the values it attains at the vertices of
D z = i ans z = ρ; as explained in section (3.1) they are not valid values
for z0. When z0 represents a skinny rhombic lattice, it attains increasingly
negative values. Notice that all values are real because we restricted at the
boundary ∂D of the fundamental domain.
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Figure 3.10: (3.36) and (3.37) when b0 = 1 and α1 = 10. The independent parameter
is b1, which varies according to condition (3.44): b1 ≤ 64

15 . Blue dashed
line indicates the symmetry axis, which splits the two branches γ1 and
γ2. Red dashed line indicates γ2 = J(z̄0) = 0, which would imply z̄0 = ρ
and γ2 = J(z̄0) = 1, which would imply z̄0 = 1; these are not acceptable
values for z0. The upper branch locates values of J(z̄0) that correspond to
either skinny rhombic lattices gathered in the neighboor of ρ or fat rhombic
lattices. α1 = 10 is not high enough to guarantee that each z0 belonging
to this branch conveniently combined with the corresponding value of b1
on the horizontal axis is a minimum for the strain energy function together
with z = i. Thus, the values of z̄0 located by the second branch γ2 are not
to be considered.

that all the considered relationships are recursive and the dependences among the
parameters are tangled: the adopted way of proceeding is one in a collection of
possible procedures.

One could object that we never considered expression (3.37). It describes the
twin branch of (3.36), as we can recognize from the plot of both (3.36) and (3.37)
(see 3.10). This branch locates z̄0 gradually closer to z = i for each value of b1. The
combinations of z̄0 and b1 pinpointed by this branch would require increasing values
of α1 to fullfill the three constraints, untill α1 diverges; if we set α1 = 10, this branch
locates non acceptable solutions. This naturally leads to the last observation.
We want to investigate what happens to the branches describing the evolution
of J(z̄0)(b1) when increasing α1, in order to make acceptable a a wider range of
solutions. Observing 3.11 on the following page, it is revealed that high values of
α1, which are necessary if we want to ensure the condition of minimum of those
z̄0 close to i, flatten the branches precisely at the constant values J(z̄0) = −2 and
J(z̄0) = 1; this latter would correspond to z̄0 = i, which is not acceptable. We can
thus infer that (exept for some meticolous combination of α1, b1) the second branch
of solution γ2 is not to be considered: z̄0 is unique and it corresponds to a skinny
lattice, more or less deformed according to the value of b1.

3.3 Energy barriers

This new section is devoted to the analysis of some relevant transformations by
means of the model we have been describing in this chapter. Our strategy retraces
the one adopted in section (2.4) of the previous chapter, which was commited to the
same topic. Thus, we skittishly take the liberty to neglect the proper introduction;
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(a) J(z̄0)(b1) at different val-
ues of α1

(b) J(z̄0)(b1) at different
high values of α1

Figure 3.11: (a) γ1 and γ2 at different values of α1 = 8, 10, 20. Red dashed lines indicate
non acceptable values of J(z̄0). Black dashed lines cross at (b1, J(z̄0)) =
(1,−2). The variation of α1 does not move this point, as (3.45) shows. (b)
Same as (a), but α1 varies at higher values. Black dashed line indicates
b1 = 1. The two branches flatten at J(z̄0) = 1 and J(z̄0) = −2.

this would be a precise copy of that given at the beginning of the mentioned section.
We suppose again that the temperature is fixed, which implies that the relative
height b1/b0 is fixed. Since it has emerged from the previous sections that b1/b0 = 1
returns a meaningful energetic outlook, we assume again this hypothesis.
Among the equivalent copies of the fundamental domain D which constitute the
Dedekind Tessellation of the Poincaré half-plane H (hence of the strain space), we
can identify the "first neighbors", i.e. those domains sharing a part of the boundary.
These domains can be related through the following transformations (or by suitably
combining these):

z 7→ z + 1 (3.48)

z 7→ −1

z
. (3.49)

These transformations correspond respectively to a simple shear and a π
2
-rotation

(see section 1.2.1). More importantly, they descend from the matrices that span
SL(2,Z). As section (2.4) explained, jumping between equilibrium configurations
belonging to two domains sharing a portion of the boundary, hence related through
(3.48) or (3.49), let us explore the plastic domain. In particular the computation
of the energy barriers existing between such adjacent equlibrium configurations
allows to quantify the end of the elastic response of a material whose strain energy
function is precisely (3.20).
Since b1/b0 = 1, the equilibrium configurations correspond to either the square
lattices or the rhombic lattices, which are always minima under this hypothesis.
Thus, we can apply tranformations (3.48) and (3.49) both to i and z0. In particular
we will investigate the energy barrier associated to a simple shear from the square
equilibrium configuration

i 7→ i+ 1 (3.50)

and a π/2-prerotation followed by a simple shear from the rhombic equilibrium
configuration

z0 7→ −
1

z0

+ 1. (3.51)
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3.3.1 The physical intepretation of α1

Having chosen b1/b0 = 1, we deal with two free parameters z0, α1, which must
be combined as follows. For every z0 appointed with the role of minimum, the only
condition that α1 needs to obey is (3.23); once it is respected, z0 and i are the two
minima of the strain energy function. As this condition just provides a lower bound,
α1 partially remains free. Our purpose is to understand whether it is related to the
energy barriers, so that it can be conferred with some physical interpretation.
Stemming from (2.35), the energy barriers are computed by selecting the optimal
path to walk along between two chosen adjacent equilibrium configurations. We
are now dealing with two free parameters. Hence the definition changes accordingly

∆Ebest(z0, α1) = min
∀paths

max
z∈path

ϕ(z, z0, α1)− min
z∈path

ϕ(z, z0, α1) (3.52)

where ϕ(z, z0, α1) is (3.20) once fixed b1/b0 = 1.
This definition can be better understood in light of an example. Suppose that we
want to investigate the energetically optimal barrier-crossing path from i to i+ 1.
For every choice of the second minimum z0, the picture changes (see 3.4 on page 54).
For every fixed value of z0, among the paths connecting i to i+ 1 we choose the
one that guarantees to pass across the lowest among the summits. The walk ends
as soon as we encounter the minimum of (3.20) along the selected path. We can
compute the energy barriers through the difference between the maximum and
the minimum along the chosen path. The parameter α1 does not change neither
positions nor character of stationary points, hence it does not intervenes on the
choice of the path. As we are about to see, α1 either amplifies or contracts the height
of the barriers. Most interestingly, this happens with a simple linear dependence.

Since the choice of z0 affects the landscape significantly, we represent in Fig. 3.12
on the following page the energetically optimal barrier-crossing paths of tranfor-
mation (3.50) and (3.51) accordingly considered in order to hopefully make the
following representation of energy barriers clearer. When b1/b0 = 1, we already
remarked that we can distinguish four significant choices of z0. We established
that all possible positions can be found along the straight line x = 1/2, hence x0 is
fixed and there are four relevant ranges where to set y0. These are conveniently
indicated in Fig. 3.12 on the next page. In this figure, we indicated transformations
i 7→ i + 1 and z0 7→ −1/z0 + 1. We can identify the most favorable paths of
each of the two tranformations; these imply crossing mountain passes and meeting
crossroads. Mountain passes correspond to the standard saddles, whose position is
reported in Fig. 3.4 on page 54. On the other hand, the main crossroads are at the
hexagonal points; these are mountain passes that sit along the symmetry-related
minimum-to-minimum energetically optimal paths.
The four ranges can be recovered in the energy barriers representation of Fig. 3.13.
Since b1/b0 = 1, i.e. the height of the energy is the same at the two minima i and
z0, when computing (3.52) it holds that for any choice of α1 and z0

min
z∈path

ϕ(z, z0, α1) = b0 = b1 . (3.53)

On the other hand the mountain pass to cross changes depending on the transfor-
mation considered and depending on the position of z0 as Fig.3.12 shows. However,
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(a) yhex < y0 < ȳ0 (b) ȳ0 < y0

(c) ysquare < y0 < yhex (d) y0 = ȳ0

Figure 3.12: Transformations and paths at different values of z0. The red line indicates
in each picture the shear i 7→ i + 1 and the green line indicates the
tranformation obtained by the composition of a π/2-prerotation and a
simple shear of the rhombic lattice z0 7→ −1/z0 + 1 . The yellow curve
draws the profile of the energetic passageway of the shear, while the orange
curve draws the one of the composed tranformation. The blue points
represent the saddles that generate along the geodesics: these are the
summits to cross in every paths. In (a) and (b), z0 corresponds to a skinny
rhombic lattice; (b) considers the case of a very distorted lattice, such that
the summits jump and change their nature from fat rhombic lattices to
skinny rhombic lattices. ȳ0 is the limit value; in (d) when y0 = ȳ0, summits
collide into the hexagonal lattice, which turns into a sixth order saddle
surface as discussed in the previous sections. While in this case the energy
descends along all geodetics leaving from ρ, in all other three cases the
hexagonal point is a monkey-saddle, i.e. the bifurcating mountain pass
to cross when walking between two adjacent and equivalent equilibrium
configurations. In (c), z0 corresponds to a fat rhombic lattice.
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(a) 360 ≤ α1 ≤ 1000 (b) 10 ≤ α1 ≤ 100

Figure 3.13: Energy barriers for every choice of z0 at different values of α1. z0 =
1/2+ i y0, hence y0 is the horizontal coordinate. Dashed black vertical lines
indicate special values of y0: 1/2 and

√
3/2, which are not valid because

they respectively correspond to the square and hexagonal lattice, and ȳ0,
which turns the hexagon in a sixth order degenerate critical point. In both
figures, solid lines indicate the behavior of the energy barrier with respect
to increasing values of α1 and y0 when the mountain pass to cross is at the
standard saddle; instead dashed lines represent the result obtained when
the mountain pass is at the hexagonal points. When y0 = ȳ0 the standard
saddles collide into the hexagonal points, which makes dashed and solid lines
meet. Figure (a) considers high values of α1. High values of this parameter
guarantee that condition (3.23) is respected even when z0 is close to i; at
this point the lower bound of condition (3.23) diverges to +∞. Figure (b)
considers lower values of α1, which guarantee that (3.23) is respected only
when z0 is conveniently far from i. In both figures dashed lines diverge
when z0 moves close to i because the height of the energy at the hexagonal
points depends on 1

|J(z0)−1|3 as (3.28) tells, hence transformations implying
a passage across the hexagonal points are impossible. In Fig.(b) we observe
that when z0 moves closer to i curves tend to −∞ because the values of α1

considered do not ensure a correct behavior of the strain energy function.
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(a) mountain pass at zsaddle (b) mountain pass at z = ρ

Figure 3.14: ∆Ebest(z0,α1)
α1

: (a) reports the result when we use (3.54) to compute the
energy barriers, while (b) reports the result obtained when using (3.55).
The values of α1 are those considered in Fig. 3.13 on the previous page.
Solid curves in Fig. 3.13 on the preceding page collide into one unique curve
when computing their ratio with respect to α1, as well as dashed curves.
This implies that the energy barriers have a linear increasing dependence
with respect to α1, which ultimately gains a precise physical meaning.

we observed that it can correspond either to the hexagonal points or to the rhombic
saddles. Hence, if we consider the portion of the Poincaré half-plane H around the
hexagonal point z = ρ

min
∀paths

max
z∈path

ϕ(z, z0, α1) = ϕ(ρ, z0, α1) (3.54)

or
min
∀paths

max
z∈path

ϕ(z, z0, α1) = ϕ(zsaddle, z0, α1). (3.55)

Therefore, Fig. 3.13 on the previous page reports what we obtained from the
computation of (3.52) considering each of the two possibilities (3.54), (3.55). It
emerges what we had previously announced: when increasing α1, the value of the
energy barrier increases. Furthermore, we can claim that ∆Ebest(z0, α1) is a linear
relation with respect to α1. The mathematical translation of this concept is

∆Ebest(z0, α1)

α1

= ∆Ebest(z0). (3.56)

This equality is confirmed by Fig. 3.14.
In conclusion, α1 can be defined as the parameter controlling the height of the
energy barriers of the plastic deformations, at least when we fix the temperature at
a value such that the energetic basins z = z0 and z = i are equally convenient.

3.4 Single state stability
Martensitic phase transformations are associated with abrubt modifications in

the lattice structure at some some specific values of the external control parameters,
such as the temperature or the mechanical loading. At high temperature the
austenite phase is the stable state while at low temperature the stable state is
martensite. A state stability impinges on the strain energy function by imposing a
positive-definite behavior around the point corresponding to the considered state.
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Figure 3.15: Behavior of the strain energy function (3.20) along the straight line x = 1/2
between z0 = 1/2 + i(

√
3/2 + δ) and the square lattice ζ = 1/2 + i1/2 at

different values of the temperature. For each value of the relative height by
properly choosing α1 we represent the case of one stable state cohexisting
with a metastable state and the case of one unique stable state. Only in
the case b1/b0 = 1 the square and rhombic points, indicated by vertical
dashed lines, are cohexisting minima and have equal energy density.

Hereinbefore, we have always properly combined the free parameters of (3.20)
in order to ensure that both i and z0 behaved as minima for the function. The
hypothesis b1/b0 = 1 enshrines their equal convenience as relative minima for the
potential. Section (3.2.2) also investigates different values of the relative height; in
this case i and z0 were minima, but one was the least energy state while the other
played the role of a metastable state.
We now want to examine the energetic landscape that generates when one single
phase between austenite and martensite is stable, exploring high and low tempera-
tures.
There being three free parameters b1/b0, z0 and α1, we have already appreciated
that the analysis is rather involved. Hence, we will fix z0 to a representative
value because for any other choice of z0 the procedure is analogous. We choose
z0 = 1

2
+ i(

√
3

2
+ δ), where δ ' 0.1: it represents a skinny rhombic lattice sufficiently

but not excessively distorted with respect to the hexagonal lattice.
We consider two values of the relative height in order to inspect both high and
low ranges of temperature. We expect that at high temperatures there exists a
unique stable state for the strain energy function in the square lattice i ; at low
temperatures i loses the privilege and exchanges the character of stable state with
the less symmetrical stationary point z0. Two specific values that turn out to
represent these two situations are

b1

b0

=

{
1/2 low temperature
2 high temperature

. (3.57)

Again, setting the relative height at one of these two values is not a sufficient
condition to completely fix the strain potential in order to properly represent the
demanded physical picture: α1 has to be conveniently chosen so that for each value
of (3.57) there exists one unique stable state. Indeed, we do not want to explore the
case of a stable state combined with another metastable state, which would express
in terms of (3.20) with the cohexistence of an absolute minimum and a relative
minimum (see Fig. 3.15); this case was already investigated in section (3.2.2).
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3.4.1 High temperature landscape

We will first analyze the case b1/b0 = 2, which sets the model in the domain of
high temperature. We want to inspect the profile of the strain energy function in
the case of a unique minimum corresponding to the square lattice.
Again, the resulting analysis risks to be mightily contorted because of the number
of conditions considered, hence we first present the list of the steps that have been
followed in this subsection :

1. We discuss the constraints that α1 should obey in order to guarantee that
the chosen z0 truly is an unstable critical point for the function (3.20) while
z = i is a minimum.

2. We analyze the character of z0 under these hypotheses and we observe how
the energetic landscape in turn changes by generating a new stationary point.

3. We release z0 from its fixed value (in the previous steps z0 is fixed to z0 =
1
2

+ i(
√

3
2

+ δ)) and we provide a general representation of the variations of
the energetic landscape (i.e. of its stationary points) at high temperature
(b1/b0 = 2) depending on z0. The value of the free parameter α1 is chosen
stemming from the considerations obtained in the previous steps. This choice
has some consequences on the generality of this representation, which are also
explored.

1.
In order to represent the required picture α1 is subjected to some conditions. On
the one hand, we usually impose a lower bound deriving from (3.23); this condition
is essential to ensure the physical consistence and validity of our model. On the
other hand, (3.20) should not have a positive-definite behavior in the vicinity of z0

because we want to explore instability. Hence, α1 has to be chosen in the following
range

2 b1

|J(z0)− 1|
< α1 < ᾱ1 (3.58)

where ᾱ1 ' 4.933 was obtained numerically computing the Hessian matrix of (3.20)

in z = z0 = 1
2

+ i(
√

3
2

+ δ). The lower bound is 2 b1
|J(z0)−1| ' 3.946.

For any value of α1 in this range, the energy surface is a standard saddle in the
neighbourhood of z0 (see 3.19 on page 73), while i always behaves as a minimum.
A short remark concerns the hexagonal points. As we discussed in section (3.2.2),
they are monkey-saddles except for precise combinations of the free parameters of
(3.20), none of which coincide with the one currently adopted.
The character degeneration of z0 into a standard saddle warps the energy profile.
If we chose α1 ≥ ᾱ1, the basins of (3.20) would still be at the square and rhombic
points; as soon as α1 falls into the range (3.58) the landscape depressions in z0 and
its equivalent copies turn into saddle mountain passes.

2.
Fig. 3.16 on the next page and Fig. 3.15 on the preceding page suggest that z0

remains a relative minimum along the direction orthogonal to the geodesic where
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(a) z = i (b) z = z0 (c) z = ρ

Figure 3.16: Behavior of the energy surface in the vicinity of i, z0 and ρ at high
temperature. The square lattice is the unique minimum of the function.
The rhombic lattice is a standard saddle while the hexagonal lattice is a
monkey-saddle.

Figure 3.17: Behavior of the energy surface in the vicinity of zmin

it lies and it tranforms into a relative maximum in the direction located by the
geodesic itself. The geodesic is the path connecting z0 on one side to the hexagonal
point and on the other side to infinity (see Fig. 3.3 on page 53(b) to visualize these
paths). There being a relative maximum at z0 along the geodesic, the tendency of
the energy is decreasing in the neighbourhood of this point. Though, this tendency
invert towards infinity because the energy has been constructed to eventually di-
verge to +∞. The tendency reversal point correspond to a new basin, i.e. a new
minimum for (3.20). When z0 = 1

2
+ i(

√
3

2
+ δ), where δ ' 0.1, the minimum is at

zmin = 1
2

+ iymin, where ymin ' 1.583, hence it represents a very distorted skinny
rhombic lattice (see Fig. 3.17).

3.
Starting from this, we proceeded with an analysis that retraces section (3.2.1).
The aim was to obtain a similar figure to Fig. 3.4 on page 54, in order to give a
meaningful representation of position and character of stationary points at high
temperature. Indeed, the position of zmin changes with the position of z0. However,
the basin corresponding to zmin only creates when z0 degenerates into a standard
saddle, which corresponds to a confined choice of the value of α1 parameter. For
each z0, α1 has to be confined in a upper and lower bounded range in order to
ensure that z0 would be unstable, as (3.58) yields for instance in a specific case.
However, Fig. 3.4 on page 54 was obtained by fixing α1. Hence, the new figure
was also obtained by fixing α1: we chose α1 = 3.95. The result is represented in
Fig. 3.18 on page 73. This value of α1 is slightly higher than the lowerbound in
(3.58), which controls the divergence of the energy at infinity. Since the lowerbound
decreases when z0 moves further from the hexagonal point towards infinity, such a
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value of α1 guarantees a correct behavior of the energy at infinity for any choice of
z0 representing a more distorted skinny rhombic lattice than the one corresponding
to z0 = 1

2
+ i(

√
3

2
+ δ) (δ ' 0.1). On the other hand, as z0 increases, α1 = 3.95 will

not be sufficiently small to mantain the unstable character of z0, which will turn
into a minimum. This limit value is ẑ0 = 1

2
+ iŷ, where ŷ ' 1.11. When y0 ≥ ŷ,

precisely as section (3.2.1) shows for the case b1/b0 = 1, the character of saddle
mountain pass is tranferred to a rhombic point between z0 and the square lattice.
This rhombic point corresponds to a skinny rhombic lattice; however for a small
range of z0, which is represented by the adjacent vertical dashed green lines on
Fig. 3.18 on the facing page, the saddle mountain pass travels across the hexagonal
point and turns into a fat rhombic lattice. This phenomen can be explained in
light of section (3.2.2): when plotting expression (3.36) and (3.37) at α1 = 3.95 (see
Fig. 3.18 on the next page(b)), it emerges that for b1/b0 = 2 there are two possible
values of ȳ0 that turn the hexagonal points into sixth order saddle surface. It is
then explained the tendency inversion of the red dashed curve when y0 > ŷ.
The analysis with all remarks and figures sprang from the initial choice on z0 as
the introduction of this chapter reported. A different but nonetheless analogous
picture would have been sourced from an other choice.

3.4.2 Low temperature landscape

Imposing b1/b0 = 1/2 sets the model in the domain of low temperature, where
we witness the loss of stability of i while z0 earns the character of the unique
minimum. In a complementary manner with respect to the previous situation, α1

has to be chosen in the following range in order to

2 b1

|J(z0)− 1|
< α1 ≤ ᾱ1 (3.59)

where ᾱ1 ' 3.946 was obtained numerically computing the Hessian matrix of (3.20)

in z = i. For this choice of z0 = 1
2

+ i(
√

3
2

+ δ), the lower bound is 2 b1
|J(z0)−1| ' 1.973.

Under these hypotheses the energy strain fuction is a standard saddle surface in
the neighboor of z = i, which is thus unstable (see 3.19 on the facing page) while z0

is a minimum. The previous remark about hexagonal points still holds, thus they
are monkey-saddles.
With respect to the high temperature landscape the outline is reduced to essentials;
besides the a priori imposed stationary points (z0 and its suitable copies, as well as
the square points) or those intrinsically part of the landscape because of symmetry
reasons (the hexagonal points) there do not exist additional stationary points.
Positions and characters of predictable stationary points fully indulge the tendency
of the function.

3.5 Valley-ridge inflection points and valley floors
In this section we propose a further analysis of the energy surface (3.20) which

arises from a parallelism with the potential energy surface analysis exploited in
theoretical chemistry to predict chemical reactions dynamics. This section draws
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(a) (b) γ1(b0, b1, 3, 95) and γ2(b0, b1, 3, 95)

Figure 3.18: (a) Position and character of stationary points at high temperatures, when
α1 = 3.95. All relevant features of the energy can be represented by points
lying on the straight line x = 1

2 . Thus, each curve of the graphic represent
the variation of the y-coordinate of stationary points with a constant x = 1

2 .
The horizontal axis corresponds to the variation of y0. Dashed pink vertical
line indicates y0 = i(

√
3

2 + δ) (δ ' 0.1): smaller values of y0 are not valid,
because α1 = 3.95 would not guarantee the correct divergence at +∞.
Hence the left hand side of the picture with respect to the dashed pink line
can be neglected. Black solid horizontal line indicates the stable behavior of
the square point represented by z = ζ = 1/2+i1/2. Grey horizontal dashed
line indicates the unstable behavior of the hexagonal point represented
by z = ζ = 1/2 + i

√
3/2. The blue solid curve indicates the position of

stable stationary points, while red dashed curves and lines indicate the
position of unstable stationary points. (b) When b1/b0 = 2, i.e. b1 = 2
when fixing b0 = 1, there are two intersections with the yellow curve: they
correspond to those values of J(z̄0), i.e. two values of ȳ0, that transform
the hexagonal points into sixth order saddle surface. These two values of
ȳ0 are reported in (a) from the last green dashed vertical lines: here the red
curve intersects the grey dashed horizontal line because rhombic saddles
collide into the hexagon, which turns into a sixth order degenerate critical
point exactly as it happened when b1/b0 = 1 (in that case we obtained
only one value of ȳ0, see subsection (3.2.1)).

(a) z = i (b) z = z0 (c) z = ρ

Figure 3.19: Behavior of the energy surface (3.20) in the vicinity of i, z0 and ρ at low
temperature. The rhombic lattice z0 = 1/2 + i(

√
3/2 + δ) is the unique

minimum of the function. The square lattice is a standard saddle while
the hexagonal lattice is a monkey-saddle.
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from the work done by Hoffman, Nord, Ruedenberg (1986) and Quapp, Hirsch,
Heidrich (2003).
The reason of this parallelism can be found in the definition of the minimum
energy path or reaction path on a potential energy surface: this is the optimal path
connecting two minimizers by passing a transition saddle point. The valley floor in
between the reactant and the product phase over the saddle point is the reaction
channel. A chemical reaction is the composition of a number of transitions that the
system accomplishes following such elementary paths.
The energy surface (3.20) precisely reproduces this picture (once its free parameters
are properly combined) if we interpret it as a potential energy surface where the
reactant phase correspond to the square lattice i and the product phase correspond
to the rhombic lattice z0. The behavior of (3.20) has been deeply analyzed in its
most significant facets in the case b1/b0 = 1. We thus assume again this hypothesis
which truly guarantees that i and z0 are minima of (3.20) once α1 has been fixed
according to the z0-dependent condition (3.23).
The aim of this section is to search for the optimal "reaction path" that leads from
the square minimizer to the rhombic minimizer following the definition given by
Hoffman, Nord, Ruedenberg (1986) who propose to seek valley floor lines among
what they call gradient extremals.
Before proceeding we ought to remark that not every choice of the second minimizer
is suitable to reproduce an energetic landscape that complies with the expressed
purpose. If we observe Fig 3.3 on page 53 we immediately appreciate that whenever
z0 corresponds to a fat rhombic lattice (picture (a)) the reaction paths trivially
coincide with the portions of the geodesics connecting each equivalent pair square
lattice - rhombic lattice (we will formally demonstrate that these paths actually
fullfill the definition of gradient extremals). Hence z0 has to be chosen among the
skinny rhombic points. In particular, we choose again a slightly distorted skinny
rhombic lattice to be the second minimizer: z0 = 1

2
+ i(

√
3

2
+ δ), where δ ' 0.1.

Subsection (3.2.1) precisely tells us that between the two minimizers we find a
saddle point (SP ) at z = 1/2 + i ySP , where ySP ' 0.59 (see also Fig. 3.5 on
page 55). Notice that z0 has been fixed for simplicity: for any other choice of z0

(among the skinny rhombic points) the analysis is analogous to the one we are
about to trace.

3.5.1 Gradient extremals

First and foremost we report the intuition of Hoffman et al. (1986) who define
a floor line as the path that allows a person walking in a valley and moving in a
direction perpendicular to the contour lines to perceive a minimal change in height.
Thus this curve consists of the points of intersection with every contour line where
the norm of the gradient is the smallest compared to its value in any other point of
the contour. Along this curve the valley is "least steep". In other words, we seek
those points in the contour subspace where the norm of the gradient

1

2
|∇f |2 (3.60)
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is extremal, where V = f(x, y) : R2 → R is the two-dimensional surface at least of
class C3 explored by the excursionist. At any such point the following condition
has to be satisfied:

(e · ∇)(∇f)2/2 = e · (∇∇) · (∇f) = 0 (3.61)

where e is the unit vector tangent to the contour line and perpendicular to the
gradient. Expression (3.61) implies that the projection of ∇(∇f)2/2 onto the
direction identified by this vector must vanish. The unit vector e is explicitely:

e = (fy,−fx)/(f 2
x + f 2

y )1/2 (3.62)

By inserting (3.62) and ∇f = (fx, fy) into (3.61) we obtain the differential equation
for the gradient extremals:

fxy(f
2
x − f 2

y ) + (fyy − fxx)fxfy = 0. (3.63)

Hoffman et al. (1986) prove in the appendix that this equation corresponds to
finding those points where

H(x)∇f(x) = λ(x)∇f(x) (3.64)

where x = (x, y) and H(x) = ∇∇f(x) is the Hessian matrix of f at the point x .
Expression (3.64) could be derived also from the problem to find an extremal of
(3.60) under the constraint V = f(x) = constant where λ is a Lagrangian multiplier.
This expression tells that "a gradient extremal is a locus of point where the gradient
of f(x) is an eigenvector of the Hessian of f(x)".
We can define the eigenvalue of the Hessian corresponding to the direction of ∇f(x)
as

λ = (∇f · ∇∇f · ∇f)/(∇f)2 = (fxxf
2
x + 2fxyfxfy + fyyf

2
y )/(f 2

x + f 2
y ) (3.65)

and the one corresponding to the direction of e as

λ′ = (e · ∇∇f · e) = (fxxf
2
y − 2fxyfxfy + fyyf

2
y )/(f 2

x + f 2
y ). (3.66)

Hoffman et al. (1986) also provide a classification of gradient extremals according
to the sign of (3.66) and an other quantity. First we ask ourselves how the surface
changes when moving from a point on the gradient extremal perpendicularly to the
gradient; if the ground rises we are walking in an actual valley while if it decreases
we are precariously walking along a ridge. More precisely if λ′ > 0 we are in a
valley while if λ′ < 0 we are on a ridge. Furthermore equation (3.63) allows to find
gradient extremals hence two other cathegories can be distinguished according to
whether these points define a maximum or a minimum of the gradient: if we are in
a minimum these points indicate the gentlest slope, while if we are in a maximum
they indicate the steepest slope. In this latter case we do not speak about valleys
and ridges but about cliffs and cirques (specularly). This jargon is interestingly
taken from the analysis of glaciers morphology. The distinction between the first
group (valleys and ridges) and the second group (cliffs and cirques) depends on the
sign of the second derivative of the norm of ∇f , i.e.

λ′′ = (e · ∇)(e · ∇)(∇f)2/2. (3.67)
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A number of manipulation that we do not report (see Hoffman et al. (1986) for the
direct computation ) yields the following expression:

λ′′ = λ′(λ′−λ)+(fxxxfy+fyyyfx)fxfy+fxxyfy(f
2
y −2f 2

x)+fxyyfx(f
2
x−2f 2

y ). (3.68)

Before moving to our case we would like to observe that gradient extremals are
not necessarily gradient flow curves. If this were so, the gradient would be tangent
to the gradient extremal itself and gradient extremals would be a special class of
steepest descent lines. One can prove that this depends on a cross third derivative
as follows.
Points where the gradient is an eigenvector of the Hessian which define gradient
extremals are characterized by the property that g(x) = H∇f ∧ ∇f = 0. In
components,

0 = εijk(H∇f)j(∇f)k = εijkHjl(∇f)l(∇f)k = εijkf,jlf,lf,k (3.69)

for i = 1, 2, 3 where εijk denotes the Levi Civita symbol which vanishes if two indexes
(i, j, k = 1, 2, 3) are equal, is equal to +1 if the indexes are a cyclic permutation of
(1, 2, 3) (hence (1, 2, 3), (3, 1, 2), (2, 3, 1)) and −1 if the permutation is odd (hence
(3, 2, 1), (1, 3, 2), (2, 1, 3)). Summation is understood among equal indexes, and the
comma indicates differentiation with respect to that variable, e.g. f,l = ∂f

∂xl
.

Expression (3.69) is interesting only for i = 3 in fact. Indeed it is the compact
notation for the explicit computation of g(x) which is:

g = k (fxxfxfy + fxyf
2
y − fyxf 2

x − fyyfxfy) (3.70)

where k = (0, 0, 1) is the third vector of the standard basis in R3.
Let us now consider a gradient flow curve, that is a curve such that in all its points
γ(s) = x(s) it holds γ̇ =

(
ẋ(s), ẏ(s)

)
= α(s)∇f(s). In all points where g(x) = 0, let

λ be the eigenvalue such that H∇f = λ∇f . Let us consider a gradient flow curve
γ(s), starting from a point x which is a gradient extremal point, with g(x) = 0.
We want to know if and when it is possible that all points of a gradient-flow curve
belong to a gradient extremal, i.e. g(γ(s)) = 0 for all s. By differentiating (3.69)
we obtain (highlighted in red the parts modified in the following line)

dg(s)

ds
= εijk(f,jlmẋm)f,lf,k + εijkf,jl(f,lmẋm)f,k + εijkf,jlf,l(f,kmẋm)

= αεijk

(
f,jlmf,mf,lf,k + f,jlf,lmf,mf,k + f,jlf,lf,kmf,m

)
= αεijk

(
f,jlmf,mf,lf,k + λ f,jlf,lf,k + λ f,jlf,lf,k

)
= αεijk

(
f,jlmf,mf,lf,k + λ2 f,jf,k + λ2 f,jf,k

)
= αεijkf,jlmf,mf,lf,k

where xm denotes one of the component of x = (x, y). If dg(s)
ds

= 0 the property
of gradient extremals is preserved for all points of the gradient flow curve. This
expression tells that the third gradient of f establishes whether a gradient extremal
is a gradient flow line as well. More precisely, an analysis of the result above shows
that given a gradient extremal point, a gradient flow line starting from
the point will keep on being a gradient extremal point only if

f,xxy = 0, (3.71)
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where x is the gradient direction (so that f,xx is the second derivative in the gradient
direction) and y is the direction orthogonal to the gradient.

3.5.2 Reaction paths on the Poincaré half-plane H
We finally move to our context. As already mentioned the objective is finding

the (non trivial) reaction path that connects the square point to the rhombic
point on the energy surface described through expression (3.20) with the following
combination of the parameters: b1/b0 = 1, z0 = 1

2
+ i(

√
3

2
+ δ) (δ ' 0.1) and α1 = 10

(this value allows to respect (3.23); any other value in this range could be chosen
because α1 does not intervenes on the position and character of the stationary
points of the function but it acts on the energy barriers as the previous sections
explain).
First we want to formally prove that all "trivial" paths are actual gradient extremals.
In this context trivial paths are represented by any geodesics connecting stationary
points on the Poincaré half-plane H, which we will prove to be gradient extremals
(hence reaction paths according to the definition of Hoffman et al (1986)) for any
potential conceived on the Poincaré half-plane. This result thus holds for the
general class of strain energy functions with a single minimizer described in the
first chapter, for the strain energy function (2.3) and for (3.20). In fact, the result
that we are about to prove holds for any geodetic lines of the Poincaré half-plane,
including those connecting any stationary point to infinity.
The objective is to prove that all geodetics composing the Dedekind Tessellation
of the upper complex haf-plane H are gradient extremal curves for any potential
energy invariant under the full symmetry group GL(2,Z) of 2D lattices.
We are allowed to restrict ourselves to the fundamental domain D because of
GL(2,Z)-invariance. Thus let us consider the boundary of the fundamental domain
D consisting of the three geodesics γ1, γ2, γ3 (see Fig. 3.20 on page 80) (not to be
confused with γ1 and γ2 in (3.36) and (3.37) of subsection 3.2.2).
We will first prove that γ1, γ2 and γ3 are always gradient flow curves of a function
ϕ(z) : H → R which exhibits the correct invariance.
γ1:
Let us consider two symmetrical points with respect to γ1, P1 and P ′1. They are
related through the following Mobius tranformation:

z 7→ −z̄. (3.72)

Hence P1 7→ −P̄1 = P ′1. Since they are two equivalent points

ϕ(P1) = ϕ(P ′1) thus ϕ(z) = ϕ(−z̄). (3.73)

Identifying H with R2, (3.73) yields

ϕ(x, y) = ϕ(−x, y). (3.74)

By differentiating (3.74) with respect to x:

ϕx(x, y) = −ϕx(−x, y). (3.75)
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Now, γ1 lies along the straight line x = 0. Hence, if we evaluate expression (3.75)
on γ1 we obtain

ϕx(0, y) = −ϕx(−0, y)→ ϕx(0, y) = 0 (3.76)

ϕx(0, y) = 0 precisely implies that γ1 is a gradient flow curve. Among this expres-
sions (3.74) is the most meaningful because it tells us that the energy has to be
even with respect to x hence its derivative with respect to this component is odd,
which necessarily implies that it vanishes in x = 0.

γ2:
Let us consider two symmetrical points with respect to γ2, P2 and P ′2. They are
related through the following Mobius tranformation:

z 7→ −z̄ + 1. (3.77)

Hence P2 7→ −P̄2 + 1 = P ′2. Since they are two equivalent points

ϕ(P2) = ϕ(P ′2) thus ϕ(z) = ϕ(−z̄ + 1). (3.78)

Identifying H with R2, (3.78) yields

ϕ(x, y) = ϕ(−x+ 1, y). (3.79)

By differentiating (3.79) with respect to x:

ϕx(x, y) = −ϕx(−x+ 1, y). (3.80)

Now, γ2 lies along the straight line x = 1/2. Hence, if we evaluate expression (3.80)
on γ2 we obtain

ϕx(1/2, y) = −ϕx(1/2, y)→ ϕx(1/2, y) = 0. (3.81)

ϕx(1/2, y) = 0 precisely implies that γ2 is a gradient flow curve.

γ3:
This curve connects the hexagonal point ρ to the square point i. Since it is a copy of
the segment γ′3 of the straight line x = 1/2 that connects the square point ζ to the
hexagonal point ρ, we can equivalently consider this segment for our computations.
All couples of symmetrical points with respect to γ′3 are related through the Mobius
tranformation in (3.78). Hence, we would proceed exactly as we did for γ2 and
we would obtain that γ′3 is a gradient flow curve, which also implies that γ3 is a
gradient flow curve.

In order to prove that γ1, γ2 and γ3 are gradient extremals curve we rely on
the result (3.71).
Let us consider γ1:
We have proven that the gradient direction is y and the direction orthogonal to the
gradient is x. Hence, we want to see if ϕ,yyx = 0 on this line. This is equivalent to
see if ϕ,xyy = 0 because they are mixed partial derivatives.
By double differentiating (3.75) with respect to y we obtain

ϕ,xyy(x, y) = −ϕ,xyy(−x, y). (3.82)
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Thus ϕ,xyy(x, y) is an odd function with respect to x and it vanishes in x = 0.
Again, γ1 precisely lies on the straight line x = 0 hence we obtain ϕ,xyy = 0, which
implies γ1 is a gradient extremal.
We do not report the procedure for γ2 and γ3 because it retraces exactly the
procedure for γ1. In this case we need to double differentiate with respect to y
expression (3.80) and we have to substitute x = 1/2; we analogously obtain that
γ2 and γ3 are gradient extremals curves. Hence all geodesics which constitute the
boundary of D are gradient extremals; since the Poincaré half-plane H is covered
by congruent copies of the fundamental domain all geodesics are gradient extremals
for any potential living on this plane.
Whenever we aim to seek non trivial reaction paths we must rely on numerical
calculations. In order to trace on the energy surface (3.20) those paths other than
the geodesics of H connecting the square lattice and the rhombic lattice we look
for those points satisfying (3.64). The result is reported in Fig. 3.21 on page 81,
which represents the vector field of −∇ϕ(x) in a portion of H including one square
point, two equivalent rhombic points and one hexagonal point. We can observe
that as expected the points belonging to the path connecting the square point
and the rhombic point through the geodesics satisfy (3.64) and they can also be
retrieved numerically. However in the close neighbourhood of the hexagonal point
the path bifurcates identifying an untrod shortcut to reach the rhombic point. This
result indicates that the minimum energy path between the two minimizers of (3.20)
includes either passing through the hexagonal point or in its neighbourhood.
These reaction paths can be classified in light of section (3.5.1) through (3.66) and
(3.67). In particular the most interesting result concerns the character of the tract
of the path lying along the geodesic connecting the square point to the hexagonal
point. From the behavior of λ′ and λ′′ on this tract (see Fig. 3.22 on page 81)
we can infer that this gradient extremal is initially a valley and then it deforms
into a ridge. This change of behavior occurs in correspondance with a so-called
valley-ridge inflection point. We devote a brief paragraph to their definition:

Valley-ridge inflection points We report the traditional definition given by
Quapp, Hirsch, Heidrich (2003): a valley-ridge inflection point (VRI) is that point
in the configuration space where, orthogonally to the gradient, at least one main
curvature of the potential energy surface becomes zero.
This definition implies the necessity to satisfy the following two conditions: 1.
one eigenvalue of the Hessian must be zero, and 2. the gradient is orthogonal
to the corresponding zero eigenvector. In other words, it has to be satisfied an
orthogonality condition: gTe0 = 0, where e0 is the eigenvector of the Hessian with
zero eigenvalue and g is the gradient. It should be remarked that VRI points are
usually nonstationary points of the potential energy surface.

When we combine the free parameters of (3.20) as we already mentioned
(b1/b0 = 1, z0 = 1

2
+ i(

√
3

2
+ δ) with α1 arbitrarly in the range identified by (3.23),

e.g. α1 = 10) we find that zV RI = 1/2 + i yV RI where yV RI ' 0.613. This point
exactly fulfills the definition given: when walking along the gradient extremal where
zV RI lies, we move from a convex (the valley) to a concave region (the ridge) and
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Figure 3.20: Indication of the geodesics that form the boundary of the fundamental
domain D. Two square points (i and ζ = 1/2(1 + i)) and one hexagonal
point (ρ = eiπ/3) are indicated. The green line indicates the geodesic
that connects ρ to i∞. This is referred as γ2 in the text. The yellow line
indicates γ1, which connects i to i∞. The red curve indicates γ3, which is
the portion of the unit circle that connects i to ρ: it is equivalent to the
red straight segment that connects ζ to ρ, which we labelled as γ′3 in the
text.

the eigenvalue orthogonal to the gradient λ′ has to change its sign as the definition
requires.
On the other hand, the tracts of the reaction channels that connect the hexagonal
point to the rhombic points are valleys and we do not find further valley-ridge
inflection points.
It should be remarked that the numerical results obtained concerning the research
of non-trivial reaction paths between stationary points of (3.20) has provided paths
passing in the strict neighbourhood of the hexagonal point because the energy
surface is rather flat around this point when combining the free parameters of (3.20)
as mentioned ( b1/b0 = 1, z0 = 1

2
+ i(

√
3

2
+ δ), α1 = 10). Different combinations of

the free parameters deform the energy landscape and accentuate its mountainous
character also in the vicinity of ρ; in this case non-trivial reaction paths will
probably avoid passing in the neighbourhood of ρ by crossing the internal part of
the fundamental domain D.
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Figure 3.21: Vector field of −∇ϕ(x) in a portion ofH where ϕ is (3.20). The black points
indicate from the bottom up a square point corresponding to z = −1/2 +
i1/2, the saddle point z = −1/2 + iySP where ySP ' 0.59, the valley-ridge
inflection point (see main text for the definition) z = −1/2 + iyV RI where
yV RI ' 0.613, two rhombic points equivalent to z0 = −1/2 + i(

√
3/2 + δ)

where δ ' 0.1 and one hexagonal point z = −1/2 +
√

3/2. The swarm of
red dots indicate the reaction path from the "reactant" which corresponds
to the square point to the "product phases" which correspond to the
equivalent rhombic points. In the neighbourhood of the hexagonal point
the unique reaction channel bifurcates identifying two shortcuts to reach
to rhombic points that allow to avoid passing through the hexagonal point
(even though in its vicinity).

(a) λ′ (b) λ′′

Figure 3.22: Behavior of λ′ (3.66) and λ′′ (3.67) along the tract of the reaction channel
that lies on the geodetic connecting the square point to the hexagonal
point. λ′ changes its sign in correspondance with the valley-ridge inflection
point zV RI while λ′′ is always positive. The oscillations of λ′′ are due to the
fact that its computation requires third order derivatives of (3.20), which
are obtained numerically and thus provoke the observable lack of precision.





Chapter 4

Numerical analysis

The last chapter is devoted to numerically validate the model built in the second
chapter to predict reconstructive phase transformations.
We consider a boundary value problem which describes the equilibrium of an
hyperelastic body in the context of finite, non-linear elasto-plasticity. The strain
energy function which controls the problem is (1.15) where the expression for σv is
(1.17) and the expression for σd is (2.3).
In each single simulation we consider the temperature as a fixed parameter. This
implies fixing β, which controls the character of the stationary points of (2.3):
depending on its value the landscape changes considerably as the second chapter
witnesses hence the equilibrium problem will be solved by fixing β at different values;
we do not replicate the phase change of a reconstructive phase transformations but
rather analyze the elasto-plastic deformations at different values of the temperature.
In the first section we present the theoretical problem to solve.
In the second section we modify the problem in order to make it solvable through
a finite elements method and we describe the iterative procedure that has been
applied to the resulting equation.
The third section analyzes the results obtained by distinguishing between the
simulations performed at a fixed value β ≤ 0 and those performed at a fixed value
β > 0 in order to explore both the case of a single minimizer in the fundamental
domain D corresponding to i and the case of two minimizers, i and ρ.
The original finite elements code was written by E. Arbib and it was suitably
modified in order to host expression (2.3) for the distorsive part of the strain energy
function.

4.1 The theoretical problem

Let us consider a continuum body whose reference configuration at time t0 is
an open, bounded and connected subset Ω of R2 (we consider a two dimensional
setting). Given a point in the reference configuration X this corresponds to a point
in the current configuration through the relation x = x(X, t). The deformation
gradient is then defined as F = ∇x = ∂ x

∂X
.

Since the displacement field is defined as u = x−X it holds that F = ∇u + I.
For problems where inertial effects are negligible, balance of linear momentum leads

83
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to the equation of equilbrium

Div(T) = 0 in Ωt (4.1)

in absence of body forces, where T is the Cauchy stress tensor and Ωt is the current
configuration. This tensor measures the contact force per unit area in the deformed
(current) configuration, which is not known a priori. Hence it is more convenient to
express the equilibrium equation in terms of a tensor that gives the contact force
per unit area in the undeformed (reference) configuration Ω. This tensor is the
First Piola Kirchhoff stress tensor, defined by

S = detF T F−T. (4.2)

Through S we can write the equilibrium equation in the reference configuration:

Div(S) = 0 in Ω. (4.3)

Since we consider an hyperelastic material S can be obtained by differentiating the
strain energy function with respect to F:

S =
∂σ

∂F
(4.4)

where σ is the sum of (1.17) and (2.3) formulated in terms of the deformation
gradient F.
The boundary value problem of finite elasticity is obtained by adjoining to this
expression suitable boundary conditions which prescribe either displacement or
traction (or both) on ∂B. The problem consists in finding the displacement u such
that 

Div(S) = 0 in Ω

u = ũ on ΓD

Sn = g on ΓN

(4.5)

where ΓD and ΓN are such that

Ω = ΓD ∪ ΓN . (4.6)

The problem (4.4) can be expressed in terms of components once we chose an
orthonormal basis of R2. We need to find the displacement u = (u1, u2) where
u1 : Ω→ R and u2 : Ω→ R such that

∂Sij
∂xj

(u1, u2) = 0 in Ω

ui = ũi on ΓD

Sijnj = gi on ΓN

(4.7)

where i = 1, 2 and Sij are the components of the First Piola Kirchoff stress tensor
expressed through the orthonormal basis {i1, i2}.
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4.2 Finite-element methods implementation
Problem (8.2) is a non linear system of partial differential equations. It is

rendered more suitable for solution by the finite element method if it is recast in a
weak form. We will first find the weak form of the fist equation in (4.5) and then
we will write it in terms of components.
Let us consider a suitable test function v = (v1, v2), where v1 and v2 both belong
to the following functional space

V = H1
0,ΓD

(Ω) =
{
v ∈ H1(Ω) : v|ΓD = 0

}
. (4.8)

Furthermore let us suppose that ũ = (ũ1, ũ2) is such that ũ1, ũ2 ∈ H1/2(ΓD) where

H1/2(ΓD) =
{
ũ ∈ L2(ΓD) : ∃u ∈ H1(Ω) such that γ0u = ũ

}
(4.9)

where γ0 : H1(Ω) 7→ L2(ΓD) is the trace operator. Finally g = (g1, g2) is such
that g1, g2 ∈ L2(ΓN) while the Sobolev space for the components of the solution
u = (u1, u2) is H1(Ω).
By multiplying the first equation in (4.5) for the test function v, then integrating
over the domain Ω and applying the divergence theorem we obtain:∫

Ω

S : ∇v dΩ =

∫
ΓN

v g ds. (4.10)

The weak formulation of the problem is then given in terms of components:

Given ũ1, ũ2 ∈ H1/2(ΓD), g1, g2 ∈ L2(ΓN), find u1, u2 ∈ H1(Ω) such that∫
Ω

Sij(u1, u2)
∂vi
∂xj

dΩ =

∫
ΓN

vi gi ds ∀ v1, v2 ∈ V (4.11)

ui = ũi on ΓD in the sense of trace. (4.12)

By exploiting the hypothesis of hyperelasticity we can rewrite (4.11) as:∫
Ω

∂σ

∂Fij
(u1, u2)

∂vi
∂xj

dΩ =

∫
ΓN

vi gi ds ∀ v1, v2 ∈ V. (4.13)

However before proceeding to the discretization we want to further modify (4.13).
We would like to integrate Dirichlet condition (4.12) into the equation (4.13) by
introducing a proper lifting. In this way we can look for the solution in an actual
subspace of H1(Ω) (the behavior of (u1, u2) on the Dirichlet boundary expressed
through (4.12) sentence the components of the solution to belong to a space which
is not close with respect to linear combinations of its elements).
Thus we assume to know two lifting functions rũ1 , rũ2 ∈ H1(Ω) such that

rũ1|ΓD = u1 rũ2|ΓD = u2. (4.14)

The spirit of the lifting materializes when introducing two functions ů1 = u1 − rũ1
and ů2 = u2 − rũ2 . We observe that ůi|ΓD = 0 (i = 1, 2) hence ů1, ů2 both belong
to V defined in (4.8).
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The problem finally is:

Given g1, g2 ∈ L2(ΓN), find ů1, ů2 ∈ V such that∫
Ω

∂σ

∂Fij
(̊u1 + rũ1 , ů2 + rũ2)

∂vi
∂xj

dΩ =

∫
ΓN

vi gi ds ∀ v1, v2 ∈ V. (4.15)

We are now ready to discretize the problem through a finite element approximation.
First we introduce a tessellation of the domain Ω through non-overlapping triangles.
The discretized domain is

Ωh = int(
⋃
K∈Th

K) (4.16)

where int indicate the inner part of the set. Ωh precisely coincide with Ω only if
Ω is a polygonal domain; in all other case we introduce an approximation error
due to the rectification of ∂Ω. The parameter h defines the grid density; given
hK=diam(K) for each K ∈ Th, where diam(K)=maxx,y∈K |x− y|, h is defined as
h = maxK∈Thhk.
The definition of the discretized problem also requires introducing the finite element
space:

Xr
k =

{
vh ∈ C0(Ω̄) : vh|K ∈ Pr,∀K ∈ Th

}
(4.17)

i.e. the space of the globally continuous functions which are polynomials of degree r.
We also define V r

h = X̊r
k = Xr

k ∩H1
0,ΓD

. Finally the problem (4.15) can be rewritten
as:

Given g1, g2 ∈ L2(ΓN), find ůh,1, ůh,2 ∈ V r
h such that∫

Ω

∂σ

∂Fij
(̊uh,1 + rh,ũ1 , ůh,2 + rh,ũ2)

∂vh,i
∂xj

dΩ =

∫
ΓN

vh,i gi ds ∀ vh,1, vh,2 ∈ V r
h (4.18)

where rh,ũi ∈ Xr
h is the approximated lifting.

Problem (4.18) contains a further pitfall being non-linear. Non-linear problems
are usually treated through iterative methods, which involve using an initial guess
to generate a sequence of solutions of a number of linear problems where the
non-linearity is suppressed by introducing the solution of the previous iterative step.
The sequence stops when the chosen termination criteria is satisfied.
Among these methods it stands the gradient descent algorithm, which implies
interpreting our problem as a minimization problem of an objective functional
whose gradient (in terms of Fréchet derivatives) is precisely expression (4.18) once
we moved every term on the left-hand side. The i-th component of the gradient is

Gi(̊uh,1, ůh,2) =

∫
Ω

∂σ

∂Fij
(̊uh,1+rh,ũ1 , ůh,2+rh,ũ2)

∂vh,i
∂xj

dΩ−
∫

ΓN

vh,i gi ds ∀ vh,1, vh,2 ∈ V r
h

(4.19)
where i = 1, 2.
Thus applying gradient descent method to our problem means applying the following
procedure to generate a sequence of pair

{
(̊unh,1, ů

n
h,2)
}
:

1. initialize the pair ů0
h,1, ů

0
h,2 ∈ V r

h
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2. the solution for the n-th iterative step can be obtained from ůn−1
h,1 , ů

n−1
h,2 as

ůnh,i = ůn−1
h,i − α

n d n−1
i (4.20)

where αn is the step size at the n-th iteration which is chosen according to the
Wolfe condition and d n−1

i is the i-th component of the vector which indicates
the direction of the step. We will later explain precisely how to compute both
these quantities.

3. update n = n+ 1

The iterative cycle stops when the following termination criterion is satisfied :

||residual atn-th step|| = ||∇Gn|| =
√
∇GnT∇Gn < ε (4.21)

where ∇G n = (G1(̊unh,1, ů
n
h,2), G2(̊unh,1, ů

n
h,2)) and ε is a fixed tolerance.

The vector which indicates the moving direction at the n-th step d n−1 = (d n−1
1 , d n−1

2 )
can be obtained as follows

d n−1 = M−1∇G(̊un−1
h,1 , ů

n−1
h,2 ) (4.22)

where ∇G n−1 = (G1(̊un−1
h,1 , ů

n−1
h,2 ), G2(̊un−1

h,1 , ů
n−1
h,2 )) and M is a preconditioner, which

has to be a symmetric positive-definite matrix. We necessarily have to use a
preconditioner because we deal with non convex potential. On the other hand
the step size αn is obtained through Wolfe conditions according to the following
inequalities

G(ůn−1
h − αn d n−1) ≤ G(ůn−1

h )− c1α
n(∇G n)Td n−1 (4.23)

where c1 is usually chosen to be quite small for instance c1 = 10−4 and G is the
objective functional we are trying to minimize:

G =

∫
Ω

σ(F) dΩ−
∫

ΓN

g · uh ds (4.24)

where g = (g1, g2) and F is the deformation gradient associated to the discretized
displacement field uh through the relation F = ∇uh + I.
Before proceeding to the results we devote two brief subsections to discussing
both the implementation of the preconditioner and the approximation of the Klein
Invariant J , which is the raw material to construct the distorsive component σd
(see expression (2.3)) of the strain energy function that we want to test.

4.2.1 The choice of the preconditioner M

In order to provide a proper justification for the choice of the preconditioning
matrix M (which we did not explicit yet) let us consider the non-discretized prob-
lem in the form (4.13). If we apply directly the finite elements discretization to
this problem, without incorporating in the problem Dirichlet boundary condition
through a lifting, we obtain the following problem:
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Given g ∈ L2(ΓN ;R2), find uh ∈ Xr
h(Ω;R2) such that∫

Ω

∂σ

∂F
(I +∇uh) : ∇vh dΩ =

∫
ΓN

g · vh ds ∀vh ∈ V r
h (Ω;R2) (4.25)

uh = ũ on ΓD (4.26)

where V r
h (Ω;R2) = Xr

h(Ω;R2) ∩ H1
0,ΓD

(Ω;R2). Notice that this formulation is
not written in terms of components as (4.18), hence we need to use spaces for
vector-valued functions. Also, the dependence of the strain energy function on
the discretized displacement field has been made explicit through the relation
F = ∇uh + I.
We want to give an estimate of the condition number of the stiffness matrix associ-
ated to problem (4.25) in order to provide a preconditioning matrix able to reduce
it.
The stiffness matrix of this problem can be obtained through linearization:

Given g ∈ L2(ΓN ;R2) and un−1
h ∈ Xr

h(Ω;R2), find unh ∈ Xr
h(Ω;R2) such that∫

Ω

∂2σ

∂F2
(I +∇un−1

h ) : (∇unh ⊗ ∇vh) dΩ =

∫
ΓN

g · vh ds−∫
Ω

∂σ

∂F
(I +∇un−1

h ) : ∇vh dΩ

(4.27)

uh = ũ on ΓD (4.28)

∀vh ∈ V r
h (Ω;R2).

Then, given a basis
{
ϕ(i)
}
for the finite elements space Xr

h(Ω;R2), the stiffness
matrix A of the problem has components:

Aij =

∫
Ω

∂2σ

∂Fls∂Fkt
(I +∇un−1

h )
∂ϕ

(i)
l

∂xs

∂ϕ
(j)
k

∂xt
dΩ (4.29)

which can be rewritten as

Aij =

∫
Ω

Hσ(I +∇un−1
h )∇ϕ(i) · ∇ϕ(j) dΩ (4.30)

where Hσ is the following 4× 4 matrix given by:

Hσ =


∂2σ

∂F11∂F11

∂2σ
∂F11∂F12

∂2σ
∂F11∂F21

∂2σ
∂F11∂F22

∂2σ
∂F12∂F11

. . . . . . ...
... . . . . . . ...
∂2σ

∂F22∂F11

∂2σ
∂F22∂F12

· · · ∂2σ
∂F22∂F22

 (4.31)
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while ∇ϕ(i) is a vector belonging to R4 such that:

∇ϕ(i) =


ϕ
(i)
1

∂x1
ϕ
(i)
1

∂x2
ϕ
(i)
2

∂x1
ϕ
(i)
2

∂x2

 . (4.32)

In order to estimate the condition number k(A), we remark that for every Ki (we
add a subscript to make the notation clearere) of the triangulation Th the quantity
Hσ(I +∇un−1

h ) := Hσ is constant and we label {λi,Λi} its minimum and maximum
eigenvalues. Then, if t is a generic vector of dimension dim(Xr

h(Ω;R2)), it holds:

At · t = ti tj

∫
Ω

Hσ(I +∇un−1
h )∇ϕ(i) · ∇ϕ(j) dΩ. (4.33)

Thus:

min
i
λi

∫
Ω

|∇(ϕ(i)ti)|2 dΩ ≤ At · t ≤ max
i

Λi

∫
Ω

|∇(ϕ(j)tj)|2 dΩ. (4.34)

Hence:
k(A) ≤ maxi Λi

mini λi
. (4.35)

In the implementation of the code Arbib proposes the preconditioning matrix M
such that its components are:

Mij =

∫
Ω

tr(Hσ)

4
∇ϕ(i) · ∇ϕ(j) dΩ. (4.36)

Hence, we proceed to estimate k(M−1A). Since λi ≤ tr(Hσ)
4
|
Ki
≤ Λi for all i, the

following inequalities hold:

At · t =

∫
Ω

Hσ(∇ϕ(i)ti) · (∇ϕ(j)tj) =∑
S

∫
KS

Hσ(∇ϕ(i)ti) · (∇ϕ(j)tj) ≥

∑
j

∫
Kj

λj|∇ϕ(i)ti|2 =

∑
j

λj
cj

∫
Kj

cj|∇(ϕ(i)ti)|2 ≥

(min
j

λj
cj

)
∑
j

∫
Kj

cj|∇(ϕ(i)ti)|2 ≥

τ1 M t · t

(4.37)

where tr(Hσ)
4
|
Ki

= ci and minj
λj
cj

= τ1.
Through an analogous procedure we also obtain that:

At · t ≤ τ2 M t · t where τ2 = max
j

Λj

cj
. (4.38)
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Hence the estimate of the condition number gives:

k(M−1A) ≤ τ2

τ1

= max
j

Λj

λj
(4.39)

which is a better estimate than (4.35), thus the choice (4.36) for the conditioning
matrix M is a good choice.

4.2.2 Approximation of the Klein Invariant J

Klein’s function J is defined as the combination of two infinite sums (see
expression (1.42)). However in order to approximate this function we rely on a
result presented in Apostol (1976) where it is proven that if z ∈ H we have the
following Fourier expansion of J :

123J(z) = e−2πiz + 744 +
∞∑
n=1

c(n)e2πinz (4.40)

where the c(n) are integers. The first one hundred coefficients were calculated in
1953 by Van Wijngaarden. Being J analytic in H its Fourier expansion converges
pointwise.
Thus in the numerical resolution of our problem we use the Fourier expansion
(4.40) truncated at the n-th term, which we label Jn. In particular we used J604

(we choose such an n because it corresponds to the maximum number of terms
acceptable in a real variable by the solver Freefem++ 3.51).

4.3 Numerical results
In this section we report the results obtained from the resolution of (4.18) under

the following hypotheses:

1. The strain energy function σ(F) corresponds to the expression constructed to
model reconstructive martensitic phase tranformations, which we express in
terms of the metric C:

σrec(C, ϑ) = σv(detC, ϑ) + σd,rec(C̄, β(ϑ)) (4.41)

σv(detC, ϑ) = ν

(
detC− ϑ

ϑ0

log (detC)

)
(4.42)

σd,rec(C̄, β(ϑ)) = |Jn(ẑ(C̄))− 1|+ β(ϑ)|Jn(ẑ(C̄))|
2
3 . (4.43)

In particulare we choose µ = 1 and ν = 100. Notice that we stressed the
dependence of β on the temperature ϑ ( from chapter 2 we know that β
is an increasing function of ϑ). However as previously mentioned in the
introduction of this chapter the simulations were performed considering the
temperature, hence also β, as a fixed parameter. Thus the functions used for
problem (4.18) are:

σrec(C) = σv(detC) + σd,rec(C̄, β0)) (4.44)
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σv(detC) = ν (detC− log (detC)) (4.45)

σd,rec(C̄, β) = |Jn(ẑ(C̄))− 1|+ β|Jn(ẑ(C̄))|
2
3 (4.46)

where β = β(ϑ0) is suitably fixed at a different value in each simulation.

2. The reference configuration is a rectangle-shaped body Ω

Ω = (0, 1)× (0, 1.4) ⊂ R2 (4.47)

which contains an initially homogeneus material in which the underlying
lattice is square, defect free and aligned with the body sides. Hence the
undeformed state corresponds to z0 = i. According to the Cauchy-Born
hypothesis (1.14) the lattice metric represents the right Cauchy-Green tensor
provided that the reference basis is orthonormal. Since the basis associated
with the underformed configuration z0 = i is precisely orthonormal then
Cij = (FFT )ij (this would not hold if z0 = ρ; in this case we should rewrite
the basis of the underformed configuration in terms of an orthormal basis).

3. The triangulation Th of the domain Ω is obtained by imposing 50 vertices on
the top and bottom sides of the rectangle and 70 vertices on the remaining
two sides of the rectangle (see Fig. 4.1 on page 94).

4. The finite elements space chosen is X1
k

5. We apply a quasi-static loading on the top side of the body to simulate a
simple shear stress condition. In particular we impose Dirichlet boundary
conditions on the top and bottom sides of the body while the remaining two
sides are left free. Hence

ΓD =
{

(x1, x2) ∈ R2 : x2 = 0 ∨ x2 = 1.4
}

(4.48)

ΓN =
{

(x1, x2) ∈ R2 : x1 = 0 ∨ x1 = 1
}
. (4.49)

Since the two sides of the rectangles belonging to ΓN are left free, we impose
gi = 0, i = 1, 2. Dirichlet conditions are integrated through the lifting; in
particular in order to impose a shear along a primary direction we impose:

rh,ũ1 = γx2 rh,ũ2 = 0 (4.50)

where γ is the shear parameter. When γ = 0 we recover the reference state
z0 = i because no deformation is imposed, while γ = 1 corresponds to a new
configuration such that the vectors of the lattice basis form a π/4 angle: the
new state is equivalent to z = i+ 1 on the Poincaré half-plane H, which is the
adjacent equilibrium sheared-square configuration. As section (2.4) of chapter
2 explains, imposing such a deformation allows to explore the plastic domain.
In our simulations γ is initially equal to 0.1 and then it is gradually increased
of a percentage point in order to accurately reproduce a quasi-static loading.
In this way we explore a part of the elastic regime and more importantly the
plastic-flow initiation as γ in our simulations never reaches the value γ = 1
but at most γ = 0.3.
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However, this value is high enough to observe at least a partial plastification
of the body as the end of the elastic regime tipically takes place at a value of
γ in the range γ ∈ [0.065, 0.17]. This value depends on the value of β and we
label it as γfirst aval where aval indicates "avalanche": at this value for the
first time a number of scouting cells abandons the basin corresponding to
z = i to explore the other dips of the energetic territory. This primary large
plastification event triggers a sequence of smaller plastification events. We
will analyze extensively these phenomena in the following section.
Before moving to the analysis though it is important to make a remark. As
(4.46) is a non-convex potential, rather periodic, it does not hold any theorem
of uniqueness of the solution. Different parts of the system could find different
solutions solving the equilibrium problem (4.18), where we label as "different"
two solutions corresponding to two different basins of the energy. Hence, we
are looking for one among the possible equilibrium solutions: in particular, for
each γ the algorithm searches for the equilibrium solution closest to the one
found at the preceeding γ. Since we will observe that the relevant quantities
which can be obtained by solving the equilibrium problem for every γ are
characterized by abrupt jumps, we can infer that the equilibrium configuration
does not depend continuously on the loading parameter γ.

For the time being the last observations allow to remark upon the influence of
the parameter β on the plastification mode chosen by the body. As a matter of
fact β controls the character and the position of the stationary points of (4.46) by
either changing the depth of the basins or even generating new dips other than the
square points as section (2.3) of chapter 2 extensively tells.
This parameter can arbitrarly vary in the range β ∈ [−3/2, 3/2), which guarantees
at least the existence of one basin corresponding to the square configuration (one
in the fundamental domain D, together with the infinitely many equivalent square
points). In this range the energy (4.46) remarkably changes its behavior according
to whether β is positive or negative; in particular when −3/2 ≤ β ≤ 0 the square
points are the unique equilbrium configurations while when 0 < β < 3/2 further
equilibrium positions generate corresponding to the hexagonal points. In the
presentation and analysis of the results we will usually consider separately positive
and negative values of β as they correspond to quite different regimes. Indeed, as we
just mentioned, for negative β there is only one relative minimum of the potential
in each fundamental domain (corresponding to a square lattice). For positive values
of β a second minimum appears, corresponding to hexagonal lattices.

4.3.1 The elastic regime

Before proceeding to the analysis of the plastification mechanisms we present in
Fig. 4.2 on page 95 the first relevant information that can be extrapolated from
the numerical simulations, i.e. that concerning the extent of the elastic regime. In
particular:

1. Few observations can be made with regards to the behavior of γfirst aval(β),
which describes the dependence on β of the strain value ratifying the elastic
response limit:
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• As β diminishes becoming more and more negative, the first plastification
event appears at smaller values of the imposed strain. On the other
hand, the magnitude of the corresponding stress fall decreases ( Fig. 4.2
on page 95 (c)).

• The combination of these two events could be explained in light of the
morphological deformations induced on the energetic landscape, which
are extensively presented in section (2.3) of the second chapter. As β
decreases in the range of negative values the basins of the square points
increase (see Fig. 4.3 on page 96), i.e. the convexity boundaries around
the square points broaden; simultaneously we witness the generation of
a favorable passageway among the skinny rhombic points above ρ, which
constitutes the optimal barrier-crossing path to reach the well in i+ 1.
This passage, which lies on the geodetic that connects ρ to i∞, precisely
arranges more and more in the neighbourhood of the intersection with
the horizontal straight line which parametrizes the simple shear i 7→ i+ 1
as β diminishes.

• As a consequence, as soon as the first few sample cells deform with
strains which fall outside of the convexity region of the strain potential,
they encounter a fast-track to immediately reach the basin in i + 1
provoking the first avalanche to happen. However, the basin around i
being more and more wide, the number of scouting cells that actually
manage to cross the convex boundaries diminishes as the majority of cells
are stifled around i. This explains why the magnitude of the first stress
fall decreases together with β in the negative range of this parameter.

• The term "cells" does not want to be deceptive. In fact the physical
cells of the body evidently do not explore the energetic basins but rather
each of them is associated to a strain in turn related to a point in the
Poincaré half-plane H through (1.21): these are the entities that can be
said to explore the basins associated to the square points.

2. The behavior of both these quantities, γfirst aval(β) and the magnitude of the
first stress fall with respect to β, in the positive range of the values taken by
β is more intuitive and it could be explained in light of Fig. 2.11 on page 40
that we report for the ease of the reader also on the lower panel of Fig. 4.2
on page 95:

• When β > 0 the distorsive component of the energy (4.46) has two
minima in the fundamental domain D, one corresponding to i and the
other to ρ. When β increases in the positive range, the basin around ρ
and those around the infinitely many equivalent hexagonal points enlarge:
as soon as the system becomes unstable by approaching the convexity
boundaries around i, which are gradually restricting (see Fig. 4.3 on
page 96), it falls into the basin of ρ and the first large plastification event
takes place.

• On the other hand the energy barrier decreases, which explains the
behavior of the stress fall associated to the end of the elastic response.
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Figure 4.1: Triangulation Th of Ω

Furthermore, coherently with the energy barrier behavior this quantity
starts increasing when β ≥ 1. It should be noticed that when β ≥ 1.2 it
apparently starts decreasing again. However, Fig. 4.16 (b) will show that
this trend can be explained in light of the fact that the first avalanche
occurs with two subsequent steps due to the inevitable discontinuity of
the loading; the sum of the stress fall of these two steps gives a total
stress fall indulging the expected trend.

3. The maxima of both γfirst aval(β) and the first stress fall are registered at
β = 0 (or in its strict neighbourhood). This is the case of a single minimizer
in the fundamental domain D corresponding to i as it is when β < 0. However
ρ is not a maximum of the energy as it is when β < 0 but a third order
degenerate critical point, i.e. a monkey-saddle. The discussion around this
case is posponed to the next section.

4. Panel (b) of Fig. 4.2 on the next page represents the value of the yield strength
depending on β, which can be related directly to the behavior of the energy
barrier in panel (d).
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(a) (b)

(c)

(d)

Figure 4.2: (a) Value of the strain parameter γ ratifying the end of the elastic regime
depending on β, i.e γfirst aval(β). (b) Value of the stress Fx ratifying the end
of the elastic regime depending on β. (c) Value of the stress fall |∆Fx| at
the yield point depending on β. (d) Energy barrier for (4.46) of the simple
shear i 7→ i+ 1 for each value of β
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(a) (b)

Figure 4.3: Enlargement of the convexity boundaries of (4.46) depending on β. We
report the behavior of the second derivative with respect to the horizontal
component restricted on the straight line parametrizing the simple shear
i 7→ i + 1 (i.e. {x = t; y = 1} , t ∈ [0, 1]). The bottom side images show a
zoom of the points where it first vanishes, which indicate the end of the
convexity area around z = i. As β decreases in the negative range the
convexity boundaries amplify as the square point is a deeper and deeper dip,
while as β increases in the positive range they restrict as the dip around the
square point is gradually flattening.
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4.3.2 Elasto-plastic tranformation: Single minimizer in the
fundamental domain D

This subsection is devoted to the analysis of the plastification mechanisms
emerging from the numerical simulations in the case β ≤ 0. First we observe how
certain quantities informing about this phenomenon change according to β, then
we present more extensively the results concerning the simulation corresponding
to β = −0.5 (the results of this simulation are presented in the Video V1 in the
Supplementary Material) and those concerning the case β = 0 (see Video V5 in the
Supplementary Material).
Fig. 4.4 on the following page presents the stress-strain relation during loading
at every (negative) β while Fig. 4.5 on page 99 shows the number of cells in each
energetic basin during loading at every (negative) β.
Fig. 4.5 on page 99 suggests that the plastification mechanism is in general more
complex than expected due to the way global symmetry acts on the energetic
landscape. Indeed the basins interested in the process are not only the one associated
to the reference configuration z0 = i and the one imposed by the boundary conditions
z = i+ 1 but also a third basin, the one around z = ζ. On the other hand this is
the symmetry-equivalent square energy-basin closest to i in the direction of the
boundary condition besides i+ 1.
However the basin around ζ is more or less involved according to the value of β:

• When β is strictly smaller than 0, say β < −0.1, very few cells are attracted in
this basin as the first plastification event occurs. Indeed being ρ a maximum
the energetically optimal barrier-crossing path involves traveling through the
corridor corresponding to the skinny rhombic saddle above ρ which allows
to directly reach i + 1. On the other hand this Figure also confirms that
when β is strictly negative the majority of cells tends to remain in the basin
around z = i during the loading; in order to observe an actual migration to
the boundary-conditions imposed basin around i+ 1, γ should be higher.

• When β = 0 the corridor corresponding to the skinny rhombic saddle above
ρ disappears by merging into the third order degenerate critical point at ρ,
which is a monkey-saddle. Cells, or more properly strains, need to go through
this point while reaching the basin in i+ 1. The presence of the bifurcation
mountain pass at z = ρ implies that at the first strain avalanche the second
primary shear path i→ ζ (the first is i 7→ i+ 1) is certainly more involved
than it was for strictly negative value of β. The symmetry-imposed degenerate
saddle points are said to be the lattice disorder engines as their presence
immediately activates alternative shear paths.

• A similar picture to the one produced when β = 0 also concerns β = −0.1:
in this case ρ is not an actual monkey-saddle but still a mightily moderate
maximum encircled by three skinny rhombic saddles, hence a monkey-area.
More properly, we could speak about monkey-area untill β ' −0.55 as it is
explained in the description of Fig. 2.11 on page 40. Indeed at this value
the corridor corresponding to the skinny rhombic saddle above ρ precisely
lies in the intersection with the straight line parametrizing the deformation
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Figure 4.4: The relation stress-strain for β ≤ 0

i 7→ i + 1, hence this saddle together with the other two equivalent skinny
rhombic saddles around ρ are sufficiently far to consider the central point ρ
as a maximum and no more a deformed monkey-saddle. As a consequence
the alternative shear path i→ ζ is involved also at β = −0.3 and β = −0.5,
even though after the first plastification event has occurred.

A deepened analysis of the case β = −0.5: hysteresis loop

Loading Figure 4.6 on page 101, Figure 4.7 on page 102 and Figure 4.8 on
page 103 show three frames of the Video V1 in the Supplementary Material: they
represent three moments of the deformation of the rectangular body imposed by a
quasi-static loading along the primary-direction i 7→ i+ 1 in the case β = −0.5. In
the first frame γ ' γfirst aval(−0.5) = 0.14, in the second frame γ ' 0.152 and in the
third frame γ ' 0.174. The three figures describe three moments of the plastic-flow
initiation after the initally defect-free lattice has gone through the elastic load-up,
which precisely ends at γ ' γfirst aval(−0.5).
In particular:

1. Figure 4.6 on page 101 displays the information concerning the strain condition
right after the first large platification event. We can make the following
observations:

• From the distribution of C̄ on the Poincaré half-plane H in (b), which
appears like a cloud-like set of points, we can observe that the basin
around i stifles the majority of cells while few scouting cells lie in the
basin of i+ 1.

• The corresponding deformation field of the body shown in (a) precisely
reproduces this condition as we can observe a subdivision into two
differently coloured regions, which can be interpreted by looking at the
color coding in (c). Both regions appear as deformed but only the blue
region corresponds to the plastic slip as it is deformed in the direction of
the highest shear corresponding to γ = 1; indeed this slip band contains
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(a)

(b)

(c)

Figure 4.5: Percentage of cells in each basin during the loading at different values of
β ≤ 0
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the physical cells associated to strains that jumped to the basin around
the minimizer i + 1 right after the end of the elastic regime. A few
green cells represent the set of points in the strain-cloud which travelled
through the other primary shear path i→ ζ.

2. The first plastification event triggers a sequence of intermittent avalanches
shown in the panel (e) of every frame: the orange spikes quantify the dis-
continuity of the strain activity, as the strain cloud splinters. The other
two mentioned figures capture two moments of this bursting plastic flow. In
particular:

• Figure 4.7 on page 102 and Figure 4.8 on page 103 show how the slip
band thickens as more and more cells reach the basin around i+1 during
this phase. Simultaneously the distribution of local angles coherently
fragments from the inital unique block as the bottom side of the body
deforms in the direction of the imposed shear. The two Figures depict
the strain condition right after the second and third large slip events,
which produce a stress relaxation observable in the panel (e) of each
Figures.

• The slipped portion of the crystal is not completely homogeneus as it
contains few green cells that represent the strains entagled in the basin
around ζ. The presence of a number of strains in this latter basin can be
explained in light of the fact that when β = −0.5 the region around the
hexagonal point is a monkey area, which activates the second primary
shear path i→ ζ as we explained previously.

Unloading The analysis of the case β = −0.5 comprehends also Figures 4.9
on page 105 and 4.10 on page 106. These Figures represent the results obtained
from the resolution of the problem (4.18) under the hypotheses listed in section
(4.3). However we want now to simulate a decreasing shear stress condition by
gradually diminishing γ. As the end of the elastic regime for β = −0.5 is at
γ ' γfirst aval(−0.5) = 0.14 we choose a slightly higher value of γ as a starting
point and decrease it of a percentage point untill γ = 0 and Dirichlet boundary
conditions vanish. The objective is to observe the residual body deformation due
to the irreversibility characterizing the plastic domain.
Fig. 4.9 on page 105 represents a frame of the Video V2 in the Supplementary
material at γ ' 0.075 while Fig. 4.10 on page 106 represents the frame at γ = 0.
We want to remark that:

1. By observing the panel (e) of each frame we can deduce that the basin-hopping
activity of the strains is almost null; during the reverse process strains are
almost paralyzed in the initial basins hence the material does not recover the
reference configuration and at γ = 0 we can register a residual stress.

2. The reference configuration has now been contaminated as the body contains
a non-homogeneus material in which the underlying lattice corresponds to
two different variants of the square lattice. Such a body shape portrays a real
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Figure 4.6: Results of the numerical simulation of plastic flow initiation of a square
crystal with energy (4.46) when β = −0.5 and γ increasing from 0.1 to
0.2: frame corresponding to γ ' 0.14. In each frame there are six panels:
(a) shows the body deformation evolution; colors are coherent to panel (c),
highlighting to which basin it belongs the strain associated to every physical
cell. (b) shows the evolution of the distribution of strains on the Poincaré
half-plane as γ increases, represented by a moving cloud-like set of points.
This can be obtained as the histogram of the density of C̄ on H. Gray
palls represent the convexity domains in H. The straight dashed blue line
parametrizes the increasing shear γ from i to i+ 1: this corresponds also
to the optimal barrier-crossing path, which involves travelling through the
corridor formed by the skinny rhombic saddle above the hexagon. Dashed
red curve indicates the path from i to i+ 1 that involves passing through
the hexagonal maximum instead. Panel (e) displays the stress-strain with a
blue curve while the orange spikes on the bottom side of the graph describe
the percentage of strains jumping from one energy basin to another at every
value of γ. Panel (d) shows the distribution of the values assumed by the
determinant of the deformation gradient F in every cell of the body. Panel
(f) analogously reports the distribution of the local rotation angles, which
can be obtained from the rotation matrix associated to F in every cell.
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Figure 4.7: Results of the numerical simulation of plastic flow initiation of a square
crystal with energy (4.46) when β = −0.5 and γ increasing from 0.1 to 0.2:
frame corresponding to γ ' 0.152
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Figure 4.8: Results of the numerical simulation of plastic flow initiation of a square
crystal with energy (4.46) when β = −0.5 and γ increasing from 0.1 to 0.2:
frame corresponding to γ ' 0.174
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crystalline material more faithfully than the purest crystalline body that was
considered as initial configuration for the outward voyage.

3. The combination of the stress-strain relation of the outward and backward
voyage returns a part of the shear hysteresis loop of the material (see Fig.
4.11): the cycle is incomplete as the loading directly started at γ = 0.1
and the material should be further stimulated in the range of negative γ to
reabsorb the splip band; this would reproduce a loading along the opposite
primary-shear direction towards the basin around i− 1.

A deepened analysis of the case β = 0: a full hysteresis loop
A complete shear hysteresis loop has been obtained instead in the case β = 0
(see Fig. 4.11 on page 107). This comprehends a first loading phase along the
primary-shear path i → i + 1, which is obtained by gradually increasing γ from
0.1 to 0.2. Then we proceeded to unload the material decreasing γ from 0.18 to
−0.10; in the range of negative γ, the primary shear direction is reversed as it
heads towards the well in i− 1. Finally a new loading phase from γ = −0.10 to
γ = 0.18 concluded the cycle. The evolution of the deformation with all its relevant
characteristics is represented in Video V5 (first loading), V6 (unloading) and V7
(final loading) of the Supplementary Material.
As previously mentioned, this case is relevant because when β = 0 the strain energy
function (4.46) degenerates into the purely "square" energy (1.56); since the term
acting on the behavior of the function in the vicinity of ρ has vanished, global
symmetry freely shapes the local energy topography around this point, which turns
into a third-order degenerate critical point i.e. a monkey saddle. As the count of
the number of cells in each basin demonstrates (see Fig. 4.5 on page 99), the basin
around ζ is involved earlier than it was in the previous considered case because the
degenerate saddle point ρ behaves like a source of lattice disorder by activating the
alternative shear path i→ ζ as soon as the first plastification event occurs (in the
case β = −0.5, very few cells explored the basin around ζ at the first "avalanche").
We decided to perform a full hysteresis loop in this case precisely because we expect
that the material after the first loading will be considerably flawed due to the
disorder mechanism just explained. Thus we would like to investigate if these
defects are preserved during the unloading phase and whether the second loading
phase differs from the first one by eventually starting from a defective reference
configuration.

Loading Fig. 4.12 on page 108 reports a frame of the first loading phase (Video
V5) which corresponds to γ ' 0.18, i.e. the strain condition from which the
unloading phase starts. Two main observations can be done about this phase:

1. Since an extremely marked stress relaxation has already ratified the end of
the elastic regime, we can observe the consecutive abrupt subdivision of the
body (panel (a) of Fig. 4.12 on page 108) into two distinguished regions as it
happened in the case β = −0.5.

2. Panel (b) of the same figure witnesses how some strains have also occupied
the dip in ζ as it was expected due to the presence of a monkey-saddle in ρ.
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Figure 4.9: Results of the numerical simulation of plastic flow initiation of a square
crystal with energy (4.46) when β = −0.5 and γ decreasing from 0.15 to 0:
frame corresponding to γ ' 0.075
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Figure 4.10: Results of the numerical simulation of plastic flow initiation of a square
crystal with energy (4.46) when β = −0.5 and γ decreasing from 0.15 to 0:
frame corresponding to γ = 0
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Figure 4.11: (Uncomplete) shear hysteresis for the case β = −0.5 and complete shear
hysteresis for the case β = 0

Unloading From this point, the unloading phase starts as γ slowly decreases.
The unloading phase is characterized by more, yet smaller, avalanches than the
loading phase (represented by jumps in the stress-strain curve). In particular:

1. By observing Fig. 4.13 on page 109 we can appreciate that, as it happened in
the case β = −0.5, the complete release of load, which coincides with γ = 0,
does not allow to recover the strain; this implies that at γ = 0 there is still a
residual stress as Fig 4.11 shows, which coherently represent the irreversible
character of plastic deformations.

2. Then, γ is gradually decreased untill −0.10, which implies loading towards
the opposite direction than the one considered in the first loading. Fig. 4.14
on page 110 shows that the slip band disappears as strains jump back to
the basin around i. However few cells are stiffled in the basin around ζ. It
should be noticed that the system is cleansed of the slip band as soon as the
stress-strain curve of the unloading phase meets the straight line representing
the elastic load up of the first loading phase (see Fig. 4.11). This happens
at γ ' −0.05 (see Video V6 in the Supplementary Material) hence before γ
reaches −0.10. Thus we can infer that the strain has been excessive because
the system has lost its plastic deformation and we expect that the reloading
phase will retrace the first loading phase.

Reloading As soon as γ starts increasing again (Video V7) untill the load is
again released at γ = 0 (see Fig. 4.15 on page 111) the green cells also reach the
basin around i (see the orange spikes in Panel (e) of the same Figure) and we
recover the original defect-free reference configuration as: this is the reason why as
announced we can observe in Fig. 4.11) that the reloading along the primary shear
direction i→ i+ 1 generates a stress-strain curve precisely coinciding with the first
loading stress-strain curve. Video V7 also shows that the strain evolution during
the reloading phase does not present any differences with respect to the loading
phase.
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Figure 4.12: Results of the numerical simulation of plastic flow initiation of a square
crystal with energy (4.46) when β = 0 and γ increasing from 0.1 to 0.2
(first loading phase): frame corresponding to γ ' 0.18
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Figure 4.13: Results of the numerical simulation of plastic flow initiation of a square
crystal with energy (4.46) when β = 0 and γ decreasing from 0.18 to −0.10
(unloading phase): frame corresponding to γ ' 0
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Figure 4.14: Results of the numerical simulation of plastic flow initiation of a square
crystal with energy (4.46) when β = 0 and γ decreasing from 0.18 to −0.10
(unloading phase): frame corresponding to γ = −0.10
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Figure 4.15: Results of the numerical simulation of plastic flow initiation of a square
crystal with energy (4.46) when β = 0 and γ increasing from −0.10 to 0.18
(reloading phase): frame corresponding to γ ' 0
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4.3.3 Solid-solid phase transitions: Two minimizers in the
fundamental domain D

In this section we repeat for positive β the analysis performed in the last section:
first we study the behavior of the most significant quantities characterizing the
deformation depending on β, then we explore the details of one particular simulation
corresponding to β = 1, whose Video can be found on the Supplementary Material
as V3. It has to be remarked that the computational time taken by the simulations
corresponding to β > 0 is much more higher than the case β ≤ 0. This can
be explained in light of the fact that the presence of multiple minimizers of the
strain (which is what characterizes the energy landscape when β > 0) increases
the number of solutions for each γ. Hence, the maximum value of γ varies among
the simulations but in each of them γmax is chosen in order to at least ensure the
subdivision of the body shape into two distinguishable regions, one undeformed
and the other deformed in the direction of the complete shear.
The stress-strain relation on Fig. 4.16 on the facing page confirms what was already
observed concerning Fig. 4.2 on page 95: the presence of a new basin around the
hexagonal point reduces the magnitude of the stress as as the energy possesses two
relative minima now (considering the restriction only on the fundamental domain
D). This trend was already announced from the plot of the theoretical energy
barrier (see (d) in Fig. 4.2 on page 95), which also indicates in accordance with
intuition that β = 1 is a rather significant value. When β = 1, i and ρ are minima
of equal height and as soon as β > 1 the hexagonal point ρ gains the role of
absolute minimum of the energy (4.46). Moreover the energetic landscape does
not contemplate any alternative route that helps reaching the basin around i+ 1,
hence the energetically optimal barrier-crossing path dictates the passage through
ρ; along the path a number of cells get trapped into this dip, which induces a more
colourful plastification mechanism and a more complex defect microstructure with
respect to the case β < 0.
Fig. 4.17 on page 114 suggests that:

• The value β = 1 unequivocally represents the frontier value as the panel (d)
shows that the basin around ρ is lavishly involved only for β ≥ 1.

• When 0 < β < 1 at the first plastification event cells either swarm the basin
around i+ 1 by following the primary shear path i 7→ i+ 1 (this is the case
of β = 0.1) or they follow the other primary shear path i 7→ ζ, but they are
certainly not entangles in the dip corresponding to ρ.

• This latter subdivision in the plastification mechanism for 0 < β < 1 could
be explained in light of the fact that when β = 0.1 the convexity area around
ρ is still narrow while the convexity boundaries around the square points are
rather extended (see Fig. 4.3 on page 96): as soon as the system becomes
unstable by approaching the convexity boundaries around i, the first scouting
cells (more properly, strains) cross over directly to the well in i because they
still do not perceive the dip in ρ.

• On the other hand, when 0.1 < β < 1, strains follow the energetically optimal-
barrier path that involves passing through ρ, whose convex boundaries have
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(a) (b)

Figure 4.16: The relation stress-strain for β > 0. Panel (b) represents the stress-strain
for β = 1.3: in this case the end of elastic regime occurs before γ = 0.10.
Panel (a) represents the cases where this event occurs later than γ = 0.10.

enlarged, but they do not linger and proceed towards the second symmetry-
equivalent square energy-basin closest to i, i.e. ζ.

A deepened analysis of the case β = 1: hysteresis loop

Loading As we proceeded in the case β = −0.5 we present three significant
moments of the deformation of the body through three frames of the Video V3 in
the Supplementary Material. In particular:

1. Figure 4.18 on page 117 represent the results of the simulation of the case
β = 1 paralyzed at γfirst aval(1) ' 0.129, right after the first large plastification
event has occured as soon as the elastic load-up ended. We can observe that:

• A portion of the strain cloud has quitted the reference configuration
z0 = i and it walks along the energetically optimal path which now
corresponds to the dashed-red curve in order to reach the equivalently
convenient point of rest of the energy in ρ.

• From panel (e) we infer that 10% of strains has jumped to the basin
around ρ, inducing in the body the generation of two parallel bands in
the hexagonal phase (panel (a)).

2. As in the previous cases, a large stress-relaxation triggers the initiation of a
bursting plastic-flow during which other marked stress relaxations occur like
the one represented in Fig. 4.19 on page 118. Here we observe that

• The body separates into two regions, one almost undistorted (yet con-
taining a non-homogeneus material in which the underlying lattice is
both square and hexagonal) and the other deformed in the direction of
the imposed boundary condition (the lower right part precisely to the
highest shear value corresponding to the minimizer i+ 1).
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(a)

(b)

(c)

(d)

Figure 4.17: Percentage of cells in each basin during the loading at different values of
β > 0
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• Few cells also inevitably explore tha basin around ζ.

3. Finally, Fig. 4.20 on page 119 represents the strain condition right after the
third marked stress relaxation:

• The slip band thickens and prosecutes the distorsion in the direction of
the highest shear; however, the underlying material is non-homogeneous
as it contains an oblique band in the hexagonal phase.

• Most interestingly the undeformed region has cleansed of the hexagonal
phase as we could already observe from Fig. 4.17 on the facing page: the
strains leaving the basin around ρ at this γ do not reach the well in i+ 1
but rather return to the original reference configuration z0 = i, causing
the percentage of cells in this well to slightly increase.

Unloading Figures 4.21 on page 120, 4.22 on page 121 and 4.23 on page 122
represent three frames of the Video V4 in the Supplementary Material, hence three
moments of the return trip given by a decreasing shear stress condition in the
case β = 1. From the previous paragraph we learnt that the first plastification
event occurs at γ ' 0.129 when 10% of strains jumps in the basin around the
second minimizer of (4.46), i.e. ρ. Only at the second marked stress relaxation,
which takes place at γ ' 0.173, strains start reaching the square energy-basin
imposed by the boundary condition, i.e. i+ 1 and in a small percentage the other
symmetry-equivalent square basin closest to i, i.e. ζ. Hence the return trip starts
right after the second marked avalanche at γ ' 0.18. The observation of the three
mentioned figures let us infer that:

1. Through a discontinuous strain activity characterized by a ceaseless basin
bouncing of local strains the body eventually re-absorb the deformation
cleansing of all defects as Fig. 4.23 on page 122 shows (notice that the residual
stress is null). In particular:

• Fig. 4.22 on page 121 displays that the cleaning process first implies
removing the dishomogeneity induced by the presence of the hexagonal
phase in both the two main regions of the body (one almost undeformed
and the other one distorted in the direction of i+ 1).

• This behavior does not portrays faithfully the irreversibility of real plastic
deformations but it is mainly due to the fact that the initial configuration
was chosen to be homogeneus and defect free.

2. A second observation concerns the hysteresis cycle obtained from the stress-
strain curve of both the loading and unloading phase (see Fig. 4.24 on
page 123). As in the case β = −0.5 the cycle is uncomplete as the unloading
phase directly started from γ = 0.10, skipping the elastic load-up. The aspect
to remark though is that we can identify some ranges of these curves where
to an increasing deformation it corresponds an almost constant stress and
analogously it happens when recovering the deformation during the unloading.
This effect is similar to the one characterizing a superelastic behavior; however,
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superelasticity exhibits in the context of weak martensitic phase transforma-
tions as it requires reversibility, while this result was obtained minimizing the
energy modelling reconstructive martensitic phase transformations (4.46).
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Figure 4.18: Results of the numerical simulation of plastic flow initiation of a square
crystal with energy (4.46) when β = 1 and γ increasing from 0.1 to 0.225:
frame corresponding to γ ' 0.129
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Figure 4.19: Results of the numerical simulation of plastic flow initiation of a square
crystal with energy (4.46) when β = 1 and γ increasing from 0.1 to 0.225:
frame corresponding to γ ' 0.173
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Figure 4.20: Results of the numerical simulation of plastic flow initiation of a square
crystal with energy (4.46) when β = 1 and γ increasing from 0.1 to 0.225:
frame corresponding to γ ' 0.222
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Figure 4.21: Results of the numerical simulation of plastic flow initiation of a square
crystal with energy (4.46) when β = 1 and γ decreasing from 0.18 to 0:
frame corresponding to γ ' 0.18
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Figure 4.22: Results of the numerical simulation of plastic flow initiation of a square
crystal with energy (4.46) when β = 1 and γ decreasing from 0.18 to 0:
frame corresponding to γ ' 0.08
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Figure 4.23: Results of the numerical simulation of plastic flow initiation of a square
crystal with energy (4.46) when β = 1 and γ decreasing from 0.18 to 0:
frame corresponding to γ ' 0
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Figure 4.24: (Uncomplete) shear hysteresis for the case β = 1





Conclusions and Future Work

This work attemps to further demonstrate how the intuition originally conceived
by Parry (1998) is remarkably fertile.
First, the transparent correspondance between the strain space and the Poincaré
half-plane and then the possibility to draw from the classical theory of modular
forms to build correctly-invariant strain energies for two-dimensional lattice allow
to model not only phenomena related to crystal plasticity but also mechanically- or
thermally-driven structural phase transformations in crystalline materials.
Structural phase transformations represent the core of this thesis as we have provided
explicit strain energies both for reconstructive and weak (or symmetry-breaking)
martensitic phase transformations.
The first model conceived suitably describes a square-to-hexagonal reconstructive
transformation. After having explored the bifurcation patterns in the strain space
generated by this model, the analysis proceeded towards the investigation of the
energetically optimal barrier-crossing paths associated to plastic phenomena, whose
description is also spontaneously contained in the model. The theoretical framework
has been combined with the numerical analysis, through which it has been possible
to prove the validity of the model when predicting relevant physical deformation
processes.
The second model consists of a strain energy function able to describe a square-to-
rhombic weak transformation. The reversibility characterizing this transformation
leads to model both the shape-memory effect and superelasticity. The theoretical
analysis of this second explicit expression has been rather involved as we have tried
to present all the implications stemming from the choice of the values of the control
parameters contained in the model.
As in the second case the theoretical framework has not been accompanied by a
numerical validation, the first proposal for a future development becomes natural
together with further future activities:

1. Numerical analysis of the model presented for martensitic phase tranforma-
tions of the weak type. This could lead to the direct observation of both
the shape-memory effect when thermically driving the tranformation and
superelasticity phenomena when mechanically driving it.

2. A more deepened analysis of the mechanisms leading to the generation of rich
twinned microstructure of martensite during phase transformations.

3. The numerical implementation of a more effective algorithm able to iden-
tify gradient extremals and valley-ridge inflection points characterizing the
energetic surfaces presented in the thesis.

125
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4. The most important and most difficult development concerns the extension to
the three-dimensional framework. It is the most important as it would allow to
obtain direct applicable results, but concurrently it is very difficult to properly
characterize modular forms so that they can reflect GL(3,Z)-invariance of
three-dimensional crystalline lattices.
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