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Abstract

Heavy fermion systems are lanthanide- and actinide- based intermetallic compounds
where the strong electronic correlation gives rise to a rich phase diagram and exotic
physical phenomena. The description of these systems, after more than 80 years from
their discovery, is still a big challenge. In this thesis the newly investigated heavy
fermion system CeRh2As2 is analyzed. The goal of the research was to provide an
independent determination of the crystal electric field (CEF) scheme and crystal electric
field parameters acting on the rare earth Ce ion, starting with the mere knowledge of
its crystal structure. The determination of the CEF scheme was carried out using x-ray
absorption (XAS) at the M4,5 edge of Ce and x-ray Raman spectroscopy (XRS) at the
N4,5 edge. The experiments were performed respectively at ID32 and ID20 of the ESRF.
The symmetry reduction due to the presence of the neighbouring atoms causes the
presence of a natural out of plane linear dichroism that is observed in the experimental
spectra acquired with these techniques. The determination of the crystal field scheme
was achieved via the comparison of the experimental spectra with atomic multiplet
theory simulations performed with Quanty. Atomic models can be successfully applied
in these systems due to the high localization of the 4f orbitals. A crystal field scheme
Γ1

7 − Γ6 − Γ2
7 is proposed, with a quasi-degenerate quartet ground state. In fact, the

distance between the first excited state Γ6 and the ground state Γ1
7 is determined to be

bounded between 0 . ∆E76 . 6 meV.
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Sommario

I sistemi di elettroni pesanti sono materiali intermetallici a base di lantanoidi e attinoidi
nei quali la forte correlazione elettronica dà origine ad un ricco diagramma di fase
ed ad insoliti fenomeni fisici. Ad 80 anni dalla loro scoperta, la descrizione di questi
fenomeni sta ancora mettendo alla prova le nostre conoscenze. In questa tesi è stato
analizzato il nuovo sistema di elettroni pesanti CeRh2As2. Lo scopo della ricerca era
di fornire una determinazione indipendente dello schema dei livelli energetici di campo
elettrico cristallino (CEF) e i relativi parametri del campo elettrico cristallino che agisce
sullo ione di terra rara Ce, partendo dalla conoscenza della sola struttura cristallina. La
determinazione dello schema di CEF è stata raggiunta utilizzando le tecniche di spettro-
scopia ad assorbimento di raggi X (XAS) alla soglia M4,5 del Ce e spettroscopia Raman
di raggi X (XRS) alla soglia N4,5. Gli esperimenti sono stati eseguiti rispettivamente
all’ID32 e all’ID20 dell’ESRF. La riduzione della simmetria dovuta alla presenza degli
atomi attorno allo ione causa la presenza di un dicroismo naturale lineare che è stato
osservato negli spettri sperimentali acquisiti. La determinazione dello schema dei liv-
elli di campo cristallino è stata ottenuta confrontando gli spettri sperimentali con le
simulazioni, basate su una teoria di multipletti atomici, ottenute con Quanty. I modelli
atomici possono essere applicati con successo in questi sistemi per via della alta local-
izzazione dell’orbitale 4f . Uno schema dei livelli di campo cristallino Γ1

7 − Γ6 − Γ2
7

è proposto, con lo stato fondamentale formato da un quartetto quasi-degenere. Infatti
la distanza del primo stato eccitato Γ6 dallo stato fondamentale Γ1

7 è stata determinata
essere compresa tra 0 . ∆E76 . 6 meV.

III
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CHAPTER1
Introduction

In the following chapter the exotic properties that were found on some f compounds
are presented. The properties and the history of so-called heavy fermions are presented
in detail in the reviews in Ref. [1–5].

1.1 Exotic properties of the f shell

Materials which contain lanthanides and actinides with unfilled 4f or 5f electron shells,
belong to the class of strongly correlated materials, meaning that the interplay between
the electrons play a fundamental role and the single non-interacting electron model is
not enough to describe some of the exotic properties that these materials exhibit. The in-
teraction between the partly filled f shell, whose electronic density is highly anisotropic,
and the sea of itinerant delocalized electrons leads to a rich fauna of competing effects
and of phase states. These f electrons behave as localized magnetic moments in a sea
of itinerant conduction electrons. Their interaction can favor a magnetically ordered
ground state when the conduction electrons mediate a coupling between the f electrons
in different lattice sites via the so-called Ruderman-Kittel-Kasuya-Yoshida (RKKY)
interaction [6]. But also the interaction can favor a non-magnetic state if the conduc-
tion electrons tend to screen the localized magnetic moments via the so-called Kondo
screening. These effects manifest at low temperatures and their competition leads to pe-
culiar magnetic, thermodynamic and electronic behaviour, which leads to a rich phase
diagram. Varying the pressure, magnetic field or the chemical doping it is possible to
tune the prevailing interaction. This behavior can be qualitatively pictured with the Do-
niach phase diagram as in Fig 1.1. The heavy fermion HF state rises when the Kondo
effect becomes dominant and thus reduces the magnetic ordering temperature and the
obtained ground state is paramagnetic and formed by strongly interacting electrons that
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Chapter 1. Introduction

Figure 1.1: Qualitative illustration of the Doniach phase diagram: ground state as a function of the
temperature and of a control parameter such as pressure or magnetic field. The Kondo and the RKKY
interactions have different dependencies on these parameters. This leads to the presence of different
possible ground states. Such as an antiferromagnetic (AFM) ordering where TRKKY > TK or a
paramagnetic Fermi liquid phase where TRKKY > TK . In between a quantum critical point (QCP)
can arise and this leads to the presence of exotic phases such as non-Fermi liquid behaviour (NFL)
and unconventional superconductivity. Figure redrawn from Ref. [7, 8].

can be described as a Fermi liquid (FL).
The ground state can be tuned through a quantum phase transition into a heavy

fermion (HF) state by pressure, magnetic fields or chemical doping [7]. The HF state
is a paramagnetic FL state where the Kondo interaction dominates and leads to non-
ordered but interacting high effective mass electrons.

The first manifestations of the presence of heavy fermions was the discovery of the
so-called Kondo effect [9]. It manifested in an anomalous rise of the resistivity as the
temperature was decreased. The interaction between the conduction electrons and the
localized magnetic impurity, which are the 4f electrons, leads to the formation of a
quasi-particle state, which can be described as a conduction electron dressed with par-
ticles describing the interaction (scattering) with the localized electron. This results in
an increase of the effective mass of the electron. As the temperature increases instead,
the electrons become "asymptotically free" that means that they do not feel the interac-
tion, so the f orbitals become more localized at higher temperature and the conduction
electrons less heavy. Instead, decreasing the temperature, when the thermal energy is
lower than the Kondo interaction energy, the interaction becomes dominant. In that
case the f wave function is hybridized with the conduction electron wave function and
the resulting state should be written as a combination of localized and delocalized wave
functions. This results in the presence of a mixed valence state for the f ion.

The term heavy fermion was coined by Steglich [10] in 1976 to describe the elec-
tronic excitations in a new class of intermetallic compounds with an electronic density
of states as much as 1000 times larger than copper. For example, CeCu2Si2 has a spe-
cific heat of γ = 1100 mJ mol K2 and an effective mass of m∗ ≈ 102me. From the
first observation of this behaviour in 1975 on the compound CeAl3 (Andres et al., 1975
[11]) a diversity of heavy fermion compounds showing different kinds of phase states

2
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1.2. Aim of the thesis

have been discovered. A boost in the interest toward these compounds was given by
the discovery of unconventional superconductivity (SC) in CeCu2Si2 where the Cooper
pairs are formed by heavy electrons. This discovery proved that magnetic interactions
and Cooper pairs formation are not incompatible [12]. In conventional BCS super-
conductors the doping with magnetic impurities leads to the suppression of the super-
conducting phase. On the contrary, the doping with non magnetic impurities of heavy
fermion superconductors suppresses the SC phase as shown by experiments involving
the chemical substitution of Ce with the non magnetic La ion [13, 14].

However, at the basis of the study of this complex phenomena the knowledge of the
characteristics of the f ground state wave functions is fundamental. The interaction
of the f shell with the surrounding ions in the crystal can be modeled as an effective
crystal electric field that models the hybridization of the f orbital with the surrounding
orbitals. The symmetry and the strength of this interaction strongly determines the
properties of the ground state wave function of the f electrons. The significance of the
characteristics of the crystal field ground state for the properties of Kondo systems was
pointed out in several articles [15]. For example, Gunnarson and Christenses showed
how the different crystal electric field split 4f states in CeCu2As2 hybridize differently
with the conduction electrons and how the magnetic susceptibility is influenced by that
[16]. Cerium compounds, in particular, are interesting because they show all the exotic
phase states but their description is simplified by the fact that only one f electron is
present since Ce is very often found as Ce3+ with configuration 4f 1. This means that
cerium compounds are an ideal playground for trying to understand the fundamental
physics at the basis of these strongly correlated Kondo systems.

1.2 Aim of the thesis

In this thesis, the crystal field levels scheme of the new Ce-based heavy fermion system
CeRh2As2 is investigated. The tools to describe the 4f shell and its interaction with the
surrounding ions in a crystal are described in chapter 2, where the crystal electric field
(CEF) model is presented. Chapter 3 describes in detail two core level spectroscopy
techniques that proved to be able to give information about the crystal field and that
were exploited in this thesis: x-ray absorption spectroscopy (XAS) at the M4,5 edge
and x-ray Raman scattering (XRS) spectroscopy at the N4,5 edge. In chapter 4 it is
described how the experiments were performed at ID32 and ID20 of the ESRF. In
chapter 5 it is shown how it is possible to successfully simulate the experimental spectra
through atomic multiplet calculations. In chapter 6 the crystal structure of CeRh2As2 is
described and the XAS and XRS experimental spectra are shown. Via the comparison
of the experimental data with the simulations a set of possible crystal field schemes
is proposed. Finally the discussion of the results and possible ways to improve the
analysis are presented in chapter 7.

3
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CHAPTER2
Effective crystal electric field theory

2.1 Physics of the atomic 4f shell

The properties of the 4f compounds outlined in the previous chapter are greatly deter-
mined by the properties of the 4f levels: their degeneracy, their energy, their symmetry,
the anisotropy of their charge density distribution and their magnetic moment. In the
following, the physics of the 4f electronic shell in a crystal environment is described
following the discussion in Ref. [17]. In this section the Hamiltonian of a free ion
is described and, successively, the crystal field Hamiltonian is introduced as a pertur-
bation in section 2.1. This approach is justified by the fact that the 4f electrons in a
material do not participate significantly in the chemical bondings and their interaction
with the surrounding ions of a crystal can be modeled, to a good approximation, as an
interaction with an effective electrostatic field, called the crystal electric field [18–22].
A small hybridization is often anyway present and for a correct description of the ef-
fects that arise due to this hybridization, a band model is required. However, for the
experimental findings of this thesis a theoretical description within the atomic multiplet
theory [23–25] is sufficient. The application of this model to the prediction of the x-ray
spectroscopies spectra provides a concrete means to access the 4f (but also 5f ) ground
state [22, 26, 27]. The knowledge of the properties of the ground state level is the basis
for the characterization of the f electron physics in Kondo lattice materials (see [26]
and the references therein). In chapter 5.2 the limits of this approach and the physics
that cannot be predicted within this model are shown.

5
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Chapter 2. Effective crystal electric field theory

2.1.1 Hamiltonian of the free ion

The calculation of the energy levels and wave functions of an atomic system is based
on the solution of the Schrödinger equation

HΨ = EΨ. (2.1)

Where H is the Hamiltonian, Ψ the eigenfunctions and E the eigenvalues of the sys-
tem. Considering the nucleus of the atom as a point with a mass much higher than the
electron mass and a charge Ze surrounded by N interacting electrons, of mass m and
charge −e, the systems’ Hamiltonian can be written as:

H =
N∑
i=1

(
p2
i

2m
− Ze2

ri
+ ξ(ri)li · si

)
+

N∑
i>j=1

e2

rij
. (2.2)

Where p is the momentum operator, l is the orbital angular momentum operator and s
the spin angular momentum operator. The first summation considers only single elec-
tron terms and includes: the kinetic energy of each i-th electron, its potential energy
produced by the nucleus and the spin-orbit interaction. The last term instead mixes the
electrons’ coordinates since it takes into account the interaction acting between each
pair of electrons ij separated by a distance rij = ri− rj . This prevents an analytic solu-
tion of the Schrödinger equation for atoms with more than 2 electrons. This Coulomb
repulsion cannot be treated as a perturbation to the single electron Hamiltonian because
its effect is of comparable magnitude than the interaction between the electron and the
nucleus. A successful approach to tackle this problem is the central field approximation
[28, 29]. In this approximation each electron is considered to be independently moving
in an effective central field acting on single electron coordinates, which originates from
the charge distribution of all the other electrons and behaves as an average potential that
screens the nuclear charge. In this way the Hamiltonian in equation 2.2 can be rewritten
as:

H = H0 +H1,

H0 =
N∑
i=1

(
p2
i

2m
− Ze2

ri
+ 〈

N∑
i>j=1

e2

rij
〉

)
=

N∑
i=1

(
p2
i

2m
− U(ri)

)
,

H1 =
N∑
i=1

ξ(ri)li · si +
N∑

i>j=1

e2

rij
− 〈

N∑
i>j=1

e2

rij
〉 = HSO +Helec,

(2.3)

where −U(ri)/e is the spherically symmetric effective potential, which depends only
on the single electron coordinates, and H1 = H − H0 contains all the remaining in-
teractions. The one particle Hamiltonian H0 can now be used as the starting point for
our calculation and successively H1 can be added as a perturbation. The solution of the
approximated multi-electron Schrödinger equation

H0Ψ0 = E0Ψ0 (2.4)

can be expressed using single electron wave functions ψki , where k represents the set
of quantum numbers (nlml ). Moreover, since the Hamiltonian H0 is spherically sym-
metric, the single electron wave functions can be separated into a radial and an angular

6
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2.1. Physics of the atomic 4f shell

part:
ψki = Rnl(r)Ylml

(θ, φ), (2.5)

where Ylml
are spherical harmonics andRnl are the radial functions. The usual notation

for the quantum numbers is used: n is the principal quantum number of the electron
shell, l the orbital angular momentum quantum number and ml the magnetic quantum
number. The spin dependent wave function is introduced by multiplying ψ by one of the
two spin wave functions corresponding to the two possible spin projections ms = ±1

2
along the z axis.

In the end, the full anti-symmetrized (in order to guarantee that the Pauli exclusion
principle is not violated) many-electron wave function Ψ0(K1, K2, ..., KN) solution of
the Schrödinger equation 2.4 is given by the Slater determinant of the single-electron
wave functions [28]:

Ψ0(K1, ..., KN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(K1) ψ1(K2) · · · ψ1(KN)

ψ2(K1) ψ2(K2) · · · ψ2(KN)
...

... . . . ...
ψN(K1) ψN(K2) · · · ψN(KN)

∣∣∣∣∣∣∣∣∣∣
, (2.6)

where K = (nlmlms). These wave functions are called zero order wave functions and
make up the basis for calculating our first order corrections due to the perturbation po-
tential H1 which contains the spin-orbit and the remaining inter-electronic electrostatic
interactions.

2.1.2 Spin-orbit and electrostatic electron-electron interaction

The calculations of the first order perturbation theory correction to the energy involve
the evaluation of matrix elements of the kind:〈

Ψ0
∣∣H1

∣∣Ψ0
〉
. (2.7)

The details about the calculations are described by Condon et al. [29] for both the spin-
orbit and the electrostatic perturbations. The separation of the wave function into an
angular and a radial part is essential in the evaluation of the integrals. In particular, the
radial part of the spin orbit interaction can be reduced to a parameter ζnl that stands for
the integral

ζnl =

∫ ∞
0

R2
nl(r)ξ(r)r

2 dr (2.8)

so the spin orbit interaction operator acting on the angular part of the wave function of
each electron can be written as:

ζnl l · s. (2.9)

The electrostatic part involves integrals of the kind:〈
Rnili(ri)Ylimli

(θi, φi)
∣∣∣ 1

rij

∣∣∣Rnj lj(rj)Yljmlj
(θj, φj)

〉
(2.10)

where i and j are two electrons. Expanding the Hamiltonian 1/rij in a series of Legen-
dre polynomials and using the Wigner-Eckhart theorem [17], Eq. 2.10 can be written

7
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Chapter 2. Effective crystal electric field theory

as: ∑
k

fkF
k +

∑
k

gkG
k. (2.11)

F k and Gk are the Slater integrals and involve integration over the radial part of the
wave functions:

F k(nili, njlj) = e2

∫ ∞
0

∫ ∞
0

rk<
rk+1
>

R2
nili

(ri)R
2
nj lj

(rj)r
2
i r

2
j dridrj

Gk(nili, njlj) = e2

∫ ∞
0

∫ ∞
0

rk<
rk+1
>

Rnili(ri)Rnili(rj)Rnj lj(rj)Rnj lj(ri)r
2
i r

2
j dridrj,

(2.12)

where k denotes the order of the multipole components in the interaction, r< = min(ri, rj)
and r> = max(ri, rj). The integrals over the angular part of the wave functions instead
gives rise to the fk and gk coefficients and they determine which multipole component
of the Slater integrals contributes and their values can be found in tabulated form. See
Ref.s [24, 30, 31] for more details. The values of the Slater integrals and of the spin-
orbit parameters instead can be determined with the code by R.D.Cowan [30] based on
the Hartree-Fock approximation.

2.1.3 Splitting of the atomic levels

Summing up: the Hamiltonian of a many electron free atom is H = H0 +Helec +HSO.
Where Helec and HSO are inserted as a perturbation to the one electron eigenfunctions
of H0. The leading term among the perturbations is Helec. The effect of the electro-
static field is to differentiate the energy of some of the wave functions corresponding to
different possible ways of arranging the electrons for a given electronic configuration.
The obtained wave functions are characterized by the total angular momentum L, the
total spin angular momentum S, given by the combination of the single electron angu-
lar momenta, and their components along the quantization axis ML, MS . These are the
good quantum numbers to describe the system and usually the state is labeled using
the term symbols: 2S+1X , where X corresponds to a letter according to the value of
L (L = 0, 1, 2, 3, ... corresponds to X = S, P,D, F, ...). Wave functions characterized
by the same L and S have the same energy so the degeneracy is (2L+ 1)(2S + 1).

In light rare-earth elements the next perturbation term to add is the spin-orbit Hamil-
tonian HSO. It couples the spin and orbital angular momenta that are, in principle, no
more conserved independently. The new good quantum number, which describes cor-
rectly the wave functions, is the total angular momentum J = L+ S. So the HSO term
adds a correction to the previously calculated levels, splitting them into levels with the
same S and L but different J . If this correction is small compared to the distance be-
tween levels with different term symbols, the levels can still be characterized in a good
approximation by S and L and is possible to make use of the term symbol adding a
subscript to differentiate the levels according to the value of J . This picture is called
Russel-Saunders (or LS) coupling. The levels are still (2J + 1)-fold degenerate due to
the MJ degeneracy. This group of levels indicated by the term symbol 2S+1XJ is called
a multiplet.

8
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2.2. Physics of the 4f shell in a crystal: crystal field theory

Figure 2.1: Square of the atomic radial wave functions for the 4f, 5s, 5d and 6s electronic shells, as
calculated with the Hartree-Fock method for Ce3+. On the x-axis the distance r from the nucleus is
given in units of the Bohr radius a0. Figure reproduced from Ref. [26].

2.2 Physics of the 4f shell in a crystal: crystal field theory

In this chapter it is considered how the atomic levels are modified when an atom is
introduced into a crystal. The focus will be in particular on the behaviour of the levels
of the 4f shell. In this case, the presence of the neighbouring atoms can be treated
as a perturbation to the spin-orbit split system. This approach is justified considering
the limited spatial extend of the atomic 4f radial wave functions. As an example the
radial wave functions of Ce3+ are depicted in figure 2.1. Ce has an atomic configuration
[Xe]4f 15d16s2. The 6s and 5d orbitals have the largest spatial extent and will overlap
significantly with the wave functions of the neighbouring atoms, when inserted in a
material, giving rise to molecular orbitals. Ce in materials is found very often as a Ce3+

ion, which means with a configuration [Xe]4f 1. The 4f electron does not participate
in chemical bonding because its radial wave function is more localized and, moreover,
it is partly screened by the full 5s shell. This justifies the use of perturbation theory to
model the interactions of the 4f -shell of a rare-earth atom with the crystal environment.
This interaction can be modeled as an effective electrostatic field, which simulates the
hybridization with the surrounding electrons, called crystal electric field (CEF) [18–
22]. This interaction is described by the CEF Hamiltonian:

HCEF = −e · VCEF (r, θ, φ), (2.13)

where VCEF is the CEF potential. This potential must reflect the symmetry of the
environment in which the ion is inserted. The isolated atom has spherical symmetry
and thus the levels are (2J + 1)-fold degenerate. The effect of the CEF is to lower
the symmetry and to lift the (2J + 1)-fold degeneracy creating a splitting between the
multiplet levels (see figure. 2.2).

To point out the role of the symmetry and to perform the calculations it is convenient

9
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Chapter 2. Effective crystal electric field theory

to expand the crystal field potential in terms of spherical harmonics:

VCEF (r, θ, φ) =
∞∑
k=0

k∑
m=−k

Ãmk rk Cm
k (θ, φ) (2.14)

where Cm
k (θ, φ) =

√
4π

2k+1
· Y m

k (θ, φ) =
√

(k−m)!
(k+m)!

· Pk(cos θ) · eimφ are the renormal-
ized spherical harmonics. The respective Hamiltonian can be applied as a first order
perturbation to the atomic system. This involves the calculation of matrix elements in
the basis of ψk = Rnl(r)Ylml

(θ, φ):

〈ψki |HCEF

∣∣ψkj〉 =

− e
∞∑
k=0

k∑
m=−k

Amk 〈Ylimi
(θ, φ)|Cm

k (θ, φ)
∣∣Yljmj

(θ, φ)
〉
.

(2.15)

where Amk = Ãmk 〈Rnili(r)| rk
∣∣Rnj lj(r)

〉
. This radial integral could be solved within

Hartree-Fock theory, but the radial wave functions are modified by the presence of
the other ions in the solid and thus the calculation gives a non accurate value. In many
cases, as in the studies presented here, the crystal field parametersAmk are unknown and
have to be found via fitting of the experimental data with the calculated spectra [18].
The integration over the angular part in Eq. 2.15 determines thoseAmk that contribute to
the sum. This can be solved analytically and can be expressed in terms of 3J symbols
as: 〈

Y mi
li
|Cm

k |Y
mj

lj

〉
= (−1)mi

√
(2li + 1)(2lj + 1)

(
li k lj

0 0 0

)(
li k lj

−mi m mj

)
(2.16)

where the 3J symbol is defined as:(
j1 j2 j3

m1 m2 m3

)
=

(−1)j1−j2−m3

√
2j3 + 1

〈j1m1j2m2|j3 −m3〉 . (2.17)

The properties of the 3J symbol [18, 30] allows us to easily determine which crystal
field parameters are required to describe the crystal field Hamiltonian. The triangular
inequality imposes that only the terms with k ≤ li + lj contribute. k + li + lj must
be an even integer otherwise eq. 2.16 would be an integral over an odd function. An
additional condition comes from the requirement of an hermitian Hamiltonian, which
imposes Amk = (−1)m(A−mk )∗ [18]. This means that it is sufficient to determine the
parameters for m ≥ 0.

Additional restrictions can arise from the particular symmetry of the atomic site
under investigation. The symmetry of the effective crystal field is defined as the point
group of symmetry operators which leave the crystal field Hamiltonian invariant. For
example, if the high symmetry axis has q-fold rotational symmetry, VCEF has to fulfill
the condition VCEF (r, θ, φ) = VCEF (r, θ, φ + 2π/q). This translates into the condition
eimφ = eim(φ+2π/q) , which is fulfilled if m = N · q with N an integer number. This
condition directly implies that the crystal field Hamiltonian can only mix states with
∆Jz = q [32].

10
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2.3. Ce3+ ion in a tetragonal crystal field

Ce3+

[Xe]4f1

Spin-orbit

2F7/2

g = 14

g = 8

2F5/2 g = 6

~250 meV 

D4h crystal field

~50 meV

g = 2

g = 24f∝

Figure 2.2: Schematic drawing of the energy levels splitting for Ce3+ inserted in a tetragonal crystal
field. g is the degeneracy of the multiplets. Also plotted the electronic charge density of the orbitals
of the 2F5/2 multiplet in absence and in presence of the crystal field. The 2F7/2 and 2F5/2 multiplets
are split, respectively, in 4 and 3 doubly degenerate Kramers doublets.

The parity is the behavior under the spatial inversion operation i : r → −r. f(r)
has even parity if f(r) = f(−r) and odd parity if f(r) = −f(−r). The effective
crystal field Hamiltonian is built from spherical harmonics, which are functions of well
defined parity. In particular, the parity is connected to the order k by parity = (−1)k

[33]. Also, the quantity rk is such that (−r)k = (−1)krk. This means that applying the
inversion operation to the crystal field potential one gets:

VCEF (r, θ, φ)
i−→ VCEF (−r, π − θ, φ+ π) =

∞∑
k=0

k∑
m=−k

Ãmk (−1)krk (−1)kCm
k (θ, φ).

(2.18)
This implies that VCEF is always even under the inversion operation. This means that
the point group symmetry of the effective crystal field always includes the inversion op-
eration. The symmetry of the HCEF may thus be higher than the geometrical/physical
point symmetry of the crystal at the ion site [18].

2.3 Ce3+ ion in a tetragonal crystal field

The tools outlined in the previous chapters are applied here to the case of a Ce3+ ion in a
tetragonal crystal field. As already pointed out, Ce is very often found in the oxidation
state 3+, which means it has the electronic configuration 4f 1. Since there is only
one electron in an unfilled shell while all the other shells are full, the inter electronic
interaction can be fully modeled by the average potential screening. The f electron has
l = 3 and s = 1/2, which are also the total atomic L and S. Thus the only possible term
symbol is 2F . This configuration has a degeneracy g = (2L+1)(2S+1) = 14. Adding
now as a perturbation the spin-orbit Hamiltonian, these states split according to their
value of J = |L± S| = 7/2, 5/2. The energy of the two terms 2F7/2 and 2F5/2 is split
by an amount proportional to ζ4f (see fig. 2.2). The spin-orbit parameter is positive for
shells that are less than half filled, which means that the states that decrease in energy
will be the one with L · S < 0. This means that the states with the lowest energies will
be the states with the lowest J = 5/2. These energy levels are still (2J + 1) = 6 fold
degenerate. As already pointed out, this degeneracy is further split by the crystal field

11
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Chapter 2. Effective crystal electric field theory

Hamiltonian. In this work crystals with tetragonal structure will be encountered and a
crystal field Hamiltonian of tetragonal D4h symmetry is going to be used. The crystal
field parameters Amk to be considered in the model are given by the previously outlined
constraints. In this case L = 3, so k ≤ li+lj = 3+3 = 6, but also k+6 = even implies
k even. Thus for a 4f 1 configuration in general the terms with k = 0, 2, 4, 6 contribute.
The spherical harmonic of order k = 0 is spherically symmetric and its effect is usually
neglected or can be included in the spherical symmetric effective potential of eq. 2.3.
The D4h symmetry shows a fourfold rotational axis which imposes m = 0, 4. This
implies that the states resulting from the crystal field perturbation contains a mixture of
states with ∆Jz = 4. The lowest 2F5/2 multiplet is formed by states that can be labeled
by their magnetic quantum number MJ = ±5/2,±3/2,±1/2, or equivalently by their
expectation value of the Jz operator Jz = ±5/2,±3/2,±1/2 (in units of ~). So the
previous condition implies that the wave functions after the crystal field perturbation
will be given by mixtures of: Jz = ±5/2 and Jz = ∓3/2, while Jz = ±1/2 does not
mix with any state belonging to the 2F5/2 multiplet but can mix with the Jz = ∓7/2
states of the 2F7/2 multiplet.

For the sake of simplicity, this possible inter-multiplet mixing will be neglected,
which means supposing that the spin-orbit splitting is higher than the crystal field split-
ting (so-called Stevens approximation [34]). This limits the analysis to the 2F5/2 mul-
tiplet. This is often a good approximation for Ce. An additional condition rises in this
case and limits k to k ≤ 2J = 5 excluding the k = 6 term [35]. This means that the
effective crystal field potential will be:

VCEF (r, θ, φ) = Ã0
2 r

2C0
2 +

∑
m=−4,0,4

Ãm4 r
4Cm

4 . (2.19)

The 2F5/2 multiplet has a half-integral total angular momentum. This must be re-
flected in the symmetry behaviour of the wave function under rotations. These consid-
erations lead to the introduction of the so called Bethe double groups, which correctly
describe the symmetry of half-integral total angular momentum wave functions. It is
possible to find, based uniquely on symmetry considerations, how the levels of the 2F5/2

multiplet split when its symmetry is reduced from spherical to tetragonal. In particular
the multiplet splits in three doubly degenerate levels: one of symmetry Γ6, and two
of symmetry Γ7. Where the Bethe notation has been used to identify the irreducible
representations of the D4h double group. The behaviour of these states under the sym-
metry operations of the tetragonal point group D4h can be found in Ref. [36]. The
fact that the states are doubly degenerate is a general result called Kramers degeneracy
theorem [37]. It states that every eigenstate of a time-reversal symmetric system with
half-integral total spin is at least doubly degenerate [38]. The effective crystal electric
field always contains the time reversal symmetry.

Applying the CEF Hamiltonian as a perturbation to the atomic system, one obtains
the expressions of the wave functions and of the energy levels as a function of the values
of the crystal field parameters Am

k of eq. 2.15. The calculations can be performed using
the SolidStatePackage for Mathematica by Maurits Haverkort [39]. The obtained wave
functions can be written as a combination of the pure Jz wave functions |J, Jz〉, or more

12
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2.4. Experimental techniques to determine the crystal field

simply |Jz〉 since all belong to the same J = 5/2 multiplet:

Γ1
7 =

1√
a2 + b2

(a |±5/2〉+ b |∓3/2〉)

Γ2
7 =

1√
a2 + b2

(b |±5/2〉 − a |∓3/2〉)

Γ6 = |±1/2〉 ,

(2.20)

A mixing parameter α is defined and expressed in terms of the crystal field parameters
as:

α =
a√

a2 + b2
=

−5
√

14A4
4√

350A4
4

2
+

(
18A0

2 − 10A0
4 −

√
4(9A0

2 − 5A0
4)2 + 350A4

4
2

)2
.

(2.21)
The respective energies of the crystal field split states are:

EΓ1
7

=
1

105

[
−12A0

2 − 5A0
4 −

√
4(9A0

2 − 5A0
4)2 + 350A4

4
2

]
,

EΓ2
7

=
1

105

[
−12A0

2 − 5A0
4 +

√
4(9A0

2 − 5A0
4)2 + 350A4

4
2

]
,

EΓ6 =
8

35
A0

2 +
2

21
A0

4.

(2.22)

The inequality EΓ1
7
< EΓ2

7
always holds (this is the reason for the superscripts 1 and 2),

however EΓ6 can both be lower or higher than EΓ1
7
. The sign of the parameter A4

4 does
not influence the splitting of the energy levels. Moreover, the sign does not influence
the magnitude of the mixing parameter α, of which it determines uniquely the sign.
The sign of the mixing parameter is related to the orientation of the orbital with respect
to the crystallographic axes.

2.4 Experimental techniques to determine the crystal field

The most direct way to determine the CEF scheme consists in measuring the absorption
of optical radiation [40], but this is not applicable in non-transparent metallic materials
such as the intermetallic compounds containing rare earths considered in this thesis.
Indirect measurements can be effectively applied, for example exploiting the measure-
ment of physical quantities connected to the magnetic properties of the material. In
fact, in f materials the magnetic properties are mainly determined by the rare earth ion.
The measurement of the magnetic susceptibility (χ) [41] can therefore give a measure
of the atomic magnetic moment µ that can be related to the Jz mixing. The measure-
ment of the dependence of the susceptibility on the direction of the applied magnetic
field gives insight also about the anisotropy of the state, related to the Jz of the state.
Another indirect way is the measurement of the specific heat. The occupancy of the
excited crystal field states increases as the temperature increases and this leads to an
increase in the specific heat, which can be related to the splitting between the levels
[21]. Inelastic Neutron Scattering (INS) [21] has become the dominant method be-
cause it gives directly the splitting between the 4f levels as peaks in the energy loss
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Chapter 2. Effective crystal electric field theory

Figure 2.3: Calculated and experimen-
tal NIXS spectra of the Ce3+ N4,5

edge in CeB6 for the three trans-
ferred momentum directions q ‖
[100], [110] and [111]. Reproduced
from [47]. Each wave function Γ7

and Γ8 has a clearly distinguishable
dependence on the direction of q.
This allows to easily identify the
quartet Γ8 as the ground state level.
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spectrum at the energy corresponding to the CEF-splitting. However, in the following
the focus lies on more recent techniques that overcome the limitations of the INS as
the need for centimeter-sized crystals, the low counting rate and the superposition of
the phonon scattering. X-ray absorption spectroscopy, described in chapter 3.2.2, was
first proposed as a complementary tool to determine the crystal field ground state in
rare earth intermetallics by Hansmann et. al [42–44]. The crystal field orbitals are
anisotropic, this gives rise to a dependence of the absorption probability as a function
of the direction of the linear polarization [45]. This is clearly shown in the simulations
in chapter 6.3. This X-ray Linear Dichroism (XLD) strongly depends on the ground
state wave function’s Jz.

Later, it was proposed by Gordon et. al [46] that the natural linear dichroism could
be probed also using orientation-dependent x-ray Raman scattering (XRS), described
in chapter 3.3. This kind of non-resonant inelastic x-ray scattering (NIXS) technique
has the advantage, with respect to XAS, of being sensitive to lower than 2-fold sym-
metries, since it is not limited by dipolar transitions. This technique was thus applied
to determine the crystal field ground state in cubic compounds such as CeB6 [47]. In
figure 2.3 the NIXS experimental spectra of CeB6 are shown and compared with the
simulations. The dependence on the direction of the exchanged momentum is different
for the two crystal field wave functions. The comparison of the simulated spectra with
the experimental data allows one to determine the ground state wave function.

Both in XAS and XRS the experimental resolution can be orders of magnitude lower
than the crystal field splittings they are required to resolve.

Recently, resonant inelastic x-ray scattering (RIXS) has become available as a tool
to characterize the crystal field thanks to the very high resolution (≈ 20 meV) that has
been achieved in the soft x-ray range that allows to resolve the 4f → 4f transitions
[27].
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CHAPTER3
X-ray absorption and x-ray Raman core level

spectroscopies

The properties of solids are strongly determined by the outer electronic states of the
atoms, called the valence electron states (VES). These states are for example the filled
conduction bands in metals, the completely filled and completely empty bands in insu-
lators, but also the 4f states of rare earth (RE) elements with their peculiar behaviour.
The VES are therefore the main object of study of solid state physics because the knowl-
edge of their characteristics can provide an explanation for the observed properties of
the solids. Instead, the inner electrons, called core electrons are almost unchanged by
the formation of the solid. Core level spectroscopies are powerful tools to study the
VES [24]. A core electron is excited creating a vacancy in an inner state, which can be
described as a positively charged particle called core hole. This state has a well known
character because it is well modeled by atomic physics theories. This core hole state
will be the probe that allows us to get information on the VES. A core electron can be
excited in several ways, for example through electron, proton or ion scattering, but in
this thesis the focus is on exciting the core electron via x-ray absorption and inelastic x-
ray scattering. In an x-ray absorption process an electron can be excited into an empty
state below the ionization threshold, thus remaining "trapped" and forming an excitonic
state, or the electron can absorb enough energy to leave the atom with a certain kinetic
energy. These processes form the basis of x-ray absorption spectroscopy (XAS) [22,
24, 26] and x-ray photoemission spectroscopy (XPS). An x-ray photon can also scatter
inelastically off of a core electron losing part of its energy in the process and this energy
can excite the core electron. This process is known as x-ray Raman scattering (XRS),
in analogy to the optical and infrared Raman scattering [48, 49]. The spectroscopy
technique that exploits the XRS process will be presented in detail in chapter 3.3. The
choice of the core electron that is being excited is important and a notation [50] is used
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Chapter 3. X-ray absorption and x-ray Raman core level spectroscopies

Orbital 1s 2s 2p1/2 2p3/2 ... 3p3/2 3d3/2 3d5/2 ... 4d3/2, 4d5/2

Energy [eV] 40443 6549 6164 5723 ... 1187 902.4 883.8 ... 109
Label K L1 L2 L3 ... M3 M4 M5 ... N4,5

Table 3.1: Cerium binding energies. Data taken from X-ray data booklet, 2009 [51].

to label the exploited core-hole state. To indicate the principal quantum number n= 1, 2,
3, 4, ... a letter is used instead of the number: respectively K, L, M, N, ... . The different
angular momentum states s, p, d, f are numbered from the high binding energy to the
low binding energy as you can see for example in table 3.1 for the case of Ce.

3.1 Hamiltonian for the photon-electron interaction

The discussion by Schülke in [52] will be followed, which consists of writing the inter-
action Hamiltonian, applying perturbation theory in order to obtain Fermi’s golden rule
and obtain the double differential scattering cross section (DDCS). The Hamiltonian
for electrons in a quantized electromagnetic field is given by terms describing the radi-
ation field, the kinetic and potential energy of the electrons and the interaction between
the photon field and the electrons:

H =
∑
j

1

2m
[pj − (e/c)A(k, rj)]

2 +
∑
jj′

V (rjj′)

− e~
2mc

∑
j

σj · ∇ ×A(k, rj)

− e~
4m2c2

∑
j

σj · E(k, rj)× [pj − (e/c)A(k, rj)] +Hfield].

(3.1)

Here the summation j, j′ is over all the electrons of the scattering system; m is the
mass of the electron; c is the speed of light; p is the momentum operator; V (rjj′) is the
electron electron interaction; A(k,r) is the vector potential of the electromagnetic wave
with wave vector k at the position r of the electron, expressed in second quantization
as:

A(k, r) = A0ekλ(bkλe
ik·r + b†kλe

−ik·r), (3.2)

where ekλ is the polarization vector, bkλ is the photon annihilation operator and its
hermitian b† is the photon creation operator. σ is the spin vector operator whose com-
ponents are the Pauli matrices; E is the operator of the electric field at the electron
position r, which can be expressed in terms of the vector potential operator A via the
gauge equation:

E = −∇φ− 1

c
Ȧ (3.3)

where φ(r) is the Coulomb potential. The first term in Eq. (3.1) represents the kinetic
energy of the electron system in the presence of the radiation field. The second term
is the potential energy of the interacting electrons, discussed in chapter 2.1. The third
term is the potential energy of the magnetic moment (e~/2mc2)σ in the magnetic field
∇ × A = B of the radiation. The fourth term is the energy of the magnetic moment
(e~/2mc2)σ in a magnetic field (1/c)(v × E). This is the magnetic field one finds in
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3.1. Hamiltonian for the photon-electron interaction

the rest frame of the electron, when the electron is moving with a velocity v, expressed
in terms of canonical momentum according to v = (1/m)[p − (e/c)A]. Part of this
term is responsible for the intrinsic spin orbit effect (see below). The last term is the
energy of the photon field.

A perturbation treatment will be used to calculate the scattering cross-section, i.e.
use the interaction terms as a small perturbation of the system. It is needed to separate
the terms describing the atomic system from the terms describing the radiation field
containing the vector potential A. The square in the first term of Eq. (3.1) has to be
evaluated, the expression of E inserted from Eq. (3.3), and the spin-orbit term has to
be evaluated. The Hamiltonian 3.1 can be separated into three terms H = Hatomic +
Hint+Hfield: the interaction Hamiltonian collects all the terms which contain the vector
potential A

Hint =
∑
j

[
− e

mc
A(k, rj) · pj

+
e2

2mc2
A2(k, rj)

− e~
2mc

σj · [∇×A(k, rj)]

− e2~
4m2c4

σj · [Ȧ(k, rj)×A(k, rj)] + ...
]
,

(3.4)

where the additional spin orbit terms, that are negligible in our non-relativistic approx-
imation, are omitted; the remaining part that describes the electron system

Hatomic =
∑
j

1

2m
p2
j +

∑
jj′

V (rjj′) +
e~

4m2c2

∑
j

σj · (∇φ× pj); (3.5)

and the field Hamiltonian Hfield, which from now on will be neglected for simplicity
even though in a detailed theoretical treatment it should be taken into account. The first
two terms of Eq. 3.4 arise from the kinetic energy operator, the third from the Dirac
equation and the fourth from the spin orbit. The additional terms are neglected as they
would lead to higher order corrections or negligible contributions in the cases consid-
ered here. In this non-relativistic calculation approximation, the terms are restricted
to second order in (v/c). The crystal field Hamiltonian could also be introduced as a
perturbation to the atomic one as described in chapter 2.

This Hamiltonian is general and from this the expression of the scattering cross
section of several different experimental techniques can be obtained applying the inter-
action Hamiltonian in Eq. 3.4 as a perturbation to the eigenstates of the Hamiltonian
3.5. The first term A · p gives rise to resonant electric multipole scattering. In first or-
der perturbation it describes x-ray absorption (XAS, chapter 3.2), while with a second
order perturbation the resonant inelastic x-ray scattering (RIXS [53]) can be described.
The second term A2 gives rise, in first order perturbation, to non-resonant inelastic
x-ray scattering (NIXS, see chapter 3.3). While the third and fourth terms containing
the spin matrix σ give rise to magnetic scattering, whose cross section can be found to
be much smaller than the other by a factor ~ω/mc2 ≈ 10 keV/510 keV smaller than
the spin-independent one. For the purpose of this discussion, these terms are neglected
even though they are at the basis of interesting spectroscopic techniques [54].
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Chapter 3. X-ray absorption and x-ray Raman core level spectroscopies

3.2 X-ray Absorption Spectroscopy (XAS)

3.2.1 Absorption edges

In x-ray absorption spectroscopy (XAS) [22, 24, 26] a deeply-bound core electron is
excited into an unoccupied valence state by the absorption of a photon. If the en-
ergy of the incident photons corresponds to the binding energy of a core level, a sharp
rise of the absorption probability will occur and this rise is called an absorption edge.
This corresponds to the transition from the ground state to the lowest empty state that
can be reached. Every element has its own value of the energies for the edge thresh-
olds, which makes this technique, together with the other core level spectroscopies,
an element-selective technique. When the threshold is overcome the electron can be
excited into an excitonic state, which means that the core hole interacts strongly with
the excited electron forming a bound state. The electron can also be excited into a non
bound-state. This transition gives rise to the continuum edge jump and to describe this
transitions a many body description of the conduction band states is required. The ex-
citons instead are highly localized and have large binding energies so that an atomic
multiplet description can provide an adequate prediction of the spectral features. The
lifetime of the excited state is of the order of 10−15s as the core-hole is filled by another
electron. Via Heisenberg’s uncertainty principle this results in an energy broadening of
the order of some 100 meV which varies from edge to edge. There are different pro-
cesses through which the core-hole can decay. For example through x-ray fluorescence
in which an electron in an upper level can decay into the core-hole emitting a radiation
corresponding to the energy difference between the initial and final level. In another
case, this energy difference can be transferred directly to another electron giving rise
to the so called Auger effect: an electron decays into the hole transferring the energy
difference to another electron, which can acquire enough kinetic energy to overcome
the surface potential of the material and ionize it.

3.2.2 Theoretical description

To describe an x-ray absorption process, which involves one photon, a first order per-
turbation of the p · A term in the interaction Hamiltonian of eq. 3.4 is applied to the
atomic system described by the Hamiltonian of eq. 3.5. The transition probability is
thus given by Fermi’s Golden Rule, which states that the probability of having a transi-
tion from an initial state i to a final state f by absorbing the incident photon energy ~ω
is given by:

w =
2π

~
|〈f |HXAS |i〉|2δ(Ei − Ef + ~ω), (3.6)

where
HXAS =

e

mc
A(k, rj) · pj. (3.7)

Expressing the vector potential A in second quantization and summing over the possible
modes k it is obtained:

A(r) =
∑
k,λ

A0ekλ(bkλe
ik·r + b†kλe

−ik·r), (3.8)
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3.3. X-ray Raman Spectroscopy (XRS)

d

2

k2,e2, 2

k1,e1, 1

sample

q=k1-k2

Figure 3.1: Schematic drawing of an IXS experiment. An incoming x-ray with wave vector k1, polar-
ization e1 and energy ~ω1 is scattered off the sample at a scattering angle 2θ. After the scattering it
has a wave vector k2, a polarization e2 and an energy ~ω2.

where bkλ is the annihilation operator that is needed to describe the absorption of a
photon, and ekλ is the vector describing the polarization. Expanding using a Taylor
expansion eik·r = 1 + ikr + ..., and considering the case in which kr � 1 (dipole
approximation: valid if ~ω � 10 keV as in the cases discussed in the thesis) the XAS
Hamiltonian is obtained as:

HXAS =
∑
k,λ

bkλ
e

mc
A0(ekλ · p). (3.9)

Therefore, the spectral intensity I that one expects from a XAS experiment for a dipole
excitation will be proportional to the matrix element:

I ∝ | 〈f | ekλ · p |i〉 |2 (3.10)

This is usually rewritten in terms of the position vector r using the equation of motion
p ≡ −i~∇ = [r, H]m/i~ as:

〈f | ekλ · p |i〉 = im(Ef − Ei) 〈f | ekλ · r |i〉 . (3.11)

The bracket corresponds to an integral over the whole space and, exploiting parity
considerations, it is possible to understand which transitions are allowed. Since the
dipole operator is odd, transitions are allowed only between states with different parity.
Considering also the conservation of orbital and spin angular momentum the following
selection rules are obtained:

∆L = ±1, 0; ∆J = ±1, 0; ∆S = 0. (3.12)

3.3 X-ray Raman Spectroscopy (XRS)

3.3.1 Double differential scattering cross section

In this thesis, the focus lies on the Non-resonant Inelastic X-ray Scattering (NIXS) tech-
nique, which, when connected with core-electron excitations, is called non-resonant
X-ray Raman Scattering (XRS). Like all the other Inelastic X-ray Scattering (IXS) pro-
cesses it is a two photons process the basic kinematics of which can be sketched as
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Chapter 3. X-ray absorption and x-ray Raman core level spectroscopies

in Fig. 3.1: a photon of wave vector k1, polarization e1 and energy ~ω1 impinges on
the sample characterized by an initial state |i〉 with an energy Ei and is scattered by an
angle 2θ leaving the sample with a wave vector k2, a polarization e2 and an energy ~ω2.
After the scattering the sample will be in a state |f〉 with energy Ef due to the transfer
of energy ~ω and momentum ~q. Conservation of energy and momentum requires that

~ω = Ef − Ei = ~(ω1 − ω2),

~q = ~(k1 − k2).
(3.13)

From the conservation of momentum it is found that the transferred momentum is
connected to the scattering angle by

|q| = |k1 − k2| = (ω2
1 + ω2

2 − 2ω1ω2 cos 2θ)1/2/c. (3.14)

If the exchanged energy is much smaller than the incident energy ω � ω1 and ω2 ≈ ω1

equation 3.14 can be approximated as:

q ≈ ω1

c
(2− 2 cos 2θ))1/2 = k12 sin θ = 2

~ω
~c

sin θ. (3.15)

An IXS experiment consists in producing a well collimated and monochromatic x-
ray beam and detecting the radiation scattered from the sample by an angle 2θ ( thus
fixing q ) into a solid angle element dΩ with an energy in the range dE2, what is
measured is the so called double differential scattering cross-section (DDSCS) as a
function of q and ω defined as:

dσ

dΩdω2

≡

current of photons scattered into [Ω2, dΩ2]
with an energy in the range [~ω2, d~ω2]

current density of the incident photons× dΩ2× d~ω2

. (3.16)

IXS is a two photon process. The vector potential is linear in the creation and an-
nihilation operators as shown in equation 3.2. To describe an IXS process a first order
perturbation for the term A2 in the interaction Hamiltonian of Eq. 3.4 is required. Also
the term A · p describes a IXS process in second order perturbation. This contribution
dominates only at resonance and gives rise to RIXS, while if the energy of the radi-
ation is far from an absorption edge this scattering can be neglected. In the case of
non-resonant inelastic x-ray scattering (NIXS) the transition probability per unit time
is given by Fermi’s Golden Rule

w =
2π

~
|〈f |HNIXS |i〉|2δ(Ei − Ef + ~ω), (3.17)

where

HNIXS =
e2

2mc2
A2(k, rj). (3.18)

From these equations the double differential scattering cross section is obtained (Schülke
[52]). The transition from the initial electrons system state |i〉 to the final state |f〉 is
given by:(

dσ

dΩdω2

)
|i〉→|f〉

=

(
e2

mc2

)2(
ω2

ω1

)
|〈f |

∑
j

exp(iq · rj) |i〉 (e1 · e∗2)|

× δ(Ei − Ef + ~ω)

(3.19)
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3.3. X-ray Raman Spectroscopy (XRS)

Summing over all the possible final states and weighing the initial states |i〉 by their
probability of occupation

pi = Z−1 exp(−Ei/kBT ) (3.20)

where Z is the partition function, kB the Boltzmann constant and T the temperature,
the DDSCS can be written as a product of two terms:

dσ

dΩdω2

=

(
dσ

dΩ

)
Th

S(q, ω). (3.21)

The first term (dσ/dΩ)Th is the Thomson scattering cross section and introducing the
classical electron radius r0 ≡ e2/mc2 it can be written as:(

dσ

dΩ

)
Th

≡ r2
0

(
ω2

ω1

)
|e1 · e∗2|2. (3.22)

It describes the strength of the photon-electron coupling. The second term in Eq. 3.21
is the dynamic structure factor and contains all the information about the many-body
system that can be obtained by non-resonant IXS:

S(q, ω) =
∑
i,f

∑
j

pi|〈f | exp(iq · rj) |i〉|2δ(Ei − Ef + ~ω) (3.23)

Some considerations about the transition operator exp(iq · r) allow to understand
the strength of the NIXS technique. For small q the transition operator can be expanded
in a Taylor series:

exp(iq · r) ≈ 1 + iq · r− (q · r)2

2
+ ... (3.24)

At low q the NIXS cross section is dominated by dipole transitions and it becomes
equivalent to the XAS Hamiltonian 3.9 (see [55] for details). Instead, as q increases
higher order terms become dominant and the technique becomes sensitive to dipole
forbidden transitions (quadrupole, sextupole, octupole, ...). For large q and to better
understand the role of the symmetry of the operator in these transitions the operator
is conveniently expanded in a sum over spherical harmonics. In order to follow the
formalism that is used in the calculations, the transition operator is expressed in terms
of spherical harmonics as done by Haverkort (2007) in Ref. [56]:

exp(iq · r) =
∞∑
k=0

k∑
m=−k

ik(2k + 1)jk(qr)C
∗
k,m(θq, φq) · Ck,m(θr, φr), (3.25)

where jk(qr) is the kth-order spherical Bessel function, which contains the dependence
on the modulus of the exchanged momentum and Ck,m =

√
4π/(2k + 1)Yk,m are the

renormalized spherical harmonics, which contain the dependence on the direction of
the momentum. In the calculations the many body wave functions are built from one
particle orbital basis functions, which are written as a product of a radial wave function
times a spherical harmonic. In this way is possible to separate the matrix element in
Eq. (3.23) calculated for a one particle orbital into a radial and an angular part:〈

Rf (r) · Ylf ,mf
(θr, φr)

∣∣ eiq·r |Ri(r) · Yli,mi
(θr, φr)〉 =

∑
k,m

Ak,mIk,m (3.26)
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Chapter 3. X-ray absorption and x-ray Raman core level spectroscopies

where
Ak,m = ik(2k + 1)C∗k,m(θq, φq) 〈Rf | jk(qr) |Ri〉 , (3.27)

and
Ik,m =

〈
Ylf ,mf

∣∣Ck,m(θr, φr) |Yli,mi
〉 . (3.28)

Eq. 3.28 is the angular part of the 2k-pole spectrum and the integral between the three
spherical harmonics can be rewritten in terms of the Wigner 3j-symbols as:

Ik,m ∝
(
lf k li

0 0 0

)(
lf k li

−mf m mi

)
. (3.29)

From this expression the transition selection rules can be obtained. Ik,m does not vanish
only if the triangular inequality |lf − li| ≤ k ≤ lf + li holds and if lf + k + li is equal
to an even integer since the expectation value over an odd function is zero. This means
that for a transition d → f , for example, for which the initial angular momentum is
li = 2 and the final is lf = 3, Ik,m is non zero for k = 1 (dipole), k = 3 (octupole) and
k = 5 (triakontadipole).

The dipole transition has the same transition rules of the dipolar XAS as in the
equations 3.12. In general the inequalities |Ji− k| ≤ Jf ≤ Ji + k and |Li− k| ≤ Lf ≤
Li+k are valid. If the LS coupling holds ∆S = 0, which is the case of light rare earths
elements, otherwise in intermediate coupling it is possible to have ∆S = ±1, 0. XRS
then allows access to transitions with ∆L = ∆J = ±5,±4,±3,±2,±1, 0, hugely
increasing the number of accessible excited states with respect to XAS.

A schematic drawing of a XRS process for N4,5 edge of Ce3+ with the energy levels
for the initial and final configurations and the simulated DDSCS are sketched in figure
3.2. The energy ~(ω1 − ω2) lost by the photon in the scattering process is transferred
to the system in the initial state |i〉 of configuration 4f 1. The energy can excite a 4d
electron promoting it into the 4f shell. In the image all the possible energy levels of the
final configuration 4d94f 2 are shown. Through dipole transitions (blue) only some of
them can be reached. Through higher order transitions (green and red) instead a higher
number of final states can be reached.

3.3.2 Radial integrals

Focus now on Eq. 3.27, and in particular on the radial integral 〈Rf | jk(qr) |Ri〉, which
contains the dependence on the modulus of q. In our calculations the radial wave func-
tions are the ones of the free ion and have been calculated within the Hartree-Fock
approximation with the use of Cowan’s code [30]. The results of the calculations of the
radial integrals for the three different transitions allowed for the 4d→ 4f excitation in
Ce3+, Gd3+ and Ho3+ are shown in figure 3.3. They agree sufficiently well with the
experiments but the resulting curves are spread out too much because the Hartree-Fock
calculations yields radial integrals that are too tight. It is possible to see that the dif-
ferent transition orders k exhibit maxima at different values of q. This means that by
controlling the exchanged momentum it is possible to select which transition ( whether
dipole, octupole or triakontadipole in this case) dominates the spectrum [57]. So, the
dipole forbidden transitions can be favoured maximizing the exchanged momentum.
Equation 3.15 suggests how to control the exchanged momentum in an experiment,
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3.3. X-ray Raman Spectroscopy (XRS)

4d94f24f1

Energy loss =ℏ(ω1-ω2)

DDSCS

ω1

ω2

| i > | f >

k = 1
k = 3
k = 5

q = 11 Å-1

Figure 3.2: Schematic drawing of the NIXS
process for the N4,5 edge of Ce3+. The
energy loss ~(ω1 − ω2) is the difference
between the energy of the photon before
and after the inelastic scattering process.
This energy excites the system from the
initial state |i〉 of configuration 4f1 to the
final state |f〉 of configuration 4d94f2.
The energy levels and the DDSCS was
calculated using Quanty. Through dipo-
lar transitions (blue) only a limited num-
ber of final states can be reached. Higher
order multipolar transitions (octupole in
green, triakontadipole in red) allow to
reach an higher number of final state en-
ergy levels.
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Figure 3.3: Plot of the radial integrals for the transition 4d→ 4f for the different ions Ce3+, Gd3+ and
Ho3+. An higher atomic number (respectively 58, 64 and 67) results in a less extended radial wave
function which thus results in maxima at a higher q.
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Chapter 3. X-ray absorption and x-ray Raman core level spectroscopies

(a) (b) (c)

Figure 3.4: Plot of the angular part of the transition operators in case of coherent sum of all the terms:∑
m Ck,m(θr, φr). (a) k = 1 dipole, (b) k = 3 ocutpole and (c) k = 5 tetrakontadipole.

either by changing the scattering angle or changing the incident energy. The maxi-
mum possible q is obtained for 2θ = π which means in a backscattering geometry,
and the maximum possible obtainable exchanged q is higher the higher the energy of
the incoming radiation is. Typically in NIXS experiments the energy of the incoming
radiation is about 10 keV, so in that case the highest possible q is given approximately
by:

~ω eV

987 eV · Å
≈ 10 Å

−1
. (3.30)

The radial integral is the highest if the initial and final radial wave functions have the
same principal quantum number n. The higher the radial integral the higher will be the
scattering probability and also the easier it will be to probe the multipolar transitions
that can be reached with a lower q. So, for XRS experiments on rare earths it is more
convenient to study the N4,5 edge, which means the transition 4d→ 4f , rather than the
M4,5 edge which corresponds to 3d→ 4f transitions [58]. The use of this shallow core
excitation is also favorable for the previous approximation ω � ω1.

3.3.3 Dichroism and lower symmetries sensitivity

The renormalized spherical harmonic C∗k,m(θq, φq) in eq. 3.27 is the only term that
contains the dependence on the direction of the exchanged momentum q. This is re-
sponsible for the natural dichroism observable for single crystal samples [59].

The symmetry of the dipole operator does not allow to XAS to resolve lower than
2-fold symmetries. For example the XAS spectra of a perfectly cubic system are the
same for all the directions of the polarization. Instead, XRS allows to study higher
order transitions. The corresponding operators have a lower symmetry with respect to
the dipole operator, which means that they can resolve lower than 2-fold symmetries.
This can be easily seen plotting the coherent sum over m for a given k of the angular
part of the operators

∑
mCk,m(θr, φr).

This means that by analyzing the signal in the experimental spectra coming from the
contribution of the higher multipole transitions it is possible to study lower than 2-fold
symmetries.
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CHAPTER4
Experimental setups

The non-resonant inelastic x-ray scattering experimental data presented in this thesis on
chapter 5.2 and chapter 6 were acquired at ID20 of the ESRF, which will be described in
section 4.1. The description of this beamline and the experimental end-station follows
the presentation in Ref. [60]. The x-ray absorption experiments instead, presented on
chapter 6, were acquired at ID32 of the ESRF, which will be described in section 4.2.

4.1 ID20 beamline

4.1.1 Synchrotron radiation: undulators and x-ray optics

The main drawback of XRS is the orders of magnitude smaller scattering cross sec-
tion in comparison with the probability for photoelectric absorption. This technique
has become accessible with third generation synchrotron light sources due to their very
high brilliance and thanks to the developments in the instrumentation that allows an
efficient signal collection. Figure 4.1 shows the layout of the main components of the

ID

WBM

DCM

PM KB S

A
D

FM

28m 31m 35m 37m 65m 66m

SR

Figure 4.1: Layout of the ID20 beamline x-ray optics system.
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Chapter 4. Experimental setups

Figure 4.2: (a) Schematic view of the entire spectrometer assembly consisting of six independently
movable crystal analyzer chambers, each hosting 12 spherically bent crystal analyzers. Three cham-
bers are movable in the vertical plane and three in the horizontal plane. (b) Photo of the spectrometer
installed in the experimental hutch.

x-ray optics of the ID20 beamline at the ESRF. The storage ring (SR) of the ESRF
operates at a kinetic energy of 6 GeV with a maximum ring current of 200 mA. The
x-ray source for ID20 is an assembly of 4 undulators. Undulators are so-called inser-
tion devices (ID) that consist of an array of magnets, which produce a magnetic field of
alternating sign along the path of the electron beam [61]. This magnetic field configu-
ration forces the electron beam to execute periodic oscillations in the horizontal plane
as it traverses through the section. In this way the bremsstrahlung emitted by the ac-
celerated electron adds coherently. This allows to have a collimated beam with a small
energy spread (FWHM). Due to the finite number of magnets the undulator generates
a quasi monochromatic spectrum (pink beam). The period, the distance between the
magnets and the magnetic field strength determine the energy of the generated x-ray
beam. Its energy is tuned usually changing the gap between the upper and lower row
of permanent magnets while the undulator period is held constant.

Before impinging on the sample the beam goes through a series of x-ray mirrors.
First a white-beam mirror (WBM) collimates the beam in the vertical plane and also
serves as a heat-load filter for the successive liquid-nitrogen-cooled double crystal
Si(111) pre-monochromator (DCM). In order to reach a better energy resolution a post-
monochromator (PM) is used. In particular, a Si(311) channel-cut monochromator was
used. The system of monochromators select the energy of the x-ray beam that impinges
on the sample. Downstream, a toroidal mirror (FM) focuses the beam onto a secondary
source. This secondary source is refocused by a Kirkpatrick-Baez (KB) mirror ensem-
bly to a 10 µm×20 µm spot size (V× H) at the sample (S) position. The typical photon
flux at the sample position at 9.7 keV for the described configuration is of about 1×1013

photons s−1.
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4.1. ID20 beamline

Figure 4.3: Sketch of an analyzer module hosting 12 analyzer crystals on a 1 m Rowland circle.

4.1.2 Spectrometer

The radiation scattered by the sample is then measured with the large solid angle spec-
trometer described in detail in [60] and shown in figure 4.2. Part (a) of this figure shows
a schematic view of the spectrometer and part (b) a photo of the spectrometer installed
at ID20. The spectrometer is composed of six independently movable crystal analyzer
chambers, three in the horizontal and three in the vertical plane. This allowed to mea-
sure simultaneously the scattering at different angles and observe the dependence of
the XRS spectra on the exchanged momentum q. The chambers were operated in a
rough vacuum of approximately 10−1mbar in order to minimize absorption and para-
sitic scattering from air. The parasitic scattering was further reduced using collimators
at the entrance of each of the analyzer module.

Each one of the 6 analyzer unit chambers contains 12 spherically bent Si(nn0) crystal
analyzers, for a total of 72, as sketched in figure 4.3. Each individual analyzer crystal
has three degrees of freedom (θ, χ and a translation along the beam direction). The
crystal analyzers have a diameter of 100 mm but a mask with a diameter of 60 mm was
used to increase the energy resolution. The spectrometer is based on Johann-type bent
analyzer crystals with a radius of curvature of 1 m. The fundamental concept is to have
a crystal surface taking a shape that matches the request that all the x-rays from the
sample impinging on the crystal have almost the same angle of incidence, as depicted
in figure 4.4. This angle of incidence transfers to the corresponding energy of the Bragg
reflection via Bragg’s law. The best configuration to increase the energy resolution is
the backscattering configuration, with the Bragg angle of π/2. This is impossible to
obtain since it is necessary to reserve a certain amount of space for the sample and
sample environment. In practice, the detector is placed inside the Rowland circle by
a distance of 2z. To maintain the focus of the analyzer onto the detector the crystal is
consequently moved away by a distance z. This causes the Bragg angles to vary across
the analyzer and as a consequence the energy bandwidth of the analyzer increases. The
contribution of this broadening is given approximately by ∆E/E = zD cot ΘB/R

2,
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Chapter 4. Experimental setups

where D is the active diameter of the analyzer crystal. This can become an important
limiting factor in the total resolving power.

Since the measured quantity in a NIXS experiment depends only on the energy
transfer ω = ω1 − ω2 the exact values of ω1 and ω2 are less relevant. This allows one
to simplify the design of a non-resonant IXS spectrometer because it is possible to run
it in the so-called inverse geometry (Schülke): the energy analyzed by the analyzer
crystals (ω2) is fixed, while the incident energy (ω1) is varied, consequently varying the
exchanged energy (ω). In an experiment, to obtain the energy loss scale, a scan of the
elastic peak is performed before performing the scan on the energy region of interest.

Recalling what was already said in 3.3.1, an IXS experiment consists in producing
a well collimated and monochromatic x-ray beam and detecting the radiation scattered
from the sample by an angle 2θ ( thus fixing q ) into a solid angle element dΩ with an
energy in the range dE2, what is measured is the so called double differential scatter-
ing cross-section (DDSCS). It is possible to highlight which part of the spectrometer
controls a certain quantity:

• the energy of the x-ray beam is controlled and scanned varying the Bragg angle of
the monochromator(s);

• the scattering angles 2θ are determined by the individual position of the six crystal
analyzer chambers;

• the exchanged momentum q for a given energy is determined by the position of
the crystal analyzer chambers;

• the exchanged momentum q for a fixed scattering angle is determined by the en-
ergy of the x-ray beam;

• the solid angle dΩ is fixed by the active diameter of the crystal analyzers and their
distance from the sample;

• the analyzed energy E2 is kept fixed by the orientation (χ, θ, tx) of the individual
crystal analyzer;

• the energy resolution dE2 is determined by the performances of the monochroma-
tor(s) and of the crystal analyzers and other geometric contributions (source size,
off-Rowland contribution, etc.).

• the DDSCS is measured as the number of counts detected by a photon-counting
2D detector (Maxipix).

Since q depends on the energy of the beam, during a scan, if the scattering angle is
fixed, the value of the exchanged momentum changes, but for typical values ∆E0/E0 =

100/10000 and since ∆q/q = ∆E0/E0 is obtained a ∆q = 0.1Å
−1

for a q = 10Å
−1

,
which is negligible.

4.1.3 Sample environment

For the measurements performed at a temperature of 10 K the dynamic flow cryostat
described in [62] was used. In figure 4.5 a picture of the cryostat installed in the ex-
perimental hutch of ID20 is shown. The six crystal analyzer modules are visible and
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4.1. ID20 beamline

s

R 2R

d

analyzer crystal

Rowland circle

θB

Figure 4.4: Schematic drawing of a
Johann-type analyzer crystal. 2R
is the radius of curvature of the
analyzer crystal. If the sample
(s) is placed onto the Rowland
circle of radius R, this configu-
ration has the property that all
the x-rays coming from the sam-
ple impinge on the analyzer crys-
tal with the same angle of inci-
dence. In this way all the x-rays
are Bragg reflected onto the point
d where it is possible to place the
detector.

Figure 4.5: Picture of the cryo-
stat installed in the experimen-
tal hutch of ID20. The ge-
ometry of the experiment is
sketched. The incoming x-ray
beam of wave vector k1 exits
from the KB mirror chamber.
The horizontal (moving on the
plane xy) back (HB) module
is placed at a scattering angle
2θ. It collects the x-rays scat-
tered with wave vector k2 af-
ter the exchange of a momen-
tum q. The red shaded area
corresponds qualitatively to the
solid angle collected by the HB
module.

labeled according to their position: vertical down (VD), vertical up (VU), horizontal
left (HL) and horizontal right (HR) modules in the forward scattering direction, and
vertical back (VB) and horizontal back (HB) modules for the backscattering one. The
window of the cryostat allowed only for scattering on the horizontal plane. On top of
the picture is sketched the geometry of the experiment. The x-ray beam exits from
the KB mirror chamber with wave vector k1. The HB module collects the x-rays scat-
tered at a scattering angle 2θ and wave vector k2. The red shaded area corresponds
qualitatively to the solid angle collected by the HB module.

4.1.4 Data Analysis

ROIs selection

The crystal analyzers focus the scattered x-rays onto a 2D position sensitive detector.
These are 2D Maxipix single photon counting detectors. Since each crystal analyzer
can be moved independently, each focal spot is focused on a different point of the
detector. Figure 4.6 (a) shows an image acquired with the spectrometer. The 2D images
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Chapter 4. Experimental setups

Figure 4.6: a) Composite image of all six 2D position sensitive detectors. Each of the 72 crystal analyz-
ers is focused on a different point. The bright lines are the signal coming from the x-rays scattered
by the air. b) A region of interest (ROI) has to be selected for every spot in order to cut out the signal
not coming from the sample. Brown pixels are already selected areas.

of the six detectors are merged together in a single image that contains the signal from
all the 72 crystal analyzers. The use of a position sensitive detector allows to select
only the signal that comes from the sample, reducing the unwanted signal. This is
useful when a complex environment like a cryostat is used. In this case, for example,
the x-rays scattered from the windows of the cryostat can be cut out. This is obtained
through the selection of the regions of interest (ROIs) in the image. In figure 4.6 (b),
for example, the areas that have been already selected are shown in brown colour. The
signal coming from all the 12 crystal analyzers of a single module are usually summed
up. Also images acquired during different scans are summed. As an example, figure
4.7 shows all 12 spectra coming from a single crystal analyzer module.

Since the detector relies on x-ray absorption, which is governed by Poisson statistics
the standard deviation is equal to σcounts =

√
counts. Supposing for simplicity that the

signal coming from the 12 crystal analyzer is the same, if all the spectra are summed
the error is reduced by a factor 1/

√
12.

Compton profile subtraction

In figure 4.8.(a) a scan performed on a long energy loss range on a polycristalline
diamond sample is plotted. The spectrum of the edges lies on top of the so-called
valence Compton profile. This contribution can have a much higher intensity than the
near edge features. This scattering arises from the response of the valence electrons
[63]. The energy position of the peak of the valence Compton profile is a function of
the exchanged momentum q. In figure 4.8.(b) this dependence is shown. The position of
the edge is independent on the value of q, so there will be cases in which the Compton
profile is peaked at lower energy loss, at almost the same energy loss or at higher energy
loss.

The shift of the peak of the Compton profile as a function of the exchanged momen-
tum q is clear looking at the experimental spectra acquired at the N4,5 edge (109 eV).
In figure 4.9 the spectrum acquired with q = 3.4 Å−1 is shown. The Compton profile
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4.2. XAS

Figure 4.7: All the 12 spectra coming from the 12 crystal analyzers of a crystal analyzer module. All
the spectra from a module are usually summed up.

is peaked at an energy lower than the energy of the Ce edge. Increasing the exchanged
momentum to q = 6.3 Å−1 instead, as in figure 4.10, the edge lies right on top of the
Compton profile. Further increasing the momentum transfer to q = 8.5 Å−1, as in
figure 4.11, the peak of the Compton profile is at higher energy losses than the edge.

In this thesis, the edge features are analyzed. In order to compare different spectra,
the Compton profile has to be subtracted. In practice, the Compton profile is fitted
from the experimental data. In figures 4.9, 4.10 and 4.11 the function interpolated from
the background is plotted in green. The interpolating function is composed of: the
shape of the Compton profile, modeled as a parametrized Pearson-VII function and a
linear function, plus the response of the core electrons contributing with a step, that
corresponds to the transitions into continuum states.

The background is fitted in the regions of the experimental spectra containing no
signal from the edge features. For example, in the aforementioned figures possible
intervals for the fitting of the Compton profile could be: [90, 100]eV and [150, 160]eV.
In the figures is shown also in red the resulting spectra after the subtraction of the
Compton profile (Pearson-VII and linear functions).

4.2 XAS

4.2.1 Experimental measurements

The XAS experimental data were acquired at ID32 [65, 66] of the ESRF using the total
electron yield (TEY) technique.

To measure the absorption properties of a material it is possible to work in trans-
mission, which means measuring the attenuation of x-rays as a function of energy by a
sample of given thickness t. The quantity which describes the absorption is the linear
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Chapter 4. Experimental setups

Figure 4.8: (a) Measured spectrum from polycristalline diamond with q = 15.3Å
−1

. The response of
the valence electrons leads to the valence Compton profile peaked at 950 eV; (b) Dispersion of the
valence electron response. The valence Compton profile has its peak at different values depending
on the value of q. Data taken from Huotari et al. (2012) [64].

Figure 4.9: Spectra acquired at the N4,5

edge of Ce with q = 3.4 ± 0.2Å
−1

.
The blue spectrum results from the sum
of the signal from 12 crystal analyzers.
The valence Compton profile is peaked
at an energy value lower than the edge
one. The red spectrum is obtained after
the subtraction procedure.

Figure 4.10: Spectra acquired at the N4,5

edge of Ce with q = 6.3 ± 0.15Å
−1

.
The blue spectrum results from the sum
of the signal from 12 crystal analyzers.
The edge features lie right on top of
the valence Compton profile. The red
spectrum is obtained after the subtrac-
tion procedure.
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4.2. XAS

Figure 4.11: Spectra acquired at the N4,5

edge of Ce with q = 8.5 ± 0.1Å
−1

.
The blue spectrum results from the
sum of the signal from 12 crystal ana-
lyzers. The valence Compton profile
is peaked at an energy value higher
than the edge one. The red spectrum
is obtained after the subtraction pro-
cedure.

absorption coefficient µ(~ω) and determines the transmitted intensity I(~ω) as:

I(~ω) = I0(~ω)e−µ(~ω)·t (4.1)

where I0(~ω) is the initial intensity and t is the thickness of the sample. But this tech-
nique requires thin, homogeneous samples and is not viable with soft x-rays because
the absorption coefficient is too high.

However, is possible also to exploit the decay channels of the photo-generated core-
hole. These techniques are called yield modes (see Figure 4.12), and are based on
the assumption that the number of core-holes is proportional to the absorption coeffi-
cient. The measure of the intensity of the radiation re-emitted from the sample due to
fluorescence processes it is called total fluorescence yield (TFY). However, this tech-
nique suffers from self-absorption, which means that the fluorescence photon can be
reabsorbed in materials with a high absorption coefficient leading to a feedback mecha-
nism, which can distort the spectrum. This issue should be carefully taken into account
in the analysis. Another technique, which avoids this issue, is the total electron yield
(TEY). In this kind of experiment the signal is the number of electrons emitted from
the sample due to the Auger effect, electron scattering or photoionization. Electrically
grounding the metallic sample every ejected electron will be compensated, so measur-
ing the current that flows through the sample with an amperometer a measure of the
number of emitted electrons is obtained. This quantity is proportional to the generated
core-holes which is proportional to the absorption coefficient. Since the electrons have
very small mean free path (5 nm − 50 nm) the information comes from the first layers
of the material and this technique avoids the problems of self absorption.

4.2.2 Background subtraction and normalization

The data were divided for every energy value by the estimate of the value of the incident
x-ray intensity. Successively the edge step is subtracted. The edge step is fitted from
the signal in the regions indicated in figure 4.13 where there are no edge features. The
fitting is performed using two arctangent functions centered respectively at 883.5 eV
and 903.0 eV and a linear function:
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Chapter 4. Experimental setups

Figure 4.12: Schematic drawing of a XAS TY ex-
periment. The amount of radiation absorbed
from the impinging intensity I0 is proportional
to the number of generated electron-holes. In a
total fluorescence yield (TFY) experiment the ra-
diation re-emitted from the sample is measured
with a photodiode. In a total electron yield
(TEY) experiment the number of electrons that
are emitted from the sample by Auger effect,
through electron electron scattering or through
photoionization can be measured with amperom-
eter. In metallic materials an electron current
provided by the Vbias compensates for the elec-
trons that leave the material.
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Figure 4.13: XAS background subtraction and normalization. In green are delimited the intervals used
for the interpolation of the function in equation 4.2. In black are plotted the functions obtained from
the interpolation.

f(x) = g1 · (g2 + arctan

(
x− 883.5

4

)
)+

+ g3 · (g4 + arctan

(
x− 903.0

4

)
) + g5 · x+ g6,

(4.2)

where f(x) is the function that is subtracted to the experimental spectrum after the
best fitting of the six parameters g1−6. The spectra are then normalized dividing each
spectrum by its value in the point where it is expected that the dichroism is zero. As
will be shown in section 6.3 all the simulations show a zero in the dichroism for a point
at an energy 881.5 eV.
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CHAPTER5
Atomic multiplet calculation of XAS and XRS

spectra: Quanty

In the following sections it is shown in a practical way how to convert the models
developed in chapter 2 and chapter 3 into a Quanty (http://www.quanty.org/)
script. Quanty can be used to simulate a variety of different core level spectroscopies
using different approximations. In this discussion an atomic multiplet approach is used
to describe a Ce3+ ion in a tetragonal crystal field. The script to calculate the XAS and
XRS spectra will be built piece by piece. In the last section 5.2 it is shown how these
calculations can be used to analyze the spectra of rare earth elements, their strength and
their limits.

5.1 Quanty: a quantum many body script language

Quanty is a scripting language based on the programming language Lua that provides
tools to solve complex many body problems. Quanty solves many problems that are
encountered on many body calculations but provides to the user an high scripting lan-
guage. Both the basis states and the operators are expressed in second quantization in
terms of creation and annihilation operators. Following the philosophy of Quanty, the
complexity of the operators in second quantization will be hidden when not relevant. A
detailed documentation can be found in Ref. [67].

5.1.1 Atomic shells

Basis states

The many body wave functions are expressed in terms of one particle modes. These
are the basis states and describe whether an orbital is occupied by a particle or not. The
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Chapter 5. Atomic multiplet calculation of XAS and XRS spectra: Quanty

orbitals are given by a radial and an angular part. As in equation 2.5, the orbitals ψki
are given as a product of a radial part and an angular part as in ψki = Rnl(r)Ylml

(θ, φ).
By default, Quanty uses the complex spherical harmonics for the angular part. Also
the spin part can be defined creating the so called spin-orbitals. Bases with more than
one electron will be given by Slater determinant basis states. A many particle state is
written then as a linear combination of Slater determinants.

To define an atomic shell one has to group the necessary number of spin-orbitals.
Grouping a number n of orbitals, as in the following code, automatically lets Quanty
know that the user is describing an atomic shell with orbital angular momentum quan-
tum number l = (n−1)/2 and the spin-orbitals have to be labeled through the quantum
number ml = −l, ..., l.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− D e f i n i t i o n o f t h e e l e c t r o n i c s h e l l s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− T o t a l number o f F e r m i o n i c and Boson ic modes
NBosons = 0
NFermions = 24

−− C r e a t i o n o f t h e b a s i s s e t s d e f i n e d by one p a r t i c l e sp in−o r b i t a l s
−− d s h e l l
IndexDn_4d = {0 , 2 , 4 , 6 , 8}
IndexUp_4d = {1 , 3 , 5 , 7 , 9}
−− f s h e l l
IndexDn_4f = {10 , 12 , 14 , 16 , 18 , 20 , 22}
IndexUp_4f = {11 , 13 , 15 , 17 , 19 , 21 , 23}

Spin-orbit interaction

To create operators that act on these states one can use the function NewOperator().
With this function the operators describing the atomic Hamiltonian can be defined.
There are several standard operators already defined. For example the spin-orbit oper-
ator ζnl l · s of equation 2.9 can be defined as in the following code:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− D e f i n i t i o n o f t h e sp in−o r b i t t e r m .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− i n i t i a l i z a t i o n o f t h e h a m i l t o n i a n
H_i = 0
H_f = 0
−− c r e a t i o n o f t h e sp in−o r b i t o p e r a t o r s l ∗ s f o r t h e 2 s h e l l s
l d o t s _ 4 f = NewOperator ( ’ l d o t s ’ , NFermions , IndexUp_4f , IndexDn_4f )

l d o t s _ 4 d = NewOperator ( ’ l d o t s ’ , NFermions , IndexUp_4d , IndexDn_4d )

−− s c a l i n g o f t h e sp in−o r b i t HF v a l u e
s c a l _ z e t a _ 4 f = 0 . 8 8
s c a l _ z e t a _ 4 d = 0 . 9 7

−− i n i t i a l s p i n o r b i t i n t e r a c t i o n p a r a m e t e r z e t a 4 f
z e t a _ 4 f _ i = 0 . 0 8 7 ∗ s c a l _ z e t a _ 4 f

−− f i n a l s p i n o r b i t i n t e r a c t i o n p a r a m e t e r z e t a 4 f and z e t a 4d
z e t a _ 4 f _ f = 0 .0913 ∗ s c a l _ z e t a _ 4 f
z e t a _ 4 d _ f = 1 .2444 ∗ s c a l _ z e t a _ 4 d

−− c r e a t i o n o f t h e sp in−o r b i t H a m i l t o n i a n s : H_so = z e t a ∗ l ∗ s
H_i = H_i + Chop (

z e t a _ 4 f _ i ∗ l d o t s _ 4 f )

H_f = H_f + Chop (
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z e t a _ 4 f _ f ∗ l d o t s _ 4 f
+ z e t a _ 4 d _ f ∗ l d o t s _ 4 d )

Hi and Hf are the Hamiltonians describing the atomic system in the initial electronic
configuration 4f 1 and final configuration 4d94f 2, respectively. The values of the spin-
orbit coupling ζ4f and ζ4d are obtained from Hartree-Fock calculations for the initial
and final configurations. The values were taken from Crispy, a graphical user interface
to generate Quanty input files. These values have to be scaled by scal_zeta_4f and
scal_zeta_4d in order to best fit the experimental data (see appendix A).

Electron-electron interaction

The interaction between the electrons is introduced via the Slater integrals as defined in
equation 2.12. They contribute to the Hamiltonian as

∑
k fkF

k +
∑

k gkG
k. Selection

rules govern which of the coefficients fk and gk are non-null. In the initial configu-
ration 4f 1 there is no electron-electron interaction contributions. In the final config-
uration 4d94f 2, instead, there is an interaction between the two f electrons, which is
described by the terms F 2, F 4and F 6. There is further an interaction between the 4f
electrons and the 4d hole, which is described by the terms F 2, F 4, G1, G3 and G5. The
associated operators can be created in Quanty using the Coulomb repulsion operator
(U). The contributes of order k = 0 are neglected because their contribute just shifts
the spectrum.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− D e f i n i t i o n o f t h e Coulomb r e p u l s i o n o p e r a t o r s :
−− Fk and Gk S l a t e r i n t e g r a l s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− O p e r a t o r s d e s c r i b i n g t h e 4 f−4f e l e c t r o n s i n t e r a c t i o n
F2_4f_4f = NewOperator ( ’U’ , NFermions , IndexUp_4f , IndexDn_4f , {0 , 1 , 0 , 0} )
F4_4f_4f = NewOperator ( ’U’ , NFermions , IndexUp_4f , IndexDn_4f , {0 , 0 , 1 , 0} )
F6_4f_4f = NewOperator ( ’U’ , NFermions , IndexUp_4f , IndexDn_4f , {0 , 0 , 0 , 1} )

−− O p e r a t o r s d e s c r i b i n g t h e 4d−4f e l e c t r o n s i n t e r a c t i o n
F2_4d_4f = NewOperator ( ’U’ , NFermions , IndexUp_4d , IndexDn_4d ,

IndexUp_4f , IndexDn_4f , {0 , 1 , 0} , {0 , 0 , 0} ) ;
F4_4d_4f = NewOperator ( ’U’ , NFermions , IndexUp_4d , IndexDn_4d ,

IndexUp_4f , IndexDn_4f , {0 , 0 , 1} , {0 , 0 , 0} ) ;
G1_4d_4f = NewOperator ( ’U’ , NFermions , IndexUp_4d , IndexDn_4d ,

IndexUp_4f , IndexDn_4f , {0 , 0 , 0} , {1 , 0 , 0} ) ;
G3_4d_4f = NewOperator ( ’U’ , NFermions , IndexUp_4d , IndexDn_4d ,

IndexUp_4f , IndexDn_4f , {0 , 0 , 0} , {0 , 1 , 0} ) ;
G5_4d_4f = NewOperator ( ’U’ , NFermions , IndexUp_4d , IndexDn_4d ,

IndexUp_4f , IndexDn_4f , {0 , 0 , 0} , {0 , 0 , 1} ) ;

The values of the Slater Integrals F k and Gk can be calculated using Hartree-Fock
calculations and in this case are tabulated in Crispy [68]. As for the spin orbit parameter,
their values have to be scaled by a quantity scal_4f4f and scal_4d4f in order to fit the
experimental data.
−− S c a l i n g o f t h e S l a t e r−Condon HF v a l u e s
s c a l _ 4 f 4 f = 0 . 7
s c a l _ 4 d 4 f = 0 . 7 8

−− i n i t i a l c o n f i g u r a t i o n 4 f1
F 2 _ 4 f _ 4 f _ i = 0 . 0
F 4 _ 4 f _ 4 f _ i = 0 . 0
F 6 _ 4 f _ 4 f _ i = 0 . 0

−− f i n a l c o n f i g u r a t i o n 4d9 4 f2
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F 2 _ 4 f _ 4 f _ f = 11 .9732 ∗ s c a l _ 4 f 4 f
F 4 _ 4 f _ 4 f _ f = 7 .5185 ∗ s c a l _ 4 f 4 f
F 6 _ 4 f _ 4 f _ f = 5 .4106 ∗ s c a l _ 4 f 4 f

F2_4d_4f_f = 13 . 6 1 1 ∗ s c a l _ 4 d 4 f
F4_4d_4f_f = 8 . 6 8 2 ∗ s c a l _ 4 d 4 f
G1_4d_4f_f = 16 .1569 ∗ s c a l _ 4 d 4 f
G3_4d_4f_f = 10 .0831 ∗ s c a l _ 4 d 4 f
G5_4d_4f_f = 7 .1143 ∗ s c a l _ 4 d 4 f

−− c r e a t i o n o f t h e Coulomb H a m i l t o n i a n i n t h e i n i t i a l and f i n a l s t a t e
H_i = H_i + chop (

F 2 _ 4 f _ 4 f _ i ∗ F2_4f_4f
+ F 4 _ 4 f _ 4 f _ i ∗ F4_4f_4f
+ F 6 _ 4 f _ 4 f _ i ∗ F6_4f_4f )

H_f = H_f + chop (
F 2 _ 4 f _ 4 f _ f ∗ F2_4f_4f

+ F 4 _ 4 f _ 4 f _ f ∗ F4_4f_4f
+ F 6 _ 4 f _ 4 f _ f ∗ F6_4f_4f
+ F2_4d_4f_f ∗ F2_4d_4f
+ F4_4d_4f_f ∗ F4_4d_4f
+ G1_4d_4f_f ∗ G1_4d_4f
+ G3_4d_4f_f ∗ G3_4d_4f
+ G5_4d_4f_f ∗ G5_4d_4f )

Effective crystal field

The Hamiltonians Hi and Hf built up to this point can describe an isolated Ce3+ ion. It
is possible to introduce the effective crystal field Hamiltonian of equation 2.15, which
in second quantization can be written as:

HCEF =
∑
τ1,τ2

∑
k,m

Amk 〈Yl1,m1|Ck,m |Yl2,m2〉 a†τ1aτ2 , (5.1)

where τ represents the combination of the quantum numbers nlms, a†τ1 is the creation
operator which creates an electron in the spin-orbital with quantum numbers τ1, while
aτ2 is the annihilation operator. As pointed out in chapter 2.3 the only terms that act
on the Ce3+ are the A0

2, A
0
4, A

±4
4 . This operator can be created using the function New-

Operator(’CF’, ..., Akm) with the first input string ’CF’ and as last input a list of the
crystal field parameters of the form: {{k1,m1, A

m1
k1
}, {k2,m2, A

m2
k2
}, ...}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− D e f i n i t i o n o f t h e c r y s t a l f i e l d o p e r a t o r
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− a s s i g n v a l u e s t o t h e C r y s t a l F i e l d p a r a m e t e r s A_km
A20 = −0. 0 1 5
A40 = 0 . 0 2 3
A44 = 0 . 0 2 5

Akm = {{0 , 0 , 0} ,
{2 , 0 , A20} ,
{4 , 0 , A40} ,
{4 ,−4 , A44} ,
{4 , 4 , A44} }

−− c r e a t i o n o f t h e c r y s t a l f i e l d o p e r a t o r ’CF ’ a c t i n g on t h e 4 f s h e l l
H_i = H_i + Chop ( NewOperator ( ’CF ’ , NFermions , IndexUp_4f , IndexDn_4f , Akm) )

H_f = H_f + Chop ( NewOperator ( ’CF ’ , NFermions , IndexUp_4f , IndexDn_4f , Akm) )

The function NewOperator() allows one to create several different operators, for
example the following one with intuitive meaning:

38



i
i

“output” — 2019/4/1 — 18:42 — page 39 — #51 i
i

i
i

i
i
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Sx_4f = NewOperator ( ’ Sx ’ , NFermions , IndexUp_4f , IndexDn_4f )
Sy_4f = NewOperator ( ’ Sy ’ , NFermions , IndexUp_4f , IndexDn_4f )
Sz_4f = NewOperator ( ’ Sz ’ , NFermions , IndexUp_4f , IndexDn_4f )
S s q r _ 4 f = NewOperator ( ’ Ssq r ’ , NFermions , IndexUp_4f , IndexDn_4f )

Lx_4f = NewOperator ( ’Lx ’ , NFermions , IndexUp_4f , IndexDn_4f )
Ly_4f = NewOperator ( ’Ly ’ , NFermions , IndexUp_4f , IndexDn_4f )
Lz_4f = NewOperator ( ’ Lz ’ , NFermions , IndexUp_4f , IndexDn_4f )
L s q r _ 4 f = NewOperator ( ’ Lsqr ’ , NFermions , IndexUp_4f , IndexDn_4f )

J x _ 4 f = NewOperator ( ’ Jx ’ , NFermions , IndexUp_4f , IndexDn_4f )
J y _ 4 f = NewOperator ( ’ Jy ’ , NFermions , IndexUp_4f , IndexDn_4f )
J z _ 4 f = NewOperator ( ’ J z ’ , NFermions , IndexUp_4f , IndexDn_4f )
J s q r _ 4 f = NewOperator ( ’ J s q r ’ , NFermions , IndexUp_4f , IndexDn_4f )

These operators allow one to add a term describing the interaction with a magnetic
field to the Hamiltonian.
−− m a g n e t i c f i e l d e x p r e s s e d i n eV

Bx_i = 0 . 0
By_i = 0
Bz_i = 1e−07

Bx_f = 0 . 0
By_f = 0
Bz_f = 1e−07

H_i = H_i + Chop (
Bx_i ∗ (2 ∗ Sx_4f + Lx_4f )

+ By_i ∗ (2 ∗ Sy_4f + Ly_4f )
+ Bz_i ∗ (2 ∗ Sz_4f + Lz_4f ) )

H_f = H_f + Chop (
Bx_f ∗ (2 ∗ Sx_4f + Lx_4f )

+ By_f ∗ (2 ∗ Sy_4f + Ly_4f )
+ Bz_f ∗ (2 ∗ Sz_4f + Lz_4f ) )

Eigenfunctions

Note that the number of electrons in the shells has not been specified until now. This
is because no actual calculation has been performed until this moment, only operators
have been stored in memory. To calculate the initial state wave functions one needs to
define through some restrictions the occupation of the shells and the number of states
to compute:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− D e f i n i t i o n o f t h e r e s t r i c t i o n s and of t h e number o f i n i t i a l s t a t e s
−− f o r t h e c a l c u l a t i o n o f t h e i n i t i a l s t a t e w a v e f u n c t i o n s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
N E l e c t r o n s _ 4 d = 10
N E l e c t r o n s _ 4 f = 1

I n i t i a l R e s t r i c t i o n s = { NFermions , NBosons ,
{ ’ 1111111111 00000000000000 ’ , NElec t rons_4d , N E l e c t r o n s _ 4 d } ,

{ ’ 0000000000 11111111111111 ’ , N E l e c t r o n s _ 4 f , N E l e c t r o n s _ 4 f } }

−− number o f i n i t i a l s t a t e w a v e f u n c t i o n s t o compute
NPsis = 14
−− c a l c u l a t i o n o f t h e e i g e n f u n c t i o n s o f t h e i n i t i a l h a m i l t o n i a n
P s i s _ i = E igensys t em ( H_i , I n i t i a l R e s t r i c t i o n s , NPsis )

p r i n t ( P s i s _ i [ 1 ] )
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Chapter 5. Atomic multiplet calculation of XAS and XRS spectra: Quanty

Psis_i is a list which contains the calculated wave functions expressed as a list of
creation operators which represent the linear combination of the Slater determinants
needed to describe the many particle state. Using print(Psis_i[1]) information about
the first wave function is printed on the terminal:
WaveFunct ion : Wave F u n c t i o n
QComplex = 0 ( Rea l ==0 or Complex ==1)
N = 14 ( Number o f b a s i s f u n c t i o n s used t o d i s c r i b e p s i )
NFermionic modes = 24 ( Number o f f e r m i o n s i n t h e one p a r t i c l e b a s i s )
NBosonic modes = 0 ( Number o f bosons i n t h e one p a r t i c l e b a s i s )

# pre−f a c t o r D e t e r m i n a n t
1 1 .578810408582E−01 111111111100000000000100
2 −3.355346558658E−01 111111111100000000000010
3 −7.853377779514E−01 111111111100010000000000
4 4 .957162960534E−01 111111111100001000000000
5 0 .000000000000E +00 111111111101000000000000
6 0 .000000000000E +00 111111111100100000000000
7 0 .000000000000E +00 111111111100000000010000
8 0 .000000000000E +00 111111111100000000000001
9 0 .000000000000E +00 111111111100000100000000

10 0 .000000000000E +00 111111111100000000001000
11 0 .000000000000E +00 111111111110000000000000
12 0 .000000000000E +00 111111111100000000100000
13 0 .000000000000E +00 111111111100000001000000
14 0 .000000000000E +00 111111111100000010000000

This does not give much information about the wave function. It is most useful to
calculate the expectation values of some operators on the wave functions. It pos-
sible to calculate expectation values of the operators simply through the expression
Psi*Operator*Psi, which Quanty interprets as the expectation value 〈Psi|Operator |Psi〉.
Creating a list of operators it is possible to get information on the obtained wave func-
tions:
−− P r i n t d e t a i l s a b o u t a l l t h e i n i t i a l s t a t e s
−− L i s t o f o p e r a t o r s o f which t o c a l c u l a t e t h e e x p e c t a t i o n v a l u e
O p e r a t o r s = {H_i , Ssq r_4f , Lsqr_4f , l d o t s _ 4 f , J s q r _ 4 f , Sz_4f , Lz_4f , J z _ 4 f }

h e a d e r = ’ A n a l y s i s o f t h e i n i t i a l H a m i l t o n i a n : \ n ’
h e a d e r = h e a d e r . . ’ ==========================================================\n ’
h e a d e r = h e a d e r . . ’ S t a t e <E> <S^2> <L^2> < l . s > <J ^2> <Sz> <Lz> <Jz > \ n ’
h e a d e r = h e a d e r . . ’ ==========================================================\n ’
f o o t e r = ’ ====================================================================\n ’
i o . w r i t e ( h e a d e r )
f o r i , P s i i n i p a i r s ( P s i s _ i ) do

i o . w r i t e ( s t r i n g . f o r m a t ( ’%5d ’ , i ) )
f o r j , O p e r a t o r i n i p a i r s ( O p e r a t o r s ) do

−− t h e e x p e c t a t i o n v a l u e i s s i mp ly pe r fo rmed as
−− P s i ∗O p e r a t o r ∗ P s i which s t a n d s f o r < P s i | O p e r a t o r | Ps i >

i o . w r i t e ( s t r i n g . f o r m a t ( ’%10 . 4 f ’ , Complex.Re ( P s i ∗ O p e r a t o r ∗ P s i ) ) )

end
i o . w r i t e ( ’ \ n ’ )

end
i o . w r i t e ( f o o t e r )

Running this code in Quanty one gets as output the following lines on the terminal:
A n a l y s i s o f t h e i n i t i a l H a m i l t o n i a n :
======================================================================================

S t a t e <E> <S^2> <L^2> < l . s > <J ^2> <Sz> <Lz> <Jz >
======================================================================================

1 −0.1591 0 .7500 12 .0000 −1.9987 8 .7526 0 . 1417 −1.0916 −0.9500
2 −0.1591 0 .7500 12 .0000 −1.9987 8 .7526 −0.1417 1 .0916 0 .9499
3 −0.1544 0 .7500 12 .0000 −1.9993 8 .7514 0 . 0762 −0.5755 −0.4993
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4 −0.1544 0 .7500 12 .00 00 −1.9993 8 .7 514 −0.0762 0 .5755 0 .4993
5 −0.1460 0 .7500 12 .00 00 −1.9993 8 .7 514 0 .2690 −2.2194 −1.9504
6 −0.1460 0 .7500 12 .00 00 −1.9993 8 .7 514 −0.2691 2 .2195 1 .9504
7 0 .1071 0 .7500 12 .0000 1 .4993 15 .7486 −0.0617 −0.4455 −0.5071
8 0 .1071 0 .7500 12 .0000 1 .4993 15 .7486 0 .0616 0 .4453 0 .5069
9 0 .1128 0 .7500 12 .0000 1 .4997 15 .7494 −0.0175 −0.0464 −0.0639

10 0 .1128 0 .7 500 12 .0000 1 .4997 15 .7494 0 .0174 0 .0464 0 .0638
11 0 .1165 0 .7 500 12 .0000 1 .4987 15 .7474 −0.0657 −0.4267 −0.4924
12 0 .1165 0 .7 500 12 .0000 1 .4987 15 .7474 0 .0657 0 .4268 0 .4926
13 0 .1231 0 .7 500 12 .0000 1 .4996 15 .7491 −0.4413 −2.6218 −3.0631
14 0 .1231 0 .7 500 12 .0000 1 .4996 15 .7491 0 .4413 2 .6219 3 .0632

======================================================================================

The 14 states are ordered from the one with lowest energy one to the one with highest
energy. All the Levels are characterized by the same expectation value of the spin and
orbital angular momentum: < S2 >= S(S + 1) = 0.75, which means S = 1/2,
and < L2 >= L(L + 1) = 12 implies L = 3. Which means that the 14 states
can be labelled with the spectroscopic term 2F . They differ in terms of spin-orbit
interaction. For the first 6 levels this interaction reduces the energy as can be seen from
the negative expectation value of the l · s operator. The remaining 8 levels are increased
in energy instead. For the first 6 levels the spin and angular momentum operators Sz
and Lz have opposite sign, which means that the total angular momentum is given by
J = L − S = 5/2. The first 6 states belong to the 2F5/2 multiplet. The remaining
states instead to the 2F7/2 multiplet. This is confirmed by the expectation value of the
operator J2.

The levels of the 2F5/2 are not degenerate with respect to the magnetic quantum
number mJ = ±1/2,±3/2,±5/2 due to the effect of the crystal field. The levels
are coupled in Kramer’s doublets and each couple is characterized by the modulus of
the expectation value of the operator Jz. These doublets are the Γ levels described
in equation 2.20. The order of the doublets in this case is Γ1

7 − Γ6 − Γ2
7. The value of

< Jz > differs from that of the degenerate states, which would be given by< Jpurez >=
mJ = ±1/2,±3/2,±5/2. Identifying among the levels the level Γ1

7 it is possible to
determine from its value of < Jz > the mixing parameter α because it is given by

〈
Γ1

7|Jz|Γ1
7

〉
= ±

(
α2 5

2
− (1− α2)

3

2

)
. (5.2)

Usually the values of α estimated in this way are very close to the values given by
equation 2.21. A big difference between the two values means that the intermixing
with the 2F7/2 multiplet cannot be neglected.

From the wave functions is possible to obtain the density matrix and obtain the list
of spherical harmonics needed to describe the angular electronic density of the spin-
orbital. In this way, it is possible to plot the angular part of the electronic density of the
spin-orbitals. In figure 5.1 the densities for the Γ1

7,Γ6 and Γ2
7 states are plotted. One

can intuitively guess, looking at the anisotropic distribution of the orbitals, that these
states will respond differently to an incoming photon depending on the direction of its
polarization.
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Chapter 5. Atomic multiplet calculation of XAS and XRS spectra: Quanty

Figure 5.1: Energy levels, expectation value of the operator Jz and density plot of the spin-orbitals of
the crystal field states Γ1

7,Γ6 and Γ2
7 of Ce3+.

5.1.2 X-ray spectroscopy operators

In Quanty the complex energy dependent spectra G(ω) are obtained calculating the
Green’s function:

G(ω) =

〈
Ψi

∣∣∣∣T † 1

ω −Hf + iΓ/2
T

∣∣∣∣Ψi

〉
. (5.3)

Ψi are the many particle initial wave functions, T is the transition operator, Hf is the
final Hamiltonian and Γ is the Lorentzian broadening to take into account the energy
broadening due to finite lifetime of the core-hole. The quantities measured in the ex-
periments are proportional to the imaginary part of G(ω) [69].

XAS

As described in chapter 3.2.2 the transition operator for XAS is T = e · r̂, where
e = (ex, ey, ez) is the unit vector of the polarization and r̂ is the position operator. This
operator is conveniently expressed in terms of renormalized spherical Harmonics as:

e · r̂ = (ex + iey)C1,−1 + ezC1,0 + (−ex + iey)C1,1 (5.4)

In this way it is possible to use the function NewOperator(’CF’, ..., Akm) as done for the
crystal field operator. In this case the coefficients of the complex spherical harmonics
are: A1,−1 = ex + iey, A1,0 = ez, A1,1 = −ex + iey.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− D e f i n i t i o n o f t h e T r a s i t i o n o p e r a t o r T = e∗ r and c a l c u l a t i o n o f t h e s p e c t r u m
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t h e t a = 90
p h i = 0

ex= m a t h . s i n ( m a t h . r a d ( t h e t a ) ) ∗m a t h . s i n ( m a t h . r a d ( p h i ) )
ey= m a t h . c o s ( m a t h . r a d ( p h i ) )
ez= m a t h . c o s ( m a t h . r a d ( t h e t a ) ) ∗m a t h . s i n ( m a t h . r a d ( p h i ) )

Akm = {{1 , −1 ,( ex + I ∗ ey ) / m a t h . s q r t ( 2 ) } ,
{1 , 0 , ez } ,
{1 , 1 ,(− ex + I ∗ ey ) / m a t h . s q r t ( 2 ) }}

T = NewOperator ( ’CF ’ , NFermions , IndexUp_4f , IndexDn_4f , IndexUp_3d , IndexDn_3d , Akm)

−− c a l c u l a t i o n o f t h e s p e c t r u m
XAS_spectrum = C r e a t e S p e c t r a ( H_f , T , P s i _ i , {{ " Emin " ,−10} , { "Emax" , 2 0 } , { "NE" , 3 5 0 0 } )
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NIXS

As shown in chapter 3.3.1, the transition operator that describes the non-resonant in-
elastic x-ray scattering is T = eiq·r which can be separated into an operator acting on
the radial and one on the angular part of the wave functions:

T =
∞∑
k=0

k∑
m=−k

T radk,m T
ang
k,m , (5.5)

where
T radk,m = ik(2k + 1)jk(qr)C

∗
k,m(θq, φq), (5.6)

and
T angk,m = Ck,m(θr, φr). (5.7)

The radial operator gives rise to radial integrals 〈Rf | jk(qr) |Ri〉. The modulus of q
and its angular coordinates θq, φq are fixed parameters chosen to reproduce the exper-
imental ones. The radial wave functions can be calculated for example by means of
Hartree-Fock calculations and then loaded into Quanty where the radial integrals can
be evaluated.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− NIXS o p e r a t o r d e f i n i t i o n
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− t h e t r a n s i t i o n o p e r a t o r i s g i v e n by Akm ∗ C( t h e t a _ r , p h i _ r )
−− where Akm = i ^ k . (2 k +1) .C ^∗ ( t h e t a _ q , ph i_q ) . <R( r ) | j _ k ( q r ) | R( r ) >
−− which i s a p o t e n t i a l expanded on s p h e r i c a l ha rmon ic s wi th c o e f f i c i e n t s Akm

−− r e a d t h e r a d i a l wave f u n c t i o n s from a f i l e
−− o r d e r o f t h e r a d i a l f u n c t i o n s i n t h e f i l e
−− r ( a0 ) 4d 5 s 5p 4 f
f i l e = i o . o p e n ( " C e _ r a d i a l _ 4 f . t x t " , " r " )
Rnl = {}
f o r l i n e i n f i l e : l i n e s ( ) do

RnlLine ={}
f o r i i n s t r i n g . g m a t c h ( l i n e , "%S+" ) do

t a b l e . i n s e r t ( RnlLine , i )
end
t a b l e . i n s e r t ( Rnl , RnlLine )

end

−− t r a n s i t i o n s from 4d ( i n d e x 2 i n Rnl ) t o 4 f ( i n d e x 5 i n Rnl )
−− c a l c u l a t i o n o f t h e r a d i a l i n t e g r a l <R( r ) | j _ k ( q r ) | R( r ) > f o r a chosen q
f u n c t i o n RjRpd ( q )

Rj1R = 0
Rj3R = 0
Rj5R = 0
dr = Rnl [3 ] [1 ]− Rnl [ 2 ] [ 1 ]
r0 = Rnl [2] [1]−2∗ dr
f o r i r = 2 , #Rnl , 1 do

r = r0 + i r ∗ dr
Rj1R = Rj1R + Rnl [ i r ] [ 2 ] ∗ m a t h . S p h e r i c a l B e s s e l J ( 1 , q∗ r ) ∗ Rnl [ i r ] [ 5 ] ∗ dr
Rj3R = Rj3R + Rnl [ i r ] [ 2 ] ∗ m a t h . S p h e r i c a l B e s s e l J ( 3 , q∗ r ) ∗ Rnl [ i r ] [ 5 ] ∗ dr
Rj5R = Rj5R + Rnl [ i r ] [ 2 ] ∗ m a t h . S p h e r i c a l B e s s e l J ( 5 , q∗ r ) ∗ Rnl [ i r ] [ 5 ] ∗ dr

end
r e t u r n Rj1R , Rj3R , Rj5R

end

The transition operator acting on the angular part of the wave function that has to be
used in the function CreateSpectra() is then:

T =
∑
k,m

Ak,mCk,m(θr, φr), (5.8)
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where
Ak,m = ik(2k + 1)C∗k,m(θq, φq) 〈Rf | jk(qr) |Ri〉 . (5.9)

This is a potential expanded in spherical Harmonics with coefficientsAk,m. This means
that the function NewOperator(’CF’, ..., Akm) can be used.
−− c r e a t i o n o f t h e l i s t o f t h e c o e f f i c i e n t s
−− Akm = i ^ k . (2 k +1) .C ^∗ ( t h e t a _ q , ph i_q ) . <R( r ) | j _ k ( q r ) | R( r ) >
f u n c t i o n ExpandOnClm ( k , t h e t a , phi , s c a l e )

r e t ={}
f o r m=−k , k , 1 do

t a b l e . i n s e r t ( r e t , { k ,m, s c a l e ∗ m a t h . S p h e r i c a l H a r m o n i c C ( k ,m, t h e t a , p h i ) } )
end
r e t u r n r e t

end

−− f u n c t i o n t o c r e a t e t h e nIXS t r a n s i t i o n o p e r a t o r s
−− c a l l i n g a l l t h e p r e v i o u s f u n c t i o n s
f u n c t i o n TnIXS_pd ( q , t h e t a , p h i )

Rj1R , Rj3R , Rj5R = RjRpd ( q )

k=1
A1 = ExpandOnClm ( k , t h e t a , phi , I ∗ (2∗ k +1)∗Rj1R )
T1 = NewOperator ( "CF" , NFermions , IndexUp_4f , IndexDn_4f ,

IndexUp_4d , IndexDn_4d , A1 )

k=3
A3 = ExpandOnClm ( k , t h e t a , phi , −I ∗ (2∗ k +1)∗Rj3R )
T3 = NewOperator ( "CF" , NFermions , IndexUp_4f , IndexDn_4f ,

IndexUp_4d , IndexDn_4d , A3 )

k=5
A5 = ExpandOnClm ( k , t h e t a , phi , I ∗ (2∗ k +1)∗Rj5R )
T5 = NewOperator ( "CF" , NFermions , IndexUp_4f , IndexDn_4f ,

IndexUp_4d , IndexDn_4d , A5 )

T = T1+T3+T5
r e t u r n T , T1 , T3 , T5

end

With all these function the NIXS spectra can be calculated specifying the module and
the direction of the exchanged momentum q

−− q i n u n i t s p e r a0 ( m u l t i p l y by a0 t h e v a l u e you want t o have i n A)
−− some c o n s t a n t s
a0= 0 .52917721092
q = 9 . 8 ∗ a0

−− d e f i n e t h e d i r e c t i o n o f t h e exchanged momentum q
q t h e t a = 0 −− p i / 2 f o r q100 −− p i / 2 f o r q110
qph i = 0 −− 0 −− p i / 4
T_q001_a l l , T_q001_k1 , T_q001_k3 , T_q001_k5 = TnIXS_pd ( q , q t h e t a , qph i )

n IXS_Spec t r a = C r e a t e S p e c t r a ( H_f , { Tq001_a l l , T_q001_k1 , T_q001_k3 , T_q001_k5 } ,
P s i _ i , {{ " Emin " ,−30} , { "Emax" , 3 0 } , { "NE" ,10000} , { "Gamma" , 0 . 1 } } )

Gamma is the Lorentzian broadening expressed in eV. An additional Gaussian broad-
ening is usually applied to the simulated spectra in order to reproduce the experimental
broadening.

5.2 Atomic multiplet simulations of 4f XRS N4,5 edges

The calculations presented in this thesis are based on an atomic model of the ion under
investigation. It can be successfully applied in cases in which the atomic model is a

44



i
i

“output” — 2019/4/1 — 18:42 — page 45 — #57 i
i

i
i

i
i

5.2. Atomic multiplet simulations of 4f XRS N4,5 edges

90 100 110 120 130 140 150 160

Energy loss [eV]

low q = 3,4 0,2
med q = 6,3 0,15
high q = 8,53 0,1

Figure 5.2: XRS experimental
spectra of the N4,5 edge of
Ce in CeRh2As2, measured at
T = 295 K. At low q the
spectrum is dominated by a
broad dipole feature peaked at
126 eV. This feature gradu-
ally disappears going from the
low to the high q spectrum. At
high q the peaks in the energy
range 100 eV-115 eV dominate
the spectrum. They are sepa-
rated in energy from the broad
dipole peak.

125 130 135 140 145 150 155 160 165 170 175

Energy loss [eV]

low q = 3,4 0,2
med q = 6,3 0,15
high q = 8,53 0,1

Figure 5.3: XRS experimental
spectra of the N4,5 edge of Gd
in GdRh2Si2 measured at T =
295 K. At low q a broad fea-
ture peaked at 148 eV domi-
nates. At high q a sharp peak
appears at 141 eV and domi-
nates the spectrum.

good approximation of the behaviour of the atom in the solid. For the highly localized
4f shell this picture proved to be a good one.

In the following the XRS data acquired with the spectrometer at ID20 of the ESRF
are presented. The samples are described in more detail in chapter 6.1. They are ternary
compounds of the family 122 containing the rare-earths: Ce, Gd and Ho. In particular
the samples are: CeRh2As2, GdRh2Si2 and HoRh2Si2. In these materials the rare-earth
elements are found as trivalent ions Ce3+, Gd3+ and Ho3+, with electronic configuration
4f 1, 4f 7 and 4f 10, respectively. The spectra were acquired with three different crystal
analyzer modules composed of 12 crystal analyzers each. The measurements were
performed with an incoming energy E0 = 9.7 keV. The three modules where placed
at angles such that the exchanged momenta were about 3.4Å

−1
, 6.3Å

−1
and 8.5Å

−1
.

The measurements were performed at ambient temperature (T = 295 K). After the
subtraction of the Compton profile, as described in 4.1.4, the edge step height has been
set equal to 1 for all the spectra.

The experimental XRS spectra of the N4,5 edge of Ce, Gd and Ho are shown respec-
tively in figure 5.2, 5.3 and 5.4.
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Chapter 5. Atomic multiplet calculation of XAS and XRS spectra: Quanty

Figure 5.4: XRS experimental
spectra of the N4,5 edge of
Ho in HoRh2Si2 measured at
T = 295 K. A broad fea-
ture is still present in the high
q spectrum. The peaks in the
energy range 155 eV-160 eV
gradually increase in intensity
as q increases.

140 150 160 170 180 190 200 210

Energy loss [eV]

low q = 3,4 0,2
med q = 6,3 0,15
high q = 8,53 0,1

At low exchanged momentum q all the experimental spectra show a peak with an
asymmetric broadening of about 10 eV − 15 eV. This feature arises from the fact that
for the shallow core transition 4d→ 4f the core-valence multiplet spread is≈ 20 eV−
25 eV, as estimable from the experimental data. Often this value is larger than the
hole-electron attractive potential. This pushes the higher lying levels of the excited
final state configuration 4d94f 2 at higher energies, in resonance with the conduction
band [70]. These transitions do not correspond to transitions into excitonic states, but
rather to transitions into non bounded states hybridized with conduction band states.
This means that these virtual-bounded Fano-resonances cannot be described in terms
of local atomic models. The peaks at the lowest energy loss values are instead sharper
than this feature. The intensity at low energy loss corresponds to transitions into states
with a higher binding energy. These states are far in energy from the conduction band
states. This means that these states are not hybridized and correspond to transitions
into excitonic bounded states. These states are well described by an atomic model. The
broad features are very often dipole allowed while the sharp peaks at lower energy loss
correspond very often to higher order transitions.

The experimental spectra are dominated at low q by dipole transitions that gradually
reduce in intensity as the exchanged momentum q increases. At high q some sharp
peaks start to dominate the spectra. This is most clear for Ce in figure 5.2. At low
exchanged momentum q = 3.4Å a broad feature peaked at 126 eV dominates. Instead,
in the Ce spectrum measured with q = 8.5Å some peaks in the energy range 100 eV-
115 eV are the most intense. These are due to higher order transitions (octupole and
triakontadipole) which contribute most at high exchanged momentum, as pointed out
discussing the radial integrals in figure 3.3.

In figure 5.5, 5.6 and 5.7 the XRS spectra calculations performed on Ce3+, Gd3+ and
Ho3+, respectively, are shown. These calculations were performed using a script based
on the code presented on chapter 5.1. The atomic multiplet simulations of the XRS
spectra were calculated as a function of the exchanged momentum q. The colored areas
correspond to the different contributions from the different transition orders: in blue
for k = 1 (dipole), in green k = 3 (octupole) and in red k = 5 (triakontadipole). The
experimental data acquired with q = 3.4Å

−1
, 6.3Å

−1
and 8.5Å

−1
are superimposed,
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5.2. Atomic multiplet simulations of 4f XRS N4,5 edges

105 110 115 120 125 130 135

Energy Loss [eV]

q = 1 Å -1

q = 3 Å -1

q = 5 Å -1

q = 7 Å -1

q = 8 Å -1

q = 9 Å -1

q = 10 Å -1

q = 11 Å -1

overall sum
k = 1
k = 3
k = 5

Figure 5.5: Dependence of XRS N4,5 edge
simulations of Ce3+ on the modulus of the
exchanged momentum. The shaded areas
correspond to the different transition orders:
k = 1 dipole, k = 3 octupole and k = 5
triakontadipole. The experimental data of
CeRh2As2 are superimposed with arbitrary
normalization. Simulated spectra are shifted
positively by 115 eV. The simulations in
the energy range 120 eV-135 eV do not pre-
dict the experimental data. The simula-
tions in the energy range 100 eV-120 eV in-
stead predict the correct shape of the peaks.
The simulated dependence on the exchanged
momentum q predicts correctly the experi-
mental dependence.

135 140 145 150 155 160

q = 1 Å -1

q = 3 Å -1

q = 6 Å -1

q = 9 Å -1

q = 11 Å -1

q = 15 Å -1

q = 18 Å -1

overall sum
k = 1
k = 3
k = 5

Energy loss [eV]

Figure 5.6: Dependence of XRS N4,5 edge
simulations of Gd3+ on the modulus of the
exchanged momentum. The shaded areas
correspond to the different transition orders:
k = 1 dipole, k = 3 octupole and k = 5
triakontadipole. The experimental data of
GdRh2Si2 are superimposed with arbitrary
normalization. Simulated spectra are shifted
positively by 145 eV. The dipolar peak at
152 eV does not reproduce the experimental
spectra. Also the position is not reproduced.
The shape of the peaks in the energy range
135 eV-146 eV instead is reproduced.
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Chapter 5. Atomic multiplet calculation of XAS and XRS spectra: Quanty

Figure 5.7: Dependence of XRS N4,5 edge
simulations of Ho3+ on the modulus of the
exchanged momentum. The shaded areas
correspond to the different transition orders:
k = 1 dipole, k = 3 octupole and k = 5
triakontadipole. The experimental data of
HoRh2Si2 are superimposed with arbitrary
normalization. Simulated spectra are shifted
positively by 164 eV. The peaks in the
energy range 161 eV-175 eV are not repro-
duced by the simulations. The shape of the
peaks in the energy range 154 eV-161 eV in-
stead is reproduced.

150 155 160 165 170 175 180 185

q = 1 Å -1

q = 3 Å -1

q = 6 Å -1

q = 9 Å -1

q = 11 Å -1

q = 15 Å -1

q = 18 Å -1

overall sum
k = 1
k = 3
k = 5

Energy loss [eV]

with arbitrary normalization, for comparison.
The simulations predict sharp and intense dipole peaks, which dominates the spectra

at low q. The simulations clearly show how the higher order transitions gradually start
to dominate the spectra as the exchanged momentum q grows. The dependence on
the exchanged momentum q reproduces the experimental one. The value of q that
reproduces best the experimental data is usually higher than the experimental one. This
is due to the fact that the calculated atomic radial wave functions have to be scaled with
respect to the Hartree-Fock one.

The simulated spectra have to be shifted because the simulations do not predict the
position of the edge. The simulated spectra has been positively shifted by 115 eV in the
case of Ce, 145 eV for Gd and 164 eV for Ho.

Clearly, the atomic simulations cannot predict the broad features. They could be re-
produced including local correlations as well as the full (dynamical) meanfield approxi-
mated band structure in the model, as explained in Ref. [71]. Likewise, the simulations
cannot reproduce the edge step that arises from transitions into continuum states. In-
stead, the peaks at lower energy loss are well reproduced. In fact these spectral features
correspond to bounded excitonic states that can be successfully modeled with atomic
multiplet theory.

The simulations predict that the multipole transition for Ce give rise to features
clearly detached from the dipole transition peaks. This is still true for Gd, but is not
true for Ho, where the contributions from the higher order transitions are at same energy
position as those of the dipole transitions. The position of the peaks at high energy loss
is not reliable because in that energy region the atomic model fails. The position is
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5.2. Atomic multiplet simulations of 4f XRS N4,5 edges

usually overestimated.
The broadening of the features depends on the energy position of the final level

and not only on the dipolar or multipolar character of the transition. A justification
for this statement can be the presence of two sharp peaks at 158 and 159 eV in the
experimental spectrum of Ho. The simulations predict that these peaks are, at low
exchanged momentum, predominantly of dipolar character.
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CHAPTER6
Determination of CeRh2As2 crystal field scheme

by means of XAS and XRS natural LD

In this chapter, the experimental results of the XAS and XRS natural linear dichroism
experiments of the compound CeRh2As2 are presented. First, in section 6.1, the pe-
culiarity of its crystal structure is described, comparing it with similar samples. Then
the experimental data are described in 6.2. Finally it is shown, in chapter 6.3, how it is
possible to extract information about the crystal field levels scheme. This means deter-
mining the order of the three doublets in which the multiplet 2F5/2 is split by the crystal
field, the values of the splittings and the mixing parameter α. This will be accom-
plished through the comparison of the experimental spectra with the spectra simulated
using atomic multiplet theory.

6.1 CeRh2As2: heavy fermion system of CaBe2Ge2 structure type

The materials discussed in this thesis are 122 ternary alloys characterized in general by
a composition RET2X2. RE represents a rare earth ion (Ce, Gd, Ho, ...), T indicates
3d, 4d and 5d transition metals (Cu, Ru, Rh, Ag, Ir, ...) and X represents p-elements
(Si, P, Ge, As, ...). These compounds very often crystallize in a so-called ThCr2Si2
(space group I4/mmm) body-centered tetragonal structure type. This is the case for
GdRh2Si2 and HoRh2Si2, whose crystal structure is depicted in figure 6.1. In this crys-
tal structure, the bonds occur mainly between the transition metal and the non metal
element, which are distant about 2.5Å from each other. They form a framework in
which the rare earth elements are centered and separated by about 3.1Å from the near-
est neighbouring atoms. The rare earth is immersed in a tetragonal D4h environment.
Rhodium forms tetrahedral bonds with its four Si nearest neighbours. Silicon instead
forms pyramidal bonds with the four nearest Rh and a Si atom at the vertex. This is
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Chapter 6. Determination of CeRh2As2 crystal field scheme by means of XAS and XRS
natural LD

(a) (b)

Figure 6.1: Crystal structure of the ternary 122 compounds (a) GdRh2Si2 and (b) HoRh2Si2. They
crystallize in a ThCr2Si2-type body-centered tetragonal crystal structure of space group I4/mmm.
The length of the drawn bonds is 2.5Å, the distance of the RE from the nearest neighbours is about
3.1Å. Lattice parameters for GdRh2Si2 are: a = b = 4.045Å, c = 9.980Å. Lattice parameters for
HoRh2Si2 are: a = b = 4.084Å, c = 10.009Å. Crystals structures drawn and data taken from Ref.
[72].

general for all the compounds with ThCr2Si2 structure type and can be summarized as:
RETtetTtetXpyXpy.

The ternary 122 compounds can also crystallize in a primitive tetragonal structure
of the CaBe2Ge2-type (space group P4/nmm 129). This is the case for CeRh2As2. In
figure 6.2.(a) the crystal structure of the unit cell is depicted. Also, in this structure the
bonds are formed mainly between the transition metal Rh and the p-element As with a
bond length of about 2.6Å. However, in this case the two Rh and the two As ions are
placed in two non-equivalent lattice sites. In figure 6.2.(b) some polyhedra centered on
the atoms are depicted. The nearest neighbors of the atom are placed at the vertices of
the polyhedra. In this crystal structure, one of the two Rh (denoted as Rh1 in the figure)
sits in a tetrahedral environment, and the other (Rh2) in a pyramidal site. The same is
valid for As. This is valid in general for all the compounds with CaBa2Ge2 structure
type and can be summarized as: RETtetTpyXtetXpy. Including also the neighbouring
unit cells along a and b as in figure 6.2.(c), it is possible to see that also in this structure
Ce sits in the center of the framework formed by the other atoms to which it is separated
by about 3.3Å.

6.1.1 Ce3+ locally non-centrosymmetric environment

Figure 6.3 shows the 16 nearest neighbours of Ce. It is possible to see that the local
environment of Ce is not invariant under the inversion operation i and is not invariant
under the operations that involve a mirror operation for a plane parallel to the ab plane.
This means that the local point group symmetry of Ce is C4v, a subgroup of the sym-
metry group D4h of the crystal. The two Ce ions in the unit cell have this equivalent
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6.1. CeRh2As2: heavy fermion system of CaBe2Ge2 structure type

(a) (b) (c)

Figure 6.2: Crystal structure of the ternary CaBe2Ge2-type compound CeRh2As2. The lattice param-
eters are a = b = 4.283Å, c = 9.850Å. The drawn bonds are 2.6Å long. Ce is 3.3Å far from the
nearest neighbours. Two Ce atoms are separated by a minimum distance of 4.3Å. (a) Structure of the
unit cell. Rh1 sits in an atomic site nonequivalent to the one of Rh2. The same is valid for As. (b) The
polyhedra are centered on the Rh and As atoms. At the vertices of the polyhedra are positioned the
nearest neighbours. Rh1 and As1 see a tetragonal environment, while Rh2 and As2 see a pyramidal
environment. (c) Two units cells along the equivalent directions a and b are drawn. Ce is at the center
of a framework formed by the other elements. Data taken from Ref. [73].

Figure 6.3: The 16 nearest neighbours of
the Ce in CeRh2As2. With respect to
a tetragonal D4h symmetry, the local
environment of Ce lacks the inversion
symmetry and the mirror operations
with respect planes perpendicular to
the principal axis, parallel to c. The
local point group symmetry is C4v .
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Chapter 6. Determination of CeRh2As2 crystal field scheme by means of XAS and XRS
natural LD

Figure 6.4: Definition of the geometry
used in the XAS experiments. The
axes a and c refer to the crystallo-
graphic axes. The surface of the sam-
ple is perpendicular to the c axis. An
x-ray with wave vector k is imping-
ing on the sample with an angle of in-
cidence θ with respect to the surface.
The polarization vector ε can be lin-
early polarized on the vertical plane
(LV) thus lying on the aa plane. It can
also be linearly polarized on the hori-
zontal plane (LH), thus having a com-
ponent along the c axis: εc = cos θ.

a

a

c

εLV

εLH

k

LH

LV
θθ

local point group symmetry, but their environment is specular: with reference to figure
6.2.(a), the planes formed by the Rh2 and As1 atoms are placed in a positive direction
along c for the lower Ce ion, while with respect to the upper Ce ion, the same planes
are placed along the negative c direction.

The C4v symmetry of Ce cannot be modeled by the effective crystal field model
as explained in chapter 2.1. The VCEF used to model the two Ce ions in the calcula-
tions has D4h symmetry and is the same for both the ion sites. This means that in the
calculations it is sufficient to consider just one of the two ions.

6.2 Experimental spectra

6.2.1 XAS TEY LD experimental data

The XAS experimental spectra at the M4,5 edges of CeRh2As2 were measured at ID32
of ESRF. The total electron yield (TEY) technique was used. The geometry of the
experiment was defined as in figure 6.4. The axes refer to the crystallographic axes
and the surface of the sample is perpendicular to the c axis. The polarization vector
ε can be linearly polarized along the vertical direction (LV) which means that it lies
in the plane formed by the two equivalent crystallographic directions a and b, both
labelled as a. The polarization can also be linearly polarized in the horizontal plane
(LH), which means that the polarization vector has a component along the c direction
equal to εc = cos θ. Vertical and horizontal directions are defined with respect to the
plane of the storage ring.

The experiment aimed at measuring the difference between the x-ray absorption for
a polarization lying in the plane ab of the crystal and the x-ray absorption for a polar-
ization lying along the out of plane direction c. The incident angle was θ = 30◦. The
experimental data shown in the following are treated as explained in chapter 4.2.2. The
XAS spectra obtained are shown in figure 6.5. The natural linear dichroism (LD) is
plotted in green as the difference between the spectra acquired with LH polarization
(red), with an incident angle θ = 30◦, and the spectra acquired with LV polariza-
tion (blue): LD=LH-LV. The spectra in 6.5.(a) were acquired at ambient temperature
Tamb ≈ 300 K. The spectra in 6.5.(b) instead were acquired at 25 K in order to ther-

54



i
i

“output” — 2019/4/1 — 18:42 — page 55 — #67 i
i

i
i

i
i

6.2. Experimental spectra
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(a) Spectra acquired at T=300K
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Figure 6.5: Experimental XAS TEY spectra of Ce M4,5 edge in CeRh2As2 acquired at ID32 of the
ESRF. The linear dichroism (LD) is plotted in green, the difference between the red spectra, acquired
with LH polarization (θ = 30◦), and the blue spectra acquired with LV polarization. The spectra in
(a) are acquired at ambient temperature 300 K. The spectra in (b) are acquired at a temperature of
25 K.

mally populate mainly the lowest energy levels.

The LD signal is ≈ 3% of the XAS intensity at its maximum. It shows a small
variation with the temperature.

4f0 contribution

The main difference between the LD(300 K) measured at ambient temperature and the
LD(25 K) measured at low temperature can be pointed out comparing the spectra ac-
quired with the same polarization at the two temperatures. In figure 6.6 the spectra
acquired with the same linear polarization are compared: in (a) with LV polarization,
in (b) with LH polarization. The main difference, which is present in both figures
6.6.(a) and (b), is the increase of the intensity of the peaks labeled as 4f 0 moving from
300 K to 25 K. These peaks are present due to the hybridization of the 4f electron with
the conduction electrons as a consequence of the Kondo effect [74]. In this material
the interaction has an energy of about TK ≈ 30 K (private communications). If the
Kondo interaction prevails the f electron becomes delocalized increasing the weight of
the 4f0 configuration. As the temperature grows, instead, and the thermal fluctuations
overcome the Kondo interaction, the 4f electrons become more and more localized.
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4f0
4f0

(a) LV polarization.

4f04f0

(b) LH polarization.

Figure 6.6: Comparison between the spectra acquired at 300 K (red) and 25 K (blue) separately for the
two polarizations: in (a) for LV polarization, in (b) for LH polarization with incident angle θ = 30◦.
In both (a) and (b) there are four peaks that arise from the contribution of the Ce4+ with configuration
4f0. The intensity of these peaks clearly increase at low temperature. This mixed valence state is a
consequence of the Kondo interaction.

Figure 6.7: Determination of the crystal orientation through Laue diffraction. The segment AC is
parallel to the horizontal plane of the Laue diffraction camera. The Laue diffraction pattern obtained
with this orientation lies along the segment AD that forms an angle of 7.3◦ with AC. Defining a
clearly identifiable geometrical sample axis AB as in the left figure it is found that the equivalent
directions [100] and [010] form an angle of 28.6◦ with AB as in figure.
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6.2. Experimental spectra

Figure 6.8: Picture of the sample mounted on the
sample holder. k1 is the direction of the incom-
ing x-ray beam, k2 is the direction of the scat-
tered x-ray beam. The exchanged momentum is
determined to form an angle of 20◦ with respect
to the crystallographic direction [100].

6.2.2 XRS LD experimental data

Laue diffraction

As explained in chapter 3.3.3, XAS is not sensitive to symmetries lower than 2-fold.
As a consequence, the spectra are not sensitive to the direction of the polarization in
the plane ab. Instead, XRS is sensitive both to the out of plane natural linear dichroism
and to the in plane natural dichroism. This means that the direction of the exchanged
momentum in the plane has to be known. The orientation of the crystallographic axes
of the sample was obtained through x-ray Laue diffraction. A white beam of x-rays im-
pinges on the fixed sample. For highly absorbing materials the back reflection method
is used, in which the detector is placed between the source and the crystal. Since a
white beam is used, Bragg’s law is satisfied for several crystal planes at the same time.

In the case of the CeRh2As2 single crystal shown in 6.7 the flat surface is perpen-
dicular to the c axis. Defining an easily identifiable geometrical sample axis, going
through points A and B, it was determined that the crystallographic direction [100] (or
[010] equivalently) forms an angle of 28.6◦ with respect to it. The sample was mounted
in the sample holder as in figure 6.8. The measurement was performed with the ex-
changed momentum q forming an angle of 20◦ with respect to the [100] crystallographic
direction.

XRS data

XRS data on CeRh2AS2 were collected at the ID20 of the ESRF. The spectra were
acquired with a single crystal analyzer module in the horizontal plane. The signal
coming from 12 crystal analyzers was summed up. The measurements were performed
with an incoming energy E0 = 9.7 keV. The module was placed at an angle of such
that the exchanged momentum was about 9.3Å

−1
. The measurements were performed

with the sample kept inside a dynaflow cryostat that kept the sample at a temperature of
10 K. Two sets of measurements were performed in order to measure the natural out-
of-plane dichroism. A measurement was performed with the exchanged momentum
vector parallel to the c axis ([001] crystallographic direction) and a second measurement
was performed with the exchanged momentum forming an angle of 20◦ with the [100]
crystallographic direction. The acquired data were treated as explained in chapter 4.1.4.
After the subtraction of the Compton profile each spectrum was divided by the value
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Figure 6.9: XRS spectra of the N4,5

edge of Ce in CeRh2As2. Exper-
imental data acquired at ID20 of
the ESRF. Acquisition performed
at T = 10 K. The spectra
were recorded with a modulus of
the exchanged momentum of about
9.3Å

−1
. The spectra were measured

with q oriented in two directions
with respect to the crystallographic
axes: with q along the c direction
[001] and with q at 20◦ with re-
spect to the direction [100] (or [010]
equivalently). Spectra normalized
by the value of their integral over the
range 100 eV − 116 eV.
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of its integral calculated in the energy range 100 eV-116 eV. The data are shown in
figure 6.9. The experimental LD, given by the difference LD = S(q ‖ [001]) − S(q ‖
20◦[100]), is plotted as black error bars. The length of the error bar is the standard
deviation.

6.3 Crystal field levels scheme

In the following is shown how to determine a set of possible values for the crystal field
splitting of the 4f 1 levels of Ce3+ in CeRh2As2. The determination will be achieved
through the comparison of the XAS and XRS experimental data with the atomic multi-
plets simulations. A set of possible crystal filed schemes is determined.

6.3.1 Restriction of the possible CF configurations

From the RIXS measurements, shown in appendix A, performed on CeRh2As2, it is
possible to put an upper bound to the splitting between the crystal field levels. It is
found to be lower than ∆Emax

CF < 50 meV. A lower bound for the energy level splitting
can be found looking at how the experimental XAS LD of figure 6.5 changes with
temperature going from 25 K to 300 K. If all the three lowest doublets can be populated
with the same probability, the resulting state would have spherical symmetry and would
show no dichroism. Since the variation of the experimental dichroism with temperature
is very small, it is possible to guess that the CF configuration contains at least one
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6.3. Crystal field levels scheme

level which is far from the ground state level by at least 7.5 meV. With this splitting
it is guaranteed that the highest level has a Boltzmann weight at 300 K lower than
0.75 ≈ exp(−7.5 meV/(kB300 K)).

The simulations presented in the following were performed using the following pa-
rameters for the XAS M4,5 edge: scal_3d4f= 0.825, scal_4f4f= 0.56, scal_zeta_4f=
0.82 and scal_zeta_3d= 0.963. For the XRS N4,5 edge instead were used: scal_4d4f=
0.83, scal_4f4f= 0.7, scal_zeta_4f= 0.82 and scal_zeta_4d= 0.97. The name refers to
the variables used in the code presented in chapter 5.1. They were chosen in order to
best reproduce the shape of the experimental spectra as shown in detail in appendix A.

Is it possible to exclude some CF configurations just by looking at the simulated
linear dichroism LD for pure |Jz〉 states. The simulations of respectively the XAS and
XRS spectra performed on Ce3+ in absence of a crystal field Hamiltonian are shown in
figures 6.10 and 6.11. In this case all the states are cylindrically symmetric around the c
axis and are all degenerate in energy. These states show no natural linear dichroism for
in plane directions both in the XAS and the XRS spectra. This means that the spectrum
is the same for all the directions in the plane ab of the polarization in XAS, and of the
exchanged momentum in XRS. Instead, they show natural linear dichroism for out of
plane directions. The difference between the intensity of the spectrum obtained with the
polarization in the plane ab I(ε ‖ ab) and the spectrum obtained with the polarization
along the c axis I(ε ‖ c) is clearly distinguishable from state to state.

Including also a tetragonal D4h crystal field in the simulations the states |±5/2〉
mix with the states |∓3/2〉 while the states |±1/2〉 remain almost pure states. The
dependence of the state Γ1

7 = α |±5/2〉 +
√

1− α2 |∓3/2〉 on the value of the mixing
parameter α is shown in figure 6.12. The dependence of the XAS M4,5 edge spectra
simulated with linear polarization in the vertical plane (LV) in blue, and with the linear
polarization in the horizontal plane (LH) at an incident angle of θ = 30◦ is shown in
part (a) of the same figure. In part (b) the dependence of the XRS simulations on α
is shown. The simulations were performed with q ‖ [001] (in red), with q ‖ [100] (in
blue) and with q ‖ 20◦[100] (in green) as in the experiments. In part (b) also the density
of the state Γ1

7 is plotted.
In figure 6.13 are compared the XAS and XRS LD simulations to the experimental

LD, with focus on the relevant features of the M5 and M4 edges, for the representative
crystal field levels schemes sketched in the figure. The XAS dichroism show less fea-
tures with respect to the XRS dichroism, and the comparison is more straightforward.
Note that all the simulated dichroisms cross the zero at the same energy. This justifies
the choice for the normalization adopted for the XAS spectra explained in section 4.2.2.
The experimental spectra are normalized so that they show a zero in the dichroism at
the same energy of the simulated dichroism. The following configurations sketched in
the figure can be excluded:

� (a) Γ1
7 � Γ2

7 ≈ Γ6 with α & 0.3 gives a dichroism of opposite sign with respect
to the experimental XAS LD.

� (b) Γ1
7 � Γ2

7 ≈ Γ6 with α ≈ 0 gives the correct sign but the relative intensity of
the dichroism is too high.

� (c) Γ6 � Γ1
7 ≈ Γ2

7 ∀α gives a too high XAS LD but with correct sign and XRS
LD shows big discrepancies.
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Figure 6.10: Atomic simulations of the XAS M4,5 edge of Ce3+ calculated for pure |Jz〉 states. The
states are cylindrically symmetric around the c axis and the directions a and b are equivalent. In red
the intensity of the spectrum for ε ‖ c. In blue the intensity for ε ‖ ab. The absorption spectra is the
same for all the polarization lying on the plane ab. Instead pure Jz states show a marked natural out
of plane linear dichroism which makes the three states clearly distinguishable. The sum of the three
states gives a spherically symmetric state which shows no dichroism.

Figure 6.11: Atomic simulations of the
XRS N4,5 edge of Ce3+ calculated
for the pure |Jz〉 states. The ex-
changed momentum is q = 9.3Å

−1
.

For pure Jz states, that are cylindri-
cally symmetric around the c axis,
all the directions in the plane ab
are equivalent. Instead they show
a characteristic out of plane dichro-
ism. Note that the spectra simulated
for q ‖ [101] are not just the lin-
ear combination of the spectra simu-
lated for the directions q ‖ [100] and
q ‖ [001].

-20 -15 -10 -5 0 5

Energy Loss [eV]

S
(q

,
) 

[a
rb

. u
ni

ts
]

q || [001]
q || [101]
q || [100]

c [001]

b [010]

a [100]

[101]

J
z
=|5/2>

J
z
=|1/2>

J
z
=|3/2>

60



i
i

“output” — 2019/4/1 — 18:42 — page 61 — #73 i
i

i
i

i
i

6.3. Crystal field levels scheme

-5 0 5 10 15

LV

α=1

α=0.8

α=0.6

α=0.4

α=0.3

α=0.2

α=0.1

α=0

Energy [eV]

In
te

ns
ity

 [a
rb

. u
ni

ts
]

LH θ=30°

(a) XAS M4,5 edges.

-15 -10 -5 0 5

q || [001]
q || [100]
q || 20°[100]

α=1

α=0.8

α=0.6

α=0.4

α=0.3

α=0.2

α=0.1

α=0

Energy loss [eV]

S
(q

,ω
) 

[a
rb

. u
ni

ts
]

(b) XRS N4,5 edges.

Figure 6.12: Simulations of the XAS (a) and XRS (b) spectra of the state Γ1
7 = α |±5/2〉 +√

1− α2 |∓3/2〉 as a function of the mixing parameter α. XRS is sensitive also to the in plane
dichroism. From the density of the state plotted in figure (b) it is possible to see that α is related to
the elongation of the orbital along the c axis. For α = 0 the state is a pure |±3/2〉, while for α = 1
is a pure |±5/2〉. 61
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Figure 6.13: Comparison of the experimental XAS and XRS LD with the simulations for the sketched
crystal field states schemes (a) to (f). The comparison of the XAS spectra, which contain less features
with respect to XRS, is more straightforward. For the configuration (a) the simulated XAS LD has
an opposite sign. In the scheme (b) the dichroism has the correct sign, but the intensity is too high
and the XAS spectrum at 300 K cannot be reproduced. (c) has the correct sign but with too high
intensity. (d) the relative intensity of the XAS LD at 25 K is too high ∀α. (e) the XAS LD at 25 K
is too intense. (f) the XAS at 25 K can be reproduced for α = 0.3 (the plotted simulation)but the
spectra at 300 K has a dichroism of opposite sign. Also this configuration can be excluded ∀α.
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6.3. Crystal field levels scheme

The configurations where the GS is a doublet lying far in energy below the other two
quasi degenerate doublets can be excluded. This means that configurations with the
higher lying states at different distances from the ground state have to be considered.
Also in this case some configurations can be excluded. For example, also the following
configurations, sketched in figure 6.13, have to be excluded:

� (d) Γ6 − Γ1
7 − Γ2

7 if |∆E76| is higher than 1 meV the relative intensity of the XAS
LD is too high ∀α.

� (e) Γ1
7 − Γ6 − Γ2

7 with α . 0.4 and at the same time ∆E76 . 2 meV the XAS LD
at 25 K is too intense.

� (f) Γ1
7 − Γ2

7 − Γ6 the XAS LD at 300 K cannot be reproduced ∀α.

The same conclusions can be drawn through the comparison of the XRS spectra.
Consider in detail the case (d) in which Γ6 is the ground state. In figure 6.14 the
XAS experimental data are shown and compared to the simulations of the configuration
sketched in the inset of the figure. The configuration Γ6

1←→ Γ1
7

15←→ Γ2
7 with α ≈ 1,

where the symbol meV←−→ represents the difference in energy between the excited levels
and the ground state in meV, reproduces the LD at 25 K, while the LD at 300 K has
the opposite sign. This is clear when looking again at the dichroism of the pure |±5/2〉
state in figure 6.10. From this configuration, both an increase of |∆E76| and a decrease
of α would result in a too intense LD at 25 K.

To reach a possible solution it is thus reasonable, looking at the pure Jz and Γ1
7 simu-

lations, to suppose that |∆E76| should be smaller and simultaneously α should decrease
in order to reproduce the LD at 25 K. If ∆E76 is positive instead, the configuration is
Γ1

7 − Γ6 − Γ2
7 and this is going to be analyzed in detail in the following.

Between the two configurations there is a configuration (g) Γ1
7 ≡ Γ6 − Γ2

7 with
α =

√
5/6 ≈ 0.91 and the resulting ground state quartet has cubic symmetry. In

compounds with cubic symmetry as for CeB6 [47], the 2F5/2 multiplet is split in a
doublet and a quartet. α is fixed to the value

√
5/6, the parameter A0

2 = 0 and the ratio
between A0

4 and A4
4 is constant. In figure 6.15 are compared both the XAS and XRS

LD for this configuration with the experimental spectra. As expected, the XAS cannot
resolve a cubic symmetry. The simulated XRS spectra is not totally incompatible with
the experimental one but this perfectly cubic crystal field has to be discarded.

The ground state would have cubic symmetry also in the case in which the doublet
Γ1

7 is the ground state with α ≈ 0.4, as can be understood from the density plot in figure
6.12.(b).

The remaining possible configuration Γ1
7−Γ6−Γ2

7 is considered now in detail. From
the cubic crystal field scheme, in order to get the correct XAS dichroism at 25 K, α has
to decrease. While simultaneously ∆E76 has to increase. At the same time in order to
obtain the correct behaviour at 300 K ∆E77 has to decrease. Continuously modifying
the configuration in this way yields a set of possible solutions that cannot be discarded:

�X (A) Γ1
7

0.1←→ Γ6
32←→ Γ2

7 with α = 0.8 is shown in figure 6.16.

�X (B) Γ1
7

0.9←→ Γ6
25←→ Γ2

7 with α = 0.64 is shown in figure 6.17.

�X (C) Γ1
7

3←→ Γ6
14←→ Γ2

7 with α = 0.45 is shown in figure 6.16.
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Figure 6.14: XAS simulated spectra versus experimental one for a CF scheme as in the inset: Γ6−Γ1
7−

Γ2
7. This configuration does not reproduce the spectra at 300 K. If |∆E76| > 1 meV the dichroism

in the spectrum at 25 K would be too intense ∀α. The same behaviour for same splitting and smaller
alpha. A smaller ∆E77 would result in a very small dichroism at 300 K.

All these states and the one in between give a correct reproduction of the XAS LD
at both 25 K and 300 K. There are some discrepancies common in all the simulations:
the features in the experimental dichroism peaked at 883.5 eV and 901 eV could not be
reproduced. These features are at the position of the 4f 0 peaks, which are not consid-
ered in the simulations. Moreover the features in the energy range 894 eV-898 eV could
not be reproduced. In the simulations a negative dichroism for the peak at 899.5 eV is
incompatible with a negative dichroism in the above-mentioned range. For what con-
cerns the kink at 882 eV, in the simulations there is a change of slope but it is not as
marked as in the experimental dichroism.

The XRS simulations do not predict all the features of the experimental dichroism
at the same time. However, none of the spectra in figures 6.16, 6.17 and 6.18 shows big
discrepancies that allow to undoubtedly discarded one.

Figure 6.19 summarizes the result of this discussion. For a given triad of α, ∆E76

and ∆E77, through the equations 2.21 and 2.22 the values of the three crystal field
parameters A0

2, A0
4 and A4

4, that give that mixing parameter and those splittings can be
calculated. A crystal field scheme as the one sketched in figure 6.19.(a) is proposed:
Γ1

7 − Γ6 − Γ2
7 where the mixing parameter is 0.35 . |α| . 0.8, ∆E76 = EΓ6 − EΓ1

7
is

0 . ∆E76 . 6 meV and ∆E77 = EΓ2
7
−EΓ1

7
is 13 . ∆E77 . 35 meV. The parameters

are not free to vary inside these intervals but they are such that as α ↑ increases, then
∆E76 ↓ decreases and ∆E77 ↑ increases.

Supposing that linearly varying (α,∆E76,∆E77) between the aforementioned bound-
ary values (0.35, 6 meV, 13 meV) → (0.8, 0 meV, 35 meV) and solving the system of

64



i
i

“output” — 2019/4/1 — 18:42 — page 65 — #77 i
i

i
i

i
i

6.3. Crystal field levels scheme

878 880 882 884 886

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

894 896 898 900 902 904

M5 M4

T	=	25K exp LD
sim LD

878 880 882 884 886

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

894 896 898 900 902 904

Energy [eV]

M5 M4

T	=	300K

102 104 106 108 110 112 114 116

Energy Loss [eV]

S
(q

,
) 

[a
rb

. u
ni

ts
]

exp LD
q||[001]
q||20°[100]
sim. LD

T	=	10K

ΔE77=30meV

α=√(5/6)

ΔE76≈0meV

Γ17

Γ27

Γ6

Figure 6.15: Simulation of the dichroism for an almost perfectly cubic crystal field and configuration
(g) Γ1

7 ≡ Γ6 − Γ2
7 with α =

√
5/6 ≈ 0.91. In this case, the XAS cannot resolve the out of plane

natural dichroism.

T	=	10K

878 880 882 884 886

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

894 896 898 900 902 904

exp LD
sim LD

M5 M4

T	=	25K

878 880 882 884 886

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

894 896 898 900 902 904

M5 M4

Energy [eV]

T	=	300K

102 104 106 108 110 112 114 116

Energy Loss [eV]

S
(q,

) [arb. units]

data1
q||[001]
q||20°[100]
sim. LD

ΔE77=32meV

α=0.8

ΔE76<0.1meV

Γ17

Γ27

Γ6
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equations, the values centered on the blue circles in figure 6.19 are obtained. This is
the qualitative set of the possible crystal field parameters. A0

2 is the only parameter that
is well bounded: it is negative and −25 meV < A0

2 < −10 meV. If A0
4 is positive, it is

not higher than 25 meV, but a negative value down to ≈ −100 meV is compatible with
the results. The parameter A4

4 is bounded in a big interval: 20 meV < A4
4 < 100 meV

and its sign could not be determined with the performed experiments.
For the predicted values of alpha, the expectation value of the angular momentum

operator along z on the ground state level 〈Γ1
7(+)|Jz|Γ1

7(+)〉 is bounded between−1.01
and +1.06, values respectively for α = 0.35 and = 0.8. The expectation value of
the ground state crosses zero at exactly α =

√
3/8 = 0.6124, a value close to the

simulation in figure 6.17.

6.3.2 Mean squared error approach

An alternative approach to find the best crystal field parameters, that reproduce the ex-
perimental spectra, is based on the iterative calculation of the total mean squared error
between the experimental spectra and the simulated spectra. In particular, simulations
of the XAS dichroism were performed varying the crystal field parameters in the inter-
vals (−0.04 ≤ A0

2 ≤ 0.02 eV), (−0.075 ≤ A0
4 ≤ 0.075 eV) and (0 ≤ A4

4 ≤ 0.1 eV)
going from one extreme to the other of each parameter in 15 steps. Both the XAS LD
at 25 K and at 300 K was simulated. The total mean squared error was calculated as:
MSEtot = MSE25 K + MSE300 K, where MSE =

∑
E(LDexp

E − LDsim
E )2/(#E), where

E indexes the energy values at which the experimental spectra were acquired. A small
MSEtot means a good agreement of the simulation with the experimental data.

In figure 6.20 the result of the calculations are shown. The mean squared error for a
given combination (A0

2,A
0
4,A

4
4) is represented as point. The dimension of the point is

proportional to the inverse of the MSEtot. Also, the color of the points vary from blue
to yellow proportionally to the inverse of MSEtot. The points corresponding to a too
high MSE (too small dimension) were omitted for clarity.

In the figure the points corresponding to the configurations labeled as (A), (B) and
(C) of figure 6.16, 6.17 and 6.18 are also plotted.

The region of crystal field parameters, that best fit the experimental linear dichroism,
obtained in this way shows a good agreement with the conclusions drawn in section
6.3.1. However, due to the discrepancies between the simulated and the experimental
spectra, pointed out in the previous section, these calculations should be considered just
as a qualitative result.
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Figure 6.19: Summary of the results discussed in the chapter. A crystal field scheme as the one in the
scheme (a) is proposed. The three parameters are such that if α ↑ increases ∆E76 ↓ decreases and
∆E77 ↑ increases. In figure (b) is plotted as blue circles the qualitative set of the possible crystal
field parameters A0

2, A0
4 and A4

4 that gives a crystal field scheme as the one sketched in (a). Am
k

were calculated through the solution of the system of equations 2.21 and 2.22. A linear behaviour
was considered for the variation of (α,∆E76,∆E77) from one to the other boundary configurations:
(0.35, 6 meV, 13 meV)→ (0.8, 0 meV, 35 meV). The points labelled with the letters from (a) to (f)
refer to the labels used in figure 6.13 to identify the different configurations that can be excluded. (g)
is the configuration of figure 6.15. The points labelled as (A), (B) and (C) refer to the configurations
respectively of figure 6.16, 6.17 and 6.18 that cannot be excluded. The projections of the points are
inserted to clarify the dependence on the crystal field parameters.
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6.3. Crystal field levels scheme
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Figure 6.20: Result of the calculation of the total mean squared error calculated on the XAS spectra as:
MSEtot = MSE25K + MSE300K, where MSE =

∑
E(LDexp

E − LDsim
E )2/(#E), where E indexes

the energy values at which the experimental spectra were acquired. The crystal field parameters were
varied in the intervals (−0.04 ≤ A0

2 ≤ 0.02 eV), (−0.075 ≤ A0
4 ≤ 0.075 eV) and (0 ≤ A4

4 ≤ 0.1 eV)
going from one extreme to the other of each parameter in 15 steps. A low MSEtot means a good
agreement of the simulations with the experimental data. The dimension of the points is proportional
to the inverse of the MSEtot. Also, the color of the points vary from blue to yellow proportionally to
the inverse of MSEtot. The points corresponding to a too high MSE (too small points) were omitted
for clarity. The points labeled as (A), (B) and (C) correspond to the configurations of figure 6.16,
6.17 and 6.18 (their dimension is not related to their MSE). The region of crystal field parameters
that best fit the experimental data are in agreement with the results shown in section 6.3.1.
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CHAPTER7
Discussion of the results and outlook

In this thesis the newly investigated heavy fermion system CeRh2As2 was analyzed.
The goal of the research was to provide an independent determination of the crystal
electric field (CEF) scheme and crystal electric field parameters acting on the rare earth
Ce ion starting with the mere knowledge of its crystal structure. The determination
of the CEF scheme was carried out using x-ray absorption at the M4,5 edge and x-ray
Raman scattering spectroscopy at the N4,5 edge (XAS and XRS), described in chapter
3. The symmetry reduction due to the presence of the neighbouring atoms causes the
presence of a natural out of plane linear dichroism that is observed in the experimental
spectra acquired with these techniques. In XAS the spectra depends on the direction
of the linear polarization vector. In XRS the dependence is on the direction of the ex-
changed momentum vector. The experiments were performed respectively at ID32 and
ID20 of the ESRF. These techniques proved to be able to give information about the
sample CEF scheme. To extract the information, the experimental spectra were com-
pared to atomic multiplet simulations performed with Quanty, presented in chapter 5.1.
The atomic approach is justified by the fact that the f electrons are strongly localized
at the crystallographic Ce site. The atomic model was shown in chapter 5.2 to provide
a correct prediction of the multipolar transitions of the N4,5 edge of Ce. The interac-
tion of the ion with the surrounding ions in the crystal can be modeled as an effective
crystal field Hamiltonian and inserted as a perturbation to the Hund’s rule ground state
(chapter 2.1). The complex crystal environment is modeled as a single Ce ion, which
interacts with an effective CEF described by three crystal field parameters A0

2, A0
4 and

A4
4. A combination (A0

2, A0
4, A4

4) of these parameters uniquely determines the crystal
field scheme, that is described by the three quantities (α,∆E76,∆E77).

Through the analysis presented in chapter 6.3 the CEF scheme was determined to
be such that:
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Chapter 7. Discussion of the results and outlook

• CEF scheme: Γ1
7 − Γ6 − Γ2

7

• mixing parameter: 0.35 . |α| . 0.8

• ∆E76 = EΓ6 − EΓ1
7

is 0 . ∆E76 . 6 meV

• ∆E77 = EΓ2
7
− EΓ1

7
is 13 . ∆E77 . 35 meV

The parameters are not free to vary inside these intervals but they are such that as
α ↑ increases, then ∆E76 ↓ decreases and ∆E77 ↑ increases as sketched in figure 6.19a.

The main conclusion is that the first CEF excited state is close to the CEF ground
state leading to a quasi-degenerate quartet as ground state. This result is compatible
with the results obtained from the measurements of the physical properties (specific
heat, entropy, susceptibility and resistivity) of this material [75]. In particular the mea-
surements of the entropy as a function of the temperature suggested the presence of a
quasi degenerate quartet ground state. This sample rose interest because of the possible
presence of a quadrupolar quantum critical point (QCP). There are very few examples
of Ce compounds of tetragonal symmetry showing quadrupolar ordering [76]. Most
of them are of cubic symmetry as CeB6 [47, 77] shown in figure 2.3. The ground
state in that case is the Γ8 quartet and the presence of the quartet allows a quadrupolar
ordering. Similarities were found with the heavy fermion system CeCu2Si2 for what
concerns the behaviour close to a quantum critical point. Quadrupolar QCP are poorly
studied and poorly understood but are an emergent topic. Moreover, this sample shows
an unconventional superconductivity phase close to the QCP that could be an heavy
fermion superconductivity. In addition, the non centrosymmetric local environment of
each layer of the material could lead to new exotic phenomena [78].

Another conclusion is that the crystal field parameter A0
2 is negative and bounded

between −25 meV < A0
2 < −10 meV. This parameter is related to an oblate or prolate

shape of the orbital and to the presence of a magnetic hard or easy axis [20, 79] (a
different CEF parameters convention is used [80]). A negative A0

2, means that the axis z
is an hard axis for the orientation of the magnetic moment, which aligns more favorably
in the plane. This is in agreement with the magnetic susceptibility measurements that
show a higher in plane susceptibility with respect to the out of plane susceptibility.
Moreover, the closer this parameter is to zero, the more the crystal field is close to a
cubic symmetry.

Combining the information coming from the magnetic susceptibility measurements
with the results of the presented investigations could lead to a reduction of the set of
possible ground state configurations. In fact the magnetic anisotropy is related to the
mixing parameter α that, as can be seen in figure 6.12, is related to the elongation of
the orbital along the z axis. For example, if α =

√
3/8 = 0.6124 the state is a pure XY

system with large in plane susceptibility [81].
Another relevant observation is the presence of a marked contribution in the XAS

spectra from a Ce4+ valence due to the Kondo interaction, as can be seen in figure
6.6. The Kondo temperature is estimated, from the physical measurements, to be about
TK ≈ 30 K ≈ 2.6 meV. This value is of the order of the proposed crystal field split-
ting between the the ground state and the first CEF excited state. In Ref. [42] it was
suggested that the atomic model is no more accurate if the Kondo temperature is of
the order of the CEF splitting and the model should be extended using the Anderson
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impurity model [82]. However, before changing the model there is still some work that
can be done within the atomic model. The main weakness of the presented simulations
is the fitting of the Slater and spin-orbit scaling parameters. A better fitting procedure
could be found and some of the discrepancies observed in the XAS and XRS spectra
could be solved.

XAS proved not able to give a unique solution for the crystal field configuration.
XRS lead to the same conclusions. This is because these techniques can give direct
information only about the ground state, and only indirectly give information about the
excited CEF states through the temperature dependence of the spectra. However, in this
particular case, as the splitting is very small, the excited states are populated also at the
low temperatures at which the experiments were conducted.

A more detailed XRS experiment, comprising a measure of the temperature depen-
dence of the spectra, aimed at resolving also the in plane dichroism could give a unique
solution for the crystal field scheme and crystal field parameters. In this way also the
sign of the mixing parameter α (and of A4

4) could be determined. However, as ex-
plained, the scattering cross section for XRS is small and the acquisition of a spectrum
requires several hours. Moreover, the sign of the parameter, which is related to the ori-
entation of the orbital [83], was not of interest in this preliminary investigation of the
CEF.
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APPENDIXA
Scaling of the Hartree-Fock parameters

The values of Slater integrals (F k and Gk) and the values of the spin-orbit parame-
ters (ζnl) used in the Quanty calculations presented in chapter 5.1 were obtained from
atomic Hartree-Fock calculations. In particular, the values were taken from Crispy
[68], a graphical user interface to generate Quanty input files, that has stored the values
for several elements and for several edges. These values in most of the cases have to
be reduced by a certain scaling factor in order to fit the experimental data. In the fol-
lowing sections it is shown how the XAS and NIXS spectra vary as a function of the
scaling factors. It is shown also what information about the scaling can be obtained
from the RIXS experiments. The reduction values that can be found in literature for
similar compounds are usually a good starting point [47, 74, 83]. However, the devi-
ation from the atomic value depends also on the particular crystal environment of the
ion and the best values for the reduction factors change from compound to compound.
The best way to fit these parameters is comparing the simulations with an experimental
spectrum measured in isotropic conditions, for example through the measurement of
powdered sample, or through the measurement at a temperature that ensure the fully
population of the crystal field states. In this way the dependence on the crystal field
parameters is removed thus reducing the number of free parameters to fit.

A.1 XAS

For the M4,5 edge, the value of the Slater integrals are reduced scaling parameters are
usually around scal_4f4f= 0.6, scal_3d4f= 0.8 respectively for the terms describing
the interactions between the 4f electrons and the one between 4f and 4d. Instead for
the spin orbit parameters the scaling is usually lower and around scal_zeta4f= 0.87
scal_zeta3d= 0.97.
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Appendix A. Scaling of the Hartree-Fock parameters

Figure A.1: Dependence of the simulated isotropic
XAS M4,5 spectra of Ce3+ on the scaling of
the parameter ζ3d. The two multiplets, corre-
sponding to the edges M5 on the left and M4

on the right, correspond to the transitions re-
spectively from the levels 3d5/2 and 3d3/2. The
splitting between this two levels is linearly pro-
portional to the spin orbit parameter ζ3d. A de-
tailed comparison with the isotropic experimen-
tal spectrum (in blue) gives the optimum value
for the scaling of the Hartree-Fock value equal
to scal_zeta_3d= 0.963.
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In figure A.1, A.2 and A.3 is shown the dependence of the simulated isotropic spec-
tra respectively on scal_zeta_3d, scal_4f4f and scal_3d4f. They are compared to the
isotropic experimental data, built from the spectra acquired with an incident angle
θ = 30◦ as: IISO = I(LH)/ cos(30◦) + I(LV)(2− tan 30◦).

The scaling factors were chosen equal to: scal_zeta_3d= 0.963, scal_4f4f= 0.56
and scal_3d4f= 0.825.

In the XAS experiments the broadening of the two spin-orbit split multiplets is dif-
ferent because the core hole lifetime if different for the two holes in the states 3d5/2

and 3d3/2. A broadening of 0.8 eV for the M5 and of 1.0 eV for the M4 was used in the
calculations.

A.2 XRS

For what concerns the XRS, an isotropic spectrum was not available. Anyway, since the
the experimental data show a small anisotropy, it is reasonable to assume that the XRS
experimental data shown in figure 6.9 are close to the shape of the isotropic spectrum.

The N4 and N5 edges are superposed and the effect of the ζ4d is less visible with
respect to the XAS M4,5 edges. The same for the parameter ζ4f which can be directly
obtained instead from the RIXS spectra (see A.3).

In figure A.1, A.2 and A.3 is shown the dependence of the simulated isotropic spec-
tra respectively on scal_zeta_4d, scal_4f4f and scal_4d4f, compared to the experimet-
nal data shown in figure 6.9.

The scaling factors were chosen equal to: scal_zeta_4d= 0.97, scal_4f4f= 0.7 and
scal_4d4f= 0.83.
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A.2. XRS
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Figure A.2: Dependence of the simulated isotropic
XAS M4,5 spectra of Ce3+ on the scaling of
the 4f4f Slater integrals. In blue is plotted the
isotropic experimental spectra. The shape of
the peaks is best reproduced for a scaling factor
scal_4f4f= 0.56.
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Figure A.3: Dependence of the simulated isotropic
XAS M4,5 spectra of Ce3+ on the scaling of
the 3d4f Slater integrals. In blue is plotted the
isotropic experimental spectra. The shape of
the peaks is best reproduced for a scaling factor
scal_3d4f= 0.825.
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Appendix A. Scaling of the Hartree-Fock parameters

Figure A.4: Dependence of the simulated
isotropic XRS N4,5 spectra of Ce3+ on
the scaling of the parameter ζ4d. Plot-
ted in red and blue the data presented in
figure 6.9. To best reproduce the spec-
tra a value for the reduction equal to
scal_zeta_4d= 0.97 was chosen.
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Figure A.5: Dependence of the simulated
isotropic XRS N4,5 spectra of Ce3+ on
the scaling of the 4f4f Slater integrals.
Plotted in red and blue the data presented
in figure 6.9. To best reproduce the shape
of the spectra a value for the reduction
equal to scal_4f4f= 0.7 was chosen.
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A.3. RIXS
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Figure A.6: Dependence of the simulated
isotropic XRS N4,5 spectra of Ce3+ on
the scaling of the 4d4f Slater integrals.
Plotted in red and blue the data presented
in figure 6.9. The simulated spectra are
all shifted arbitrarily by 115.3 eV. To best
reproduce the shape of the spectra a value
for the reduction equal to scal_4d4f=
0.83 was chosen.

A.3 RIXS

Resonant Inelastic X-ray Scattering (RIXS) measurements at the M5 edge of Ce were
performed at ID32 of the ESRF. The experimental spectra shown in figure A.7 gives
directly information about the splitting between the 2F5/2 and the 2F7/2 multiplets.
Their distance is proportional to ζ4f . This allows to easily and univocally find the
scaling of the ζ4f parameter. It was calculated to be equal to scal_4f= 0.87. This value
was then used both in the XAS and XRS simulations.
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Appendix A. Scaling of the Hartree-Fock parameters
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Figure A.7: (a) RIXS spectrum acquired on CeRh2As2. The peak centered at 0 eV energy loss is the
elastic peak. Hidden below the peaks are present the contributes from the transitions between the
crystal field levels of the multiplet 2F5/2. The resolution achieved during these experiments was not
enough to resolve the single peaks. (b) RIXS gives a direct measure of the splitting between the
2F5/2 and the 2F7/2 multiplets. The distance between the two multiplets is about 270 meV. Fitting
the spectra with the simulations allows to find the scaling of the ζ4f parameter. The best fitting gives
a value scal_4f= 0.87. Courtesy of Riccardo Bona.
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