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Abstract

We describe two methods for the pricing of continuously monitored exotic op-
tions: an analytical method based on the Wiener-Hopf factorization and a Monte
Carlo simulation approach. In the first case, making use of advanced mathemat-
ical elements such as the Hilbert Transform and the Inverse Laplace transform,
we find a Lewis-like formula for option pricing. In the second method, we use the
joint distribution (MT ,WT ) of the Brownian Motion and its maximum in order
to modify the classic Monte Carlo simulation method and improve convergence
for the pricing of path-dependent options. This technique has been generalized
also to Lévy processes. In both cases, we consider two different Lévy models
for the log-returns XT of the underlying asset: a Brownian Motion and a NIG
model. The aim is to price a single lower barrier option and a lookback option
with fixed strike.
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Sommario

Questo elaborato si propone di descrivere due metodi per la valutazione di
opzioni esotiche: uno analitico, basato sulla fattorizzazione di Wiener-Hopf, e un
metodo Monte Carlo. Nel primo caso, utilizzando tecniche matematiche avan-
zate come la trasformata di Hilbert o la trasformata inversa di Laplace, si ottiene
una formula di tipo Lewis per la valutazione di opzioni. Nel secondo approc-
cio, viene introdotta la distribuzione congiunta del Brownian Motion e del suo
massimo (MT ,WT ) per modificare il classico metodo Monte Carlo e migliorarne
le caratteristiche di convergenza per opzioni path-dependent. Questa tecnica è
generalizzata anche per processi di Lévy. In entranbi i casi, vengono considerati
due diversi modelli di Lévy come dinamica per il logaritmo XT del rendimento
dell’azione sottostante: un modello di Brownian Motion e un modello NIG. Lo
scopo è di valutare un’opzione barriera e un’opzione lookback con strike fissato.
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Introduction

Exotic Options are derivative instruments which are more complex than the
commonly traded plain vanilla options. The pricing of this kind of options has
been largely studied in the literature. In this work, we are going to focus on
path-dependent options such as single barrier and lookback options, describing
two different approaches for their pricing.

A first goal is to describe the method applied in Phelan et al. (2018), which
is an analytical method for Lévy processes that exploits some advanced math-
ematical instruments, such as Complex Transforms. The idea of pricing plain
vanilla options with this approach came out with Carr and Madan (1999) and
then was developed by Lewis (2001). The criticalities of those methods have
been studied and the extension to exotic options has been proposed in subse-
quent works, such as Sgarra et al. (2006), with the application of the Wiener-
Hopf technique to the pricing of some exotic options under a Brownian Motion
model. A wider mathematical description of the method can be found in Green
et al. (2010), where the authors focus on the pricing of discretely monitored
exotic options, such as barrier or lookback options, for general Lévy models. A
more analytical discussion about the numerical methods applied is proposed by
Feng and Linetsky (2008), while in Fusai et al. (2016) the application and the
study of convergence for discretely monitored options is shown. However, this
analytical method is very complex both from an theoretical point of view, since
it involves complicated mathematical structures, such as the decomposition of
Wiener-Hopf, and from a numerical point of view, exploiting numerical schemes
with many criticalities, as we will see in this thesis.

For that reason, the second aim of this work is to propose a modification
of the traditional Monte Carlo simulation scheme for two Lévy processes, the
Brownian Motion model and the Normal Inverse Gaussian (NIG) model. The
new numerical method exposed is based on the study about the simulation of
the extrema of a Brownian Motion in the works of Becker (2010) and Alabert
and Caballero (2018), but extending the approach also to the NIG model and
analyzing the convergence of the error.

The main contribution of this thesis to the literature are:

• The analysis of the extension of the Wiener-Hopf method proposed in
Phelan et al. (2018) for barrier options to continuously monitored lookback
options, starting from the description of the method applied to a single
barrier option. We also extend the result to American digital options.

• A discussion on the numerical convergence of the method proposed in
terms of analyticity strip.

vi



• The introduction of a new Monte Carlo method for the pricing of path-
dependent options, in particular its extension to the Normal Inverse Gaus-
sian model.

• A comparison between the convergence of the traditional Monte Carlo
approach and the modified one.

This thesis is organized as follows. In Chapter 1, we describe the Wiener-Hopf
method for exotic option pricing proposed in Phelan et al. (2018), with the
definition of the mathematical elements involved and the derivation of the pric-
ing formulas for a single barrier and a lookback option. Moreover, the Black
& Scholes-like closed formulas for the options considered are summarized. In
Chapter 2, the work proceeds in explaining the numerical methods exploited
for the computation of the analytical expressions derived in the first chapter,
with some numerical tests on known functions. In Chapter 3, the results of the
analytical method are exposed; moreover, the analyticity strip for the models
considered is studied. Chapter 4 describes the new Monte Carlo method, start-
ing from the derivation of the distribution of the extrema for a Brownian Bridge,
with the application to the Brownian Motion model and the NIG model.
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Chapter 1

The Wiener-Hopf method for
option pricing

In this chapter, we present the pricing method for exotic options studied by
Phelan et al. (2018) and we see how this approach can be applied to continuously
monitored single barrier and lookback options, considering also their digital ver-
sions. In particular, the mathematical objects that are used through this work
are introduced in order to clarify the notation and the mathematical environ-
ment. First, the Lévy Processes and their main properties are described, as they
are the processes analyzed in this work. Then, the definitions of Hilbert, Laplace
and Zeta (Z-) Transform are given, since they are the fundamental instruments
of the method presented, as they are widely applied in the Wiener-Hopf fac-
torization. This particular factorization technique is first introduced in discrete
time, following the approach of Green et al. (2010) and Fusai et al. (2016); fi-
nally, as shown in Phelan et al. (2018), we move from discrete to continuous
time.

1.1 Lévy Processes
In probability theory, a Lévy Process is a stochastic process with independent

and stationary increments.

Definition 1.1 (Lévy Process). A stochastic process X = {Xt}t≥0 is called a
Lévy Process if it satisfies the following properties:

• X0 = 0 a.s.;

• Xti+1 −Xti ⊥ Xtj+1 −Xtj , if [ti; ti+1] ∩ [tj ; tj+1] = ∅;

• ∀s < t, Xt −Xs ∼ Xt−s;

• ∀ε > 0, ∀t ≥ 0 : limh→0 P(|Xt+h −Xt| > ε) = 0.

The most well-known examples of Lévy Processes are the Brownian Mo-
tion and the Poisson Process. We are interested in the main properties of the
characteristic function of a Lévy Process, therefore first we give the following
definition:
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Definition 1.2 (Characteristic Function). Given a real random variable X with
probability density function pX(x), its characteristic function is the function
p̂X : R→ C defined as:

p̂X(z) = E
[
eizX

]
=

∫
R
eizxpX(x)dx, ∀z ∈ R.

The characteristic function of a random variable uniquely identifies its dis-
tribution.

Remark. Notice that the characteristic function p̂X is the Fourier transform of
the probability density function pX , since from the definition of Fourier Trans-
form of a real-valued function f , we have:

f̂(z) = Fx→z
[
f(x)

]
=

∫
R
f(x)eizxdx, ∀z ∈ R.

Let’s also recall the expression for the Inverse Fourier Transform:

f(x) = F−1
z→x

[
f̂(z)

]
=

1

2π

∫
R
f̂(z)e−izxdz, ∀x ∈ R.

Proposition 1.1. The characteristic function of a Lévy Process can be written
in the form:

ΨX(z, t) = E
[
eizXt

]
= eψ(z)t,

where ψ(z) is called characteristic exponent and it’s uniquely identified through
the Lévy-Khincine triplet (µ, σ, ν) in the expression:

ψ(z) = iµz − 1

2
σ2z2 +

∫
R

(eizη − 1− izη1[−1,1])ν(dη).

Each parameter has a different interpretation: µ represents the linear drift
of the process, σ is the volatility of the diffusion part, while ν(η) is the intensity
of the Poisson process with jump size η. Many different models can be found
under the Lévy Processes family by a different choice of the parameters. For
option pricing, the risk-neutral measure in a framework with risk-free rate r and
dividend yield q is recovered choosing µ such that:

µ = r − q − 1

2
σ2 −

∫
R

(eη − 1− iη1[−1,1](η))ν(dη).

In this work, we will focus on two Lévy Processes: the Brownian Motion with
drift and diffusion (BM) and the Normal Inverse Gaussian (NIG) model.

1.2 Complex Transforms
Transform techniques will be widely used in this work, in particular the

Hilbert Transform, the Laplace Transform and its discrete version, the Z-Transform,
exploited for the Wiener-Hopf factorization.
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1.2.1 Hilbert Transform
The Hilbert Transform was introduced by David Hilbert in 1905, in connec-

tion to the Riemann problem, and it is mostly used in signal processing. In this
work, the Hilbert transform will be used exploiting its relation with the Wiener-
Hopf factorization, as explained in Kisil (2015). Here, we give the definition of
the Hilbert Transform and we introduce the Plemelj-Sokhotsky relations as in
King (2009).

Definition 1.3 (Hilbert Transform). The Hilbert Transform on the real line of
a function f is defined as:

H[f(x)] = P.V.
1

π

∫
R

f(y)

x− y
dy,

where P.V. denote the Cauchy Principal Value (c.f. King (2009, p. 2)).

Remark. Notice that the expression of the Hilbert Transform can be expressed
through the convolution:

H[f(x)] = P.V.
1

πx
∗ f(x). (1.1)

We now derive a result for the computation of the half-range Fourier trans-
forms of a function f , making use of the relations described in King (2009)
between Hilbert and Fourier Transforms, in order to get the Plemelj-Sokhotsky
relations as in Phelan et al. (2018).

Proposition 1.2. (e.g. Phelan et al. (2018, p. 213)) The Fourier Transforms
of the positive and negative part of a function f (i.e. the half-range Fourier
Transform of f) can be expressed in terms of the complete Fourier Transform
f̂(z) and the Hilbert Transform H[f̂(z)]:

f̂±(z) =
1

2

{
f̂(z)± iH[f̂(z)]

}
, (1.2)

known as Plemelj-Sokhotsky relations.

Proof. The aim is to find an expression for f̂+(z) = Fx→z[f(x)1{x≥0}] and
f̂−(z) = Fx→z[f(x)1{x<0}], using the Hilbert Transform of f̂(z). Following
the approach of King (2009, pp. 252-261), considering that the inverse Fourier
Transform:

F−1
z→x

[
1

πz

]
= −i · sgn(x),

and then applying the convolution theorem f̂(z)∗ ĝ(z) = F [f(x)g(x)] to expres-
sion (1.1), we get:

H[f̂(z)] = Fx→z[−i · sgn(x)f(x)]

iH[f̂(z)] = Fx→z[sgn(x)f(x)].

Finally, recalling that sgn(x)f(x) = f(x)1x≥0 − f(x)1x<0 and by linearity of
the integral, it’s immediate that:{

f̂+(z)− f̂−(z) = iH[f̂(z)]

f̂+(z) + f̂−(z) = f̂(z).

Thus, it’s easy to recover the expressions in (1.2). �
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1.2.2 Laplace Transform and Z-Transform
In this section, we give the definition of Laplace Transform and its relation

with its discrete version, the Z-transform, is studied. Indeed, this is a funda-
mental step that allows us to move from discrete to continuous time.

Definition 1.4 (Laplace Transform). The Laplace Transform of a function f(t)
is an integral function defined as:

f̃(s) = Lt→s[f(t)] =

∫ +∞

0

f(t)e−stdt, ∀s ∈ C.

The Inverse Laplace Transform can be expressed as (e.g. Arfken (1985)):

f(t) = L−1
s→t[f̃(s)] =

1

2πi

∫ a+i∞

a−i∞
estf̃(s)ds,

where s = a is a vertical contour in the Complex Plane chosen so that all
singularities of f̃(s) are to the left of it.

Definition 1.5 (Z-Transform). The Z-Transform of a discrete function f that
takes values on a grid of points with time step ∆t, such that t0 = 0 and tn = n∆t,
n ∈ N is defined as:

Zn→q[f(tn)] =

∞∑
n=0

qnf(tn).

It’s possible to connect Laplace transform and Z-Transform, as done in Phe-
lan et al. (2018), considering the discretization of the integral in the Laplace
Transform obtained introducing the grid tn = n∆t:

Lt→s[f(t)] =

∫ +∞

0

e−stf(t)dt = lim
∆t→0

∆t

∞∑
n=0

e−sn∆tf(n∆t)

= lim
∆t→0

∆t

∞∑
n=0

(e−s∆t)nf(tn) = lim
∆t→0

∆t

∞∑
n=0

qnf(tn)

Therefore:
Lt→s[f(t)] = lim

∆t→0
∆tZn→q[f(tn)], (1.3)

where q = e−s∆t.

1.3 Wiener-Hopf Factorization and Spitzer Iden-
tity

The Wiener-Hopf method is a mathematical technique that solves the prob-
lem of decomposing a complex function f̂ into two functions f̂+ and f̂− which
are analytic in the upper and lower halves of the complex plane respectively.
Moreover, we introduce the Spitzer Identity and its connection with the Wiener-
Hopf factorization.
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1.3.1 Wiener-Hopf Factorization
As explained in detail in Lawrie and Abrahams (2007), the Wiener-Hopf

technique was initially proposed in order to solve for the unknown f the integral
equation of the form:∫ ∞

0

k(x− y)f(y)dy = g(x), x ∈ [0,∞), (1.4)

where k(x − y) and g(x) are known functions. The method starts with the
extension of the right-hand side of the equation to the negative half of the real
line to an unknown h and with the general definition of the half-range Fourier
Transform:

f̂+(z) =

∫ ∞
0

f(x)eixzdx, f̂−(z) =

∫ 0

−∞
f(x)eixzdx.

With this elements, it is possible to rewrite the integral equation (1.4) in the
Fourier domain as:

f̂+(z)k̂(z) = ĝ+(z) + ĥ−(z).

The procedure relies on finding a product factorization:

k̂(z) = k̂+(z)k̂−(z),

where the subscript ’+’(’-’) represents a function analytic in the upper (respec-
tively lower) complex plane with respect to a strip in which the function k̂(z)
and both the ’±’ factors are analytic. The sum decomposition of ĝ and product
factorizations of k̂ can be found analytically, since g(x) and k(x) are known. It
is possible to express (see Kisil (2015) for details) the factorization in terms of a
Cauchy integral, instead of the Fourier Transform representation: indeed, this
is the most used form in the definition of the Wiener-Hopf factors.

Theorem 1.1 (Wiener-Hopf Factorization). Let f̂(z) be a function of variable
z = a+ ib analytic in the strip b ∈ (b−, b+), such that f̂(z) < C|a|−p, p > 0 as
|a| → ∞ uniformly ∀b in the strip. Then, for c, d ∈ (b−, b+), c ≤ d:

f̂(z) = f̂+(z) + f̂−(z),

f̂+(z) =
1

2πi

∫ +∞+id

−∞+id

f̂(u)

u− z
du, f̂−(z) = − 1

2πi

∫ +∞+ic

−∞+ic

f̂(u)

u− z
du,

where f̂−(z) is analytic in =(z) < b+ and f̂+(z) is analytic in =(z) > b− (e.g.,
see Th. 3.1 Kisil (2015, p. 1573)).

Taking the logarithm, one can get the product Wiener-Hopf Factorization:

Theorem 1.2. If f̂(z) = log(k̂(z)) satisfies the conditions of Theorem 1.1, then
k̂(z) = k̂+(z)k̂−(z), where the factors are the exponential of the sum decompo-
sition of f̂(z) (e.g., see Th. 6.1, 6.4 Kisil (2015, pp. 1576-1577)).

In order to go back to the Fourier expression, we consider f̂(z) as the Fourier
Transform of a certain function f , and take c = d = 0:

5



Proposition 1.3. The Wiener-Hopf decomposition of the Fourier Transform
f̂(z) = Fx→z[f(x)] is given by:

f̂+(z) = Fx→z[f(x)1[0,+∞)(x)], f̂−(z) = Fx→z[f(x)1(−∞,0](x)].

Proof. (e.g. King (2009, pp. 111-113)) It’s easy to prove the proposition given
the definition of Wiener-Hopf factor. Here, only the case of f̂+ is explicitly
shown; the procedure for f̂− is similar.

f̂+(z) = Fx→z[f(x)1[0,+∞)(x)] =

∫ +∞

0

f(x)eizxdx =

=
1

2π

∫ +∞

0

eizx
∫ +∞

−∞
f̂(u)e−iuxdudx.

We then exchange the order of integration, since the Fourier Transform is L2-
integrable:

=
1

2π

∫ +∞

−∞
f̂(u)

∫ +∞

0

ei(z−u)xdxdu =
1

2π

∫ +∞

−∞
f̂(u)

[
ei(z−u)x

i(z − u)

]−∞
0

du =

This quantity converges if and only if <(i(z − u)) < 0⇒ =(z) > 0, getting:

=
1

2πi

∫ +∞

−∞

f̂(u)

u− z
du, =(z) > 0.

�

Therefore, it’s possible to recover the Wiener-Hopf factorization through the
Hilbert transform, thanks to its connection with the half-range Fourier trans-
forms.

1.3.2 Spitzer Identity
In this paragraph a fundamental theorem will be introduced: the Spitzer

Identity, proven in Spitzer (1956) through the use of combinatorial arguments.
The formula connects the characteristic functions of a discrete random process
with i.i.d. increments and the one of its maximum (or minimum). Moreover,
it is shown the equivalence between the factorization implicit in the expression
and the Wiener-Hopf one, introduced in the previous paragraph.

Theorem 1.3 (Spitzer Identity). Let {Xn} be a discrete random process where
the increments ∆Xn = Xn−Xn−1 are a sequence of i.i.d random variables with
X0 = 0. Define Xn = maxi=0,...,nXi and the notation f± = (|f | ± f)/2. Then:

∞∑
n=0

qnE[eiaXn+ib(Xn−Xn)] = exp

{ ∞∑
n=1

qn

n

(
E[eiaX

+
n ] + E[eibX

−
n ]− 1

)}
,

with a, b ∈ R (e.g. see Wendel (1958, p. 905)).
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The identity states that it is possible to express the Z-Transform of the
characteristic function of a linear combination of a discrete random process Xn

with i.i.d increments and of its partial maximum Xn as the exponential of a
series involving the characteristic functions of the positive and negative part of
Xn. Setting particular values for the parameters a and b, it’s possible to obtain
some interesting results that will be very useful for the continuation of our work.

• Z-Transform of the characteristic function of the partial maximum Xn:
Choosing a = z and b = 0, the equation becomes:

∞∑
n=0

qnE[eizXn ] = exp

{ ∞∑
n=1

qn

n
E[eizX

+
n ]

}

= exp

{ ∞∑
n=1

qn

n
E[eizXn , Xn ≥ 0]

}
exp

{ ∞∑
n=1

qn

n
P(Xn < 0)

}
. (1.5)

• Z-Transform of the characteristic function of Xn:
Choosing a = z and b = −z, the equation becomes:

∞∑
n=0

qnE[eizXn ] = exp

{ ∞∑
n=1

qn

n

(
E[eizX

+
n ] + E[e−izX

−
n ]− 1

)}
.

Now let’s consider only the expression in brackets on the right-hand side:

E[eizX
+
n ] + E[e−izX

−
n ]− 1 =

= E[eizXn , Xn ≥ 0] + P(Xn < 0) + E[eizXn , Xn < 0] + P(Xn ≥ 0)− 1

= E[eizXn , Xn ≥ 0] + E[eizXn , Xn < 0],

which will led to the factorization of the Z-transform as:
∞∑
n=0

qnE[eizXn ] = exp

{ ∞∑
n=1

qn

n
E[eizXn , Xn ≥ 0]

}
︸ ︷︷ ︸

1/L+(z,q)

exp

{ ∞∑
n=1

qn

n
E[eizXn , Xn < 0]

}
︸ ︷︷ ︸

1/L−(z,q)

.

Remark. It’s easy to see that we can rewrite the expression for the maximum
in terms of L±:

∞∑
n=0

qnE[eizXn ] =
1

L+(z, q)L−(0, q)
.

Thus, thanks to the Spitzer identity, we saw how it is possible to factorize
the Z-Transform of the characteristic function of a discrete random process with
i.i.d increments. Moreover, it is possible to show that this factorization actually
corresponds to the Wiener-Hopf product factorization. First, let’s rewrite the
expression for the Z-Transform of the characteristic function of Xn in a more
convenient way:

∞∑
n=0

qnE[eizXn ] =

∞∑
n=0

qnE[eiz
∑n
k=1 ∆Xk ] =

∞∑
n=0

qnE[eiz∆X1 · ... · eiz∆Xn ]

7



Since all ∆Xk are independent, the expected value of the product is the product
of the expected values; moreover, they are all identically distributed ∆Xk ∼
Y ∀k, therefore:

=

∞∑
n=0

qn
(
E[eizY ]

)n
=

∞∑
n=0

(
qE[eizY ]

)n
=

1

1− qE[eizY ]
, (1.6)

given that the quantity |qE[eizY ]| < 1.

Proposition 1.4 (Spitzer and Wiener-Hopf connection). The factorization of
the Z-Transform of the characteristic function of a discrete random process Xn

with i.i.d increments ∆Xk ∼ Y induced by the Spitzer identity is equal to its
Wiener-Hopf product factorization, i.e.:

L±(z, q) = exp

{
± 1

2πi

∫ +∞

−∞

log(1− qE[eiuY ])

u− z
du

}
, =(z) ≷ =(u).

Proof. (e.g see Sgarra et al. (2006, p. 10) and Green et al. (2010, p. 267)) The
idea is to use the series expansion:

∞∑
n=1

tn

n
= − log(1− t), |t| < 1,

and directly replace the series expansion in the definition of Wiener-Hopf factors.
For L+(z, q):

exp

{
1

2πi

∫ +∞

−∞

log(1− qE[eiuY ])

u− z
du

}
, =(z) > =(u)

= exp

{
− 1

2πi

∫ +∞

−∞

∞∑
n=1

qn(E[eiuY ])n

n(u− z)
du

}
, =(z) > =(u)

= exp

{
−
∞∑
n=1

qn

n

(
1

2πi

∫ +∞

−∞

(E[eiuY ])n

u− z
du

)}
, =(z) > =(u)

= exp

{
−
∞∑
n=1

qn

n

(
1

2πi

∫ +∞

−∞

E[eiuXn ]

u− z
du

)}
, =(z) > =(u)

Notice that by definition 1.1 and proposition 1.3:

E[eizXn , Xn ≥ 0] =
1

2πi

∫ +∞

−∞

E[eiuXn ]

u− z
du, =(z) > =(u),

Therefore:

= exp

{
−
∞∑
n=1

qn

n

(
1

2πi

∫ +∞

−∞

E[eiuXn ]

u− z
du

)}
, =(z) > =(u)

= exp

{
−
∞∑
n=1

qn

n
E[eizXn , Xn ≥ 0]

}
= L+(z, q).

The procedure for L−(z, q) is similar. �

Even if the Spitzer Identity has been introduce in discrete time, Baxter and
Donsker (1957) showed that it is possible to extend the identities to continuous
time. Thanks to their work, we can then move from the Z-Transform to the
Laplace Transform without loosing of generality, as we will see in next section.
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1.3.3 From Discrete to Continuous Time
In the previous paragraph, we explained a method that allows to retrieve the

Z-Transform of the characteristic function of a general discrete random process
with i.i.d. increments. However, since the aim of this work is to analyze the
continuous case for a Lévy Process, we move from the discrete Z-Transform to
the continuous Laplace Transform using equation (1.3) and the explicit expres-
sion of the characteristic function of a Lévy Process through its characteristic
exponent, as suggested in Phelan et al. (2018).

Let’s consider the discrete time grid tk = k∆t, t0 = 0 and tn = t. A discrete
Lévy process Xn is defined by its i.i.d increments ∆Xk, for k = 1, ..., n, that
follows a Lévy distribution:

E[eiz∆Xk ] = E[eizY ] = Ψ(z,∆t) = eψ(z)∆t. (1.7)

Combining this representation with the expression (1.6), the Z-Transform of the
characteristic function of a discrete Lévy Process Xn may be expressed as:

Zn→q[Ψ(z, tn)] =
1

1− qE[eizY ]
=

1

1− qΨ(z,∆t)
.

Moreover, we know from equation (1.3), that:

Lt→s[f̂(z, t)] = lim
∆t→0

∆tZn→q[f̂(z, tn)].

Therefore, the Laplace transform of a continuous Lévy Process Xt is equal to:

Lt→s[Ψ(z, t)] = lim
∆t→0

∆t

1− qΨ(z,∆t)
= lim

∆t→0

∆t

1− e−s∆teψ(z)∆t
=

= lim
∆t→0

∆t

1− e−(s−ψ(z))∆t
=

1

s− ψ(z)
.

Thus, the quantity to be decomposed with the Wiener-Hopf Factorization be-
comes:

Lt→s[Ψ(z, t)] =
1

s− ψ(z)
=

1

l+(z, s)l−(z, s)
.

Indeed, a limit similar to the one for the Laplace transform holds for the Wiener-
Hopf Factors (see Green et al. (2010)):

lim
∆t→0

L±(z, q)√
∆t

= l±(z, s).

This is a very important result, since the limit of the function that must be
decomposed in discrete time diverges:

lim
∆t→0

| log(1− qΨ(z,∆t))| = +∞.

Therefore the continuous decomposition can’t be seen as a limit case of the
discrete one: the function to be decomposed is different and it’s given by the
Laplace Transform.

Remark. Also the expression for the partial maximum can be moved to con-
tinuous time:

Lt→s[ΨM (z, t)] =
1

l+(z, s)l−(0, s)
. (1.8)
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1.4 Lewis-like method for Option Pricing
In this section we apply all the mathematical definitions seen up to now in

order to get a pricing formula for exotic options with the approach followed both
in Phelan et al. (2018) and Fusai et al. (2016). In those papers, the method
refers to the original one introduced by Lewis (2001), which is well-known for
plain vanilla options. It assumes that the asset evolves following an Exponential
Lévy Process, thus the log-return follows a Lévy Process dynamics, for which
the characteristic function is given in analytic form.

Definition 1.6 (Log-return of an asset). The log-return Xt of an asset St with
initial value S0 at t = 0 is defined as:

Xt = log

(
St
S0

)
.

Moreover, considering for an option a certain strike price K, let’s introduce
the log-strike k = log

(
K
S0

)
. The payoff of a plain vanilla call option is given by:

φ(x) = (ST −K)+ = S0(ex − ek)1[k,+∞)(x).

Of course, similar expressions can be deduced also for a put option or digital
options.

Remark. A digital option is a cash-or-nothing option, i.e. it’s payoff is 0 or 1
depending on the occurrence of a certain condition. In particular, a digital call
option has payoff at maturity:

φD(x) = 1[k,+∞)(x).

However, the call option payoff is not bounded and the Fourier transform
of the payoff has poles in z = 0 and z = −i: those elements are well-known as
critical points in Lewis (2001). For that reason, Fusai et al. (2016) introduce
the concept of damped payoff, also used in Carr and Madan (1999):

φγ(x) = eγxS0(ex − ek)1[k,+∞)(x),

where the parameter γ ensures integrability of the payoff function. The choice
of parameter γ has been deeply analyzed by Feng and Linetsky (2008), and we
will study the effect of the choice of the damping parameter in the chapter 3.

The option present value is equal to the discounted payoff at t0 = 0, given
that we apply an appropriate risk-neutral probability distribution function pT (x)
for XT ; in addition, we have the information X0 = 0, therefore:

V (X0, t0) = E0[V (x, T )|X0 = 0] = e−rT
∫ +∞

−∞
φ(x)pT (x)dx

= e−rT
∫ +∞

−∞
φγ(x)e−γxpT (x)dx.

Then, applying the Plancherel relation to the integral and considering φ̂γ(z),
i.e. the Fourier Transform of the damped payoff, and p̂T (z+ iγ), i.e. the Fourier
Transform of the expression e−γxpT (x), we get:

V (X0, t0) = e−rTF−1
z→x[φ̂γ(z)p̂∗T (z + iγ)](0) (1.9)
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= e−rTF−1
z→x[φ̂∗γ(z)p̂T (z + iγ)](0). (1.10)

where the f̂∗ stands for the complex conjugate of f̂ . Notice that (1.9) and (1.10)
are interchangeable. The problem is to find the expressions for φ̂γ and p̂T .

The first expression φ̂γ depends on the payoff we are studying and can be
derived via analytical computations. For a call option, the Fourier Transform
of the damped payoff can be found directly as:

φ̂γ(z) =

∫ +∞

−∞
eizxφγ(x)dx = S0

[ ∫ +∞

k

e(1+γ+iz)xdx− ek
∫ +∞

k

e(γ+iz)xdx

]
,

where the two integrals converge for γ < −1; finally, the expression needed is:

φ̂γ(z) = S0
e(1+γ+iz)k

(γ + iz)(1 + γ + iz)
.

For a digital call option, it is possible to obtain the Fourier transform of the
damped payoff as:

φ̂Dγ (z) = −e
(γ+iz)k

γ + iz
, γ < 0.

The expression and the interval for γ in which the integral converges can be
found in a similar way as for the call.

The second expression p̂T is the damped characteristic function of the pro-
cessXT , that depends on the model for log-returns we are considering. Applying
numerical techniques such as the Fast Fourier Transform (FFT) algorithm to
the formulas (1.9) and (1.10), it’s easy to price plain vanilla or digital options
with different Lévy models for the dynamics of the log-returns, since the char-
acteristic function of Lévy processes is known in closed form, as we saw in the
first section of this work. The problem arises when pricing Exotic options such
as lookback options or barrier options: in those cases, the options are path-
dependent and we will need to know the distribution, in terms of characteristic
function, of the extrema of the log-returns, i.e. of their maximum or minimum.

In this thesis, we study a single barrier down & out call option and a fixed
strike lookback call option, providing also the method for their digital version.
The models for log-returns considered in this work are in the family of the Lévy
Processes, in particular the Brownian Motion, because it will allow us to com-
pare the goodness of the new method with respect to the exact result of the
closed formulas, and the NIG process.

1.4.1 Single Barrier Option
Definition 1.7 (Barrier Option). A Barrier Option is an option whose payoff
at maturity depends on the fact that the underlying asset has touched or not
a certain barrier during the lifetime of the option. Knock-out options cease to
exist if the barrier is touched, while knock-in options activate if the underlying
reaches the barrier level.
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In particular, we focus on a Single Barrier Down & Out Call Option, which
has the payoff of a call option at maturity, given the fact that the asset has
always been above a certain lower barrier B in [0, T ]. In order to apply the
method explained before, first we use the payoff expression for a call with lower
barrier at maturity:

φ(x) = S0(ex − ek)1[max(k,b),∞)(x),

where b = log(B/S0) is the lower log-barrier. Plus, we should not consider as
underlying process the log-return XT , but the random process which is given by
XT with minimum XT always above the lower log-barrier b. In order to make
things easier, let’s start from the discrete case, following the approach of Green
et al. (2010, pp. 262-264). Consider the transition probability from state x to
state y for a discrete Lévy process Xk:

k(y − x)dy = P(Xj ∈ [y, y + dy]|Xj−1 = x),

where Xj is the process at time tj = j∆t. Indeed, we know that a Lévy Process
is a Markov process with stationary increments, therefore the definition above
is coherent with our general framework. The probability density at step n for a
process that has always been above a certain barrier b can be expressed as:

p(b)
n (x) = P({Xn ∈ [x, x+ dx]} ∩ {Xn−1 ≥ b}), x ≥ b

where Xn = minj=0,...,nXj , which recursively becomes:{
p

(b)
n (y) =

∫∞
b
p

(b)
n−1(x)k(y − x)dx,

p
(b)
0 (y) = δ(y).

(1.11)

The idea is to recover an integral equation of the Wiener-Hopf form in order to
to apply the method to get the solution, i.e. the requested distribution function.
First, let’s introduce the Z-Transform of p(b)

n (y):

f(y, q) =

∞∑
n=0

qnp(b)
n (y).

The following equation is then straightforward, applying the Z-Transform to
(1.11):

f(y, q)− δ(y) = q

∫ ∞
b

f(x, q)k(y − x)dx; (1.12)

then we apply the change of variable ξ = y − b, ν = x − b and define g(·) =
f(· + b, q), so that we can apply the Wiener-Hopf method involving Fourier
and half-range Fourier transform, with the integral in the right-hand side of the
equation on [0,∞):

g(ξ)− δ(ξ + b) = q

∫ ∞
0

g(ν)k(ξ − ν)dν

=⇒ ĝ(z)− e−izb = q(ĝ+(z)k̂(z)),

where k̂(z) = Ψ(x,∆t) is the characteristic function of the original Lévy in-
crement, while ĝ+(z) =

∫∞
0
g(x)eizxdx and ĝ−(z) =

∫ 0

−∞ g(x)eizxdx are the
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half-range Fourier transform of the shifted Z-Transform of p(b)
n (y).

Rearranging the terms of the equation and calling L(z) = 1− qΨ(z,∆t), we
get:

ĝ+(z)L(z) = e−izb − ĝ−(z),

which is a Wiener-Hopf problem with unknown g(z). Moreover, notice that
L(z) is the denominator of the Z-Transform of the characteristic function of the
process Xn, as derived according to the Spitzer Identity at equation (1.6). In
addition, the function we are interested in is the characteristic function for the
process above the barrier b; writing down explicitly f(x) =

∑∞
n=0 q

np
(b)
n (x) with

ĝ±:

f(x) =

{
F−1
z→x[eizbĝ+(z)], x ≥ b
F−1
z→x[eizbĝ−(z)], x < b,

therefore, since we are interested in the case x ≥ b, we only need to compute
ĝ+(z). Following the Wiener-Hopf procedure explained in Kisil (2015), using
the factorizations of L(z) = L+(z)L−(z) and J(z) = J+(z)+J−(z) with J(z) =
e−izb/L−(z), the equation becomes:

ĝ+(z)L+(z)− J+(z) = J−(z)− ĝ−(z)

L−(z)
.

The espression above equates a left term which is analytic in and above the
analytic region for L(z) and a right term analytic in and below the same region:
assuming g(·) bounded at 0, it is possible to apply Liouville’s theorem, and
therefore both members should be constant and equal to 0. Therefore:

ĝ+(z) =
J+(z)

L+(z)
,

where J+(z) and L+(z) are the Wiener-Hopf factors with integral Cauchy rep-
resentation:

L+(z) = exp

{
1

2πi

∫ +∞

−∞

log(L(u))

u− z
du

}
, =(z) > =(u);

J+(z) =
1

2πi

∫ +∞

−∞

e−iub

L−(u)(u− z)
du, =(z) > =(u).

Moving to continuous time thanks to the paper of Baxter and Donsker (1957) as
we did in section 1.3.3, we are therefore able to compute the Laplace Transform
of the Characteristic function for the Lévy process with continuous barrier:

˜̂ps(b)
(z) =

jb+(z, s)

l+(z, s)
,

where for l(z, s) = s − ψ(z), with ψ(z) characteristic exponent, while j(z, s) =
1/l−(z, s) is decomposed on the barrier b. The formula for the evaluation of a
continuously monitored Down & Out Call Barrier Option is given by:

V D&O(X0, t0) = e−rTF−1
z→x

[
φ̂∗γ(z)L−1

s→T

[
jb+(z + iγ, s)

l+(z + iγ, s)

]]
(0).

In order to compute ˜̂ps(b)
(z + iγ), one should:
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1. first, compute h(z + iγ, s) = log(l(z + iγ, s)) = log(s− ψ(z + iγ));

2. then the Wiener-Hopf factors can be found using the relation between the
Wiener-Hopf factorization and the Hilbert Transform:

h±(z + iγ, s) =
1

2
(h(z + iγ, s)± iH[h(z + iγ, s)]);

3. compute the product factors l±(z + iγ, s) = eh±(z+iγ,s);

4. compute j(z+ iγ, s) = 1/l−(z+ iγ, s) and decompose it with the Plemelj-
Sokhotsky relations for a generalized barrier b:

jb±(z, s) =
1

2
(j(z, s)± eizbiH

[
e−izbj(z, s)

]
)

.

1.4.2 Lookback Option
Definition 1.8 (Lookback Option). Given an underlying asset modelled with
the process St, define the processes of the maximum and of the minimum:

ST := max
t∈[0,T ]

St and ST := min
t∈[0,T ]

St;

Then, the Lookback Options are defined by their payoff at maturity t = T :

• Floating Strike Call: V LCfl (T ) = ST − ST ;

• Floating Strike Put: V LPfl (T ) = ST − ST ;

• Fixed Strike (K) Call: V LCfix (T ) = (ST −K)+;

• Fixed Strike (K) Put: V LPfix (T ) = (K − ST )+.

In particular, we will consider the Fixed Strike Lookback Call Option. Let’s
rewrite the payoff in a more suitable way. First, it’s immediate that:

ST = max
t∈[0,T ]

St = max
t∈[0,T ]

S0e
Xt = S0e

maxt∈[0,T ] Xt = S0e
XT ,

where XT = maxt∈[0,T ]Xt is the maximum of the log-returns, and also XT =

log(ST /S0), X0 = X0 = 0. Therefore, the payoff function for the fixed strike
lookback call option at maturity is given by:

φ(x) = S0(ex − ek)1[k,+∞)(x),

which is basically the same of a plain vanilla call option, but with the difference
that the variable x is not directly the log-return, but it’s maximum.

The idea is to apply the formula (1.10) using p̂MT (z), the characteristic func-
tion of the maximum, instead of p̂T (z), the characteristic function of the log-
returns. The method applied in order to find the needed characteristic function
follows the steps of Fusai et al. (2016) and Green et al. (2010), but moving from
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discrete time to continuous time monitored options. Even if it is not possible
to find an analytic expression for the characteristic function of the maximum
of a generic Lévy process p̂Mt (z) = ΨM (z, t), we saw in section 1.3.3 that it’s
possible to find its Laplace Transform as in expression (1.8):

˜̂psM (z) = Lt→s[ΨM (z, t)] =
1

l+(z, s)l−(0, s)
,

where l±(z, s) are the Wiener-Hopf factors of l(z, s) = s− ψ(z). Therefore, the
expression for the evaluation of the Fixed Strike Lookback Call Option is given
by:

V LCfix (X0, t0) = e−rTF−1
z→y

[
φ̂∗γ(z)L−1

s→T

[
1

l+(z + iγ, s)l−(0, s)

]]
(0)

The steps needed in order to get the Laplace transform of the characteristic
function of the maximum of the log-returns ˜̂psM (z) are the following:

1. first, proceed as in points 1, 2 and 3 for the single barrier option, in order
to find l±(z + iγ, s).

2. after that, compute the value of the ’-’ function in (0, s);

3. compute the required l+(z + iγ, s)l−(0, s) = eh+(z+iγ,s)+h−(0,s).

As one can notice, the pricing formulas for both single barrier options and
lookback options imply at least three levels of integration and they can not be
further simplified: the numerical methods used in order to deal with the inverse
Fourier transform, the inverse Laplace transform and the computation of the
Hilbert transform will be discussed in chapter 2.

1.4.3 Digital Options
In this framework, it is also possible to price digital options on the described

processes. A digital call option with single lower barrier can be interpreted as a
usual digital call with strike K, that vanishes if an American barrier B is touched
(with K > B). More interesting is a digital lookback call, which is basically
an American digital option, i.e. it pays 1 if the price of the underlying asset
is above the strike K at least once in the lifetime of the option. The pricing
method is basically the same as the two options above: the only difference is in
the damped payoff function’s Fourier Transform to be considered.

1.5 Closed Formulas
Assuming a Brownian Motion model for the log-returns, and therefore a

Geometric Brownian Motion model for the underlying asset, it’s possible to
derive analytically the distribution of the maximum. For that reason, it’s also
possible to write the analytical Black & Scholes-like formula for the price of the
lookback and the single barrier options and their digital versions. Thanks to
that, we can use the exact value of the closed formula as a reference value, and
therefore study the order of convergence of the error of the analytitcal method.
Therefore, in the remaining part of the chapter we report these closed formulas.
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Single Barrier Down & Out Call
For the Single Barrier Down & Out Call, the price of the option is computed

in a different way if the barrier B is greater or smaller than the strike price K.

Proposition 1.5. Consider a Black & Scholes framework in presence of divi-
dend yields, with an underlying asset with dynamics under the risk-free neutral
measure:

dSt = (r − q)Stdt+ σStdWt, (1.13)

with initial asset price S0, risk-free interest rate r, dividend yield q, volatility
σ and Brownian Motion Wt. Introduce the plain vanilla call price C(S) with
strike K as a function of the spot price S:

C(S) = Se−qTN (d1)−Ke−rTN (d2),

d1 =
log(S/K) + (r − q + σ2/2)T

σ
√
T

, d2 = d1 − σ
√
T .

Then, the price of a Down & Out Call Option with barrier B with S0 > B is
equal to:

If B ≤ K:

V D&O
C (0) = C(S0)−

(
B

S0

) 2r
σ2−1

C

(
B2

S0

)
.

If B ≥ K:

V D&O
C (0) = S0e

−qT
(
N (x1)−

(
B

S0

)2λ

N (y1)

)
−Ke−rT

(
N (x2)−

(
B

S0

)2λ−2

N (y2)

)
,

where λ = r−q
σ2 + 1

2 and:

x1 =
log(S0/B)

σ
√
T

+ λσ
√
T , x2 = x1 − σ

√
T ;

y1 =
log(B/S0)

σ
√
T

+ λσ
√
T , y2 = y1 − σ

√
T .

Digital with Barrier

Similarly, the Black & Scholes formula for a digital call option with lower
barrier and K ≥ B is given by:

V D&0
D = Dig(S0)−

(
B

S0

) 2r
σ2−1

Dig
(
B2

S0

)
,

where Dig(S) = e−rTN (d2) with d2 as in the call definition.
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Fixed Strike Lookback Call
In this work, we focus the analysis on a Lookback Call Option with fixed

strike, for which the closed formula is given by the following expression:

Proposition 1.6. Consider the same framework as proposition 1.5, with dy-
namics for St as in equation (1.13). Then, the price of a Lookback Call Option
with Fixed Strike is equal to:

If S0 < K:

V LCfix (0) = S0e
−qTN (d1)−Ke−rTN (d2)+

+ S0e
−rT σ2

2(r − q)

(
−
(
S0

K

)− 2(r−q)
σ2

N
(
d1 −

2(r − q)
√
T

σ

)
+ e(r−q)TN (d1)

)
,

where

d1 =
log(S0/K) + (r − q + σ2/2)T

σ
√
T

, d2 = d1 − σ
√
T ;

If S0 ≥ K:

V LCfix (0) = (S0 −K)e−rT + S0(e−qTN (d1)− e−rTN (d2))

+ S0e
−rT σ2

2(r − q)

(
N
(
d1 −

2(r − q)
√
T

σ

)
+ e(r−q)TN (d1)

)
,

where

d1 =
(r − q + σ2/2)T

σ
√
T

, d2 = d1 − σ
√
T .

American Digital

In case of continuously monitored digital, let’s consider that if we start with
S0 ≥ K, we will receive 1 for sure, since we are already above the strike, then the
option price is just the discount factor V LDfix = e−rT ; otherwise, i.e. if S0 < K,
we have:

V LDfix = e−rT
(
N (d2) +

(
K

S0

) 2(r−q)
σ2 −1

N (d3)

)
,

where

d2 =
log(S0/K) + (r − q − σ2/2)T

σ
√
T

, d3 =
log(S0/K)− (r − q − σ2/2)T

σ
√
T

.
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Chapter 2

Numerical Methods

As mentioned before, the pricing formulas introduced in the previous chap-
ter can’t be solved in an analytic way, since they involve multiple levels of
integration (Wiener-Hopf Factorization, Inverse Laplace Transform and Inverse
Fourier Transform). For that reason, in this chapter we point out some numeri-
cal techniques which can be used in order to compute numerically the integrals,
and therefore actually price the exotic options with the Wiener-Hopf method.
While describing the numerical methods, we also discuss about their theoretical
convergence and we introduce some test functions. Following the work of Phe-
lan et al. (2018), we use the FFT algorithm for the Inverse Fourier Transform;
about the computation of the Hilbert Transform, we expose the Sinc expansion
technique, already used by Feng and Linetsky (2008) and first introduced by
Stenger and McArthur (1994); finally, we exploit the trapezoidal rule with Euler
acceleration for the computation of the Inverse Laplace Transform as shown in
Abate and Whitt (1995) .

2.1 FFT Procedure
The FFT algorithm is well-known: it is based on the Discrete Fourier Trans-

form, but with the constraint that the number of points considered in the grid
is a power of 2. In this way, it’s possible to accelerate the computation of the
discrete integral from O(N2) to O(N log(N)). In this work, this numerical tech-
nique is exploited in order to compute the Inverse Fourier Transform in formulas
(1.9) and (1.10). The computation of the integral through a discretization im-
plies to rely on a grid: this grid affects also the computation of the Hilbert
Transform, used for the Wiener-Hopf factorization, since one can notice that
the Hilbert Transform does not move the domain of the function, therefore we
consider the same grid.

In this section, we will briefly show the application of the numerical scheme
to our case, in order to identify the correct grid and the functions exploited
in Matlab. For the sake of brevity, let’s define the quantity to which the FFT
algorithm should be applied as:

f(z) = φ̂∗γ(z)L−1
s→T

[˜̂ps(z + iγ)
]
.
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The expression in equation (1.10) can be rewritten as:

V (x0, t0) = e−rTF−1
z→x[f(z)]

∣∣
x=x0

=
e−rT

2π

∫ +∞

−∞
e−izx0f(z)dz︸ ︷︷ ︸
I(x0)

,

thus the integral to be computed via FFT is:

I(x0) =

∫ +∞

−∞
e−izx0f(z)dz

Discrete
=⇒ I(x0) ≈

N∑
j=1

eix0zjf(zj)∆z.

The Matlab function fft takes a vector of points fj , which are values on the
grid of z, and transforms them in points FFTl on the domain of x through the
formula:

FFTl =

N∑
j=1

e−
2πi
N (l−1)(j−1)fj .

In order to obtain the integral we want to compute, we should define the grid
in the following way:

xl = x1 + (l − 1)∆x, zj = z1 + (z − 1)∆z,

with the constraint:
∆x∆z =

2π

N
,

where N is a power of 2; therefore:

xlzj = xlz1 + x1(j − 1)∆z + (l − 1)(j − 1)∆z∆x.

With the FFT method, we can compute the value of the integral I(x) for all
points xl,∀l = 1, ..., N :

I(xl) =

N∑
j=1

eixlzjf(zj)∆z = e−ixlz1
N∑
j=1

e−i(x−1)(l−1)∆x∆z(e−ix1(j−1)∆zf(zj))∆z.

Applying the Matlab function to fj = e−ix1(j−1)∆zf(zj), then we get:

I(xl) = e−ixlz1FFTl∆z. (2.1)

We can notice that the two grids are connected: once chosen the step size ∆z
(or ∆x), both the grids are defined. Moreover, the points on the grids are
symmetrical with respect to 0, i.e. z1 = −zN and x1 = −xN , which means that
the grids are: {

x = −N−1
2 ∆x, ...,+N−1

2 ∆x

z = −N−1
2 ∆z, ...,+N−1

2 ∆z
.

The option price is gained for x = x0 = 0, therefore the value we are looking
for is:

V (0, t0) ≈ e−rT

2π
I(0).

Because of symmetry, the value x = 0 is not part of the grid: a simple spline
interpolation will allow to get the required I(0).
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2.2 Sinc Expansion for Hilbert Transform
Numerically, the Hilbert Transform could be computed applying a double

Fourier Transform, as we saw in section 1.2.1:

H[f̂(z)] = −iFx→z[sgn(x)F−1
z→x[f̂(z)]].

However this is not the best approach, since it implies an error that decreases
quadratically with the grid step size ∆z (see Phelan et al. (2018)). Moreover, the
Hilbert Transform doesn’t change the domain from the real (x) to the frequency
one (z) as the Fourier Transform does: it’s a transformation applied in the
same domain. In order to gain exponential error convergence, it is possible to
introduce a different method proposed by Feng and Linetsky (2008) that relies
on the work of Stenger and McArthur (1994) on the Sinc Expansion, exploiting
the optimized matrix-vector multiplication in Matlab. Sinc methods are based
on the use of the Sinc Function:

sinc(x) =
sin(πx)

πx
, ∀x ∈ R.

Applying this function on a discretized grid, for certain particular functions it
is possible to get an exact expansion, as in the theorem below:

Theorem 2.1 (Sinc Expansion). Let ∆ > 0 and let W ( π∆ ) the space of f
analytic functions on C such that

∫
R |f(x)|2dx < ∞ and |f(z)| ≤ Ce

π
∆ |z| for

some constant C. Then, ∀f ∈ W ( π∆ ) it’s possible to define the following exact
Sinc Expansion:

C(f,∆)(x) =

+∞∑
k=−∞

f(k∆)sinc
{
x

∆
− k
}
, ∀x ∈ R.

(e.g. see Th. 6.1 , Feng and Linetsky (2008)).

If the function is not analytic on the whole complex plane, the expansion is
no more exact, but if f still satisfies the other hypothesis, then it becomes an
approximation. In particular:

Proposition 2.1. If f is analytic in a strip of the complex plane, i.e. Dd =
{z ∈ C : |=(z)| < d}, then the approximation error induced by the series is
exponentially bounded:

sup
x∈R
|f(x)− C(f,∆)(x)| = O(e−

π
∆d), for ∆→ 0.

(e.g. see Stenger (2000, p. 383)).

Let’s consider the function on which we are going to apply the expansion:

h(z, s) = log(l(z, s)) = log(s− ψ(z));

since we are considering a logarithm, the function is not analytic on the whole
complex plane; however, it’s possible to find a strip {z : |=(z)| < d} in which
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the function is analytic, as we will numerically confirm in section 3.3. The Sinc
expansion approximation of h(z, s) is given by:

h(z, s) ≈
+∞∑

k=−∞

h(k∆, s)
sin(π(z − k∆)/∆)

π(z − k∆)/∆
. (2.2)

In Stenger and McArthur (1994), the expansion of the function is also applied
to get the Hilbert Transform, exploiting the known analytical form of the Hilbert
transform for the Sinc function:

H
[

sin(x)

x

]
=

1− cos(x)

x
. (2.3)

For that reason, it’s easy to get the approximation formula for the Hilbert
Transform applying the relation (2.3) to (2.2) :

H[h(z, s)] ≈
+∞∑

k=−∞

h(k∆, s)
1− cos(π(z − k∆)/∆)

π(z − k∆)/∆
, ∀z ∈ R.

Thus, we will have a discretization error which exponentially decays according to
proposition (2.1). In addition, the infinite summation should also be truncated
according to the grid size. As discussed, the grid for the computation of the
Hilbert Transform is the same as the one used for the FFT, therefore the points
of the discretization are explicitly:

z = −N − 1

2
∆z, ...,+

N − 1

2
∆z,

Calling Ñ = N−1
2 and ∆z = ∆, the final formula for the Hilbert Transform of

h(z, s) will be:

H[h(z, s)] ≈
Ñ∑

k=−Ñ

h(k∆z, s)
1− cos(π(z − k∆z)/∆z)

π(z − k∆z)/∆z
, ∀z ∈ R. (2.4)

Of course, the truncation of the sum introduces a truncation error in addition
to the approximation error. In particular, this error is exponentially bounded
if the function h(z, s) decays at least exponentially as |z| → ∞, otherwise this
bound is no longer achieved. (e.g. see Phelan et al. (2017, p. 11)).

2.2.1 Toeplitz Matrix
Since the Hilbert Transform is computed on a grid, that we have seen is the

same grid used in the FFT algorithm, the computation of the Hilbert Transform
can be reduced to a matrix-vector multiplication. Indeed, when computing the
Hilbert transform for each point on the grid zj = j∆z, j = −Ñ , ..., Ñ , the cosine
series in the formula (2.4) actually depends only on the number of grid steps
between zj and all the other grid points, i.e. the quantity:

1− cos(π(zj − k∆z)/∆z)

π(zj − k∆z)/∆z
=

1− cos(π(j − k))

π(j − k)
=

{
0, if j-k is even,

2
j−k , if j-k is odd.
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Moreover, it is known that the limit:

lim
x→0

1− cos(x)

x
= 0,

which can be used when evaluating the quantity for j = k. Therefore, if we
define a N ×N -matrix T:

Tj,k =

{
0, if j-k is even or 0,

2
j−k , if j-k is odd,

and if we consider the column vector h as a N -vector given by the evaluation of
h(z, s) on the grid points zj = j∆z, j = −Ñ , ..., Ñ , the column vector H with
the values of the Hilbert Transform on the same grid points can be computed
as:

H = Th.

In particular, notice that T is a Toeplitz matrix, i.e. is constant on the diagonals,
having Tj,k = Tj+1,k+1. For that reason, the matrix is completely defined by
its first row and first column. It is possible to exploit some Matlab functions
in the package toeplitz in order to speed up the matrix-vector multiplication
and avoid to store the whole matrix. In this way, it is possible to expand the
grid up to N = 216 points.

2.2.2 Exponential Filter
In order to improve convergence, the work of Phelan et al. (2017) suggests

the use of a filter, that may be multiplied to the input of the Hilbert transform.
This procedure has been used also in order to improve the convergence of the
Discrete Fourier Transform method in case of functions that are affected by the
Gibbs Phenomenon, as studied in Gottlieb and Shu (1997). In this paper, it’s
described how it’s possible to use a filter in case of series expansion of a function,
as in our case. We will use an exponential filter, as defined in Gottlieb and Shu
(1997).

Definition 2.1 (Exponential filter of order p). A filter of order p is defined as
a function σ(η) supported on η ∈ [−1, 1] with the properties:

• σ(0) = 1, σ(l)(0) = 0;

• σ(η) = 0 for |η| = 1;

• σ(η) ∈ Cp−1.

In particular, the exponential filter of order p has form:

σ(η) = e−θη
p

,

where p is even. θ and η depends on the application.

In our case, following the approach of Phelan et al. (2018), we choose θ <
ε log(10), where 10−ε is the machine precision, therefore we select θ = 16 log(10).
Then, since the filter has support on η ∈ [−1, 1], we consider η = z/zmax. The
filter has different shapes for different values of p: with small p, the effect of
the filter is visible on a wider range of η, while increasing p the effect is more
on the tail, as it’s possible to see in figure 2.1 (c.f. Fig. 1, Phelan et al. (2018,
p. 214)).
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Figure 2.1: Exponential filter for different values of p.

2.2.3 Numerical Tests
We perform some numerical tests in order to study possible effects of the

filter on the error convergence: we consider three different functions for which
the analytic form of the Hilbert transform is known. For each case, first we
should select a reasonable value for the parameter p; then, we can proceed on
comparing the convergence of the error with or without the filter with respect
to the number of points of the grid N. Each function has different features, so
that we can verify the behaviour of the method in different cases.

a. The simplest case is the Cauchy function, which is an analytic function
with well-behaving tails (no asymptotic) and with no discontinuities:

f(x) =
1

x2 + 1

Hilbert
=⇒ H[f(x)] =

x

x2 + 1
.

We don’t expect the filter to have a great impact in this case, since the
function is a regular one. Indeed, as we can see in figure 2.2, the filter
runs out of its effect with small values of p, since after p = 12 we don’t
have a visible improving. Moreover, thanks to the regularity of the func-
tion, the method applied to compute the Hilbert Transform has already a
convergent error, therefore the filter has the only effect to slightly increase
the convergence in N.

b. In order to apply the method to an oscillating function both on the real
and on the imaginary part of the spectrum, we use:

f(x) = eix
Hilbert
=⇒ H[f(x)] = −isgn(x)eix.

In this case we would like to study the effect of the filter on the central part
of the approximation, since we know that for sure the tails will be affected
by the correction and therefore they will no more show an oscillating shape,
as we can see in figure 2.3.

After that, we select p as before: looking at the first plot of figure 2.4 it’s
clear that here the filter has much more effect, since we see an increasing
in precision up to p = 50. The convergence of the absolute errors both in
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Figure 2.2: Effect of the filter on the Cauchy function. On the left, it is shown how
the error decreases as p increases, for N = 216; on the right, plot of the convergence
of the error for N = 28, ..., 216 with p = 12 and ∆x = 2−3 with and without the filter
application.

Figure 2.3: Plot of the imaginary part of the Hilbert Transform of f(x) = eix. With
the filter the extrema are squeezed to 0, but it’s possible to see that without the filter
they are diverging. N = 216, ∆x = 2−10 and p = 30 have been used.

the real and imaginary part of the function is improved by the application
of the filter.

c. In order to analyze the behaviour in case of discontinuities and asymptotic
behaviours, we exploit the rectangular function with discontinuity near the
extrema of our grid:

f(x) = rect(x) =

{
0, |x| ≥ 400

1, |x| < 400

Hilbert
=⇒ H[f(x)] =

1

π
log

∣∣∣∣x+ 400

x− 400

∣∣∣∣.
Indeed, choosing N = 216 and ∆x = 2−6, the asymptotic behaviour at
x = ±400 will be at the extrema of our function. In this case, applying the
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Figure 2.4: Effect of the filter on the Hilbert transform of f(x) = eix . On the left, it
is shown how the error decreases as p increases, for N = 216; in the other two plots,
the convergence of the error for N = 28, ..., 216 with p = 30 and ∆x = 2−3 is shown
for both the real and imaginary part of the Hilbert Transform.

filter has a double effect: near the discontinuity, it increase convergence,
even if the error remains high; in the regular part of the function, the effect
is the opposite. In this case, the suggestion is to erase the asymptotic
behaviour, since its effect on the overall convergence of the method can
be unpredictable, while the error in the regular part is anyway kept under
control. We consider a value for p = 30, in order to minimize the error at
the discontinuity.

Figure 2.5: Effect of the filter on the Hilbert Transform of the rectangular function.
On the left, it is shown how the error decreases as p increases, for N = 216; in the other
two plots, the convergence of the error for N = 28, ..., 216 with p = 30 and ∆x = 2−6

is shown for both the asymptotic and regular part of the Hilbert Transform.

We will analyze the error of this method for the computation of the Hilbert
transform on the function h(z, s) in a similar way in section 3.3, but since
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we don’t have the exact solution to compare with, we will have to use some
precautions.

2.3 Trapezoidal Rule for the Inverse Laplace
In this section, we expose the numerical method for the computation of the

Inverse Laplace Transform, introduced by Abate and Whitt (1995).

Proposition 2.2. Given a function f̃ that doesn’t contain singularities in the
contour path defined by a real number a, the Inverse Laplace Transform f(t) of
f̃ can be approximated by the following expression:

f(t) ≈ eA/2

2t
<f̃(s0) +

eA/2

t

∞∑
k=1

(−1)k<f̃(sk),

where A = 2ta and sk = A+2kπi
2t , k ∈ N (c.f. Eq. (5), Abate and Whitt (1995)).

Proof. (e.g. see Abate and Whitt (1995, p. 37)) First, let’s start from definition
1.4 for a generic function f :

f(t) =
1

2πi

∫ a+i∞

a−i∞
estf̃(s)ds.

Then, we move the integration on the real axis with a change of variables:

=
1

2π

∫ +∞

−∞
e(a+iu)tf̃(a+ iu)du,

and rewriting the terms more explicitly, we get:

=
eat

2π

∫ +∞

−∞
(cos(ut) + i sin(ut))(<[f̃(a+ iu)] + i=[f̃(a+ iu)])du.

Exploiting some basic relations of complex calculus, such that <[f(a + ib)] =
<[f(a−ib)] and =[f(a+ib)] = −i=[f(a−ib)], it’s possible to derive the following
expression:

=
eat

π

∫ ∞
0

(cos(ut)<[f̃(a+ iu)]− sin(ut)=[f̃(a+ iu)])du,

and moreover, since in general cos(x)<[f(x)] = − sin(x)=[f(x)]:

=
2eat

π

∫ ∞
0

cos(ut)<[f̃(a+ iu)]du.

Finally, we use the trapezoidal rule to evaluate the integral, with step size h,
getting:

f(t) ≈ eath

π
<[f̃(a)] +

2eath

π

∞∑
k=1

cos(kht)<[f̃(a+ ikh)].

Choosing h = π
2t , then cos(kht) = (−1)k; therefore:

f(t) ≈ eA/2

2t
<f̃(s0) +

eA/2

t

∞∑
k=1

(−1)k<f̃(sk).

�
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The formula in proposition 2.2 is an approximation: the error implied in
the discretization has been studied by Abate and Whitt (1995), resulting in the
following bound that depends only on the chosen A if the function is continuous:

|εd| ≤
e−A

1− e−A
. (2.5)

This result relies on the introduction of a periodic damped function g(t) =
e−btf(t) with period T = 2π/h as the periodized version of f and its expansion
in cosine Fourier series.

2.3.1 Euler Acceleration
According to proposition 2.2, the Inverse Laplace Transform should be com-

puted truncating the series at a certain N. However, in order to improve the
convergence of the alternating series, in Abate and Whitt (1995) the authors
also apply the Euler Acceleration method, in addition to the trapezoidal rule.
Following the notation in Phelan et al. (2018), define:

bn =
eA/2

2t
<f̃(s0) +

eA/2

t

n∑
k=1

(−1)k<f̃(sk);

then the function f(t) can be approximated as:

f(t) ≈ 1

2mE

mE∑
n=0

(
mE

n

)
bnE+n,

i.e. taking the binomially weighted average of the terms bn for n = nE , ..., nE +
mE .

2.3.2 Numerical Tests
Since the payoff function we are going to price can go to 0 rapidly at expiry,

we should consider the effect of this method for the inverse Laplace Transform
on a discontinuous function, because the bound (2.5) is no more valid in pres-
ence of discontinuities (see Abate and Whitt (1992)).

For that reason, following the approach of Phelan et al. (2018), we are going
to study the effect of the trapezoidal rule with Euler acceleration on the step
function with delay, for example considering the function f̃(s) = e−10s

s . In the
figures 2.6, 2.7 and 2.8, we analyze the output of the algorithm for different
values of A = 18.4, 23, 27, the trapezoidal rule parameter, and also of mE and
nE , the Euler parameters (c.f. Fig. 2, 3, 4, Phelan et al. (2018, p. 215)). Indeed,
we will have to choose appropriate values for mE and nE , balancing the error
size with the time (and memory) required for the numerical computation of the
binomial coefficients in the Euler acceleration formula.

In our applications, we will choose A = 23, in order to get an error floor of
10−10 but not too much oscillation, and mE = 61, nE = 100 in order to reduce
the size of the oscillations with a reasonable computation time for the binomial
coefficient.
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Figure 2.6: Inverse Laplace Transform of f̃(s) = e−10s

s
obtained with the method

described. Increasing the Euler parameters reduces the size of oscillations, but A has
the opposite effect.

Figure 2.7: Error of the Inverse Laplace Transform of f̃(s) = e−10s

s
obtained with the

method described. We can see the same behaviour as above.

Figure 2.8: Noise in the tail of the error of the Inverse Laplace Transform of f̃(s) =
e−10s

s
obtained with the method described. Increasing A, we reduce the size of the

noise.
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Chapter 3

Results of the Wiener-Hopf
method

In this chapter we are going to present the results obtained with the Wiener-
Hopf method for the pricing of exotic options introduced in this work. First, we
briefly summarize the steps needed to obtain the results. Then, we study the
effectiveness of the method comparing the price curve for different initial spots
with the one obtained via closed formula in case of Brownian Motion. For the
NIG model, we plot the results and compute the error with respect to the most
precise result that can be obtained with the method. We apply the procedure
both to the Fixed Strike Lookback Call Option and the Single Barrier Down &
Out Call Option. In addition, we apply the method also to their digital versions.
Moreover, we study the error convergence, with particular attention to the error
induced by the Sinc Expansion method. Finally, we analyze the effect of the
damping parameter, confirming the existence of an analyticity strip.

3.1 Pricing Procedure
Following the approach of Phelan et al. (2018), we sum up the steps to be

followed for the numerical computation of the options’ prices.

1. Set up the three different grids for each transform domain: the grid of
{xl} for the real domain, the grid of {zj} for the Fourier (and Hilbert)
Transform and the grid of {sk} for the Laplace Transform. According to
sections 2.1 and 2.3:{

{xl} = −N−1
2 ∆x, ..., N−1

2 ∆x,

{zj} = −N−1
2 ∆z, ..., N−1

2 ∆z
, {sk} =

A+ 2πki

2T
,

with ∆x∆z = 2π
N , N is a power of 2 and i is the imaginary unit.

2. Compute the values of the characteristic exponent for each zj as ψ(zj +
iγ), where γ is the damping parameter. Then, set the function to be
decomposed: h(zj + iγ, sk) = log(sk − ψ(zj + iγ)).

3. Apply the Sinc Expansion method in order to compute the Hilbert Trans-
form needed in the decomposition:

29



– In case of Lookback, find the Wiener-Hopf factors h(zj + iγ, sk) =
h+(zj + iγ, sk) + h−(zj + iγ, sk) and get the Laplace Transform of
the characteristic function for the maximum as:

˜̂pM (zj + iγ, sk) =
1

eh+(zj+iγ,sk)+h−(0,sk)
.

– In case of Single Lower Barrier B, first find the Wiener-Hopf factors
h(zj + iγ, sk) = h+(zj + iγ, sk) + h−(zj + iγ, sk); then, decompose
at the lower log-barrier b = log(B/S0) the function j(zj + iγ, sk) =
1/ exp(h−(zj + iγ, sk)) = jb+(zj + iγ, sk) + jb−(zj + iγ, sk) using the
Plemelj-Sokhotsky relations and get the Laplace Transform of the
characteristic function for the process with lower barrier as:

˜̂p(b)
(zj + iγ, sk) =

jb+(zj + iγ, sk)

eh+(zj+iγ,sk)
.

4. Multiply the result by complex conjugate of the damped payoff function
φ∗γ(zj) and apply the FFT procedure of section 2.1, getting as output a
function f̃(xl, sk).

5. Apply the trapezoidal rule with Euler acceleration to the output, as in
section 2.3, in order to get a function f(xl, T ).

6. Finally, the option price is equal to the function f evaluated at x = 0.

As in Phelan et al. (2018), the parameters for the options are strike price
K = 1.1 and, in the case of barrier option, lower barrier B = 0.8. The maturity
of the options is T = 1; a risk-free rate of r = 0.05 and a dividend yield of
q = 0.02 are assumed. In the following sections, we will price the option for
different possible values of the initial spot price of the asset S0. Notice that the
first part of the algorithm, involving the factorization of h, is the same for each
spot; then, it changes for each initial spot in the factorization of j and in the
multiplication by the payoff function. We divide the analysis on the basis of the
underlying Lévy process assumed.

3.1.1 Brownian Motion model
If the process of log-returns is modelled with a Brownian Motion with drift,

we apply the algorithm proposed above to the characteristic exponent:

ψBM (z) = iµz − 1

2
σ2z2.

Choosing µ = r − q − σ2/2, we are considering the risk-neutral measure of the
Black & Scholes model in presence of dividend yield, therefore one can apply
the analytical formulas of section 1.5 in order to find the options’ prices. We
use the closed formulas’ results as reference values, selecting σ = 0.2.

The idea is to compute the curve of prices with different initial spots and
compare the prices obtained with the Wiener-Hopf method with the ones got
via closed formula. In figure 3.1 it is shown that the method actually converges
to the right result, while in figure 3.2 we study the absolute error made across
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Figure 3.1: Prices for Lookback (left) and Single Barrier Option (right) with different
initial spot under the BM Model. We consider initial spot prices S0 = 0.6, ..., 1.5, grid
size N = 216 and ∆z = 2−2. Damping parameter γ = −3.

Figure 3.2: Absolute Error for Lookback (left) and Single Barrier Option (right)
with different initial spot under the BM Model. We consider initial spot prices S0 =
0.6, ..., 1.5, grid size N = 216 and ∆z = 2−2. Damping parameter γ = −3.

the curve.

For the lookback, the error is maximum for the At-the-money option, where
the strike price falls exactly at the decomposition point for h(z, s). In this case,
the maximum error is lower than 10−3. For the barrier option, the maximum
error is reached around the barrier, since this is the problematic point with
discontinuity in the payoff. The maximum error has the order of magnitude of
10−4, but the error almost vanishes below the barrier level. A more detailed
analysis about the error and its convergence is considered in section 3.2.

Digital Options

We saw in section 1.4 that the method can be applied also to the digital
version of the options. In figures 3.3 and 3.4, we show the results on the Digital
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with lower barrier and the American Digital option for the Brownian Motion
model for log-returns, that have been introduced with their closed formulas in
section 1.5. The behaviour of the error is similar in the barrier option case, while
the structure is different in the American Digital, since the price of the digital
option is constant for S0 ≥ K, as the option will pay 1 for sure. Moreover, the
magnitude of the maximum error is a bit higher, being in both cases around
10−3.

Figure 3.3: Prices for American Digital (left) and Digital with Barrier (right) with dif-
ferent initial spot under the BMModel. We consider initial spot prices S0 = 0.6, ..., 1.5,
grid size N = 216 and ∆z = 2−2. Damping parameter γ = −3.

Figure 3.4: Absolute Error for American Digital (left) and Digital with Barrier (right)
with different initial spot under the BM Model. We consider initial spot prices S0 =
0.6, ..., 1.5, grid size N = 216 and ∆z = 2−2. Damping parameter γ = −3.
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3.1.2 NIG Model
The second kind of Lévy Process considered in this work is the Normal

Inverse Gaussian process, which is characterized by characteristic exponent:

ψNIG(z) = iµz + δ(γ −
√
α2 − (β + iz)2),

where γ =
√
α2 − β2, with δ > 0 and 0 ≤ |β| ≤ α, where the risk-neutral

measure is recovered choosing:

µ = r − q − δ(γ −
√
α2 − (β + 1)2).

Differently from before, we don’t have a closed formula to compare the results
with: in order to have a figure of the magnitude of the error implied in the
method, we compare the results obtained with a grid of N = 215 points with
the the ones obtained with Nmax = 216, which is our grid limit. The choice
of the parameters for the NIG distribution is made according to Phelan et al.
(2018), with α = 15, β = −5 and δ = 0.5. As in the Brownian Motion case, we
study the behaviour of the method for different initial spots.

Figure 3.5: Prices for Lookback (left) and Single Barrier Option (right) with different
initial spot under NIG model. We consider initial spot prices S0 = 0.6, ..., 1.5, grid
size N = 215 and ∆z = 2−2. Damping parameter γ = −3.

In figure 3.5, we can see that the prices varying S0 have the same behaviour
as in the Brownian Motion case. Moreover, the error between the two ap-
proximations is very similar to the previous case both for shape and order of
magnitude: in figure 3.6 we see a maximum error at the ATM option smaller
than 10−3 for the lookback and a maximum error at the barrier level around
10−4 for the single barrier option.
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Figure 3.6: Absolute Error for Lookback (left) and Single Barrier Option (right) with
different initial spot under NIG model between grid size N = 215 and maximum grid
size Nmax = 216. We consider initial spot prices S0 = 0.6, ..., 1.5, ∆z = 2−2 and
damping parameter γ = −3.

Digital Options

As for the study on the Brownian Motion model, we propose the results for
the digital versions of the lookback and barrier options. Also in this case, the
error is computed comparing the values obtained with N = 215 with the ones
got with Nmax = 216. For both the digital options, the magnitude of the error
is the same as under the Brownian Motion model.

Figure 3.7: Prices for American Digital (left) and Digital with Barrier (right) with
different initial spot under NIG model. We consider initial spot prices S0 = 0.6, ..., 1.5,
grid size N = 215 and ∆z = 2−2. Damping parameter γ = −3.
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Figure 3.8: Absolute Error for American Digital (left) and Digital with Barrier (right)
with different initial spot under NIG model between grid size N = 215 and maximum
grid size Nmax = 216. We consider initial spot prices S0 = 0.6, ..., 1.5, ∆z = 2−2 and
damping parameter γ = −3.

3.2 Error Convergence
Up to now, we have studied the error on the complete curve of prices, but

with a certain fix grid size: for the Brownian Motion, N = 216, since we have
a closed formula as reference value, while for the NIG model we used N = 215

in order to use the thicker grid as reference. However, it is also important to
understand the rate of convergence of the method with N, i.e. how the error
decays by increasing the number of points in the grid. In order to study this
behaviour, we can compare the price of the option computed with different
values of N to the reference value.

Figure 3.9: Plot in log-log scale of the Absolute Error of the method with the Brow-
nian Motion model for different N = 28, ..., 216 for the lookback (left) and the single
barrier option (right). ∆z = 2−2 and damping parameter γ = −3. The reference
values are computed via closed formulas.
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In particular, we choose as initial spot S0 = 0.81, since the most discontin-
uous movement of the error is at the barrier level for the barrier option, while
for the lookback the curve of errors doesn’t present jumps. Moreover, in this
way we are looking at errors with the same order of magnitude, which is in both
cases a bit smaller than 10−4.

Figure 3.10: Plot in log-log scale of the Absolute Error of the method with the NIG
model for S0 = 0.81 for different N = 28, ..., 215 for the lookback (left) and the single
barrier option (right). ∆z = 2−2 and damping parameter γ = −3. The reference
values are computed via Wiener-Hopf method with Nmax = 216.

In figures 3.9 and 3.10, the convergence results with respect to the number
of grid points are shown. For the BM model, the method has been applied with
∆z = 2−2, for numbers of grid points N = 28, ..., 216; for the NIG model, we use
N = 28, ..., 215 and the same ∆z. Notice that the error has a decay rate which
is slightly slower than N−1.

In addition to the analysis done for the convergence with the number of
points N, we also have to consider the other parameter of the FFT, i.e. the
grid step size, that we have chosen as ∆z = 2−2. This choice is not arbitrary:
let’s analyze the behaviour of the absolute error for the different options as ∆z
changes, considering N = 216. As in the previous case, we consider only the
lookback and single barrier options with initial spot S0 = 0.81, since the analy-
sis is similar in the digital cases.

Due to the structure of the FFT algorithm and the connection of the two
grids {xl} and {zk}, the behaviour of the error must handled carefully. Indeed,
if we consider a small ∆z we are taking a small interval in the transformed space,
while if we take ∆z too high the problem is moved on the real space: in both
cases, we are making a bad approximation of the integral. Moreover, we also
have to consider the error that can be made in the computation of the Hilbert
Transform with the Sinc Expansion due to the choice of ∆z and the use of the
filter introduced in section 2.2.2, which is analyzed separately in section 3.3. We
analyze only the Brownian Motion case, since the behaviour of the error is not
convergent in this case and therefore we can’t use as reference a value computed
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with the method itself for the NIG model.

Figure 3.11: Plot in log-log scale of the Absolute Error of the method with the
Brownian Motion model for S0 = 0.81 for different ∆z = 2−10, ..., 21 for the lookback
(left) and the single barrier option (right). N = 216 and damping parameter γ = −3.
The reference values are computed via closed formulas.

In figure 3.11 for the BM model, it is possible to see how the error decreases
as ∆z increases up to a certain point, after which the error increases again and
with an higher speed, showing a certain instability. Looking at the two options
separately, we have as limit case ∆z = 20 for the lookback option and ∆z = 2−2

for the single barrier option, at which the error is minimized. In both cases,
choosing ∆z in the interval [0.25, 1] assures an error smaller than 10−4. We
decided to take ∆z = 2−2 in order to be in the safe and not unstable part of
the error for the single barrier option.

3.3 Analysis of the Sinc Expansion
In section 2.2, some numerical tests were performed on test functions in order

to check the behaviour of the approximation of the Hilbert Transform through
the Sinc Expansion. In those cases, the analytic form of the Hilbert Transform
was known, therefore it was possible to compute a reference value and to check
the convergence of the absolute error implied in the expansion. We would like
to proceed in a similar way for the function that we have to decompose, i.e.
h(z, s). First, we study the properties of this function, checking graphically the
existence of an analyticity strip in which we can apply proposition 2.1, and then
we look at the error obtained when we apply the Sinc expansion formula.

Consider:

h(z, s) = log(l(z, s)) = log(s− ψ(z)), s, z ∈ C.

The analyticity strip of the function can be studied considering that the log-
arithm is an analytic function on C − R≤0, i.e. on the whole complex plane

37



cutting the negative part of the real axis. Therefore, we have to focus on the
argument of the logarithm l(z, s) and understand for which values of s and z
this function has values on the complex plane without touching the line R≤0.
In particular, we would like to find a strip of complex z for which the condition
above is satisfied, in order to apply proposition 2.1.

First, let’s consider the variable s: the choice for the grid {sk} takes points
all with the same real part, equal to <(sk) = A

2T , and an imaginary part =(sk) =
2kπ
2T that has the only effect of shifting up =(l(z, s)) as k increases. In figure
3.12, we plot the values on the complex plane that can be obtained for l(z, A2T ) =
A
2T − ψ(z) considering z taking values on the real axis as in the grid {zj}.

Figure 3.12: Plot of l(zk, A/2T ) on the complex plane for A = 23, T = 1 under
Brownian Motion model (left) and NIG model (right). Grid size N = 216, ∆z = 2−2.

It is possible to see that the effect of the imaginary part of s doesn’t affect
the condition of touching the negative part of the real line, since, as said, it only
shifts up the curve in the plane. For that reason, in the following analysis we
take s = A

2T as a parameter and focus on z.

Since we want to find a strip of z such that {z ∈ C : |=(z)| < d}, we consider
of shifting our real grid of {zj} of an arbitrary imaginary part c for different
values of c ∈ R. Thus, we consider the function l(zj + ic, A/2T ) and look for
the satisfaction of the condition for c in a range [−d, d]. From figure 3.13, in the
Brownian Motion case it is easy to see that a strip actually exists, since in the
case presented we are not touching R≤0 up to c = ±23. Also in the NIG case
a similar range can be found, even if the shape of the function is less regular.
Of course, the exact values of these ranges depend on the parameters used for
the two characteristic exponents and on the Laplace parameters, which we are
considering as in the previous sections 3.1 and 3.2.

This graphical analysis assures that the function h(z, s) is analytic at least in
a strip of the complex plane [−d, d], with d depending on the parameters chosen;
therefore it satisfies the hypothesis of proposition 2.1, assuring an exponential

38



Figure 3.13: Plot of l(zk + ic, A/2T ) on the complex plane for A = 23, T = 1 under
Brownian Motion model (left) and NIG model (right) for c ∈ [−30, 30]. Grid size
N = 216, ∆z = 2−2.

decay of the error of the approximation. Let’s recall that we are interested in
the computation of the function h(z, s) for z = zj + iγ, γ < −1: thus, as we
will numerically confirm in section 3.4, one can choose γ ∈ [−d,−1) without
affecting the speed of convergence.

As said, we want to study the convergence of the results of the Sinc Expan-
sion method. We will perform our analysis only on the Brownian Motion case,
as the NIG process case will lead to similar results. Since we don’t have an
analytic result for the transformed function, we can only study the convergence
of the method using as reference value the one obtained with the thickest grid
(N = 216 in our applications).

Figure 3.14: Plot of the real (left) and imaginary (right) parts of the Hilbert Trans-
form of h(z, s) in the Brownian Motion case computed with N = 216, ∆z = 2−2.
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Moreover, plotting the real and imaginary part of the transformed function
as in figure 3.14, we notice that the real part has diverging tails: for that reason,
the application of the exponential filter is needed to recover the correct conver-
gence. Since we have this diverging behaviour at the tails, we should handle the
comparison between different grids very carefully: when comparing the results
coming from grids with different number of points or step size, the total interval
covered by each grid must be the same. We will focus on two different kind of
convergence. First, we analyze the convergence of the method keeping the same
interval covered (i.e. zmin = −zmax are kept constant) but increasing the num-
ber of points in the grid. Our reference value will be computed with Nmax = 216

and ∆zmin = 2−2. Then, the convergence is studied for Nk = 28, ..., 215: in order
to keep the same interval, one should choose accordingly:

∆zk =
Nmax − 1

Nk − 1
∆zmin. (3.1)

In figure 3.15 the convergence of the absolute error with or without the
filter is compared for both the real and imaginary part. Clearly, we see that in
particular on the real part the filter has a great effect on the maximum absolute
error, since the diverging tail part is canceled. On the other hand, we see how
the method is highly convergent thanks to the application of the filter as the
number of points in the grid is increased.

Figure 3.15: Plot of Max Absolute Error for the real (left) and imaginary (right)
parts of the Hilbert Transform of h(z, s) in the Brownian Motion case for different
values of N.

We also want to study the convergence of the method using the same number
of points, but considering different total intervals covered, i.e. different step
sizes between the points. We expect the error to converge as ∆z decreases. For
each ∆z, we compare the result obtained with N = 215 with the one obtained
with N = 216 on the same interval, i.e. we choose for each ∆z16 used for the
reference value a ∆z15 selected according to formula (3.1). In figure 3.16, we
used ∆z16 = 2−12, ..., 20. The filter has a huge effect this time, in particular on
the imaginary part that has an asymptotic behaviour near z = 0. Without the
filter, the error is not convergent with ∆z. Therefore, in our application we will
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use the exponential filter, so that the error induced by the Hilbert Transform
computation won’t affect the overall behaviour of the complete method.

Figure 3.16: Plot of Max Absolute Error for the real (left) and imaginary (right)
parts of the Hilbert Transform of h(z, s) in the Brownian Motion case for different
values of ∆z.

3.4 Analysis of the damping parameter
As we saw in the previous section, the analyticity strip of the function to

which we apply the Sinc Expansion for the Hilbert Transform depends on the
parameters of the model chosen and on the value of the real part of the grid
for the Inverse Laplace Transform. Moreover, when we introduce the damping
parameter, we are actually shifting the axis of integration (i.e. the real axis)
up or down on the complex plane of γ imaginary units: we should check that
we are always moving the axis inside the analyticity strip of the decomposed
function h(z, s), otherwise the results do not converge. Therefore, we can only
choose γ ∈ [−d,−1), where d is the maximum radius of the complex part of the
analyticity strip.

In order to verify the existence and the interval of analyticity, we can com-
pute the option price with initial spot S0 = 0.81 for different values of γ and
observe if we notice a stability region. Notice that since the stability region is
not affected by the number of points in the grid N, we choose N = 214 in order
to speed up the computation.

In figure 3.17 it’s clear that the analysis we did on the function is correct:
the result is stable for γ ∈ [−23,−1). Out of this interval, the price has an sud-
den jump. In figure 3.18, the analyticity region for the NIG model is analyzed.
The parameters for the characteristic exponent are chosen as in the previous
sections. One can notice that the strip is smaller, since we can choose only up
to γ = −19 to be in the stability region, since we are using α = 15, β = −5
and according to the study of Feng and Linetsky (2008) the damping parameter
should be chosen in the interval γ ∈ [β − α, β + α] for the analyticity of the
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Figure 3.17: Option Prices for Lookback (left) and Single Barrier Option (right) for
different values of γ = −30, ..., 0 for the Brownian Motion Model. The Wiener-Hopf
method has been applied with N = 214 and ∆z = 2−2.

Characteristic Exponent.

Figure 3.18: Option prices for Lookback (left) and Single Barrier Option (right) for
different values of γ = −30, ..., 0 for the NIG Model. The Wiener-Hopf method has
been applied with N = 214 and ∆z = 2−2.

Digital Options

The same analysis can be done for the digital versions of the options. In
particular, as we saw in section 1.4, the damping parameter for the payoff must
be γ < 0, therefore values of the damping parameters can be chosen for γ ∈
[−d, 0). In figures 3.19 and 3.20, it is possible to verify the stability region for

42



the price as mathematically derived, since also the value γ = −1 is stable. The
value of d is exactly the same as in the previous cases, since the digital feature
impacts only on the payoff function.

Figure 3.19: Option Prices for American Digital (left) and Digital with Barrier (right)
for different values of γ = −30, ..., 0 for the Brownian Motion Model. The Wiener-Hopf
method has been applied with N = 214 and ∆z = 2−2.

Figure 3.20: Option Prices for American Digital (left) and Digital with Barrier (right)
for different values of γ = −30, ..., 0 for the NIG Model. The Wiener-Hopf method has
been applied with N = 214 and ∆z = 2−2.
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Chapter 4

A New Monte Carlo Method

The method introduced in the previous chapters can be applied to some
of the most well-known Lévy processes, as performed in Phelan et al. (2018)
on single and double barrier options. However, the presented method relies on
complex mathematical procedures, such as the Wiener-Hopf decomposition or
the inversion of some complex transforms. In general, the simplest way for pric-
ing path-dependent options is to rely on Monte Carlo simulations. Even though
it may be time-consuming, this approach is easy to implement, since it only
requires the simulation of N underlying paths and then to take the mean of all
possible outcomes.

In this chapter, following the approach of Alabert and Caballero (2018)
and relying on the study of Becker (2010), we introduce a new method for the
simulation of the maximum (or minimum) of a Brownian Motion, fixing the
problems of convergence embedded in the traditional Monte Carlo simulation
method. The new method can be applied both to lookback and single barrier
options; moreover, it can be applied not only to the Brownian Motion model
for log-returns, but also to the NIG model, as we will show.

4.1 Brownian Motion
In the case of Brownian Motion, the distribution of its extrema is well-known.

Moreover, thanks to the fact that the joint distribution of the Brownian Motion
and its maximum is known in analytical form, it’s also possible to derive the
distribution of the maximum (or the minimum) for a Brownian Bridge. First,
let’s introduce the mathematical framework for the Brownian Motion case.

Definition 4.1 (Brownian Motion). A standard Brownian Motion is a real-
valued stochastic process {Wt}t≥0 such that:

• W0 = 0 a.s.;

• Wt − Ws ∼ Wt−s ∼ N (0, t − s), 0 ≤ s < t, i.e. W has stationary
increments, normally distributed;

• Given 0 ≤ t1 < ... < tn, then Wt1 ,Wt2 −Wt1 , ...,Wtn −Wtn−1 are inde-
pendent;
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• t 7→Wt is continuous a.s. on [0,∞).

Given this definition, we can introduce the more general case of the Brownian
Motion with drift µ and diffusion parameter σ:

Xt = µt+ σWt.

It’s easy to understand that Xt is normally distributed with mean µt and vari-
ance σ2t. For that reason, the probability density function of the stochastic
process Xt is given by:

fXt(x) =
1√

2πσ2t
e−

(x−µt)2

2σ2t .

4.2 Classical Monte Carlo Simulation
The usual approach for Monte Carlo simulation of path-dependent options

is the simulation of the whole path from t = 0 to t = T on a grid of time step
∆t: for each time step we simulate the evolution of the asset and the maximum
(or minimum) value reached in the path is considered. Then, the option value
is computed as the mean of the outcomes, one for each simulated path.

Let’s consider the case of an underlying asset with dynamics given by the
Geometric Brownian Motion in the risk-neutral measure with dividend yield:

dSt = (r − q)Stdt+ σStdWt,

with r risk-free rate and q dividend yield, and Wt is a standard Brownian Mo-
tion. Then, the log-returns Xt = log(St/S0) follow the dynamics of a Brownian
Motion with drift amd diffusion:

dXt =

(
r − q − σ2

2

)
dt+ σdWt, X0 = 0.

Consider the time grid tk = k∆t, for k = 0, ..., n, such that t0 = 0 and tn = T ;
on each time step, the Brownian Motion can be generated according to the
following recursive formula:

Xtk+1
= Xtk +

(
r − q − σ2

2

)
∆t+ σ

√
∆tZk,

where {Zk} are i.i.d random variables with a standard normal distribution, i.e.
Z ∼ N (0, 1). Indeed, as for definition 4.1, the increments on disjoint intervals
are independent. Then, calling the maximum and the minimum value of the
log-returns:

XT = max
k=0,...,n

Xtk , XT = min
k=0,...,n

Xtk ,

we get:

ST = max
k=0,...,n

Stk = S0e
XT , ST = min

k=0,...,n
Stk = S0e

XT .
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The value of the options is then computed as the mean on N paths of the possible
outcomes, given a strike price K and a lower barrier B:

V LCfix (0) = e−rT
1

N

N∑
j=1

max(S
j

T −K, 0); (4.1)

V D&O(0) = e−rT
1

N

N∑
j=1

max(SjT −K, 0) · IjT , IjT =

{
1, SjT ≥ B
0, SjT < B

(4.2)

The precision of the approximation increases with the number N of simulated
paths, but also with the number of time steps n considered. The order of error
convergence in this kind of simulation is O(∆t1/2). Another issue is that for
a fixed time step ∆t, the usual Monte Carlo method does not converge to the
correct result, computed with the closed formula, since even if we can consider
a very small ∆t, the option we are pricing is discretely (and not continuously)
monitored. For that reason, there’s the need to find a new approach that allows
us to converge to the exact result.

4.3 Distribution of the Extrema
The idea for a new method is to find a way to introduce the distribution of

the extrema of the Brownian Motion process directly into the simulation, as this
distribution is theoretically known. First, we derive the joint distribution of a
standard Brownian Motion and its maximum; then, we present the extension to
the more generic Brownian Motion with drift and diffusion; finally, we consider
the distribution of the extrema for a Brownian Bridge.

4.3.1 Joint Distribution of Brownian Motion and its Max-
imum

In order to get the distribution of the maximum for the Brownian Motion
Wt, the Reflection Principle must be introduced:

Theorem 4.1 (Reflection Principle). Consider Mt = sups∈[0,t]Ws, where Wt

is a standard Brownian Motion and consider a > 0, then:

P(Mt ≥ a) = 2P(Wt ≥ a).

The proof of this theorem implies the use of the hitting time τa at which the
Brownian Motion Wt takes value a and the fact that the two "reflected" paths
at a > 0 of the Brownian Motion after the instant τa have the same probability
to happen, i.e.:

P(WT < a|τa < T ) = P(WT > a|τa < T ) =
1

2
.

In a similar way, given b ∈ [0, a]:

P(WT < b|τa < T ) = P(WT > 2a− b|τa < T )

⇒ P(WT < b, τa < T ) = P(WT > 2a− b, τa < T );
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moreover, since the events {MT ≥ a} = {τa < T} are exactly the same:

P(WT < b,MT ≥ a) = P(WT > 2a− b,MT ≥ a),

and being 2a− b ≥ a, the relation {WT > 2a− b} ⊃ {MT ≥ a} holds, therefore:

P(WT < b,MT ≥ a) = P(WT > 2a− b) =
1√
2πT

∫ +∞

2a−b
e−

x2

2T dx.

Thus, that yields to the joint probability density function of the standard Brow-
nian Motion and its maximum for 0 ≤ b ≤ a:

fMT ,WT
(a, b) = −dP(WT < b,MT ≥ a) =

√
2

πT

2a− b
T

e−
(2a−b)2

2T 1a≥b∨0. (4.3)

This is a well-known result. As last step, we want to derive the same expression
for the general Brownian Motion with drift µ and diffusion σ, for which we refer
back to the book of Shreve (2004).

Theorem 4.2. The joint distribution of the Brownian Motion with drift µ and
diffusion σ, i.e. XT = µT + σWT , and its maximum XT is given by:

fXT ,XT (a, b) = e
µ

σ2 b−
µ2

2σ2 T

√
2

πσ2T

2a− b
σ2T

e−
(2a−b)2

2σ2T 1a≥b∨0.

Proof. This result is the application of Th. 7.2.1 of Shreve (2004, p. 296), that
gives the joint distribution function of a Brownian Motion with drift α, i.e.
W̃T = αT +WT , and its maximum M̃T :

f
M̃T ,W̃T

(a, b) = eαb−
1
2α

2T

√
2

πT

2a− b
T

e−
(2a−b)2

2T 1a≥b∨0,

considering that XT = σW̃T , XT = σM̃T when we choose α = µ/σ, and
therefore modifying the joint distribution accordingly. �

4.3.2 Brownian Bridge and its Extrema
The Brownian Bridge is a stochastic process obtained by taking the standard

Brownian Motion Wt on t ∈ [0, 1] and conditioning on the event that the final
value at t = 1 is equal to 0 a.s..

Definition 4.2 (Brownian Bridge). A Brownian Bridge is a real-valued stochas-
tic process {Bt}t∈[0,1] such that:

• B0 = B1 = 0 a.s.;

• Bt is a Gaussian process;

• E[Bt] = 0, ∀t ∈ [0, 1] and cov(Bs, Bt) = min{s, t} − st, ∀s, t ∈
[0, 1];

• t 7→ Bt is continuous a.s. on [0, 1].
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Remark. In the general case, the Brownian Bridge passing through Bt0 = x0

and Bt1 = x1 is a stochastic process with normal distribution with:

E[Bt] = x0 +
t− t0
t1 − t0

(x1 − x0) and cov(Bs, Bt) =
(t1 − t)(s− t0)

t1 − t0
, s < t.

It’s possible to compute the probability distribution function for the maxi-
mum (or the minimum) of a Brownian Bridge, exploiting the formula we found
in the previous paragraph and the properties of conditional distributions. In-
deed, for continuous random variables the conditional probability distribution
function on variable Y given the occurrence of X = x is given by:

fY |X=x(y) =
fX,Y (x, y)

fX(x)
.

We start from the Brownian Motion with drift and diffusion Xt = µt+σWt,
with initial value X0 = 0 and maximum Xt = maxs∈[0,t]Xs; it’s even possible
to consider the shifted process X(c)

t = c + Xt that starts at X(c)
0 = c: the for-

mulas will be the same, with just a change of variable to be applied; therefore,
we proceed with Xt without loss of generality.

Consider a general bridge Bt generated by Xt between (0, 0) and (T, b), i.e.
the Brownian bridge generated considering the Brownian Motion with drift and
diffusion Xt conditioning on the event {XT = b}. The probability distribution
function of the maximum BT = maxt∈[0,T ]Bt is given by:

fBT (a) = fXT |XT=b(a) =
fXT ,XT (a, b)

fXT (b)
=

2(2a− b)
σ2T

e−
2(a2−ab)
σ2T 1a≥b∨0.,

and the cumulative distribution function can be recovered by integration:

FBT (y) = FXT |XT=b(y) =

∫ y

b∨0

2(2a− b)
σ2T

e−
2(a2−ab)
σ2T da =

(
1− e−

2y(y−b)
σ2T

)
1y≥b∨0.

(4.4)
It’s important to notice that the distribution of the maximum of the Brownian
Bridge does not depend on the drift coefficient, but only on the diffusion pa-
rameter.

In a very similar way, it is also possible to compute the cumulative distri-
bution function of the minimum BT = maxt∈[0,T ]Bt of the Brownian bridge
generated by Xt conditioning on the final value XT = b. Considering that the
minimum Xt = mins∈[0,t]Xs has the same distribution of Xt − Xt, then one
gets:

FBT (y) = FXT |XT=b(y) = e−
2y(b−y)

σ2T 1y≤b∨0. (4.5)

Remark. It is important to remark that here we are considering separately the
the joint distribution of (XT , XT ) and the joint distribution of (XT , XT ): this
method can be used only in case of lookback or single barrier, while for a double
barrier option one should consider the joint distribution of the three variables
(XT , XT , XT ), which involves a more sophisticated algorithm for the inversion
of a series (see Becker (2010)). In this work, we stick to the simpler method
since we are considering a lookback on the maximum and a single barrier option.
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4.4 New Monte Carlo Simulation for the BM model
The idea for the improvement of the Monte Carlo Simulation method is to use

the distribution of the maximum or of the minimum computed in the previous
paragraph. Indeed, when we simulate the path of the Brownian Motion, we
generate a certain number n = T/∆t of points {xi}i=1,...,n, where xi is the
simulated value of Xti . Now, let’s consider to start from this simulation: given
the couples (ti, xi), ∀i = 0, ..., n, we want to study the stochastic process
XT that is a concatenation of n independent Brownian Bridges {Bis}s∈[ti−1,ti]

passing through Bti−1
= xi−1 and Bti = xi. Instead of taking the maximum (or

the minimum) of the simulated xi directly, on each interval [ti−1, ti] we generate
the maximum according to the distribution (4.4) and the minimum according
to (4.5). Therefore, calling Bi = maxs∈[ti−1,t1]B

i
s and Bi = mins∈[ti−1,t1]B

i
s,

for each bridge we have:

FBi(y) =

(
1− e−

2(y−xi)(y−xi−1)

σ2∆t

)
1y≥max(xi−1,xi),

FBi(y) = e−
2(xi−y)(xi−1−y)

σ2∆t 1y≤min(xi−1,xi).

Moreover, we know that every cumulative distribution function takes values
in [0, 1], thus, generating a uniform random variable ui on [0, 1] for each interval,
knowing the initial point xi−1 and the final point xi, the simulated maximum
xi and the simulated minimum xi for interval [ti−1, ti] are computed as:

xi = F−1

Bi
(ui) =

1

2

(
xi + xi−1 +

√
(xi − xi−1)2 − 2σ2∆t log(1− ui)

)
, (4.6)

xi = F−1
Bi

(ui) =
1

2

(
xi + xi−1 −

√
(xi − xi−1)2 − 2σ2∆t log(ui)

)
, (4.7)

Therefore, the total maximum and minimum on [0, T ] are given by:

XT = max
i=1,...,n

xi, XT = min
i=1,...,n

xi.

Finally, the maximum or minimum value for the underlying asset ST are
recovered as:

ST = S0e
XT , ST = S0e

XT .

Performing the simulation for N different paths, the options’ prices are obtained
applying formulas (4.1) and (4.2).

4.4.1 Numerical results
In this paragraph, we compare the convergence of the classical and of the

new Monte Carlo method to the exact result of the closed formula. As said, the
fact of using directly the known distribution of the extrema will led to an higher
order of convergence with respect to the thickness of the simulation grid ∆t
and also to an actual convergence to the correct value with the increasing of the
number of simulations. We apply the new method assuming a Brownian Motion
model for the log-returns: the results for both the Fixed Strike Lookback call
option and the Single Barrier Down & Out call option are presented.
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Convergence with the grid

First, let’s recall that the option we are going to price is a path-dependent
option: this means that we are interested not only in the final asset value at
maturity T, but also in the intermediate values. In this first analysis, we want
to check how the method converges to the exact result as the number of points
in the time grid increases, i.e. as ∆t decreases. In order to kill the noise of the
Monte Carlo variability with N paths and consider only the convergence for ∆t,
we consider the same N simulated paths for every ∆t. In order to do so, for
each path j we first simulate the path with the smallest ∆tmin considered, in
the application ∆tmin = 2−8; then, we derive the path for a bigger ∆t picking
the points of the thicker path. Figure 4.1 can provide an idea of the procedure.

Figure 4.1: Path of a standard Brownian MotionWt between [0, 1] with different time
steps.

In this way, we can capture the effect of changing the grid’s step size in the two
different Monte Carlo methods by simply computing the absolute error:

ε̂N∆t =

∣∣∣∣ N∑
j=1

V j∆t − VCF
∣∣∣∣,

where V j∆t is the option price for path j. In order to see the effect of the method,
we should choose smartly the parameters: while for the lookback option the re-
sult is highly dependent on the value of the maximum, the single barrier’s price
is affected by the value of the minimum only through the indicator IT of for-
mula (4.2). Therefore, the greatest difference in price between a plain vanilla
option and a barrier option is just in the neighborhood of the barrier. For that
reason, we choose an initial spot S0 = 0.81 near to the barrier, and the other
parameters as in chapter 3.

The absolute error embedded in the Classical Monte Carlo method is rep-
resented by the red line: in figure 4.2 it is possible to see that the convergence
is slightly slower than O(∆t

1
2 ) (the black dotted line), while the blue line rep-

resents the New Monte Carlo method with simulation of the maximum or the
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minimum between time steps: the speed of convergence is way higher, even if it
doesn’t reach the speed of O(∆t).

Figure 4.2: Comparison of the convergence of the absolute error w.r.t. ∆t of the two
Monte Carlo methods in log-log scale under the BM model. Results obtained with
N = 4 · 105 simulations, for ∆t = 2−1, ..., 2−8.

Convergence with the number of simulations

Probably the greatest improvement of this method is in the convergence of
the absolute error with respect to the number of simulations used. The usual
Monte Carlo has a great issue, which is, for a given ∆t, not to converge to
the exact result. The reason of this behaviour is that we are actually pricing a
different option: not a continuously, but a discretely monitored one, which has
a different price. Therefore there’s a limit to which the simulation can converge
to the right result, because of the granularity of the grid: for example, in the
lookback option we always take as maximum value one of the asset’s values
among a discrete number of points, but we don’t know what happens in be-
tween. On the other hand, in the new method we can simulate the position of
the maximum: in this way, the convergence to the exact result is granted, be-
cause we are using directly the distribution of the maximum. The same applies
in the single barrier case. Therefore, first we check that the new method actu-
ally converges, comparing the mean of the absolute error of the classic and the
new method with respect to the exact solution as N increases; then, we analyze
the order of magnitude of the error with the estimator of the Monte Carlo noise.

The first error estimate is computed as the mean of absolute errors, therefore
we first have to compute the option price as a mean of N simulated payout, then
we have to take the mean of M absolute errors, i.e.:

ε̂Abs =

M∑
k=1

∣∣∣∣ N∑
j=1

Vj,k − VCF
∣∣∣∣,

where Vj,k is the option price for path j of bunch k. Selecting the parameters
as before, we notice in figure 4.3 that as expected the classic Monte Carlo does
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not converge to the closed formula result, while the new method guarantees the
convergence of the absolute error.

Figure 4.3: Comparison of the mean of the absolute error w.r.t the number of simula-
tions N of the two Monte Carlo methods in log-log scale under the BM model. Results
obtained for N = 27, ..., 214 simulations for M = 26 bunches with ∆t = 2−7.

Once we have checked that the new Monte Carlo actually converges, in
order to have a better estimate of the rate of convergence we use as estimator
the expression:

ε̂N∆t = σ̂N∆t =

√
Var(V j∆t)

N
, (4.8)

where Var(xj) is the variance of sample {xj}j=1,...,N . In this way, we can exploit
all the simulations (up to N = 220 ≈ 106 with ∆t = 2−8) to estimate the error.
In figure 4.4, it is possible to see that the described methodology reaches the
usual Monte Carlo rate of convergence of O(1/

√
N).

4.5 New Monte Carlo Simulation for NIG Model
The Monte Carlo simulation for a process with dynamics following a Normal

Inverse Gaussian model is a bit more complicated than the simple Brownian
Motion with drift and diffusion used in the previous section. Indeed, this kind
of process may be seen as a subordinated Brownian Motion, i.e. a Brownian
Motion combined with an Inverse Gaussian (IG) process. First, let’s have an
overview about how it is possible to simulate such a process; then we will see
how to apply the new approach for the simulation of the extrema.

Following the approach of Webber and Ribeiro (2003), we define the Normal
Inverse Gaussian (NIG) process Xt as a Lévy process where the increments are
distributed according to the NIG distribution. The process is defined by the
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Figure 4.4: Convergence of the Monte Carlo error estimate w.r.t the number of
simulations N of the new Monte Carlo method in log-log scale under the BM model.
Results obtained for N = 213, ..., 220 simulations with ∆t = 2−8.

parameters (α, β, δ, µ), with characteristic exponent:

ψNIG(z) = iµz + δ(γ −
√
α2 − (β + iz)2),

where γ =
√
α2 − β2, with δ > 0 and 0 ≤ |β| ≤ α. For the application to option

pricing, the NIG process Xt can be written as:

Xt = µt+Wh(t),

where Wt is a Brownian Motion with drift β and variance 1, while h(t) is an
Inverse Gaussian process with parameters (δt, γ). Moreover, if Xt represents
the log-return of an underlying asset St with risk-free rate r and dividend yield
q, then the risk-neutral measure is recovered choosing:

µ = r − q − δ(γ −
√
α2 − (β + 1)2).

and finally St = S0e
Xt . In order to construct a discrete sample path for the

subordinated Brownian Motion Wh(t), first simulate the Inverse Gaussian dis-
crete process {hk} on the grid tk = k∆t, for k = 0, ..., n, such that t0 = 0 and
tn = T , where the increments are computed as:

∆hk = hk − hk−1 ∼ IG(δ∆t, γ), h0 = 0.

Then, simulate a discrete Brownian Motion {Wk} with increments sampled as:

∆Wk = Wk −Wk−1 ∼ N (β∆hk,∆hk), W0 = 0.

Finally, the required discrete NIG process {Xk} is given by:

Xk = µtk +Wk, for k = 0, ..., n.

The classic Monte Carlo simulation for extrema would sample:

XT = max
k=0,...,n

Xk, Xt = min
k=0,...,n

Xk.
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In order to introduce the new approach, let’s notice that the increment ∆hk is
basically the variance of the increment ∆Wk on the interval [tk−1, tk]: therefore,
once we have the points on the grid (tk, Xk), we can simply apply formulas (4.6)
and (4.7) taking for each time interval [tk−1, tk] the diffusion σ =

√
∆hk.

4.5.1 Numerical Results
The comparison with an exact reference value in this case is impossible,

since the closed formulas for lookback and barrier options are available only
in the Brownian Motion case. Therefore, in order to judge the convergence of
the method, we compare the results obtained via Monte Carlo with the ones
obtained via the analytical Wiener-Hopf method. Indeed, the analysis of the
previous chapter on the results of the method shows that the error made at
S0 = 0.81 with grid size 216 is smaller than 10−4 (see figure 3.10). Therefore,
we can use this as a reference value, being the Monte Carlo error greater than
10−4 with the number of simulations we are running. The choice of parameters
for the NIG distribution has been made following Phelan et al. (2018), as in
chapter 3.

In figure 4.5 and 4.6, we can see that the convergence is similar to the one
obtained in the Brownian Motion case. Only on the last step we reach an error
which is comparable to the one of the analytic method, therefore the lack of
convergence in the last step of figure 4.5 is due to the fact that we are not
comparing the Monte Carlo method with an exact value.

Figure 4.5: Comparison of the convergence of the absolute error in ∆t of the two
Monte Carlo methods in log-scale under NIG model. Results obtained with N = 2 ·105

simulations, for ∆t = 2−1, ..., 2−8.

The rate of convergence of the new method, as in the Brownian Motion case,
doesn’t need the reference value to be checked, since we can estimate it directly
from the sample with equation (4.8). As it is possible to see in figure 4.7, also
in the NIG model case the method is convergent with O(1/

√
N).
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Figure 4.6: Comparison of the mean of the absolute error w.r.t the number of sim-
ulations N of the two Monte Carlo methods in log-scale under NIG model. Results
obtained for N = 27, ..., 214 simulations for M = 26 bunches with ∆t = 2−5.

Figure 4.7: Convergence of the Monte Carlo error estimate w.r.t the number of
simulations N of the new Monte Carlo method in log-scale under NIG model. Results
obtained for N = 213, ..., 220 simulations with ∆t = 2−8.
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Chapter 5

Conclusions

In this work we have presented two different approaches for the pricing of
continuously monitored exotic options under Lévy models: the Wiener-Hopf
method and the modified Monte Carlo.

The first is an analytical method, that relies on numerical techniques for
the computation of the integrals inside the formulas. It makes use of advanced
mathematical techniques, such as the Wiener-Hopf technique or the Inverse
Laplace Transform; moreover, the numerical computations involved require a
deep comprehension of the methods and a discussion about their convergence.
The application of such decomposition to option pricing has been studied in the
literature, such as in Phelan et al. (2018), but even before in Sgarra et al. (2006).
Thanks to that, it is possible to rely on different works for the analysis of the
many numerical methods and of the different analytical approaches, since each
work focuses on a piece of the puzzle. For example, in Phelan et al. (2017) we
have a deep study of the Hilbert transform, while Green et al. (2010) describes
in details the Wiener-Hopf decomposition. One of the most important analysis
is in Feng and Linetsky (2008), since it studies the analyticity strips in which
it is possible to choose the damping parameter for many different Lévy pro-
cesses. The main contribution of this thesis is the application of the technique
for continuously monitored options to Lookback options and for the American
and Barrier Digital options. Moreover, the presence of an analyticity region
for the method has been analyzed, focusing on both the mathematical settings,
with the graphical study on the Hilbert Transform of the function to be decom-
posed (section 3.3), and the numerical evidence on the region for the damping
parameter (section 3.4).

In this thesis we also consider a method which is completely numerical. It re-
lies only on the mathematical derivation of the distribution of the maximum for
the Brownian Motion and its application to the classical Monte Carlo approach.
For that reason, the proposed modified Monte Carlo method is very easy to
implement and, differently form the first method, is not based on complicated
mathematical techniques. In addition, it shows nice convergence properties that
are usually not satisfied by the classical simulation procedure. On this side, the
literature is richer on Brownian Motion (e.g. see Alabert and Caballero (2018)
and Becker (2010)). In this thesis, the financial application involves two dif-
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ferent models for the log-returns of the underlying asset: the Brownian Motion
model, used basically as a control thanks to the presence of closed formulas,
and the Normal Inverse Gaussian Model. The new feature introduced is the
modified Monte Carlo simulation for the NIG model.

The results obtained highlight that the two methods are actually comparable
regarding the possibility of application and the power of convergence. Indeed,
for both the methods the option price computed shows an error approximately
of O(10−4); moreover, both have been applied to single barrier options and
lookback options.
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Notation
Symbol Description
1 Indicator Function
< Real Part
= Imaginary Part
Ψ Characteristic Function of a Lévy Process
ψ Characteristic Exponent of a Lévy Process
f̂(z),F Fourier Transform
f̃(s),L Laplace Transform
H Hilbert Transform
f̂±(z) Half-range Fourier Transform, Wiener-Hopf factors
Z Zeta (Z-) Transform
sgn(x) Sign function
rect(x) Rectangular function
sinc(x) Sinc function
St Spot price at time t
St, St maximum and minimum of St
Xt Log-return, Lévy Process at time t
Xt, Xt maximum and minimum of Xt

V·(0) Option price at time t = 0
r Risk-free rate
q Dividend Yield
K Strike Price
B Barrier Level
φ(x), φγ(x) Payoff function, damped payoff function
γ Damping Parameter
N Number of grid points for FFT
∆z Step size in the transformed space
∆x step size in the real space
{xl} points of the grid in the real space
{zj} points of the grid in the transformed space
{sk} points for the trapezoidal method
σ(·) Exponential filter
A Trapezoidal rule parameter
mE , nE Euler acceleration parameters
Wt Brownian Motion
Mt Maximum of the Brownian Motion
Bt Brownian Bridge
Bt, Bt maximum and minimum of the Brownian Bridge
(µ, σ) Parameters of Brownian Motion Model
(α, β, δ, µ) Parameters of Normal Inverse Gaussian Model
i.i.d independent and identically distributed
w.r.t with respect to
FFT Fast Fourier Transform
NIG Normal Inverse Gaussian
BM Brownian Motion
IG Inverse Gaussian
ATM At-The-Money option
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