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Abstract

As modern engineering systems are becoming increasingly more complex, high
performances, reliability, and safety properties play a fundamental role in their
technological development. Abreast of the hardware development of monitoring
systems, which brings about new sensors and higher computational capabilities as
time goes by, there is a constant research over smart algorithms capable to exploit
the generated data. In this scenario a main role is played by fault detection and
isolation (FDI) algorithms.
A large number of different FDI algorithms can be found in literature, most of
them belong to two main categories: signal-based algorithms and model-based
ones.
In this Thesis a recently-proposed scheme for model-based fault detection will be
tested. More specifically, the proposed algorithm belongs to the class of observer-
based methods. Also, a new observer-based scheme for fault isolation, based on
fault models, will be introduced, described and tested.
Both algorithms have been designed to be implemented in a distributed fashion
based on partitioned system models, in order to be used in a large scale system
scenario.
In details, the original contributions of this Thesis are the following.
First we will implement the aforementioned model-based partition-based fault de-
tection algorithm on two different large scale systems. A chemical plant, which
consists in a distributed system where subsystems own strong relationships with
their neighbouring system, and a power network system, which instead shows the
case where the relationships between the subsystems are weaker. This is done with
the purpose of highlighting the main advantages and limitations of the proposed
algorithm in realistic case studies.
Second, a new algorithm that exploits fault models (assuming that faults are per-
sistent, when present) is proposed. Both a centralized and a distributed version
of the algorithm are implemented. By means of a suitable filtering process, the
value taken by the fault at each time instant is estimated, and such value is then
compared with analytically computed thresholds. This is done with the purpose
of combining together the main advantages of the two considered approaches.
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Strengths and weaknesses of the proposed methods are analysed in detail, com-
bining both the simulation results and the theoretical explanations.
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Sommario

L’esponenziale aumento di complessità nei moderni impianti tecnologici ha reso
l’affidabilità e la sicurezza, cos̀ı come la costante ricerca di migliorie nelle prestazioni,
un elemento di fondamentale importanza per il loro sviluppo tecnologico. Di pari
passo con lo sviluppo hardware, che ci rifornisce quotidianamente di nuova sensoris-
tica e di migliori capacità di calcolo, lo sviluppo di algoritmi in grado di sfuttare al
massimo un sempre maggior numero di dati rappresenta un importante settore di
ricerca. In questo scenario si collocano gli algoritmi che si occupano di rivelazione
di malfunzionamenti (i.e., fault detection) e della loro identificazione (i.e., fault
isolation).
Molti algoritmi di questo tipo sono diponibili in letteratura, e, nella maggior parte
dei casi, possono essere raggruppati in due macro categorie: algoritmi signal-based
ed algoritmi model-based.
In questa Tesi sono esaminate le performance di un algoritmo di fault detection
di tipo model based sviluppato recentemente, in particolare ci riferiremo alla sot-
toclasse degli algoritmi cosiddetti observer-based. Successivamente è proposto un
nuovo algoritmo per la fault isolation anch’esso di tipo observer based che sfrutta
malfunzionamenti (i.e., fault) modellizzati matematicamente.
Entrambi gli algoritmi sono stati implementati per garantirne l’applicabilità a casi
studio distribuiti, in modo da essere utilizzabili su impianti reali di grandi dimen-
sioni.
I contributi originali di questa Tesi sono i seguenti.
Per prima cosa è stato implementato l’algoritmo per la fault detection sopracitato
e ne sono state valutate le prestazioni, considerando due impianti di grandi dimen-
sioni: un impianto chimico ed un modello di rete elettrica. Il primo è stato scelto
perchè rappresenta un caso di sistema distribuito dove i legami tra sottosistemi
sono molto forti, il secondo per il motivo opposto. Questa scelta è giustificata dal
fatto che si intende mostrare i vantaggi e gli svantaggi dell’algoritmo in scenari di
tipo realistico.
In secondo luogo è stato sviluppato un nuovo algoritmo per l’isolazione dei fault
che sfrutta i modelli dei guasti (supponendo che essi siano persistenti, quando pre-
senti). Mediante un processo di stima il valore della variabile associata ad uno
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specifico guasto é approssimata ad ogni estante di tempo. Il valore cos̀ı ottenuto
viene poi confrontato con delle specifiche soglie, a loro volta calcolate mediante
metodi analitici.
I principali punti di forza, cos̀ı come le debolezze di tali approcci sono analizzati
in dettaglio, combinando i risultati delle simulazioni alle spiegazioni teoriche.
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Chapter 1

Introduction

As modern engineering systems are becoming increasingly more complex, high
performances, reliability, and safety properties play a fundamental role in their
technological development. Abreast of the hardware development of monitoring
systems, which brings about new sensors and higher computational capabilities as
time goes by, there is a constant research over smart algorithms capable to exploit
the generated data. In this scenario a main role is played by fault detection and
isolation (FDI) algorithms.
Considering a general system or plant, a fault can be defined as any relevant
deviation from its standard behaviour. A fault affecting a system highlights the
presence of some kind of malfunctioning; it is then crucial to rapidly detect and
locate it. Fault detection can be defined as the process which, by means of a
suitable manipulation of the available data (including model of the system, outputs
and inputs), infers the health state of the system, identifying the presence of any
possible fault. Fault isolation refers to step of localization of a detected fault
on the plant. In few words, fault detection warn us about the presence of a
malfunctioning, while fault isolation locates it.

1.1 Fault detection and isolation

A large number of different FDI algorithms can be found in literature (e.g., in
[6], in [2] and in [13]). Most of them belong to two main categories: signal-based
algorithms and model-based ones.

Signal-based FDI algorithms (e.g., the one in [8]) are essentially data-driven, mean-
ing that they exploit exclusively data collected by sensors, inputs and outputs of
the system, and make use of statistical and logical analysis. First of all, consider-
ing the plant to be in ”healthy” state (no Faults occurrence), data are collected



2 Introduction

for a period of time. These data are used to define the features characterizing
the system behaviour when no fault is acting. In this way, observing the plant
behaviour at work, and comparing new plant data, collected online, with the de-
rived features, it is possible to detect a unhealthy performance, and then possibly
declare and locate the fault.

Plant
Statistical
analysis

Testing
Decision
making

STAGE 1 Performed offline
Outputs

STAGE 2
System Outputs FAULT detected

Figure 1.1: Stages of signal-based fault detection and isolation.

Signal-based methods strongly rely on the analysis of the data pre-generated by
the system. This fact makes such approaches vulnerable in the acquisition phase,
considering that even a small deviation of the outputs will influence the statistical
analysis, and then the testing phase. Also, such methods are rigid to changes in
the plant, meaning that every time the system is modified, the whole acquisition
process must be afresh performed.

Model-based FDI algorithms (e.g., the ones in [1] and [7]) instead make funda-
mental use, as the name says, of the mathematical model of the considered plant,
derived from physical equations and relationships. The available model is exploited
to compute confidence levels characterizing the behaviour of the outputs in absence
of faults.

Model
Statistical
testing

Decision
making

System Outputs Residuals FAULT detected

Figure 1.2: Stages of model-based fault detection and isolation.

Model-based methods do not require any offline acquisition of the data. Once the
mathematical model of the system is derived, specific signals are generated combin-
ing information coming from plant sensors and analytically obtained values coming
from the system model, e.g. observer residuals. The detection is then performed
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comparing these residuals with specific analytically computed bounds. Model-
based approaches are less data-dependent and are less rigid to system changes
with respect to signal-based algorithms.
In this thesis a recently-proposed scheme for model-based fault detection will be
tested. More specifically, the proposed algorithm belongs to the class of observer-
based methods.

1.2 Observer based fault detection

Given the mathematical model of the system and the plant output vector y, it is
possible to use an observer to compute an output vector estimate ŷ.
Consider the general linear time invariant (LTI) system affected by noise

x(k + 1) = Ax(k) + w(k)

y(k) = Cx(k) + v(k)
(1.1)

where x(k) is the state vector, y(k) the output vector, u(k) the inputs, w(k) and
v(k) are stochastic noises applied to the state and to the outputs respectively, and
A,C are the system matrices.
The related Luenberger observer is given by the equations

x̂(k + 1) = Ax̂(k) + L(y − ŷ)

ŷ(k) = Cx̂(k)
(1.2)

where x̂(k) and ŷ(k) are the estimated state and the estimated output vectors
respectively, while L is the gain matrix.
As a fault occurs, provided that certain structural conditions are verified, the
system outputs y will be affected in some way. Since the observer is derived from
the standard (i.e., nominal) model of the plant (i.e. when faults are absent), it is
not designed to account for possible anomalous behaviours. This means that the
estimation gets worse as the fault affects the system, or roughly speaking that the
estimation error ”increases”. Analysing the trend of the residual r(k) = y(k)−ŷ(k)
it is then possible to monitor the health status of the system, and then to possibly
declare fault.
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Plant

System
model

State
observer

Residuals
analysis

A,B,C,D

y

−

ŷ

r = y − ŷ FAULT

Figure 1.3: Stages of observer-based fault detection and isolation.

Note however that residuals, in case of faults, are affected both by the noise com-
ponents v(k) and w(k) and by faults at the same time. The algorithm should then
be able to distinguish a fault event analysing a noisy signal. To do so, at each
time step k the residual r(k) is compared with a threshold ρ(k). The latter is com-
puted analytically from the mathematical model and observer matrices, in order
to guarantee a desired level of false alarm and missed detection rate. A possible
fault detection test is the following.{

if |r(k)| < ρ(k), then no fault is detected

otherwise fault is detected

This kind of residuals monitoring gives no information about a revealed fault, it
is then not suitable for fault isolation. In this thesis a modified (i.e., distributed)
version of such approach is considered, which exploits estimated fault signals and
returns just a partial isolation (i.e. faults can be located but there is no information
about their properties).

1.3 Observer based detection and isolation based

on fault models

An alternative approach to the one described in Chapter 1.2 is based on explicit
fault models. Common fault models are described in Section 1.3.1.

1.3.1 Fault models

As discussed, a fault is any relevant deviation from the standard behaviour of a
general system or plant. This definition includes a large number of different criti-
calities possibly affecting our system, as described below.
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Consider the general linearized and discretized equations (1.2) governing the be-
haviour of an engineering system. Some major categories of faults can be mathe-
matically modelled to improve the performances of our FDI algorithms:

• Additive faults are modelled as signals directly added on the system equa-
tions, either on the state or on the outputs, i.e.,

x(k + 1) = Ax(k) +Bffadd(k)+ w(k)

y(k) = Cx(k) +Dffadd(k)+ v(k)
(1.3)

The elements of vector fadd(k) are set to zero in ”healthy” system conditions
while, when a fault occurs, they take non zero values.
Faults of this kind represent by a bias acting directly on the system equations,
for example:

– leakages in tanks, pipes, etc., which bring about direct losses of liquid
flowrates, and subsequently affect the related state variables;

– broken output sensor, which return a biased status of the system, that
may lead to a wrong control action aimed to balance the bias.

• Multiplicative faults are modelled as perturbations on the system param-
eters, e.g.,

x(k + 1) = (I + fmul(k))Ax(k) + w(k) (1.4)

When the elements of matrix fmul(k) are different from zero a shift in the
outputs measurements occurs,which is linearly dependent upon the known
inputs. Also the system dynamic response can be compromised.
A change in the parameter of a system can be related to different processes.
Some examples can be:

– change in the inertia of a power generation unit;

– flow rate reduction due to deposits in water pipes.

1.3.2 Fault detection and isolation

The fault models introduced above can be used in the isolation process. Consider,
for example the system affected by additive noise in equation (1.3) (although the
same line of reasoning can be applied to model (1.4)).
The main idea consists of considering, in the estimation process, the fault vector
fadd(k) as a component of the state vector. Specifically fadd(k) is considered as a
constant state of the system, i.e., with model

fadd(k + 1) = fadd(k)
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An enlarged system including faults is then obtained. Afterwards an enlarged
predictor is used to estimate simultaneously the state vector x and the fault vector
fadd, returning the estimated vectors x̂ and f̂add, respectively.
Similarly to the fault detection case, the isolation is carried on comparing at each
time instant k each component of f̂add(k) with a suitable analytical threshold. Such
threshold is rigorously computed from the expected variance of the estimated fault
vector, as better specified in the following chapters.

1.4 Fault detection and isolation for large scale

systems

The early detection and the diagnosis of incipient faults are crucial tasks especially
while dealing with large plants. Large scale systems (LSSs) such as complex pro-
cess plants, high-performance ships, space vehicles, and many others engineering
apparatuses, rely on automatic diagnostic systems such as FDI to properly react
to failure situations. This allows operations ranging from immediate emergency
actions to the long-term modification of the maintenance schedule.
The aim of this thesis is to devise FDI schemes, with a special focus on their
implementation over large scale systems. Complex technological plants, such as
chemical systems or power networks, are characterized by the large number of
components and sensors. In these cases centralized approaches (for control and
monitoring) are prone to possible problems: from one side, computational prob-
lems can be encountered in algorithmic implementations, as the computational
complexity grows exponentially with the number of variables; on the other side,
such approaches are rigid, meaning that any change in the plant requires to adapt
the whole (control and monitoring) algorithm to the new system configuration.
Both issues can be solved devising and implementing distributed algorithms.
First, the large scale system is divided (i.e., partitioned) in smaller components
or subsystems, taking into account of all the relationships between them. Phys-
ically, a subsystem is a self-contained part of the plant, with its own inputs and
outputs, but where couplings with other subsystems are possible. For example,
the chemical plant proposed in [11] is composed by two reactors and a separator.
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Figure 1.4: Chemical system scheme from [11]

The liquid flows in the first reactor, then in the second and at last in the separa-
tor. There is also a recirculation flow from the separator to the first reactor that
makes the system strongly coupled. Here it is easy to define, as subsystems, the
reactors and the separator. Graphically, the system can be represented as a graph
connecting the subsystems as follows.

Reactor 1 Reactor 2 Separator

F1 F2

FR

Figure 1.5: Coupling graph of the chemical system in [11]

Here circles represent the subsystems, while arrows represent the coupling rela-
tionships between them. The direction of an arrow from i to j means that some
variables from subsystem i are used by subsystem j and not vice-versa.
Once given such new system (decomposed) representation, it is then possible to
redefine the monitoring problem in a distributed way. Since each subsystem is
modelled and treated as a single system where external contributions are due to
the relationships between the subsystems, the computational load is split out in a
number of local estimators (meaning an overall linear growth of the computational
complexity of the scale of the system and no more exponential with respect to the
system size).
Distributed approaches are less rigid than purely centralized ones, as they allow
the implementation of plug and play policies. When a subsystem is damaged,
it can be removed or modified without the need to rearrange the whole control
process, but just the local features.
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1.5 Contribution of this thesis

This thesis is developed following the main research results in [3] and [8] about
model-based distributed fault detection.
In [3] and [1], a distributed model-based fault detection method grounded on a
partition-based Luenberger observer is developed. For each subsystem, a local ob-
server is computed and information is exchanged only between the neighbouring
observers. The covariance of the residuals is also computed locally and it is used
to obtain consistent fault detection thresholds.
The fault detection test is faced in two ways: the first one, proposed in [3], consists
in comparing, for each time instant, the output prediction error with the afore-
mentioned thresholds; the second one (discussed in [1]) resorts to a method based
on the analysis of the moving averages of the residuals, which are compared to a
analytically obtained thresholds. While the application of the first method to an
academic example highlights the presence of an often restrictive trade off between
false-alarm and missed-detection rates, the second approach seems to overcome
these significant drawbacks: it both reduces significantly the false-alarm rate and,
improves the detection rate of even faults of small entity. The algorithm does
not isolate faults in a strict sense and faults are not explicitly modelled inside the
observer equations. Indeed it allows to locate the subsystem affected by a fault,
but not the specific fault and its properties.
In [8], a partition-based model-based FDI scheme based on moving horizon es-
timation is instead developed. This algorithm is able to estimate both the state
variables and the possible faults, since faults are explicitly modelled as states of the
system. Nevertheless, this algorithm is used only for deterministic systems, since
there is no definition of bounds or thresholds on the residual variance. Moreover,
the implementation is based on the parallelization of an optimization problem and
requires an iterative information spread in an all-to-all fashion. This method is
tested with a chemical plant case study, showing the effectiveness of a partition
based estimation facing a strongly interconnected net of subsystems.

The original contributions of this thesis are the following.
First we will implement the model-based partition-based fault detection algorithm
proposed in [1] on two different large scale plants: the chemical system in [11],
which consists in a distributed system where subsystems own strong relationships
with their neighbouring system, and the power network system in [3] which instead
shows the case where relationships between the subsystems are weaker. This is
done with the purpose of highlighting the main advantages and limitations of the
algorithm proposed in [1] in realistic case studies.
A new algorithm is then proposed that, similarly to [8], uses fault models (assum-
ing that faults are persistent, when present). Both a centralized and a distributed
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version of the algorithm are implemented. By means of a suitable filtering process,
the value taken by the fault at each time instant is estimated. Such value is com-
pared with some thresholds, in the distributed case those are also computed using
an approach similar to the one used in [1] and [3]. This is done with the purpose
of combining together the main advantages of the two considered approaches.





Chapter 2

Observer-based distributed fault
detection

In this chapter the model-based fault detection method proposed in [1] is described
along its main properties. Focus is placed on the distributed partition-based filter,
on the computation of the residuals covariance matrices, and on two different fault
detection testing methods: the one which tests single residuals (discussed in [3])
and the one testing moving window averages of the residuals (see [1]).

2.1 Distributed system model

The linear discrete-time model of a large scale system, characterized by the inter-
connection of M susbsystems is the following.

xi(k + 1) = Aiixi(k + 1) +
∑
j ̸=i

Aijxj(k) + wi(k)

yi(k) = Cixi(k) + vi(k)

(2.1)

The variable xi(k) ∈ IRni is the state and yi(k) ∈ IRpi is the output of the
subsystem. Signals wi(k) ∈ IRni and vi(k) ∈ IRpi are zero mean white noises,
for i = 1, ...,M , such that E[wi(k)w

T
j (k)] = Qiδij, E[vi(k)vTj (k)] = Riδij,

E[wi(k)v
T
j (k)] = 0 for all i, j = 1, ...,M and h, k ≥ 0. In the above notation

δij is the Kronercker delta function, i.e. δij = 1 if i = j and δij = 0 if i ̸= j.
Crucially important for our scope is the definition of the sets of the predecessors
Ni = {j|Aij ̸= 0} and of the successors Si = {j|i ∈ N} of subsystem i. The
definition of these sets allows for the graph-based representation of the large scale
system aready introduced in the previous chapter, see e.g., Figure 1.5 and Figure
2.1 below.
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Figure 2.1: Example of a large scale system coupling graph.

Collecting the equations (2.1) for all i =, ...,M we obtain the collective model:

x(k + 1) = Ax(k + 1) + w(k)

y(k) = Cx(k) + v(k)
(2.2)

where xT (k) = [xT
1 (k) . . . x

T
M(k)]T , yT (k) = [yT1 (k) . . . y

T
M(k)]T , Q =

diag(Q1 . . . QM) and R = diag(R1 . . . RM) are the covariance matrices of noises
w and v respectively, R = diag(C1 . . . CM) and

A =

⎡⎢⎣A11 . . . A1M
...

. . .
...

AM1 . . . AMM

⎤⎥⎦

Remark. Often the mathematical model of an engineering system is originally
given by a set of continuous time equations. Discrete-time models such as (2.1)
and (2.2) can be obtained through a discretization process. However, commonly
used discretization methods may impair the sparsity structure of the system.
Consider for example the chemical plant introduced in Section 1.4. Its graph rep-
resentation shows the relationships between the subsystems with directed arrows.
As introduced in the previous chapter, an arrow directed from subsystem i to
subsystem j denotes a ”structural” coupling term, meaning that variables of sub-
system i directly affect the behaviour of subsystem j behaviour and not vice-versa.
These coupling terms are directly reflected on the structure of matrix A, whose
blocks elements Aji are non zero only in presence of a direct influence of subsystem
i on subsystem j (i.e., a directed arrow in the coupling graph from i to j).
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A =

⎛⎜⎝A11 0 A13

A21 A22 0

0 A32 A33

⎞⎟⎠
1

23

Figure 2.2: Sparse matrix A and related coupling graph. Diagonal blocks Aii

account for the internal structure of the i-th subsystem, non diagonal elements
Aij, i ̸= j, are related to the relationships between the subsystems

To overcome the risk of loss in sparsity, which is of crucial interest in the develop-
ment of distributed algorithms, a block-wise discretization such the one proposed
[5] will be adopted in this thesis. This method, named Mixed Euler-ZOH, consists
of integrating the state equation of each differential subsystem i by considering
the state xj(t), for j ̸= i, as constant during the interval. The diagonal elements
(i.e., Aii) are then equal to the exact discretization of each subsystem, while the
sparsity structure of A is maintained (i.e., Aji ̸= 0 only if exists direct relation
from subsystem i to subsystem j).

2.2 Distributed partition-based predictor

In this work, the state of the real system is estimated thanks to a Luenberger
predictor. In the standard centralized case, its equations are the following:

x̂(k + 1) = Ax̂(k) + L(y(k)− Cx̂(k))

ŷ(k) = Cx̂(k)
(2.3)

This predictor exploits the information given by the system outputs and estimates
its states, while gain matrix L is computed in order to guarantee the Schur stability
of matrix (A − LC). In general, matrix L, if designed with classical tools (e.g.,
Kalman filter theory, pole placement), is full, i.e., does not have the same block
structure of matrix A. The idea in this thesis is to face the filtering problem in a
distributed and scalable way e.g., as proposed in [3] and [4]. The main cornerstones
of such approaches are the following.

• Distributed design. Conditions on stability and convergence of the so-
lution are enforced locally by each subsystem, exploiting only the pieces of
information from the neighbouring system. Local computations allow a scal-
able evolution of the LSS, where plug-in and unplugging of subsystems do
not require a whole system reconfiguration.
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• Distributed implementation. As for the design, also the online imple-
mentation of the predictor is performed locally: each subsystem needs only
information from the neighbours to work. This reduces the whole compu-
tational load, since the estimation process does not need a wide spread of
information as in the purely centralized case.

The equations of the partition-based Luenberger filter proposed in [3] are the
following:

x̂i(k + 1) =
∑
j∈Ni

(Aijx̂j(k) + Lij(yj(k)− Cjx̂j(k)))

ŷi(k) = Cix̂i(k)

(2.4)

where x̂i and ŷi are the estimated state and the estimated output of subsystem i,
respectively.
Gains Lij are computed in order to guarantee the convergence of the solution and,
to maintain sparsity, we set Lij ̸= 0 only if Aij ̸= 0. This is possible, for example,
by designing the predictor as in [3] (i.e., distributed filter) or with linear matrix
inequalities (LMI). Details about the latter approach are given in Section 2.2.2.

Subsystem
1

Subsystem
2

Subsystem
3

Observer
1

Observer
2

Observer
3

System

y1

y2

y3

ŷ1

ŷ2

ŷ3

Figure 2.3: Example of distributed estimation scheme.

As in the picture, the i-subsystem (for all i = 1, . . . ,M) has a related local observer
which estimates its own state and output vectors xi and yi. Each observer col-
lects output measurements yj, from the associated subsystem, and the estimated
vectors x̂j, from the set of its predecessors Ni, in order to perform the estimation.
Simultaneously the estimated vector x̂i is sent to the set of the successors Si of
each subsystem.
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2.2.1 Estimation error

The local estimation error associated to the i-th local observer is defined as ei(k) =
xi(k)− x̂i(k) and its dynamics is given by

ei(k + 1) =
∑
j∈Ni

{(Aij − LijCj)ej(k)− Lijvj(k)}+ wi(k) (2.5)

Considering the overall error equation:

e(k + 1) = (A+ LC)e(k)− Lv(k) + w(k) (2.6)

where e(k) = [eT1 (k), . . . , e
T
M(k)]T , L si the block matrix having the (i, j)-th element

equal to Lij for i, j = 1, . . . ,M , while A, C and noises vectors v and w, and their
related covariance matrices Q and R, refer to the collective model presented in
(2.2).
Defining F = A − LC, the covariance matrix of the collective estimation error
vector e, i.e., Π(k) := E[e(k)eT (k)], evolves according to the following rule:

Π(k + 1) = FΠ(k)F + LRLT +Q (2.7)

Since the subsystems are connected to each other, it is not possible to compute the
variance of ei(k), namely Πii(k), as well as its evolution over time, in a purely local
and distributed way. In fact, the evolution of Π(k), as well as that of ei(k), can be
computed only in a centralized way. However, in [3], a method has been proposed,
which allows to to compute, in a distributed fashion, a block diagonal upper bound
to Π(k), at each time instant k. We name as Bi(k) this bound associated to the
i-th subsystem only (i.e., Bi(k) is an upper bound to Πii(k), covariance matrix of
the i-th subsystem). The evolution of Bi(k) is obtained according to the following
rule.

Bi(k + 1) = Qi +
∑
j∈Ni

[(Ãij − LijC̃j)Bi(k)(Ãij − LijC̃j)
T + LijR̃jL

T
ij] (2.8)

where Ãij =
√
ζiAij, C̃i =

√
ζiCi, R̃i =

√
ζiRi and ζi = |Si| for all i, j = 1, ...,M .

Bi(k) will be used in the following sections to compute reliable bounds of the
residuals variance.

2.2.2 Distributed partition-based predictor design through
Linear Matrix Inequalities

In this subsection we show how to properly design the Luenberger gain matrix L
using linear matrix inequalities (LMI).
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The problem consists of computing a structured matrix L, not only such that
matrix F = A − LC is Schur stable (conferring stability to the error dynamics
(2.6)), but also by allowing the recursive set of equations (2.8) to converge to a
steady state solution. To provide that both are verified, in [3] the following result
is proved.

Theorem 1. Define

F = F̃ ⊙ F̃ =

⎡⎢⎣ F̃11 ⊗ F̃11 . . . F̃1M ⊗ F̃1M
...

. . .
...

F̃M1 ⊗ F̃M1 . . . F̃MM ⊗ F̃MM

⎤⎥⎦ (2.9)

where ⊙ denotes the Khatri-Rao product, while ⊗ denotes the Kroneker product.
Also F̃ = (Ã − LC̃) and F̃ij = (Ãij − LC̃j) where Ãij =

√
ζiAij, C̃i =

√
ζiCi,

R̃i =
√
ζiRi and ζi = |Si| for all i, j = 1, ...,M .

If matrix F is Schur stable, then

(i) There exists, for all i = 1, . . . ,M a matrix B̄i ≥ 0, independent of the initial
conditions of (2.8), such that Bi(k) → B̄i as k → +∞;

(ii) A− LC is Schur stable.

However, it has not been possible to use the condition provided by Theorem 1 for
LMI-based design of the gain matrix L. For this reason, in this thesis, the adopted
procedure is the following:

1. Design L structured in such a way that

F̃ = (Ã− LC̃)

is Schur stable;

2. Check if F is also Schur stable.

To solve Step 1 we rely on the following, well known, result:

Theorem 2. F̃ is Schur stable in and only if ∃ symmetric matrix P > 0 such that

F̃ TPF̃ − P < 0 (2.10)

Where given a generic symmetric matrix Z, the condition Z > 0 means that matrix
Z is positive definite, while Z < 0 means that Z is negative definite.
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Note that (2.10) can be expanded as follows

F̃ TPF̃ − P < 0 (2.11a)

(Ã− LC̃)TP (Ã− LC̃)− P < 0 (2.11b)

ÃTPÃ− C̃TLTPÃ− ÃTPLC̃ + C̃TLTPLC̃ − P < 0 (2.11c)

Define K = PL, in this way we rewrite (2.11c) as

ÃTPP−1PÃ+ C̃TKTP−1KC̃ − P − C̃TKT Ã− ÃTKC̃ < 0 (2.11d)

In turn (2.11d) is equivalent to

−(P + C̃TKT Ã+ ÃTKC̃) +
[
ÃTP C̃TKT

] [P−1 0
0 P−1

] [
PÃ

KC̃

]
< 0 (2.11e)

Resorting to the Schur complement, (2.11e) reduces to the following LMI⎡⎣P + C̃TKT Ã+ ÃTKC̃ ÃTP C̃TKT

PÃ P 0

KC̃ 0 P

⎤⎦ > 0 (2.12)

As a solution to the LMI (feasibility) problem defined by (2.12) and P > 0 is

available, we can compute

L = P−1K

Note that, however, in order to impose the proper sparsity block structure to
matrix L, the following additive constraints must be imposed on the matrices P
and K:

(a) P is block diagonal, i.e.,

P = diag(P1, . . . , PM)

where Pi ∈ Rni×ni ;

(b) K has the same block structure of A, i.e.,

K =

⎡⎢⎣K11 . . . K1M
...

. . .
...

KM1 . . . KMM

⎤⎥⎦ (2.13)

where Kij ∈ Rni×pj , ∀i, j, and Kij ̸= 0 only if Aij ̸= 0
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Note that this procedure clearly does not guarantee to find a gain matrix L guar-
anteeing both the stability of the error dynamics, and the convergence of equations
(2.8). In our examples it has been sufficient to design a structured L matrix solv-
ing a feasibility problem for Theorem 2. The obtained L could already guarantee
F Schur stability.
Further studies may be devoted to establish a relationship between the Schur sta-
bility of F̃ and the one of F.

2.3 Single residual testing

2.3.1 Main rationale of the algorithm

The Fault detection algorithm here considered is based on the analysis of the
residuals

ri(k) = yi(k)− ŷi(k) (2.14)

The residual ri(k) represents the deviation of the estimated output with respect
to the actual one, updated to the k-th time instant. Residuals can be computed
locally using data generated by the state estimator and the subsystem outputs.
In normal working plant conditions, ri(k) behaves as a stochastic signal with zero
mean and defined variance, as shown for example in Fig. 2.4.

Figure 2.4: Residual behaviour in standard plant working conditions

When a fault affects the plant, it will corrupt also the associated residuals be-
haviour (see e.g., Fig. 2.5),since the observer model is no more equal to the real
one. It is then reasonable to compute suitable thresholds embodying the standard
trends of ri(k), and declare fault when a residual exceed its associated bound.
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Figure 2.5: Residual behaviour when the plant is affected by a fault

The general idea of the fault detection algorithm in [1] is to compute these thresh-
olds using the covariance of ri(k), i.e.,

Σi(k) = E[ri(k)ri(k)T ]

Defining with ri,l(k), the l-th entry of ri(k), we have that σ2
i,l, the l-th diagonal

entry of Σi(k) is the variance of ri,l(k). Relying on the Gaussianity of ri,l(k) (which
follows from the Gaussianity of noises wj(k) and vj(k), j = 1, ...,M and from the
linearity of both state and observer equations, (2.1) and (2.4), respectively), for
any p ∈ (0, 1], we can define a scalar α ≥ 0 such that

P (|ri,j(k)|/σi,l(k) ≥ α) = p i.e

∫ α

−α

f(x)dx = 1− p

where f is the probability distribution of a zero mean Gaussian variable with
unitary variance. It follows that |ri,l(k)| > ρi,l(k) = ασi,l(k) with probability p in
nominal (i.e, non-faulty) conditions. This criterion is used to detect faults, and
the following rule is applied at any time instant.{

if |ri,l(k)| < ρi,l(k), then no fault is detected

otherwise fault is detected

Is therefore clear that p represent the FA (false alarm) rate and will be denoted
with pFA.
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Figure 2.6: Residual fault detection test

2.3.2 Distributed threshold computation, approximation
of the residual variance

Given system (2.1), the predictor equations (2.4), and the estimation error evo-
lution over time (2.5), it is possible to compute the residual vector of the i-th
subsystem ri(k) and its variance Σi(k). Respectively:

ri(k) = Ciei(k) + vi(k) (2.15)

Σi(k) = CiΠii(k)C
T
i +Ri (2.16)

where Πii(k) = E[ei(k)ei(k)T ] is the variance of the estimation error treated in the
previous Section 2.2.1.
Since, as we already explained, Πii cannot be computed in a purely local way,
also the real value of Σi(k) needs to be determined considering the overall scheme.
However, in view of the linear relationship between the residual ri(k) and the
state estimation error ei, in [1] the local upper bound introduced in (2.8) is used
to compute an analytical upper bound to Σi(k).

ΣB
i (k) = CiBi(k)C

T
i +Ri (2.17)

The l-th diagonal element (σB
i,l)

2 of matrix ΣB
i (k) is used in place of the actual

variance σ2
i,l(k) of the residual ri,l(k) in the computation of threshold ρi,l(k). Once

given a desired false alarm rate ρ, we have

ρi,l(k) = ασB
i,l (2.18)
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Note that the thresholds computed for a given pFA (i.e., to obtain a given false
alarm rate) are upper bounds to the tight thresholds values, since upper bounds
to the actual residual variances are used. In this way, in non faulty conditions,
|ri,l(k)| < ρi,l(k) with probability smaller than pFA, meaning smaller probability
to have a false alarm, but at the same time a smaller probability to detect faults.

2.4 Moving window average of residuals testing

As discussed in [1], the choice of a single residual (i.e., one at each time step)
may lead to unsatisfactory performances facing small-amplitude faults. Consid-
ering, on the other hand, the mean value of a number n of subsequent residuals
should give us more opportunity to detect small faults, while maintaining a good
FA rate. This approach, proposed in [1], exploits the analytical upper bound
B(k) = diag(B1(k), ..., BM(k)) derived above to define a proper upper bound to
the covariance of a mean of residuals. At each time step the average of the residual
values computed over a sliding window is tested. Specifically, we define

r̄
(m)
i,l (k) =

1

m

m−1∑
j=0

ri,l(k − j) (2.19)

which is a Gaussian variable with zero mean and variance (σ̄
(m)
i,l (k))2 =

E[(r̄(m)
i,l (k))2], in view of the assumpions introduced in the previous sections. Con-

sidering then r̄
(m)
i,l (k) as a single observation is then easy to derive a FD test based

on thresholds crossing as before.{
if |r̄(m)

i,l (k)| < ρ̄
(m)
i,l (k), then no fault is detected

otherwise fault is detected

where ρ̄
(m)
i,l (k) = α(σ

(m)
i,l )(k). The choice of the average of m values rather than

a single one is justified by the fact that σ̄
(m)
i,l (k) ≤ σi,l(k). This means, that in

principle, we can obtain the same false alarm rate with a smaller threshold which
should allow the detection of smaller-amplitude faults.

In order to compute an analytical upper bound to σ̄
(m)
i,l (k), we exploit the one com-

puted for the single residual case introduced in Section 2.3.2, i.e., ΣB
i (k). Denote

with (σB
i,l(k))

2 the l-th diagonal entry of matrix ΣB
i (k). Considering that

(σ̄
(m)
i,l (k))2 =

1

m2

m−1∑
j,h=0

γi,l(k − j, k − h) (2.20)
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where γi,l(k − j, k − h) = E[ri,l(k − j)ri,l(k − h)]. A reliable and conservative
upper bound to γi,l(k − j, k − h) for all j, h = 0, ...,m is provided by the following
proposition.
Proposition 1. It holds that both γi,l(k − j, k − h) ≤ γB,1

i,l (k − j, k − h) and for

j ̸= h, γi,l(k − j, k − h) ≤ γB,2
i,l (k − j, k − h), where

γ̄B,1
i,l (k − j, k − h) =

1

2
((σB

i,l(k − j))2 + (σB
i,l(k − h))2) (2.21a)

γ̄B,2
i,l (k − j, k − h) =

1

2
∥Ci,l∥ ∥diag(B(k −max(h, j)))

+ Ci,lBi(k −max(h, j))CT
i,l1n∥µλ|h−j| + ∥Ci,l∥

Lc
iR

c
i,l

µλ|h−j|−1

(2.21b)

where Lc
i is the i-th block column of L, Rc

i,l is the l-th column of matrix Ri and
Ci,l is the l-th row of matrix Ci. Scalars µ and λ ∈ [0, 1) are defined in such a
way that ∥F j∥ ≤ µλj for all j > 0. In view of Proposition 1 the upper bound to

(σ
(m)
i,l (k))2 is defined as:

(σ
(m),B
i,l (k))2 =

1

m2

m−1∑
j,h=0

γ̄B
i,l(k − j, k − h) (2.22)

if j = h, γ̄B
i,l(k − j, k − h) = γ̄B,1

i,l (k − j, k − h), else if j ̸= h

γ̄B
i,l(k − j, k − h) = min{γ̄B,1

i,l (k − j, k − h); γ̄B,2
i,l (k − j, k − h)} (2.23)

The term (2.23) allows to play with the tradeoff between guaranteed false alarm
and missed detection rates. The obtained approximation also exploits the station-
arity of ri,l(k): since the correlation between ri,l(k − j) and ri,l(k) asymptotically
tends to zero, the contributions of ”old” (i.e., for higher values of j) measurements

become negligible in the computation of (σ
(m),B
i,l (k))2.



Chapter 3

Application of distributed fault
detection algorithms to selected
case studies

In this chapter we show some significant simulation results obtained applying the
model-based distributed fault detection algorithm described in Section 2 on two
selected case studies: the chemical plant described in [11] and the power network
system introduced in [3].

3.1 Chemical plant case study

The first large scale system considered in this chapter is inspired by the chemical
plant used for simulation studies in [11] and sketched in Figure 3.1 .

Figure 3.1: Chemical system scheme from [11]
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The plant is composed of two reactors and a separator. The reactant liquid A
feeds the two reactors, where it is converted into the products B and C. There
is also a recirculation flow from the separator to the first reactor that makes the
system strongly coupled.
The centralized mathematical model of the plant is composed of twelve non linear
continuous time differential state equations, which account for the levels of the
liquid inside the reactors and the separators, Hi, their temperature, Ti, and the
concentrations of chemical products A, xAi and B, xBi, with i = 1, 2, 3.
The non linear model of the plant is

Ḣ1 =
1

ρA1

(Ff1 + FR − F1)

ẋA1 =
1

ρA1H1

(Ff1xA0 + FRxAR − F1xA1)− kA1xA1

ẋB1 =
1

ρA1H1

(FRxBR − F1xB1) + kA1xA1 − kB1xB1

Ṫ1 =
1

ρA1H1

(Ff1T0 + FRTR − F1T1)

− 1

Cp

(KA1xA1∆HA + kB1xB1∆HB) +
Q1

ρA1CpH1

Ḣ2 =
1

ρA2

(Ff2 + F1 − F2)

ẋA2 =
1

ρA2H2

(Ff2xA0 + F1xA1 − F2xA2)− kA2xA2

ẋB2 =
1

ρA2H2

(F1xB1 − F2xB2) + kA2xA2 − kB2xB2

Ṫ2 =
1

ρA2H2

(Ff2T0 + F1T1 − F2T2)

− 1

Cp

(KA2xA2∆HA + kB2xB2∆HB) +
Q2

ρA2CpH2

Ḣ3 =
1

ρA3

(F2 − FD − FR − F3)

ẋA3 =
1

ρA3H3

(F2xA2(FD + FR)xAR − F3xA3)

ẋB3 =
1

ρA3H3

(F2xA2(FD + FR)xBR − F3xB3)

Ṫ3 =
1

ρA3H3

(F2T2 − (FD + FR)TR − F3T3) +
Q3

ρA3CpH3

(3.1)
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where, for i = 1, 2, 3

Fi = kviHi kAi = kA exp

(
− EA

RTi

)
kBi = kB exp

(
− EB

RTi

)
Also,

FD = 0.01FR xAR =
αAxA3

x̄3

xBR =
αBxB3

x̄3

x̄3 = αAxA3 + αBxB3 + αCxC3 xC3 = (1− xa3 − xB3)

The state vector collecting the twelve state variables is the following

x =
[
H1 xA1 xB1 T1 H2 xA2 xB2 T2 H3 xA3 xB3 T3

]T
(3.2)

The input vector u is composed of the flowrates feeding the reactors and the
separator, and of the supplied heat.

u =
[
Ff1 Q1 Ff2 Q2 FR Q3

]T
(3.3)

The output vector of the original system in [11] corresponds with the state (i.e.,
y = x). Since our main goal is to test the estimation capabilities of the pro-
posed algorithm, we decided to reduce the number of the available (i.e., measured)
outputs. The considered output vector is

y =
[
H1 T1 H2 T2 H3 xA3 xB3 T3

]T
(3.4)

The system has been linearized around the equilibrium working point defined by

the constant input vector ū =
[
8.33 10 0.5 10 66.2 10

]T
. Subsequently, the

system has been discretized, considering a sampling time of 0.1s, by means of the
method in [5] which, as already mentioned, maintains the structure of the system
matrices.
The standard centralized, linearized and discretized equations, fed by the equilib-
rium input vector ū, are then in the following form{

x(k + 1) = Ax(k) +Bū+ v(k)

y(k) = Cx(k) + w(k)
(3.5)

where A ∈ R12×12 and C ∈ R8×8 are the centralized, linearized and discretized
system matrices, B ∈ R12×6 is the collective matrix related to inputs ū, while
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v(k) and w(k) are zero mean white noises applied to the state and to the output,
with covariance matrices Q ∈ R12×12 and R ∈ R8×8 respectively. The matrix Q
has been chosen considering diagonal entries σ2

w,ii = 5× 10−2x̄i, for i = 1, . . . , 12,
where x̄i is the value of the related state in nominal conditions. The same
reasoning has been done for the diagonal entries σ2

v,ii of matrix R.

In the Table 3.1 the steady state and parameters’ values are reported.

Parameter Value Units Parameter Value Units
H1 29.8 m A1 3 m2

xA1 0.542 wt(%) A2 3 m2

xB1 0.393 wt(%) A3 1 m2

T1 315 K ρ 0.15 kg/m2

H2 30 m Cp 25 kJ/kg K
xA2 0.503 wt(%) kv1 2.5 kg/ms
xB2 0.421 wt(%) kv2 2.5 kg/ms
T2 315 K kv3 2.5 kg/ms
H3 3.27 m xA0 1 wt(%)
xA3 0.238 wt(%) T0 313 K
xB3 0.570 wt(%) kA 0.02 1/s
T3 315 K kB 0.018 1/s
Ff1 8.33 kg/s EA/R -100 K
Q1 10 kJ/s EB/R -150 K
Ff2 0.5 kg/s ∆HA -40 kJ/kg
Q2 10 kJ/s ∆HB -50 kJ/kg
FR 66.2 kg/s αA 3.5
Q3 10 kJ/s αB 1.1

αC 0.5

Table 3.1: Table of the parameters of the chemical plant in [11]

In view of the structure of the system (see e.g., the graph structure in Fig. 1.5)
and having discretized the system by means of the method in [5], A, B and C have
the following structure:

A =

⎡⎢⎢⎢⎢⎢⎢⎣
A11 0 A13

A12 A22 0

0 A32 A33

⎤⎥⎥⎥⎥⎥⎥⎦ B =

⎡⎢⎢⎢⎢⎢⎢⎣
B1 0 0

0 B2 0

0 0 B3

⎤⎥⎥⎥⎥⎥⎥⎦ C =

⎡⎢⎢⎢⎢⎢⎢⎣
C1 0 0

0 C2 0

0 0 C3

⎤⎥⎥⎥⎥⎥⎥⎦
Figure 3.2: Structure of collective matrices A, B and C. Aij ∈ R4×4, ∀i, j = 1, 2, 3,
Bi ∈ R4×2, ∀i, j = 1, 2, 3, while C1, C2 ∈ R2×4 and C3 ∈ R4×4
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This particular structure of the system matrices allows to partition the discrete
time system. In particular, we define

x1 =

⎡⎢⎢⎣
H1

xA1

xB1

T1

⎤⎥⎥⎦ x2 =

⎡⎢⎢⎣
H2

xA2

xB2

T2

⎤⎥⎥⎦ x3 =

⎡⎢⎢⎣
H3

xA3

xB3

T3

⎤⎥⎥⎦
u1 =

[
Ff1

Q1

]
u2 =

[
Ff2

Q2

]
u3 =

[
FR

Q3

]

y1 =

[
H1

T1

]
y2 =

[
H2

T2

]
y3 =

⎡⎢⎢⎣
H3

xA3

xB3

T3

⎤⎥⎥⎦

(3.6)

which are the partitioned system state, input and output vectors, respectively.
Also, the noise vectors v(k) and w(k) can be decomposed into three subvec-
tors each acting on a single subsystem (i.e., v(k)T =

[
vT1 (k) vT2 (k) vT3 (k)

]
and

w(k)T =
[
wT

1 (k) wT
2 (k) wT

3 (k)
]
respectively) whose dimensions are equal to the

ones of the related state or input.
The submodels resulting from the partition process are the following.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(k + 1) = A11x1(k) + A13x3(k) +B1ū1 + v1(k)

y1(k) = C1x1(k) + w1(k)

x2(k + 1) = A22x2(k) + A21x1(k) +B2ū2 + v2(k)

y2(k) = C2x2(k) + w2(k)

x3(k + 1) = A33x3(k) + A32x2(k) +B3ū3 + v3(k)

y3(k) = C3x3(k) + w3(k)

(3.7)

3.1.1 Distributed predictor

The LMI-based design method discussed in Section 2.2.2 is used to compute the
Luenberger observer gains Lij which guarantee Schur stability of matrix F =
(A−LC) and to confer a proper structure to the collective matrix L equal to the
one of A, i.e., as in Fig.3.2. The resulting distributed Luenberger predictor has
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equations ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂1(k + 1) = A11x̂1(k) + L11(y1(k)− C1x̂1(k))

+ A13x̂3(k) + L13(y3(k)− C3x̂3(k)) +B1ū1

x̂2(k + 1) = A22x̂2(k) + L22(y2(k)− C2x̂2(k))

+ A21x̂1(k) + L21(y1(k)− C1x̂1(k)) +B2ū2

x̂3(k + 1) = A33x̂3(k) + L33(y3(k)− C3x̂3(k))

+ A32x̂2(k) + L32(y2(k)− C2x̂2(k)) +B3ū3

(3.8)

3.1.2 Threshold computation

Once the gain matrices are computed, the ingredients needed to compute the
analytical upper bounds to the residuals variance (σB

i,l)
2, introduced in equation

(2.8) are available. In Table 3.2 those analytical bounds are compared with the
corresponding empirical variance of the residuals (calculated over 10000 samples),
in case of single residual analysis (i.e., m = 1).

Single Residual (σB
i,l)

2 (σEMP,i)
2

m = 1
Subsystem 1 rH1 0.0200 0.0199

rT1 0.8217 0.5164
Subsystem 2 rH2 0.0266 0.0223

rT2 1.1515 0.6575
Subsystem 3 rH3 0.0120 0.0064

rxA3
0.0508 0.0179

rxB3
0.0004 0.0002

rT3 91.1323 32.5589

Table 3.2: Comparison between analytical values of the residual variance (σB
i,l)

2

and the empirical value σEMP,i for the single residual

In Tables 3.3 and 3.4 the same values are shown, considering moving sliding win-
dows with dimensions m = 20 and m = 40, respectively.
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Sliding window (σ
(20),B
i,l )2 (σEMP,i(20))

2

average, m = 20 10−2×
Subsystem 1 rH1 1.8658 0.1184

rT1 64.8809 2.2606
Subsystem 2 rH2 2.4532 0.1416

rT2 88.8313 2.9365
Subsystem 3 rH3 1.1325 0.0470

rxA3
4.5997 0.1774

rxB3
0.0375 0.0012

rT3 5388.3516 106.1951

Table 3.3: Comparison between the analytical upper bound to the variance of the
mean over a moving sliding window of 20 residuals (σ

(20),B
i,l )2 and the empirical

value (σ
(20)
EMP,i)

2

Sliding window (σ
(40),B
i,l )2 (σEMP,i(40))

2

average, m = 40 10−2×
Subsystem 1 rH1 1.2130 0.0580

rT1 38.5784 1.0787
Subsystem 2 rH2 1.5813 0.0679

rT2 52.4205 1.4119
Subsystem 3 rH3 0.07459 0.0229

rxA3
2.9184 0.0927

rxB3
0.0275 0.0006

rT3 2998.9128 48.5497

Table 3.4: Comparison between the analytical upper bound to the variance of the
mean over a moving sliding window of 40 residuals (σ

(40),B
i,l )2 and the empirical

value (σ
(40)
EMP,i)

2
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3.1.3 Simulation results

In this section the simulation results obtained with the chemical plant model are
reported. Persistent additive faults of different amplitudes occur at time step
k = 100. Small faults correspond to ∼ 1% of the value taken, in normal working
conditions, by the state variable directly affected by the fault. Medium faults
correspond instead to ∼ 2.5% of the same value. Faults act directly on the 4th

state equation of the second subsystem, which represent the temperature of the
second chemical reactor.

For each proposed case we display two types of diagrams. Fig-
ures 3.3, 3.5, 3.7, 3.9, 3.11, 3.13 show, for each experiment type, the rate
of plants where a fault is detected for each time instant k. The corresponding
rates are shown for each subsystem output residual and for each subsystem.
These results are obtained considering the analytical threshold only and 1000
Montecarlo runs.

The plots in Figures 3.4, 3.6, 3.8, 3.10, 3.12, 3.14, instead, show the values taken
by the residual (or the mean of residuals over sliding windows) at each simulation
time instant, compared to the corresponding thresholds, both analytical and
empirical. In this case 30 Montecarlo runs only were considered. Three different
residual testing scenarios are taken into account: single residual testing and
moving window averages on windows of lengths m = 20 and m = 40.

In the computation of the thresholds, the false alarm (FA) rate has been set to

0.0002, i.e, α = 3.7190. The related thresholds are indeed the values ρ
(m)
i,l , where i

is the index of the substystem, l is the index related to the state of the subsystem,
while m is the length of the sliding window (omitted when considering the single
residual). These values are compared with the corresponding empirical values

ρ
(m)
EMP, i,l, which were obtained simulating the system in standard steady-state

conditions for 10000 time instants.

While the results obtained with medium and large faults show very good detection
capabilities in all the considered cases, the results obtained with the small additive
fault are of particular interest and somehow counterintuitive. Remarkably, from
Figure 3.3 we notice that the detection capabilities of our scheme are good when
we test single residuals but, when we test averages of m = 20 residuals, these
capabilities decrease, see Figure 3.5. Interestingly, on the other hand, when m =
40, the algorithm performances are very good, although with a slight delay. This
peculiar behaviour will be discussed in Section 3.3.
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Figure 3.3: Small fault affecting subsystem 2, single residual testing

Figure 3.4: Single residual testing, behaviour of the residuals, compared to ρi,l and
ρEMP, i,l
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Figure 3.5: Small fault affecting subsystem 2, testing over a sliding window of 20
residuals

Figure 3.6: Moving sliding window mean of 20 residual testing, behaviour of the
residuals, compared to ρ

(20)
i,l and ρ

(20)
EMP, i,l
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Figure 3.7: Small fault affecting subsystem 2, testing over a sliding window of 40
residuals

Figure 3.8: Moving sliding window mean of 40 residual testing, behaviour of the
residuals, compared to ρ

(40)
i,l and ρ

(40)
EMP, i,l
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Figure 3.9: Medium fault affecting subsystem 2, single residual testing

Figure 3.10: Single residual testing, behaviour of the residuals, compared to ρi,l
and ρEMP, i,l
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Figure 3.11: Medium fault affecting subsystem 2, testing over a sliding window of
20 residuals

Figure 3.12: Moving sliding window mean of 20 residual testing, behaviour of the
residuals, compared to ρ

(20)
i,l and ρ

(20)
EMP, i,l
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Figure 3.13: Medium fault affecting subsystem 2, testing over a sliding window of
40 residuals

Figure 3.14: Moving sliding window mean of 40 residual testing, behaviour of the
residuals, compared to ρ

(40)
i,l and ρ

(40)
EMP, i,l
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3.2 Power network system case study

Large scale systems which can benefit from partition-based FDI are power network
systems (PNS). In Fig. 3.15 there is a general representation with all the main
elements composing a standard PNS.

Figure 3.15: Example of a Power network system from [10]

In the examined case, we consider the PNS model introduced in [3]. It is composed
of 5 power generation areas coupled through tie lines. Tie lines allows for power
exchange between neighbouring areas: if the load profile (i.e., required current) of
an area grows too much, exceeding the power generated in that area, neighbouring
areas can contribute to satisfy the request. In our case we consider electrical power
to be generated by thermal power stations equipped with single stage turbines.
The coupling graph of the examined power network system is shown in Figure 3.2.
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Figure 3.16: Coupling graph of the PNS in [3]

Neighbouring relationships are symmetric since they are directly related to power
exchanges in electric lines (i.e., electric power flows in both directions). The dy-
namics of each power generation area Σ[i], i = 1, ..., 5, equipped with primary
control and linearized around the equilibrium value for all variables, is described
by the a linear time invariant model of the general type

ẋi(t) = Ac
iixi(t) +Bc

iui + Lc
i∆PLi

+
∑
j∈Ñi

Ac
ijxj (3.9)

The state xi = (∆θi,∆ωi,∆Pmi
,∆Pvi) includes the angular deviation of the rotor

with respect the stationary reference axis on the stator ∆θi, the speed deviation of
rotating mass from the nominal value ∆ωi, the deviation of the mechanical power
from its nominal value ∆Pmi

and the deviation of the steam valve position from
the nominal value ∆Pvi . The matrices of the system are

Ac
ii =

⎡⎢⎢⎢⎣
0 1 0 0

−
∑

j∈Ñi

2Hi
− Di

2Hi

1
2Hi

0

0 0 − 1
Tti

1
Tti

0 − 1
RiTgi

0 − 1
Tgi

⎤⎥⎥⎥⎦

Bc
i =

⎡⎢⎢⎣
0
0
0
1

Tgi

⎤⎥⎥⎦ , Aij =

⎡⎢⎢⎣
0 0 0 0
Pij

2Hi
0 0 0

0 0 0 0
0 0 0 0

⎤⎥⎥⎦ , Lc
i =

⎡⎢⎢⎣
0

− 1
2Hi

0
0

⎤⎥⎥⎦
We denote with Ñi = Ni \ i the set of the strict predecessors.
In Table 3.5 the meaning of each parameter and constant is reported.
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∆θi Deviation of the angular displacement of the rotor with respect
to the stationary reference axis on the stator

∆ωi Speed deviation of rotating mass from nominal value
∆Pmi Deviation of the mechanical power from nominal value (p.u.)
∆Pvi Deviation of the steam valve position from nominal value (p.u.)
∆Prefi Deviation of the reference set power from nominal value (p.u.)
∆PLi

Deviation of the nonfrequency-sensitive load change from nominal value (p.u.)

Hi Inertia constant defined as Hi =
kinetic energy at rated speed

machine rating
(typically values in range [1− 10] sec)

Ri Speed regulation

Di Defined as
percent change in load
change in frequency

Tti Prime mover time constant (typically values in range [0.2− 2] sec )
Tgi Governor time constant (typically values in range [0.1− 0.6] sec )
Pij Slope of the power angle curve at the initial operating angle

between area i and area j

Table 3.5: Variables of a generation area with typical value ranges. (p.u.) stands
for “per unit”, from [9].

The control input of each area is ūi = ∆Prefi , while ∆PL is the local power load.
Since the control design is out of the scope of this work, we set ∆Pref = ∆PLi

and
constant ∆PLi

=
[
0.22 0.12 0.10 0.08 −0.1

]
. In view of this, the load Lc

i and

the input Bc
i components can be merged in a single factor B̃i.

B̃i = Bc
i + Lc

i =

⎡⎢⎢⎣
0

− 1
2Hi

0
1

Tgi

⎤⎥⎥⎦
The angular deviation ∆θi and the angular speed deviation ∆ωi, as well as the load
profile ∆PLi

, are considered measurable. In view of this, the output transformation
is

yi(t) = Cixi(t)

where matrix Ci is

Ci =

[
1 0 0 0
0 1 0 0

]
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The state matrix A of the collective model has the following sparse structure

A =

⎡⎢⎢⎢⎢⎣
A11 A12 0 0 0
A21 A22 A23 0 A25

0 A32 A33 A34 0
0 0 A43 A44 A45

0 A52 0 A54 A55

⎤⎥⎥⎥⎥⎦ (3.10)

Matrices B̃ and C of the collective model are

B̃ =

⎡⎢⎢⎢⎢⎣
B̃1 0 0 0 0

0 B̃2 0 0 0

0 0 B̃3 0 0

0 0 0 B̃4 0

0 0 0 0 B̃5

⎤⎥⎥⎥⎥⎦ C =

⎡⎢⎢⎢⎢⎣
C1 0 0 0 0
0 C2 0 0 0
0 0 C3 0 0
0 0 0 C4 0
0 0 0 0 C5

⎤⎥⎥⎥⎥⎦ (3.11)

Considering A, B̃ and C we obtain the centralized collective continuous time model
of our PNS, composed by 5 generation areas{

ẋ(t) = Ax(t) + B̃ū

y(t) = Cx(t)
(3.12)

where the collective input vector ūT =
[
ūT
1 ūT

2 ūT
3 ūT

4 ūT
5

]
.

In order to preserve the sparse structure of matrix (3.10), together with the related
possibility to compute the partitioned distributed model, we discretize the system
by means of the method in [5] with a sampling interval of 0.1s. Furthermore,
Gaussian white noises, w(k) and v(k), are added both on the states and on the
measurements, respectively. We recall that noises wi(k) ∈ Rni and vi(k) ∈ Rpi are
zero-mean white noises, for i = 1, . . . , 5, with related covariance matrices Qi and
Ri, respectively. Similarly to [3], we set:

Qi =

⎡⎢⎢⎣
0.9× 10−6 0 0 0

0 0.9× 10−6 0 0
0 0 1× 10−3 0
0 0 0 1× 10−3

⎤⎥⎥⎦

Ri =

[
0.9× 10−6 0

0 0.9× 10−6

]
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The standard centralized and discretized equations, denoted with subscript ”d”,
are then in the following form{

x(k + 1) = Adx(k) + B̃dū+ w(k)

y(k) = Cdx(k) + v(k)
(3.13)

where w(k)T =
[
wT

1 (k) wT
2 (k) wT

3 (k) wT
4 (k) wT

5

]T
is the collective state noise

vector, and v(k)T =
[
vT1 (k) vT2 (k) vT3 (k) vT4 (k) vT5

]T
is the collective output

noise vector.

Model (3.13), in view of the structure of matrices (3.10) and (3.11), which is main-
tained also after the discretization process, can be partitioned in five subsystems
accounting for their relationships as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(k + 1) = Ad,11x1(k) + Ad,12x2(k) + B̃d,1ū1 + w1(k)

y1(k) = Cd,1x1(k) + v1(k)

x2(k + 1) = Ad,22x2(k) + Ad,21x1(k) + Ad,23x3(k) + Ad,25x5(k) + B̃d,2ū2 + w2(k)

y2(k) = Cd,2x2(k) + v2(k)

x3(k + 1) = Ad,33x3(k) + Ad,32x2(k) + Ad,34x4(k) + B̃d,3ū3 + w3(k)

y3(k) = Cd,3x3(k) + v3(k)

x4(k + 1) = Ad,44x4(k) + Ad,43x3(k) + Ad,45x5(k) + B̃d,4ū4 + w4(k)

y4(k) = Cd,4x4(k) + v4(k)

x5(k + 1) = Ad,55x5(k) + Ad,52x2(k) + Ad,54x4(k) + B̃d,5ū5 + w5(k)

y5(k) = Cd,5x5(k) + v5(k)

(3.14)

3.2.1 Distributed predictor

The Luenberger observer gains Lij, guaranteeing both Schur stability of matrix
F = (Ad−LC), and a structure to the collective matrix L equal to the one ofAd, are
computed according to LMI-based design method described in Section 2.2.2. The
obtained distributed Luenberger predictor result in a set of 5 equations, similarly
to the one in (3.8), structured as the partitioned system (3.14).
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3.2.2 Threshold computation

Once the gain matrices are computed, all the ingredients needed to compute the
analytical upper bounds to the residuals variance (σB

i,l)
2, introduced in equation

(2.8) are available. In Tables 3.6, 3.7, and 3.8 the analytical bounds are compared
with the corresponding empirical variances of the residuals (calculated over 10000
samples), in case m = 1, m = 20, and m = 40, respectively.

Single Residual (σB
i,l)

2 (σEMP,i)
2

m = 1 10−4×
Subsystem 1 r∆θ1 0.0325 0.0218

r∆ω1 0.0663 0.0238
Subsystem 2 r∆θ2 0.0503 0.0237

r∆ω2 0.1678 0.0278
Subsystem 3 r∆θ3 0.0414 0.0229

r∆ω3 0.1353 0.0254
Subsystem 4 r∆θ4 0.0411 0.0227

r∆ω4 0.1132 0.0332
Subsystem 5 r∆θ5 0.0411 0.0226

r∆ω5 0.1185 0.0314

Table 3.6: Comparison between analytical values of the residual variance (σB
i,l)

2

and the empirical value σEMP,i for the single residual
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Sliding window (σ
(20),B
i,l )2 (σEMP,i(20))

2

average, m = 20 10−5×
Subsystem 1 r∆θ1 0.2730 0.0117

r∆ω1 0.5376 0.0046
Subsystem 2 r∆θ2 0.4130 0.0094

r∆ω2 1.2976 0.0023
Subsystem 3 r∆θ3 0.3444 0.0102

r∆ω3 1.0622 0.0059
Subsystem 4 r∆θ4 0.3418 0.0104

r∆ω4 0.9004 0.0524
Subsystem 5 r∆θ5 0.3417 0.0094

r∆ω5 0.9402 0.0224

Table 3.7: Comparison between the analytical upper bound to the variance of the
mean over a moving sliding window of 20 residuals (σ

(20),B
i,l )2 and the empirical

value (σ
(20)
EMP,i)

2

Sliding window (σ
(40),B
i,l )2 (σEMP,i(40))

2

average, m = 40 10−5×
Subsystem 1 r∆θ1 0.1660 0.0053

r∆ω1 0.3223 0.0018
Subsystem 2 r∆θ2 0.2489 0.0041

r∆ω2 0.7655 0.0010
Subsystem 3 r∆θ3 0.2085 0.0041

r∆ω3 0.6295 0.0026
Subsystem 4 r∆θ4 0.2070 0.0051

r∆ω4 0.5359 0.0507
Subsystem 5 r∆θ5 0.2069 0.0042

r∆ω5 0.5591 0.0209

Table 3.8: Comparison between the analytical upper bound to the variance of the
mean over a moving sliding window of 40 residuals (σ

(40),B
i,l )2 and the empirical

value (σ
(40)
EMP,i)

2
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3.2.3 Simulation results

In this section the simulation results obtained with the power network system
model are reported.
In the simulations whose results are shown in Figures 3.17- 3.22, a persistent ad-
ditive fault of amplitude 1, which occurs at time step k = 100, is introduced on
the third state of the subsystem 2. Secondly, in the simulations whose results are
shown in Figures 3.23- 3.28, a realistic fault, which commonly occurs in PNS, is
applied. More specifically, the governor time constants Tg1 is increased from 0.1
to 2 at time k = 100. Note that Tg defines the frequency of the control action
closing the loop between the generated power and the required one. Therefore,
an increase in its value leads to slower response of the power load and a slower
recovery of the network system, compromising the entire system performance.
For each proposed case we display two types of diagrams. Fig-
ures 3.17, 3.19, 3.21, 3.23, 3.25, 3.27 show, for each experiment type, the rate
of networks where a fault is detected for each time instant k. The correspond-
ing rates are shown for each subsystem output residual and for each subsystem.
These results are obtained considering the analytical threshold only 1000 Monte-
carlo runs.
The plots in Figures 3.18, 3.20, 3.22, 3.24, 3.26, and 3.28, instead, show the val-
ues taken by the residual (or the mean of residuals over sliding windows) at each
simulation time instant, compared to the corresponding thresholds, both analyt-
ical and empirical. In this case 30 Montecarlo runs only were considered. Three
different residual testing scenarios are taken into account: single residual testing
and moving window averages on windows of lengths m = 20 and m = 40.
In the computation of the thresholds, the false alarm (FA) rate has been set to

0.0002, i.e, α = 3.7190. The related thresholds are indeed the values ρ
(m)
i,l , where

i is the index of the substystem, l is the index related to the state of the subsys-
tem, while m is the length of the sliding window (omitted when considering the
single residual). These values are compared with the corresponding empirical val-

ues ρ
(m)
EMP, i,l, which were obtained simulating the system in standard steady-state

conditions for 10000 time instants.
While the detection, in case of parameter variation, is very good in all the cases,
the results obtained with the first experiment (i.e., persistent additive fault) are
of particular interest. Remarkably, from Figure 3.17 we notice that at time step
k = 200, i.e., 100 time steps after the fault occurrence, only 40% of the systems
detected it when a single residual is tested. Even worse performances are obtained,
as visible in Figure 3.19, when a window of length m = 20 is used: in this case the
diagram shows that no fault is detected by the algorithm. The detection capabil-
ities are recovered, instead, when m = 40, which is visible from Figure 3.21. This
peculiar behaviour will be discussed in Section 3.3.
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Figure 3.17: Additive fault affecting subsystem 2, single residual testing

Figure 3.18: Single residual testing, behaviour of the residuals, compared to the
related ρi,l and ρEMP,i
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Figure 3.19: Additive fault affecting subsystem 2, moving window average of 20
residuals testing

Figure 3.20: Moving window average of 20 residuals testing, behaviour of the mean
of the residuals, compared to the related ρ
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EMP,i
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Figure 3.21: Additive fault affecting subsystem 2, moving window average of 40
residuals testing

Figure 3.22: Moving window average of 40 residuals testing, behaviour of the mean
of the residuals, compared to the related ρ
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Figure 3.23: Parametric (i.e., multiplicative) fault affecting Tg1 (subsystem 1),
single residual testing

Figure 3.24: Single residual testing, behaviour of the residuals, compared to the
related ρi,l and ρEMP,i
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Figure 3.25: Parametric (i.e., multiplicative) fault affecting Tg1 (subsystem 1),
moving window average of 20 residuals testing

Figure 3.26: Moving window average of 20 residuals testing, behaviour of the mean
of the residuals, compared to the related ρ
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Figure 3.27: Parametric (i.e., multiplicative) fault affecting Tg1 (subsystem 1),
moving window average of 40 residuals testing

Figure 3.28: Moving window average of 40 residuals testing, behaviour of the mean
of the residuals, compared to the related ρ
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3.3 Insights on the results

In this section we will draw some theoretical considerations about the FD algo-
rithm and its properties. These considerations are motivated by the analysis of the
simulation results shown so far, and in particular of the cases when the (additive)
fault takes small amplitudes.
In [1] the FD test over a moving sliding window of residuals was meant to be a
smart alternative to the single residuals approach, especially facing small ampli-
tude faults. In the paper, the use of the average of m values rather than single
values was justified by the fact that σ̄

(m)
i,l (k) ≤ σi,l, which means that in principle

it is possible to obtain the same FA rate with smaller thresholds (which allows
to detect faults of smaller amplitude). Furthermore, this gives the possibility to
reduce the FA rate without loss in missed detection rate. In [1], an academic ex-
ample which enforced this choice was proposed.
Implementing the algorithm on more complex large scale systems, we noted that
the proposed moving window average method shows some criticalities. It may
happen, for example, that the computed threshold ρ

(m)
i,l results to be too large to

detect faults, obstructing in some cases the detection.
For sake of simplicity of presentation but without loss of generality, from now on
in this chapter subscripts i and l (i.e., the index of the subsystem and the index
of the corresponding output index, respectively) will be omitted.

3.3.1 Statistical behaviour of the residuals

We denote with r(k) the analyzed residual, and with

r(m)(k) =
1

m

m∑
i=1

r(k − i+ 1)

the residual mean over a sliding window of length m. In stationary conditions,
considering a fault f acting on the system, r(k) can be written as

r(k) = µrff + n(k) (3.15)

where n(k) is a colored noise, which depends on noises w(k) and v(k), and whose
variance is σ2. Also, µrf is the gain between the fault and the residual. Thanks to
(3.15)

r(m)(k) = µrff + n(m)(k) (3.16)

where n(m)(k) = 1
m

∑m
i=1 n(k − i + 1). Note that (σ(m))2, the variance of n(m)(k),

verifies σ2/m < (σ(m))2 < σ2. Also, it is possible to prove that σ(m+1) < σ(m) for
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all m ≥ 1, i.e., it is monotonically decreasing with respect to m. Exemplifying
plots of the corresponding ideal (i.e., tight) thresholds are given in Figures 3.29
and 3.30, where we compute ρ = ασ and ρ(m) = ασ(m). When fault is absent (i.e.,
f = 0), the probability to declare fault is the FA rate, i.e., the yellow-colored areas
Figures 3.29 and 3.30.

α

α  -ρ

 ρ

Figure 3.29: Standard distribution
of r(k), in blue, and associated
threshold ρ, in red.

α

α

 ρ(m)

 -ρ(m)

Figure 3.30: Standard distribution
of r(m)(k), in green, and associated
threshold ρ(m), in orange.

On the other hand, when the fault is present (i.e., f ̸= 0), the probabilities to detect
the fault (when the thresholds are computed in an ideal way) can be computed as
the yellow-coloured areas in Figures 3.31 and 3.32.

-ρ

 ρ

Mean of the residuals

Probability to 
detect fault

Figure 3.31: Standard distribution
of r(k), in blue, and associated
threshold ρ, in red.

-ρ(m)

 ρ(m)Mean of the residuals

Probability to 
detect fault

Figure 3.32: Standard distribution
of r(m)(k), in green, and associated
threshold ρ(m), in orange.
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From the inspection of Figures 3.31 and 3.32 it is possible to conclude that the use
of r(m)(k) rather than r(k) can be beneficial for a more efficient fault detection. In
fact, as expected, the use of r(m) allows to reduce the threshold (maintaining the
FA rate invariant) and, as a result, it allows to increase the fault detection rate.

This consideration, however, may not hold when the thresholds are computed in
a conservative way, e.g., using the distributed partition-based method discussed
in Chapter 2. Denote with (σB)2 and (σ(m),B)2 the - conservative - upper bounds
of the covariances of r(k) and r(m)(k), respectively, computed distributively. As
it will be clarified later, the value of σ(m),B may not be strictly decreasing as a
function of m for small values of m, making σ(m),B (for m > 1) more conservative
than σB, in a relative sense.
In Figure 3.33, the probabilities to detect the fault, when the thresholds are com-
puted using σB and σ(m),B, can be obtained as the areas of the surfaces coloured
in grey and yellow, respectively.

-ρ(m)

 ρ(m)

Mean of the residuals

Probability to 
detect fault  ρ

 -ρ

..........
...
... ..

Figure 3.33: Distribution of r(m), in green, and associated threshold ρ(m), in orange,
when (σ(m)(k))2 slightly decreases. Dashed lines represent the distribution of r(k),
in blue, and and associated threshold ρ, in red.

Apparently, in the case depicted in Figure 3.33, the probability to detect the fault
using r(m)(k) is smaller than the probability to detect the fault using r(k). The
reason lies in the fact that, while the real variance of r(m) has a significant decrease
rate as m increases, σ(m),B (based on which the threshold is computed) does not
display the same behaviour, and is too large to allow an efficient fault detection.

This does not mean that the discussed method, based on the analysis of r(m)(k)
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is always uneffective. As also apparent in the simulation results shown in the
previous sections, when m is sufficiently large, the performances of the methods
improve significantly. This happens when

ρ(m),B = ασ(m),B < µrff (3.17)

i.e., when the threshold becomes lower than the mean value of r(m). In the follow-
ing, the condition on m allowing to verify (3.17) will be studied.

3.3.2 Dependence of (σ(m),B(k))2 upon m

The upper bound to the residual variance, computed at time k, is defined as in
(2.22), i.e.,

(σ(m),B(k))2 =
1

m2

m−1∑
j,h=0

γ̄B(k − j, k − h) (3.18)

where γ̄B(k − j, k − h) is given by

{
γ̄B(k − j, k − h) = γ̄B,1(k − j, k − h) if j = h

γ̄B(k − j, k − h) = min{γ̄B,1(k − j, k − h); γ̄B,2(k − j, k − h)} if j ̸= h

(3.19)
Terms γ̄B,1(k − j, k − h) and γ̄B,2(k − j, k − h) are defined as follows

γ̄B,1(k − j, k − h) =
1

2
((σB(k − j))2 + (σB(k − h))2) (3.20)

γ̄B,2(k − j, k − h) =
1

2
∥C∥ ∥diag(B(k −max(h, j)))

+ CBi(k −max(h, j))CT1n∥µλ|h−j|

+ ∥C∥ ∥Lc
iR

c∥µλ|h−j|−1

(3.21)

where (σB(k))2 is the analytically computed upper bound of the variance in the
single residual case, while the other ingredients have already been introduced in
the Chapter 2.
In view of the stability properties of the state estimator, after a transient, σB(k)
becomes constant (i.e., we set σB(k) = σB), while γ̄B(k−j, k−h) in (3.19) becomes
independent of k and γ̄B(h, j) = γ̄B(k + h, k + j) for all k. Also

γ̄B(h, j) = γ̄B(j, h) (3.22)

In view of these considerations
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1. γ̄B,1(j, h) = (σB)2, constant ∀j, h = 1, . . . ,m;

2. γ̄B,2(j, h) is a exponentially decreasing function with respect to |h−j|, ∀j, h =
1, . . . ,m;.

We can therefore introduce the integer q, defined as the minimum value of |h− j|
such that

γ̄B,2(j, h) < (σB)2

for all |h− j| > q. Therefore, for all |h− j| > q, we set

γ̄B(h, j) = γ̄B,2(h, j) (3.23)

For clarity, in view of (3.18), we can compute (σ(m),B)2 as the mean of the m2

elements of matrix Γ ∈ Rm×m, defined as

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ̄B1(1, 1) · · · γ̄B1(1, q) γ̄B2(1, q + 1) · · · γ̄B2(1,m)
...

. . .
...

. . . . . .
...

γ̄B1(q, 1) · · · γ̄B1(q, q) · · · . . . γ̄B2(q,m)

γ̄B2(q, 1)
. . . · · · γ̄B1(q + 1, q + 1) · · · γ̄B1(q + 1,m)

...
. . . . . . · · · . . .

...
γ̄B2(m, 1) · · · γ̄B2(m, q) γ̄B1(m, q + 1) · · · γ̄B1(m,m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.24)

Colors have been introduced to highlight the structure of Γ. Since γ̄B(j, h) =
γ̄B(h, j) for all j, h, Γ is a symmetric band matrix.

Since the values of γ̄B,2 exponentially decrease with |h − j|, for simplicity we
consider them negligible. In view of this and of (3.18), we compute that, if m > q

(σ(m),B)2 ≃ m2 − (m− q)(m− q + 1)

m2
(σ(m),B)2 (3.25)

since γ̄B1(h, j) = (σ(m),B)2 for all h, j, and appears m2 − (m− q)(m− q+1) times
in matrix Γ. In Figure 3.34 the plot of σ(m),B in (3.25) as a function of m is shown.
Remark that σ(m),B → 0 as m → +∞.
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Figure 3.34: Plot of σ(m),B in (3.25) as a function of m. In this example σ(m),B = 1
and q = 5.

3.3.3 Choice of the window length

Based on the considerations made in the preceding subsections, a simple method
to decide either to opt for a sliding window approach or for a single residual one
is here devised. In particular, we want to detect faults with entity f > f̄min with
a maximum detection time delay τmax. Regarding the detection delay τ , it is
proportional to the window length m: for simplicity we set τ = m. Therefore, for
a fixed FA rate α, it is possible to verify the stated requirement using a window
of length τmax, in view of (3.17) and (3.25), only if√

τ 2max − (τmax − q)(τmax − q + 1)

τmax

ασB < µrffmin (3.26)

From this discussion we can conclude that the moving sliding window approach
is definitively the best choice for our FD problem, guaranteeing the detection of
small-entity faults of magnitude greater or equal to f̄min only of (3.26) is verified:
in this case we can take m as the minimum value that guarantees that√

m2 − (m− q)(m− q + 1)

τmax

<
µrffmin

ρB

where ρB = ασB is the threshold used in the single residual case. Otherwise, the
best choice to take is to analyze the single residual r(k).



Chapter 4

A novel algorithm for centralized
and distributed observer-based
fault isolation

As already discussed, fault isolation can be described as the step beyond the de-
tection, consisting of the identification of a specific a fault acting on a system.
In this chapter a novel observer-based fault isolation algorithm is proposed and
described along its main features. This algorithm exploits the main properties of
the FD method in [1], such as the use of a state estimator and the generation of
thresholds based on upper bounds to the residual variance. However, differently
from the latter, it not only detects the presence of a specific fault, but also it is
able to estimate its main characteristics, matching the observed malfunctioning
with a specific fault signal which has been modelled.

4.1 System model including modelled faults

In most cases, dealing with the implementation of FDI algorithms for complex en-
gineering systems, the model of typical possible faults which may affect a system,
along with its main triggers and consequences, is known (e.g., main faults which
need to be detected in PNS are related to a change in the parameters Tg, as in
Subsection 3.2.3).
Recalling the fault models introduced in Section 1.3.1, in this section we will re-
fer only to faults whose mathematical behaviour can be characterized by additive
terms in state equations.
The linear discrete-time centralized autonomous model of a generic engineering
system, including the contribution of a set of selected additive faults, is the fol-
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lowing
x(k + 1) = Ax(k) +Bff(k) + w(k)

y(k) = Cx(k) +Dff(k) + v(k)
(4.1)

where, x(k) ∈ Rn is the state vector, y ∈ Rp is the output vector, w(k) ∈ Rn

is the noise vector associated with the state, while v(k) ∈ Rp is the noise vector
associated with the output. A ∈ Rn×n and C ∈ Rn×p are the state and the output
matrices, respectively. Moreover, f(k) ∈ Rnf is the fault vector, whose elements
are different from zero only in presence of a fault occurrence, while Bf ∈ Rn×nf

and Df ∈ Rp×nf are the matrices relating the behaviour of the fault f to the state
and to the output equations, respectively.

4.2 Enlarged system and observer

Given a system model as the one in (4.1), we can redefine its structure as follows.
Considering fault vector f(k) as a constant signal under the assumption that the
faults are persistent, we can rewrite the state equations in (4.1) as

x(k + 1) = Ax(k) +Bff(k) + w(k)

f(k + 1) = f(k)
(4.2)

Given this particular system form, vector f(k) appears as a variable acting on the
state and on the outputs, with its own state equation. We can then define the
enlarged model of the system. Its equations in matricial form are the following⎧⎪⎪⎨⎪⎪⎩

[
x(k + 1)
f(k + 1)

]
=

[
A Bf

0 Inf

] [
x(k)
f(k)

]
+

[
In
0

]
w(k)

y(k) =
[
C Df

] [x(k)
f(k)

]
+ v(k)

(4.3)

where Inf
and In are identity matrices of dimension nf and n, respectively. Noise

vector w̃(k) =

[
In
0

]
w(k), is justified by the fact that w(k) does not affect directly

the fault equations.
We can now introduce the enlarged state vector

xT (k) =
[
xT (k) fT (k)

]
(4.4)

Moreover, we define with Ā ∈ R(n+nf )×(n+nf ) and with C̄ ∈ Rp×(n+nf ) the following
matrices

Ā =

[
A Bf

0 Inf

]
C̄ =

[
C Df

]
(4.5)
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The whole enlarged system can be then rewritten in the form{
x(k + 1) = Āx(k) + w̃(k)

y(k) = C̄x(k) + v(k)
(4.6)

Recalling the general equations of the standard centralized Luenberger predictor
in (2.3), we can consider to develop a Luenberger observer for the enlarged system
introduced in equation (4.6). In this way the collective estimated vector x̂(k)
would include both the state vector estimate, namely x̂(k), and an estimate of the
fault vector, f̂(k).
Developing the equations of a centralized Luenberger predictor for the enlarged
state in equation (4.4), we obtain the following equation:

x̂(k + 1) = Āx̂(k) + L̄(y(k)− C̄x̂(k)) (4.7)

Gain matrix L̄ ∈ Rp×(n+nf ) of the enlarged system can be computed by means of
the LMI method introduced in Section 2.2.2, which guarantees Schur stability of
matrix F̄ = (Ā − L̄C̄). Note that since we are dealing with the centralized case,
it is not necessary to enforce a fixed block structure to L̄.

4.3 Observer feasibility conditions

The observability of the enlarged system (Ā, C̄) is a necessary condition to properly
formulate the estimation problem and reconstruct the whole enlarged state vector
x̂(k). Thus, we test the observability of (Ā, C̄) by means of the PBH observability
test, recalled below

Theorem 3 (PBH observability test). The generic system (A,C), where matrix
A ∈ Rn×n and matrix C ∈ Rn×p, is observable if and only if

rank(O(λ)) = n ∀λ ∈ C

where O(λ) is defined as

O(λ) =

[
λI − A

C

]
and I ∈ Rn×n is the identity matrix.
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Note that rank(
[
λI − A

]
) = n except for λ equal to the eigenvalues of A. It is

then sufficient to check the rank of matrix O(λ) only for ∀λ ∈ spec(A), where
spec(A) is the spectrum of A, i.e., the set of its eigenvalues.

It is straightforward to show that, in view of Theorem 3, the enlarged system (4.6)
is observable if the following conditions are verified at the same time:

(i) the pair (A,C) is observable;

(ii) the system matrix

Sf =

[
I − A Bf

C Df

]
has full rank n+ nf .

This can be proved by writing the matrix O(λ) in case of system (4.6), i.e.

O(λ) =

[
λI − Ā

C̄

]
(4.8)

our problem reduces to checking the condition

rank(O(λ)) = n+ nf ∀λ ∈ spac(Ā) (4.9)

Recalling that Ā, as introduced in (4.5), is defined as

Ā =

[
A Bf

0 Inf

]
(4.10)

In view of its block-triangular structure

spec(Ā) = spec(A) ∪ {1, . . . , 1}  
nf times

(4.11)

Moreover, in view of the definition of Ā and C̄, we obtain that

O(λ) =

⎡⎢⎢⎣λI −
[
A Bf

0 Inf

]
[
C Df

]
⎤⎥⎥⎦ =

⎡⎣λI − A −Bf

0 (λ− 1)Inf

C Df

⎤⎦ (4.12)

The rank of O(λ) is equal to the one of

Õ(λ) =

⎡⎣[λI − A
C

]
−Bf

Df

0 (λ− 1)Inf

⎤⎦ (4.13)
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• For λ ̸= 1
rank((λ− 1)Inf

) = nf and, in view of the observability of (A,C)

rank

[
λI − A

C

]
= n (4.14)

Therefore rankÕ(λ) = n+ nf for λ ̸= 1.

• For λ = 1

Õ(1) =

⎡⎣I − A −Bf

C Df

0 0

⎤⎦ =

[
Sf

0

]
(4.15)

clearly, if rank(Sf ) = nf + n, then rank(Õ(1)) = n+ nf .

Therefore, under the assumptions (i) and (ii), the observer gain L̄ exists such that
(Ā− L̄C̄) is asymptotically stable.

Remark
Condition (ii) requires that no transmission zeroes exist in z = 1. It can be
interpreted as the condition required (considering System (4.1) with w(k) = 0 and
v(k) = 0 for all k ≥ 0) for the uniqueness of the pair x̄, f̄ guaranteeing that, if
y(t) = ȳ ∀t, in steady state f(t) = f̄ and x(k) = x̄.
In fact,in steady state {

x̄ = Ax̄+Bf f̄

ȳ = Cx̄+Df f̄
(4.16)

In matrix form, [
I − A −Bf

C Df

] [
x̄
f̄

]
= Sf

[
x̄
f̄

]
=

[
0
ȳ

]
(4.17)

A unique solution x̄, f̄ can be found provided that Sf has full column rank n+nf .
A necessary condition for this to occur is that the number of columns of Sf smaller
or equal than the number of rows, i.e.,

n+ nf ≤ n+ p

i.e., that
p ≥ nf (4.18)

This is a fundamental limitation of any fault detection scheme, requiring that
the number of the modelled faults is not larger than the number of the available
measures.
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4.4 Estimation error of the enlarged observer

The dynamics of the estimation error of the enlarged system (Ā, C̄), namely ē(k) =
x(k)− x̂(k), is given by

ē(k + 1) = (Ā+ L̄C̄)ē(k)− L̄v(k) + w̃(k) (4.19)

The covariance of ē(k) is given by

P̄ (k) = E[(x(k)− x̂(k))(x(k)− x̂(k))T ]

= E
[[

x(k)− x̂(k)

f(k)− f̂(k)

] [
(x(k)− x̂(k))T (f(k)− f̂(k))T

]] (4.20)

where matrix P̄ (k) ∈ R(n+nf )×(n+nf ), and evolves according to

P̄ (k + 1) = (Ā− L̄C̄)P̄ (k)(Ā− L̄C̄)T + Q̃+ L̄RL̄T (4.21)

and where, in view of the definition of w̃(k), Q̃ is defined as

Q̃ =

[
I
0

]
Q
[
I 0

]
=

[
Q 0
0 0

]
(4.22)

meaning that the covariance function of the noise affecting the state x(k) directly
contributes only in the definition of the covariance of x̂(k) and not of the one of
f̂(k).
Note that P̄ is the actual variance of the estimation error (i.e., the one introduced
in (2.7)) and not an analytical upper bound, since in this section we are considering
the fully centralized case.
In particular, referring to equation (4.20), the covariance function estimation error
associated to the fault vector, namely P̄ff (k) is expressed by

P̄ff (k) =
[
0 Inf

]
P̄ (k)

[
0
Inf

]
= E

[
(f(t)− f̂(k))(f(t)− f̂(k))T

] (4.23)

Moreover, given that in nominal conditions f(t) = 0, equation (4.23) reduces to

P̄ff (k) = E
[
f̂(k)f̂(k)T

]
= var(f̂(k))

(4.24)
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4.5 Fault isolation test

Once the diagonal entries of matrix P̄ff (k) are known, namely (σf̂ ,i(k))
2 (i.e., the

variance of the i-th element of vector f̂(k)) we have all the ingredients to define
the following fault isolation test{

|f̂i(k)| < ρi(k), no fault fi is detected

|f̂i(k)| ≥ ρi(k), fault fi is affecting our system
(4.25)

The elements ρi(k) are the fault isolation thresholds, define as

ρi(k) = ασf̂ ,i(k) ∀i = 1, . . . , nf

where α is defined based on the required FA rate.

Enlarged 
Observer

PLANT

f(k)1

y(k)

f(k)nf

System 
Model

Fault 
Models

ρf1

ρfnf

f1 ISOLATED

fnf ISOLATED

estimated
faults

Thresholds
testing

Figure 4.1: General behaviour of the Fault Isolation algorithm

The main principles which allow this FDI algorithm to correctly isolate faults are
the following:

• A good mathematical model of a fault generates a perfect matching between
the faulty system and and the associated faulty system mathematical model;

• f̂i(k) in nominal conditions behave as a zero mean variable with variance
(σf̂ ,i(k))

2;
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• When a fault f̄i affects our system, the estimated variable f̂i(k), since its
structure is fixed and equal to the one of f̄i, will assimilate all the main
dynamics introduced by the fault.

When the value of an estimated fault f̂i(k) overcomes its associated threshold, we
can assert, with confidence level of (1 − FA), that exactly a fault fi is affecting
our system.

4.6 Distributed fault isolation algorithm

A distributed version of the algorithm introduced in the previous sections could
merge the capabilities of the proposed Fault isolation method, together with the
advantages of a partitioned configuration. Since the proposed fault isolation algo-
rithm follows the main ideas of the FD method in [1], which has been used in our
FD simulations, it is possible to derive a distributed version following the main
steps and considerations already introduced for FD case.

4.6.1 Distributed system model including modelled faults

The general scheme of a linear discrete-time distributed system where faults are
absent, characterized by the interconnection of M subsystems, as already intro-
duced in (2.1), is the following

xi(k + 1) = Aiixi(k + 1) +
∑
j∈Ñi

Aijxj(k) + wi(k)

yi(k) = Cixi(k) + vi(k)

(4.26)

Vectors xi(k) ∈ Rni and yi(k) ∈ Rpi are the state, and the output, of the i-
th subsystem for i = 1, . . . ,M respectively. Moreover we recall the definition
of set of the predecessors Ni = {j|Aij ̸= 0}, the set of the strict predecessors
Ñi = {j|Aij ̸= 0, j ̸= i}, and set of the successors Si = {j|i ∈ N} of subsystem i.
Grouping system equations (4.26) for all i = 1, . . . ,M , the following collective
model (as the one in (2.2)) is obtained.

x(k + 1) = Ax(k + 1) + w(k)

y(k) = Cx(k) + v(k)
(4.27)

Collective vectors are defined as

x(k) =

⎡⎢⎣ x1(k)
...

xM(k)

⎤⎥⎦ ∈ Rn where n =
M∑
i=1

ni
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y(k) =

⎡⎢⎣ y1(k)
...

yM(k)

⎤⎥⎦ ∈ Rp where p =
M∑
i=1

pi

Similarly, wT (k) = [wT
1 (k) . . . w

T
M(k)]T ∈ Rn and vT (k) = [vT1 (k) . . . v

T
M(k)]T ∈ Rp.

Moreover the system matrices have the following block structure:

A =

⎡⎢⎣A11 . . . A1M
...

. . .
...

AM1 . . . AMM

⎤⎥⎦ C =

⎡⎢⎣C1 . . . 0
...

. . .
...

0 . . . CM

⎤⎥⎦
The main idea introduced with the fault isolation algorithm in this section is to
include, in the definition of the system equations, the contribution of modelled
faults acting on the system.
Considering the collective system in (4.27), we can directly add the contribution
of a fault vector f(k) as done for the centralized case in system (4.1).

x(k + 1) = Ax(k + 1) +Bff(k) + w(k)

y(k) = Cx(k) +Dff(k) + v(k)
(4.28)

To bring us back to a partitioned model, some further considerations on fault
vector f(k), and matrix Bf .

• Matrix Bf ∈ Rn×nf , entailing the relationships between faults and associated
states has the same block structure of matrix A, i.e.,

Bf =

⎡⎢⎣B11 . . . B1M
...

. . .
...

BM1 . . . BMM

⎤⎥⎦
In particular sub-blocks Bfij have the following properties: Bf,ij ∈ Rnj×nfi ,
and Bfij ̸= 0 only if Aij ̸= 0, for all i, j = 1, . . . ,M .

• Similarly matrix Df ∈ Rp×nf , entailing the relationships between modelled
faults, and associated outputs, must have the same diagonal block structure
of collective matrix C.

Df =

⎡⎢⎣Df1 . . . 0
...

. . .
...

0 . . . DfM

⎤⎥⎦
where Dfi ∈ Rpi×nfi .
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All these considerations lead us to the definition of the following distributed system
model including the contribution of modelled faults.

xi(k + 1) = Aiixi(k + 1) +Bfiifi(k) +
∑
j∈Ñi

(Aijxj(k) +Bfijfj(k)) + wi(k)

yi(k) = Cixi(k) +Dfifi(k) + vi(k)

(4.29)

4.6.2 Enlarged distributed system and Luenberger predic-
tor

Following the same considerations made in Section 4.2, we consider fault sub-
vectors fi(k) as constant variables of our system.

xi(k + 1) = Aiixi(k + 1) +Bfiifi(k) +
∑
j∈Ñi

(Aijxj(k) +Bfijfj(k)) + wi(k)

fi(k + 1) = fi(k)

(4.30)

The whole distributed model can be rewritten in the following matricial form
including f(k) as a state variable of our system[

xi(k + 1)
fi(k + 1)

]
=

[
Aii Bfi

0 Infi

] [
xi(k)
fi(k)

]
+

∑
j∈Ñi

[
Aij Bfj

0 0

] [
xj(k)
fj(k)

]
+

[
Ini

0

]
wi(k)

yi(k) =
[
Ci Dfi

] [xi(k)
fi(k)

]
+ vi(k)

(4.31)

We denote with xi(k) the enlarged state related to the i-th subsystem, including
both the state and the fault vector

xi(k) =

[
xi(k)
fi(k)

]
(4.32)

Āii ∈ R(ni+nfi
)×(ni+nfi

), for i = 1, . . . ,M , is the enlarged sub-state block diagonal
matrix

Āii =

[
Aii Bfi

0 Infi

]
(4.33)

Āij ∈ R(ni+nfi
)×(ni+nfi

), for i = 1, . . . ,M and j ∈ Ñi, is the enlarged sub-state
matrix relating subsystem i with subsystem j

Āij =

[
Aij Bfi

0 0

]
(4.34)
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C̄i ∈ R(ni+nfi
)×pi , for i = 1, . . . ,M , is the enlarged sub-output matrix

C̄i =
[
Ci Dfi

]
(4.35)

Vector w̃i(k) =

[
Ini

0

]
wi(k) is the enlarged noise vector which acts actively on the

sub-state xi(k) components of xi(k) only.
The enlarged system model of the generic subsystem i in (4.31) can be rewritten
in the form

xi(k + 1) = Āiixi(k) +
∑
j∈Ñi

Āijxj(k) + w̃i(k)

yi(k) = C̄ixi(k) + vi(k)

(4.36)

Implementing the same distributed Luenberger predictor which was introduced in
2.2 for the enlarged distributed system (4.36) we obtain the following equations

x̂i(k + 1) =
∑
j∈Ni

(Āijx̂j(k) + Lij(yj(k)− C̄jx̂i(k)))

ŷi(k) = Cix̂i(k)

(4.37)

Here x̂i(k) is the estimate of the enlarged state, while ŷi is the estimated output
of subsystem i.
As for the distributed filter introduced in Subsection 2.2, gain Lij must be com-
puted in order to guarantee the convergence of the solution, but also as to maintain
the same block structure of the distributed system. Those properties can be both
attained computing Lij by means of the LMI based method explained in Section
2.2.2.

4.6.3 Estimation error

The estimation error related to the i-th subsystem is defined as

ei(k) =
[
xi(k)− x̂i(k)

]
=

[
xi(k)− x̂i(k)

fi(k)− f̂i(k)

]
(4.38)

Since is not possible to compute the actual covariance matrix of ei(k), namely
Pi(k), in a distributed way, we rely on the analytical upper bound Bi(k) of Pi(k)
in [1] as happened for the FD case in Section 2.
Similarly to (2.8), Bi(k) is updated according to

Bi(k) = Qi +
∑
j∈Ni

[( ˜̄Aij − Lij
˜̄Cj)Bi(k)(

˜̄Aij − Lij
˜̄Cj)

T + LijR̃jL
T
ij] (4.39)
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where ˜̄Aij =
√
ζiĀij,

˜̄Ci =
√
ζiC̄i, R̃i =

√
ζiRi and ζi = |Si| for all i, j = 1, ...,M .

Moreover, Qi and Ri are the covariance matrices of the noises on the i-th subsystem
enlarged state (i.e., there is no contribution on fault vector) and output.
Following the same line of reasoning of Section 4.4, we have that the upper bound
to the covariance of the i-th subsystem estimation error, associated to the fault
vector only, namely B̄fi(k), is expressed by

Bfi(k) =
[
0 Infi

]
B̄(k)

[
0

Infi

]
(4.40)

Moreover, since it is defined as an upper bound to the actual variance value, the
following property holds

Bfi(k) ≥ E
[
(fi(t)− f̂i(k))(fi(t)− f̂i(k))

T
]

(4.41)

which in nominal conditions, i.e., for fi(t) = 0, reduces to

Bfi(k) ≥ E
[
f̂i(k)f̂i(k)

T
]

≥ var(f̂i(k))
(4.42)

4.6.4 Distributed fault isolation test

Once the diagonal entries of matrix Bfi(k) are known, namely (σB
f̂,i,l

(k))2 (i.e., the

upper bound of the variance of the l-th element of vector f̂i(k)) we have all the
ingredients to set the following fault isolation test{

|f̂i,l(k)| < ρi,l(k), no fault fi,l is relevated

|f̂i,l(k)| ≥ ρi(k), fault fi,l is affecting subsystem i
(4.43)

In particular, elements ρi,l(k) represent our fault isolation thresholds, defined as

ρi,l(k) = ασB
f̂,i,l

(k) ∀i = 1, . . . ,M, l = 1, . . . , nfi

where α is defined based on the required FA rate.



Chapter 5

Application of the novel fault
isolation algorithm to selected
case studies

In this chapter we show some significant simulation results obtained applying the
fault isolation algorithm described in Section 4 on both case studies analysed
in Section 3, i.e. the chemical plant and the power network system. Both the
centralized and the distributed version of the FI algorithm have been implemented
for each system. Moreover, in order to compare the performances of the two
algorithms (i.e., the FD and the FI algorithms), the same faults introduced in
Section 3 have been tested.

5.1 Chemical plant

5.1.1 Fault model and enlarged observer

In Section 3 a persistent additive fault acting on the 4th state equation of the
second subsystem was considered, i.e., the temperature T2 of the second chemical
reactor. Thus, the simplest way to model such fault is to introduce a single fault
variable f(k) in the state equation governing T2.
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Centralized case

In the centralized case, the enlarged model of the chemical system is the following⎧⎪⎪⎨⎪⎪⎩
[
x(k + 1)
f(k + 1)

]
=

[
A Bf

0 1

] [
x(k)
f(k)

]
+

[
B
0

]
ū+

[
In
0

]
w(k)

y(k) =
[
C Df

] [x(k)
f(k)

]
+ v(k)

(5.1)

In particular, we have nf = 1, since we model a single fault. Moreover,

Bf =
[
0 0 0 0 0 0 0 1 0 0 0 0

]T
(5.2)

selects the 8th row of matrix A.

Df =
[
0 0 0 0 0 0 0 0

]T
(5.3)

since the fault does not directly affect the output equations.
The centralized Luenberger observer has the structure introduced in (4.7). In par-
ticular L̄ ∈ R13×8 has been computed by means of the LMI method in Section 2.2.2.
Thus, Schur stability of matrix F̄ = (Ā − L̄C̄) is guaranteed, but no constraints
on its structure have been added.

Distributed case

In the distributed case, the only subsystem which is modified by the introduction
of the fault model is the second. Its enlarged model is the following{

x2(k + 1) = Ā22x2(k) + Ā12x1(k) +B2ū+ ṽ2(k)

y2(k) = C̄2x2(k) + w2(k)
(5.4)

In particular, recalling matrices Āii and Āij structure we have

Ā22 =

[
A22 Bf2

0 1

]
with Bf2 =

[
0 0 0 1

]T
(5.5)

Ā21 =

[
A21 Bf1

0 0

]
with Bf1 =

[
0 0 0 0

]T
(5.6)

Moreover
C̄2 =

[
C2 Df2

]
with Df2 =

[
0 0

]T
(5.7)

The associated distributed Luenberger gains Lij have been computed by means of
the LMI based method explained in Section 2.2.2. Differently from the centralized



5.1 Chemical plant 71

case, Lij have been computed in order to keep the same block structure of the
collective system.

Note that centralized and the distributed Luenberger gains, namely Lc and
Ld, have been computed solving different LMI. Thus, we expect a different
behaviour between the two the estimation processes and no strict correlation
between the associated analytical thresholds.

5.1.2 Simulation results

In this section the simulation results obtained with the chemical plant model, both
centralized and distributed, are reported.
A persistent additive fault f̄ occurs at time step k = 100. In particular a fault
which corresponds to ∼ 1% of the value taken, in normal working conditions, by
the state variable directly affected, in this case T2, is considered.

f̄2 = 0.01T̄2 = 3.1478K (5.8)

Isolation thresholds are computed based on σf̂ ,i,l and σB
f̂,i,l

as in Equations (4.25)

and 4.6.4. In particular, once the method converges, we have

• Fully centralized case considering Lc

(σf̂ ,i,l)
2 = 0.0228 (5.9)

• Distributed case considering Ld partitioned

(σf̂ ,i,l)
2 = 0.0174 actual variance

(σB
f̂,i,l

)2 = 0.0705 analytical upper bound
(5.10)

Considering FA=0.002, i.e., same FA rate imposed in Section 3, which means a
value of α = 3.7190, the threshold for the centralized case is

ρi,l = ασf̂ ,i,l = 0.5614 (5.11)

while the one in the distributed case is

ρBi,l = ασB
f̂,i,l

= 0.9878 (5.12)

For each proposed case we display two types of diagrams, recalling the ones in
Section 3.1.3.
Figures 5.1 and 5.3 show the values taken by the estimated fault vector f̂(k) at
each simulation time instant, compared to the corresponding thresholds and to the
actual value of fault f̄ considering 30 Montecarlo runs.
Figures 5.2 and 5.4, instead, show the rate of systems in which fault f is isolated
(i.e., systems where f̂ exceeds the associated threshold) for each time step k. These
results are obtained considering 1000 Montecarlo runs.
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• Centralized case

Figure 5.1: Centralized model, behaviour of the estimated vector f̂ , compared to
threshold ρi,l and the actual value taken by the fault affecting the system f̄
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Figure 5.2: Centralized model, percentage of systems in which fault f̄ is isolated
in each simulation time step
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• Distributed case

Figure 5.3: Distributed model, behaviour of the estimated vector f̂ , compared to
threshold ρi,l and the actual value taken by the fault affecting the system f̄
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Figure 5.4: DIstributed model, percentage of systems in which fault f̄ is isolated
in each simulation time step
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5.1.3 Comparison between the performances of the FD
and FI algorithms

In this section the performances of the distributed FD algorithm and of the dis-
tributed FI algorithm are compared.

Systems detecting Fault in 10 k-steps 50 k-steps 150 k-steps
FD m=1 93.0% 100% 100%

m=20 0% 88.6% 100%
m=40 0% 100% 100%

FI Centralized 99.6% 100% 100%
Distributed 15.8% 100% 100%

Table 5.1: Percentage of systems in which is declared fault, after 10, 50 and 150
time steps after the actual fault occurrence

From Table 5.1 we clearly see that the novel FI algorithm detects the presence of
a modelled fault already after 10 steps. The main difference between the perfor-
mances of the distributed and of the centralized versions are due to the choice of
the observer gains. Moreover, as we can see in Figures 5.1 and 5.3, a few time
steps after the fault is isolated, the value of the estimated fault f̂ converges to the
actual value of f̄ .
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5.2 Power network system

5.2.1 Fault model and enlarged observer

In Section 3, dealing with FD for a power network system, was considered a per-
sistent additive fault occurring on the 3rd state equation of the second subsystem.

Centralized case

In the standard centralized case, the enlarged model of the power network system
is the following⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
x(k + 1)
f(k + 1)

]
=

[
Ad Bf

0 1

] [
x(k)
f(k)

]
+

[
B̃d

0

]
ū+

[
In
0

]
w(k)

y(k) =
[
Cd Df

] [x(k)
f(k)

]
+ v(k)

(5.13)

In particular, we have nf = 1, since we model a single fault. Moreover,

Bf =
[
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

]T
(5.14)

selects only the 3rd state equation of the second subsystem, i.e., the 7th row of
matrix A.

Df =
[
0 0 0 0 0 0 0 0 0 0

]T
(5.15)

since our fault does not directly affect the output equations.
The centralized Luenberger observer have the structure introduced in (4.7). In
particular L̄ ∈ R21×10 has been computed by means of the LMI method in subsec-
tion 2.2.2. Thus, Schur stability of matrix F̄ = (Ā − L̄C̄) is guaranteed, but no
constraints on its structure have been added.

Distributed case

In the distributed case, the only subsystem which is modified by the introduction
of the fault model is the second. Its enlarged model is the following{
x2(k + 1) = Ād,22x2(k) + Ād,21x1(k) + Ād,23x3(k) + Ād,25x5(k) + B̃d,2ū2 + ŵ2(k)

y2(k) = C̄d,2x2(k) + v2(k)

(5.16)
In particular, recalling matrices Āii and Āij structure we have

Ā22 =

[
Ad,22 Bf2

0 1

]
with Bf2 =

[
0 0 1 0

]T
(5.17)
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and for j = 1, 3, 5

Ād,2j =

[
A2j Bfj

0 0

]
with Bfj =

[
0 0 0 0

]T
(5.18)

Moreover
C̄d,2 =

[
Cd,2 Df2

]
with Df2 =

[
0 0

]T
(5.19)

The associated distributed Luenberger gains Lij have been computed by means
of the LMI based method explained in Section 2.2.2. Differently from the purely
centralized case, Lij have been computed in order to keep the same block structure
of the collective system.

Also in this case, the centralized and the distributed Luenberger gains, namely Lc

and Ld, have been computed solving different LMI. Thus, we expect a different
behaviour between the two estimation processes and no strictly correlation
between the associated analytical thresholds.

5.2.2 Simulation results

In this section the simulation results obtained with the power network system
model, both centralized and distributed, are reported.
A persistent additive fault f̄ , of amplitude 1, occurs at time step k = 100.
Isolation thresholds are computed based on σf̂ ,i,l and σB

f̂,i,l
as in equations 4.25 and

4.6.4. In particular, once the method converges, we have

• Fully centralized case considering Lc

(σf̂ ,i,l)
2 = 3.2987× 10−5 (5.20)

• Distributed case considering Ld partitioned

(σf̂ ,i,l)
2 = 1.9315× 10−6 actual variance

(σB
f̂,i,l

)2 = 1.8563× 10−5 analytical upperbound
(5.21)

Considering FA=0.002, i.e., same FA rate imposed in Section 3, which means a
value of α = 3.7190, the threshold for the centralized case is

ρi,l = ασf̂ ,i,l = 0.0213 (5.22)

while the one in the distributed case is

ρBi,l = ασB
f̂,i,l

= 0.0160 (5.23)
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For each proposed case we display two types of diagrams, recalling the ones in
Section 3.1.3.
Figures 5.5 and 5.7 show the values taken by the estimated fault vector f̂(k) at
each simulation time instant, compared to the corresponding thresholds and to the
actual value of fault f̄ considering 30 Montecarlo runs.
Figures 5.6 and 5.8, instead, show the rate of systems in which fault f is isolated
(i.e., systems where f̂ exceeds the associated threshold) for each time step k. These
results are obtained considering 1000 Montecarlo runs.
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• Centralized case

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.05

0.1

0.15

0.2

0.25

0 500 1000 1500 2000

Time

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5.5: Centralized model, behaviour of the estimated vector f̂ , compared to
threshold ρi,l and the actual value taken by the fault affecting the system f̄
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Figure 5.6: Centralized model, percentage of systems in which fault f̄ is isolated
in each simulation time step
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• Distributed case
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Figure 5.7: Distributed model, behaviour of the estimated vector f̂ , compared to
threshold ρi,l and the actual value taken by the fault affecting the system f̄
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Figure 5.8: DIstributed model, percentage of systems in which fault f̄ is isolated
in each simulation time step
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5.2.3 Comparison between FD and FI performances

In this section the performances of the distributed FD algorithm and of the dis-
tributed FI algorithm are compared.

Systems detecting Fault in 10 k-steps 50 k-steps 150 k-steps
FD m=1 3.2% 24.8% 62.6%

m=20 0% 0% 0%
m=40 0% 100% 100%

FI Centralized 4.8% 100% 100%
Distributed 0% 0% 100%

Table 5.2: Percentace of systems in which is declared fault 10, 50 and 150 time
steps the actual fault occurrence

Considering table 5.2 we see that, in general, the FI method seem to be more
reliable than the FD one. In particular, referring to the distributed case, the large
time delay in the detection is mostly related to the choice of the L matrix, which
can be improved by imposing a dedicated cost function in the LMI problem.



Conclusions and future
perspectives

In this Thesis a recently-proposed scheme for model-based observer-based fault
detection has been tested. Also, a new observer-based scheme for fault isolation,
based on fault models, has been introduced, described and tested.
Both algorithms have been designed to be implemented in a distributed fashion
based on partitioned system models, in order to be used in a large scale system
scenario.
After we implemented the algorithm in [1] for two selected case studies (the chem-
ical plant in [11] and the power network system in [3]), it has been possible to
analyse the capabilities of the FD method. In particular, the simulations results
have shown how the intrinsic properties of the system, affecting thresholds com-
putation, influence the performance of the different testing methods, i.e., single
residual approach and moving window average of the residuals. In addition, a
possible approximated test guaranteeing the effectiveness of a moving window ap-
proach, which is directly based on system parameters, has been proposed.
In the second part of the thesis, a novel model based algorithm for fault isolation
has been developed. We started with the development of the algorithm in the cen-
tralized case, with special focus on the structural properties ensuring the feasibility
of the enlarged state observer. Then, on the basis of the studies of distributed FD
in [1], we were able to propose also a distributed version of the algorithm. The
novel FI method has also been tested on the chemical plant in [11] and the power
network system in [3], offering the opportunity to compare the results with the
ones obtained with the FD method.
Possible future developments of the work carried out in this Thesis rely on the
possibility to combine both the FD and the FI methods in order to improve the
whole detection process, and on the development of more detailed mathematical
models of the faults, including the possibility to isolate also non constant fault
signals.
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