
i
i

“output” — 2019/4/3 — 16:46 — page 1 — #1 i
i

i
i

i
i

POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMATICA E BIOINGEGNERIA

MASTER THESIS

ADAPTIVE CAR NAVIGATION SYSTEM FOR SMART

CITIES

M.Sc Thesis of:
Leonardo Arcari

Supervisor:
Prof. Gianluca Palermo

Academic year 2018/2019

i
i

“output” — 2019/4/3 — 16:46 — page 2 — #2 i
i

i
i

i
i

i
i

“output” — 2019/4/3 — 16:46 — page I — #3 i
i

i
i

i
i

Abstract

CAR NAVIGATION SYSTEM technologies recently established across the globe as
an imperative utility for modern navigation on road networks. The rising wave
of self-driving cars along with an increasing demand for real-time traffic data is

expected to generate massive growth in the number of routing requests and processing
on large graphs representing the urban network. This trend imposes larger and more
powerful computing infrastructures composed of HPC resources. In the context of
smart cities, new, dynamic solutions are required in order to deliver high-quality car
navigation services, powered by municipal traffic monitoring data, capable of handling
such a vast expected demand with reasonable employment of financial resources.

In this thesis, an adaptive car navigation system for smart municipalities is pre-
sented, proposing a methodology to approach navigation services design along with
capacity planning analysis through system modelling. An efficient, configurable C++
library, named ARLib, is introduced, implementing state-of-the-art algorithms address-
ing the Alternative Route Planning (ARP) problem, a key part of car navigation sys-
tems. In this context, ARLib exhibits its flexibility by exposing a variety of parameters
to manage the tradeoff between execution time and quality of results. Moreover, since
no ultimate solution exists, an auto-tuning process is presented to proactively choose
the optimal heuristic for each query, leveraging a predictive model providing recom-
mendations based on request features. This gives the possibility to have the highest
quality reachable within the available latency budget. Furthermore, a Queueing Petri
Net model of the car navigation system is proposed to study its behavior from perfor-
mance evaluation perspective in a computer simulation environment. This aspect helps
to assess and size the infrastructure for the navigation service deployment through ca-
pacity planning analysis. Finally, an empirical evaluation of the presented methodology
is reported, by applying the advised approach in a case study on the city of Milan.

I

i
i

“output” — 2019/4/3 — 16:46 — page II — #4 i
i

i
i

i
i

i
i

“output” — 2019/4/3 — 16:46 — page III — #5 i
i

i
i

i
i

Estratto in Lingua Italiana

I SISTEMI DI NAVIGAZIONE, negli ultimi anni, si sono affermati in tutto il mondo
come uno strumento fondamentale per la navigazione moderna sulla rete strada-
le. Il fenomeno in aumento delle auto a guida autonoma, insieme alla sempre più

crescente domanda di aggiornamenti sul traffico in tempo reale, fanno prevedere una
crescita imponente del numero di richieste di percorsi e di elaborazioni su enormi grafi
che rappresentano le reti stradali cittadine. Questo trend impone la presenza di impian-
ti informatici più grandi e potenti, composti da risorse HPC. Nell’ambito delle Smart
City, al fine di fornire servizi di navigazione di qualità, sfruttando i dati cittadini di mo-
nitoraggio del traffico, sono necessarie soluzioni nuove e dinamiche, capaci di gestire
una tale domanda prevista con un impiego ragionevole di risorse finanziarie.

In questo lavoro di tesi, si presenta un sistema di navigazione adattivo per Smart
City, proponendo una metodologia per la progettazione di un servizio di navigazione
insieme ad un’analisi per il dimensionamento delle risorse attraverso un modello del
sistema. Si introduce una libreria C++ efficiente e configurabile, chiamata ARLib, che
implementa alcuni algoritmi dallo stato dell’arte per risolvere il problema della Pia-
nificazione di Percorsi Alternativi, una componente chiave dei sistemi di navigazione
su strada. In questo contesto, ARLib mostra la sua flessibilità esponendo una serie di
parametri per gestire il tradeoff tra tempo di esecuzione e qualità del risultato. Inol-
tre, poiché non esiste un approccio definitivo al problema, si presenta un processo di
auto-tuning per scegliere automaticamente, in maniera proattiva, l’euristica ottimale
per ogni query, sfruttando un modello predittivo che fornisce raccomandazioni basa-
te sulle caratteristiche delle richieste. Questo permette di ottenere la massima qualità
raggiungibile nel tempo di calcolo a disposizione. In aggiunta, si propone un model-
lo del sistema di navigazione con reti di code e reti di Petri combinate, per studiare
il comportamento del servizio dal punto di vista delle performance in un ambiente di
simulazione. Ciò permette di valutare e dimensionare l’infrastruttura adeguata ad ero-
gare il servizio di navigazione attraverso capacity planning. In ultimo, si riporta una
validazione empirica della metodologia presentata, applicando l’approccio consigliato
ad un caso studio sulla città di Milano.

III

i
i

“output” — 2019/4/3 — 16:46 — page IV — #6 i
i

i
i

i
i

i
i

“output” — 2019/4/3 — 16:46 — page V — #7 i
i

i
i

i
i

Ringraziamenti

RITAGLIO questo umile spazio, fra le pagine di un arduo lavoro di tesi, oramai
voltosi al termine, per esprimere in lingua natia un profondo ringraziamento
alle persone che, con la loro vicinanza, hanno dato valore al tempo speso in

questa fatica. A ciascuno di voi dedico un breve pensiero, ben sapendo quante e quali
storie ci hanno legati, storie che tuttavia richiederebbero un’intera antologia per poter
essere degnamente ricordate.

Ringrazio i miei genitori, che da tutta la vita, con il loro affetto, mi hanno spronato
e supportato nei miei sogni, donandomi i mezzi e le occasioni per seguirli. A voi devo
la persona che oggi sono.

Ringrazio il mio relatore, Gianluca, per la fiducia e le opportunità che mi ha offerto
durante questo anno di ricerca, fornendomi il suo prezioso aiuto senza il quale questo
lavoro non mi avrebbe dato la soddisfazione che oggi provo.

Ringrazio mia sorella Elena, mio fratello Daniele, e i miei nonni Selene, Santino e
Giovanna per la loro vicinanza e la pazienza nell’ascoltarmi, per un anno, vaneggiare
di scoperte e piccoli traguardi.

Ringrazio gli amici e fratelli di una vita, Francesco, Umberto, Paolo e Carlotta, per
avermi dimostrato con la loro presenza che un’amicizia autentica trascende le difficoltà
e accompagna, inarrestabile, i passi della tua esistenza.

Ringrazio gli amici e compagni di corso, Emiliano, Emanuele, Edoardo, Samuele,
Andrea, Leandro, Andrea e Michele, per avermi spronato nell’ars ingegneristica e aver
reso gli anni al Politecnico un felice ricordo da portarmi per il resto della vita.

Ringrazio gli amici e compagni d’Appa, Gio, Michelle, Peppo, Samsung, Ssette e
Sbrisolino per essere stati la mia casa negli anni vissuti a Milano, per non avermi fatto
sentire solo per un istante e aver lasciato un’impronta indelebile nella mia storia.

In ultimo, ringrazio in maniera speciale la mia ragazza, Giulia, per avermi sostenuto
e rincuorato negli attimi più cupi e aver dato pienezza, con la sua presenza, ai momenti
più felici che questo anno mi ha regalato.

Leonardo
Milano, 29 Marzo 2019

V

i
i

“output” — 2019/4/3 — 16:46 — page VI — #8 i
i

i
i

i
i

i
i

“output” — 2019/4/3 — 16:46 — page VII — #9 i
i

i
i

i
i

Contents

1 Introduction 1

2 Background 5
2.1 Alternative Route Planning problem 5
2.2 Quality . 8
2.3 Algorithms . 10

2.3.1 OnePass+ . 10
2.3.2 Penalty . 11
2.3.3 ESX . 12
2.3.4 Other algorithms . 13

2.4 Computing Systems Modelling . 14
2.4.1 Queueing Networks . 14
2.4.2 Petri Nets . 17
2.4.3 Java Modelling Tools (JMT) . 19

2.5 Summary . 19

3 Alternative Route Planning 21
3.1 An Adaptive Car Navigation System 22
3.2 System Architecture . 22
3.3 ARLib . 23

3.3.1 Software Architecture . 25
3.3.2 Software Engineering . 26
3.3.3 API Reference . 27
3.3.4 Usage Examples . 32

3.4 An ARP Design Space Exploration 33
3.5 Experimental Results . 36

3.5.1 Performance . 36
3.5.2 Visual Comparison . 38
3.5.3 Failure Rate . 39

3.6 An Adaptive Policy . 43
3.7 Summary . 45

4 Proactive System Auto-Tuning 47
4.1 A Finer-Grained Analysis . 48
4.2 A Proactive System . 52
4.3 Feature Engineering . 54
4.4 Regression Model . 56
4.5 Training Process . 61

VII

i
i

“output” — 2019/4/3 — 16:46 — page VIII — #10 i
i

i
i

i
i

Contents

4.5.1 Data Preparation . 61
4.5.2 Model Fitting . 63
4.5.3 Prediction . 64

4.6 An Improved Adaptive Policy . 65
4.7 Summary . 68

5 System Modelling 69
5.1 A Car Navigation Service in HPC context 69
5.2 Alternative Route Planning Stage . 71
5.3 PTDR Stage . 72
5.4 Reordering Stage . 73
5.5 Capacity Planning . 73

5.5.1 Resource Exploration Design 74
5.5.2 Experimental Results . 75

5.6 An Overload-Tolerant Model Extension 76
5.6.1 Experimental Results . 78

5.7 Summary . 81

6 Milan: A Case Study 83
6.1 A Service For A Smart City . 83
6.2 Validation Test Design . 87
6.3 Car Navigation Service Simulator . 89
6.4 Experimental Results . 90

6.4.1 Basic Plan . 91
6.4.2 Premium Plan . 92

6.5 Summary . 95

7 Conclusions 97

Bibliography 101

VIII

i
i

“output” — 2019/4/3 — 16:46 — page IX — #11 i
i

i
i

i
i

List of Figures

2.1 A single service center. 14
2.2 Queuing Network service stations . 15
2.3 Place-Transition Net notation . 17
2.4 A sample Place-Transition Net before and after a transition fire. 18

3.1 A graphical representation of the proposed car-navigation system pipeline.
The Alternative Route Planning module is annotated with a gear to high-
light its high degree of configurability. 23

3.2 A graphical representation of the user-level ARLib architecture. On the
left, the optional pruning step to reduce the search space. In the center,
the alternative routing functions along with the data structure containing
the problem solution. On the right the set of interchangeable routing
kernels. 25

3.3 Alternative routing solutions on a sample graph, still human-manageable,
but complex enough to admit non-trivial alternative paths. Results are
obtained by running the code illustrated in Section 3.3.4. 33

3.4 OnePass+ performance on New York City, varying alternative paths k ∈
{2, 3, 4, 5} and similarity threshold θ ∈ {0.3, 0.5, 0.7} (lower is better). 37

3.5 ESX performance on New York City, varying alternative paths k ∈
{2, 3, 4, 5} and similarity threshold θ ∈ {0.3, 0.5, 0.7} (lower is better) . 37

3.6 Penalty performance on New York City, varying alternative paths k ∈
{2, 3, 4, 5} and similarity threshold θ ∈ {0.3, 0.5, 0.7} (lower is better). 38

3.7 OnePass+ 4-alternative-paths on Milan area (above) and New York City
area (below) with 50% similarity threshold 40

3.8 ESX 4-alternative-paths on Milan area (above) and New York City area
(below) with 50% similarity threshold 41

3.9 Penalty 4-alternative-paths on Milan area (above) and New York City
area (below) with 50% similarity threshold 42

3.10 Average completeness ratio (%) per query, varying alternative paths k ∈
{2, 3, 4, 5} and similarity threshold θ ∈ {0.3, 0.5, 0.7}, for all the algo-
rithms with a timeout of 20 seconds. 44

4.1 Execution time of ARLib’s algorithms search for k = 4 alternative paths
with θ = 0.5 similarity threshold (lower is better) 48

4.2 OnePass+ execution time on New York City, varying alternative paths
k ∈ {2, 3, 4, 5} and similarity threshold θ ∈ {0.3, 0.5, 0.7} (lower is
better) . 49

IX

i
i

“output” — 2019/4/3 — 16:46 — page X — #12 i
i

i
i

i
i

List of Figures

4.3 OnePass+ quality on New York City, varying alternative paths k ∈ {2, 3, 4, 5}
and similarity threshold θ ∈ {0.3, 0.5, 0.7} (lower is better) 49

4.4 ESX execution time on New York City, varying alternative paths k ∈
{2, 3, 4, 5} and similarity threshold θ ∈ {0.3, 0.5, 0.7} (lower is better) . 50

4.5 ESX quality on New York City, varying alternative paths k ∈ {2, 3, 4, 5}
and similarity threshold θ ∈ {0.3, 0.5, 0.7} (lower is better) 50

4.6 Penalty execution time on New York City, varying alternative paths k ∈
{2, 3, 4, 5} and similarity threshold θ ∈ {0.3, 0.5, 0.7} (lower is better) . 51

4.7 Penalty quality on New York City, varying alternative paths k ∈ {2, 3, 4, 5}
and similarity threshold θ ∈ {0.3, 0.5, 0.7} (lower is better) 51

4.8 A graphical representation of the proposed car-navigation system pipeline.
In red, a Dynamic Auto-tuner selects an ARLib’s algorithm and its pa-
rameters to maximize the solutions quality, while keeping the system
response time within the fixed constraints. 53

4.9 OnePass+ and Penalty response time on New York City, with respect to
some input features, with k = 5 and θ = 0.5. 58

4.10 OnePass+ and Penalty Q-Q Plots of the normalized residuals on New
York City, with k = 5 and θ = 0.5 . 61

4.11 UML Activity Diagram of the training process employed for predictive
model learning. On top the data preparation steps are reported, showing
how the training set is cleaned and enriched. In the center, the model
fitting part is listed describing how an effective model is obtained from
the training data. Finally, on bottom, the execution time upper-bound
prediction is given from the model fitted function g(φ(x)). 62

4.12 UML Activity Diagram of the adaptive policy leveraging the auto-tuning
module. Based on query features, the auto-tuner elects the highest-
quality algorithm leading to a solution within the available time budget. 66

4.13 Auto-tuner optimal algorithm selection frequencies on New York City,
with θ = 0.5, varying k ∈ {2, 3, 4, 5} and time budget T ∗ ∈ {500, 750, 1000}
milliseconds. 67

5.1 A schematic representation of the system software pipeline to be modelled. 70
5.2 QPN modelling Alternative Route Planning module. 71
5.3 QPN models for PTDR (on the left) and Reordering (on the right) modules 73
5.4 Optimal total amount of resources for varying λf and λr in [10, 100]

reqs/s and [100, 1000] reqs/s respectively. 76
5.5 95th percentile system response time under optimal capacity plan for

varying λf and λr in [10, 100] reqs/s and [100, 1000] reqs/s respectively. 77
5.6 QPN extended Alternative Route Planning model with fast lane. Differ-

ences with base model from Figure 5.2 are highlighted in purple. 78
5.7 Overloading scenario of a system running λf = 10 and λr = 100

optimal capacity plan. System is overloaded by varying λf and λr in
[10, 150] reqs/s and [100, 1500] reqs/s respectively. In green, solid lines
we plot 95th percentile system response time. In orange, dotted lines we
plot the rate of requests routed to fast lane to cope with the excessive
workload. 80

X

i
i

“output” — 2019/4/3 — 16:46 — page XI — #13 i
i

i
i

i
i

6.1 Average daily traffic distribution per-hour of a working day in Milan
urban area. 84

6.2 Average daily traffic distribution of a working day in Milan urban area,
divided in time slots according to severe changes in traffic trend. Colored
area highlights maximum peak hours. 85

6.3 Milan map considered in this validation experiment. Latitude and longi-
tude limits are marked by black, solid bounding box. 88

6.4 Car-navigation simulator architecture diagram. Node boxes show the
required number of cores. 90

6.5 Basic-plan service time empirical distribution (histogram) vs. theoreti-
cal Pareto distribution (line plot). 91

6.6 Premium-plan service time empirical distribution (histogram) vs. theo-
retical Pareto distribution (line plot). 92

6.7 Premium-plan first-routing service time empirical distribution (histogram)
vs. fitted, theoretical Pareto distribution (line plot). 93

List of Tables

3.1 Penalty calling parameters documentation. 30

4.1 Ridge Regression models prediction performance on New York City, for
OnePass+ and Penalty, θ = 0.5 and varying k ∈ {2, 3, 4, 5}. In third
column the Root Mean Squared Logarithmic Error on the training set is
reported. In column 4 and 5, the percentage of underestimated training
samples with a predicted upper bound of 2σr and 3σr, respectively. . . . 65

5.1 Service time values of our model service stations for first-routing and
re-routing requests for a car-navigation system with k = 5 and θ = 0.5
on New York City map. 75

5.2 Service time values of our extended model service stations for first-
routing and re-routing requests for a car-navigation system with k = 5
and θ = 0.5 on New York City map. 79

6.1 Overview of possible service plans offered by a smart city municipality. 85
6.2 Service time JMT simulation parameters summary for Basic and Pre-

mium plans. 86
6.3 Capacity plannning analysis for Basic and Premium plans considering

different time slots during the day. 87
6.4 Comparison of Simulation vs. Actual performance indices for Basic-

plan navigation service. 91

XI

i
i

“output” — 2019/4/3 — 16:46 — page XII — #14 i
i

i
i

i
i

List of Tables

6.5 Comparison of Simulation vs. Actual performance indices for Basic-
plan navigation service. Simulation service time values are drawn from
two theoretical Pareto distributions. 93

6.6 Comparison of Simulation vs. Actual performance indices for Basic-
plan navigation service. Simulation first-routing service time values
are obtained replaying real measurements, while re-routing service time
ones are drawn from theoretical Pareto distribution. 94

6.7 ARLib’s algorithms auto-tuner pick rate and failure rate statistics. . . . 95

XII

i
i

“output” — 2019/4/3 — 16:46 — page 1 — #15 i
i

i
i

i
i

CHAPTER1
Introduction

In recent times, car navigation system technology established itself as an imperative
utility used across the globe as an essential tool for modern navigation on land. Car
navigation systems are nowadays pervasive in people lives, either because directly in-
stalled by their car manufacturer, either because purchased from after-market solutions
or simply because available as GPS navigation apps on everybody’s smartphone.

According to some research [1], global automotive navigation systems market size is
expected to observe an exponential growth in the next eight years, with an anticipated
compound annual growth rate of 9.95% during the forecast period. Most important
driving factors are the increase in the number of vehicles worldwide and raising demand
for real-time traffic data.

Indeed, both passenger and commercial vehicle drivers share the same interest to
reach their destinations as soon as possible. In a world where less and less daily ac-
tivities can be accomplished by moving on foot, the former would rather spend as less
time as possible in their cars, transferring from one place to another. On the other hand,
driving faster to destination means for the latter delivering a better service to their cus-
tomers and raising their generated daily revenue.

In both cases, people are putting more and more trust in car navigation systems,
relying on computer-suggested routes as opposed to their driving experience. Such a
scenario will be even more true with the expected worldwide spread of self-driving
cars. Indeed, drivers will eventually turn into actual passengers, leaving to their car,
and hence to its car navigation system, the burden to choose a path for them.

In this framework, several opportunities arise in order to transform the current traffic
situation for the better and leverage traffic data availability to optimize driving condi-
tions.

For instance, smart cities might employ their historical traffic monitoring data to

1

i
i

“output” — 2019/4/3 — 16:46 — page 2 — #16 i
i

i
i

i
i

Chapter 1. Introduction

provide their citizens with an accurate car navigation service that, at the same time,
would make their local drivers happier and the whole city less congested.

From an algorithmic perspective, the problem of finding the best path in terms of
expected arrival time can be solved into two subsequent steps: find a set of alternative
routes from source to destination points and use probabilistic distributions of segments
travel time to estimate the fast path to follow. These two steps are known in the literature
as Alternative Route Planning (ARP) [2, 3] and Probabilistic Time Dependent Routing
(PTDR) [4, 5] problems.

An efficient methodology for a self-adapting PTDR solution was extensively in-
vestigated in other works [6]. In this thesis, I am going to focus on the ARP phase,
presenting an original methodology for an adaptive alternative route planning module
of a car navigation system.

Furthermore, considering the rising wave of self-driving cars, and automotive nav-
igation systems in general, the number of navigation requests will increase rapidly to-
gether with the need of real-time updates and processing on large graphs representing
the urban network. This trend imposes larger and more powerful computing infrastruc-
tures composed of HPC resources.

In this context, this thesis also presents a car navigation system model representing
the full service deployed in an HPC environment.

Motivation

Given the complexity in efficiently solving the alternative route planning problem, re-
searches have been investigating several approaches to discover a one-fits-all solution.

Indeed, while computing a single shortest path is a well-defined problem, with a
solid historical background, most notably represented by Dijkstra’s Algorithm, ARP
problem has been formulated in several ways. Moreover, since finding an exact solu-
tion to the ARP problem was demonstrated to be computationally intractable, multiple
heuristics have been presented so far.

However, heuristics typically work by introducing some assumptions in order to
simplify the problem and efficiently search for a solution. As a result, one heuristic
might work better for some kind of input while another suits better different scenarios.

The main work of this thesis aims at studying ARP problem state-of-the-art algo-
rithms and carry out an adaptive car navigation system proactively choosing the optimal
approach based on input characteristics.

Moreover, in the interest of providing such a service to a smart city community, I
propose a car navigation system model in order to study its behavior from an extra-
functional perspective and correctly size it for some municipality population.

Contributions

The main outcome of this work of thesis is a methodology to combine several alter-
native route planning algorithms into an adaptive car navigation system proactively
choosing the best heuristic for each routing requests leveraging a machine learning pre-
dictive model. Moreover, an approach to car navigation system modelling is proposed
by means of Queuing Petri Nets formalism, enabling an effective study of its extra-
functional properties through a stochastic simulation and a capacity planning analysis.

2

i
i

“output” — 2019/4/3 — 16:46 — page 3 — #17 i
i

i
i

i
i

The whole set of decisions has been validated on New York City and Milan urban areas
to show the applicability of presented approaches in a real-life context.

In particular, the thesis contributions are the following:

• An alternative route planning C++ library, named ARLib, for a real car navi-
gation system. While proofs-of-concept exist, mostly from algorithms authors,
no comprehensive solution was available to process ARP queries with efficiency
in mind. ARLib is a fast, configurable C++ library leveraging Boost.Graph, a
widely-adopted, long-time-maintained library for graph representation, enabling
users to change algorithm and problem parameters with minimal effort. I pub-
licly released ARLib source code, along with documentation and tutorials with
the hope to provide a reliable tool to software developers interested in routing
applications.

• A deep investigation of ARP algorithms behavior and execution time versus qual-
ity trade-offs. I performed several experiments to explore ARP wide design space,
highlighting those configurations under which considered algorithms prevail or
are dominated by others.

• A methodology on implementing and training a machine learning model for best
algorithm prediction depending on request characteristics. I presented feature en-
gineering, model selection and prediction steps in order to train and use online a
recommender module to proactively decide the optimal ARP heuristic for a spe-
cific input.

• A car navigation system design along with a Queuing Petri Net model for perfor-
mance evaluation and capacity planning analysis. With the objective of delivering
a valid solution for a smart city wishing to offer a navigation service, the ability to
study system behavior and size it according to citizens demand is mandatory for
an effective applicability analysis.

• A simulation of the proposed service deployment starting from open data collected
by local authorities. On top of this, I evaluated the proposed approach, validating
the system-level model against real data in two different service plan scenarios.

In the remainder of this thesis, I will write using the first-person plural to acknowl-
edge the support from advisor and colleagues. However, I take responsibility for all the
decisions and choices described in this thesis, since I was the main investigator.

Publications

From this work of thesis the following article was derived and is, at the time of writing,
currently under peer review:

• Leonardo Arcari, Gianluca Palermo “ARLib: an Alternative Route Planning Li-
brary for Boost.Graph,” SoftwareX.

Outline

This thesis structure follows the macro steps I accomplished during its development.
With the exception of chapter 2, introducing the theoretical background for this work,

3

i
i

“output” — 2019/4/3 — 16:46 — page 4 — #18 i
i

i
i

i
i

Chapter 1. Introduction

each chapter ends with an experimental evaluation supporting the claims made across
its sections. This structure has been preferred to highlight that each subsequent step
was made considering the experimental evidence collected from the previous one.

chapter 2 provides the theoretical background laying under this thesis. Starting from
notions of Graph Theory, it moves to Alternative Route Planning problem formulation
and most notable solution quality metrics. Moreover, it provides an overview of state-
of-the-art alternative route planning algorithms. Furthermore, it presents the topic of
computer systems modelling and two notable formalisms from the literature: Queueing
Networks and Petri Nets.

chapter 3 presents a first approach to a car navigation system design, describing the
core modules composing it. As the main focus of this thesis, we concentrate on Alterna-
tive Route Planning step, introducing ARLib, an efficient, configurable C++ alternative
routing library. Moreover, a brief description of library design, architecture and APIs
are provided, along with a working example to show its ease of usage. Furthermore,
we conduct an ARP design space exploration to study strengths and weaknesses of
considered ARP algorithms. Finally, a first adaptive policy is depicted to statically
choose ARP problem parameters and heuristics to tailor the navigation service to some
provider constraints.

chapter 4 further extends the car navigation system presented before by introducing
an auto-tuning module, based on machine learning models, recommending the optimal
ARP algorithms depending on incoming request characteristics. Feature engineering,
model selection and prediction phases are deeply described in this chapter, together
with a policy to extend a basic car navigation system pipeline with adaptive capabilities.

chapter 5 introduces a Queueing Petri Net model of the system described in previous
chapters along with a methodology for efficient capacity planning analysis. Further-
more, an overload-tolerant extension of the model is presented in order to cope with
unexpected workload spikes in an HPC environment.

chapter 6 conducts a case study on the Milan municipality. Starting from real histori-
cal traffic data, we identify the expected workload in most congested hours and propose
two possible service plans to accommodate routing requests targeting two different ob-
jectives both in terms of service quality and financial availability.

Finally, chapter 7 concludes the thesis, by summarising the findings and limitations
of the proposed approach and by stating recommendations for future works.

4

i
i

“output” — 2019/4/3 — 16:46 — page 5 — #19 i
i

i
i

i
i

CHAPTER2
Background

In this chapter, an overview of the fundamental topics, on top of which this work elabo-
rates on, are reported. In particular, we considered previous works on Alternative Route
Planning problem and System Modelling, since these two topics are the most relevant
for this thesis. In fact, the former plays a fundamental role in the development of a car
navigation system pipeline, to compute those candidate paths that might be suggested
to the service users. On the other hand, the latter provides us with the tools to capture
a car navigation system details from the performance evaluation perspective in order to
effectively study the service behavior in a simulation environment.

2.1 Alternative Route Planning problem

Definition 2.1.1. Graph: an ordered pair G = (V,E), where E ⊆ V × V is the set of
edges (u, v) which are 2-element subsets of V , i.e. an edge is an association between
two vertices.

To avoid ambiguity, this type of graph is considered undirected and simple. A graph
is undirected if its edges have no orientation, which means the edge (u, v) is identical
to the edge (v, u). An undirected graph is then simple if it has neither multiple edges,
connecting the same pair of vertices, nor loops.

A road network, though, might have edges directly connecting one point in the city
to another which might indeed be one-way only. Moreover, loops are certainly possible
within a city network, letting, in fact, a walker to start from a corner of a building and
walking themselves around the building reaching the same point they left.

Definition 2.1.2. Directed graph: a graph in which edges have orientations. An edge
(u, v) is considered to be directed from u to v; v is called the target or head of the edge,
while u is called source or tail of the edge.

5

i
i

“output” — 2019/4/3 — 16:46 — page 6 — #20 i
i

i
i

i
i

Chapter 2. Background

With these fundamental definitions from the graph theory in place, a formal road
network definition can be given to model the typical domain assumptions.

Definition 2.1.3. Road network: let V denote a set of vertices (or nodes) that represent
road intersections and other points of interest. A road network is a directed, non-simple,
graph G = (V,E), where E ⊆ V × V is the set of edges (u, v), each representing a
road segment that connects nodes u and v.

In the context of route planning then, a common question is what sequence of roads
to follow in order to move from current point s to a destination t, minimizing some
metric of interest like the traveled distance or time or again the fuel cost of the driven
car. To include these requirements we extend the Definition 2.1.3 with the notion of
path and weight.

Definition 2.1.4. Path: in symbols, p(s → t), from node s to t is a connected and
cycle-free sequence of edges p(s→ t) = 〈(s, u), . . . , (v, t)〉.

The above definition is, formally, referring to simple paths. In this work, paths are
always considered to be simple.

Definition 2.1.5. Weight: function: a function w : E → R+ assigning to each edge
(u, v) a weight wuv, which captures the cost of moving from u to v.

From the notion of weight, it is simple to derive a formulation of the length of a
path p, in symbols `(p) as the sum of the weights of the edges composing the path p, in
symbols:

`(p) =
∑
∀(u,v)∈p

wuv. (2.1)

Now that all the basic concepts to describe a road network are in place, it is possible
to move forward in the definition of the Alternative Route Planning (ARP) problem.
As previously mentioned, the focus of this thesis work is on building an adaptive car
navigation system for a smart city, wishing to optimize the municipality traffic con-
ditions. A fundamental part of the process to achieve that goal is to find a number k
of alternative paths from a source node s to a target node t on which to compute the
expected travel time.

The problem of finding the shortest path between a pair of vertices have always
been a matter of interest both in research and industry fields. Many solutions to solve it
have been proposed along the history, most notably the Dijkstra’s Algorithm [7] which
executes in O(|V |2) time. While the shortest path problem has a clear formulation and
understanding, i.e. finding the path with minimum length, the problem of finding k
alternative paths is less trivial. Following a naive approach, every path connecting a
source node s to a target node t could be considered an alternative path from s to t,
although, not necessarily very useful. After all, the main point of finding more paths
connecting two nodes is that they might be better from other perspectives, like the
expected arrival time. If an alternative path is too much longer than the shortest one,
most likely also the expected arrival time will be higher, since the free-flow travel time
would still be constrained by the road speed limit. Therefore, it is desirable for an
alternative path to be as short as possible.

6

i
i

“output” — 2019/4/3 — 16:46 — page 7 — #21 i
i

i
i

i
i

2.1. Alternative Route Planning problem

On the other hand, a good alternative route should not overlap too much with the
others. Indeed, it could be tempting to consider as a good alternative path a small
variation of the shortest one, by taking a small detour at any point and then joining
back. Most certainly, though, the two paths discovered this way would share the same
traffic condition, making the expected travel time almost identical, hence losing the
chance to find a faster road, longer in terms of weight but less congested.

To come to a formal definition of a good alternative path, first, the notion of similar-
ity is introduced.

Sim(p, p′) =

∑
(u,v)∈p∩p′ wuv

`(p′)
. (2.2)

The similarity is also known as overlap ratio, thus 0 ≤ Sim(p, p′) ≤ 1, where
Sim(p, p′) = 0 holds if p shares no edge with p′ and Sim(p, p′) = 1 if p ≡ p′. Using
this similarity measure, the definition of alternative path is given.

Definition 2.1.6. Alternative path: let P be a set of paths from s to t and θ ∈ [0, 1) be
a similarity threshold. A path p is alternative to P if and only if

• p is also from s to t

• ∀pi ∈ P : Sim(p, pi) ≤ θ

This formulation settles the latter point of the aforementioned analysis on how al-
ternative paths should appear with respect to each other, ensuring that valid solutions
overlap at maximum by a factor θ, to be tuned according to the desired quality metric.
It should be noted that the similarity definition in Equation (2.2) is asymmetric. The
rationale behind this choice originates from the solution construction process that ARP
algorithms follow: the concept of alternative path is always defined between one candi-
date alternative path and a given set of alternative paths, having the shortest path being
the first added.

With the notion of alternative path, the Alternative Route Planning problem, also
known in the literature as k-Shortest Paths with Limited Overlap (k-SPwLO) [2], can
be defined.

Definition 2.1.7. ARP problem: Given a source node s, a target node t and a threshold
θ, a query ARP(s, t, θ, k) returns a set P = {p0, . . . , pk−1} of k paths from s to t, such
that:

• p0 is the shortest path from s to t,

• ∀pi, pj ∈ P with i 6= j : Sim(pi, pj) ≤ θ

The first point of Definition 2.1.7 guarantees that the shortest path p0(s → t) is
always recommended. In the process of computing the path with soonest expected
arrival time, in fact, the shortest path, for distance or average travel time, is the most
promising candidate. Although, harsh traffic conditions might lead to slowdowns and
other paths could be better from this point of view. The second point instead, assures
that the recommended paths in P are sufficiently dissimilar to each other. Again, this
property is desirable when looking for a path that is not affected by traffic congestion in
some area of the city. Having too similar alternative paths would lead to solutions with

7

i
i

“output” — 2019/4/3 — 16:46 — page 8 — #22 i
i

i
i

i
i

Chapter 2. Background

comparable drive time, uninteresting from the end-user perspective that would rather
drive along the route they are customary to instead of saving a minimal amount of time
through a road they do not know.

2.2 Quality

In the previous section, the provided formal definition for the ARP problem solves only
one of the two requirements that a good alternative routes set should satisfy. While
the necessary limitation on the overlap ratio is addressed directly, still, no constraint
on the lengths of the recommended alternative paths is set. Indeed, a solution having
k paths completely non-overlapping would satisfy the ARP problem definition, but the
lengths of the alternative routes might be so greater than the shortest path one to result
completely uninteresting from the arrival time point of view. Therefore, in order to rank
different solutions, a quality metric is due to take into account also the length of all the
alternative routes with respect to the shortest one.

In the literature, several metrics are proposed to judge the quality of an ARP solu-
tion. The first one [8], reported below, rates a solution according to the average ratio
between an alternative path and the shortest one. Formally, let P be a solution to the
ARP problem, with k = |P | and p0 the shortest path:

spDifference :=
1

k − 1

∑
pi∈P\{p0}

`(pi)

`(p0)
. (2.3)

Because Equation (2.3) measures the average difference with respect to the shortest
path, the relation spDifference ≥ 1 always holds and the lower the difference, the
better the quality. In fact, considering that each path in any ARP solution overlaps with
each other with a maximum factor of θ, routes with lengths closer to the shortest one
should be preferred.

In other research works [3,9], a different set of metrics has been proposed to measure
both the average length of the alternative routes and the amount of distance that routes
share with each other. Looking at the problem from a whole different perspective, the
metrics described hereinafter leverage the notion of Alternative Graph.

Definition 2.2.1. Alternative graph (AG): let G = (V,E) be a graph and w : E → R+

be its weight function. For a given source node s and a target node t an AG H =
(V ′, E ′) is a graph with V ′ ⊆ V such that for every edge e ∈ E ′ there exists a simple
s-t-path in H containing e and no node is isolated. Furthermore, for every edge (u, v)
in E ′ there must be a path from u to v in G; the weight of the edge wuv must be equal
to the path’s weight.

Moreover, a reduced AG is defined as an AG in which every node has in-degree 6= 1
or out-degree 6= 1 and thus provides a very compact encoding of all alternatives con-
tained in AG. In this work, only reduced AG is considered, hence AG always refers to
a reduced AG.

Given a solution P = {p0, . . . , pk−1} to the ARP problem, as formulated in Defini-
tion 2.1.7, it is simple to build an AG. Indeed, an AG H = (V ′, E ′) is such that, given
Vi and Ei the set of vertices and edges respectively in path pi ∈ P , V ′ = ∪iVi and
E ′ = ∪iEi.

8

i
i

“output” — 2019/4/3 — 16:46 — page 9 — #23 i
i

i
i

i
i

2.2. Quality

Knowing how to move from an ARP solution to an AG H , the following metrics are
introduced to measure the quality of the alternative paths:

totalDistance :=
∑

(u,v)∈E′

wuv
dH(s, u) + wuv + dH(v, t)

(2.4)

averageDistance :=

∑
(u,v)∈E′ wuv

dG(s, t) · totalDistance
(2.5)

where dG denotes the shortest path distance in the original graph G, while dH the
shortest path distance in the AG H . The averageDistance measures the extent to
which the routers defined by the AG are non-overlapping, the higher the better, reaching
its maximal value of k when the AG consists of k disjoint paths. Note that scaling by
dH(s, u) + wuv + dH(v, t) is necessary because otherwise, long, non-optimal paths
would be encouraged. The averageDistance, on the other hand, measures the path
quality directly as the average stretch of an alternative path, using a way of averaging
that avoids giving high weight to large numbers of alternative paths that are all very
similar.

The latter metric, which is always greater than or equal to 1, resembles Equa-
tion (2.3), measuring how long the alternative routes are with respect to the shortest
one. The former metric, conversely, returns a value of the dissimilarity of the alterna-
tive paths. As opposed to the constraints set by Definition 2.1.7, Equation (2.4) does
not consider only an upper bound on the overlap factor, making the comparison among
different ARP solutions possible. The last question is how to combine Equation (2.4)
and Equation (2.5) in order to impose an ordering among valid alternative routes sets.
It is suggested to employ a linear combination of the two.

AGQuality := totalDistance− α(averageDistance− 1) (2.6)

In quality, α quantifies the penalization factor that long alternative paths have on
the overall solution goodness, and it is usually set to 1. Finally, because totalDistance
value is driven by the number of paths k, it is better to normalize it to compare the qual-
ity of solutions with respect to k more clearly.

AGQuality (normalized) :=
1

k
totalDistance−α(averageDistance−1) (2.7)

Whether it is better to adopt spDifference and similarity threshold in the search
approach, or jointly minimizing totalDistance and averageDistance is hard to
judge. Indeed, it looks more like an arbitrary decision, based on what it is considered
good for an ARP solution.

Literature works supporting spDifference quality metric suggest to fix a threshold
on the overlap ratio that will make the alternatives search discard all those too-similar
paths while aiming at minimizing the average length. Indeed, it is easy to find non-
overlapping alternative that, although, force severe detours, in the end making them
completely unappealing from a driver perspective.

On the other hand, works supporting AGQuality suggest that best solutions are
those where alternatives overlap the least, while marginally penalizing solutions with

9

i
i

“output” — 2019/4/3 — 16:46 — page 10 — #24 i
i

i
i

i
i

Chapter 2. Background

longer routes. Moreover, in order to judge the goodness of AGQuality, a survey
on human drivers was carried out and the more human-suggested paths matched the
computed ones, the better.

While aiming at very dissimilar routes may lead to more human-understandable
solutions, in the context of discovering less-congested and faster paths, this might not
be the primary focus.

To conclude, only extensive real-world testing could break the tie between these
two approaches. In this work, we choose to follow the spDifference quality metrics
as an arbitrary choice, sure that the proposed methodology would seamlessly apply if
AGQuality was selected.

Having a satisfactory quality metric in place, a natural question to pose would be
whether there exists a way to efficiently optimize it, that is, for instance, an algorithm
that discovers an AG that maximizes Equation (2.7) in polynomial time. Unfortunately,
it is proven that optimizing a meaningful combination of Equation (2.4) and Equa-
tion (2.5) is NP-hard. Therefore, it is necessary to restrict to heuristics to compute
solutions to the ARP problem.

2.3 Algorithms

In this section, a survey on the ARP algorithms from the literature is proposed to show
the different available approaches to achieve an approximate solution, with a major
focus on those that were chosen as candidates for the evaluation in this work.

2.3.1 OnePass+

The first presented algorithm belongs to the class of k-Shortest Paths with Limited
Overlapping (k-SPwLO) methods [2, 8]. This family of algorithms develops on the
classical k-Shortest Paths approach, following the idea that also slightly suboptimal
paths are good. Historically, k-Shortest Path heuristics used to compute solutions that
“looked bad” from a human perspective, since often too similar to each other. k-SPwLO
algorithms build on top of them to address this key issue. In particular, OnePass+ [8]
searches the graph space expanding paths from the source node s until k paths to t are
discovered. In the process of exploring the search space, candidate routes are pruned
according to two pruning criteria.

Definition 2.3.1. k-SPwLO pruning criterion (1): let P be the set of already recom-
mended paths. If p is an alternative path to P with respect to a threshold θ, then
Sim(p′, pi) ≤ θ holds for every subpath p′ of p and all pi ∈ P . If the condition is not
met by a soon-to-be expanded path, the path is pruned.

OnePass+ algorithm employs a min-priority queue in order to examine paths in in-
creasing order of their length. Each time a new path is recommended, i.e., added to
the result set P , an update procedure takes place for all remaining incomplete paths
p(s → n) in the priority queue. The algorithm terminates when either k paths are
added to the result set or all paths from s to t qualifying Definition 2.3.1 are examined.
Moreover, in the search process, a second pruning criterion is considered.

Definition 2.3.2. k-SPwLO Pruning criterion (2): let P be a set of paths from a source
node s to a target node t and pi, pj be two paths from source s to some node n. If

10

i
i

“output” — 2019/4/3 — 16:46 — page 11 — #25 i
i

i
i

i
i

2.3. Algorithms

`(pi) < `(pj) and ∀p ∈ P : Sim(pi, p) ≤ Sim(pj, p) hold, then path pj cannot be part
of the shortest alternative path to P and pi is said to dominate pj , in symbols, pi ≺P pj .

The second pruning criterion can be used to compute the shortest alternative to a
set of paths as follows. Let P be the set of paths for which we want to compute the
shortest alternative path, and Pn be the set of paths from s to a node n created during
the expansion of paths from s. If set Pn contains a path p′(s→ n) such that:

a) p′ is longer than any path pn ∈ Pn \ {p′} and

b) for every path p ∈ P the overlap ratio Sim(p′, p) is higher than the ratio Sim(pn, p)
for all paths pn ∈ Pn \ {p′},

then p′ can be pruned.
By means of these two pruning criteria, OnePass+ can efficiently compute a set of

alternative paths. Although, because Definition 2.3.2 strongly depends on the paths
in the set P at the moment it is applied, a path p′ pruned while computing the i-th
alternative to P might still have been part of the best alternative at step i + 1. While
a straightforward solution to this problem would be to restore the pruned paths every
time a new alternative is recommended, this introduces strong delays in the algorithm
execution time. Therefore, OnePass+ never resets the pruned sub-paths, leading to an
approximate, but faster to compute solution.

2.3.2 Penalty

The second approach considered in this work is named Penalty [3, 9, 10] and follows
a simple idea: computing alternative paths by iteratively running shortest path queries
and adjusting the weight of the edges on the resulted s-t-paths. The rationale behind
this method is straightforward. The key point of ARP problem is to find paths such
that a traffic analysis might rank a longer path better from the arrival time viewpoint.
Therefore, by penalizing the recommended paths, the next shortest path is likely to be
different, but not completely. In fact, some sub-paths might still be shorter than a full
detour. The basic steps of Penalty are the following:

• A shortest s-t path p is computed with Dijkstra’s algorithm or any speedup varia-
tion of it.

• The discovered path p is added to the alternatives set P and it is penalized by
increasing the weight of its edges.

• A new s-t query is executed and the new shortest path p′ is found.

• If p′ is short and different enough from the previously recommended alternatives,
then it is added to P .

Indeed, the crucial point of this algorithm is how and when the edge weights are
incremented. In this work, the following weight adjustment policy is considered.

The increase on the weights should be of small magnitude in order to keep the
resulting averageDistance low. To penalize an edge of an s-t-path, only a small
fraction of its initial weight is added. Let p be the penalty factor, such that 0.1 ≤ p ≤ 1,
and e be an edge of an s-t-path to penalize, then the new edge weight is computed as

11

i
i

“output” — 2019/4/3 — 16:46 — page 12 — #26 i
i

i
i

i
i

Chapter 2. Background

the following: wnewe = we + p · wolde . Generally speaking, the higher the penalty factor
is, the more the new shortest path is likely to differ from the last one. On the other
hand, the lower the penalty factor is, the more shortest path queries can be performed,
reducing the risk of losing meaningful paths.

The number of weight adjustments should be restricted as it could lead to the loss of
good alternatives. A working scenario supporting this statement is a city with only one
very fast highway into it and many alternative paths through the city center. Allowing
an unbounded number of weight increments, the cost of the highway would grow after
every s-t path query. Therefore, after several updates, subsequent shortest paths would
take a detour much longer than the highway, that a human driver would hardly choose.
To overcome this problem, the number of increases is limited for edges in already
recommended paths.

Finally, to reduce the overlapping between the computed alternatives, it is useful
to extend the weight adjustment to their neighbors. The rationale behind this is to
avoid the saw tooth effect, i.e. alternative routes that present many minimal detours
around a previously recommended path, forking from it at some node and rejoining
immediately after. Therefore, when increasing the weight of the edges in a shortest
s-t-path, the weights of edges that leave and join its vertices should be additionally
penalized by a factor 0.1 ≤ r ≤ 1. This step, named rejoin-penalty, contributes to
high totalDistance. The cost increment step is not uniform across the edges, though.
To reduce the possibility of computing alternative paths that tend to rejoin with the
previously recommended, heavier weights are put on those outgoing edges that are
closer to the target t, while heavier weights are put on those incoming edges that are
closer to the source s. Formally, let pst be the shortest s-t-path just penalized, then:

wnewuv = wuv + (0.1 + r · ds(u)/ds(t)) · wolduv , ∀(u, v) ∈ E : u ∈ pst, v /∈ pst (2.8)

wnewuv = wuv + (0.1 + r · dt(v)/dt(s)) · wolduv , ∀(u, v) ∈ E : u /∈ pst, v ∈ pst (2.9)

2.3.3 ESX

The last ARP algorithm taken into account is again from the family of k-SPwLO meth-
ods, but it follows an iterative approach, similarly to Penalty. It is named Edge Subset
Exclusion (ESX) [8] and its main idea is to compute a set of alternative routes by sub-
sequently excluding edges from the road network. The basic steps are the following:

• Given a source node s and a target node t in a graph, the algorithms first adds the
shortest path p0 to the result set P .

• Then, ESX removes an edge of p0 from the road network and a new shortest s-t-
path pc is computed on the updated road network.

• If the overlap of the candidate path pc with p0 does not violate the similarity thresh-
old θ, then pc is added to P , as stated in Definition 2.3.1.

• Otherwise, the algorithm proceeds by removing more edges from the road net-
work. If P contains more than one path, ESX removes an edge from path p ∈ P
for which the similarity Sim(pc, p) is the highest.

12

i
i

“output” — 2019/4/3 — 16:46 — page 13 — #27 i
i

i
i

i
i

2.3. Algorithms

• The process is repeated until a path that does not violate the similarity threshold
is found. The algorithm terminates when the desired number of alternatives are
found or when there are no more edges to remove.

The critical step in ESX is the policy according to which an edge is elected for exclu-
sion. A good selection strategy would choose that edge which is most important for the
network connectivity between s and t and hence causing a relevant detour if removed.
Deleting such edge from the graph would cause the subsequent shortest path queries to
return alternative routes potentially dissimilar enough from the already recommended
ones. The policy adopted by ESX employs a heuristic based on a local check. Given an
edge e(a, b) on some path p ∈ P , let Einc(a) be the set of all incoming edges e(ni, a)
to a from some node ni ∈ N \ {b} and Eout(b) be the set of all outgoing edges e(b, nj)
from b to some node nj ∈ N \ {a}. First the heuristic computes the set Ps which
contains the shortest paths from every node ni ∈ Einc(a) to every node nj ∈ Eout(b).
Then, the heuristic defines the set P ′s which contains all paths p ∈ Ps that cross edge e.
Finally a priority to edge e is assigned, set to |P ′s|.

2.3.4 Other algorithms

There exist other Alternative Route Planning algorithms in the literature which were
not considered in this work as hardly fitting the ARP problem as formulated in Defini-
tion 2.1.7, but they are briefly reported hereinafter for completeness.

Pareto A classical approach to compute alternatives by means of Pareto optimality
[11–13]. The typical procedure is to add to the primary weight function (e.g. edge
length) a secondary weight function that is zero for edges that are not part of any rec-
ommended path and identical to the primary edge weight for edges that are part of at
least one recommended path. A path is now said Pareto-optimal if there is no other
path which is better with respect to both weight functions. As the experimental study
in [3] reported Pareto approach producing low-quality results, it was not investigated in
this work.

Plateau An approach that identifies promising segments in the graph, called plateaus
[14], such that s-t-paths flowing through them are good candidates to be alternative
paths. In details, forward and backward Dijkstra searches are performed from s to all
nodes and from t to all nodes respectively. Then, the discovered shortest path trees are
intersected, discovering a set of simple paths, named plateaus, with a peculiar property:
let (u, v) be an edge of a plateau, then ds(u) + dt(u) = ds(v) + dt(v), meaning that
the edge (u, v) can be reached with the same, shortest, traveling distance from both
s and t. As the plateaus are usually too many, they are ranked according to rank =
`(pst) − `(p̄), where pst is the shortest s-t-path via the plateau p̄. Therefore, a plateau
that corresponds to a shortest path from s to t has rank zero, which is the best value.
The major downside of this approach is that recommended paths are not guaranteed
to be sufficiently dissimilar since the similarity only to the shortest path is taken into
account.

13

i
i

“output” — 2019/4/3 — 16:46 — page 14 — #28 i
i

i
i

i
i

Chapter 2. Background

Arriving
customers

Queue Server
Departing
customers

Figure 2.1: A single service center.

2.4 Computing Systems Modelling

In this section, we provide some background information about Queueing Networks
(QN) [15] and Petri Nets (PN) [16] models. This two formal models are widely em-
ployed in the context of computer systems modelling, an abstraction distilling those
aspects of a system that are essential to study its execution behavior, a matter we are
going to leverage in chapter 5.

2.4.1 Queueing Networks

Queueing Network [15] modelling is a particular approach to computer systems mod-
elling in which a computer system is represented as a network of queues. A network
of queues is a collection of service centers, which represent system resources, and cus-
tomers, which represent users or jobs running. Figure 2.1 pictures the fundamental
entity of a QN: the service center.

Customers arrive at a service center, possibly wait in a queue, receive service from
the server and depart. In the model of Figure 2.1 we identify two parameters. For
starters, we must specify the workload intensity, which is the rate at which customers
arrive. Moreover, we must specify the service demand, which is the average service
requirement of a customer.

Given some values of arrival rate and service demand, we can evaluate, if we solve
a set of analytic equations, or simulate, if we employ a QN simulator, the model and
compute a number of performance indices, which we summarize as follows:

Definition 2.4.1. Given a queueing network, as shown in Figure 2.1, we introduce the
following basic quantities:

T , the length of time we observe the system.
A, the number of request arrivals we observe.
C, the number of completions arrivals we observe.
N, the average number of customers in the system.
R, the average system residence time, or the time a customers in a queue.
B, the length of time a single resource was observed to be busy.

From this measurements, we can define the following additional quantities:

14

i
i

“output” — 2019/4/3 — 16:46 — page 15 — #29 i
i

i
i

i
i

2.4. Computing Systems Modelling

c

(a) A Delay station.

c

(b) A G/G/c station.

c

(c) A Fork station.

c

(d) A Join station.

Figure 2.2: Queuing Network service stations

Definition 2.4.2. Given a queueing network, as shown in Figure 2.1, we introduce the
following derived quantities:

λ =
A

T
, the arrival rate (req/s) (2.10)

X =
C

T
, the throughput (req/s) (2.11)

U =
B

T
, the utilization (%) (2.12)

S =
B

C
, the service time per request (s) (2.13)

Since it is hard to imagine characterizing a modern computer system with single-
resource service centers, we introduce several additional kinds of service centers which
will be employed in chapter 5.

Delay Station

A Delay station is a multi-server service center where jobs experience no residence
(queueing) time. Let us consider a delay station equipped with c ∈ [1,∞) servers.
When a customer arrives at the station, there are two possible outcomes:

• There is a free server available and the job is immediately served.

• There are no free servers and the job is dropped.

A delay station is pictured in Figure 2.2a.

15

i
i

“output” — 2019/4/3 — 16:46 — page 16 — #30 i
i

i
i

i
i

Chapter 2. Background

G/G/c Station

A G/G/c is a multi-server service center where c servers are available and jobs that
cannot be served immediately wait in a queue. When a resource becomes available,
waiting jobs are processed from the queue according to some policy (e.g. First-Come,
First-Served). A G/G/c station is shown in Figure 2.2b.

In queueing theory, queue stations are named according to three factors, i.e. A/S/c,
where A and S are the stochastic processes modelling the arrivals and departures re-
spectively, while c is the number of servers.

A notable queue station in the literature is the M/M/1 queue, where M stands for
Markovian process. An M/M/1 queue, therefore, is characterized by an arrivals process
where inter-arrival times are exponentially distributed and jobs are served one at a time
and processed in exponentially-distributed times.

The most general formulation of a queue station is the G/G/c queue, where G stands
for general, so that no assumption on the arrivals and departures distribution is made.
Such models are perfectly reasonable in a simulation context, where service times can
be loaded from real-world system logs. From an analytical perspective, instead, em-
ploying general distributions is highly impracticable, hence typical approaches involve
choosing a known theoretical distribution sharing most meaningful statistics with the
real system, e.g. mean and coefficient of variation.

Fork Station

A Fork station [17] splits arriving job into several tasks, one or more per outgoing link,
modelling a typical approach in computer systems to achieve fast processing are mini-
mizing service time. In parallel processing, this concept is also known as thread-based
(or task-based) computing. Generally, no service time is allocated to Fork stations and
no limit on the capacity is set. The degree of parallelism is modelled by the number of
outgoing links to other network stations, generating c tasks on each link. A representa-
tion of a Fork station is drawn in Figure 2.2c.

Join Station

Join stations [17] are complementary to Fork stations and are used to recombine the
tasks corresponding to a job that had been previously split and then route the job to the
following stations. Like Fork stations, Join stations have no service time and no limit
on the capacity is placed. A representation of a Join station is drawn in Figure 2.2d.

Join stations may implement several join strategies, modelling many typical behav-
iors of a parallel application. In chapter 5 we will leverage the following two policies:

• Standard join: This is the usual policy adopted by Join stations. All the tasks of
a job generated by a Fork station must arrive at the Join station before that the job
will be released. In parallel computing, this is also known as a barrier.

• Quorum: With this strategy, when the Join station has received some fixed num-
ber of tasks of a job, then it will release the job. The number of tasks to wait at the
Join can be less than the ones generated by the Fork.

16

i
i

“output” — 2019/4/3 — 16:46 — page 17 — #31 i
i

i
i

i
i

2.4. Computing Systems Modelling

n

TokenPlace Transition Arc
Figure 2.3: Place-Transition Net notation

2.4.2 Petri Nets

Petri Nets (PN) [16] are a class of modelling formalisms to describe the execution
behavior of distributed and parallel systems. PN were originally proposed by Carl
Adam Petri in a formulation known today as Place-Transition (PT) nets or ordinary
Petri nets. PN offer, like other modelling languages, a graphical notation to represent
step-wise processes that include choices, iteration and concurrent execution. As an
advantage, PN also has an exact mathematical definition of their execution semantics,
with a well-developed mathematical theory for process analysis.

Since the introduction of PT nets, many variations have been developed to extend
to expressive power of the modelling language, such as coloured Petri nets, stochastic
Petri nets, generalized, stochastic Petri nets, coloured, generalized stochastic Petri nets
and Queueing Petri nets (QPN) [18].

Place-Transition Nets

Pictured in Figure 2.3, Place-Transition Net notation comprised the following primi-
tives:

• Place: Drawn as a circle, it is used to represent a state, such as a phase of a process
or the number of resources available, or an object in the system, e.g. a program
variable.

• Token: Drawn as a black dot, it is an identity-less marker present in places. The
number of tokens in a place indicates the value of the state or object represented
in that place.

• Transition: Drawn as a rectangle, it is used to characterize events or activities
that occur in the system. A transition fires to indicate the occurrence of the event
the transition represents.

• Arc: Drawn as an arrow, it is used to express the relationship between states and
events. An input arc, from a place to a transition, represent the conditions that can
cause an event to happen. An output arc, from a transition to a place, reflects the
result of the event. Each arc is assigned a weight. If not specified explicitly, the
weight is assumed unitary.

Figure 2.4 shows a sample Place-Transition Net. It involves three places, p1, p2 and
p3 with 4, 0 and 1 tokens, respectively. Place p1 is connected to t1 transition through

17

i
i

“output” — 2019/4/3 — 16:46 — page 18 — #32 i
i

i
i

i
i

Chapter 2. Background

2

(a) A simple PT net.

2

(b) The PT net after transition t1 fired once.

Figure 2.4: A sample Place-Transition Net before and after a transition fire.

an input arc with weight 2. Similarly, transition t1 is connected both to place p2 and p3
through two output arcs with, implicit, weight 1.

PN transitions are said to fire when they consume tokens from their input places,
i.e. sources of input arcs, and creates other tokens in their output places, i.e. target
places of output arcs. This notion is subtle but fundamental in understanding PN. Since
tokens have no identity, thinking of them as flowing through transitions would lead
to erroneous interpretations. As a matter of fact, when a transition fires, tokens are
effectively destroyed from the input places and generated, as new instances, in the
output places. This process is governed by the following rules:

• Enabling Rule: A transition is enabled if all its input places contain at least as
many tokens as defined by the weight of their input arc. In Figure 2.4a, transition
t1 is enabled as p1 contains at least 2 tokens. In fact, it contains four of them.

• Firing Rule: An enabled transition is ready to fire. The firing process causes the
destruction, for each input place, of the number of tokens corresponding to the
weight of the respective input arc. Consequently, it creates, in each output place,
the number of tokens corresponding to the weight of the respective output arc. In
Figure 2.4b, when transition t1 fires, it consumes 2 tokens from place p1 and puts
1 token both in p2 and p3.

Stochastic Petri Nets

Place-Transition Nets can be used to verify the functional properties of a system. On the
other hand, since no timing information can be expressed, it is impossible to employ
them in the analysis of computer systems performance. Time-augmented variants of
ordinary Petri Nets have been proposed to overcome this limitation. A widely used
variation is named stochastic Petri nets (SPN) [18] which is hereafter introduced.

SPN are developed from PTN by introducing timed transitions characterizing events
that occur in the system. As opposed to non-timed (or immediate) transitions, timed
transitions, once enabled, do not fire immediately, but hold until their firing time elapses.
By definition, in SPN the firing time of a transition is exponentially distributed, with
the following probability density function:

f(x) =

{
λe−λx, if x ≥ 0

0, if x < 0

18

i
i

“output” — 2019/4/3 — 16:46 — page 19 — #33 i
i

i
i

i
i

2.5. Summary

where λ is said to be the firing rate of the transition. With a notion of time formu-
lated in these terms, the inter-fires times of a transition form a notable type of stochastic
process, i.e. a Markov process. Consequently, Markovian techniques can be implied
to analyze the model behavior and, more specifically, important performance measure-
ments can be evaluated, such as the mean number of tokens in a place and the firing
throughput at a transition.

2.4.3 Java Modelling Tools (JMT)

In chapter 5, the proposed system models are simulated in Java Modelling Tools (JMT)
[19–21] in order to analyze the performance indices of our interest. JMT is a free
open source suite consisting of six tools for performance evaluation, capacity planning,
workload characterization, and modelling of computer and communication systems.
The suite implements several state-of-the-art algorithms for the exact, approximate,
asymptotic and simulative analysis of queueing network models, either with or with-
out product-form solution. Models can be described either through wizard dialogs or
with a graphical user-friendly interface. The workload analysis tool is based on clus-
tering techniques. The suite uses an XML data layer that enables full re-usability of the
computational engines [20].

Along the aforementioned features, JMT implements a simulator engine for Queue-
ing Petri Nets (QPN) [18], a powerful modelling formalism merging Queueing Net-
works and Generalized Stochastic Petri Nets, extending the notion of performance met-
rics described in Definition 2.4.1 and Definition 2.4.2 to PN.

Introducing such an effective compatibility between QN and PN increases the avail-
able expressive power [22], enabling models of much more complex systems, by means
of advanced components obtained by a combination of different stations together.

2.5 Summary

In this chapter, we introduced the fundamental concepts that will be part of this work
of thesis. For starters, we presented the Alternative Route Planning (ARP) problem
as a key part of a car navigation system design. The previous work investigating on
this topic served us as a solid background on which to design and implement ARLib,
an efficient, configurable alternative route planning C++ library that we are going to
present in section 3.3. In fact, proofs-of-concept aside, no implementations of state-of-
the-art ARP algorithms were available to carry out a fair comparison of the strengths
and weaknesses of each approach, as we are going to do in chapter 3, and eventually,
employ them in a real car navigation system implementation to use online.

Moreover, Queueing Network and Petri Nets will be employed in chapter 5 to build a
reliable representation of our car navigation system, using those modelling formalisms
to study our service from a performance evaluation perspective and furthermore pro-
pose a capacity planning analysis methodology to effectively compute the right amount
of resources to handle some expected workload.

19

i
i

“output” — 2019/4/3 — 16:46 — page 20 — #34 i
i

i
i

i
i

i
i

“output” — 2019/4/3 — 16:46 — page 21 — #35 i
i

i
i

i
i

CHAPTER3
Alternative Route Planning

In this chapter, we present our approach to an adaptive car navigation system design, in-
volving a pipeline of three stages in which the most time-consuming step is represented
by the Alternative Route Planning phase, main focus of this work of thesis.

In the previous chapter, we introduced a variety of heuristics addressing the ARP
problem with different approaches to reduce the search space in large graphs repre-
senting the road network. Observing the range of available solutions, our first re-
search question led us to investigate whether they all performed equal or some heuristic
worked better than the others. Considering that the Alternative Route Planning problem
is characterized by number of alternative paths k and similarity threshold θ parameters,
we asked ourselves if some algorithm could perform best under some combination of k
and θ, while badly behaving for others.

In order to answer this question, a common approach is to carry out a Design Space
Exploration (DSE), systematically analyzing problem configurations from multiple per-
spectives, like execution time and quality of solutions. In particular, in our scenario, this
means comparing ARP algorithms in different (k, θ) setups to study their behavior. Al-
though, to deliver a fair study, equivalent implementations should be taken into account
to actually compare algorithms performance while keeping language and data-structure
issues aside. To our knowledge, aside proofs-of-concept, no publicly-available imple-
mentation of those algorithms is available, especially no available library ships a range
of ARP heuristics executing on the same graph data structure, making any comparison
meaningless. Therefore, we developed and publicly distributed a library offering the
flexibility we required to answer our question, eventually distributing an easy-to-use
solution for any software developer interested in alternative routing topic. This library
is named ARLib and it is introduced starting from section 3.3.

Based on ARLib, we carried out a DSE experiment to deeply analyze ARP algo-

21

i
i

“output” — 2019/4/3 — 16:46 — page 22 — #36 i
i

i
i

i
i

Chapter 3. Alternative Route Planning

rithms behavior under different k and θ combinations, both from latency and quality
of results perspectives along with their failure rate. From the experiment results, we
propose a policy for our car navigation system introducing a first degree of adaptivity,
enabling the service provider to effectively choose the system working point within the
design space.

3.1 An Adaptive Car Navigation System

Considering the rising wave of self-driving cars [23], the amount of car navigation
requests will increase rapidly [24] together with the need for real-time updates and
processing on large graphs representing the urban network. At present also, car, taxi
and motorcycle drivers rely on navigation systems to reach their destinations within the
city to discover the paths with least traffic. Moreover, mail, packages and food delivery
services experience their business rising [25] as a result of the non-stopping trend of
online goods purchasing, from books to house furniture to clothing to meals. From the
urban transfers perspective, the depicted scenario causes increasingly complex issues
in managing traffic jams and air pollution levels in certain areas of the city.

The adaptive car-navigation system proposed hereafter targets a smart city wishing
to address the aforementioned problem with effective route planning and traffic op-
timization processes. In order to do that, the municipality should provide a service
significantly improving the navigation experience, either from more reliable and faster
paths in terms of expected travel time, either from discounts on other metropolitan ex-
penses like parking tickets, fines or permissions to access limited-traffic areas. Upon a
request for a path to some destination, the service would respond with a single path that
is optimal according to some quality metric, subject to a number of constraints set by
the municipality, for instance minimizing the number of traveling vehicles around the
city center. The ideal target of the service would be autonomous-cars that would follow
passively any computed route. Although, local drivers may still decide to take detours
from the suggested path, either because different from the one they are accustomed to
or because they believe to know a better way. Such behavior, if shared among a sub-
stantial number of drivers, would undermine the service traffic-splitting effectiveness.
As a solution, the city might produce a rewarding plan for well-behaving drivers that
follow the service computed paths and obtain discounts on urban taxes.

From the municipality perspective, the service should have a low cost, in terms of
used amount of resources, and it should satisfy the whole load of requests, possibly
absorbing unexpected requests peaks that might arise in presence of accidents, harsh
climate conditions or natural disasters that would affect the viability. As for the end-
user viewpoint, a good service would provide high-quality results, i.e. a route with best
travel time, within a realistic response time, possibly tuning the path along the way
through re-routing requests.

3.2 System Architecture

The proposed adaptive car-navigation system is composed of a three-stage pipeline
which can be described as follows:

1. Alternative Route Planning (ARP)

22

i
i

“output” — 2019/4/3 — 16:46 — page 23 — #37 i
i

i
i

i
i

3.3. ARLib

Req kAlternative Route
Planning PTDR

Graph

Reordering Resp

Figure 3.1: A graphical representation of the proposed car-navigation system pipeline. The Alternative
Route Planning module is annotated with a gear to highlight its high degree of configurability.

2. Probabilistic Time Dependent Routing (PTDR)

3. Reordering phase

The first step, and main focus of this thesis, consists of determining a number k of
alternative paths from some source to some destination to be passed to the next step. In
the context of navigation, identifying the shortest path is not enough to discover a good
solution, but the traffic situation must be taken into account. A shortest path in terms
of distance or average traveling time might not be the optimal one in every time frame,
therefore an expected arrival time should be computed considering the current speed
profile on a given route.

In the second step, for each one of the k alternative paths, the travel time is estimated
using the PTDR [4–6] module. While the exact solution to the expected travel time has
exponential complexity, a Monte Carlo approach is proposed to efficiently approximate
the solution of the problem. This is the first degree of adaptivity of the proposed service.
Because the traffic situation can change dramatically the arrival time along a way or
another, the more alternative routes we compute the higher the chances are to find the
fastest one. Ergo, the system adapts to the varying traffic conditions, suggesting to the
end-user possibly different routes for the same source-destination pair, according to an
in-time computed expectation of the travel time.

The third and last stage gathers the timing information provided by the k instances
of PTDR module for every single request and selects the best path to return to the user.
Within this phase, routes are chosen not simply by traveling time, but also taking into
account municipality policies, for instance penalizing those paths to pass through the
city center or an area under investigation for high pollution level. A reordering policy
should reflect the local jurisdiction view on the ideal urban traffic, without completely
ignoring those routes that, despite breaking some constraints, have still a much higher
quality with respect to the other candidates.

3.3 ARLib

In the process of developing our car navigation system, considering that PTDR step
has been deeply investigated in other works [4–6], in this thesis we are going to focus
on Alternative Route Planning module. The goal of this module is to accept a request
for an ARP solution, given the source and the destination of the request along with the

23

i
i

“output” — 2019/4/3 — 16:46 — page 24 — #38 i
i

i
i

i
i

Chapter 3. Alternative Route Planning

number of desired alternative routes and a threshold on the similarity, compute a set of
paths and forward them to the PTDR module to estimate the traveling time.

As illustrated in section 2.3, several algorithms are available in the literature, propos-
ing different approaches to solve the ARP problem. Indeed, because finding the exact
solution is not computationally feasible, each algorithm employs some heuristic to re-
duce the computational complexity and return a solution in a reasonable amount of
time. Since heuristics are never guaranteed to be optimal under all circumstances, it
might be true that some algorithm performs better under certain conditions while an-
other one works better in other cases. Therefore, we would like a configurable ARP
module, enabling us to switch among algorithms, k and θ configurations, in order to
use the most suitable set of parameters satisfying our target requirements.

While implementations of ARP algorithms exist [26–29], most of them are noth-
ing more than proofs-of-concept, supporting the claims of researchers proposing them.
First of all, most of them are written in non-performance-oriented languages, like
Python or Java, which are not suitable for low latency systems like ours. Moreover,
all of them are implemented on their own custom graph data structure, which is unde-
sirable for at least two reasons:

• Implementing a graph data structure which is efficient enough for real-world con-
straints is hard, in fact, different storage strategies might suit best different graph
topologies, so it is very unlikely that a single structure might fit all the possible
scenarios.

• Switching among algorithms with different graph representations would require to
reload in memory the whole graph every time, which is hardly ideal when dealing
with road networks of hundreds of thousands of nodes and edges.

Therefore, the first step was to adopt a single, maintained, flexible, high-quality
library providing efficient data structures and operations on graphs. We elected Boost
Graph Library (BGL) [30] for several motivations:

• It is a well-established solution, born in late 2000 and still maintained.

• It provides three different, very efficient, graph data structures.

• It is generic, meaning that data types are customizable at compile time (hence, no
run-time overheads), but with a single interface, enabling the developer to run the
same algorithm on different graph structure implementations.

• It is released under a permissive license, the Boost Software License [31], enabling
both private and commercial usage.

On top of BGL, we developed ARLib, a generic [32–34], configurable, C++ Alternative
Routing Library, providing an implementation of a set of state-of-the-art algorithms.
In the interest of preserving the generality of usage of BGL, ARLib follows the same
conventions that official BGL algorithms set, so that ARLib users will find execut-
ing alternative routing algorithms on their graphs natural and non-intrusive. In details,
ARLib implements OnePass+ and ESX algorithms, presented in [8] and Penalty
algorithm, presented in [10]. Along with alternative routing solutions, ARLib provides

24

i
i

“output” — 2019/4/3 — 16:46 — page 25 — #39 i
i

i
i

i
i

3.3. ARLib

onepass_plus

esx

penalty

alternative_routing

Fill

multi_predecessor_map

graph
Prune?

no graph

yes

uninformed_
bidirectional_pruner

pruned
graph

return

astar

bidirectional_dijkstra

kernels

dijkstra_shortest_path

Use

Use

Figure 3.2: A graphical representation of the user-level ARLib architecture. On the left, the optional
pruning step to reduce the search space. In the center, the alternative routing functions along with
the data structure containing the problem solution. On the right the set of interchangeable routing
kernels.

an implementation of Bidirectional Dijkstra [35], a speed-up variant of Di-
jkstra’s algorithm [7], and Uniformed Bidirectional Pruning [9], a graph
pre-processing algorithm to reduce the alternative routes search space.

3.3.1 Software Architecture

In this section, we give a description of ARLib software architecture to offer a rationale
behind its design choices.

As a library to compute ARP problem solutions, knowing that each algorithm comes
with its trade-offs, ARLib forces no default-choice to find alternative s-t paths, but it
exposes a consistent interface so that the user can exchange the solving algorithm with
nearly-none code modifications. Upon algorithm termination, the user is provided with
a set of alternative routes P = {p0, . . . , pk−1} of k paths such that: p0 is the shortest
path from s to t and ∀pi, pj ∈ P with i 6= j : Sim(pi, pj) ≤ θ, according to the problem
formulation in Definition 2.1.7.

In the interest of preserving the same user experience that BGL offers, ARLib is
structured around two main components: Alternative Routing component, to find the
alternative routes, and a Property Map for storing the problem solution, both shown in
the center of Figure 3.2.

Property Maps [36] are the devices that BGL already employs to represent properties
of vertices and edges of the graph, that are required by an algorithm to find a solution.
Common properties are the distance between two nodes, edge weight or vertex color.
By relying on property maps, BGL decouples graph properties from the actual imple-
mentation of the graph. To do so, a common interface is set. Each property map is
defined by a key, e.g. a vertex or an edge, and a value, representing the property
of the key. ARLib introduces multi_predecessor_map (MPM) property map to
record the alternative paths in the input graph. To each vertex v, MPM associates, for
each path p, the predecessor vertex of v along p.

Alternative Routing component exposes generic, free functions implementing state-
of-the-art alternative routing algorithms: (a) OnePass+ (b) ESX (c) Penalty. They

25

i
i

“output” — 2019/4/3 — 16:46 — page 26 — #40 i
i

i
i

i
i

Chapter 3. Alternative Route Planning

all adhere to a common interface that expects arguments specified in terms of compile-
time checked concepts [37] instead of concrete-types. Consequently, ARLib remains
open to different implementations of the input graph type or of the property map types.
The only requirement is set on the interface they must provide.

As reported on the right of Figure 3.2, ESX and Penalty are customizable by
means of routing kernels. While OnePass+ involves a custom policy to explore the
graph, ESX and Penalty are driven by an iterative search of a shortest path. For
the sake of flexibility, ARLib enables the user to choose which shortest path algo-
rithm to use, making additional room for auto-tuning processes [38, 39] to choose
the best kernel according to the properties of the input graph. Available kernels are:
(a) Dijkstra’s Algorithm (b) A* Star, a heuristic-driven variant of Dijkstra’s
algorithm (c) Bidirectional Dijkstra, a Dijkstra’s algorithm variant exploring
the search space from the source and the target vertices, simultaneously.

Finally, ARLib provides an implementation of Uninformed Bidirectional
Pruning. ARLib users can prune the graph in such a way to exclude all those edges
that are very unlikely to be part of an alternative-s-t-path and therefore reducing the
runtime of subsequent alternative routing executions. In fact, since the pre-pruning
step depends on a source-destination pair, it is especially beneficial for those routes
that are queried more often. Indeed, the pruned graph can be stored so that the pre-
pruning pass cost is amortized by future requests that will run faster because of the
reduced graph space. On the other hand, for infrequent source-destination pairs, the
cost of applying such a pruning overcomes the cost of the alternative routing phase,
penalizing the overall execution time.

3.3.2 Software Engineering

As illustrated in previous sections, ARLib provides the developer with a convenient
interface to the offered algorithms so that picking up the library and using it would
result in a straightforward activity. The main design goal, since the very beginning, was
not to develop a software strongly coupled with the whole system it would have been
part of, but rather as an independent library to efficiently solve a problem for which no
open-source, production-ready solution exists. On top of everything, we aimed for a
product that a user would put trust into.

Because of this very motivation, ARLib has been developed according to the Test-
Driven Development (TDD) methodology [40]. TDD is one of the key points of the
Agile development approach and it guides the software development toward a better-
quality product through an iterative process based on unit tests. TDD can be summa-
rized as follows:

1. Add a test: in Test-Driven Development, each new feature begins with writing
a test. This is a differentiating feature of TDD versus writing unit tests after the
code is written, indeed it makes the developer focus on the requirements before
writing the code, a subtle but important difference.

2. Run all tests and see if the new test fails: this validates that the testing-suite is
working correctly, shows that the new test does not pass without requiring new
code because the required behavior already exists, and it rules out the possibility

26

i
i

“output” — 2019/4/3 — 16:46 — page 27 — #41 i
i

i
i

i
i

3.3. ARLib

that the new test is flawed and will always pass. The new test should fail for the
expected reason. This step increases the developer’s confidence in the new test.

3. Write the code: the next step is to write some code that causes the test to pass.
The new code written at this stage is not perfect and may, for example, pass the
test in an inelegant way. That is acceptable because it will be improved and honed
in Step 5. At this point, the only purpose of the written code is to pass the test.
The programmer must not write code that is beyond the functionality that the test
checks.

4. Run tests: if all test cases now pass, the programmer can be confident that the
new code meets the test requirements, and does not break or degrade any existing
features. If they do not, the new code must be adjusted until they do.

5. Refactor code: the growing code base must be cleaned up regularly during test-
driven development, following all the software engineering practices to manage
the complexity and increase the maintainability of the source code. By continually
re-running the test cases throughout each refactoring phase, the developer can be
confident that the process is not altering any existing functionality.

6. Repeat: starting with another new test, the cycle is then repeated to push forward
the functionality.

By adopting TDD methodology, we are able to ship ARLib with a set of unit tests
to cover the advertised features of the library. This way, we are able to continuously
verify that we are compliant with the functional requirements. Such confidence is par-
ticularly important from a deployment perspective. Since we are publishing ARLib as
an open-source, public repository, potential users require forms of guarantees on the
library correctness. Indeed, with algorithms operating on an enormous amount of data,
manually checking the output results is quite unfeasible. For this reason, we set up a
Continuous Integration [41, 42] service [43] introducing a managed source code push,
testing and documentation production cycle. Whenever a modification is pushed to the
repository, it is merged into production code only if all unit tests are still running nicely.
Therefore, unit tests act also as regression tests. With this setup in place, potential users
can convince themselves about the quality of ARLib software.

3.3.3 API Reference

In this section, we provide a description of ARLib APIs, to cover all the features that
compose the user interface.

As previously mentioned, ARLib implements several state-of-the-art algorithms with
a keen focus on peformance and usage flexibility. Available algorithms are summarized
as follows:

• k-SPwLO OnePass+ [8]

• k-SPwLO ESX [8]

• Penalty algorithm [10]

• Bidirectional Dijkstra [35]

• Uninformed Bidirectional Pruning [9]

27

i
i

“output” — 2019/4/3 — 16:46 — page 28 — #42 i
i

i
i

i
i

Chapter 3. Alternative Route Planning

Multi Predecessor Map

The first class we introduce is multi_predecessor_map. Multi Predecessor Map
is a Property Map designed to record alternative paths computed by some ARP algo-
rithm.

Class interface is available in Listing 3.1.
1 t e m p l a t e <typename Ver tex , typename U n o r d e r e d A s s o c i a t i v e C o n t a i n e r >
2 c l a s s m u l t i _ p r e d e c e s s o r _ m a p {
3 p u b l i c :
4 m u l t i _ p r e d e c e s s o r _ m a p () ;
5 m u l t i _ p r e d e c e s s o r _ m a p (m u l t i _ p r e d e c e s s o r _ m a p c o n s t &o t h e r) ;
6 m u l t i _ p r e d e c e s s o r _ m a p &o p e r a t o r =(m u l t i _ p r e d e c e s s o r _ m a p c o n s t &o t h e r) ;
7 } ;

Listing 3.1: Multi Predecessor Map interface

Implementing Read Property Map concept, Multi Predecessor Map exposes
the following accessor free function:
1 t e m p l a t e <typename Ver tex , typename Key>
2 r e t u r n _ t y p e g e t (m u l t i _ p r e d e c e s s o r _ m a p < Ver tex > &pmap , Key c o n s t &k) ;

whose parameters are summarized by the following table:

Parameter Description

k The graph vertex_descriptor v
return Reference to an Unordered Associative Container. That container has an int key

representing the alternative path number i, whereas its value if the vertex_de-
scriptor of the predecessor of v in alternative route i.

OnePass+

OnePass+ algorithm implementation is provided by onepass_plus function, whose
interface is reported in Listing 3.2.
1 t e m p l a t e <typename Graph , typename WeightMap , typename Mul t iP redeces so rMap ,
2 typename Term ina to r , typename Ver tex >
3 vo id o n e p a s s _ p l u s (c o n s t Graph &G, WeightMap weight ,
4 M u l t i P r e d e c e s s o r M a p &p r e d e c e s s o r s , Ve r t e x s , V e r t e x t , i n t k ,
5 dou b l e t h e t a , T e r m i n a t o r &&t e r m i n a t o r)

Listing 3.2: OnePass+ interface

OnePass+ calling parameters are summarized by the following table:

ESX

ESX algorithm implementation is provided by esx function, whose interface is re-
ported in Listing 3.3.
1 t e m p l a t e <typename Graph , typename WeightMap , typename Mul t iP redeces so rMap ,
2 typename Term ina to r , typename Ver tex >
3 vo id esx (c o n s t Graph &G, WeightMap c o n s t &weight ,
4 M u l t i P r e d e c e s s o r M a p &p r e d e c e s s o r s , Ve r t e x s , Ve r t e x t , i n t k ,
5 d ou b l e t h e t a , r o u t i n g _ k e r n e l s a l g o r i t h m , T e r m i n a t o r &&t e r m i n a t o r)

Listing 3.3: ESX interface

ESX calling parameters are summarized by the following table:

28

i
i

“output” — 2019/4/3 — 16:46 — page 29 — #43 i
i

i
i

i
i

3.3. ARLib

Parameter Type Description

G In The input graph on which to compute alternative routes.
weight In G’s weight map, associating to each edge of G a value representing its

weight.
predecessors Out A Multi Predecessor Map to be filled with computed alternative routes.
s In The source node.
t In The destination node.
k In The number of alternative paths to computed.
theta In The similarity threshold.
terminator In The terminating policy to apply. By default, always-continue policy is used.

More details are available in Table 3.3.3.

Parameter Type Description

G In The input graph on which to compute alternative routes.
weight In G’s weight map, associating to each edge of G a value representing its

weight.
predecessors Out A Multi Predecessor Map to be filled with computed alternative routes.
s In The source node.
t In The destination node.
k In The number of alternative paths to computed.
theta In The similarity threshold.
algorithm In The routing kernel to employ for shortest path computation. ARLib pro-

vides implementations of the following shortest path kernels: Dijkstra‘s Al-
gorithm [7], A*Star search and Bidirectional Dijkstra [35].

terminator In The terminating policy to apply. By default, always-continue policy is used.
More details are available in Table 3.3.3.

Penalty

Penalty algorithm implementation is provided by penalty function, whose interface
is reported in Listing 3.4.
1 t e m p l a t e <typename Graph , typename WeightMap , typename Mul t iP redeces so rMap ,
2 typename Term ina to r , typename Ver tex >
3 vo id p e n a l t y (c o n s t Graph &G, WeightMap c o n s t &o r i g i n a l _ w e i g h t ,
4 M u l t i P r e d e c e s s o r M a p &p r e d e c e s s o r s , Ve r t e x s , V e r t e x t , i n t k ,
5 dou b l e t h e t a , dou b l e p , do ub l e r , i n t max_nb_updates ,
6 i n t max_nb_steps , r o u t i n g _ k e r n e l s a l g o r i t h m , T e r m i n a t o r &&t e r m i n a t o r)

Listing 3.4: Penalty interface

Penalty calling parameters are summarized in Table 3.1.

Terminator

Terminator class abstracts a terminating policy for an ARP algorithm execution. ARP
algorithms promise to verify terminating condition at each main loop iteration. Indeed,
searching for a valid set of alternative routes involves expanding a search tree or running
shortest path queries multiple times until a valid solution is discovered.

On the other hand, ARP algorithm caller might not be interested anymore in a solu-

29

i
i

“output” — 2019/4/3 — 16:46 — page 30 — #44 i
i

i
i

i
i

Chapter 3. Alternative Route Planning

Table 3.1: Penalty calling parameters documentation.

Parameter Type Description

G In The input graph on which to compute alternative routes.
weight In G’s weight map, associating to each edge of G a value representing its

weight.
predecessors Out A Multi Predecessor Map to be filled with computed alternative routes.
s In The source node.
t In The destination node.
k In The number of alternative paths to computed.
theta In The similarity threshold.
p In The penalty factor for edges in the candidate path.
r In The penalty factor for edges incoming and outgoing to/from vertices

of the candidate path.
max_nb_updates In The maximum number of times an edge can be penalized.
max_nb_steps In The maximum number of steps of the algorithm.
algorithm In The routing kernel to employ for shortest path computation. ARLib

provides implementations of the following shortest path kernels: Dijk-
stra‘s Algorithm [7], A*Star search and Bidirectional Dijkstra [35].

terminator In The terminating policy to apply. By default, always-continue policy is
used. More details are available in Table 3.3.3.

tion if some condition holds, for instance, if too much time has past. By leveraging a
Terminator, we can flexibly specify if and when to quit the search.

A Terminator concrete class should expose the interface reported in Listing 3.5.
1 s t r u c t t e r m i n a t o r {
2 boo l s h o u l d _ s t o p () c o n s t ;
3 } ;

Listing 3.5: Terminator interface

ARLib provides two terminating policies to satisfy two common user needs: always-
continue and timer.

Always-continue is the identity Terminator, that is, it never explicitly stop an ARP
algorithm execution. More practically, a call to should_stop() always returns false.

On the other hand, timer implements a time-out strategy and its interface is reported
in Listing 3.6.
1 c l a s s t i m e r {
2 p u b l i c :
3 e x p l i c i t t i m e r (s t d : : ch rono : : m i l l i s e c o n d s t i m e o u t) ;
4 e x p l i c i t t i m e r (s t d : : ch rono : : m i c r o s e c o n d s t i m e o u t) ;
5
6 boo l s h o u l d _ s t o p () c o n s t ;
7 } ;

Listing 3.6: Timer interface

A timer is constructed with a time-out and it keeps track of the instant t0 it is in-
stantiated. Upon should_stop() invocation, another time instant t1 is collected. If past
time between t1 and t0 is greater than time-out, the function returns true. Otherwise it
returns false.

30

i
i

“output” — 2019/4/3 — 16:46 — page 31 — #45 i
i

i
i

i
i

3.3. ARLib

Bidirectional Dijkstra

Bidirectional Dijkstra [35] implementation is provided by bidirectional_dijk-
stra function. Bidirectional Dijkstra is a speed-up variant of well-known Dijkstra‘s
algorithm particularly suitable for large graphs to discover a shortest path more effi-
ciently. Just like other shortest path algorithms officially supported by Boost.Graph,
ARLib‘s Bidirectional Dijkstra exposes a rich overload-set to support ease-of-usage
and flexibility when required.

The most basic function interface is reported in Listing 3.7.
1 t e m p l a t e <typename Graph , typename PredecessorMap , typename DistanceMap ,
2 typename WeightMap , typename BackGraph , typename BackWeightMap ,
3 typename BackIndexMap , typename Ver tex >
4 vo id b i d i r e c t i o n a l _ d i j k s t r a (c o n s t Graph &G, Ve r t e x s , V e r t e x t ,
5 Predecesso rMap p r e d e c e s s o r , Dis tanceMap d i s t a n c e ,
6 WeightMap weight , c o n s t BackGraph &G_b ,
7 BackWeightMap weight_b , BackIndexMap index_map_b)

Listing 3.7: Bidirectional Dijkstra interface

Bidirectional Dijkstra calling parameters are summarized by the following table:

Parameter Type Description

G In The input graph on which to compute shortest path.
s In The source node.
t In The destination node.
predecessor Out The predecessor map records the edges in the shortest path tree, the tree

computed by the traversal of the graph. Upon completion of the algorithm,
the edges (p[u], u) for all u in V are in the tree. The shortest path from
vertex s to each vertex v in the graph consists of the vertices v, p[v], p[p[v]],
and so on until s is reached, in reverse order. It must be a Read/Write Prop-
erty Map whose key and value types are the same as the vertex descriptor
type of the graph.

distance In The shortest path weight from the source vertex s to each vertex in the graph
G is recorded in this property map. The shortest path weight is the sum of
the edge weights along the shortest path.

weight In G’s weight map, associating to each edge of G a value representing its
weight.

G_b In The reverse graph ofG, i.e. a graph equal toGwith all the edge orientations
reversed.

weight_b In Weight map for G_b
index_map_b In This maps each vertex of G_b to an integer in the range

[0, num_vertices(G_b))

Several additional overloadings of bidirectional_dijkstra function, which
we are omitting here for the sake of brevity, are provided by ARLib in case additional
information about reverse graph is required.

Uninformed Bidirectional Pruning

Uninformed Bidirectional Pruning [35] implementation is provided by uninformed-
_bidirectional_pruner function. Uninformed Bidirectional Pruning leverage

31

i
i

“output” — 2019/4/3 — 16:46 — page 32 — #46 i
i

i
i

i
i

Chapter 3. Alternative Route Planning

Bidirectional Dijkstra‘s search tree to filter all those vertices in the graph that are too
far from both source and destination nodes according to some pruning factor τ .

Uninformed Bidirectional Pruning interface is reported in Listing 3.8.
1 t e m p l a t e <typename Graph , typename WeightMap , typename RevWeightMap ,
2 typename Ver tex >
3 PrunedGraph <Graph >
4 u n i n f o r m e d _ b i d i r e c t i o n a l _ p r u n e r (c o n s t Graph &G, WeightMap c o n s t &we igh t_ f ,
5 b o o s t : : r e v e r s e _ g r a p h <Graph > c o n s t &rev_G ,
6 RevWeightMap c o n s t &weight_b , V e r t e x s ,
7 Ve r t e x t , do ub l e t a u)

Listing 3.8: Uninformed Bidirectional Pruning interface

Uninformed Bidirectional Pruning calling parameters are summarized by the fol-
lowing table:

Parameter Type Description

G In The input graph to prune.
weight_f In G’s weight map, associating to each edge of G a value representing its

weight.
rev_G In The reverse graph ofG, i.e. a graph equal toGwith all the edge orientations

reversed.
weight_b In Weight map for G_b
s In The source node.
t In The destination node.
tau In The pruning factor.

uninformed_bidirectional_pruner function returns a Pruned Graph, that
is, an adaptor wrapping input graph G filtering out pruned vertices and edges.

3.3.4 Usage Examples

In this section, we illustrate the functionalities of ARLib by means of a running example
that shows how the library gracefully integrates with BGL. The use-case presented
hereafter considers a case where we interested in knowing 3 alternative paths from
node s to node t that are dissimilar to each other by at least 50%. Because of the simple
topology of the target graph, we do not perform any pre-pruning, but we are interested
in exploring the, possibly different, solutions that OnePass+, ESX and Penalty
compute. Figure 3.3a shows the target problem graph. Even though the graph is still
human-manageable, the edge degree of every node and the relatively similar weights
make it possible to find non-trivial alternative routes. In Listing 3.9 we report the code
required to accommodate this use-case.

Line 5 defines the graph structure and properties types, the same way the user is
customary in BGL applications. Thanks to the generic definition of ARLib functions,
any type that satisfies the required graph concept will work. Between Line 13 and
Line 24 the graph shown in Figure 3.3a is constructed. Remainder lines report the typ-
ical snippet of code that an ARLib user would write. Line 27 instantiates a multi_-
predecessor_map object to store the alternative routing solution, as described in
Section 3.3.1. Line 31 collects the weight property map from input graph, mapping,

32

i
i

“output” — 2019/4/3 — 16:46 — page 33 — #47 i
i

i
i

i
i

3.4. An ARP Design Space Exploration

s

5

4
1

n53

5

n33

3

n1

6 2

t

2

2

6

n4n2

(a) The sample graph

Alg. Alternative paths
OnePass+
ESX

〈(s, n3), (n3, n5), (n5, t)〉
〈(s, n3), (n3, n4), (n4, t)〉
〈(s, n3), (n3, n1), (n1, t)〉

Penalty 〈(s, n3), (n3, n5), (n5, t)〉
〈(s, n2), (n2, n4), (n4, t)〉
〈(s, n1), (n1, t)〉

(b) Discovered solutions

s

5

4
1

n53

5

n33

3

n1

6 2

t

2

2

6

n4n2

(c) OnePass+ and ESX (same) solutions

s

5

4
1

n53

5

n33

3

n1

6 2

t

2

2

6

n4n2

(d) Penalty solution

Figure 3.3: Alternative routing solutions on a sample graph, still human-manageable, but complex
enough to admit non-trivial alternative paths. Results are obtained by running the code illustrated in
Section 3.3.4.

to each edge, a weight value. Line 37 effectively runs the alternative routing algo-
rithm. For the sake of clarity, Listing 3.9 reports only an example of Penalty ex-
ecution. Since in the use-case we were interested in exploring the solution of all the
alternative routing algorithms, it would simply require to instantiate a new multi_-
predecessor_map for each other algorithm and call arlib::onepass_plus
and arlib::esx functions. Line 39, most notably, highlights the possibility to
change the internal routing kernel of Penalty. Line 41 uses arlib::to_paths
function to pack the solutions embedded in the multi_predecessor_map, into a
vector of views (arlib::Path) on the input graph. Such view avoids any unnec-
essary copies of the discovered alternative paths. In fact it simply exposes only those
vertices and edges of the input graph that make up a found alternative route. Finally,
discovered solutions are reported in Table 3.3b and pictured in Figures 3.3c and 3.3d.

A tutorial providing step-by-step documentation of the library usage is included on
the ARLib repository1.

3.4 An ARP Design Space Exploration

In previous sections, requirements for the end-user specified that our ideal car navi-
gation service should provide a solution with the best quality possible within a fixed
response time that is considered acceptable by the user. If such constraints are not
met, the user is likely to stop waiting for a results, labeling the service as not work-
ing effectively and switching to other competitors application. As previously stated,
the quality of a path is perceived by the user in terms of least travel time. To com-
pute it, tough, a number of alternative paths must be discovered beforehand. The more

1https://github.com/leonardoarcari/arlib

33

https://github.com/leonardoarcari/arlib

i
i

“output” — 2019/4/3 — 16:46 — page 34 — #48 i
i

i
i

i
i

Chapter 3. Alternative Route Planning

1 # i n c l u d e < a r l i b / p e n a l t y . hpp >
2 # i n c l u d e < a r l i b / g r a p h _ u t i l s . hpp >
3
4 / / C r e a t e type−a l i a s e s f o r t h e Graph t y p e
5 u s i n g Graph = b o o s t : : a d j a c e n c y _ l i s t < b o o s t : : vecS , b o o s t : : vecS ,
6 b o o s t : : b i d i r e c t i o n a l S , b o o s t : : n o _ p r o p e r t y ,
7 b o o s t : : p r o p e r t y < b o o s t : : e d g e _ w e i g h t _ t , i n t > >;
8 u s i n g Ve r t ex = typename b o o s t : : g r a p h _ t r a i t s <Graph > : : v e r t e x _ d e s c r i p t o r ;
9 u s i n g Edge = typename b o o s t : : g r a p h _ t r a i t s <Graph > : : e d g e _ d e s c r i p t o r ;

10
11 i n t main () {
12 / / C l a s s i c BGL graph c r e a t i o n
13 enum { S , N1 , N2 , N3 , N4 , N5 , T } ;
14 c o n s t l ong u n s i g n e d n u m _ v e r t i c e s = T ;
15
16 c o n s t a u t o edges = s t d : : v e c t o r < s t d : : p a i r < i n t , i n t >>{
17 {S , N1} , {N1 , S } , {S , N2} , {N2 , S } , {S , N3} , {N3 , S } ,
18 {N1 , T} , {T , N1} , {N3 , N1} , {N1 , N3} , {N3 , N5} , {N5 , N3} ,
19 {N3 , N2} , {N2 , N3} , {N3 , N4} , {N4 , N3} , {N2 , N4} , {N4 , N2} ,
20 {N5 , T} , {T , N5} , {N5 , N4} , {N4 , N5} , {N4 , T} , {T , N4 } } ;
21
22 c o n s t a u t o w e i g h t s = s t d : : v e c t o r < i n t >{6 , 6 , 4 , 4 , 3 , 3 , 6 , 6 , 2 , 2 , 3 , 3 ,
23 3 , 3 , 5 , 5 , 5 , 5 , 2 , 2 , 1 , 1 , 2 , 2 } ;
24 a u t o G = Graph { edges . b e g i n () , edges . end () , w e i g h t s . b e g i n () , n u m _ v e r t i c e s } ;
25
26 / / A l t e r n a t i v e r o u t i n g s e c t i o n
27 a u t o p r e d e c e s s o r s = a r l i b : : m u l t i _ p r e d e c e s s o r _ m a p < Ver tex >{} ;
28
29 i n t k = 3 ; / / Nb a l t e r n a t i v e r o u t e s
30 d ou b l e t h e t a = 0 . 5 ; / / O v e r l a p p i n g t h r e s h o l d
31 a u t o w e i gh t = b o o s t : : g e t (b o o s t : : edge_weigh t , G) ; / / Get Edge WeightMap
32
33
34 d ou b l e p = 0 . 1 , r = 0 . 1 ; / / P e n a l t y a l g o r i t h m
35 i n t max_nb_updates = 10 , max_nb_s teps = 100000; / / own p a r a m e t e r s
36
37 a r l i b : : p e n a l t y (G, weight , p r e d e c e s s o r s , s , t , k , t h e t a , p , r ,
38 max_nb_updates , max_nb_steps ,
39 a r l i b : : r o u t i n g _ k e r n e l s : : b i d i r e c t i o n a l _ d i j k s t r a) ;
40
41 a u t o a l t _ p a t h s = a r l i b : : t o _ p a t h s (G, p r e d e c e s s o r s , weight , s , t) ;
42 }

Listing 3.9: Example of an ARLib application, using the Penalty algorithm.

34

i
i

“output” — 2019/4/3 — 16:46 — page 35 — #49 i
i

i
i

i
i

3.4. An ARP Design Space Exploration

paths discovered, higher the chances to find the fastest. On the other hand, among the
stages composing our navigation system pipeline, alternative route planning is the step
that takes the longest and searching for a too high number of alternative paths might
quickly exhaust the available time slot. Moreover, alternative routes should not overlap
too much, otherwise a PTDR step would predict equivalent traveling times, which is
hardly desirable from the traffic optimization perspective.

This view shows the presence of a trade-off in the alternative routing step concern-
ing the quality of the solutions and the time to compute them, making room for an
analysis on the impact of the goodness and execution time requirements on the system
configuration. In this work, three ARP algorithms from the literature, and implemented
in ARLib, have been taken into account for a performance comparison:

• k-SPwLO OnePass+

• k-SPwLO ESX (A* Star routing kernel)

• Penalty (BiDirectional Dijkstra routing kernel)

Considering the ARP problem formulation, each algorithm is then parameterized to
manage the solution quality and hence the execution time:

• The number of alternative paths, k

• The overlap ratio threshold, θ

The main interest of this research is to gather information about the behavior of each
algorithm, subject to parameters and input variation, to understand whether there exists
one dominating all the others or if one algorithm is better under certain circumstances
and worse under others, enabling the selection of one or another to carry out the best
solution depending on the environment requirements. Hereinafter the conducted exper-
iment is reported. First, we introduce the experiment setup.

Datasets The analysis is performed on Milan and New York City areas maps. The
Milan map was retrieved from the OpenStreetMap [44] database, whereas the New
York City area map is part of the 9th DIMACS Implementation Challenge dataset [45].
We chose these two locations in order to explore the behavior of ARP algorithms on
cities with very different topologies. Indeed, New York City, especially the Manhattan
borough, shows a grid structure while Milan exposes a structure made of sectors with a
central hub. Since we would like to obtain a view as wide as possible, sticking with a
single urban model would have biased the experiment conclusions. For instance, in the
frame of discovering several alternative routes with limited overlap, a grid structure,
like Manhattan, would make the task easier since at any crossroad the algorithm could
take a detour in order to satisfy the overlap constraints. This might be harder to do in
case of topologies exposing a limited number of fast lines that connect the city sectors
to the central hub.

Query design A relevant design choice is how to build the source-destination matrix,
i.e. the set of source-destination pairs on which to execution an ARP query. In some
other works [3,8] those points are chosen completely at random, by uniformly sampling
from 100 to 1000 source-destination pairs out of the node set N . In our opinion, this

35

i
i

“output” — 2019/4/3 — 16:46 — page 36 — #50 i
i

i
i

i
i

Chapter 3. Alternative Route Planning

approach lacks of robustness, because it hardly mimics the way a user would stimulate
the car-navigation service. Indeed, we are interested in gathering the strengths and
weaknesses of the ARP algorithms for non-trivial queries, i.e. for which the source and
destination points are at significant distance. Running just random queries leaves no
control on which nodes are selected, possibly executing ARP for points very close to
each other, hence leading to uninteresting results. Therefore, we followed a strategy
proposed by the 9th DIMACS Implementation Challenge [45], formally named Point-
to-Point problem, which generates source-destination pairs as follows:

1. Select the source node s at random from the nodes set N .

2. Run Dijkstra’s algorithm from s to compute the rank of all the nodes in the graph,
where a node has a rank of t if it is the t-th node scanned by the algorithm.

3. For a set of values of i, select a random vertex vi from vertices with ranks in range
[2i, 2i+1) and output an s− vi pair.

The power of this strategy resides in the configurability that it offers to build the
source-destination matrix. Indeed, given some value of i, we can generate as many
source-destination pairs as we need and they would all be set at a comparable distance.
This way, instead of generating query points at unknown distance, we are able to control
the number of pairs equivalently far, in order to build a meaningful statistical value
for this experiment. Both from the Milan and the New York City maps, we chose
i ∈ [9, 17], as suggested in [45], and generated 50 source-destination pair for each
range [2i, 2i+1), summing up to 450 samples.

Concerning New York City, the maximum flight distance between two nodes in the
source-destination matrix is 100Km, with a 25th quantile of 3.83Km and a 75th quantile
of 31.68Km. Regarding Milan, the maximum flight distance between two nodes in the
source-destination matrix is 26Km, with a 25th quantile of 1.67Km and a 75th quantile
of 9.2Km.

Problem constraints Recalling that the system is supposed to return a single route to the
end-user, parameters k and θ have a relevant impact on the solution quality and execu-
tion time, as mentioned above. Therefore, values for k are chosen in the set {2, 3, 4, 5},
while for θ in the set {0.3, 0.5, 0.7}. Concerning the former, having too many alterna-
tive paths resulted unworthy according to some initial experiments, leading to a small
increase in the solution quality at cost of an unacceptable execution time. About the
latter, finer-grained similarity thresholds, say to the second decimal digit, showed irrel-
evant changes both in the execution time and in the quality.

3.5 Experimental Results

The experimental results presented hereinafter were collected on an Intel(R) Xeon(R)
CPU E5-2630 v3 @ 2.40GHz (16 cores, 20MB Cache), running Ubuntu 16.04.5 LTS
and exploring 8 configurations in parallel.

3.5.1 Performance

In this section, we present the obtained results from the experiment previously de-
scribed. As already mentioned in section 3.4, we are interested in understanding the

36

i
i

“output” — 2019/4/3 — 16:46 — page 37 — #51 i
i

i
i

i
i

3.5. Experimental Results

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0.3 0.5 0.7

R
e
s
p
o
n
s
e

 t
im
e

 (
m
s
)

θ

k = 2 k = 3 k = 4 k = 5

(a) Execution time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3 0.5 0.7

D
iff
.
w
ith

 s
p

 (
%
)

θ

k = 2 k = 3 k = 4 k = 5

(b) Quality

Figure 3.4: OnePass+ performance on New York City, varying alternative paths k ∈ {2, 3, 4, 5} and
similarity threshold θ ∈ {0.3, 0.5, 0.7} (lower is better).

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.3 0.5 0.7

R
e
s
p
o
n
s
e

 t
im
e

 (
m
s
)

θ

k = 2 k = 3 k = 4 k = 5

(a) Execution time

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.3 0.5 0.7

D
iff
.
w
ith

 s
p

 (
%
)

θ

k = 2 k = 3 k = 4 k = 5

(b) Quality

Figure 3.5: ESX performance on New York City, varying alternative paths k ∈ {2, 3, 4, 5} and similarity
threshold θ ∈ {0.3, 0.5, 0.7} (lower is better)

AR algorithms behavior under different (k, θ) configurations. Our question, indeed, is
whether there exists an algorithm that dominates all the others or if one is the best only
under certain conditions.

In Figure 3.4a, Figure 3.5a and Figure 3.6a we plot the gathered time measurements
of OnePass+, ESX and Penalty respectively. On the x-axis we report the similarity
threshold θ, on the y-axis the average execution time over all the requests and we draw a
line for each number of alternative paths k. In Figure 3.4b, Figure 3.5b and Figure 3.6b
we plot the quality measurements of OnePass+, ESX and Penalty respectively. On the
x-axis we report the similarity threshold θ, on the y-axis the average spDifference
quality metric and we draw a line for each number of alternative paths k.

At a very first look, to also simplify our analysis, we observe that, from the pictured
point of view, ESX algorithm is always dominated by Penalty both from response time
and quality perspective. Therefore, we are not going to consider it in the following
discussion.

To begin the analysis of the results, let us restrict to the case where θ = 0.7, remind-
ing that high values of similarity threshold θ mean that solutions are more similar. By

37

i
i

“output” — 2019/4/3 — 16:46 — page 38 — #52 i
i

i
i

i
i

Chapter 3. Alternative Route Planning

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 0.3 0.5 0.7

R
e
s
p
o
n
s
e

 t
im
e

 (
m
s
)

θ

k = 2 k = 3 k = 4 k = 5

(a) Execution time

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.3 0.5 0.7

D
iff
.
w
ith

 s
p

 (
%
)

θ

k = 2 k = 3 k = 4 k = 5

(b) Quality

Figure 3.6: Penalty performance on New York City, varying alternative paths k ∈ {2, 3, 4, 5} and
similarity threshold θ ∈ {0.3, 0.5, 0.7} (lower is better).

comparing OnePass+ and Penalty, we notice that for a number of alternative paths equal
to 2, OnePass+ performs better than Penalty both in terms of execution time, though
slightly, and of quality, keeping the discovered paths under 5% of length difference with
respect to the shortest path. Assuming that the provider of a car-navigation service is
fine with providing the shortest path along another possible alternative, guaranteed to
be at least 30% different from the shortest path, then OnePass+ represents the optimal
algorithm with no better options.

The picture changes if we consider a high number of alternative paths. As we already
mentioned in section 3.4, the more paths we compute, the higher the chances PTDR
module has to discover a faster road. If we look for higher values of k we notice that
OnePass+ execution time raises up to 5 seconds on average, while Penalty never takes
more than 250ms. On the other hand, whilst Penalty quality decreases reaching a value
of almost 15%, OnePass+ consistently maintains an spDifference under 5%.

This comparison supports our previous claim on the existing trade-off between qual-
ity and execution time among Alternative Routing algorithms. In particular, from this
analysis, we understand that on average OnePass+ offers the best quality of results,
never exceeding 25% of length difference with respect to the shortest path. At the
same time, Penalty offers the fastest execution time trading some quality in the solu-
tions, reaching more than 35% of spDifference for a number of paths equal to 5 and
a similarity threshold equal to 0.3.

3.5.2 Visual Comparison

Comparisons between algorithms are also visually appreciable in Figure 3.7, Figure 3.8
and Figure 3.9, where we draw the discovered paths for each algorithm between a pair
of source-destination nodes in Milan and New York City. As illustrated, OnePass+
tends to find solutions that are more compact around the shortest path, trying to keep
Equation (2.3) at minimum. ESX and Penalty, on the other hand, discover paths by pe-
nalizing edges on the graph, leading to more disperse solutions. While this might looks
as a downside, because computed paths are generally much longer than the shortest one,
this may lead to solutions more robust to potential viability reductions. Indeed, if alter-

38

i
i

“output” — 2019/4/3 — 16:46 — page 39 — #53 i
i

i
i

i
i

3.5. Experimental Results

native paths share the least number of segments, an event that would make some paths
very slow to travel (e.g. car accident, roadworks) would make other, non-overlapping,
paths faster and therefore still leading to a satisfactory solution. Whether to prefer non-
overlapping or closer-to-shortest-path solutions is therefore more a service policy than
a clear aspect of the ARP problem. The strength of ARLib is the flexibility that it offers
to the developer, leaving the freedom to explore the possible approaches to the matter
and letting the system designer decide which policy to adopt.

3.5.3 Failure Rate

In subsection 3.5.1, we showed a comparison among algorithms under varying con-
figurations to understand the existing trade-offs between execution time and quality of
results. In this section, we extend the comparison from a different point of view: the
completion rate.

The reason why we are interested in this comparison is clear if we recall what a valid
ARP solution is. As we mentioned in Definition 2.1.7, a query to an AR algorithm is
expected to lead to a set of k-alternative paths, non-overlapping among each other more
than a factor θ. Moreover, since we are interested in a usable car-navigation system, we
can only afford to wait for a solution within a t∗ time frame. Accordingly, a query to
an algorithm might fail for the following reasons:

1. A request for k alternative paths was issued, but no k paths exist between source
and target nodes.

2. A request for k alternative paths was issued, but no k paths exist between source
and target nodes that do not overlap less than a factor θ.

3. A request for k alternative paths was issued, a solution exists, but the algorithm
pruned, during the search, a path that would have been part of the solution, falling
back to cases 1 or 2.

4. A request for k alternative paths was issued, a solution exists, but t time units have
passed and the procedure times out.

Consequently, a relevant deciding factor to which algorithm to adopt under certain
(k, θ) configuration should be to what extent the algorithm fails in providing a valid
solution.

In Figure 3.10, we report the experimental results on the completion rate for all the
algorithms. On the left column, we illustrate the experiment run on the New York City
map, while on the left the experiment executed on the Milan map.

On each x-axis, we indicate the similarity threshold θ values, on the y-axis the aver-
age completeness ratio across all the queries. Then we plot one bar for each value of k.
In this experiment, we consider a solution to an ARP query valid if:

1. Exactly k alternative paths are discovered.

2. For each pair of computed alternative paths, the similarity of the two is less than
or equal to θ.

3. A solution is computed in less than 20 seconds.

39

i
i

“output” — 2019/4/3 — 16:46 — page 40 — #54 i
i

i
i

i
i

Chapter 3. Alternative Route Planning

Figure 3.7: OnePass+ 4-alternative-paths on Milan area (above) and New York City area (below) with
50% similarity threshold

40

i
i

“output” — 2019/4/3 — 16:46 — page 41 — #55 i
i

i
i

i
i

3.5. Experimental Results

Figure 3.8: ESX 4-alternative-paths on Milan area (above) and New York City area (below) with 50%
similarity threshold

41

i
i

“output” — 2019/4/3 — 16:46 — page 42 — #56 i
i

i
i

i
i

Chapter 3. Alternative Route Planning

Figure 3.9: Penalty 4-alternative-paths on Milan area (above) and New York City area (below) with
50% similarity threshold

42

i
i

“output” — 2019/4/3 — 16:46 — page 43 — #57 i
i

i
i

i
i

3.6. An Adaptive Policy

In Figure 3.10a and 3.10b we illustrate the completeness ratio of OnePass+. For an
increasing number of alternative routes requested, we notice that OnePass+ fails more
often to discover a valid solution, dropping to less than 80% of successful queries when
requesting very dissimilar paths.

In Figure 3.10e and 3.10f we report the completeness ratio of Penalty. It is straight-
forward to conclude that the algorithm always finds the requested number of alternative
routes, with similarity constraints satisfied, within a 20 seconds time frame.

3.6 An Adaptive Policy

In sections 3.1 and 3.2 we outlined use-cases and requirements that we would like our
proposed car-navigation system to have, in order to guide our design towards a solution
that both the service provider and users would enjoy. In subsection 3.5.1 we reported
our experimental results that justify our interest in an adaptive solution, showing that no
optimal algorithm exists leading to both low execution time and best quality of results.
In subsection 3.5.3 we pictured another experiment to quantify the number of times
each algorithm is able to return a valid solution, varying the (k, θ) configuration, within
a time frame of 20 seconds.

In this section we leverage the aforementioned concepts to describe a first adaptive
policy that a car-navigation service provider, e.g. the municipality, could implement
to maximize its Quality of Service (QoS). According to our proposed policy, it can be
done by concurrently:

• Keeping the latency between the first routing request and a solution as low as
possible.

• Keeping the results quality as high as possible.

In order to achieve our goal, we rely on the following observation. In a car-navigation
system there are three types of requests:

1. First routing request: the user turns up the navigation client (e.g. a mobile
application) and asks for the fastest route to some destination

2. Re-rerouting request (type-A): the user misses a turn suggested by the navigator
which now should recompute the fastest route. This generally is a very easy task
because it simply requires a shortest-path-query to the previously suggested fastest
route. For this reason, we are not considering this type of request in our analysis.

3. Re-rerouting request (type-B): the navigator client periodically checks for the
best route, which might have changed. Indeed, since the fastest path strongly
depends on the traffic conditions, the user could be redirected to another path that
would lower the expected arrival time.

Consequently, we elaborate the following adaptive strategy:

• The service provider fixes the number of alternative paths k to compute and the
similarity threshold θ, depending on the available computing power or service
level agreement.

43

i
i

“output” — 2019/4/3 — 16:46 — page 44 — #58 i
i

i
i

i
i

Chapter 3. Alternative Route Planning

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.3
0.5

0.7

C
o
m
p
le
te
n
e
s
s
 r
a
tio

 (
%
)

k = 2 k = 3 k = 4 k = 5

(a) OnePass+ (New York City)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.3
0.5

0.7
C
o
m
p
le
te
n
e
s
s
 r
a
tio

 (
%
)

k = 2 k = 3 k = 4 k = 5

(b) OnePass+ (Milan)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.3
0.5

0.7

C
o
m
p
le
te
n
e
s
s
 r
a
tio

 (
%
)

k = 2 k = 3 k = 4 k = 5

(c) ESX (New York City)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.3
0.5

0.7

C
o
m
p
le
te
n
e
s
s
 r
a
tio

 (
%
)

k = 2 k = 3 k = 4 k = 5

(d) ESX (Milan)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.3
0.5

0.7

C
o
m
p
le
te
n
e
s
s
 r
a
tio

 (
%
)

k = 2 k = 3 k = 4 k = 5

(e) Penalty (New York City)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.3
0.5

0.7

C
o
m
p
le
te
n
e
s
s
 r
a
tio

 (
%
)

k = 2 k = 3 k = 4 k = 5

(f) Penalty (Milan)

Figure 3.10: Average completeness ratio (%) per query, varying alternative paths k ∈ {2, 3, 4, 5} and
similarity threshold θ ∈ {0.3, 0.5, 0.7}, for all the algorithms with a timeout of 20 seconds.

44

i
i

“output” — 2019/4/3 — 16:46 — page 45 — #59 i
i

i
i

i
i

3.7. Summary

• Because the user needs the first solution as soon as possible, we employ Penalty
algorithm, which is the fastest in most configurations. This way, the user is ready
to drive towards destination even though the suggested route might not be the best
possible.

• As the user drives along the suggested path, the car navigator will periodically
issue re-routing requests of type-B, checking whether faster paths exist. Because
the request is performed in background while the user is driving, we can afford
to spend some more time in the alternative routing phase, to potentially discover
higher-quality solutions. As shown in Figure 3.4b, OnePass+ always leads to best
quality solutions, making it the optimal algorithm for this task.

According to the proposed policy then, the system would provide a fast response
to the user to keep the time-to-navigation to the minimum, whilst periodically refining
the suggested path. Therefore, we can effectively employ better quality algorithms by
hiding their latencies from the user perspective, behind a background activity.

There is one last issue to address, though: the failure rate. Indeed, OnePass+ is
the best algorithm in terms of spDifference but it also fails to discover a valid result
in 20% of the queries for some configurations, as reported in Figure 3.10a and 3.10b.
Hereinafter, we propose two actions to mitigate this problem:

• Upon timeout, use the alternative routes computed so far, which will be less than
k. The PTDR module will work on a reduced number of paths, potentially missing
the best alternative, but the service would still work seamlessly.

• Use a hybrid approach. Let t∗ be the Alternative Routing module request time-
out. Upon a re-routing request of type-B, first compute a solution running Penalty,
which will take some time t̄. Then, launch a OnePass+ query setting a time-out
of t∗ − t̄. If OnePass+ returns in time, use its high-quality solutions. Otherwise,
forward to PTDR module those solutions computed by Penalty.

3.7 Summary

In this chapter, we presented our car navigation system, introducing the three main
stages composing it, namely ARP, PTDR and Reordering modules. As the main fo-
cus of this thesis, we directed our efforts on ARP step and we introduced ARLib, an
efficient, configurable C++ library implementing state-of-the-art alternative routing al-
gorithms.

From a software engineering perspective, ARLib is a stand-alone library that can be
imported in every C++ project using Boost.Graph as graph data structure framework,
seamlessly integrating with existing BGL code-bases. Thanks to its flexibility, varying
user requirements in terms of execution time and quality of results can be accommo-
dated through the range of parameters that ARLib exposes.

From our research point of view, having a performance-oriented implementation of
most promising ARP algorithms enabled us to pursue an investigation on the behavior
of ARP heuristics from different perspectives. Indeed, sharing the same programming
language and graph data structure, ARLib allowed us to explore the available design

45

i
i

“output” — 2019/4/3 — 16:46 — page 46 — #60 i
i

i
i

i
i

Chapter 3. Alternative Route Planning

space, first analyzing if there exists a single algorithm which provides both fast exe-
cution time and top solution quality, or, on the other hand, if some heuristic work best
only under some configuration while badly behaving under others.

Achieved results highlighted the existing tradeoffs between algorithms, changing
from a (k, θ) configuration to another, therefore answering our first research question.
The presence of those tradeoffs, thus, represents a promising opportunity to introduce
a first level of adaptivity in our car navigation system and leverage those performance
differences to raise the overall service quality. As a result, in section 3.6 we proposed a
methodology to tailor our navigation system to some service provider needs, depending
on the available time budget. In fact, by choosing the right values for k and θ parameters
and algorithms to employ for different types of request we can bring the system to run
at some working point satisfying some given constraints.

In the next chapter, we are going to take the analysis one step further. In fact, while
the experiment carried out in this chapter showed encouraging results, it only displayed
values in an average case scenario. Our next research question, then, will focus on
a finer-grained study, to understand whether and which properties of a routing query
influence an ARP algorithm from latency and quality perspectives.

46

i
i

“output” — 2019/4/3 — 16:46 — page 47 — #61 i
i

i
i

i
i

CHAPTER4
Proactive System Auto-Tuning

In the previous chapter, we conducted an average case exploration on the ARP problem
design space, systematically analyzing ARP algorithms behavior under varying number
of alternative paths k and similarity threshold θ values. Achieved results highlighted the
existence of tradeoffs between ARP heuristics, for instance having some algorithm to
perform best for small values of k, while demonstrating terrible execution times when
searching for high number of alternative paths. In this context, we presented a first
adaptive policy for a car navigation system to statically identify a good working point
for the service, given some constraints e.g. its response time or required computational
resources.

As a consequence of our experiment, we asked ourselves how different the real-
ity could be from an average case analysis. How are execution times distributed for
different queries? How much disperse are they with respect to the mean value?

Figure 4.1 depicts ARP algorithms latency for several queries with k = 4 and
θ = 0.5, by means of box plots. For visualization purposes, we considered only those
queries that completed in less than 3 seconds. Still, we are able to draw an immediate
conclusion: while both Interquartile Range and box whiskers show consistent results
for OnePass+ and Penalty algorithms, executing in less than 500 ms, outliers, together
with ESX box plot, exhibit a significant variance in the achieved results, with an im-
portant number of samples doubling or tripling the average latency value.

This variable behavior made us question whether this variance should be accounted
to some ARP query characteristics and, if so, whether we could use those characteristics
to predict heuristics execution time in order to proactively choose the optimal algorithm
to employ for each incoming request.

In this chapter, we present a proactive auto-tuning process to raise the level of adap-
tivity of our car-navigation. In particular, we propose a methodology on implementing

47

i
i

“output” — 2019/4/3 — 16:46 — page 48 — #62 i
i

i
i

i
i

Chapter 4. Proactive System Auto-Tuning

 0

 500

 1000

 1500

 2000

 2500

 3000

opplus esx-astar penalty-bi

E
x
e
c
u
tio
n

 t
im
e

 (
m
s
)

Figure 4.1: Execution time of ARLib’s algorithms search for k = 4 alternative paths with θ = 0.5
similarity threshold (lower is better)

and training a machine learning model for best algorithm prediction depending on re-
quests characteristics. Finally, we extended the adaptive policy presented in the previ-
ous chapter to include the auto-tuner recommendations and bring the navigation system
adaptivity to a dynamic level.

4.1 A Finer-Grained Analysis

In this section, we are going to investigate our first research question: is there any
features we can extract from a routing request influencing ARP heuristics execution
time? We begin from the following hypothesis: the higher the number of segments
in the shortest path between two nodes, the higher the chances that finding a number
of alternative paths is going to take longer. We can easily justify this hypothesis with
the following example. Let pst and quv be two shortest paths between s − t and u − v
respectively in a graph G and |pst| and |quv| be the number of segments in pst and quv
respectively, such that |pst| < |quv|. Let us assume that for each node in pst and quv there
exist 3 out-edges in G. This is reasonable as, in general, nodes represent crossroads
in the road network. Let out(p) =

∑
v∈p |outEdges(v)| be the number of out-edges

for each node in a path, then out(pst) < out(quv). Moreover, since each of the out-
edges target nodes has other 3 out-edges, this search space complexity inequality grows
exponentially. While it is true that AR algorithms try to prune the search space as much
as possible, it is still true that higher the number of segments, the higher the number of
candidate alternative routes.

Based on this hypothesis, we conducted the experiment illustrated in Figures 4.2,
4.3, 4.4, 4.5, 4.6 and 4.7. We follow the same design of experiment as reported in sec-
tion 3.4, collecting measurements on an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
(16 cores, 20MB Cache), running Ubuntu 16.04.5 LTS and exploring 8 configurations
in parallel.

In every figure, we draw four charts. In each of them, we show the obtained results
for those queries where the number of segments in the shortest path (SPS) falls in a
certain range. We consider the following four ranges: [0, 200), [200, 300, [300, 400)
and [400,∞).

48

i
i

“output” — 2019/4/3 — 16:46 — page 49 — #63 i
i

i
i

i
i

4.1. A Finer-Grained Analysis

 0

 200

 400

 600

 800

 1000

 1200

 0.3 0.5 0.7

R
e
s
p
o
n
s
e

 t
im
e

 (
m
s
)

θ

k = 2 k = 3 k = 4 k = 5

(a) Segments in the shortest-path: [0, 200)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0.3 0.5 0.7

R
e
s
p
o
n
s
e

 t
im
e

 (
m
s
)

θ

k = 2 k = 3 k = 4 k = 5

(b) Segments in the shortest-path: [200, 300)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.3 0.5 0.7

R
e
s
p
o
n
s
e

 t
im
e

 (
m
s
)

θ

k = 2 k = 3 k = 4 k = 5

(c) Segments in the shortest-path: [300, 400)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0.3 0.5 0.7

R
e
s
p
o
n
s
e

 t
im
e

 (
m
s
)

θ

k = 2 k = 3 k = 4 k = 5

(d) Segments in the shortest-path: [400, ∞)

Figure 4.2: OnePass+ execution time on New York City, varying alternative paths k ∈ {2, 3, 4, 5} and
similarity threshold θ ∈ {0.3, 0.5, 0.7} (lower is better)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.3 0.5 0.7

D
iff
.
w
ith

 s
p

 (
%
)

θ

k = 2 k = 3 k = 4 k = 5

(a) Segments in the shortest-path: [0, 200)

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.3 0.5 0.7

D
iff
.
w
ith

 s
p

 (
%
)

θ

k = 2 k = 3 k = 4 k = 5

(b) Segments in the shortest-path: [200, 300)

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.3 0.5 0.7

D
iff
.
w
ith

 s
p

 (
%
)

θ

k = 2 k = 3 k = 4 k = 5

(c) Segments in the shortest-path: [300, 400)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.3 0.5 0.7

D
iff
.
w
ith

 s
p

 (
%
)

θ

k = 2 k = 3 k = 4 k = 5

(d) Segments in the shortest-path: [400, ∞)

Figure 4.3: OnePass+ quality on New York City, varying alternative paths k ∈ {2, 3, 4, 5} and similarity
threshold θ ∈ {0.3, 0.5, 0.7} (lower is better)

49

i
i

“output” — 2019/4/3 — 16:46 — page 50 — #64 i
i

i
i

i
i

Chapter 4. Proactive System Auto-Tuning

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.3 0.5 0.7

R
e
s
p
o
n
s
e

 t
im
e

 (
m
s
)

θ

k = 2 k = 3 k = 4 k = 5

(a) Segments in the shortest-path: [0, 200)

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0.3 0.5 0.7

R
e
s
p
o
n
s
e

 t
im
e

 (
m
s
)

θ

k = 2 k = 3 k = 4 k = 5

(b) Segments in the shortest-path: [200, 300)

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 0.3 0.5 0.7

R
e
s
p
o
n
s
e

 t
im
e

 (
m
s
)

θ

k = 2 k = 3 k = 4 k = 5

(c) Segments in the shortest-path: [300, 400)

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 0.3 0.5 0.7

R
e
s
p
o
n
s
e

 t
im
e

 (
m
s
)

θ

k = 2 k = 3 k = 4 k = 5

(d) Segments in the shortest-path: [400, ∞)

Figure 4.4: ESX execution time on New York City, varying alternative paths k ∈ {2, 3, 4, 5} and simi-
larity threshold θ ∈ {0.3, 0.5, 0.7} (lower is better)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.3 0.5 0.7

D
iff
.
w
ith

 s
p

 (
%
)

θ

k = 2 k = 3 k = 4 k = 5

(a) Segments in the shortest-path: [0, 200)

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.3 0.5 0.7

D
iff
.
w
ith

 s
p

 (
%
)

θ

k = 2 k = 3 k = 4 k = 5

(b) Segments in the shortest-path: [200, 300)

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.3 0.5 0.7

D
iff
.
w
ith

 s
p

 (
%
)

θ

k = 2 k = 3 k = 4 k = 5

(c) Segments in the shortest-path: [300, 400)

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.3 0.5 0.7

D
iff
.
w
ith

 s
p

 (
%
)

θ

k = 2 k = 3 k = 4 k = 5

(d) Segments in the shortest-path: [400, ∞)

Figure 4.5: ESX quality on New York City, varying alternative paths k ∈ {2, 3, 4, 5} and similarity
threshold θ ∈ {0.3, 0.5, 0.7} (lower is better)

50

i
i

“output” — 2019/4/3 — 16:46 — page 51 — #65 i
i

i
i

i
i

4.1. A Finer-Grained Analysis

 110

 120

 130

 140

 150

 160

 170

 180

 190

 0.3 0.5 0.7

R
e
s
p
o
n
s
e

 t
im
e

 (
m
s
)

θ

k = 2 k = 3 k = 4 k = 5

(a) Segments in the shortest-path: [0, 200)

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 0.3 0.5 0.7

R
e
s
p
o
n
s
e

 t
im
e

 (
m
s
)

θ

k = 2 k = 3 k = 4 k = 5

(b) Segments in the shortest-path: [200, 300)

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0.3 0.5 0.7

R
e
s
p
o
n
s
e

 t
im
e

 (
m
s
)

θ

k = 2 k = 3 k = 4 k = 5

(c) Segments in the shortest-path: [300, 400)

 300

 400

 500

 600

 700

 800

 900

 1000

 0.3 0.5 0.7

R
e
s
p
o
n
s
e

 t
im
e

 (
m
s
)

θ

k = 2 k = 3 k = 4 k = 5

(d) Segments in the shortest-path: [400, ∞)

Figure 4.6: Penalty execution time on New York City, varying alternative paths k ∈ {2, 3, 4, 5} and
similarity threshold θ ∈ {0.3, 0.5, 0.7} (lower is better)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.3 0.5 0.7

D
iff
.
w
ith

 s
p

 (
%
)

θ

k = 2 k = 3 k = 4 k = 5

(a) Segments in the shortest-path: [0, 200)

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.3 0.5 0.7

D
iff
.
w
ith

 s
p

 (
%
)

θ

k = 2 k = 3 k = 4 k = 5

(b) Segments in the shortest-path: [200, 300)

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.3 0.5 0.7

D
iff
.
w
ith

 s
p

 (
%
)

θ

k = 2 k = 3 k = 4 k = 5

(c) Segments in the shortest-path: [300, 400)

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.3 0.5 0.7

D
iff
.
w
ith

 s
p

 (
%
)

θ

k = 2 k = 3 k = 4 k = 5

(d) Segments in the shortest-path: [400, ∞)

Figure 4.7: Penalty quality on New York City, varying alternative paths k ∈ {2, 3, 4, 5} and similarity
threshold θ ∈ {0.3, 0.5, 0.7} (lower is better)

51

i
i

“output” — 2019/4/3 — 16:46 — page 52 — #66 i
i

i
i

i
i

Chapter 4. Proactive System Auto-Tuning

On every x-axis we report the similarity threshold θ values. In Figures 4.2, 4.4 and
4.6, on the y-axis, we plot the average execution time for every range of number of
segments in the shortest path. In Figures 4.3, 4.5 and 4.7 on the y-axis, we plot the
average spDifference for every range of number of segments in the shortest path.

To begin our analysis, we remind the reader that we are comparing algorithms for
two use-cases:

1. First-routing request, which should be sufficiently fast to avoid annoying the ser-
vice user with long waiting times.

2. Re-routing requests of type-B, which can take longer because their latency is hid-
den behind a background activity of the navigator client. This does not represent
a problem since the navigator is already guiding the user along some path.

In both the scenarios, we are interest in choosing the feasible configuration leading
to the highest expected quality. With this picture in mind, we move to the illustrated
data.

At a very first look, also to simplify our analysis, we observe that, from the average
point of view, ESX algorithm is always dominated by either Penalty or OnePass+ both
in terms of response time and quality. Therefore, we are not going to consider it in the
following discussion. Then, we notice that OnePass+ is confirmed as the best algorithm
in terms of average spDifference under all configurations and range of SPS, like pre-
viously stated in subsection 3.5.1. As opposed to subsection 3.5.1 conclusions, though,
the situation concerning the execution time in this experiment is different.

In Figures 4.2a and 4.6a we plot the average execution time for [0, 200) segments
range. If we fix our attention on θ = 0.7, we notice that OnePass+ runs faster than
Penalty for any number of alternative paths k. Consequently, if the service provider is
satisfied with a maximum overlap ration of 70%, for requests whose number of SPS
is less than 200, OnePass+ represents the optimal candidate. If we consider θ = 0.5
instead, OnePass+ executes faster than Penalty only for k = 2, while runs slower for
higher values of k. On the other hand, OnePass+ might still be sufficiently fast. Indeed,
if we set a maximum time frame of 500 milliseconds for first-routing requests, the
algorithm leads to valid solutions is time for all test values of k but k = 5. The same
applies for θ = 0.3 and k up to 3. In any case, for SPS in [0, 200) range, OnePass+ is
fast enough for re-routing queries of type-B.

Similar conclusions can be drawn on Figure 4.2b and 4.6b, except that OnePass+
becomes unreasonably slow even for type-B re-routing requests for k = 5 and θ ≤ 0.5.
For k > 2, then, Penalty represents the only feasible choice for a number of SPS greater
than 300.

The first consequence of this experiment is that the hypothesis that we postulated
above is actually supported by empirical evidence. Moreover, and most importantly,
this experiment shows that, given some (k, θ) configuration, the optimal algorithm
changes depending on some routing-request features.

4.2 A Proactive System

In section 4.1, we concluded that at least one feature of the input request, i.e. the
number of SPS, exists influencing the choice of the optimal ARP algorithm to employ,

52

i
i

“output” — 2019/4/3 — 16:46 — page 53 — #67 i
i

i
i

i
i

4.2. A Proactive System

Req kAlternative Route
Planning PTDR

Graph

Reordering

Dynamic
Autotuning

λ,

Req Type

Resp

Figure 4.8: A graphical representation of the proposed car-navigation system pipeline. In red, a Dy-
namic Auto-tuner selects an ARLib’s algorithm and its parameters to maximize the solutions quality,
while keeping the system response time within the fixed constraints.

pairing the already mentioned (k, θ) configuration.
In this section, then, we propose an extension of the adaptive car-navigation system

presented in chapter 3 to bring its adaptivity to a finer-grained level. Our idea is to add
an intelligent module, a dynamic auto-tuner, that, relying on trained machine learning
models, chooses the best algorithm depending not only on the routing type of request,
but also on upcoming requests properties. The extended system is pictured in Fig-
ure 4.8, while an extensive description of the predictive model starts from section 4.4.

Along with an improvement to solutions quality, a dynamic auto-tuner would also
bring opportunities from workload management perspectives. Let us consider a system
configured and sized to work under some (k, θ) setup and some expected workload.
Let us imagine that, suddenly, the system experiences an unforeseen requests spike that
would be impossible to handle without introducing strong delays in the overall response
time. Having a model of the application behavior enables an auto-tuning process to
select another (k′, θ′, algorithm) configuration which will degrade the solution quality
only that much that the system needs to reduce the AR search time and restore the
desired service response time.

Indeed, a predictive model would introduce a number of enhancements to our car
navigation system, but are we able to build it in the first place? For instance, previous
experiment confirmed that the number of SPS is a good candidate feature, but can we
extract it from an upcoming request before running any alternative routing algorithm?

We discovered that it is possible. In fact, we notice that all the AR algorithms have
a first, fundamental step in common: they all compute the shortest path between the
query source-destination pair. Therefore, we propose the following steps to efficiently
implement a dynamic auto-tuning process:

1. Let s and t be the source and target nodes respectively. Compute the shortest
path pst between s and t with any shortest path algorithm (e.g. ARLib’s fast
Bidirectional Dijkstra).

2. From the input query and the shortest path pst, extract a number of features x
characterizing the request (e.g. the number of SPS).

3. Let gk,θ,α be a trained model for the system (k, θ) configuration and algorithm

53

i
i

“output” — 2019/4/3 — 16:46 — page 54 — #68 i
i

i
i

i
i

Chapter 4. Proactive System Auto-Tuning

α ∈ {OnePass+, ESX, Penalty}. For each algorithm α, let t̂α = gk,θ,α(x) be the
expected execution time for α for x. Let t∗ be the fixed search timeout. Compute
the set A = {α | t̂α ≤ t∗} of the algorithms that terminate in the available time
frame.

4. Let α∗ = arg maxαQuality(α) be the algorithm with the best average quality.
For instance, if we employ spDifference as quality metrics, we pick the α with
minimum value.

5. Pass pst to the optimal algorithm α∗ as the first path in the ARP solution and
continue the search.

In the following sections, we present the input features, the learning model and the
training pipeline that we employed to implement a valuable proactive dynamic auto-
tuner for a car-navigation system.

4.3 Feature Engineering

In this section, we present the set of input features we extract from a request in order to
provide a better characterization.

In the process of engineering the input features, we should keep the following list of
properties in mind:

• Since we do not own any historical data about the user performing some query,
the only data we can extract features from are the source and destination nodes, s
and t, and the shortest path between the two, pst.

• Since we are building a model to predict the search time of an algorithm, a good
feature should communicate the complexity of the search space.

• Since features are computed online, the operation should take a negligible amount
of time with respect to the available time frame.

In the following paragraphs we introduce the features we employ and how to extract
them from the available input data.

Shortest path segments The first feature we consider is the shortest path number of seg-
ments (SPS) that we already introduced in section 4.1. As we deeply motivated, the
purpose of SPS is to capture the complexity of the graph search space. The more seg-
ments the shortest path contains, the higher the search space is likely to be, growing
exponentially for non-trivial road networks. Computing the number SPS is trivial, as it
simply requires to count the number of edges in pst, which is an O(1) operation if we
store the length of a path in a graph. Otherwise it has linear time complexity.

Flight distance With this feature, we express the geographical (great-circle) distance
between s and t nodes one the Earth surface. This is efficiently computed with the
Haversine formula [46]. Let r be the radius of the Earth (approximately), ϕs and ϕt the
latitudes of s and t respectively and λs and λt the longitudes of s and t respectively, we
compute the great-circle (or flight) distance as:

54

i
i

“output” — 2019/4/3 — 16:46 — page 55 — #69 i
i

i
i

i
i

4.3. Feature Engineering

d = 2r arcsin

(√
sin2

(
ϕt − ϕs

2

)
+ cos(ϕs) cos(ϕt) sin2

(
λt − λs

2

))
(4.1)

While this flight distance alone might say a little on the graph search complexity, it
might be a discriminative factor, in conjunction with SPS, in case of uncrossable natural
places in the road network. In fact, high SPS and high flight distance could mean that s
and t are far part, but searching might be fast because many different alternatives exist.
On the other hand, a high SPS and a low flight distance might mean that a lake or a hill
exist between s and t and therefore maybe few paths connect the two nodes, making
the search for fairly different alternatives hard.

Betweenness centrality Another feature we employ is the Betweenness Centrality (BC)
[47, 48] measure. BC is a very well-known metric which relies on shortest paths. For
every pair of vertices in a connected graph, there exists at least one shortest path be-
tween the vertices, such that the sum of the wights is minimized. The Betweenness
Centrality for each vertex is the number of these shortest paths that pass through the
vertex. Formally, the Betweenness Centrality of a node v is given by the expression:

BC(v) =
∑
s 6=v 6=t

σst(v)

σst
, ∀ (s, t) ∈ V × V (4.2)

where σst is the total number of shortest paths from node s and node t and σst(v) is
the number of those paths that pass through v.

BC is widely applied in network theory. It represents the degree of which nodes
stand between each other. More practically, a node with high BC would have more
control over the network because more information passes through it. In the case of
a road network, nodes with high BC represent hot spots, “mandatory” places to pass
through to reach many other points in the map. For instance, let us consider a city with
a river flowing through it. In this scenario, a bridge represent a place with high BC,
being the only way to connect the two sides of the river.

We propose to employ a Top-N BC average over pst nodes to capture the complexity
of finding good alternatives. Indeed, if a path contains many hot spots, most alternative
will be forced to flow through those points, making discovering different paths more
complex.

Moreover, we point out that, even if computing BC is a time-consuming activity, it
can be calculated just once, offline, and then used as a look-up table online, making
the process an O(V log V) operation, where V is the number of nodes in the shortest
path pst. Indeed, we need to look the BC up for each node in pst, which is an O(V)
operation, sort them, which is O(V log V) and average the top-N results, which takes
O(1) time. The total complexity is O(V log V).

In our experiments, we perform a Top-3 Betweenness Centrality average.

Clustering coefficient This metric provides a measure of the degree to which nodes in
a graph tend to cluster together. Evidence suggests that in most real-world networks,
nodes tend to create tightly knit groups characterised by a relatively high density of

55

i
i

“output” — 2019/4/3 — 16:46 — page 56 — #70 i
i

i
i

i
i

Chapter 4. Proactive System Auto-Tuning

ties. In particular, we employ the clustering coefficient [49, 50] variant known as local
clustering coefficient, which quantifies how close its neighbours are to being a clique
(complete graph). Formally, let G = (V,E) be a graph and euv be an edge connecting
u to v. We define the neighborhood Nv of a node v as its immediately connected
neighbours, as follows:

Nv = {u : euv ∈ E ∨ evu ∈ E} . (4.3)

The local clustering coefficient C(v) for a vertex v is then given by the proportion of
links between the vertices within its neighbourhood divided by the number of links that
could possibly exist between them. Formally, let kv be the number of vertices, |Nv|, of
the neighborhood of v, then the local clustering coefficient for directed graphs is given
as

C(v) =
| {euw : u,w ∈ Nv, euw ∈ E} |

kv (kv − 1)
. (4.4)

We propose to employ the sum of the local clustering coefficient over each node
in pst as a feature. Like Betweenness Centrality, we can compute the local clustering
coefficient of every node in the road network offline and then look them up online. The
complexity of the operation is O(V) operation, where V is the number of nodes in the
shortest path pst.

Shortest path out degree The last feature we propose provides a local measure of the
search space complexity. We simply sum the number of outgoing edges for each node
in pst. Formally,

Out(p) =
∑
v∈p

outDegree(v). (4.5)

We introduce this metric as a support to the number of SPS to capture the actual
number of outgoing edges, which we previously assumed to be uniform across all ver-
tices. The complexity of the operation is O(V) operation, where V is the number of
nodes in the shortest path pst.

Finally, we notice that to compute all the aforementioned features, a single pass
over the shortest path pst is necessary, which is a O(V) operation. The overall feature
extraction complexity is then dominated by the Top-N BC average calculation, taking a
reasonable O(V log V) time. Better complexity can be achieved by employing a fixed-
size priority queue, leading to an O(V logN) overall time complexity.

4.4 Regression Model

In section 4.3, we proposed a number of features that we can efficiently extract from
an input request to characterize it and extract as much information as possible about a
solution search complexity. In this section we present the learning task we want to apply
to our use-case, along with a rationale our design choices, supported by experimental
evidence.

As previously introduced in section 4.2, we want to extend the proposed car naviga-
tion system with an intelligent module to perform dynamic auto-tuning. To achieve our

56

i
i

“output” — 2019/4/3 — 16:46 — page 57 — #71 i
i

i
i

i
i

4.4. Regression Model

goal, the module should be able to predict the execution time of processing an incoming
input request with some (k, θ, algorithm) configuration.

In machine learning and statistics domains, the problem of learning a function that
maps an input to a real continuous output, based on sample input-output pairs, is called
Regression, a subset of Supervised Learning task. Formally, given a set of N training
samples of the form {(φ(x1), t1), . . . , (φ(xn), tn)} such thatφ(xi) is the feature vector
of the i-th sample and ti is its label (i.e. the real value), a learning algorithms seeks
for a function g : X → Y , where X is the input space and Y is the output space.
The function g is an element of some space of possible functions G, usually called
hypothesis space. In order to measure how well a function fits the training data, a loss
function L : Y × Y → R≥0 is defined. For training sample (φ(xi), ti), the loss of
predicting the value t̂i is L(ti, t̂i). The task of a learning algorithm is to find g such that
it minimizes the expected loss, that is E[L] = 1/n

∑n
i=1 L(ti, t̂i).

In our use-case, the set of training samples is obtained from the experiment run
in section 3.4, such that φ(xi) = [shortestPathSegments(xi), flightDistance(xi), bet-
weennessCentrality(xi), clusteringCoefficient(xi), shortestPathOutDegree(xi)], while
ti is the execution time of i-th sample. As generally postulated, we assume that the tar-
get variable t is given by a deterministic function g(φ(xi)), with an additive Gaussian
noise, so that

t = g(φ(xi)) + ε, ε ∼ N (0, σ2
ε).

An important corollary of this assumption is that training samples are supposed to
be homoscedastic. Homoscedasticity is the property of a sequence of random variables
to have the same finite variance, which, in our training set, is the σ2

ε variance of the
(t1, . . . , tn) target variable sequence.

From a very early analysis, we noticed that our dataset is heterogeneous in many
features, providing very few samples for a number of SPS greater than 200, resulting
in a very sparse, noisy samples distribution. For this reason, hereinafter we restrict
ourselves to the [0, 200) range of SPS, which, anyway, we observe accounting for more
than 70% of the experiment input queries. For all the inputs having a number of SPS
greater than 200, we refrain from building a predictive model, backing up to the adap-
tive policy described in section 3.6.

In Figure 4.9, we plot some of the input features against the target variable, the
execution time, for OnePass+ and Penalty algorithms, k = 5 and θ = 0.5. This fig-
ure is a representative example that shows a behavior common to most configurations:
heteroscedasticity of the samples.

Indeed, if we take a look to Figures 4.9a and 4.9c, for instance, we notice that surely
there exists some trend in the data, but, while for small values of the features we see
the same dispersion around an imaginary trend line, for higher feature values the target
variable explodes, leading to very disperse samples.

Multiple reasons might concur in creating such phenomenon. It can be an intrinsic
unpredictability of the time-to-solution in too complex spaces, or maybe the features
we engineered are not able to fully capture the response time behavior, just to name a
few. Nevertheless, heteroscedasticity is the problem we must deal with.

In the literature, the typical approach to address this issue is to apply a weighing
process to the training samples. In fact, the purpose of this operation is to reduce the

57

i
i

“output” — 2019/4/3 — 16:46 — page 58 — #72 i
i

i
i

i
i

Chapter 4. Proactive System Auto-Tuning

25 50 75 100 125 150 175 200
Shortest path segments

100

200

300

400

500

600

R
es

po
ns

e
ti
m

e
(m

s)

(a) OnePass+ response time wrt. number of SPS

25 50 75 100 125 150 175 200
Shortest path segments

100

120

140

160

180

R
es

po
ns

e
ti
m

e
(m

s)

(b) Penalty response time wrt. number of SPS

0 5 10 15 20 25 30 35
Flight distance (km)

100

200

300

400

500

600

R
es

po
ns

e
ti
m

e
(m

s)

(c) OnePass+ response time wrt. flight distance

0 5 10 15 20 25 30 35
Flight distance (km)

100

120

140

160

180

R
es

po
ns

e
ti
m

e
(m

s)

(d) Penalty response time wrt. flight distance

0 2 4 6 8 10
Cumulative local clustering coefficient

100

200

300

400

500

600

R
es

po
ns

e
ti
m

e
(m

s)

(e) OnePass+ response time wrt. clustering coefficient

0 2 4 6 8 10
Cumulative local clustering coefficient

100

120

140

160

180

R
es

po
ns

e
ti
m

e
(m

s)

(f) Penalty response time wrt. clustering coefficient

Figure 4.9: OnePass+ and Penalty response time on New York City, with respect to some input features,
with k = 5 and θ = 0.5.

58

i
i

“output” — 2019/4/3 — 16:46 — page 59 — #73 i
i

i
i

i
i

4.4. Regression Model

importance, on the model fitting, of those samples that are less reliable, or formally,
that are instances of highly-disperse random variables. From a theoretical perspective
[51], the optimal weight for a sample x generated by a random variable X is given as
1/Var[X]. Since we do not know anything about X distribution, we could estimate
Var[X] with the sample variance. To do so, we should run the experiment described
in section 3.4 a sufficient number of times in order to obtain a meaningful population
from X .

While hypothetically possible, this process is extremely time consuming, consider-
ing that a single experiment execution takes about 10 hours to complete. In such cases,
a typical approach is to use proxies that would weigh less those samples that are ex-
pected to have a larger variance. Typical approaches are to use the inverse of the target
value (i.e 1/t) or the inverse of some feature with respect to which the target value
shows an exponential increase in the variability (e.g. 1/shortestPathSegments(xi)).

In our research to build the most reliable predictive model, we considered the fol-
lowing machine learning methods: Lasso [52], Ridge Regression [53], XGBoost [54]
and ExtraTrees [55]. All these models were trained on the same dataset, we tuned their
hyper-parameters using a grid-search approach and shuffled 10-fold cross-validation (or
Leave-One-Out for Lasso and Ridge) and evaluated them with shuffled 10-fold cross-
validation measuring the Root Mean Squared Error (RMSE).

The outcome from this analysis was that none of the trained models was able to per-
form nicely enough on the entire dataset, always scoring a too high RMSE. This phe-
nomenon was highly anticipated by the heteroscedasticity of our data. Indeed, since the
variance is not homogeneous in the target variables, the model commits worse errors for
those samples we were less confident in. Aforementioned techniques to correct it have
been tried, unfortunately leading to no significant improvement. As a consequence, we
moved our research from a model capable of predicting the exact execution time to an
upper-bound prediction. Such approach is beneficial for the following two reasons:

• It mitigates the heteroscedasticity, because instead of predicting a mean value, we
predict an upper bound of it, that accounts also for the target variable variance.

• Because execution time is hardly deterministic, and it is influenced by a large
number of factors, like system workload, concurrently running processes, sched-
uler, temperature and so on, estimating an upper bound makes the model more
robust to unpredictable variations.

In order to have a statistically meaningful estimation, we seek for a model which re-
sults in normally-distributed residuals. Indeed, if residuals have Gaussian distribution,
we can provide an upper-bounded prediction t̂+ = (1 + nσr)g(φ(xi)), where σr is the
standard deviation of the normalized residuals on the training set. Moreover, we obtain
a statistical confidence on the percentage of samples we are under-estimating. For in-
stance, let n = 3, so that t̂+ = (1 + 3σr)g(φ(xi)), the probability of under-estimating
the target variable t is given as:

P (t > t̂+) = 1− P (t < t̂+)

≈ 1− Φ(3σr)

= 0.13%.

(4.6)

59

i
i

“output” — 2019/4/3 — 16:46 — page 60 — #74 i
i

i
i

i
i

Chapter 4. Proactive System Auto-Tuning

While more complex models, like XGBoost and ExtraTrees, achieved better RMSE
in our experiments, their normalized residuals were not normally-distributed, making
them unfeasible for our learning task.

Moreover, while sample weights proxies might work in some circumstances, in our
experiments they led to a decrease in the predictive performance of the trained models.
Hence, we decided to abandon their employment.

From our analysis, the best performing model was Ridge Regression, an L2 regular-
ized least squares regression method, which minimizes the following loss function:

L(t,x,w) =
1

2

N∑
n=1

{tn −wᵀφ(xn)}2 +
λ

2
wᵀw, (4.7)

where w is the model weights vector to tune to minimize the loss function L and λ
is the regularization coefficient to manage the bias-variance trade-off.

In order to assess the normal distribution of the model residuals, we employ a numer-
ical hypothesis test along with a graphical method. We leverage Kolmogorov-Smirnov
hypothesis test [56, 57] for the former and Q-Q Plot [58] for the latter.

The Kolmogorov-Smirnov test is a non-parametric goodness of fit statistical test,
which quantifies a distance between empirical distribution function of the samples and
the cumulative distribution function of a reference distribution. Let be the set of nor-
malized residuals, given as

r =

{(
t1 − t̂1
t1

)
, . . . ,

(
tn − t̂n
tn

)}
,

and µr and σ2
r be the sample mean and sample variance respectively.

We perform the Kolmogorov-Smirnov test for goodness of fit of the empirical cu-
mulative distribution G(x) of the observed residuals against a normal distribution with
µr mean and σ2

r variance, namely Φ(x−µr
σr

). Formally, we consider the following hy-
pothesis test:

H0 : G(x) ≤ Φ

(
x− µr
σr

)
H1 : G(x) > Φ

(
x− µr
σr

)
, for at least some x.

(4.8)

We reject the null-hypothesis H0 for any p-value < 0.05.
Along to the Kolmogorov-Smirnov test of normality, we employ a visual method

known as Q-Q Plot. A Q-Q (Quantile-Quantile) plot is a probability plot, a method for
comparing two probability distributions by drawing their quantiles against each other. If
two distributions being compared are similar, point in the Q-Q Plot will approximately
lie on the line y = x. In our scenario, we plot the normalized residuals quantiles against
a population generated by a random variable X ∼ N (µr, σ

2
r).

In Figure 4.10 we draw the Q-Q Plots of OnePass+ (left) and Penalty (right) of the
normalized residuals for k = 5 and θ = 0.5 on the New York City map. On the x-axis
we report the theoretical normal quantiles while on the y-axis the empirical quantiles.
The red line represents the y = x line. We notice that the residuals points lie almost
completely on the red line, showing that the model residuals are normally distributed.

60

i
i

“output” — 2019/4/3 — 16:46 — page 61 — #75 i
i

i
i

i
i

4.5. Training Process

2 1 0 1 2
Theoretical Quantiles

3

2

1

0

1

2

S
am

pl
e

Q
ua

nt
ile

s

(a) OnePass+ (KS test p-value = 0.694255)

2 1 0 1 2
Theoretical Quantiles

2

1

0

1

2

3

S
am

pl
e

Q
ua

nt
ile

s

(b) Penalty (KS test p-value = 0.586956)

Figure 4.10: OnePass+ and Penalty Q-Q Plots of the normalized residuals on New York City, with k = 5
and θ = 0.5

Moreover, we emphasize the Kolmogorov-Smirnov test p-value scoring 0.69 and 0.59
for OnePass+ and Penalty respectively, supporting our claim on the normality of resid-
uals.

4.5 Training Process

In section 4.4, we presented the regression model we chose to predict ARLib algorithms
execution time. We elected Ridge Regression method as the one with best fitting of its
residuals with respect to normal distribution.

In this section, we describe the training process we employ for the model learning
to obtain the results shown in Figure 4.10. The training pipeline we are depicting
hereinafter is schematized in the UML Activity Diagram of Figure 4.11.

4.5.1 Data Preparation

The first step is task learning is data preparation, where the training set is cleaned and
prepared for model fitting. The initial dataset originates from results of the experiment
described in section 3.4. To briefly recap, for 450 source-destination pairs we per-
formed a query to each ARLib algorithm for k ∈ {2, 3, 4, 5} and θ ∈ {0.3, 0.5, 0.7},
we measured the execution time and computed the input features φ(x), deeply illus-
trated in section 4.3.

Our objective is to train a model for the adaptive navigation system proposed in
section 4.2, given some (k, θ) configuration fixed by the service provider. Moreover,
recalling that we are training a model for each ARLib algorithm, we underline that the
procedure we are describing applies to the subset of the training set corresponding to a
given k, θ and algorithm α.

Trimming First of all, we apply a 10% trimming step, dropping those data entries
whose execution time is above the 90th percentile. We remind the reader about the
heteroscedasticity of the data. By applying a trimming phase, we exclude those outliers
that were potentially caused by those highly-dispersed target variables.

61

i
i

“output” — 2019/4/3 — 16:46 — page 62 — #76 i
i

i
i

i
i

Chapter 4. Proactive System Auto-Tuning

Trimming

> 90th percentile (k, θ, α)

Feature augmentation

Add numSPS and
flightDistance powers of 2

Hyper-parameters tuning

λ - Ridge regularization coefficient
D - Number of PCA Components

Shuffled 10-fold
Cross Validation

λ* = λ minimizing RMSLE
D* = D maximizing KS test p-value

PCA

Keep D* components

Weighted Ride Regression fitting

Set λ* regularization coefficient

Shuffled 10-fold
Cross Validation

Store normalized residuals σ standard deviation

Data Preparation

Model Fitting

Prediction

Upper-bound Prediction

= (1 + 3) g(ϕ(x))t ̂ +
σr

Feature scaling

Standardization

Figure 4.11: UML Activity Diagram of the training process employed for predictive model learning. On
top the data preparation steps are reported, showing how the training set is cleaned and enriched.
In the center, the model fitting part is listed describing how an effective model is obtained from the
training data. Finally, on bottom, the execution time upper-bound prediction is given from the model
fitted function g(φ(x)).

62

i
i

“output” — 2019/4/3 — 16:46 — page 63 — #77 i
i

i
i

i
i

4.5. Training Process

Feature augmentation Subsequently, we augment the feature vectorφ(x) with the power
of 2 of number of SPS and flight distance features. In fact, we noticed that, for some
algorithms, as perceivable from Figures 4.9a and 4.9c, the execution time shows a non-
linear trend with respect to those two features. Therefore, we project them in the power-
of-2 space in order to establish a more linear relationship with the target variable.

Feature scaling The last step in data preparation is the feature standardization. This
means that, for each feature j, we compute µj and σj , the feature mean and standard
deviation respectively. Then, we subtract the mean from the feature and divide the
mean-centered values of the feature by its standard deviation. Formally:

φ′ij =
φij − µj
σj

,

where φij is the value of feature j for the i-th sample.
This procedure is fundamental for machine learning algorithms, like Ridge Regres-

sion, that employ a Euclidean distance in their error function. Without normalization,
features with broader ranges would indeed govern such distance, implicitly weighing
more on the final prediction value. By applying normalization, we scale values for
each feature to have zero mean and unit-variance, keeping them approximately equally
important to the learned model.

4.5.2 Model Fitting

In this second macro-stage, we perform the actual model fitting, applying Ridge Regres-
sion method to learn a function g(φ(x)) minimizing the loss function in Equation (4.7).

Instead of directly feeding the augmented feature vector φ(x) to the training algo-
rithm, we first apply PCA [59, 60] in order to project the feature space into a more
informative coordinate system and, eventually, to reduce the number of features keep-
ing only those that explain the target variable the most.

Since PCA provides us with a valuable feature selecting tool, the number of principle
components to keep becomes an hyper-parameter of the training process to tune, which
we name D.

Along toD parameter, Equation (4.7) exposes another hyper-parameter, the regular-
ization coefficient λ, which we remember managing the bias-variance trade-off of the
learned model, to limit an over-fitting phenomenon.

Heteroscedasticity As previously mentioned, we abandoned the sample weights em-
ployment to fix the data heteroscedasticity, since estimating the variance of each sam-
ple was unfeasible and no good proxy was found. Consequently, we resorted to another
way to deal with non-linear growth of the target variable. In the literature, a typical way
to measure a model performance on a dataset exposing such behavior is to employ the
Root Mean Squared Logarithmic Error (RMSLE), given as:

MSLE =
1

N

N∑
i=1

(ln(1 + ti)− ln(1 + t̂i))
2

RMSLE =
√
MSLE

(4.9)

63

i
i

“output” — 2019/4/3 — 16:46 — page 64 — #78 i
i

i
i

i
i

Chapter 4. Proactive System Auto-Tuning

To help the reader intuition, we point out that RMSLE penalizes an under-predicted
estimate greater than an over-predicted estimate. From our perspective, this behavior is
highly appreciated. Indeed, considering that we always set a timeout on each request,
having a model that optimistically predicts lower execution time values would make
the system choose to run some algorithm that is unlike to terminate in time, leading to
none or partial solutions. On the other hand, following a conservative approach, if the
model suggests a over-estimated execution time, but still lower than the timeout, we are
more likely to obtain high quality solutions within the available time budget.

Therefore, in our training process, we always evaluate models performance accord-
ing to their RMSLE instead of the more common RMSE.

Hyper-parameters tuning The first step we perform, then, is hyper-parameter tuning,
that is, we search for the optimal (λ,D) pair that minimizes the RMSLE metric while
keeping the residuals normally distributed. The process we employ is the following:

1. Let F be the set of features in φ(x). For D in {1, 2, . . . , |F |} set, we compute the
first D principle components from the feature matrix Φ(X) of the training set.

2. We search for λ∗ minimizing the RMSLE in the 200-elements logarithmic space
from 10-8 to 1, using Leave-One-Out validation technique on the training set.

3. Using 10-fold cross validation, we train a Ridge Regression model to cross-predict
the target vector t̂.

4. We compute the Kolmogorov-Smirnov normality test p-value, as described in
Equation (4.8), of the normalized residuals (t− t̂)/t.

5. We select the number of components D∗ maximizing the Kolmogorov-Smirnov
test p-value.

PCA Having discovered the optimal D∗ number of components, we apply PCA to the
feature matrix Φ(X) to obtain a more informative projection of the training data.

σr estimation Recalling that we are ultimately interest in predicting an upper bound of
the execution time, we still lack of the residuals standard deviation to build our estimate
from. In order to compute it, we perform a 10-fold cross-validation to predict the target
vector t̂ using Ridge Regression with λ = λ∗ on the projected feature matrix Φ(X).
We calculate the normalized residuals and, subsequently, the sample standard deviation
σr.

For the final model, we retrain a Ridge Regression model over the whole dataset.

4.5.3 Prediction

The final stage is, of course, the prediction step. In the fitting phase, we learned a
function g(φ(x)) that minimizes the loss function of Equation (4.7). Moreover, we
also estimated the standard deviation σr in the normalized residual errors.

Ergo, we are ready to provide an upper bound of the execution time t̂+, given the
system (k, θ) configuration, for an α ARLib algorithm and some sample x:

64

i
i

“output” — 2019/4/3 — 16:46 — page 65 — #79 i
i

i
i

i
i

4.6. An Improved Adaptive Policy

Table 4.1: Ridge Regression models prediction performance on New York City, for OnePass+ and
Penalty, θ = 0.5 and varying k ∈ {2, 3, 4, 5}. In third column the Root Mean Squared Logarith-
mic Error on the training set is reported. In column 4 and 5, the percentage of underestimated
training samples with a predicted upper bound of 2σr and 3σr, respectively.

Algorithm k
Training
RMSLE

Miss.
2σr

Miss.
3σr

OnePass+

2 0.041 0.02 0.01
3 0.11 0.07 0.02
4 0.27 0.07 0.03
5 0.47 0.06 0.03

Penalty

2 0.044 0.05 0.01
3 0.07 0.05 0.02
4 0.09 0.04 0.01
5 0.12 0.04 0.02

t̂+ = (1 + 3σr) g(φ(x))
∣∣
k,θ,α

. (4.10)

In Table 4.1, we report the prediction performance of the trained Ridge Regression
models on the training set for a similarity threshold θ = 0.5.

4.6 An Improved Adaptive Policy

In section 4.2, we outlined the characteristics of an improved, adaptive, car-navigation
system capable of proactively select the best algorithm for each incoming routing re-
quest.

The proposed extension introduces an intelligent module that extracts some features
from a user query and, based on that, elects the best-quality algorithm that is expected
to complete the search within a fixed time frame. In section 4.3 we described in de-
tails which features we extract and in Sections 4.4 and 4.5 we deeply illustrated the
machine learning model we employ to estimate the routing execution time, along with
the process to train it.

In this section, we propose another adaptive policy, improving the one presented in
section 3.6, leveraging the proactive capabilities of the auto-tuning module. The adap-
tive policy we are presenting hereinafter is summarized by the UML Activity Diagram
in Figure 4.12.

Let (k, θ) be the configuration set by the service provider and s and t the source
and destination nodes of an incoming routing request. The first step is to compute the
shortest path pst with some shortest path algorithm (like ARLib’s fast Bidirectional
Dijkstra). Then, from x = (s, t, pst) we extract the feature vector φ(x), as described
in section 4.3.

As previously discussed in section 4.4, if the number of shortest path segments is
greater than 200, we are not able to deliver a meaningful model of the execution time
behavior. Therefore, we back up to the simpler adaptive policy illustrated in section 3.6,
selecting Penalty or OnePass+ depending on the system (k, θ) configuration and the
type of routing request. Otherwise, if the number of shortest path segments is less than

65

i
i

“output” — 2019/4/3 — 16:46 — page 66 — #80 i
i

i
i

i
i

Chapter 4. Proactive System Auto-Tuning

s, t Shortest Path
pst Feature Extractor

yes

numSPS(xi)
< 200?

ϕ()xi

Auto-tuning Module

Optimal algorithm

Alternative
Routing

Penalty

Pst

no

Penalty?no yes

PTDR Reordering

Alternative
Routing

Penalty

Alternative
Routing

OnePass+ or ESX
Terminates

in time?

no

yes

Penalty
Pst

OnePass+
Pst

Hybrid Approach

Figure 4.12: UML Activity Diagram of the adaptive policy leveraging the auto-tuning module. Based
on query features, the auto-tuner elects the highest-quality algorithm leading to a solution within the
available time budget.

200, which we remind happening in more than 70% of the experiment queries, we are
able to achieve a finer-grained adaptivity.

From φ(x), the auto-tuning module selects the optimal algorithm α∗ as described
in the dynamic auto-tuning process of section 4.2. If α∗ = Penalty, we compute a set
of k alternative paths P st and forward it to the PTDR module. On the contrary, if α∗ is
either OnePass+ or ESX we must consider a safer approach.

As we illustrated in subsection 3.5.3, OnePass+ and ESX do not ensure 100% suc-
cess rate, failing to always find valid solutions within a limited time frame. While the
the predictive model provides an upper bound on the algorithms execution time, under-
estimating some rare samples is a possibility and outliers might take more time than
expected, causing strong delays in the system. For this reason, we rely on a hybrid
approach similar to what we described in section 3.6.

Let T ∗ be the available time budget. The auto-tuning module searches for the opti-
mal algorithm to employ, as the following:

• When considering Penalty, it predicts an upper bound t̂+Penalty as reported in Equa-
tion (4.10).

• When considering OnePass+ (or ESX), it predicts the execution time of the en-
tire hybrid approach, that is, the expected Penalty time t̂+Penalty and the expected
OnePass+ (or ESX) time t̂+OnePass+, which is given as t̂+Hybrid = t̂+Penalty+t̂

+
OnePass+.

Consequently, if t̂+Hybrid < T ∗, hybrid approach is selected, as leading to beast qual-

66

i
i

“output” — 2019/4/3 — 16:46 — page 67 — #81 i
i

i
i

i
i

4.6. An Improved Adaptive Policy

0.5-esx-astar 0.5-opplus 0.5-penalty-bi
0

200

400

600

800

500 ms 750 ms 1000 ms

(a) k = 2

0.5-esx-astar 0.5-opplus 0.5-penalty-bi
0

200

400

600

800

500 ms 750 ms 1000 ms

(b) k = 3

0.5-esx-astar 0.5-opplus 0.5-penalty-bi
0

200

400

600

800

500 ms 750 ms 1000 ms

(c) k = 4

0.5-esx-astar 0.5-opplus 0.5-penalty-bi
0

200

400

600

500 ms 750 ms 1000 ms

(d) k = 5

Figure 4.13: Auto-tuner optimal algorithm selection frequencies on New York City, with θ = 0.5, varying
k ∈ {2, 3, 4, 5} and time budget T ∗ ∈ {500, 750, 1000} milliseconds.

ity solutions. Executing hybrid approach requires the following steps:

1. Compute the set of k alternative paths with Penalty. The search is expected to
terminate in a time TPenalty � T ∗.

2. Compute the set of k alternative paths with OnePass+ (or ESX) setting a time-out
of T = T ∗ − TPenalty.

3. If OnePass+ (or ESX) terminates before the time-out, forward its solutions P st to
PTDR module and continue the pipeline processing.

4. Otherwise, forward the Penalty solutions.

The adaptive policy we just proposed tries to fully exploit the available time budget
to concurrently lead to highest quality and in-time solutions, avoiding system delays
but still resulting in valid alternative routes is case execution time expectations turn out
to be wrong.

In Figure 4.13 we picture the frequency of selection for each algorithm by the auto-
tuning module, varying the number of paths k and the search time budget T ∗. As
expected, hybrid OnePass+ is the most selected configuration in general, as we aim at
the maximum result quality. On the other hand, by lowering T ∗ from 1 second to 500
ms and raising the number of paths k, we notice the frequency of Penalty increasing
since hybrid OnePass+ is not expected to make it anymore in such a limited time frame.

67

i
i

“output” — 2019/4/3 — 16:46 — page 68 — #82 i
i

i
i

i
i

Chapter 4. Proactive System Auto-Tuning

4.7 Summary

In this chapter we presented a methodology for implementing and training a machine
learning model to online predict the optimal ARP algorithm to employ for each query
depending on its characteristics. From the analysis carried out in section 4.1, we dis-
covered that ARP heuristics latency is strongly influenced by the number of segments
composing the shortest path connecting the source and destination nodes of the query.
This study led us to question whether there were other request features that could be
used to proactively decide which algorithm to employ to obtain the highest quality pos-
sible with the available time budget.

In section 4.3, we presented a set of features engineered to be quickly extracted
from the sole query information, along with its shortest path computation which we
would have computed anyway as the base solution for every ARP algorithm. Then we
described our model selection process, along with the actual training pipeline from data
preparation, to learning, to final prediction.

Finally, in section 4.6 we further extended our car navigation system adaptive policy,
first introduced in section 3.6, to include a proactive step, leveraging the auto-tuning
module for computing the optimal ARP heuristic to employ for each incoming request.

From a functional perspective, this chapter exhausts the contributions of this thesis
on the design of an adaptive car navigation system. In fact, along with previous work [5]
on PTDR module, our system exhibits three levels of adaptivity. The first level builds
on traffic-monitoring data: relying on daily travelling time distributions, PTDR mod-
ule adaptively elects the fastest route to follow, according to current traffic conditions.
The second level is supported by our analysis on ARP problem design space, enabling
the service provider to choose the configuration of the system, by means of number of
alternative paths k and similarity threshold θ, according to arbitrary constraints on la-
tency or on number of computational resources. The third and final level of adaptivity
is reached by introducing a dynamic auto-tuning module, proactively recommending
an optimal heuristic for each incoming request and raising the overall solutions qual-
ity by exploiting slower, but more accurate, algorithms when sufficient time budget is
available.

In the following chapter, we will shift from a functional to an extra-functional point
of view, introducing a Queuing Petri Nets model of our car navigation system. In fact,
in the context of a smart city conducting a feasibility study on delivering a navigation
service, the ability to evaluate the system from a performance perspective is funda-
mental. Most notably, having a system model enables a capacity planning analysis in
order to determine the necessary computational power to put in place such a service
and therefore the amount of financial resources that should be allocated.

68

i
i

“output” — 2019/4/3 — 16:46 — page 69 — #83 i
i

i
i

i
i

CHAPTER5
System Modelling

In this chapter, we will shift from a functional to an extra-functional point of view,
introducing a Queuing Petri Nets model of our car navigation system.

In the context of a smart city conducting a feasibility study on delivering a navigation
service, the ability to evaluate the system from a performance perspective is fundamen-
tal. Properties like scalability and tolerance to unexpected workload spikes are just two
of the important studies that can be carried out on our car navigation system. Moreover,
having a system model enables a capacity planning analysis in order to determine the
necessary computational power to put in place such a service and therefore the amount
of financial resources that should be allocated.

Starting from the theoretical background on performance evaluation introduced in
the second part of chapter 2, we present a model of the system with a combination
of Queueing Networks and Petri Nets to effectively represent the complex behavior
of our car navigation system. Moreover, we propose a strategy to efficiently carry
out a capacity planning analysis to optimally size the number of resources given some
expected workload. Furthermore, an extension on the model is explored to introduce an
overload-tolerance capability to the system, by introducing a fast lane enabled when the
system is overloaded, producing low-quality, but very fast responses in order to cope
with unexpected workload spikes.

5.1 A Car Navigation Service in HPC context

In chapter 4, we presented our approach to a car-navigation system design, relying on
several adaptivity layers. We identified a number of customization points enabling an
intelligent tuning of the system, from the traffic perspective, through the PTDR module,
from the quality perspective, through a variety of software knobs such as number of

69

i
i

“output” — 2019/4/3 — 16:46 — page 70 — #84 i
i

i
i

i
i

Chapter 5. System Modelling

λ
kAlternative Route

Planning PTDR Reordering
X

Figure 5.1: A schematic representation of the system software pipeline to be modelled.

alternative routes and similarity threshold, and finally, from an optimal configuration
perspective, through a proactive auto-tuning module, selecting the optimal algorithm
for each upcoming routing request.

Such a complex system raises a number of questions. For instance, one might won-
der whether the system, when deployed, would scale and, if so, what would be the
number of resources required to effectively process a given expected workload.

A common approach for non-performance-critique online services is to delegate
the scalability problem to an IaaS provider. Cloud infrastructures [61], typically, allow
their customers to rent some number of cores of a virtual machine. Then an auto-scaling
option will automatically spawn more cores if incoming requests rate raises to a level
such that it is no longer possible to process them within a given amount of time. To put
the read back in our frame, we remind that our goal is to provide a traffic-optimization
service for a smart-city populated by autonomous cars. Autonomous cars would be
constantly connected to our service, requiring the system to be deployed on a much
more powerful infrastructure with respect to a Cloud one.

To manage such a workload, supercomputing centers are viable option. In HPC
context, typically, scalability issues are addressed by customers themselves. Indeed,
customers actually rent a number of real, non-virtualized resources for a given amount
of time, paying whether exploiting them or not. Moreover, in the circumstance of
an unexpected workload, requesting for more resource is not as smooth as in Cloud
scenario. As a matter of fact, requesting for more compute power issues a request the
could take up to tens of minutes to be processed, causing, in the meantime, strong
delays in the service response time.

Even worse, if, while waiting for more cores to be assigned, system workload de-
creases back to normal, HPC customers would be required to pay for more resources
than they would be using. And, again, asking for resources reduction would issue an-
other request to be processed in the following ten minutes, causing a vicious circle.

As it is clear in this description, correctly sizing the number of required resources is
a key aspect of deploying a software system in a HPC environment.

To accomplish this, a sound model of the system is required, in order to simulate
request arrivals, full pipeline execution and effectively discover the optimal amount of
compute units to keep the system response time within a due service time.

In this work, Queueing Networks and Petri Nets, two system modelling formalisms,
widely studied in the literature, are employed to develop a reliable model [62] of the
system we proposed in chapter 4. In the following sections we will provide a detailed
description of the model along with a rationale on how it effectively abstracts the real

70

i
i

“output” — 2019/4/3 — 16:46 — page 71 — #85 i
i

i
i

i
i

5.2. Alternative Route Planning Stage

S

Figure 5.2: QPN modelling Alternative Route Planning module.

software system we developed.
To briefly recap, we are considering a software system implementing a pipeline of

three stages, as illustrated in Figure 5.1. For starters, ARP stage computes a number
of alternative paths with limited overlapping. In the second stage, PTDR module esti-
mates the expected travelling time for each alternative, according to the current traffic
conditions. Finally, Reordering stage elects the best path to follow according to arrival
time and other arbitrary policies set by the navigation service provider.

5.2 Alternative Route Planning Stage

As we already mentioned in section 3.4, ARP stage is the most critical part of our car-
navigation pipeline. Indeed, compared to following stages, ARP accounts the most for
response time and, above all, it shows the most variable behavior, especially for routing
requests between two long-distant nodes.

For this reason, in chapter 4, we proposed an original approach which we are sum-
marizing as follows:

• Compute the shortest path between source and destination nodes and extract some
features from it.

• If the number of shortest-path-segments (SPS) is greater than 200, select the al-
gorithm that, on average, shows the optimal execution time and quality trade-off
(static adaptivity level).

• If the number of SPS is less than 200, use trained machine learning models to
predict the optimal configuration (dynamic adaptivity level).

• In any case, set a time-out on the ARP execution both for first-routing and re-
routing requests.

In order to reliably model such a complex behavior, a combination Queueing Net-
works and Petri Nets is employed. In Figure 5.2 we illustrate our QPN model for ARP
stage.

71

i
i

“output” — 2019/4/3 — 16:46 — page 72 — #86 i
i

i
i

i
i

Chapter 5. System Modelling

Customers of our car-navigation service perform routing requests through some
client application according to an aggregated Poisson process of rate λf , modelled with
the Source. The parameter λf represents the workload generated during a burst of
first-routing requests, corresponding to peak hours of a working day.

For each first-routing request, clients are expected to issue periodic re-routing re-
quests, seeking for better alternative routes, according to an aggregated Poisson process
of rate λr = 10λf . This introduces a second class of requests in our model, which, in
the literature, is dealt through multi-class Queueing Networks and coloured, general-
ized stochastic Petri Nets formalisms.

An important place in our QPN model is named Resources. This place models
a reserve of available servers for the ARP stage. Therefore, Resources place is pre-
loaded with some number of tokens of another closed-class called Nodes. This third
class is necessary to keep track, in this stage, of the number of busy servers, so that
incoming requests must wait for a Node to become available.

Routing requests arriving at the system are queued in Incoming place and are served
whenever a Node is available. This is modelled by immediate Serving transition, en-
abled by 1 token of either first-routing or re-routing class and 1 token of Core class.
As a result of Serving transition firing, a new token of first or re-routing class, respec-
tively, is generated in ForkServing station.

Fork-Delay-Join component is a key part of our model. As previously mentioned,
routing requests show highly variable behavior in their service time. Moreover, a time-
out is set in any case to put a hard limit on the ARP service time.

Modelling such a functional requirements requires the following clever approach.
Routing jobs arriving at station ForkServing are split into 2 fictitious1tasks and sent to
Dist and Timeout delay servers.
Dist servers process each task according to some stochastic process, while Timeout

servers process tasks deterministically. To model execution with timeout behavior, we
introduce a JoinServing station with Quorum strategy, as described in Figure 2.4.1. In
particular, Join station waits just for the first of the two tasks to complete, therefore
dropping the other one. Indeed, a job arriving at Fork station should depart from Join
station either according to Dist stochastic process, or, if a too long time was sampled
from the stochastic distribution, according to Timeout server, which deterministically
completes in a fixed amount of time. Necessarily, delay station is equipped with an
infinite amount of servers, which is perfectly realistic since the number of physical
processors is managed by Core tokens from Resources place.

Jobs departing from Join station are sent in Release place, enabling Release tran-
sition which moves the routing request to the next pipeline stage and restores a Core
token in Resources place.

5.3 PTDR Stage

Alternative routes discovered in ARP stage are forwarded to PTDR module to compute
a travel time estimate on each of them. Since this process can be performed in paral-
lel, for each ARP solution, producing k alternative routes, we spawn k parallel tasks

1We call them fictitious because no task is generated at that point in the real software pipeline. They are introduced in the
model simply to implement the timeout mechanism, which otherwise would not be possible to model by means of a single QPN
elementary object.

72

i
i

“output” — 2019/4/3 — 16:46 — page 73 — #87 i
i

i
i

i
i

5.4. Reordering Stage

c

(a) PTDR

c

(b) Reordering

Figure 5.3: QPN models for PTDR (on the left) and Reordering (on the right) modules

running PTDR on each of them.
In our model, illustrated in Figure 5.3a, we implement this behavior by means of a

Fork-Join station generating k tasks for each job arriving at ForkPTDR station. Gener-
ated tasks are all sent to an M/M/c queue, serving tasks according to a Poisson stochas-
tic process of rate 1/SPTDR. JoinPTDR station, then, applies a Standard Join strategy,
waiting for all k-tasks and forwarding jobs to the Reordering stage.

5.4 Reordering Stage

Reordering stage is, at the same time, the fastest and the easiest stage to model. At
this step, arbitrary sorting rules are applied according to service provider policies. For
instance, paths can be penalized if flowing across the city center, or nearby some city
event. In this work, we assume fr this stage to take a negligible amount of time, follow-
ing a Poisson process of rate 1/SSort. Therefore, we employ a simple M/M/c station,
processing jobs arriving from PTDR module and returning a final response to service
customers. In Figure 5.3b we illustrate our QPN model for Reordering stage.

5.5 Capacity Planning

In previous section we presented our approach to our car-navigation system modelling,
proposing a QPN model for each stage of the software pipeline. As we previously
mentioned, we resorted to a system model to understand whether our car-navigation
system would scale nicely and, if so, to discover the optimal amount of servers to
handle a given expected workload.

In the literature, this is known as capacity planning problem and in this section
we present a methodology for efficient plans exploration along with our experimental
results.

We start by stating what we are looking for. From a system point of view, we
consider each pipeline module to be deployed on a different server rack. Each rack
is connected to the following, running the subsequent pipeline module, through some
network we can assume fast enough to be considered negligible from an execution time
perspective.

Each rack contains a number of servers, shipping some number of cores each. More
specifically, there are cARP cores dedicated to ARP module, cPTDR cores dedicated to
PTDR module and cSort cores dedicated to Reordering module. Given some expected

73

i
i

“output” — 2019/4/3 — 16:46 — page 74 — #88 i
i

i
i

i
i

Chapter 5. System Modelling

workload of rate λr, we perform a capacity planning analysis to discover the optimal
values for cARP , cPTDR and cSort.

Then, by assigning some values to λr, cARP , cPTDR and cSort, we leverage JMT
simulation engine to compute a number of performance indices, like system response
time and system throughput. If the simulation reports stable response time and average
throughput equal to the incoming requests rate, we known that we have found a valid
capacity plan.

A naive, yet impractical, approach would be to explore every combination of cARP ,
cPTDR and cSort values from 0 up to some limit providing a valid capacity plan. Con-
sidering that a single simulation can take from tens of seconds to several minutes, this
approach appears clearly unfeasible.

In the following section we will illustrate our approach for an efficient resource
space exploration.

5.5.1 Resource Exploration Design

In this section we provide a detailed description on how we explore the number of cores
per each pipeline stage in our capacity planning analysis.

Let λr be the arrival rate of re-routing requests to the system. Let S be the vector of
ARP, PTDR and Reordering mean service times, such that

S = [SARP , SPTDR, SSort] ,

and let STOT =
∑

i Si be the total pipeline service time.
Then, let X be the vector of maximum throughput achievable by a single core of

each pipeline stage, such that:

X =

[
1

SARP
,

1

SPTDR
,

1

SSort

]
.

Since we are looking for the optimal number of cores per stage and since each
stage must keep the same throughput in order to avoid undesired growing queues, it is
reasonable to assume that higher number of resources should be allocated to stages that
take longer to serve a single job. Therefore, we compute the vector S% of the fraction
of time spent in each stage, as follows:

S% =

[
SARP
STOT

,
SPTDR
STOT

,
SSort
STOT

]
.

Moreover, since we have to process jobs at least as fast as they arrive, again in order
to avoid growing queues, we need at least c− cores per stage, such that:

c− = dλr · Se.

Indeed, if a system receives 10 jobs/sec and it can process a job in 1 second, it would
need, at least, 10 parallel workers to avoid increasing delays in the system response
time.

While this works in the ideal scenario of constant arrival rate, it is very likely not to
be enough under realistic arrival rate conditions. In fact, following the usual assumption

74

i
i

“output” — 2019/4/3 — 16:46 — page 75 — #89 i
i

i
i

i
i

5.5. Capacity Planning

considering request arrivals following a Poisson process, it might happen to experience
inter-arrival times less than 1/λr. Similarly, as service time follows some stochastic
process as well, it is likely to take longer than average value S, again, introducing
undesired delays and growing waiting queues.

Therefore, in our exploration, we are going to span from c− up to some maximum
number of cores c+, such that:

c+ = n · c−.
Let c−TOT =

∑
i c
−
i and c+TOT =

∑
i c

+
i be respectively the minimum and maximum

total amount of cores over the whole pipeline. We explore capacity plans as follows:

1. Let ciTOT = c−TOT .

2. Compute the number of cores per stage ci according to the fraction of time spent
in each stage, such that:

ci = ciTOT · S%

=
[
ciARP , c

i
PTDR, c

i
Sort

]
.

3. Simulate QPN model for a re-routing requests arrival rate of λr and ci capacity
plan.

4. Compute next iteration total amount of cores ci+1
TOT , such that:

ci+1
TOT =

(
1 +

1

3

)
ciTOT

5. If ci+1
TOT is less than c+TOT , go to 2.

6. End exploration otherwise.

5.5.2 Experimental Results

In this section, we report our experimental results from a capacity planning analysis on
our system under several configurations.

In this experiment we consider a model of a car-navigation system with number of
alternative paths k = 5 and similarity threshold θ = 0.5. ARP service time process have

Table 5.1: Service time values of our model service stations for first-routing and re-routing requests for
a car-navigation system with k = 5 and θ = 0.5 on New York City map.

Request class Station Service time distribution Mean CV

First-Routing

Dist Pareto(α = 2.289, k = 0.144) 0.257 1.230
Timeout Deterministic(k = 1) 1.000 0.000
PTDR Exponential(λ = 38.462) 0.026 1.000
Reordering Exponential(λ = 1000) 0.001 1.000

Re-Routing

Dist Pareto(α = 2, k = 0.5) 0.300 3023
Timeout Deterministic(k = 3) 3.000 0.000
PTDR Exponential(λ = 38.462) 0.026 1.000
Reordering Exponential(λ = 1000) 0.001 1.000

75

i
i

“output” — 2019/4/3 — 16:46 — page 76 — #90 i
i

i
i

i
i

Chapter 5. System Modelling

20 40 60 80 100
Request rate (req/s)

100

200

300

400

500

600

700

800

To
ta

l r
es

ou
rc

es

(a) First-routing

200 400 600 800 1000
Request rate (req/s)

100

200

300

400

500

600

700

800

To
ta

l r
es

ou
rc

es

(b) Re-routing

Figure 5.4: Optimal total amount of resources for varying λf and λr in [10, 100] reqs/s and [100, 1000]
reqs/s respectively.

been modelled according to ARLib’s Penalty timing results, as described in section 3.4,
on New York City map. Table 5.1 summarizes service time of each component.

Figures 5.4 and 5.5 depict results obtained from a capacity planning analysis using
JMT simulator (v1.0.4-Beta4) employing a 99% confidence interval.

Given some arrival rate λr, we explored several capacity plans as described in sub-
section 5.5.1. We considered a capacity plan to be valid if:

• We measured a throughput equal to the arrivals rate.

• We measured a CPU utilization less than or equal to 70%.

• We measured a system response time at 95th percentile for first-routing requests
less than 1.3 seconds.

• We measured a system response time at 95th percentile for re-routing requests less
than 3.9 seconds.

Then, among all valid capacity plans, we elected as optimal the one requiring the
least total amount of resources.

In Figures 5.4a and 5.4b we illustrate optimal total amount of cores to manage ar-
rivals rates spanning from λf = 10 reqs/sec and λr = 100 reqs/sec to λf = 100 reqs/sec
and λr = 1000 reqs/sec respectively.

Obtained results show that our car-navigation system scales linearly in the number
of necessary cores with respect to the arrival rate for k = 5 and θ = 0.5.

In Figures 5.5a and 5.5b we depict measured system response time for each value of
λf , λr and optimal capacity plan.

5.6 An Overload-Tolerant Model Extension

In the previous section, we provided experimental evidences that our car-navigation
system is capable of scaling, making it a feasible option for a car-navigation service.
Moreover, we presented a working approach to perform an efficient capacity planning
analysis in order to reliably size the system and accommodate some expected workload.

76

i
i

“output” — 2019/4/3 — 16:46 — page 77 — #91 i
i

i
i

i
i

5.6. An Overload-Tolerant Model Extension

20 40 60 80 100
Request rate (req/s)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

S
ys

te
m

 r
es

po
ns

e
ti
m

e
(s

)

(a) First-routing

200 400 600 800 1000
Request rate (req/s)

0.1

0.2

0.3

0.4

0.5

0.6

S
ys

te
m

 r
es

po
ns

e
ti
m

e
(s

)

(b) Re-routing

Figure 5.5: 95th percentile system response time under optimal capacity plan for varying λf and λr in
[10, 100] reqs/s and [100, 1000] reqs/s respectively.

In this section, we want to make another step forward. In section 5.1 we illustrated
a relevant issued in HPC context, i.e. a certain rigidity in resource acquisition and re-
lease, which may result in both slow resource scaling in presence of unexpected work-
load increase and resource, and money, wasting in presence of a workload significantly
lower than expected. Sure, a navigation service provider would employ historical data
to characterize its workload, for example categorizing it with respect to daytime time
slots. On the other hand, let us consider the scenario of a serious car-accident in some
city hot-spot or of a natural disaster. Events like those would cause an immediate, sus-
tained increase in service workload to route cars in some area away and avoid undesired
congestions in such a critical zone.

Indeed, while scaling policies should be in place to issue resource acquisition re-
quests to HPC infrastructure provider in case of excessive arrivals rate, within the time-
frame between request and actual resource allocation, incoming jobs would saturate all
the available service stations raising system response time over any acceptable thresh-
old.

In order to overcome this issue, we propose an extension to the QPN model pre-
sented in section 5.2 at ARP stage.

Our idea is simple yet effective. We introduce a fast lane, parallel to the main
pipeline. According to Little’s Law [63–65], the number of customers waiting at some
station is equal to the arrival rate at the station times the service time of the station
itself. Consequently, if the system is working in flow balance condition, i.e. number of
arrivals equals number of completions, the number of waiting jobs is zero. On the other
hand, in case the arrivals rate increases, yet the number of resource stays the same,
according to Little’s Law, the number of waiting requests will start growing.

In order for our fast lane to be effective, it should process jobs considerably faster
than the main one, to cope with the workload increase. Nonetheless, we want to keep
serving valid responses to navigation users, maybe degrading solution quality, but we
do not consider dropping requests a valid option. Indeed, request drop might be in-
terpreted by users, or clients, as momentary service unavailability, causing recurrent,
successive queries to the system, viciously further increasing the arrivals rate.

Therefore, we propose a fast lane computing just a single shortest path and return it

77

i
i

“output” — 2019/4/3 — 16:46 — page 78 — #92 i
i

i
i

i
i

Chapter 5. System Modelling

S

n
n

n

n

Figure 5.6: QPN extended Alternative Route Planning model with fast lane. Differences with base model
from Figure 5.2 are highlighted in purple.

immediately to the user. That lane should only be open in case a given number of cus-
tomers is detected in ARP waiting queue, while main pipeline should be preferred when
flow-balance condition is restored. Figure 5.6 illustrates our ARP model extension.

For starters, we introduce a Overload transition routing jobs to flow in the fast lane.
Overload transition is enabled when n jobs are waiting in Incoming place, where n is
a parameter to size depending on arrivals rate and service times. Clearly, we also need
n cores in Resources to process those n jobs.

Moreover, since having n tokens in Incoming place concurrently enables Serving
and Overload transitions, we introduce an inhibitor arc in Serving transition in order
to deterministically prefer fast lane.

Then, jobs are forwarded to Fast place to be served by Fast timed transition. When
job processing completes, the job exits the system, responding to waiting user, and a
Core token is restored in Resources place.

5.6.1 Experimental Results

In this section, we report our experimental results on the overload-tolerance capability
of our extended model.

In this experiment, we want to verify that a car-navigation system, sized to effec-
tively run under a given workload, is capable of handling a significantly higher requests
rate by leveraging additional fast lane, while still serving some jobs through the main
pipeline.

We designed the experiment as follows:

1. Let λf and λr be the expected arrivals rates for first-routing and re-routing re-
quests, respectively.

78

i
i

“output” — 2019/4/3 — 16:46 — page 79 — #93 i
i

i
i

i
i

5.6. An Overload-Tolerant Model Extension

Table 5.2: Service time values of our extended model service stations for first-routing and re-routing
requests for a car-navigation system with k = 5 and θ = 0.5 on New York City map.

Request class Station Service time distribution Mean CV

First-Routing

Dist Pareto(α = 2.289, k = 0.144) 0.257 1.230
Timeout Deterministic(k = 1) 1.000 0.000
Fast Exponential(λ = 6.293) 0.160 1.000
PTDR Exponential(λ = 38.462) 0.026 1.000
Reordering Exponential(λ = 1000) 0.001 1.000

Re-Routing

Dist Pareto(α = 2, k = 0.5) 0.300 3023
Timeout Deterministic(k = 3) 3.000 0.000
Fast Exponential(λ = 6.293) 0.160 1.000
PTDR Exponential(λ = 38.462) 0.026 1.000
Reordering Exponential(λ = 1000) 0.001 1.000

2. Perform a capacity planning analysis for λf and λr on the base model as described
in subsection 5.5.1 and discover the optimal number of resources c∗.

3. Using capacity plan c∗, run several simulations on the extended model, increasing
λf and λr up to nλf and nλr.

4. Measure system response time and rate of jobs served through the fast lane.

In Figure 5.7 we depict our results from a JMT (v1.0.4-Beta4) simulation with base
λf = 10 reqs/sec and λr = 100 reqs/sec of a car-navigation system with k = 5 and
θ = 0.5 on New York City. Table 5.2 summarizes service time of each component.

Let us consider Figure 5.7a. On the x-axis we report λf arrivals rate, on the left y-
axis, in green, solid line, we plot 95th percentile system response time for first-routing
requests, while on the right y-axis, in orange, dotted line we plot the rate of requests
served through the next fast lane.

For starters, we notice that for λf = 10, the same rate according to which the base
system is sized, the number of jobs served by the fast lane is zero. This is fundamental
in order to guarantee a degree of consistency with the base model.

In second place, we observe that even for higher values of λf , no job is served by
fast lane. We should remember that first-routing requests are both the fewest and the
fastest to process, so it is reasonable than they never queue. On the other hand, it might
surprise the reader to see the response time decreasing even if no job gets routed to fast
lane. In fact, this is a typical behavior of multi-class systems. As we are going to show
in a moment, since several re-routing jobs are directed to fast lane, the immediate result
is that the main pipeline turns out to be less loaded, enabling jobs to experience faster
waiting time.

Let us move our attention to Figure 5.7b. Again, on the x-axis we report λf arrivals
rate, on the left y-axis, in green, solid line, we plot 95th percentile system response time
for re-routing requests, while on the right y-axis, in orange, dotted line we plot the rate
of requests served through the next fast lane.

Just like for first-routing requests, we notice that for base λr = 100 reqs/sec the
number of jobs served through the fast lane is consistently zero. On the contrary, by
overloading the system with a higher number of requests we observe that the rate of
requests processed by fast lane monotonically increases. As a consequence of that,

79

i
i

“output” — 2019/4/3 — 16:46 — page 80 — #94 i
i

i
i

i
i

Chapter 5. System Modelling

20 40 60 80 100 120 140
Request rate (req/s)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

R
es

po
ns

e
ti
m

e
(s

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fa
st

 r
es

po
ns

e
ra

ti
o

(a) First-routing

200 400 600 800 1000 1200 1400
Request rate (req/s)

0

1

2

3

4

5

R
es

po
ns

e
ti
m

e
(s

)

0.2

0.4

0.6

0.8

1.0

Fa
st

 r
es

po
ns

e
ra

ti
o

(b) Re-routing

Figure 5.7: Overloading scenario of a system running λf = 10 and λr = 100 optimal capacity plan.
System is overloaded by varying λf and λr in [10, 150] reqs/s and [100, 1500] reqs/s respectively. In
green, solid lines we plot 95th percentile system response time. In orange, dotted lines we plot the
rate of requests routed to fast lane to cope with the excessive workload.

80

i
i

“output” — 2019/4/3 — 16:46 — page 81 — #95 i
i

i
i

i
i

5.7. Summary

the system response time decreases, because more and more jobs skip the full pipeline
to cope with the excessive workload. In this experiment, we observe our overload-
tolerance extension hitting its limit for λr = 1500 reqs/sec. Under that condition, 100%
of incoming requests are forwarded to fast lane but the number of available resource
is still not enough to manage such a workload, leading the system response time to
diverge.

Finally, we notice that even for a number of requests ten times bigger than expected,
the system is still able to serve more than 50% of requests through the main pipeline,
granting top quality of results to a relevant number of users.

5.7 Summary

In this chapter, we presented a Queuing Petri Nets model, abstracting the car navigation
system introduced in chapters 3 and 4. Resorting to System Modelling techniques
was fundamental to efficiently analyze our navigation service from extra-functional
perspectives using a computer simulation tool like JMT.

Together with the system model, we presented a methodology to carry out a capac-
ity planning analysis, efficiently exploring the number of necessary resources for each
pipeline stage, given some expected arrivals rate. Achieved results exhibited scalabil-
ity property of our system, with a number of required computational resources linear
with the incoming workload. Moreover, we further extended the proposed QPN model
to introduce overload-tolerance capabilities by means of a fast lane, degrading the so-
lution quality in order to process requests faster. This way the system would be able
to handle sustained workload spikes and keep the system utilization within reasonable
limits while more resources are being allocated. Conducted experiments showed that,
considering a number of cores sized for some arrivals rate, our model extension allowed
to manage more than ten times that rate by directing more and more routing jobs to the
fast processing lane.

In the next chapter, we are going to conduct a validation experiment for our QPN
model by comparing simulation and actual system performance indices by carrying out
a case study on the city of Milan.

81

i
i

“output” — 2019/4/3 — 16:46 — page 82 — #96 i
i

i
i

i
i

i
i

“output” — 2019/4/3 — 16:46 — page 83 — #97 i
i

i
i

i
i

CHAPTER6
Milan: A Case Study

In chapter 5, we presented our approach to a capacity planning analysis for our car-
navigation system, driven by a simulated Queueing Petri Nets model. Employing a
system model turned out to be an effective choice, enabling us to experiment on system
variations in order to extend it with overloading-tolerance capabilities.

Experimental results, moreover, proved us that a car-navigation service, so designed,
is able to scale to effectively accommodate an increasing number of requests. In this
chapter, we want to do the last step to verify our proposed methodology, by designing a
validation test to compare simulation and real system results starting from a case study
on Milan urban area.

6.1 A Service For A Smart City

In the context of providing a traffic optimization service for a smart city, we are in-
terested in applying our approach to a car-navigation system to real data, describing
the traffic behavior of a municipality. Indeed, the whole methodology we presented
in this thesis work focuses on optimization strategies to tailor such a system of some
municipality needs in order to reduce the number of resources required to grant a fast,
satisfactory service with the highest possible quality.

Therefore, we begin our case study on Milan urban area by analyzing the require-
ments of such a smart city and apply, step by step, our methodology to package a
realistic service that this municipality could adopt.

In this area, the population is composed of approximately 4 Million people. Every
day, local agencies estimate to have more than 5 Million trips, considering that only
less than 50% are done using public transportation [66, 67]. For the sake of simplicity,
let us consider to have 2.5 Million trips, by car, per day.

83

i
i

“output” — 2019/4/3 — 16:46 — page 84 — #98 i
i

i
i

i
i

Chapter 6. Milan: A Case Study

1 3 5 7 9 11 13 15 17 19 21 23
0

2

4

6

8

10

A
ve

ra
ge

 d
ai

ly
 t

ra
ff

ic
 (

%
)

Figure 6.1: Average daily traffic distribution per-hour of a working day in Milan urban area.

In Figure 6.1 we depict the average daily traffic distribution according to a study
commissioned by Milan municipality [68]. On the x-axis, we fix the daily time-slots
whereas on the y-axis we report the percentage of car trips measured within a hour
range.

As expected, we notice minimum traffic during the first hours of the day, exploding
to a maximum peak between 7 and 9 am, when people drive to work, carry children to
school and so on. Then again, after some hours of stable traffic, we observe another
peak between 5 and 7 pm, when most workers drive back home.

In the interest of roughly characterizing the daily workload of our car-navigation
system, and conduct an effective capacity planning analysis, we could start by dividing
the traffic profile in correspondence of severe trend changes.

A possible splitting could define the following ranges: 0-6, 7-10, 11-16, 17-19 and
20-24. Each split accounts for some percentage of daily traffic. For each of them, we
should carry out a capacity planning analysis, depending of the time slot workload.

Let us focus, for a while, on the most intense time slot, from 7am to 10am, as
depicted in Figure 6.2. This peak range accounts for 33.4% of the daily traffic, resulting
in 853’000 first-routing requests within a 4-hours slot.

Making a naive assumption, we are going to consider those requests as uniformly
distributed across the 4-hours time span. We understand that is might be far from
reality, but in this case study we shall focus on applying our methodology to deliver
a traffic optimization system for a smart city, rather than developing the most reliable
characterization of the expected workload for the Milan area.

As a result, we obtain 208’750 requests per hour, i.e. 57.99 first-routing requests
per second. On top of that, considering an average of 10 periodic re-routing requests
for each first-routing one, we add 579.86 re-routing requests per second. Similarly, we
follow the same approach to estimate the workload for each other time slot throughout
the day.

For the case study, we introduce two possible service plans that Milan municipality

84

i
i

“output” — 2019/4/3 — 16:46 — page 85 — #99 i
i

i
i

i
i

6.1. A Service For A Smart City

1 3 5 7 9 11 13 15 17 19 21 23
0

2

4

6

8

10
A
ve

ra
ge

 d
ai

ly
 t

ra
ff

ic
 (

%
)

Figure 6.2: Average daily traffic distribution of a working day in Milan urban area, divided in time slots
according to severe changes in traffic trend. Colored area highlights maximum peak hours.

could provide to its citizens: Basic and Premium plans. The two services differentiate
by quality of service and deployment costs and are summarized in Table 6.1.

Basic plan would be characterized by k = 2 and θ = 0.5 configuration. Moreover,
in order to process requests as fast as possible, and therefore requiring less resources,
Basic plan would employ, for alternative route planning step, Penalty algorithm only,
which we showed in subsection 3.5.1 to be, on average, the fastest one.

On the other hand, Premium plan offers the full-optional service, delivering all the
features we presented so far. It would be characterized by k = 5 and θ = 0.5, hence in-
creasing the probability of finding the fastest route to travel at present time. Alternative
route planning would be performed by Auto-tuner suggested, optimal algorithm, max-
imizing the quality of service within a satisfactory response time. As a consequence of
that, requests would be processed with a higher service time, thus raising the required
number of resources.

From the characteristics of aforementioned service plans we apply our capacity plan-
ning analysis from subsection 5.5.1. To run this analysis we set ARP service times
according to real-data statistics from ARP executions, running ARLib’s algorithms on
10’000 P2P source destination pairs generated as described in section 3.4, within Mi-
lan urban area. Service time measurements are obtained on an Intel(R) Xeon(R) CPU
E5-2630 v3 @ 2.40GHz (16 cores, 20MB Cache), running Ubuntu 18.04 LTS.

Then, we perform a capacity planning analysis through a JMT (v1.0.4-Beta4) sim-
ulation with station timing parameters summarized in Table 6.2 for both Basic and

Table 6.1: Overview of possible service plans offered by a smart city municipality.

Service Plan k θ Auto-tuner ARP Algorithms QoS Deployment Cost

Basic 2 0.5 No Penalty Low $

Premium 5 0.5 Yes OnePass+, ESX, Penalty High $$$

85

i
i

“output” — 2019/4/3 — 16:46 — page 86 — #100 i
i

i
i

i
i

Chapter 6. Milan: A Case Study

Table 6.2: Service time JMT simulation parameters summary for Basic and Premium plans.

Service Plan Request Class Station Service Time Mean CV

Basic

First-Routing

Source Exponential(λ = 57.99) 0.020 1.000
Dist Pareto(α = 3.07, k = 0.13) 0.190 0.550
Timeout Deterministic(k = 1) 1.000 0.000
PTDR Exponential(λ = 38.462) 0.026 1.000
Reordering Exponential(λ = 1000) 0.001 1.000

Re-Routing

Source Exponential(λ = 579.86) 0.002 1.000
Dist Pareto(α = 3.07, k = 0.13) 0.190 0.550
Timeout Deterministic(k = 3) 3.000 0.000
Fast Exponential(λ = 6.293) 0.160 1.000
PTDR Exponential(λ = 38.462) 0.026 1.000
Reordering Exponential(λ = 1000) 0.001 1.000

Premium

First-Routing

Source Exponential(λ = 57.99) 0.020 1.000
Dist Pareto(α = 2.99, k = 0.27) 0.410 0.585
Timeout Deterministic(k = 1) 1.000 0.000
PTDR Exponential(λ = 38.462) 0.026 1.000
Reordering Exponential(λ = 1000) 0.001 1.000

Re-Routing

Source Exponential(λ = 6.293) 0.160 1.000
Dist Pareto(α = 2.02, k = 0.34) 0.680 5.240
Timeout Deterministic(k = 3) 3.000 0.000
Fast Exponential(λ = 6.293) 0.160 1.000
PTDR Exponential(λ = 38.462) 0.026 1.000
Reordering Exponential(λ = 1000) 0.001 1.000

Premium service plans.
Table 6.3 summarizes achieved results. Each row describes the optimal infrastruc-

ture sizing for each daily time slot, both for Basic and Premium plans. According to
traffic-monitoring data, early hours in the morning and late hours in the night register
the least traffic levels and, consistently, our analysis reports the least amount of re-
sources required to run the navigation service, with just 22 cores for Basic and 62 core
Premium plans. On the other hand, in correspondence to the maximum traffic peak,
from 7 to 10 am, the amount of resources grows to reach the maximum value of 290
cores for Basic and 696 for Premium plans.

This simulation reveals an interesting opportunity from a financial perspective. With-
out loss of generality, let us consider Premium plan scenario. While it is true that 696
cores are required to deliver the navigation service with no slowdowns throughout the
day, our model showed that such amount of resources is necessary during the 4-hours
maximum peak only. This means that for the rest of the day, a significantly lower
amount of cores could be rented from supercomputing centers, dramatically reducing
the municipality expenses. In fact, a system running the whole day on 696 cores would
cost the provider 16’704 core-hours. By resorting to our system model, we achieve the
lower value of 8’452 core-hours, granting a 51% saving on infrastructure rental.

Concerning the decision to adopt Basic or Premium plan, the usual factors apply.
As we already mentioned, raising the number of alternative paths k and resorting to
slower but more accurate algorithms causes the system to trade some speed in response
computation in order to achieve a higher quality in the final result. Higher quality of

86

i
i

“output” — 2019/4/3 — 16:46 — page 87 — #101 i
i

i
i

i
i

6.2. Validation Test Design

Table 6.3: Capacity plannning analysis for Basic and Premium plans considering different time slots
during the day.

Basic Premium

Time Slot ARP PTDR Reordering Total ARP PTDR Reordering Total

01 - 06 16 5 1 22 51 10 1 62
07 - 10 228 60 2 290 584 111 1 696
11 - 15 147 39 1 187 373 71 1 445
16 - 19 154 41 1 196 393 75 1 469
20 - 24 61 16 1 78 200 38 1 239

solutions, indeed, will make service users happier, increasing their level of fideliza-
tion and building a stronger user base that will hardly choose other similar, competitor
services. On the other hand, some municipality may decide not to allocate enough fi-
nancial resources to a traffic-optimization service shipping all the features presented in
this work, while it might settle with reasonable subset of them.

In any case, the degree of adaptivity offered by our car-navigation system enables a
variety of customizations to effectively tailor such a service on the provider needs and
finances.

In the following section, we will present our validation experiments, applying the
methodology illustrated in previous chapters on the Milan urban area and validate the
conclusion we drew against real system execution data.

6.2 Validation Test Design

In the previous section we described a simple step-by-step customization process to de-
liver our car navigation service to a smart city and its citizens. To do that, we considered
a concrete example, focusing our attention on Milan. Starting from some historical data
illustrating the average daily traffic, we isolated the most critical time slot, which gen-
erates the biggest volume of requests and we performed a capacity planning analysis to
find the optimal amount of resources to effectively deliver the service, with respect to
two different possible plans.

In this section we aim at validating the simulation results we obtained in previous
section and show that the real system performs comparably to what the model says.

We performed our validation tests on Milan urban area, considering the area ranging
in [45.3743, 45.5509] latitude and [9.0519, 9.3507] longitude (EPSG:4326/WGS84 ref-
erence system), pictured in Figure 6.3 and retrieved by OpenStreetMap [44] database.

In this validation test, we are going to focus on ARP module only for several reasons:

• It is the pipeline stage accounting the most for service time, hence representing
the most critical section for an efficient navigation service.

• It is the stage this work of thesis mostly focused on.

• It is the stage for which we developed a high-performance software implementa-
tion that we can employ for real-world evaluation.

Therefore, we are going to validate the following two systems: for Basic plan, we are
considering a straightforward system accepting first-routing and re-routing requests and

87

i
i

“output” — 2019/4/3 — 16:46 — page 88 — #102 i
i

i
i

i
i

Chapter 6. Milan: A Case Study

Figure 6.3: Milan map considered in this validation experiment. Latitude and longitude limits are
marked by black, solid bounding box.

computing 2 alternative routes with a similarity threshold of 50% employing Penalty
algorithm.

Conversely, for the Premium plan, we take into account a system accepting first-
routing and re-routing requests, computing 5 alternative routes with a similarity thresh-
old of 50%, but leveraging the optimal algorithm for each request, suggested by an
auto-tuning module making decisions based on per-request features.

Concerning the auto-tuner, we are training its predictive models following the same
pipeline we presented in section 4.5. We build an ARP algorithms behavior dataset,
as described in section 3.4, to collect real ARLib algorithms execution time values on
sampled source-destination pairs from Milan area. We extract several features from
gathered data and train a machine-learning model for each (k, θ, algorithm) configura-
tion.

From a resources perspective, we are employing an Intel(R) Xeon(R) CPU E5-2630
v3 @ 2.40GHz (16 cores, 20MB Cache), limiting the maximum number of concurrent
ARP executions to 16. Therefore, we resort to the system modelling approach from
chapter 5 to do the reverse: discovering how many first-routing and re-routing requests
per second, λf and λr, we can handle with the available compute power. Indeed, while
in previous section we concluded that 128 and 411 cores would be necessary to execute
ARP module for Basic and Premium plan respectively, we do not have such a compute
power available. Therefore, in our validation experiment we are going to scale the
number of incoming requests so that, according to our system model, we should be able
to handle it. If real system execution confirms our model’s behavior, we can consider

88

i
i

“output” — 2019/4/3 — 16:46 — page 89 — #103 i
i

i
i

i
i

6.3. Car Navigation Service Simulator

the model trustworthy and reliably employ it for any mix of incoming requests rates.
The last step we need to make is to build a driver application simulating request

arrivals and dispatching them to ARP module. Such a simulator would take λf and λr
rates as input parameters and issue first-routing and re-routing requests according to
a Poisson process. A number of workers implementing proactive ARP service would
accept those requests. By leveraging trained predictive models, an auto-tuning module
would recommend the optimal algorithm for each request depending on system’s (k, θ)
configuration. Finally, each request is processed by some worker according the optimal
algorithm suggested by the auto-tuner.

In the following section, we introduce our car-navigation system simulator imple-
menting all the steps we have just described.

6.3 Car Navigation Service Simulator

The car-navigation simulator we built is a concurrent, client-server application writ-
ten in C++17 and Python3.6, putting in place the proactive variant of our navigation
service.

The server application is written in Python and it implements the auto-tuner module
to suggest the optimal algorithm for a given input request. We decided to leverage
Python for such a task because of the very mature and widely adopted software stack
for machine learning development. Indeed, we employed Numpy, Scipy, Scikit-learn
and StatsModels frameworks in order to explore, implement and validate the model
training pipeline we described in chapter 4.

On the other hand, the C++ application implements the real navigation service sim-
ulator, generating routing requests, performing features extraction and processing ARP
queries. Its main dependencies are Boost.Graph [30] for efficient graph representation
and, of course, ARLib for Alternative Route Planning step.

In Figure 6.4 we depict a UML diagram of our simulator top-level architecture.
From a high-level perspective, the simulator is based on three main components:

CarNavigationSystem, PipelineWorker and Auto-tuner.
The CarNavigationSystem component is instantiated with a rich set of arguments

fully specifying the simulation scenario, such as:

• (k, θ) configuration.

• The map graph description.

• A set of source-destination pairs to employ for generated requests.

• λf and λr arrivals rates.

• tf and tr service time timeouts.

• Number of parallel ARP workers cARP .

Moreover, CarNavigationSystem starts a pool of cARP workers, communicating with
them through a synchronized single-producer, multi-consumer queue for ARP jobs dis-
patch.

PipelineWorker component implements an independent worker processing ARP re-
quests. Under the hood, it leverages Pipeline class to: compute shortest path between

89

i
i

“output” — 2019/4/3 — 16:46 — page 90 — #104 i
i

i
i

i
i

Chapter 6. Milan: A Case Study

Object

Cores: 2

generate

«C++»

Car Navigation
System

First-routing
requests

Re-routing

requests

Cores: N

«C++»

PipelineWorker

Pipeline

dispatch

Cores: 1

«Python»

Auto-tuner

req.
features

optimal

algorithm

Figure 6.4: Car-navigation simulator architecture diagram. Node boxes show the required number of
cores.

source and destination nodes, extract features from it, issue a request to the Auto-tuner
for the optimal algorithm to run and, finally, process the ARP query.

Auto-tuner component, on the other hand, implements a TCP server predicting the
optimal ARLib’s algorithm to run depending of some request’s features. Auto-tuner is
instantiated with a set of pre-trained predictive models, learned according to the process
described in section 4.5.

In the UML diagram we also reported the number of cores we suggest to allocate to
each component. This specification will be necessary in order to assess if the available
compute power can handle the number of requests generated by the simulator.

6.4 Experimental Results

In this section we report our results for the experiment we described in section 6.2,
validating the system model for Milan municipality against real measured data from
the navigation service illustrated in section 6.3.

QPN system model service times are characterized from real data collected from
our navigation service implementation on 10’000 P2P source-destination pairs within
Milan urban area.

On the contrary, validation measurements are obtained on a different set of 10’000
P2P source-destination pairs, generated from a different random-numbers-generator
seed.

90

i
i

“output” — 2019/4/3 — 16:46 — page 91 — #105 i
i

i
i

i
i

6.4. Experimental Results

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

2.5

5.0

7.5

10.0

Figure 6.5: Basic-plan service time empirical distribution (histogram) vs. theoretical Pareto distribution
(line plot).

Table 6.4: Comparison of Simulation vs. Actual performance indices for Basic-plan navigation service.

Performance Index Simulation
(Average)

Simulation
(Std. Dev.)

Actual
(Average)

Actual
(Std. Dev)

Percentage
Error

First-routing Throughput 3.98 N/A 3.97 N/A 0.2%
Re-routing Throughput 40.03 N/A 39.26 N/A 2%

First-routing Service Time 0.21 0.10 0.22 0.12 4.5%
Re-routing Service Time 0.22 0.12 0.22 0.13 0%

First-routing Response Time 0.22 0.11 0.25 0.13 12%
Re-routing Response Time 0.23 0.14 0.25 0.14 8%

6.4.1 Basic Plan

In this experiment we are validating a model for a system accepting first-routing and
re-routing requests and computing k = 2 alternative routes with a similarity threshold
θ of 50% employing Penalty algorithm, as reported in Table 6.1.

As we mentioned, our hardware available for measurements ships 16 physical cores.
To generate first-routing and re-routing requests we allocate 2 cores to the car naviga-
tion system component, while another core must be allocated to the auto-tuner module.
As a result, we are left with 13 free cores to dedicate to ARP module.

According to our QPN system model, by setting first-routing requests arrivals rate
λf = 4 reqs/sec and re-routing requests arrivals rate λr = 40 reqs/sec, the average
servers utilization is around 70%, which is ideal according to the performance evalua-
tion rule of thumb mentioned in chapter 5.

From ARP service time perspective, we use a Pareto distribution for both first-
routing and re-routing requests, choosing their parameters with an optimization process
based on Maximum Likelihood Estimation method [69]. In Figure 6.5 we depict the
empirical distribution of Basic-plan service times against a theoretical Pareto distribu-
tion fitted from real data.

In Table 6.4 we report our measurements comparing simulation results against real
system values.

91

i
i

“output” — 2019/4/3 — 16:46 — page 92 — #106 i
i

i
i

i
i

Chapter 6. Milan: A Case Study

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

Figure 6.6: Premium-plan service time empirical distribution (histogram) vs. theoretical Pareto distri-
bution (line plot).

Achieved results show a general agreement between simulated and actual values.
Indeed, we notice that most of the comparisons report a percentage error on average
values under 10%. The only error reaching the percentage of 12% is related to first-
routing requests response time, which is relatively critical considering that first-routing
requests contribute only in a small portion to the overall system workload.

Finally, we mention that simulated and measured system throughput values agree,
with a maximum error of 2%, and they match the generated request arrival rates which
confirms that our capacity planning analysis suggested a correct number of resources
to effectively handle the expected workload.

Summing up, achieved results support the claim that our QPN system model is a
good abstraction of the real system, making it a trustworthy tool to analyze Basic-plan
service behavior.

6.4.2 Premium Plan

In this experiment, we validate a model for a system accepting first-routing and re-
routing requests, computing k = 5 alternative routes with a similarity threshold θ of
50%, as reported in Table 6.1, and processing ARP requests using the optimal algorithm
for each request, suggested by an auto-tuning module taking decisions based on per-
request features.

Hence, this model abstracts the proactive-variant of our car navigation system, dis-
tinguishing from previous Basic-plan model by means of different service time char-
acterization. Indeed, as we already mentioned, our Premium service would trade some
speed in response computation in order to raise solutions quality.

Again, due to limited hardware availability, we can allocate 13 cores to ARP module
maximum. Consequently, we resort to our QPN system model to discover the maxi-
mum number of requests we can handle, while keeping a CPU utilization under 70%
max.

According to our model, we can effectively manage λf = 1.1 first-routing requests
per second and λr = 11 re-routing requests per second.

Again, from ARP service time perspective, we employ two Pareto distributions, for

92

i
i

“output” — 2019/4/3 — 16:46 — page 93 — #107 i
i

i
i

i
i

6.4. Experimental Results

0.2 0.4 0.6 0.8 1.0
0

2

4

6

Figure 6.7: Premium-plan first-routing service time empirical distribution (histogram) vs. fitted, theo-
retical Pareto distribution (line plot).

first-routing and re-routing requests, fitted from real data. A picture comparing re-
routing service times empirical distribution against fitted, theoretical Pareto is drawn in
Figure 6.6.

In Table 6.5 we report our measurements comparing simulation results against real
system values.

Let us begin from measured throughput. As in previous experiment, both simulation
and actual values agree with an error of 2.8% maximum, with a measured throughput
matching the generated arrivals rate, which allows us to conclude that our capacity
planning analysis suggested a sufficient number of resource for the expected workload.
Furthermore, re-routing requests service and response time agree nicely, with a negli-
gible error of 1.5% max.

On the other hand, first-routing requests timing results show, apparently, some dis-
couraging values, with a percentage error of 23% on response time index. Such a
relevant error in simulation, according to our investigation, must be accounted to the
employed theoretical distribution for service time sampling, which poorly describes the
real service time distribution. As a matter of fact, Premium-plan first-time requests are
processed via some suggested algorithm that is expected to find a solution within 1
second timeout. Moreover, some algorithms are also executed with a hybrid-approach,

Table 6.5: Comparison of Simulation vs. Actual performance indices for Basic-plan navigation service.
Simulation service time values are drawn from two theoretical Pareto distributions.

Performance Index Simulation
(Average)

Simulation
(Std. Dev.)

Actual
(Average)

Actual
(Std. Dev)

Percentage
Error

First-routing Throughput 1.10 N/A 1.07 N/A 2.8%
Re-routing Throughput 10.93 N/A 10.82 N/A 1%

First-routing Service Time 0.40 0.16 0.50 0.28 19%
Re-routing Service Time 0.64 0.45 0.64 0.62 0%

First-routing Response Time 0.40 0.18 0.52 0.30 23%
Re-routing Response Time 0.65 0.48 0.66 0.63 1.5%

93

i
i

“output” — 2019/4/3 — 16:46 — page 94 — #108 i
i

i
i

i
i

Chapter 6. Milan: A Case Study

pairing to them a Penalty run in order to ensure a valid solution within the available
time budget. In Figure 6.7 we draw the empirical first-routing requests distribution
versus the fitted theoretical one. As we can notice, the empirical distribution shows
an important right tail, possibly caused by the strong differences in terms of execution
time among ARLib’s algorithms. To our knowledge, no simple distribution models
such behavior.

To support this claim, we executed another simulation, this time directly employing
real service times for first-routing requests, instead of resorting to some theoretical
distribution to draw service times from. Such a simulation, in fact, is possible in JMT
tool by means of Replayer feature [17], which allows us to explicitly provide a service
time series.

As a result, we obtain 0.50 sec service time average value, with 0.27 sec standard de-
viation, performing a 0% error on the average actual values. Moreover, we achieve 0.50
sec average response time in simulation, with 0.29 sec standard deviation, committing
a 3.8% error on the actual value, as reported in Table 6.6.

Summing up, in this experiment we successfully validated our QPN system model
for Premium-plan as well. Indeed, we observed that modelling service time for auto-
tuner suggested algorithms was poorly achieved by means of a single, theoretical distri-
bution, especially for short available time budgets. On the other hand, employing real
data series let us obtain satisfactory results, further supporting our QPN system model
as a trustworthy tool for our navigation service behavior analysis.

Finally, in Table 6.7 we report pick rate and failure rate for ARLib’s algorithms.
Pick rate is the percentage of times some algorithm was selected as optimal by the

auto-tuner, subject to the constraint of 1 second time budget for first-routing requests
and 3 seconds for re-routing requests.

As we already observed in chapter 4, ESX algorithm is always dominated by ei-
ther OnePass+ or Penalty, so the auto-tuner never picks it. Conversely, we notice that
Hybrid OnePass+ is picked more than 50% of the times, both for first-routing and re-
routing requests, making the introduction of an auto-tuner module a winning point of
our service, which will serve best quality of results for more than half of the queries.
On the other hand, failure rate represent the number of times a complete solution was
not discovered within the available time frame. We consider a solution to be complete
if a ARP query asking k = 5 alternative paths returns exactly 5 routes.

Table 6.6: Comparison of Simulation vs. Actual performance indices for Basic-plan navigation ser-
vice. Simulation first-routing service time values are obtained replaying real measurements, while
re-routing service time ones are drawn from theoretical Pareto distribution.

Performance Index Simulation
(Average)

Simulation
(Std. Dev.)

Actual
(Average)

Actual
(Std. Dev)

Percentage
Error

First-routing Throughput 1.10 N/A 1.07 N/A 2.8%
Re-routing Throughput 10.93 N/A 10.82 N/A 1%

First-routing Service Time 0.50 0.27 0.50 0.28 0%
Re-routing Service Time 0.64 0.45 0.64 0.62 0%

First-routing Response Time 0.50 0.29 0.52 0.30 3.8%
Re-routing Response Time 0.65 0.48 0.66 0.63 1.5%

94

i
i

“output” — 2019/4/3 — 16:46 — page 95 — #109 i
i

i
i

i
i

6.5. Summary

Table 6.7: ARLib’s algorithms auto-tuner pick rate and failure rate statistics.

Request Class Algorithm Pick rate Failure Rate

First-routing
OnePass+ (hybrid) 54.93% 0.37%
ESX (hybrid) 0.00% N/A
Penalty 45.07% 8.66%

Re-routing
OnePass+ (hybrid) 59.24% 0.00%
ESX (hybrid) 0.00% N/A
Penalty 40.76% 0.05%

Considering Hybrid OnePass+ algorithm, we notice that the algorithm failed to com-
pute a complete solution only less than 1% of the times, while always completing re-
routing requests processing. On the contrary, Penalty algorithm scores more than 8%
of failure rate on first-routing requests. Considering that Penalty always converges to
a complete solution, as shown in subsection 3.5.3, this result means that computing 5
alternative routes with maximum overlapping of 0.5 in less than a second is not feasible
for 8.66% of validation data.

In order to cope with this situation, two options are available: either we increase the
available time budget for first-routing requests or we simply settle with the alternative
routes computed at the timeout moment, hence forwarding less than five paths to the
PTDR module following in the system.

6.5 Summary

In this chapter, we conducted a validation experiment to evaluate the goodness of our
car navigation system model in simulation with respect to real system execution. We
started from a case study on the city of Milan, roughly characterizing the service work-
load based on real traffic-monitoring data collected by local authorities. Hence, we ap-
plied our capacity planning methodology to discover the optimal number of resources
needed to deliver two types of service, named Basic and Premium plans, identified by
different quality of service and amount of financial resources required. Moreover, due
to lack of computational power, we scaled those values to fit our hardware and run
validation tests both for Basic and Premium plans.

Achieved results successfully validated our QPN system model for Basic and Pre-
mium plans, showing it to be a trustworthy tool for performance evaluation studies on
our car navigation system. Finally, concerning Premium plan, pick and failure rates
values confirm the goodness of our auto-tuning module, which exploits the available
time budget to deliver top quality results in more than half of service queries, while
minimizing the chances of request failure.

95

i
i

“output” — 2019/4/3 — 16:46 — page 96 — #110 i
i

i
i

i
i

i
i

“output” — 2019/4/3 — 16:46 — page 97 — #111 i
i

i
i

i
i

CHAPTER7
Conclusions

In this thesis, we addressed the problem of designing a car navigation system for up-
coming market scenarios. The rising wave of self-driving cars and a forecast exponen-
tial growth of GPS navigation systems demand in the next eight years [1] anticipate
the urgent need of smart services ready to react to a massive flood of routing requests.
The main outcome is a methodology for an adaptive alternative route planning module,
leveraging machine learning models to combine state-of-the-art algorithms and select-
ing the best one on a per-request basis. Moreover, we designed and implemented an
efficient, configurable alternative route planning C++ library, named ARLib, offering
the first publicly-available, production ready solution to search for alternative paths
in a real scenario. Furthermore, we experimentally validated our methodology on New
York City and Milan urban areas to shows the applicability of our presented approaches.
The remainder of this chapter summarises the finding and limitation of the proposed ap-
proach and provides recommendations for future works.

Main contributions

The main results of the work carried out in this thesis might be summarised as follows:

• While proof-of-concept implementations exist for state-of-the-art algorithms, no
realistic implementation was publicly available. As a matter of fact, implementers
resort to custom data structures or slowly-performing languages, for the sole pur-
pose of presenting the algorithm, making the interoperability between ARP heuris-
tics impossible. In the context of performing a fair comparison between those al-
gorithms and actually employ them in a real world car navigation system, we de-
veloped an efficient, configurable C++ library, named ARLib. Given its flexibility,
ARLib proved itself to be a fundamental component of our car navigation system,

97

i
i

“output” — 2019/4/3 — 16:46 — page 98 — #112 i
i

i
i

i
i

Chapter 7. Conclusions

enabling us to experiment several route planning configurations, switching kernels
for single shortest path computation and tuning terminating conditions. Consid-
ering its adherence to Boost.Graph conventions and ease of integration, ARLib
could be employed by any software developer interested in alternative routing as
a drop-in solution in existing code-bases using Boost.Graph.

• Starting from ARLib algorithms implementations, we performed a Design Space
Exploration of ARP problem parameters ranging from the number of alternative
paths k to compute, to the overlapping threshold θ, from the ARP algorithm to
the single shortest path kernel employed by those algorithms. We analyzed the
design space from execution time and quality perspective along with search failure
rate. This experiment showed that, on average, OnePass+ algorithms achieve best
quality of results while Penalty is both the fastest and the most reliable, never
failing to discover a valid solution.

• We presented and evaluated a methodology to train a machine learning module to
recommend the optimal algorithm for each incoming routing query. Indeed, con-
sidering a per-request perspective, instead of an average case scenario, we discov-
ered that each algorithm performance changed depending on query characteristics.
Experimental results showed that our machine learning model underestimated al-
gorithms execution time a negligible number of times, therefore suggesting best
quality algorithm for a relevant fraction of queries.

• In the context of providing a realistic navigation service to a smart city, being able
to perform feasibility studies and capacity planning analysis is a key aspect for a
municipality government in its process of deciding whether to allocate financial
resource to such a service or not. Experimental results achieve by simulating our
proposed car navigation system model demonstrate the scalability of our system
design, showing a linear relation between the expected workload and the required
number of resources to handle it. Furthermore, our proposed extended model ex-
hibited overload-tolerance capabilities, allowing the system to absorb unexpected
workload peaks while gently transitioning to a higher number of HPC resources.

• From applicability perspective, we carried out a case study on the Milan urban
area, applying our methodology to a concrete example, starting from local au-
thorities historical traffic data. We employed our car navigation system model
to perform a capacity planning analysis for two type of service plans, different
from quality of results and financial resources required. In both cases, a valida-
tion experiment supported our claim on the goodness of both system model and
auto-tuning module, showing, for the former, minimal percentage error between
simulated performance indices and actual ones. For the latter, measured statistics
showed a relevant percentage of queries processed by OnePass+ with minimal fail-
ure rate, therefore granting best quality of results to a proper amount of queries,
while still resorting to Penalty for those complex requests that require the fastest
algorithm to be successfully processed.

98

i
i

“output” — 2019/4/3 — 16:46 — page 99 — #113 i
i

i
i

i
i

Recommendation for future works

Experimental evaluations of the proposed methodology show promising results; how-
ever, there are still open questions to investigate. In our opinion, the most challenging
point to solve are the following:

• In this work, three state-of-the-art algorithms were considered for execution time
and quality comparisons and implemented in ARLib. In the literature, several
other heuristics are available, most notably Pareto [11] and Plateau [14] algo-
rithms. Therefore, providing high-quality implementations of those in ARLib
would enable a much wider analysis on solution time and quality trade-offs, pos-
sibly identifying new optimal heuristics for particular routing queries.

• In our alternative route planning algorithms analysis, to focused our attention on
spDifference quality metric, arbitrarily choosing it as our reference goodness
measurement. However, no investigation was carried out to study whether this
measurement matches human understanding of a good routing solution or whether
new quality metrics should be developed to better summarize desirable result fea-
tures.

• While proposed machine learning model for optimal algorithm recommendation
achieved satisfactory results, no good punctual prediction could be achieve, lead-
ing us to resort to an upper bound prediction of the execution time. The main prob-
lem we faced was the so-called heteroscedasticity of our data, possibly meaning
that engineered features do not completely explain the variance in our measure-
ments. Therefore, a deeper study on execution-time-prediction task learnability
should be carried out, in order to identify better features or more advanced learn-
ing techniques and improve model performance.

• Validation results showed that proposed QPN model of our car navigation system
is a trustworthy representation of it, leading to minimal differences between sim-
ulation and actual values when considering the service time of a single algorithm.
On the other hand, using a simple service time theoretical distribution proved it-
self to be a poor model of real values when considering the complex scenario of
an auto-tuning module electing the optimal algorithm to employ. Therefore, an
extension of our QPN model could be carried out to better abstract the auto-tuner
behavior from an extra-functional perspective.

99

i
i

“output” — 2019/4/3 — 16:46 — page 100 — #114 i
i

i
i

i
i

i
i

“output” — 2019/4/3 — 16:46 — page 101 — #115 i
i

i
i

i
i

Bibliography

[1] I. Research, “Global automotive navigation system market forcast 2019-2027.” https://www.
inkwoodresearch.com/reports/global-automotive-navigation-system-market/,
2018.

[2] T. Chondrogiannis, P. Bouros, J. Gamper, and U. Leser, “Alternative routing: K-shortest paths with limited
overlap,” in Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Infor-
mation Systems, SIGSPATIAL ’15, (New York, NY, USA), pp. 68:1–68:4, ACM, 2015.

[3] R. Bader, J. Dees, R. Geisberger, and P. Sanders, “Alternative route graphs in road networks,” in Theory and
Practice of Algorithms in (Computer) Systems, pp. 21–32, Springer, 2011.

[4] R. Tomis, L. Rapant, J. Martinovič, K. Slaninová, and I. Vondrák, “Probabilistic time-dependent travel time
computation using monte carlo simulation,” in International Conference on High Performance Computing in
Science and Engineering, pp. 161–170, Springer, 2015.

[5] M. Golasowski, R. Tomis, J. Martinovič, K. Slaninová, and L. Rapant, “Performance evaluation of probabilistic
time-dependent travel time computation,” in IFIP International Conference on Computer Information Systems
and Industrial Management, pp. 377–388, Springer, 2016.

[6] E. Vitali, D. Gadioli, G. Palermo, M. Golasowski, J. Bispo, P. Pinto, J. Martinovic, K. Slaninova, J. M. Cardoso,
and C. Silvano, “An efficient monte carlo-based probabilistic time-dependent routing calculation targeting a
server-side car navigation system,” IEEE Transactions on Emerging Topics in Computing, 2019.

[7] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische mathematik, vol. 1, no. 1,
pp. 269–271, 1959.

[8] T. Chondrogiannis, P. Bouros, J. Gamper, and U. Leser, “Exact and approximate algorithms for finding k-
shortest paths with limited overlap,” in 20th International Conference on Extending Database Technology:
EDBT 2017, pp. 414–425, 2017.

[9] A. Paraskevopoulos and C. Zaroliagis, “Improved alternative route planning,” in OASIcs-OpenAccess Series in
Informatics, vol. 33, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

[10] Y. Chen, M. G. Bell, and K. Bogenberger, “Reliable pre-trip multi-path planning and dynamic adaptation for
a centralized road navigation system,” in Intelligent Transportation Systems, 2005. Proceedings. 2005 IEEE,
pp. 257–262, IEEE, 2005.

[11] D. Delling and D. Wagner, “Pareto paths with sharc,” in International Symposium on Experimental Algorithms,
pp. 125–136, Springer, 2009.

[12] P. Hansen, “Bicriterion path problems,” in Multiple criteria decision making theory and application, pp. 109–
127, Springer, 1980.

[13] E. Q. V. Martins, “On a multicriteria shortest path problem,” European Journal of Operational Research,
vol. 16, no. 2, pp. 236–245, 1984.

[14] CAMVIT, “Choice routing.” http://camvit.com/, 2009.

[15] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quantitative system performance: computer
system analysis using queuing network models, vol. 22. Prentice Hall Upper Saddle River, 1984.

101

https://www.inkwoodresearch.com/reports/global-automotive-navigation-system-market/
https://www.inkwoodresearch.com/reports/global-automotive-navigation-system-market/
http://camvit.com/

i
i

“output” — 2019/4/3 — 16:46 — page 102 — #116 i
i

i
i

i
i

Bibliography

[16] C. A. Petri, “Kommunikation mit automaten,” Universitat Hamburg, vol. PhD. Thesis, 1962.

[17] M. Bertoli, G. Casale, and G. Serazzi, “An overview of the jmt queueing network simulator,” Politecnico di
Milano-DEI, Tech. Rep. TR, vol. 2007, 2007.

[18] F. Bause et al., “Stochastic petri nets–an introduction to the theory,” 2002.

[19] M. Bertoli, G. Casale, and G. Serazzi, “The jmt simulator for performance evaluation of non-product-form
queueing networks,” in 40th Annual Simulation Symposium (ANSS’07), pp. 3–10, IEEE, 2007.

[20] M. Bertoli, G. Casale, and G. Serazzi, “Jmt: performance engineering tools for system modeling,” ACM
SIGMETRICS Performance Evaluation Review, vol. 36, no. 4, pp. 10–15, 2009.

[21] G. Casale and G. Serazzi, “Quantitative system evaluation with java modeling tools,” in Proceedings of the
2nd ACM/SPEC International Conference on Performance engineering, pp. 449–454, ACM, 2011.

[22] M. Gribaudo, Theory and application of multi-formalism modeling. IGI Global, 2013.

[23] Grand View Research, “Self driving Cars and Trucks Market Size, Share & Trends Analysis Report By
Application (Transportation, Defense), By Region (NA, Europe, APAC, South America, MEA), And Seg-
ment Forecasts, 2020 - 2030.” https://www.grandviewresearch.com/industry-analysis/
driverless-cars-market, 2018.

[24] Grand View Research, “Global Positioning Systems (GPS) Market Size, Share & Trends Analysis Report
By Deployment, By Application (Aviation, Marine, Surveying, Location-Based Services, Road), And Seg-
ment Forecasts, 2018 - 2025.” https://www.grandviewresearch.com/industry-analysis/
gps-market, 2018.

[25] Market Realist, “A Look at the Courier Service Industry in the United States.” https://articles.
marketrealist.com/2015/07/look-courier-service-industry-united-states/,
2015.

[26] GraphHopper, “GraphHopper Routing Engine.” https://github.com/graphhopper/
graphhopper.

[27] Singapore’s Open Data Portal, “K shortest path algorithms for networkx.” https://github.com/
datagovsg/k-shortest-path.

[28] Qi, Yan, “K-Shortest Paths - Yen’s algorithm.” https://github.com/yan-qi.

[29] Sh., Meral, “K-Shortest Path - Yen’s algorithm.” https://mathworks.com/matlabcentral/
fileexchange/32513-k-shortest-path-yen-s-algorithm.

[30] J. Siek, L.-Q. Lee, and A. Lumsdaine, “Boost graph library (bgl).” https://www.boost.org/doc/
libs/1_68_0/libs/graph/doc/index.html, 2000.

[31] Boost.org, “Boost Software Licence.” https://www.boost.org/users/license.html.

[32] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lumsdaine, “Concepts: linguistic support for
generic programming in c++,” ACM SIGPLAN Notices, vol. 41, no. 10, pp. 291–310, 2006.

[33] A. Alexandrescu, Modern C++ design: generic programming and design patterns applied. Addison-Wesley,
2001.

[34] D. R. Musser and A. A. Stepanov, “Generic programming,” in International Symposium on Symbolic and
Algebraic Computation, pp. 13–25, Springer, 1988.

[35] T. A. J. Nicholson, “Finding the shortest route between two points in a network,” The computer journal, vol. 9,
no. 3, pp. 275–280, 1966.

[36] J. Siek, L.-Q. Lee, and A. Lumsdaine, “Property maps.” https://www.boost.org/doc/libs/1_68_
0/libs/graph/doc/using_property_maps.html, 2000.

[37] J. Siek and A. Lumsdaine, “Concept checking: Binding parametric polymorphism in c++,” in First Workshop
on C++ Template Programming, 2000.

[38] D. Gadioli, G. Palermo, and C. Silvano, “Application autotuning to support runtime adaptivity in multicore
architectures,” in Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), 2015
International Conference on, pp. 173–180, IEEE, 2015.

[39] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly, and S. Amarasinghe, “Autotuning algorithmic
choice for input sensitivity,” in ACM SIGPLAN Notices, vol. 50, pp. 379–390, ACM, 2015.

[40] “Test-driven development.” https://en.wikipedia.org/wiki/Test-driven_development.

[41] M. Meyer, “Continuous integration and its tools,” IEEE software, vol. 31, no. 3, pp. 14–16, 2014.

102

 https://www.grandviewresearch.com/industry-analysis/driverless-cars-market
 https://www.grandviewresearch.com/industry-analysis/driverless-cars-market
 https://www.grandviewresearch.com/industry-analysis/gps-market
 https://www.grandviewresearch.com/industry-analysis/gps-market
 https://articles.marketrealist.com/2015/07/look-courier-service-industry-united-states/
 https://articles.marketrealist.com/2015/07/look-courier-service-industry-united-states/
 https://github.com/graphhopper/graphhopper
 https://github.com/graphhopper/graphhopper
 https://github.com/datagovsg/k-shortest-path
 https://github.com/datagovsg/k-shortest-path
 https://github.com/yan-qi
 https://mathworks.com/matlabcentral/fileexchange/32513-k-shortest-path-yen-s-algorithm
 https://mathworks.com/matlabcentral/fileexchange/32513-k-shortest-path-yen-s-algorithm
https://www.boost.org/doc/libs/1_68_0/libs/graph/doc/index.html
https://www.boost.org/doc/libs/1_68_0/libs/graph/doc/index.html
 https://www.boost.org/users/license.html
https://www.boost.org/doc/libs/1_68_0/libs/graph/doc/using_property_maps.html
https://www.boost.org/doc/libs/1_68_0/libs/graph/doc/using_property_maps.html
https://en.wikipedia.org/wiki/Test-driven_development

i
i

“output” — 2019/4/3 — 16:46 — page 103 — #117 i
i

i
i

i
i

Bibliography

[42] “Continuous integration.” https://en.wikipedia.org/wiki/Continuous_integration.

[43] “Travis CI.” https://travis-ci.org/.

[44] OpenStreetMap contributors, “Planet dump retrieved from https://planet.osm.org .” https://www.
openstreetmap.org, 2017.

[45] C. Demetrescu, A. Goldberg, and D. Johnson, “9th dimacs implementation challenge - shortest paths.” http:
//www.diag.uniroma1.it/challenge9/index.shtml, 2006.

[46] C. C. Robusto, “The cosine-haversine formula,” The American Mathematical Monthly, vol. 64, no. 1, pp. 38–
40, 1957.

[47] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of mathematical sociology, vol. 25, no. 2,
pp. 163–177, 2001.

[48] L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, pp. 35–41, 1977.

[49] P. W. Holland and S. Leinhardt, “Transitivity in structural models of small groups,” Comparative group studies,
vol. 2, no. 2, pp. 107–124, 1971.

[50] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’networks,” nature, vol. 393, no. 6684,
p. 440, 1998.

[51] A. C. Aitken, “On least squares and linear combination of observations,” Proceedings of the Royal Society of
Edinburgh, vol. 55, pp. 42–48, 1936.

[52] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society.
Series B (Methodological), pp. 267–288, 1996.

[53] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for nonorthogonal problems,” Techno-
metrics, vol. 12, no. 1, pp. 55–67, 1970.

[54] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data mining, pp. 785–794, ACM, 2016.

[55] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Machine learning, vol. 63, no. 1, pp. 3–
42, 2006.

[56] A. Kolmogorov, “Sulla determinazione empirica di una legge di distribuzione,” Inst. Ital. Attuari, Giorn., vol. 4,
pp. 83–91, 1933.

[57] N. Smirnov et al., “Table for estimating the goodness of fit of empirical distributions,” Annals of Mathematical
Statistics, vol. 19, no. 2, pp. 279–281, 1948.

[58] M. Biometrika19685511Wilk and R. Gnanadesikan, “Probability plotting methods for the analysis of data,”
Biometrika, vol. 55, pp. 1–17, 1968.

[59] K. Pearson, “On lines and planes of closest fit to systems of points in space,” The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

[60] H. Hotelling, “Analysis of a complex of statistical variables into principal components.,” Journal of educational
psychology, vol. 24, no. 6, p. 417, 1933.

[61] P. Mell, T. Grance, et al., “The nist definition of cloud computing,” 2011.

[62] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis, Modelling with generalized stochastic
Petri nets. John Wiley & Sons, Inc., 1994.

[63] J. D. Little, “A proof for the queuing formula,” Operations Research, vol. 9, no. 3, pp. 383–387, 1961.

[64] W. S. Jewell, “A simple proof of: L= λ w,” Operations Research, vol. 15, no. 6, pp. 1109–1116, 1967.

[65] S. Eilon, “Letter to the editor—a simpler proof of l= λ w,” Operations Research, vol. 17, no. 5, pp. 915–917,
1969.

[66] Milano Agenzia Mobilita’ Ambiente e Territorio, “Annual mobility report.” https://www.amat-mi.it/
it/documenti/.

[67] Marco Bedogni, Milano Agenzia Mobilita’ Ambiente e Territorio, “Road traffic measures in the city of
milan.” http://www3.gdos.gov.pl/Documents/Wizyty/W%C5%82ochy/Road%20Traffic%
20Measures%20in%20the%20city%20of%20Milan.pdf.

[68] Lavecchia, C. and Pilati, S. and Angelino, E. and Fossati, G., “Analisi dei dati
di traffico esistenti per la definizione dei profili temporali: metodologia ed es-
empio di applicazione..” http://groupware.sinanet.isprambiente.it/
expert_panel/library/ept13/fossati-angelino-pilati-_1/download/1/
Fossati-Angelino-Pilati-Lavecchia-ARPAL_GALILEO-dati%20traffico.pdf.

103

https://en.wikipedia.org/wiki/Continuous_integration
 https://travis-ci.org/
 https://www.openstreetmap.org
 https://www.openstreetmap.org
http://www.diag.uniroma1.it/challenge9/index.shtml
http://www.diag.uniroma1.it/challenge9/index.shtml
https://www.amat-mi.it/it/documenti/
https://www.amat-mi.it/it/documenti/
http://www3.gdos.gov.pl/Documents/Wizyty/W%C5%82ochy/Road%20Traffic%20Measures%20in%20the%20city%20of%20Milan.pdf
http://www3.gdos.gov.pl/Documents/Wizyty/W%C5%82ochy/Road%20Traffic%20Measures%20in%20the%20city%20of%20Milan.pdf
http://groupware.sinanet.isprambiente.it/expert_panel/library/ept13/fossati-angelino-pilati-_1/download/1/Fossati-Angelino-Pilati-Lavecchia-ARPAL_GALILEO-dati%20traffico.pdf
http://groupware.sinanet.isprambiente.it/expert_panel/library/ept13/fossati-angelino-pilati-_1/download/1/Fossati-Angelino-Pilati-Lavecchia-ARPAL_GALILEO-dati%20traffico.pdf
http://groupware.sinanet.isprambiente.it/expert_panel/library/ept13/fossati-angelino-pilati-_1/download/1/Fossati-Angelino-Pilati-Lavecchia-ARPAL_GALILEO-dati%20traffico.pdf

i
i

“output” — 2019/4/3 — 16:46 — page 104 — #118 i
i

i
i

i
i

Bibliography

[69] S. S. Wilks, “The large-sample distribution of the likelihood ratio for testing composite hypotheses,” The
Annals of Mathematical Statistics, vol. 9, no. 1, pp. 60–62, 1938.

104

	Introduction
	Background
	Alternative Route Planning problem
	Quality
	Algorithms
	OnePass+
	Penalty
	ESX
	Other algorithms

	Computing Systems Modelling
	Queueing Networks
	Petri Nets
	Java Modelling Tools (JMT)

	Summary

	Alternative Route Planning
	An Adaptive Car Navigation System
	System Architecture
	ARLib
	Software Architecture
	Software Engineering
	API Reference
	Usage Examples

	An ARP Design Space Exploration
	Experimental Results
	Performance
	Visual Comparison
	Failure Rate

	An Adaptive Policy
	Summary

	Proactive System Auto-Tuning
	A Finer-Grained Analysis
	A Proactive System
	Feature Engineering
	Regression Model
	Training Process
	Data Preparation
	Model Fitting
	Prediction

	An Improved Adaptive Policy
	Summary

	System Modelling
	A Car Navigation Service in HPC context
	Alternative Route Planning Stage
	PTDR Stage
	Reordering Stage
	Capacity Planning
	Resource Exploration Design
	Experimental Results

	An Overload-Tolerant Model Extension
	Experimental Results

	Summary

	Milan: A Case Study
	A Service For A Smart City
	Validation Test Design
	Car Navigation Service Simulator
	Experimental Results
	Basic Plan
	Premium Plan

	Summary

	Conclusions
	Bibliography

