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Abstract

An important �eld of study that has been addressed over the last few years

is autonomous mobile robotics.

One of the main tasks that an autonomous mobile robot is required to

perform is exploration, that amounts to incrementally discover an initially

unknown environment in order to build its map. During an exploration, an

autonomous robot perceives a portion of the environment with its sensors,

integrates its sensor readings within its current map, identi�es the boundaries

between known and unknown portions of the environment, evaluates such

boundaries according to an utility function in order to select one of them

according to an exploration strategy and, �nally, reaches it.

In this thesis, we propose a multi-criteria exploration strategy that uses

the current map that has been built during the exploration (which represents

the explored part of the environment) to predict the layout of the unknown

part of the environment and that exploits this knowledge to enhance the

exploration process. We evaluate the performance of our system in di�erent

simulated indoor environments, obtaining a consistent speed up at the end

of the exploration process.
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Sommario

La robotica mobile autonoma è un ambito di ricerca che ha ricevuto molta

attenzione negli ultimi anni. Uno dei compiti principali che un robot mobile

autonomo deve essere capace di compiere è l'esplorazione, de�nito come la

scoperta incrementale di un ambiente inizialmente sconosciuto. Un robot

mobile autonomo durante l'esplorazione usa i sensori per percepire l'ambien-

te, integra i dati raccolti in una mappa, identi�ca le frontiere tra le porzioni

di mappa esplorata e le porzioni di mappa inesplorata, valuta le frontiere uti-

lizzando una funzione di utilità e ne seleziona una utilizzando una strategia

di esplorazione, e in�ne la raggiunge.

In questa tesi proponiamo una strategia di esplorazione multicriterio che

usa la mappa costruita durante l'esplorazione (che rappresenta la parte esplo-

rata dell'ambiente) per predirre il layout dalla parte sconosciuta dell'ambiente

e che sfrutta questa conoscenza per migliorare il processo esplorativo. Valu-

tiamo le prestazioni del nostro sistema in molteplici ambienti interni simulati,

mostrando che migliora il processo esplorativo.
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Chapter 1

Introduction

An important �eld of study that has been addressed in the last few years

is autonomous mobile robotics. An autonomous mobile robot must have

the capability to make choices to accomplish a task, perform actions trough

actuators (like motors), and perceive the environment with sensors (like

cameras) without any human intervention.

One of the main tasks that an autonomous mobile robot is required to

be capable of performing is exploration, that involves collecting data from

sensors to incrementally build maps of initially unknown, or partially known,

environments. The maps represent the positions of obstacles, like walls,

and of the free space. During the exploration, an autonomous mobile robot

perceives a portion of the environment with its sensors, integrates sensor

readings within its current map, identi�es the boundaries between known and

unknown portions of the environment, evaluates such boundaries according

to a utility function, selects one of them according to an exploration strategy

and, �nally, reaches it. The selection of the most promising next location

according to some criteria, like the distance from the current position of the

robot, isù the main component of an exploration strategy.

Most of the methods that have been proposed for implementing explo-

ration strategies are based on the concept of frontiers, de�ned as boundaries

between free space and unexplored space [35]. The most simple exploration

strategy is presented in [34], where the robot moves from its current posi-

1
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tion to the closest frontier. A similar approach is the one proposed by the

authors of [13]: they propose to generate a set of candidate locations and to

evaluate them using both the distance of a candidate location from the cur-

rent position of the robot, and the expected amount of information the robot

can perceives from the candidate location using its sensor. This exploration

strategy introduces the concept of using more than one criteria to evaluate

the candidate locations. This type of approach is called multi-criteria de-

cision making. The authors of [4] give a formal de�nition of this approach

and propose a framework that exploits the dependencies between di�erent

criteria.

In the literature, some authors proposed exploration strategies that try

to predict what lies in the unknown part of the environment. For example,

the authors of [30] use a database of previously seen maps to improve the

exploration of Roman catacombs. Instead, the authors of [5] use a convo-

lutional neural network to predict the location of an emergency exit on the

map.

The purpose of this thesis is to develop and implement a multi-criteria

exploration strategy that is capable of using the map built during the ex-

ploration (which represents the explored part of the environment) to make

predictions about the possible shape and structure of the unexplored part

of the environment, identifying its layout, de�ned as its abstract geometrical

representation. We implement our exploration strategy considering as crite-

ria the distance of each candidate location from the robot position and the

expected area that can be seen according to the predicted layout.

We test our exploration strategy in 10 simulated indoor environments,

and we evaluate it in terms of explored area, time spent, distance travelled

by the robot, and the capability to select a candidate location that is actually

reachable from the robot. In order to evaluate its performance, we make a

comparison with the algorithm presented in [13]. Results show that our

proposed exploration strategy is able to improve exploration performance,

especially at the end of the exploration missions.

The thesis is structured as follows.
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In Chapter 2 we describe the state of the art regarding the exploration

strategies proposed in the literature, focusing on exploration strategies that

make predictions over the unexplored part of the environment. Moreover,

we illustrate some algorithms proposed in the literature that use the map to

extract more abstract knowledge.

In Chapter 3 we describe formally the problem addressed in our work,

starting from a description of what the exploration problem is and then by

discussing the possibility of using prediction over the unseen environment to

solve it.

In Chapter 4 we describe our solution to the problem described in Chapter

3 illustrating the basis of our work.

In Chapter 5 we describe the implementation of our system, providing

details about the software frameworks used and about its architecture.

In Chapter 6 we present the results obtained by applying our method in

simulation on 10 indoor environments. We evaluate our solution, then we

compare it to a method from the literature [13].

In Chapter 7 we summarize the purpose and the results obtained in our

work. Then, we propose some future developments for our work.





Chapter 2

State of the art

For autonomous mobile robots, exploration is an important task where the

robot has to visit an initially unknown, or partially known, environment in

an autonomous way and incrementally build the map using the data collected

by its sensors during the process [32].

The task of incrementally build the map of the environment, localize the

robot in the map, and choose the next best location that has to be visited

during the exploration is called the exploration problem. Many studies about

the exploration problem are based on the assumption that no knowledge of

the environment is available at the begin of the exploration [13, 34]. Di�erent

exploration strategies have been proposed to solve the exploration problem in

an e�cient way. The di�erent exploration strategies are usually tested in a

given environment and their performance are usually compared on the basis

of time or distance travelled by the robots.

In order to increase the performance during the exploration, some stud-

ies are focused on the exploitation of some more abstract and conceptual

knowledge, like identifying the walls in the environment or categorize the

environment seen so far into speci�c categories like rooms [21].

In this chapter we present an overview of the state of the art related

to both the exploration problem and the collection of knowledge from the

environment in order to predict speci�c elements in the unknown part of

the environment. In Section 2.1 we describe the sensors and perception

5
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models used to acquire data from the environment; in Section 2.2 we describe

the issue of integrating the collected data from the environment to create

the map and localize the robot. In Section 2.3 we introduce some of the

most important patterns that deal with the exploration problem. Finally, in

Section 2.4 we discuss about some proposed methods (that are not used to

solve the exploration problem) to make predictions about the unknown part

of the environment.

2.1 Sensor

In order to be completely autonomous, the robot must be able to sense the

environment. The robot's sensors perceive the environment conditions and

transduce the perception in signals that can be processed by the robot. The

selection of sensors is strictly dependant of the environmental information

the robot needs to acquire [8]. The most important sensors related to our

application �eld are:

� Laser range �nders: also called LIDARs, they use pulsed laser light to

measure the distance between target object and robot.

� Vision sensors: monocular or stereo cameras used to estimate the 3D

structure of the target.

� RGB-D Sensors: a combination of depth sensors and RGB cameras,

associate to the RGB image a depth channel relating each pixel to a

distance between the image plane and the corresponding object.

� Inertial Measurement Sensors (IMUs): they measure accelerations and

inclination of the robot.

� GPS: measures the position of the robot.
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2.2 SLAM problem

One of the main and most di�cult tasks for mobile robots is to build the

map of the environment and to localize the robot in it while building it. This

task is called Simultaneous Localization and Mapping (SLAM). The SLAM

problem [14, 32], is considered to be a complex problem since robot's local-

ization requires a consistent map, which in turn requires a good estimation

of the robot position. A more formal de�nition about the SLAM problem is

the following:

x1:t = x1, ..., xt: trejectory of the robot (2.1)

z1:t = z1, ..., zt: observations from sensor (2.2)

u1:t = u1, ..., ut: odometry measurements (2.3)

mt: map (2.4)

The SLAM problem involves the calculation of the joint posterior probability

on the map m and the trajectory x1:t given from the sensor's observation z1:t

and the odometry measurements u1:t:

p(x1:t,m|z1:t, u1:t) (2.5)

The basic principle applied to solve the equation (2.5) is the Bayes rules

and the scheme used to integrate such temporal data is known as the Bayes

�lter. Bayes �lter extends the concept of Bayes rules to temporal estimation

problems. It is a recursive estimator for computing sequence of a posterior

probability distribution. The Bayes �lter for the equation (2.5) is:

p(x1:t,mt|z1:t, u1:t) = αp(zt|xt,mt)·

·
∫∫

p(xt,mt|ut, xt−1,mt−1)p(xt−1,mt−1|zt−1, ut−1) dxt−1 dmt−1

(2.6)

In the equation (2.6) α is used as a normalization factor in order to ensure

that the left hand side of the formula is a probability distribution. If the

environment is static, the time index t can be omitted when referring to the
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map m. Then the formula 2.6 becomes:

p(x1:t,m|z1:t, u1:t) = αp(zt|xt,m)

∫
p(xt|ut, xt−1)p(xt−1,m|zt−1, ut−1) dxt−1

(2.7)

As can we see from formula 2.7 the estimator does not require the integration

over map m any more, greatly simplifying the integral. The generative model

are p(xt|ut, xt−1) and p(zt|xt,m), respectively for pose xt and observation

from sensor zt.

2.2.1 Rao-Blackwellized Particle Filter

Many algorithms are being proposed to solve the formula 2.7 in an e�-

cient way, one of the most used is the Rao-Blackwellized Particle Filter

(RBPF) [14]. The algorithm is based on the concept of particle which rep-

resents a potential pose of the robot. To each particle an individual map is

associated; the maps are built from the observations and the trajectory from

the corresponding particle. The Rao-Blackwellized can be divided into four

steps:

� Sampling : The next generation of particles x′t is obtained from x′t−1 by

sampling from a proposed distribution π. The most used distribution

is a probabilistic motion model.

� Importance weighting : To each particle an importance weight w′t is

assigned as follow:

w′t =
p(zt|m′t−1, x

′
t)p(x

′
t|x′t−1, ut−1)

π(xt|x′1:t−1, z1:t, u1:t−1)
· w′t−1 (2.8)

The weights take into account that the distribution π of the previous

step (t− 1) could be di�erent from the one of the following step(t).

� Resampling : Particles are chosen with replacements based on weights.

This is done since only a �nite numbers of particles is used to approx-

imate a continuous distribution. The resampling allow the application



2.2. SLAM PROBLEM 9

of a particle �lter in situations where the target distribution is di�erent

from the proposal distribution π.

� Map estimation: For each particle, the corresponding map is estimated

based on the trajectory x′t and on the history of observations z1:t.

Finally, the particle with the highest probability p and the corresponding

map m are chosen.

2.2.2 Map representation

Autonomous robots require to be able to acquire and maintain a main rep-

resentation of the environment in order to perform di�erent operations on it.

The map can be both known a priori or built with SLAM. Many representa-

tions have been proposed, the most commonly used are:

� Grid-based maps: The map is represented as a collection of cells, as a

matrix, where each cell has a value that measures the probability to �nd

an obstacle in that cell [33]. High values correspond to higher proba-

bilities to �nd an obstacle, low values correspond to lower probabilities

to �nd an obstacle. An example can be seen in Figure 2.1a.

� Topological maps: The map is described as a graph. Each node corre-

sponds to a di�erent place(or di�erent landmarks) and edges represent

the existence of a path with two di�erent places [33]. An example can

be seen in Figure 2.1b.

� Coverage maps: Similar to the grid-based maps, the value attached

to each cell represents the percentage of that cell being covered by an

obstacle [29]. An example can be seen in Figure 2.1c.

� Feature-based: The environment is represented as set of line segments

and corner points. An example can be seen in Figure 2.1d.
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(a)

(b)

(c) (d)

Figure 2.1: Figure 2.1a Occupancy grid map. Figure 2.1b Topological map.
Figure 2.1c Coverage map. Figure 2.1d Feature based map. From [17, 29].

2.3 Exploration strategies

The objective of this section is to introduce di�erent exploration strategies

and some common patterns. For brevity, only the exploration strategies that
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involve a single robot will be illustrated. This is done by illustrating the

main basic exploration strategies in Section 2.3.1, by describing the Multi-

criteria exploration strategies in Section 2.3.2 and �nally in Section 2.3.3 by

illustrating the predictive algorithms.

2.3.1 Basic exploration strategies

Frontier-based exploration strategies

A frontier-based exploration approach uses the concept of frontiers, de�ned

as the geometrical boundaries between known and unknown parts of the

environment. Firstly introduced by [35], a frontier-based approach uses grids

map cells where each cell stores the probability that the corresponding area

is occupied by an obstacle or it is free. At the beginning of the exploration

all the cells are set to the prior probability of occupancy. The cells are

continuously updated using the sensors readings. Once the cells are updated

they are classi�ed comparing their actual value to their initial probability

assigned at the beginning of the exploration. The classi�cation is performed

as following:

� open: if occupancy probability < prior probability

� unknown: if occupancy probability = prior probability

� occupied: if occupancy probability > prior probability

Each open cell that is next to an unknown cell is classi�ed as an edge cell;

all the edge cells adjacent to each other are grouped together into a frontier

(Figure 2.2). Some threshold can be introduced to �lter frontiers (e.g., a

minimum number of cells).

Greedy Algorithm

The authors of [34] propose an algorithm that chooses as next exploration

target the frontier that is closest to the robot position. They demonstrate

that the robot is able to correctly explore all the environment using such a

policy.
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(a) Grid Map (b) Frontiers

Figure 2.2: Figure 2.2a represents a map divided in cells, Figure 2.2b repre-
sents the frontiers extracted from 2.2a. From [35].

Next-Best-View Algorithm

The authors of [13] propose to choose the next target position by evaluating

each candidate position based on the area of the unknown part of the envi-

ronment that can be seen from the corresponding frontier. Each candidate

position qk is evaluated as follows:

1. Given map mk (Figure 2.3a), starting position sk, position qk to eval-

uate and sensor's range r, generate randomly a number n of samples

position q′i,k close to qk (Figure 2.3b).

2. For each q′i,k calculate the area the robot can perceive with its sensor

from q′i,k and draw the estimated area in map m′i,k.

3. Merge all the m′i,k in a single map m′k and then make the intersection
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with the original map mk and obtain the estimated area A(qk) (Figure

2.3c).

4. Calculate the path L(qk) from position sk to position qk (Figure 2.3d).

5. Calculate the utility value g(qk) with the following function:

g(qk) = A(qk) exp(−λL(qk)) with λ constant value (2.9)

(a) (b)

(c) (d)

Figure 2.3: Figure 2.3a shows map m. Figure 2.3b shows the selection of q′i,k
around qk (Step 1). Figure 2.3c shows the result of steps 2, 3. Figure 2.3d
shows the result of step 4.

The parameter λ is used to weight the cost of a motion against the expected

gain in information. Finally, the destination d is selected as the qk that

maximizes the utility value.
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2.3.2 Multi-criteria Strategies

This section illustrates some new exploration strategies that, similarly to

the Next-Best-View algorithm presented in Section 2.3.1, use more than one

criteria to evaluate each candidate position. The multi-criteria strategies are:

� Multi-Criteria Decision Making (MCDM): this strategy exploits the

correlation between di�erent criteria in order to evaluate the candidate

positions.

� multi-objective exploration strategies : this strategy evaluates the candi-

date positions without combining the di�erent criteria in a single utility

function.

Multi-Criteria Decision Making

Many studies on exploration strategies use ad hoc combinations between the

di�erent criteria selected. The Multi-Criteria Decision Making, MCDM

[4] proposes a more formal de�nition in order to better exploit the possible

correlations between the di�erent criteria used.

Problem Formalization Given a set N = {1, 2, ..., n} of criteria, a set

of candidate positions C, given a candidate p ∈ C, MCDM denotes with

ui(p) ∈ I its utility with the criteria i ∈ N , where I ⊆ R represents the

set of possible utility values. Each candidate position p can be associated

to a vector of n elements up = (u1(p), u2(p), ..., un(p)). The selection of a

candidate position is performed using a global utility function u(p) = f(up).

The solution should be in the Pareto frontier that is de�ned as the subset

P ⊆ C such that ∀p ∈ P @q ∈ C : ∀i ∈ N, ui(q) > ui(p).

Choquet integral A total function µ is introduced and de�ned as µ :

P (N)→ [0, 1] with the following properties:

� µ(∅) = 0

� µ(N) = 1
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� ifA ⊆ B ⊆ N, then µ(A) ≤ µ(B)

That is, µ is a normalized fuzzy measure on the set N . µ de�nes the depen-

dency relations for each group of criteria. Given a group G ⊆ N the criteria

are:

� redundant if µ(G) <
∑

i∈G µ(i)

� synergic if µ(G) >
∑

i∈G µ(i)

� independent otherwise

Then the global utility f(up) for a candidate p is calculated using the Choquet

integral with respect to the fuzzy measure µ using p's utilities:

f(up) = C(up) =
n∑

j=1

(uj(p)− uj−1(p)) · µ(Aj) (2.10)

Where uj is the utility of the j-th criterion, after the utilities have been

sorted in ascending order such that, for candidate p:

u1(p) ≤ ... ≤ un(p) ≤ 1 (2.11)

Considering u0(p) = 0. The set Aj is de�ned as:

Aj = {i ∈ N |uj(p) ≤ ui(p) ≤ un(p)}; (2.12)

Multi-objective exploration strategies

The multi-objective exploration strategies proposed in [2] consider three dif-

ferent features to characterize a candidate position p:

� The travelling cost

� The information gain

� The precision of the localization of the robot

Di�erently from other approaches, the three features are not combined in a

single utility function but are kept separated.
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Map representation The map is stored into two list of line segments, that

represent the obstacles and the boundary of the unexplored area. The �rst

list, also called obstacle list, stores the line segments representing the edges

of the observed obstacles. The second list, also called free edge list stores the

line segments that separate the explored area from the unexplored area.

Candidate evaluation Given a candidate point p, the features are evalu-

ated as follow:

� Travelling cost c(p) is calculated as the total length of the segments

forming the path that connects the robot's current position to p.

� Information gain i(p) is evaluated as the total length of the segments

in the free edges list that are visible from p.

� Overlap o(p) between the new sensorial data and the information al-

ready stored is calculated as the total length of the line segments visible

from the position p.

Proposed exploration strategies The algorithm operates in three steps:

1. Candidate positions are randomly generates along the free edges of the

map.

2. The Pareto-optimal solutions are selected.

3. Since more than one Pareto-optimal solution exists, the position is

selected as the one that is nearest to the ideal position, according to

the following distance function:

D(p) =
√

(c(p)− cm)2 + (i(p)− im)2 + (o(p)− om)2 (2.13)

where p is the candidate position and cm, im and om are, respectively, the

minimum travelling cost, the maximum information gain and the maximum

overlap obtained from the individual optimization.
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2.3.3 Predictive Methods

A challenging problem in robotics is to integrate other forms of knowledge

with the information gathered from maps. The works of [30, 31] propose to

use datasets of previously seen environments and previously seen areas in

order to exploit similarities with the area around the current frontier. The

works of [5] uses the building �oor plan and a convolutional neural network to

generate a prediction of the position of an emergency exit, then the algorithm

selects the frontier closest to the predicted position of an emergency exit.

P-SLAM

This algorithm proposes a new strategy to approach the problem of SLAM :

it exploits common patterns found in the environment to speed-up the re-

construction of the map and at the same time makes it more accurate. The

Predictive - Simultaneous Localization and Mapping(P-SLAM) [7] focuses

on the unexplored regions closest to the explored ones because they are the

next exploration targets. If a similar environment/structure is matched in the

map of explored regions, an hypothesis is generated and the robot can decide

to not explore that region and use the prediction as a virtual map and save

exploration time. The algorithm is implemented using a Rao-Blackwellized

particle �lter, as described in Section 2.2.1. The prediction process can be

divided into four major steps:

1. Locates a target frontier cell.

2. Collect structure informations near the target region.

3. Search for similar structures in the previously built map.

4. Generate an hypothesis if a similarity match exist.

An example of the P-SLAM structure is shown in Figure 2.4. We will now

discuss in depth the four steps.
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Figure 2.4: The �gure shows the P-SLAM structure. From [7].

Target frontier choice In order to avoid useless predictions that will slow

down the process, the prediction is applied only to the next exploration target

which must be a frontier.

Collect structure information The features extracted from regions are

lines and corners (Figure 2.5); they are extracted using respectively Hough

transform and image gradients. It is not necessary that both features are

present, as long as the information provided are useful to align the target

and the reference region. The next step is to use the extracted features

to obtain a pair of control points, where one point is in the target region

and the other is in the reference region. With the pair of control points, an

homogeneous-coordinate-transformation matrix is formed to align the control

points. Since a corner feature is formed by two line segments, a control point

usually has two angles (Figure 2.6). Consequently there are four di�erent

θ angles for alignment. For each θ an homogeneous-coordinate-matrix O is
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built. The transformation matrix O and the pair of control points are used to

obtain a reference cell f ′ with an aligned reference region Cf ′ . If the selected

target cell is not the controlled point, the nearest corner feature in a preset

range is selected. If no corner is found the prediction stops.

(a) (b) (c)

Figure 2.5: The �gure shows the features extraction. Figure 2.5a shows
the original occupancy grid. Figure 2.5b shows the extracted line features.
Figure 2.5c shows the extracted corner features. From [7].

Figure 2.6: The �gure shows control points P1 and P2 extracted from corner
features. The angles are extracted from the line features. From [7].

Similar structure research Once a reference region Cf ′ and a target

region Sf are found, the similarity between them is calculated. As similarity
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measure, the occupied cells are considered using the following �lters:

I(i, j) =

1, if Sf (i, j) and Cf ′(i, j) are occupied

0, otherwise

J(R, i, j) =

1, if R(i, j) is occupied

0, otherwise

where R(i, j) is an input region and i, j the position index of the cell.

Then the similarity measure is calculated as follow:

Ψ(Sf , Cf ′) =
2 ·

∑ds
i=1

∑ds
j=1 I(i, j)∑ds

i=1

∑ds
j=1 J(Sf , i, j) +

∑ds
i=1

∑ds
j=1 J(Cf ′ , i, j)

(2.14)

where ds is the size of the input region.

Figure 2.7: The �gure shows all the steps. (a) The selected target region. (b)
The found reference region. (c) The generated hypothesis for the selected re-
gion. (d) The result of the merge operation. (e) The simulated environment.
From [7].

Hypothesis generation If equation (2.14) for at least one reference region

is over a threshold, a hypothesis is generated and the transformation matrix

is used to align the reference region and the target region. In case there

are more than one reference region with similarity measure higher than the

threshold, the one with highest similarity measure is selected. The generated

hypothesis then is merged into the built map.
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Algorithm of Ström, Nenci and Stachniss

Di�erently from [13], where the frontier is selected based on the distance and

the potential area that can be seen, [30, 31] propose a di�erent approach:

since most robot maintain a probabilistic belief about the pose and the map

of the environment, an alternative approach is to select the target location

as the one that minimizes the uncertainty in the belief of pose and map of

the robot. The selection is performed exploiting the concept of loop-closure:

it is de�ned as the act of asserting that a robot has returned to a previously

visited location [15]. A robot that is able to correctly recognize a loop-closure

is able to reduce the uncertainty about its pose. The loop-closure is predicted

using a database of previously seen maps (both from the same environment

at earlier stages of the exploration and from di�erent environments) used to

search for similarities with the current map.

Information-driven exploration De�ning a as the action performed at

time t, z the sequence of observations obtained, the information gain (also

called mutual information) of taking action a is de�ned as the change in

entropy of the belief about the robot's pose X and the map M :

I(X,M : Za) = H(M,X)−H(M,X|Za) (2.15)

With H(M,X|Za) conditional entropy de�ned as:

(H,X|Za) =

∫
p(z|a)H(M,X|Za = z) dz (2.16)

Unfortunately, equation (2.16) is intractable due to exponential growth of

potential measurements.

Utility function The utility function is the following:

U(a) = I(M,Z;Za)− cost(a) (2.17)
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Where cost(a) is the path length from current position of the robot to the

designated target location of a. The best action a∗ is the one that maximizes

U(a). As described in Section 2.3.3, the computation of U(a) can become

very expensive, so if we assume that the action a can reduce the uncertainty

about the map, U(a) becomes:

U(a) = Imap(a) + Itraj(a)− cost(a) (2.18)

Another assumption could be that all the frontiers yield the same expected

information gain about the uncertainty on the map. So the utility can be

approximated to:

U(a) = Itraj(a)− cost(a) (2.19)

The expected information gain about Itraj is mainly in�uenced by loop-

closure.

Querying for similar structures The prediction of how the environment

may look like is done by making a similarity query between the area near

the frontier f and the structures explored before (from the same run or

from previous run). This is done by creating a database storing all local

grid maps, and then the query is done by checking image similarities with

FabMAP2, that is an appearance based approach to e�ciently query the

database (Figure 2.8). A helpful tool of FabMAP2 is that it also provides a

likelihood l(m) for each match m.

Figure 2.8: The Figure shows as left image the query map, the other images
are the four matches in the database. From [30].

Loop-closure prediction Once the query with FabMAP2 provides all the

matchesm, the matches are converted into the corresponding Voronoi graphs,
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and �nally aligned with the actual map using a RANSAC-based algorithm.

The next step is to search for loop-closures using the generalized Voronoi

graph (Figure 2.9). If the graph leads to a position close to any other frontier

in the map, then it is a possible loop-closure.

Figure 2.9: The �gure illustrates the loop-closure prediction. Left: map
explored so far with the frontier under consideration(blue dot). Middle:
One of the predictive belief(red) superimposed on the map. Right: Voronoi
diagram. From [30].

Estimating the probability to close a loop Each map reported by

FabMAP2 has an associated likellihood l(m). Then the probability of closing

a loop is:

Sf =
∑

m∈M(f)

l(m) ·
∑

c∈C(f,m)

l(c|m) (2.20)

where:

� M(f) is the set of matches returned from FabMAP2 with f the frontier

selected for the query.

� C(f,m) refers to the possible loop-closures.

� l(c|m) is the likelihood that the loop-closure can be reached. It is

assumed to be inversely proportional to the length of the path of the

loop-closure.

Finally, assuming that all the loop-closures trough unknown area yields the

same uncertainty reduction, Itraj can be approximated with Sf .
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Application of Deep Learning

The author of [5] proposes the use of deep learning to predict the position

of the exit locations on a previously unseen building by giving the algorithm

access to the building �oor plan.

Problem formulation The algorithm uses a frontier-based exploration.

The frontier closest to an estimated exit is selected as next target; the explo-

ration goes on until an exit location is found. The objective is to minimize

the area explored during the exploration to reach the exit.

Implementation The Convolutional Neural Network (CNN ) is trained

using downsampled 256 × 256 blueprint image as input. The output is a

20×20 image with pixel values equal to 1 for exit locations, 0 otherwise. The

size 20 × 20 is choosen since bigger patches would increase the complexity

the CNN would need to learn. The CNN is built as following:

(a) (b)

Figure 2.10: Figure 2.10a are the labeled output locations. Figure 2.10b
shows the output of CNN. From [5].

1. Input layer (1× 256× 256, the pixels of the blueprint image)

2. Convolutional layer (16 �lters, �lter size 9)
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3. Max pooling (size 2)

4. RELU Non-Linear Layer

5. Convolutional layer (16 �lters, �lter size 9)

6. Max pooling (size 2)

7. RELU Non-Linear Layer

8. Convolutional layer (16 �lters, �lter size 5)

9. Max pooling (size 2)

10. RELU Non-Linear Layer

11. Convolutional layer (16 �lters, �lter size 5)

12. RELU Non-Linear Layer

13. Fully Connected layer (550 nodes)

14. Output layer (400 nodes - 20 20)

Figure 2.11: The �gure shows the structure of CNN. From [5].

The error function is computed as a pixel-by-pixel comparison between the

result of the CNN and the ground truth image of the true exit locations.

The false negative error is multiplied by 400/3 in order to balance positive

and negative exit locations. The objective of this normalization factor is to

encourage the CNN to predict a `heat map' of possible location (as shown

in Figure 2.11) instead of learning to output an all black image. From the

output images a clustering method is used to determine the exact location

of the exit prediction. A k-mean clustering algorithm is applied.
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A semantically informed exploration

The authors of [18] propose an algorithm that exploits a semantic map of

the environment to enhance the exploration of the environment in a search

and rescue settings. A semantic map is a map that attaches to elements

of the environments a set of related concepts that give a more human-like

knowledge (e.g. label a part of the map as a 'small room'). The search and

rescue setting is a particular type of exploration where the objective is to

�nd the highest number of persons in an environment in a short amount of

time. The algorithm uses a semantic map in order to explore those areas that

are more likely to have an higher number of persons. A priori knowledge of

the labels of the semantic map that have an higher priority to be explored

is given as parameter(called target label). This assumption is interesting in

realistic scenario; for example, if a disaster inside an o�ce happens during

o�ce hours, it is most likely that a large portions of humans are inside small-

sized rooms.

System overview The robots use laser sensors with a coverage of 360

degrees around them. Each robot builds a two dimensional occupancy grid

map of the explored environment, meanwhile a global map is maintained by a

base station which is in a �xed position of the environment, and to which the

robots send their maps. The authors assume that the system has a semantic

map that labels each free cell of the grid map with its room type. The

semantic map is assumed to be given since the authors are only interested in

its use (an example of semantic mapping is described in Section 2.4.1). The

semantic labels used are:

� small room

� medium room

� large room

� corridor
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Exploration strategies The authors propose a multi-criteria decision mak-

ing approach using several criteria to evaluate the goodness of a candidate

location for all the robots used. The authors assumes that to each cell in the

free space of the map the label of the corresponding room is available. The

candidate locations p belongs to one of the frontiers of the environment and

the criteria to evaluate them are:

� A(p): expected amount of free area beyond the frontier of p computed

as the length (in cell) of the frontier.

� d(p, r): is the euclidean distance between the position p and the robot

r.

� b(p, r): is an estimation of the energy spent to reach the position p for

robot r.

� S(p): is the relevance of p. This value depends from the target la-

bel given as parameter. If the label of p is equal to the target label,

S(p) = 1, 0 otherwise. If the label of p is `corridor', then S(p) = 0.15

independently from the a-priori parameter.

� ND(p): is the number of doors in the room where p is located. This is

helpful to exploit highly-connected rooms that can ease �nding relevant

rooms.

All the criteria N = 〈A, d, b, S,ND〉 are combined using a multi-criteria

decision making in order exploit the correlation between the various criteria

(for example, the Euclidean distance and the energy spent for a position p

are dependant).

Coordination method A coordination method is used to assign candidate

locations to robots. The mechanism is auction-based, where the items are the

candidate locations p and the robots attempt to maximize their utility func-

tion u(p, r). The base station is the auctioneer. More than one robot can be

assigned to the same candidate locations. For example, two robots allocated
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in a candidate position of a `large room' can speed up the exploration, over-

coming the potential negative e�ect due to the initially overlapping views. A

fuzzy-based function i(p) is used to compute the ideal number of robots that

should be assigned to a room. The algorithm combines the di�erent criteria

listed before to calculate the ideal number of robots. An example of how the

fuzzy based algorithm works is shown in Figure 2.12.

(a)

(b)

Figure 2.12: Figure 2.12a and Figure 2.12b show some example of how the
fuzzy function works. From [18].

Each robot evaluates the candidate positions as soon as the base station

makes an auction or when requested by a robot that has reached its assigned

location, and submits a bid u(p, r) with u(p, r) being the utility function of

position p for robot r. Two coordinates method are proposed:

� MRv1: it greedily allocates the best pair (p′, r′) avoiding to allocate to

p′ more than i(p′) robots(i(p) ideal number of robots for position p).

� MRv2: similar to MRv1 but after each allocation of a robot to p′ it

discount the utility of p′ for the other robots according to the number

of robots already assigned to p′. The discount is linear until the num-

ber of robot assigned to p′ is less or equal than i(p′), and the decays

exponentially. An example is shown in Figure 2.13.
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Figure 2.13: The �gure shows an example about the function of the discount
factor. From [18].

2.4 O�-line map inference

In this section we introduce some studies that focus on the exploitation of

general knowledge from the map. The objective is to obtain more human-

level concepts from the environment, like rooms. The authors of [21] propose

an algorithm that, knowing the building topology (e.g. school, o�ce) per-

forms a semantic mapping on the environment. Similarly, [26] proposes to

use multi-modal sensory information including information gathered from

humans to make inference about unexplored concepts (e.g. objects, rooms)

and allows for goal oriented exploration making prediction on the possible

extension of the known world.

2.4.1 Semantic mapping

In order to implement human-like behaviour with robots it becomes very im-

portant to provide them the fundamental capability of understanding com-

plex and structured environments [25]. Semantic mapping has the objective

of classify di�erent parts of the environment based on their general appear-

ance and geometry. We illustrate some algorithms that propose di�erent

approaches to perform semantic mapping.
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Semantic mapping based on building topology

The authors of [21] propose a classi�cation algorithm that is based on the

concept of building topology. The building topology denotes a set of buildings

that have the same function and that share common structural features. The

classi�ers give to each room a label that can be:

� small room

� medium room

� large room

� corridor

� hall

During the classi�cation of an unknown environment, the only a priori knowl-

edge is the building topology in order to perform an �informed� semantic

mapping.

Building topology Every building is created for a speci�c function that

imposes its structure, �oor plan and the structure of the rooms. Many al-

gorithms that apply semantic mapping ignore this important feature, con-

sidering all the environments as natural, �xed and immutable entities. The

authors of [21] consider three di�erent building topologies:

� House

� O�ce

� School

Costruction of the classi�ers For each di�erent building topology a spe-

ci�c classi�er is trained with data regarding that speci�c building topology.

The indoor environments are represented by line segment-based metric maps

using data produced from laser range scanners. The system �rst derives the

topological map, represented as a graph where each node is a room and the
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doorways are the edges that connect two di�erent nodes (rooms). Each node

is associated with a label (`small room', `medium room', `large room', `cor-

ridor' and `hall'). Each room is described with a vector of features chosen

to capture some of the characteristics of the room. The features are divided

into three groups:

� Area a of the room and the axes ratio rt = M/m of the major axis M

and minor axis m.

� Number d of doors for room r.

� Labels of room directly connected to r.

For each room we count for each label s (that could be S, M , L, C, H for

'small room', 'medium room', 'large room', 'corridor' and 'hall') the number

of door ls that connect room r to a room of label s. r can be described as

Fr = 〈a, rt, d, lS, lM , lL, lC , lH〉. If a room is connected to an unclassi�ed room,

a temporary label is assigned using a simple classi�er that uses only some

features. All the classi�ers are trained using a supervised learning approach

using data sets. For each entry, a vector of features Fr is given together with

the corresponding label. The �oor plans used were selected from books for

the design and analysis of buildings in architecture, where each room has a

label assigned based on its purpose. Then the labelled �oor plans have been

digitally represented using a custom CAD-like software.

For each typology-speci�c classi�er data sets are composed of approxi-

mately 2000 rooms each.

Use of the classi�ers Data are assumed to be collected from a mobile

robot with a view of 360 degrees around it. After the metric map is built,

the free space already seen is represented by a polygon (even with holes)

where the line segments are either lines representing obstacle or frontiers. At

the beginning, short line segments are removed to �lter parts of furniture

and small obstacles. An example is shown in Figure 2.15. From the �ltered

map the features are collected in the following way:
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(a) (b)

Figure 2.14: Figure 2.14a shows �oor plan with AutoCAD(left), Figure 2.14b
shows �oor plan drawn with CAD-like software. Colours indicate semantic
labels. From [21].

� Walls are identi�ed by �nding out collinear line segments (line segments

are considered collinear if their angular coe�cient is equal or similar

up to a certain threshold).

� Doors are identi�ed as gaps between collinear line segments and have

a certain size (higher than 30cm and lower than 150cm).

Portions of area in free space are identi�ed with a Monte Carlo method. A

random number of points are thrown within the space, then for each point p a

set of line segments Lp visible from p is calculated. The points are checked for

straight visibility between them. If point p and point p′ are mutually visible,

they are considered to belong to the same room. A graph representing the

topological map is created considering the rooms as nodes and the doorways

as edges. Finally the set of features Fr for each room r is calculated:

� a is calculated as the average area of the inner and outer boxes that

best approximate the room.

� M is selected as the longest wall of the room.

� m is selected as the longest wall of the room perpendicular to M .
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Figure 2.15: The �gure shows the �ltered map of an environment. From [21].

The rest of the features representing the connection graph are directly ex-

trapolated from the graph.

Pronobis and Jensfelt method

The authors of [26] propose the use of multi-modal sensors integrated with

conceptual common-sense knowledge in a fully probabilistic framework. It

relies on the concept of spatial properties. A probabilistic graphical model

is used to represent the conceptual information and to perform spatial rea-
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(a) (b)

Figure 2.16: Figure 2.16a shows the line segments directly visible from a
point (red line) and not visible (dotted line). Figure 2.16b shows mutually
visible points in the same room. From [21].

soning. The system uses the information about the existence of objects,

landmarks, geometry and topology of space. Spaces are distinguished be-

tween places and placeholders; the di�erence is that the second ones are

locations not fully explored that can become possible targets of the explo-

ration. A conceptual map of the relations is built (an example is shown in

Figure 2.17), that may be:

� concepts relations (kitchen has corn�akes)

� instance and concept relations (object1 is-a corn�akes)

� instance relations (object1 is-in place1)

The paradigm used for semantic mapping is a property-based approach. To

each space di�erent properties are assigned that may be like the number of

speci�c objects found in the space, the shape and size of the room. This

allows a �ne-grained and a more descriptive representation of the space.
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Figure 2.17: The �gure shows the spatial representation and a visualization
of an excerpt of the ontology of the conceptual level. From [26] .

Sensory model of properties In order to capture the semantic proper-

ties of spatial objects, di�erent models of sensory information are trained to

speci�cally capture di�erent features of the environment. The models trained

are:

� Geometrical property models to capture shape and size of places.

� Appearance property models to capture the visual appearance of places.

� Object models to capture speci�c models for objects belonging to a

typical o�ce environment.
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Figure 2.18: The �gure shows the structure of the system and the data �ows.
From [26] .

Finally, a chain graph model is used to create the conceptual map. This al-

lows a probabilistic relational conceptual representation, allowing to make

inference about some concepts based solely on their relations to other con-

cepts. For example, it is possible to predict what kind of label a placeholder

(unexplored area) could have, or what kind of objects can be found inside.

Another possibility is to predict whether:

� Placeholders do not lead to a new room.

� Placeholders lead to a new room.

� Placeholders lead to a new room connected to a new room.

2.4.2 Graph-based prediction

In this section we present an algorithm that uses a dataset of di�erent maps

to make inference on the graph representation of the examined environment

and predict the presence of possible missing rooms (node of the graph). The
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authors of [3] propose a data-driven graph-based approach for building mod-

els of indoor environments, assigning labels to rooms of the environment and

predicting what lies ahead in the topology of the environment. The algorithm

uses of two big datasets of �oor plans, each one represented as a graph; the

datasets consist of 940 �oors and over 38,000 rooms. An important property

is that in �oor plans graphs the local complexity remains nearly constant for

an increasing global complexity.

Problem formulation The graph used is de�ned as a three-tuple G =

(V,E, α), where V is a �nite set of nodes, E ⊆ V × V is a �nite edge

set and α : V → L is a node label mapping. Given a graph database D =

{G1, ..., Gn}, and a graph G, DG is de�ned as the subset of D whose elements

are the graph Gi ∈ D such that G is a sub-graph of Gi.freq(G) is de�ned as

freq(G) = |DG| and the support of graph G as:

supp(G) =
freq(G)

|D|
(2.21)

A graph is called a frequent subgraph of D if supp(G) ≥ π with π as minimum

support threshold. Finally, two di�erent solutions to extend the graph are

proposed.

Count Based Prediction Given a graph Gp the steps are:

� Compute the projected dataset DGp .

� For each possible edit operation a with resultingG′p, calculate supp(G
′
p).

� The edit operation whose resulting graph has the highest support is

chosen.

From the data collected, this algorithm is able to perform well with small

graph sizes.

Exploiting subgraph Given the data set D, the most frequent sub-graphs

are extracted using the gSpan algorithm and used to create a new data set

S composed of sub-graphs. The following steps are:
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� 1: Split the input graph Gp into smaller, overlapping subgraphs, form-

ing a new set C.

� 2: For each element in C, determine the probability of every possible

edit operation.

� 3: For each subgraph c ∈ C, we de�ne the corresponding subgraph

c′ ∈ C ′, with c′ derived from c by applying the most likely one edit

operation. The edit operation selected is the one that has the highest

support from the graph database.



Chapter 3

Problem de�nition

In this chapter we formally describe the problem we addressed during our

work. In Section 3.1 we discuss the exploration problem and in Section 3.2

we discuss about the purpose of this thesis.

3.1 Exploration problem

The exploration is one of many important tasks that an autonomous robot

can perform: the robot placed in initially unknown environment needs to

move around the environment and build a map that represents the free ar-

eas and the obstacles of the environment. An important feature the robot

requires is the capability to chose how to move in the partially-known environ-

ment. To achieve this task many exploration strategies have been developed.

Several algorithms are based on the concept that no knowledge of the

environment is given, then the algorithms generate a set of next candidate

locations and evaluate them using only the map of the environment built

so far. Some of this algorithms are described in Section 2.3; for example

[34] described in Section 2.3.1 proposes to move the robot to the closest

frontier. Another example is the one of [13], and described in Section 2.3.1,

that evaluates the candidate positions based on the estimation of potential

visible area and the distance of the candidate position from the robot.

The exploration process can be described by the following operations:

39
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Figure 3.1: The �gure shows the steps of the exploration process.

1. Observe the environment and integrate the data collected into the

global map.

2. Generate candidate locations.

3. Evaluates candidate locations and select the best one.

4. Generate the path that goes from the actual location to the selected

target location.

5. Reach the target location.

A diagram of the steps described can be found in Figure 3.1.

The main limit of this kind of approaches is that the evaluation of the

candidate positions is performed using only the point of view of the robot: the

distance of the candidate location from the robot, how much area the sensors

of the robot can potentially perceive. The structure of the environment
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known so far is not used. Another important limit is that the robot needs

to visit all the environment in order to correctly build a complete map.

Typically, the robot needs to visit all the remaining frontiers until no one is

left in order to end the exploration.

A potential solution to increase the performance of the robot during the

exploration is to extract some knowledge from the environment explored so

far, and use this knowledge to make some prediction on what may be found

in the unexplored area.

Although some algorithms that make predictions on the map of the en-

vironment exist, most of them are used for very speci�c uses [5, 30] or need

some a priori knowledge to work [18]. Another issue is that no information

about the possible geometrical structure, or layout, of the unexplored part

of the environment is given except for [31], despite it is used only to �nd

possible loop closures, without providing any information about the possible

areas that can be seen.

3.2 Purpose of this thesis

The purpose of this thesis is to study and implement an algorithm able to

reconstruct the layout of the environment seen during the exploration and to

predict the layout of the unknown part of the environment. The next step is

to implement an exploration strategy that uses the predicted information to

perform exploration, and check whether it produces an enhancement on the

performance of the exploration. Finally, we focus on the possibility to use

the predicted informations about the unexplored part of the environment to

complete the map without having to explore the environment completely and

thus saving exploration time. The steps for the exploration would become:

1. Observe the environment and integrate the data collected into the

global map.

2. Generate candidate locations.

3. Predict the layout of the environment.
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Figure 3.2: The �gure shows the steps of the new exploration process. The
new step in enlighten in red.

4. Evaluates candidate locations using the predicted layout and select the

best one.

5. Generate the path that goes from the actual location to the selected

target location.

6. Reach the target locations.

A graphical representation of how the new exploration process is organized

is shown in Figure 3.2.



Chapter 4

Problem solution

In this chapter a proposed solution to the problem described in Chapter 3 is

presented. The solution can be divided into two modules that solve speci�c

parts of the problem:

� Exploration module: This module builds the map of the environment,

localizes the robot, generates the candidate locations and moves the

robot.

� Layout prediction module: This module uses the map of the environ-

ment and the frontiers sent from the exploration module to reconstruct

the layout of the environment, predicts the layout of the unexplored

part and �nally returns the potential area the robot can perceive for

each frontier.

In Figure 4.1 the interaction between the two modules is shown. In Section

4.3 we describe how the layout prediction works and in Section 4.2 how the

exploration module works to solve the problem described in Chapter 3. In

Section 4.4 we discuss about an important feature of our works: the capability

to understand when the exploration can be stopped since the map has been

fully reconstructed and predicted by the layout prediction module.

43
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Figure 4.1: The �gure shows the interaction between the exploration module
and the layout prediction module.

4.1 Assumptions

Environments In our work the environments are assumed static, it means

the environments do not change during the exploration. Only indoor envi-

ronments are considered in our work formed of a single �oor. All the free

areas of the environments can be visited by the robot. The environments

used are uncluttered, namely no clutter like pieces of furniture can be found.

Map The map of each environment is incrementally build and is repre-

sented as an occupancy grid map [33] indicated asM , with a �xed resolution.

Each cell c ∈ M is represented by a tuple 〈xc, yc, statec〉 where (xc, yc) are

the coordinates of the centre of cell c in some coordinate system and statec

indicates whether the cell is:

� free

� occupied

� unknown

The map is assumed to be oriented such that walls correspond mostly to

horizontal and vertical lines. It is assumed that no oblique walls are present.

Robot The robot is assumed to be a wheeled autonomous robot that can

perceive the environment trough a laser range scanner, whose range is r.
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The robot during the exploration is free to move in all the free spaces of the

environment and it is able to localize itself in the map.

4.2 Exploration

In this section we describe how the exploration module solve the exploration

problem. Our solution is a modi�cation of the algorithm proposed by [1].

The scope of [1] was to solve the exploration problem using a multi-criteria

exploration strategy that extends the frontier-based approach of [13]. The

algorithm uses an hand-drawn map or a �oor-plan of the environment given

before the exploration in order to improve the performance. The main steps

of the our algorithm are shown in Algorithm 1, where:

Algorithm 1 SELECT NEXT TARGET LOCATION

1: function (selectNextTargetLocation(M, st, α))
2: F ← frontiersDetection(M, st)
3: C ← generateCandidateLocations(M,F )
4: I, F ′, C ′ ← predictLayoutOfTheEnvironment(M,F )
5: U ← evaluateFrontiers(C ′, st,M, F ′, I, α)
6: p′ ← selectBestLocation(U)
7: return p′

� M is the partial map built during the exploration represented as an

occupancy grid map.

� st is the cell of the map M corresponding to the actual location of the

robot.

� α is a parameter used to weight the di�erent criteria used during the

evaluation of each frontier.

� p′ is the next target location for the exploration.

The common steps between our solution and [1] that are described in Algo-

rithm 1 are:
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� frontiersDetection: Given the map M of the environment rep-

resented as an occupancy grid, this step produces the frontiers of the

environment.

� generateCandidateLocations: given the map M and the set of

frontiers F , for each frontier f ∈ F it generates a candidate positions

c ∈ C.

� selectBestLocation: given the map and the evaluation of each

frontiers, it selects the best locations and move the robot to it.

The step that has been modi�ed is:

� evaluateFrontiers: the candidate locations are evaluated with a

multi-criteria exploration strategy, using as criteria both the distance

from the robot and the potential information the frontier can provide,

but how this criteria is calculated between our method and the one of

[1]. Their system uses the map given a priori to know how much area

the robot is going to perceive with sensors, meanwhile our algorithm

uses the predicted area produced with predictLayoutOfTheEnvironment.

The result is the set U that contains the evaluation of all the frontiers.

The step that is completely new is:

� predictLayoutOfTheEnvironment: Performed by the layout pre-

diction module described in Section 4.3, it reconstructs the layout of

the environment and returns the areas of the partially-observed rooms

I together with the associated frontiers F ′. C ′ is the set of candidate

locations c′ associated to frontier f ′ ∈ F ′.

In the following sections the steps previously listed will be discussed in depth.

4.2.1 Frontiers detection

The �rst step to �nd all the possible frontiers is to detect all of the edge cells

E: those are `free' cells adjacent to at least one `unknown' cell. In order to

be part of a frontier a constrain must be satis�ed: the `free' cell p must be
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reachable from the actual position of the robot st. In order to be reachable

a sequence of 4-connected `free' cells from st to p must exist. An example of

a possible 4-connected path of `free' cells from cell st to cell p can be seen in

Figure 4.2b highlighted in yellow. Two `free' cells are considered connected

they have one edge in common. Once the that the edge cells has been found

and the constrain of the 4-connected path for each of them has been satis�ed,

the last step is to merge the edge cells in frontiers. An example of edge cells

that are reachable from st is shown in Figure 4.2c; the cells are highlighted

in orange. Two edge cells belongs to the same frontier f ∈ F if the two

cells are adjacent or exist a 4-connected path composed of the points of the

frontier F ′ between the two cells. In Figure 4.2d three di�erent frontiers can

be seen. The Algorithm 2 shows the various step to individuate the edge

Algorithm 2 FRONTIERS DETECTION

1: function (frontiersDetection(M, st))
2: E ← �ndEdgeCells(M)
3: E ′ ← {}
4: F ← {}
5: for all e ∈ E do
6: if isReachable(e,M, st) then
7: E ′ ← E ′ ∪ e
8: F ← createFrontiers(M,E ′)
9: return F

cells E, remove the unreachable ones and �nally create the frontiers F using

the �ltered edge cells E ′.

4.2.2 Generate candidate locations

The next step is the generation of the target locations C. A target location

c ∈ f is chosen as the point that divides a frontier f ∈ F into two equal seg-

ments. In Figure 4.3 an example of frontiers and relative candidate locations

is shown. The Algorithm 3 shows the steps to create a candidate location

c ∈ f for each of the frontier f ∈ F . C is the set of all the possible candidate

locations c.
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(a) (b)

(c) (d)

Figure 4.2: Figure 4.2a shows an example of occupancy grid map of an
environment. Figure 4.2b shows an example of 4-connected path of `free'
cells from cell st to cell p highlighted in yellow. In Figure 4.2c an example of
edges cells that are reachable from st in orange is shown. Figure 4.2d shows
three di�erent frontiers with 3 di�erent colours.

Algorithm 3 GENERATE CANDIDATE LOCATIONS

1: function (generateCandidateLocations(M,F ))
2: C ← {}
3: for all f ∈ F do
4: C ← C∪ getMiddlePoint(f,M)

5: return C

4.2.3 Predict the layout of the environment

This step is described in details in Section 4.3. From the point of view of the

exploration module, the module send an occupancy grid map representing
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(a) (b)

Figure 4.3: Figure 4.3a shows 3 di�erent frontiers. Figure 4.3b shows the
candidate location for each frontier.

the environment seen so far together with the set of frontiers F calculated

in Section 4.2.1 to the layout prediction module. Then the layout prediction

module return the expected area of rooms ri that have not being fully ex-

plored during the exploration yet, and the associated frontiers f ′. For each

partially-observed room ri, typically more than one frontier can be found

inside the room. The frontier f ′ that has the highest number of points inside

the room ri is selected. This lead to a reduction of the number of frontiers

F ′ ⊆ F returned from the exploration module. Then the information gain

i(c′) for the a candidate location c′ ∈ C ′ is de�ned as the expected area of

the room associated to frontier f ′ ∈ F ′ with candidate location c′ that can

be explored by the robot. The set I is the collection of all the information

gain i(c′).

4.2.4 Frontiers evaluation

The next step is the evaluation of all the possible candidate locations c′ ∈ C ′.
The set C ′ ⊆ C corresponds to the set of candidate locations on the frontiers

F ′ that have been returned by the layout prediction module. The evaluation

is performed using a multi-criteria decision making that uses as criteria:

� de(c
′, st): the Euclidean distance of the candidate location c′ from the
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robot's position st. The length of the path from c′ to st is not used

since is much slower to compute than the Euclidean distance that is

however a good approximation.

� i(c′): the information gain that measures the visible unexplored area

of the room ri associated to the frontier f ′i ∈ F ′.

The utility function u(c′) is calculated as following:

u(c′) = α · d̃e(c′) · (1− α) · ĩ(c′) (4.1)

Where:

� d̃e(c
′) is the normalized Euclidean distance between the candidate po-

sition c′ and the robot position st calculated as:

d̃(c
′) =

dmax − de(c′, st)
dmax

(4.2)

With dmax = argmaxc′∈C′ de(c
′, st).

� ĩ(c′) is the normalized measure of the information gain calculated as:

ĩ(c′) =
i(c′)

imax

(4.3)

With imax = argmaxc′∈C′ i(c′).

The result is the set U which is described by the tuple 〈c′, u(c′)〉 with c′ being
the candidate location and u(c′) its utility value.

4.2.5 Select best location

The last step is to select the best candidate location to explore. Given the

set U which elements are described by a tuple 〈c′, u(c′)〉 for each candidate

position c′ ∈ C ′, the best candidate location is selected as:

p′ = argmax
c′∈C′

u(c′) (4.4)
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The selection is performed by selecting the candidate position c′ that has the

maximum utility value. The Algorithm 4 shows the various step performed

to select the best location.

Algorithm 4 GENERATE CANDIDATE LOCATIONS

1: function (selectBestLocation(U))
2: p′ ← None
3: u(p′) gets− 1
4: for all 〈c′, u(c′)〉 ∈ U do
5: if u(c′) > u(p′) then
6: p′ ← c′

7: u(p′)← u(c′)

8: return p′

4.3 Layout prediction

In this section we describe how the layout prediction module reconstructs the

layout of an indoor environment starting from a metric map. The algorithm

is an extension of the one introduced by [19, 20]. The algorithm can be

summarized in four main steps, which are:

1. Layout reconstruction: given a metric map, the algorithm �nd walls,

create faces that represent the various portions of the environment, and

�nally merges together faces into di�erent clusters that represent the

rooms of the environment.

2. Identify partially-observed rooms: given the layout of the room L and

the frontiers the algorithm calculates whether a room has been fully-

observed or not and labels them as partially-observed or fully-observed.

For each partially-observed room assigns the corresponding frontier.

3. Extract partially-observed rooms from frontiers: given the layout of the

rooms L, look for external faces (not belonging to any rooms) adjacent
to the already built rooms, and use the frontiers to check whether they
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can be added to the previously built rooms, or used to add them to the

layout L as new rooms.

4. Geometric prediction of the entire layout of partially explored rooms:

the algorithm for each partial room extract the external faces close to

the room, create all the possible combinations, and evaluate whether

one of these combination can be added to extend the partial room.

In this section the four steps previously mentioned will be presented in details.

4.3.1 Layout reconstruction

The algorithm that reconstructs the layout of the environment is based on the

method introduced by [19] and extended in [20]. In this section a description

of how the algorithm works is provided. The algorithm originally used as

input an image m of the environment to perform the various steps. We

modi�ed the algorithm to take as input the occupancy grid map M received

by the exploration module and converting it to an image in grey scale m

where the colours represent:

� White: the free cells of the occupancy grid.

� Grey: the cells not yet seen of the occupancy grid.

� Black: the occupied cells of the occupancy grid.

Two example of the images m of the maps are shown in Figure 4.4.

Line segments and contour detection The �rst step of the algorithm

is the detection of the line segments S from the map m. The line segments S

are important for the layout reconstruction since they represent the various

walls of the map. In order to extract the line segments S the Canny edge

detection [6] algorithm and Hough line transform [16] algorithm are used in

sequence. The algorithms of Canny edge detection is used to extract the

borders of the map m to simplify the analysis of the image by reducing the

data to process, and at the same time without losing the information about
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(a)

(b)

Figure 4.4: An example of two di�erent images of two di�erent maps.

the structural borders. The result of the Canny edge detection is passed to

the Hough line transform algorithm that uses the borders to create the line

segments S that correspond to the walls of the environment. In Figure 4.5 an

example is shown: Figure 4.5a shows the original image of the environment,

meanwhile the Figure 4.5b shows the result the Canny and Hough algorithm

with the line segments S extracted highlighted in green. The next step is the

detection of the contour represented as polygon that cover all the observed

parts of the map. The detection of the contour is very important since it

allows to identify the area of the map that corresponds to the internal part
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(a) (b)

Figure 4.5: Figure 4.5a shows the original image. Figure 4.5b shows the
previous image with the line segments extracted with Canny and Hough
algorithms highlighted in green.

of the environment. The image is modi�ed by changing the colour of the

unknown part of the map into white, and the colour of the known part

into black. An example is shown in Figure 4.6b. This mechanism allow to

create a clear distinction between the explored and the unexplored part of

the environment. Then the algorithm [24] extracts the polygon representing

the contour of the map. In Figure 4.6 an example of extracted contour is

shown.

Angular clustering The objective of angular clustering and the spatial

clustering (next step) is to merge line segments to create a representation of

the walls of the map. As �rst step the detected line segments S are clustered

according to the angular coe�cients of their supporting lines using the mean

shift algorithm [9]. This allows to divide line segments that surely do not

belong to the same wall according to their angular coe�cient. The resulting

set of cluster C = {C1, C2, ...} is such that Ci ⊆ S and C1 ∪ C2 ∪ ... = S. Ci

are set of line segments with similar angular coe�cient αi. In Figure 4.7 an

example of angular clustering is shown where line segments belonging to the

same angular cluster are highlighted with the same colour.

Spatial clustering The spatial clustering has the objective to merge line

segments belonging to the same angular cluster in order to identify the walls
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(a) (b)

(c)

Figure 4.6: Figure 4.6a shows the original image. Figure 4.6b shows the
modi�ed image to extract the contour. Figure 4.6c shows the highlighted
contour.

(a) (b)

Figure 4.7: Figure 4.7a shows the image with the line segments in green.
Figure 4.7b shows the angular clusters highlighted with di�erent colours.

of the map. The line segments in the same cluster Ci are clustered according

to their spatial separation. Considering segments s, s′ ∈ Ci and l, l′ the
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lines passing trough the middle points of s and s′ respectively with angular

coe�cient αi, if the distance between the two parallel lines l, l′ is lower than

a certain threshold (set to 90 cm, approximately a width of a doorway) then

the segments s, s′ are put in the same spatial cluster Ci,k. An example of

walls detected is shown in Figure 4.8.

(a) (b)

Figure 4.8: Figure 4.8a shows the angular cluster. Figure 4.8b shows the
walls detected.

Representative lines The representative lines are created in order to be

used in the next step for the creation of faces. For each cluster Ci,k a rep-

resentative line li,k that represents the cluster is determined. It is computed

as the line that passes trough the median of the set of middle points of the

line segments in Ci,k and with angular coe�cient αi. The line li,k indicates

the the direction of a wall of the buildings. An example is shown in Figure

4.10a with the representative lines drawn in red.

Faces creation and classi�cation The intersections between all repre-

sentative lines divides the map into di�erent areas, called faces. The faces

represent small portions of the environment. The set of faces is called O and

each face is represented as polygon. The next step is to separate the faces

that are internal to the contour of the map from the ones that are exter-

nal (robot has not completely explored them yet). The division is done by

performing the intersection between the faces and the contour; for each face
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(a) (b)

Figure 4.9: Figure 4.9a shows the original image. Figure 4.9b shows the
representative lines over the original map m.

o ∈ O if the area of the intersection between the polygon that represents the

contour and the polygon that represents o is greater than a certain thresh-

old, the face o is considered internal, external otherwise. In Figure 4.10 the

classi�cation of the faces are shown: in yellow the ones classi�ed as internal

meanwhile the ones classi�ed as external are white.

(a) (b)

Figure 4.10: Figure 4.10a shows the representative lines. Figure 4.10b shows
the created faces and their classi�cation.

Rooms creation The nex step is to reconstruct the di�erent rooms of

the environment by merging the faces that belongs to the same room. The

DBSCAN algorithm [10] is used to cluster internal faces together using as

metric weight w(o, o′), where o, o′ are adjacent faces and where the metric
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weight w(o, o′) represents how much of the common edge between the two

faces is covered by a wall (the greater the edge is covered by line segments,

the stronger the hypothesis that there is a wall between the two faces). If

two adjacent faces have a seen wall that separates them (high weight w),

then it is unlikely that the two faces belong to the same room. The result

is a partition of faces where each set is a room and the elements are the

faces of the room. Finally, each set of faces Fi is merged to create the layout

corresponding to room ri. The layout is then de�ned as L = {r1, ..., rn}. In
Figure 4.11 an example of reconstructed rooms is shown.

(a) (b)

Figure 4.11: Figure 4.11a shows the original map. Figure 4.11b shows its
reconstructed layout.

4.3.2 Identify partially-observed rooms

Given the layout L = {r1, ..., rn}, the next step is to identify which rooms

have been partially observed. Using the frontiers sent from the exploration

module, for each face oi,j of each room rj, the algorithm counts the number

of occurrences of points belonging to the di�erent frontiers. The frontier

that have the highest number of occurrences is selected as candidate frontier

for the cell. If the number of occurrences of the candidate frontier is higher

than a certain threshold (in the experiment this value has been setted to

5), the face oi,j is setted as partial and the candidate frontier is assigned as

frontier of the face. Finally, if a room has at least one partial face, the room



4.3. LAYOUT PREDICTION 59

is considered partially-observed and the frontier associated is the one with

the highest number of occurrences. In Figure 4.12 an example of identi�ed

frontiers is shown. Indicating as fi the frontier, fi ∈ F with F the set of

(a) (b)

Figure 4.12: Figure 4.12a shows the original map. Figure 4.12b shows the
frontiers of the map.

all the frontiers, listfi the list of points of the frontier fi and threshold the

threshold for a face to be considered partial, the Algorithm 5 shows the

operations performed.

In Figure 4.13 the classi�cation of rooms of partially observed is shown.

4.3.3 Extract partially-observed rooms from frontiers

The next step is to use the layout L and the frontiers to �nd partially-

observed rooms. At �rst, the subset of partially-observed rooms LP is cre-

ated. For each room ri ∈ LP with observed facesOi, the partial faces adjacent

to a least one face in Oi that contain some points of the frontiers are added

to Oi, obtaining set O′i. The check whether a faces close to Oi contains a

frontier is done using the Algorithm 5. In Figure 4.14 the result of this �rst

step is shown. Then the set EF of the external faces next to any of the room

ri ∈ L is created (ri can be both a fully-observed or a partially-observed

room). The next step is to apply the Algorithm 5 to all the faces f ∈ EF to

�nd which faces contain a frontier. The subset of faces EFP ⊆ EF contain-

ing the partial faces of EF is created. The assumption is that if an external
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Algorithm 5 Assign frontier to a face

1: function assignFrontierToFace(o)
2: for all fi ∈ F do
3: frontierList[fi]← 0

4: for all Point ∈ o do
5: for all Fi ∈ F do
6: if Point ∈ listfi then
7: frontierList[fi]← frontierList[fi] + 1

8: max← 0
9: frontier ← 0

10: for all fi ∈ F do
11: if frontierList[fi] > max then
12: max← frontierList[fi]
13: frontier ← fi

14: if max ≥ threshold then
15: return frontier,max

16: return None, 0 no frontier has to be assigned

face contains a frontier it means that there could be a potential place that

can be explored. The next steps are applied for all the rooms ri ∈ L:

1. Create the subset EFPi
⊆ EFP set of faces adjacent to the room ri.

2. If the room ri is not classi�ed as partially-observed this step is skipped.

Check for each face f ∈ EFPi
if the frontier assigned is equal to the

frontier assigned to the room ri. If positive, the face f is added to the

room ri and the face f is removed from the set EFP .

If at the end of all the steps the set EFP is not empty, it means that there

are some faces that could not be assigned to rooms but that can still be

explored. The next step is �nally the creation of new rooms. For each face

f ∈ EFP a new room is created with f being the only face of the new room.

The new rooms are added to the layout L. In Figure 4.15 the result of this

second step are shown.
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(a) (b)

(c)

Figure 4.13: Figure 4.13a shows the map of the environment. Figure 4.13b
shows the rooms. Figure 4.13c shows the rooms labelled as partially-observed
rooms. The fully-observed rooms are the ones in plain colour.

(a) (b)

Figure 4.14: Figure 4.14a shows the layout of the environment. Figure 4.14b
shows the result of the application of the �rst step of the algorithm.
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(a) (b)

Figure 4.15: Figure 4.15a shows the layout before the second step. Figure
4.15b shows the result of the second step of the algorithm.

4.3.4 Geometric prediction of the entire layout of par-

tially explored rooms

This part of the algorithm is a little variation of [20]. The objective of this

part of the algorithm is to give an hypothesis of how the partial room can

completed using the external faces of the environment. The �rst step is to

re-create the set of partial rooms LP ⊆ L in order to include the new rooms

created in the previous step. For each room ri ∈ LP we indicates as Oi the

set of faces that composes the room ri. The next step is to try to enrich Oi

with a set of external faces Ô′i. The faces in Ô
′
i are calculated as following:

1. Ôi is created with faces adjacent to Oi, or adjacent to faces which are

in turn adjacent to faces in Oi.

2. The faces of Ôi that are behind an already observed wall of ri are

removed from Ôi.

3. The sets Ô′c,i that corresponds to all the possible combinations of the

faces contained in Ôi is generated.

In the �nal step the each combination Ô′c,i is evaluated as following:

score = Φ(Oi ∪ Ô′c,i) (4.5)
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With Oi ∪ Ô′c,i the union between the original faces of room ri and the faces

in Ô′c,i. The function Φ() is a weighted sum of:

Φ(Oi ∪ Ô′c,i) = kΥ ·Υ(Oi ∪ Ô′c,i)− kΨ ·Ψ(Oi ∪ Ô′c,i)− kΩ ·Ω(Oi ∪ Ô′c,i) (4.6)

Where:

� Υ() evaluates the consistency of the new room with respect to currently

known rooms. De�ning w(lj,k, s) = cov(s, lj,k)/len(lj,k) with s the line

segment of the cluster Wj,k and lj,k as a general segment belonging to

Wj,k. cov(s, lj,k) is the length of the projection of s in lj,k and len(lj,k) is

the length of lj,k. Denoting as L̂ the set of representative lines that are

the boundaries of r̂i room created from the union of the original faces

Oi of the room ri with the faces of the combination Ô′c,i, Υ(Oi ∪ Ô′c,i)
is:

Υ(Oi ∪ Ô′c,i) =
∑
lj,k∈L̂

∑
s∈Wj,k

w(lj,k, s) (4.7)

� Ψ() is designed in order to prefer simple (predicted) layouts over com-

plex ones. De�ning Area() as the operator that calculates the area of

a polygon and Hull() as the operator that computes the convex hull of

a polygon and as r̂i the result of the union of faces Oi with the faces of

Ô′c,i:

Ψ(Oi ∪ Ô′c,i) =
Area(Hull(r̂i))− Area(r̂i)

Area(r̂i)
(4.8)

� Ω() prefers layouts with a small number of walls. If room r̂i has n

di�erent wall, Ω(Oi ∪ Ô′c,i) is calculated as:

Ω(Oi ∪ Ô′c,i) = n (4.9)

Finally, the set Ôi is selected from the set Ô′c,i that maximize the Equation

4.5. Once the algorithm has ended the predicted layout is completed. The

results of those steps are shown in Figure 4.16.
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(a) (b)

Figure 4.16: Figure 4.16a shows the layout before the geometric prediction.
Figure 4.16b shows the result of the geometric prediction.

4.3.5 Area calculation and result sent to exploration

module

After, the predicted layout has been built, the last step is to evaluate the

potential area that can be explored in the partially-observed rooms. Two

di�erent methods are used:

� Unknown pixel method: This method calculates the unexplored area

for each partial room ri by locating the room in the original map ri and

by counting the grey pixel (representing unknown cells) in that area.

The area calculated with this method is called real area.

� Contour method: For each partial room ri the area is calculated as the

di�erence between the polygon that represents the room calculated as

the union of the polygons that represent the faces of the room, and

the intersection between the polygon that represents the contour and

the polygon that represents the room. An example is shown in Figure

4.17: Figure 4.17a shows the overlap between the polygon of the room

and the polygon of the contour, in Figure 4.17b the area of the polygon

representing the room is highlighted in red, in Figure 4.17c the area of

the intersection is highlighted in blue and �nally in Figure 4.17d the

resulting area is shown in green. The area calculated with this method

is called external area. Those areas are used in Section 4.4 to implement
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the early stop.

(a) (b)

(c) (d)

Figure 4.17: Figure 4.17a shows the overlap between the contour polygon (in
blue) and the room (orange). Figure 4.17b shows the area of the polygon
representing the room (in red). Figure 4.17c shows the area of the intersection
between the two polygon (in blue). Figure 4.17d shows the resulting area
calculated with the contour area method (in green).

The areas calculated with the unknown cells method are passed to the ex-

ploration module that will use them to evaluate the candidate locations and

move the robot to the best location.

4.4 Early stop

Commonly, explorations are performed until the entire area of the environ-

ment has been completely mapped by the robot. For this reason, many
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algorithms result in a common behaviour: at the beginning of the explo-

ration the robot is able to quickly increment the map M of the environment

by visiting the various frontiers with high information gain. usually, the re-

sult is that small scattered frontiers across di�erent rooms are left behind.

These small frontiers are then explored at the end of exploration, increasing

enormously the time required for the exploration since typically these small

portions of environment are often far away one from each other. Usually

they represent small gaps like corners. The reconstructed layout L is able to

estimate the missing parts of partially observed rooms and automatically �ll

the small gaps without actually exploring them. Fixing a threshold on this

unexplored area, the algorithm is able to perform an Early Stopping (ES) of

the exploration when all the predicted areas are lower than the threshold.

An example of triggered early stop is shown in Figure 4.18.

Triggering the early stop As described in Section 4.3.5, two di�erent

types of areas for each rooms are calculated:

� Real area

� External area

The External area is calculated as the di�erence between the area of the

polygon representing the room and the area of the intersection between the

polygon representing the room and the polygon that represents the contour

of the map. An important features of this method is that all the areas that

are internal to the map or, more precisely, that are completely enclosed by a

sequence of `free' and `occupied' cells are automatically �ltered. An example

of this feature is shown in Figure 4.19. The result is that only the portions

of area that are not enclosed like in Figure 4.19b will be counted. It means

that only areas that are `external' to the map are considered. This feature

is helpful since the �ltered areas do not lead to new unexplored parts of the

environment. These parts of the environment are typically distributed all

over the map and the complete exploration of these parts leads to an huge

increase of exploration time required. On the other hand, this reasoning can



4.4. EARLY STOP 67

not be applied to `external' areas, since they can lead to a new part of the

environment not yet explored.
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(a)

(b)

Figure 4.18: Figure 4.18a shows the image of the map when the early stop is
triggered. Figure 4.18b shows the reconstructed layout when the early stop
is triggered.
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(a) (b)

(c)

Figure 4.19: Figure 4.19a shows an unexplored part of the environment.
Figure 4.19b shows the enclosure in blue. Figure 4.19c show the result of the
�lter applied.





Chapter 5

Implementation

In this chapter we are going to describe the details about the software im-

plementation of this work of thesis. In Section 5.1 we describe the main

software components used for our system, in Section 5.2 we describe what is

the navigation stack and how it has been used and built. Finally in Section

5.3 we describe the architecture of our system.

5.1 Software framework

In this section we describe the main software components used in our work.

They are:

� Robot Operating System (ROS): it is a modular, tool-based, open-

source, language independent framework used to program robotic sys-

tem [27, 28].

� Stage: it is a 2D simulator that simulates virtual worlds and robots

and allows to simulate the behaviour of robots in the environments

without deploying real robots [11].

5.1.1 Robotic Operating System (ROS)

ROS is a meta-operating system designed for robots [28]. It provides di�erent

services like hardware abstraction, low-level device control, implementation

71
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of commonly used functionalities, message passing between processes and

package management [27]. In order to support message passing, a communi-

cation layer above the host operating system is provided. The main objectives

of ROS are:

� Distributed computing: a system built in ROS is composed of a number

of processes that can be executed trough a centralized or distributed

architecture using a peer-to-peer topology.

� Multilingual: ROS has been designed in order to be language neutral.

Di�erent programming languages like C++, Python, Lisp and Octave

are supported, allowing cross-language development.

� Tools-based: ROS is built with a microkernel design, where a large

number of tools are used to build and run the various ROS components.

� Thin: the development of drivers and algorithms is encouraged to be

built in stand-alone libraries. This is done in order to allow ROS code

to be easily re-used with other robot software frameworks.

� Free and open-source: ROS source code is publicly available.

Nomenclature

The fundamental concepts of the ROS implementation are nodes, messages,

topics and services. Nodes are processes that perform computation. Each

one of them is a separated entity that is independent from the others but

that can interact with them through the ROS network. Nodes communicate

with each other by passing messages, that are strictly typed data structures.

Standard primitive types like �oat and integer types are supported, as are

arrays of primitive types. The data exchange between nodes follows the

pattern publish/subscribe. A node that wants to send a message has to

publish to a speci�c topic, which is a simple string. If a node is interested

to the data sent by another node, it will subscribe to the appropriate topic.

Another pattern implemented to exchange messages is the services. A service

is a synchronous transaction similar to a client/server mechanism. A service
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is de�ned by a string name and a pair of strictly typed messages: one for

the request and one for the response. In order to perform all the exchanges

of messages, a main node needs to provide name registration and lookup for

the rest of the nodes, otherwise the communication won't be possible. This

node is called Master or ROS Master.

ROS tools

Some helpful tools that ROS provides are:

� Silent nodes restart: many times it happens that a speci�c task requires

di�erent nodes that perform di�erent operations to be run. Typically

some nodes required for the task are stable meanwhile other nodes

require some debugging. ROS allows to shut down a node in order to

update its source code and restart it without in�uencing the behaviour

of the other nodes.

� Rosbag: The use of logged sensor data is useful many times to per-

mit controlled comparison of various algorithms. ROS supports this

function by providing generic logging and playback of speci�c topics.

One of the advantages of this system is that it does not require any

modi�cation of the source code. This is performed using a speci�c type

of log �le, called rosbag.

� Roslaunch: ROS allows to start group of nodes simultaneously without

having to start them singularly.

� ROS packages: in order to support collaborative development, ROS

allows to organize the software in packages described by an XML �le

which also states the package dependencies.

� RVIZ plugin: this plugin is used to visualize speci�c types like images

or maps. Others plugins can be integrated with RVIZ to display more

types of data. In our work we used RVIZ to have a 2D representation

of the map built by the robot, the current position of the robot, the
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path that the robot is following to reach its target location and the

current frontiers of the map.

� Namespaces: a stack of software in ROS is a cluster of nodes that work

together to accomplish a speci�c task. Sometimes multiple instantia-

tions of the cluster are required in order to do it without having name

collisions. ROS supports this by allowing nodes and entire roslaunch

cluster-description �les to be pushed into a child namespace.

� Transformations: robots need to track spatial relationships, for ex-

ample between a mobile robot and some �xed frames of reference for

localization. ROS provides a tool that builds a dynamic transformation

tree which relates all the frames in the system. This allows the compu-

tations of a transformation between di�erent frames by navigating the

transformation tree, constructing a path and performing the necessary

calculations.

5.1.2 Stage

Stage is a lightweight, highly con�gurable robot simulator that supports large

populations of robots [11] that operate in a 2D bitmapped environment.

Stage allows the simulation of tens or hundreds of robots to enable rapid

development of systems that will eventually guide real robots, without having

to use real hardware and environments. The main aspects of Stage are:

� Good-enough �delity: Stage provide fairly simple and computational

cheap models for simulation. Low �delity simulation can actually be

an advantage when designing robot controllers that must run on real

robots, as it encourages the use of robust control technique.

� Linear scaling population: All sensor models and actuators are inde-

pendent from robot population size.

� Con�gurable, composable device models: Various sensors like lasers

and visual colour segments are provided together with a versatile mobile
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robot base with odometry. The models are very general, so each model

is con�gured to approximate the target device.

Robot In our work we tested our exploration strategy using a simulated

wheeled robot equipped with a laser ranger scanner able to perceive obstacles.

The robot uses odometry to record its movements. Both the data from the

laser ranger scanner and those from odometry are simulated with Stage and

are used to build the map of the environment.

5.2 Navigation stack

In order to autonomously explore the environment a robot must acquire data

from the environment, elaborate them and take actions that will move the

robot in the environment. The collection of modules that allows all these

operations is called navigation stack. In Figure 5.1 the navigation stack of

Figure 5.1: The �gure shows the navigation stack of our system.

our system is shown. The main packages we used, provided by ROS, are

coloured in red meanwhile the components related to Stage are coloured in
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blue. The components of Stage are the ones that simulate the perception

of the robot in the environment and that move the robot in the simulated

environment. Now a description of the main packages used is given. In this

section we describe the main packages we used in our work. The packages

are divided into two sections:

� ROS packages provided by ROS: these packages are natively from ROS;

we used them to integrate some speci�c functions like navigation and

map building.

� ROS packages implemented in our work: these packages have been

created or modi�ed by us in order to implement our work.

5.2.1 ROS packages provided by ROS

Gmapping The gmapping package provides a laser-based SLAM [12, 14].

Its functions are:

� Map generation: generate the map using the laser sensor's data.

� Localization: localize the robot in the built map.

It generates a map represented as an occupancy grid map. The cells' values

are in the range [0,100]. A threshold value is set in order to determine whether

a cell can be considered `free' (below the threshold) or `occupied' (equal or

over the threshold). If the cell's value is 255 (or -1), the cell is classi�ed as

`unknown'. The map is published under the topic �/map".

Move-base Move-base is the package that receives a target position in the

environment and tries to create a path from the actual position of the robot

and moves the robot to the target position [22]. To perform these operations

the Move_base package uses two di�erent planners:

� Global planner: it maintains a global representation (called global map)

of the environment seen so far and tries to create a path from the actual

position of the robot to the goal and passes it to the local planner.
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� Local planner: it maintains a local costmap of the environment on the

proximity of the robot. The costmap is a particular implementation of

an occupancy grid map where the obstacles around the robot are �in-

�ated� with an user speci�ed radius. Figure 5.2 shows an example of a

costmap: the obstacle cells are coloured in red, the in�ated obstacle are

coloured in black. In order to avoid obstacles, the robot's centre point

should not pass on the �in�ated� part. The local planner uses the global

plan produced by the global planner and the local costmap to produce

an obstacle-free path and sends the commands for the movement to the

robot.

(a) (b)

Figure 5.2: Figure 5.2a shows the an example of costmap. Figure 5.2b shows
an example of in�ation: the cells representing seen obstacles are in red, in
black the in�ated obstacles.

Move-base package has been chosen over other packages that perform navi-

gation (e.g., Nav2d [23]) thanks to its �exibility and because it is supported

by many real robots systems. This allows to move from simulated to real

environments without modifying the system tested during the simulations.
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ROS packages implemented in our work

In this section we describe brie�y the packages implemented or modi�ed by

us to perform our work.

PartialMap This package has been implemented both to produce the goal

for the exploration target (see Section 4.2) and to keep track of the actual

map of the environment and the position of the robot. The organization of

this package is described more in depth in Section 5.3.

MapAnalyzer This package provides the node that implements the method

described in Section 4.3.

5.3 Architecture

In this section we describe how we implemented the solution proposed in

Chapter 4, illustrating the main components of our system and their inter-

action with components of the navigation stack described in Section 5.2. In

Figure 5.3 we show the components we implemented.

Figure 5.3: The �gure shows the architecture of the component of our system.

Navigator This node is organized in the package PartialMap and it has

been built to provide us a node used for navigation. The main steps of this

node are:
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� Ask for next goal: it communicates with the exploration node to pro-

duce the next exploration goal. The navigator passes both the map and

the actual position of the robot to the exploration node. The call for

the goal is asynchronous: the exploration node computes the various

steps to calculate the goal meanwhile the navigator continues to keep

updated the robot position and the map.

� Goal received: once the exploration node has produced the goal, it

checks whether the robot has reached its previous goal: if positive, the

new goal is passed to Move-base; if negative, the goal is stored and will

be sent to Move_base once the previous goal has been reached.

Figure 5.4 shows the interactions with exploration node. The node is imple-

mented in C++.

Exploration This node was re-developed from the node contained in the

Nav2d-exploration [23] package edited by the authors of [1]. It has been

modi�ed to be independent from Nav2d-exploration package since it had

compatibility problem with the Move-base package. Then the node has been

moved in the PartialMap package. This node implements the concept of

the exploration module described in Section 4.2. It receives a call from the

navigator package, computes all the candidate locations and sends back the

target location. An example of its behaviour is shown in Figure 5.5. The

main class used by the exploration node is the Frontier class. Each instance

of this class maintains the representation of a frontier detected, contains the

edge cells that compose it, generates the candidate location of the frontier,

computes the distance of the candidate location and �nally computes the

global utility value with respect to the information gain and the distance

and performs also the normalization of the criteria. The Frontier class also

implements the computation of the information gain using as exploration

strategy the method of Next-Best-View algorithm [13], described in Section

2.3.1. This implementation allow to make a comparison between our work

and the Next-Best-View algorithm in the following chapter. The algorithm

is implemented in C++.
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Figure 5.4: The �gure shows the interaction of the navigator node with the
exploration node.

Layout prediction The algorithm was built by the authors of [20] and

was an o�ine algorithm. It has been modi�ed in order to be used as a

ROS node and re-implemented in di�erent points in order to make it more

robust. The main objective of the modi�cation was to make the algorithm

suitable to be used in an online exploration by speeding up the computation.
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Figure 5.5: The �gure shows the various steps performed by the exploration
node.

The node created is inserted in package MapAnalyzer. It performs all the

operations described in Section 4.3 to reconstruct and predict the layout of

the environment. An example of its behaviour is shown in Figure 5.6.
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Figure 5.6: The �gure shows the various steps performed by the exploration
node (see Section 4.3 for the description of the various steps).



Chapter 6

Experimental results

In this chapter we describe the experiments performed to evaluate our work.

In Section 6.1 we describe the tools used to evaluate our work of thesis. In

Section 6.2 we describe the parameters that need to be set in our exploration

algorithm and the method to select the proper values. In Section 6.3 we

describe how we evaluated our work and in Section 6.4 the results we have

achieved. In Section 6.5 we describe more in general the results achieved with

the exploration strategy that we developed and we show how our method can

be employed for stopping early the exploration run when only unrelevant

frontiers are left to be explored.

6.1 Evaluation tools

In this section we describe the environments used to test our exploration

method and the data collected to evaluate the performance.

6.1.1 Environments

The evaluation of our system is performed in 10 simulated large-scale indoor

environments that have been derived from �oor plans of real world buildings.

The environments are all simulated with Stage. Those environments can be

grouped together according to their di�erent levels of complexity:

83
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� Low-complexity environments: these buildings are characterized by a

single corridor with all the other rooms attached to it.

� Medium-complexity environments: these buildings are characterized by

multiple rooms, that are arranged in a more complex way, making the

prediction of partially seen rooms a little more di�cult.

� High-complexity environments: these buildings have a very peculiar

disposition and structure of rooms, making the prediction of missing

parts of partially seen rooms very challenging.

In Figure 6.1 the maps of the simulated environments are shown.

(a) Environment 1 (low-complexity building).

(b) Environment 2 (low-complexity building).

Table 6.1 shows the areas of the various environments.
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(c) Environment 3 (medium-complexity building).

(d) Environment 4 (medium-complexity building).

(e) Environment 5 (medium-complexity building).
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(f) Environment 6 (medium-complexity building).

(g) Environment 7 (high-complexity building).

(h) Environment 8 (high-complexity building).
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(i) Environment 9 (high-complexity building).

(j) Environment 10 (high-complexity building).

Figure 6.1: Figures show the maps of the simulated environments.

6.1.2 Data collected

In order to evaluate our system we collected di�erent data during the various

simulations in the environments. The data collected are:

� Time: the time spent from the beginning of the exploration till the

end. The time is measured in seconds.

� Exploration area: the amount of free area of the environment expressed

as the percentage of free cells that have been visited during the explo-

ration.
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Environment Area

Environment 1 1420 m2

Environment 2 1000 m2

Environment 3 3410 m2

Environment 4 1270 m2

Environment 5 1740 m2

Environment 6 2820 m2

Environment 7 3180 m2

Environment 8 2150 m2

Environment 9 1940 m2

Environment 10 1800 m2

Table 6.1: Areas of the various environments.

� Distance: the total distance travelled by the robot during the explo-

ration. The distance is measured in meters.

� Goal failure ratio: this ratio measures the number of times that the

robots select a goal and it is not able to reach it. An example of frontiers

that lead to a goal failure is shown in Figure 6.2. The most common

reason is that the target location is a wall. This ratio is calculated as:

ratio =
number of failed goal

total number of goal selected
(6.1)

6.2 Parameters

In this section we describe the main parameters we have set in order to

perform the exploration, and the relative values chosen. These parameters

are:

� Map resolution: the resolution of the occupancy grid that represents the

size of each cells. The resolution in our work is set to 0.1 meters/cell. It

means that each cell has a size of 0.1 m × 0.1 m. An higher resolution

would improve the precision of the map's representation, but it would
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Figure 6.2: An example of a frontier that lead to a goal failure (enlighten in
red).

increase the computational e�ort. On the other hand, a lower resolution

would decrease the computation e�ort and the precision.

� Laser scanner setting: the parameters related to the laser range scanner

are:

� Horizontal �eld of view: it represents the angle trough which the

laser is able to perceive the environment. It is set to 180°.

� Maximum range: it is the maximum distance at which the laser is

able to perceive an obstacle. It is set to 18 m, a range similar to

those of indoor laser range scanners as the SICK LMS100 family.

� Noise: a noise with 0 mean and 0.1 standard deviation is applied

to laser scanning.

� α: as described in Section 4.2.4, α is the parameter that weights the

two criteria used for the frontiers evaluation: distance and information

gain. An higher value gives more importance to close frontiers, mean-

while a lower value would increase the importance of frontiers with high

information gain. We decide to set the value to 0.5, in order to give

the same importance to the distance and to the information gain.
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� In�ation radius: as described in Section 5.2.1, the local planner uses a

costmap that `in�ates' obstacles for a safe navigation. The radius at

which the obstacle are `in�ated' is 0.4 m.

� Frontier threshold: as described in Section 4.3.2, this parameter is used

to identify whether a room has been partially or fully observed based

on the dimension of the biggest frontier. This parameter is dependant

from the map resolution. We set this parameter to 5, which means

that rooms that have frontiers smaller than 0.5 m are considered fully-

observed.

� Early stop threshold: in order to perform the early stop (see Section

4.4), a threshold is chosen to check whether it can be triggered or not.

We set this parameter to 1 m2. This value is chosen since it is very

unlikely that portion of unseen area smaller than this value can hide

other rooms.

6.3 Evaluation procedure

In this section we describe how our work has been evaluated. We performed

10 runs for each environment using always the same values for each of the

parameter previously listed, reporting for each environment the amount of

explored area as function of time and distance travelled, and calculating

mean and standard deviation. We then made a comparison with another

algorithm in order to evaluate the bene�t of performing a layout prediction

on the environment and using it during the exploration. The comparison is

made by:

� Layout prediction: it uses the layout prediction of the environment to

calculate the information gain. We indicate it as �with L�.

� Frontier based: it calculates the information gain of each frontier as

the potential area that can be seen. This algorithm is based on the

algorithm of [13], we indicate it as �without L�. This strategy represents
the state of the art, since it is an exploration strategy that uses only the
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map of the environment built during the exploration, without making

any prediction about the environment.

� Early stop: it indicates when the early stop function is called, we indi-

cate it as �ES �. It is used only during the explorations performed using

the with L method.

6.4 Results

In this section we illustrate the results obtained in our simulations. For each

environment we report the amount of explored area as a function of time and

the amount of explored area as a function of distance. We also report the

goal failure ratio for both �with L� and �without L� exploration strategies.

We illustrate the maps divided by their complexity.

6.4.1 Low-complexity environments

Environment 1

The Environment 1 represents a simple environment composed of a single

corridor with many rooms attached to it. Figure 6.3 shows the starting point

of the exploration.

Figure 6.3: The �gure shows the starting point of the exploration (in red).
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Evaluation In the Environment 1, with L produces a speed up of the

exploration. This can be seen in Figure 6.4 in which the explored area is

reported as a function of time. This is particularly evident when the explored

area reaches around the' 96%, where the with L strategy is constantly better
an �nish sooner, with a time gain of 19.1% over the without L method. At

the same time, the ES is triggered allowing the exploration to �nish earlier

with a gain over time of 30.5%.
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Figure 6.4: The explored area of the Environment 1 as a function of time.

Moreover, Figure 6.6 shows that even the distance travelled by the robot

using the with L method is smaller than the one travelled with the without

L algorithm. The gain in term of distance travelled is only 6.1%, meanwhile

the trigger of ES brings a gain of 19.3%. The reconstructed layout, when

the ES is triggered, is shown in Figure 6.5.

The Table 6.2 shows that the exploration method without L has a failure
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(a) (b)

Figure 6.5: Figure 6.5a shows the image of the map of Environment 1 when
the early stop is triggered. Figure 6.5b shows the reconstructed layout when
the early stop is triggered.
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Figure 6.6: The exlored area of the Environment 1 as a function of distance.

rate that is almost 4 times the failure rate of with L. A failure can potentially

bring the robot to travel an higher distance, however what typically happens
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for without L is that it selects a frontier close to its actual location that

doesn't bring any new information and that leads to a goal failure (and time

lost). Thanks to the smaller goal failed ratio, we can a�rm that the with

L method is more robust and able to select informative frontiers with more

precision with respect to the without L method.

with L without L
Ratio Std. Dev Ratio Std. Dev.

7.8 % 5.2 27.1 % 13.3

Table 6.2: Goal failure ratio for the with L and without L strategies in
Environment 1.

Environment 2

Environment 2 is similar to Environment 1 and is composed of a single cor-

ridor with all the rooms attached to it. Figure 6.7 shows the starting point

of the exploration.

Figure 6.7: The �gure shows the starting point of the exploration (in red).

Evaluation Environment 2 is smaller than Environment 1, however the

with L strategy still performs better in terms of time requires to explore

the 100% of the map respect to the without L algorithm. Figure 6.9 shows

that the two algorithms have a similar behaviour along all the exploration



6.4. RESULTS 95

process. The speed up in time is around the 5.5% that increases to 9.6% with

the intervention of ES. The reconstructed layout, when the ES is triggered,

is shown in Figure 6.8.

(a) (b)

Figure 6.8: Figure 6.8a shows the image of the map of Environment 2 when
the early stop is triggered. Figure 6.8b shows the reconstructed layout when
the early stop is triggered.

In terms of distance travelled, the situation is a little tricky: the travelled

distance of the with L algorithm is slightly higher than the travelled distance

of without L algorithm. The increase in term of distance travelled is around

the 5.5%, that decreases to 1.1% with the intervention of ES.

This behaviour can be explained by looking at the Table 6.3 of the goal

failure ratio. The without L method has a goal failure ratio that is more

than twice the goal failure ratio of with L algorithm. This leads the robot

that use without L algorithm to lose time in order to recover from the goal

failure, without however causing an increase in term of distance travelled.

with L without L
Ratio Std. Dev Ratio Std. Dev.

15.8 % 6.6 36.5 % 14.3

Table 6.3: Goal failure ratio for the with L and without L strategies in
Environment 2.
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Figure 6.9: The explored area of the Environment 2 as a function of time.

6.4.2 Medium-complexity environments

Environment 3

Environment 3 is a medium-complexity environment composed of a single

corridor with many rooms attached to it. The rooms however have some

other rooms connected, making the prediction of the environment a little

more challenging. Figure 6.11 shows the starting point of the exploration.

Evaluation In Environment 3, the with L algorithm shows to produce a

speed up of the exploration. As shown in Figure 6.12, the two algorithms

have a similar behaviour along all the exploration process except for the �nal

part, namely when the explored area is around the ' 98% where the with L
strategy has better performance and reaches the 100% of the explored area

sooner with a speed up of the 11.9%. In this case, the ES is triggered almost
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Figure 6.10: The exlored area of the Environment 2 as a function of distance.

Figure 6.11: The �gure shows the starting point of the exploration (in red).

at the same time with the completion of the exploration, without bringing

any appreciable improvement.

As can be seen from Figure 6.13, the gain in terms of distance travelled

is around the 8.5%.

Also, in terms of failed goal ratio the with L strategy performs much better
with respect to without L. As can be seen from Table 6.4, our algorithm is
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Figure 6.12: The explored area of the Environment 3 as a function of time.

4 times more robust than the other algorithm.

with L without L
Ratio Std. Dev Ratio Std. Dev.

11.0 % 8.0 42.1 % 14.0

Table 6.4: Goal failure ratio for the with L and without L strategies in
Environment 3.

Environment 4

Environment 4 is a medium-complexity environment with many open areas.

This environment represents the �oor of a home building. Figure 6.14 shows

the starting point of the exploration.
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Figure 6.13: The explored area of the Environment 3 as a function of distance.

Figure 6.14: The �gure shows the starting point of the exploration (in red).
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Evaluation In Environment 4, the with L method produces a speed up of

the exploration with respect to the without L method. As shown in Figure

6.15, the two algorithms have a similar behaviour up to' 82% of the explored

area, where our method perform strictly better and reach the 100% of the

explored area sooner with a speed up of 14.5% of exploration gain. In this

case, the ES is triggered almost at the same time with the completion of the

exploration, without bringing any measurable improvement.
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Figure 6.15: The explored area of the Environment 4 as a function of time.

By looking at Figure 6.16, the with L algorithm reaches the 100% of

explored area by travelling a shorter distance compared to the without L
algorithm, with a gain of 4%.

Finally, by looking at the comparison in terms of goal failure ratio, Table

6.5 reports that the with L method is more robust than the without L method

whose goal failure ratio is 6 times higher with respect to our algorithm.
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Figure 6.16: The explored area of the Environment 4 as a function of distance.

with L without L
Ratio Std. Dev Ratio Std. Dev.

4.2 % 3.3 26.3 % 5.1

Table 6.5: Goal failure ratio for the with L and without L strategies in
Environment 4.

Environment 5

Environment 5 has a very particular structure: it is composed of a very

large central area with a very particular layout that connects to di�erent

smaller rooms. It is considered as a medium-complexity environment due to

its particular layout. Figure 6.17 shows the starting point of the exploration.
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Figure 6.17: The �gure shows the starting point of the exploration (in red).

Evaluation In Environment 5, the with L method is able to produce a

speed up of the exploration. However, as it can be seen from Figure 6.18,

in this particular environment the performance of our algorithm is strictly

below the baseline method for almost the exploration process. There is a

change of behaviour when the exploration has covered the 99% of the area,

when our algorithm is able to complete the exploration sooner with a speed

up of the 6.4%. In this map the ES is triggered when the exploration is

practically ended and the entire area has been covered, and for this reason

it does not bring any appreciable improvement.

Figure 6.19 con�rms the di�culties of the with L algorithm in this envi-

ronment. By using the with L method, the robot needs to travel an higher

distance compared to the without L method. The increase of distance trav-

elled is equal to the 3.5%.

However, our algorithm is able to reach the 100% of the explored area

before the baseline method. This behaviour can be explained by looking at

Table 6.6. The goal failure ratio of the without L algorithm is twice the goal

failure ratio of with L method. This demonstrates that our algorithm is more

robust at the end of the exploration, allowing to select the correct frontiers,

and for this reason, to reach the 100% of the explored area sooner.
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Figure 6.18: The explored area of the Environment 5 as a function of time.

with L without L
Ratio Std. Dev Ratio Std. Dev.

14.8 % 9.0 33.3 % 6.1

Table 6.6: Goal failure ratio for the with L and without L strategies in
Environment 5.

Environment 6

Environment 6 is an environment composed of many open areas. This envi-

ronment represents the �oor plan of a laboratory building. Figure 6.20 shows

the starting point of the exploration.

Evaluation In Environment 6, exploration runs made using the with L and

without L algorithms have very similar performance during most of time of
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Figure 6.19: The explored area of the Environment 5 as a function of distance.

Figure 6.20: The �gure shows the starting point of the exploration (in red).

the exploration process. There is a change of behaviour when the exploration

process reaches the 97% of explored area, where our algorithm is able to

perform strictly better and �nish the exploration earlier, with a speed up of

the 6.0%. In this environment the ES is triggered pretty close to the end of

the exploration, however the speed up with respect to the without L strategy
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is equal to the 6.7%.

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

ex
p
lo
re
d
ar
ea

ex
p

with L
without L

ES

Figure 6.21: The explored area of the Environment 6 as a function of time.

From the distance travelled point of view our algorithm performs slightly

worse than the without L algorithm, with an increase of distance travelled of

the 4.9% that decreases to 4.0% with the ES. This behaviour can be seen in

Figure 6.22.

By taking a look to the Table 6.7, we can see that the with L algorithm

is more robust than the without L algorithm, with the last one that has a

goal failed ratio that is 4 times the goal failed ratio of our method. This

behaviour allows our algorithm to have a speed up in terms of exploration

time, even if the distance travelled is greater than the one of the without L
method.
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Figure 6.22: The explored area of the Environment 6 as a function of distance.

with L without L
Ratio Std. Dev Ratio Std. Dev.

9.0 % 7.6 37.6 % 11.7

Table 6.7: Goal failure ratio for the with L and without L strategies in
Environment 6.

6.4.3 High-complexity environments

Environment 7

Environment 7 represents an o�ce environment composed of many rooms

and open areas. This map has been classi�ed as hard because there are

many rooms that are hidden by di�erent walls and are pretty di�cult to be

predicted using our approach. Figure 6.23 shows the starting point of the

exploration.
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Figure 6.23: The �gure shows the starting point of the exploration (in red).

Evaluation As it can be seen in Figure 6.24, the two exploration strategies

have a very similar behaviour, that changes only at the very end of the

exploration, with the with L strategy that is able to reach the 100% of the

exploration a little sooner, with a speed up of the 3.0%. The ES is triggered

at the end of the exploration, so it does not bring any improvement in terms

of speed up.

If we consider the distance travelled, as it can be seen from Figure 6.25,

the two algorithms have the same behaviours and both reach the 100% of

explored area with the same distance travelled.

As it can be seen from Table 6.8 which reports the failure goal ratio, the

with L algorithm is more robust in comparison with without L method.

with L without L
Ratio Std. Dev Ratio Std. Dev.

9.2 % 9.1 25.3 % 16.8

Table 6.8: Goal failure ratio for the with L and without L strategies in
Environment 7.
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Figure 6.24: The explored area of the Environment 7 as a function of time.

Environment 8

Environment 8 represents a particular environment of a school. It has been

categorized as high-complexity environment due to its very particular layout.

Figure 6.26 shows the starting point of the exploration.

Evaluation As it can be seen from Figure 6.28 which reports the explored

area as function of time, our algorithm performs strictly worse at the start

of the exploration, however when the exploration reaches around the 96%

of the explored area, our algorithm performs strictly better and is able to

reach the 100% of the explored area with a speed up of the 18.2%. The

ES is triggered before the exploration reaches the 100% of the exploration,

leading to a speed up respect to the without L strategy of the 24.4%. The

reconstructed layout, when the ES is triggered, is shown in Figure 6.27.
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Figure 6.25: The explored area of the Environment 7 as a function of distance.

Figure 6.26: The �gure shows the starting point of the exploration (in red).

As shown in Figure 6.29, our algorithm is able to enhance the exploration

even from the point of view of the distance travelled, travelling a shorter

distance with a gain of 15.7% with respect to the without L strategy. If we
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(a) (b)

Figure 6.27: Figure 6.27a shows the image of the map of Environment 8 when
the early stop is triggered. Figure 6.27b shows the reconstructed layout when
the early stop is triggered.
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Figure 6.28: The explored area of the Environment 8 as a function of time.

consider the ES, the enhancement is increased up to the 22.6%.

Finally, looking at the Table 6.9, we can note how our algorithm is more
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Figure 6.29: The explored area of the Environment 8 as a function of distance.

robust in terms of goal failed ratio, which lead to an increase of the perfor-

mance.

with L without L
Ratio Std. Dev Ratio Std. Dev.

23.8 % 9.0 41.4 % 6.4

Table 6.9: Goal failure ratio for the with L and without L strategies in
Environment 8.

Environment 9

Environment 9 is a very challenging environment with many di�erent rooms

connected trough two main corridors. It represents a typical o�ce environ-

ment. Figure 6.30 shows the starting point of the exploration.
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Figure 6.30: The �gure shows the starting point of the exploration (in red).

Evaluation As it can be seen from Figure 6.32, our algorithm performs

strictly worse for most of the exploration process, however when the the

exploration reaches around the 96% of explored area, the behaviour changes

and our algorithm is able to reach the 100% of explored area sooner with

respect to the other algorithm, with a speed up of the 7.8%. The ES is

triggered before the end of the exploration, leading to a speed up with respect

to the without L algorithm of the 13.3%. The reconstructed layout, when

the ES is triggered, is shown in Figure 6.31.

(a) (b)

Figure 6.31: Figure 6.31a shows the image of the map of Environment 9 when
the early stop is triggered. Figure 6.31b shows the reconstructed layout when
the early stop is triggered.

If we look at Figure 6.33, we can see that the travelled distance at the

end of the exploration for both the exploration algorithm is almost equal. If
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Figure 6.32: The explored area of the Environment 9 as a function of time.

we consider the ES, there is an enhancement in terms of travelled distance

equal to the 5.2%.

Finally, in Table 6.10 the failure goal ratio for both the algorithms is

reported. By looking at it, we can see that our algorithm is more robust

respect to the without L algorithm.

with L without L
Ratio Std. Dev Ratio Std. Dev.

17.2 % 3.3 37.1 % 9.9

Table 6.10: Goal failure ratio for the with L and without L strategies in
Environment 9.
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Figure 6.33: The explored area of the Environment 9 as a function of distance.

Environment 10

This map represents a school environment with a single corridor and many

rooms attached to it. This environment has been categorized as hard due to

the particular rooms that can be found in it, making the prediction pretty

challenging. Figure 6.34 shows the starting point of the exploration.

Evaluation As we can see from Figure 6.35, which represents the explored

area in function of time, the with L strategy performs strictly better than the

without L strategy, and is able to reach the 100% of the explored area with

a speed up of the 9.5%. The ES is triggered at the end of the exploration

process, for this reason it does not provide any improvement in terms of

speed up.

Further, the Figure 6.36 shows that our algorithm travels a shorter path
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Figure 6.34: The �gure shows the starting point of the exploration (in red).
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Figure 6.35: The explored area of the Environment 10 as a function of time.

to reach to 100% of the explored area.

Finally, in Table 6.11 it is reported the goal failure ratio for both the
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Figure 6.36: The explored area of the Environment 10 as a function of dis-
tance.

algorithms. It shows that with L is more robust compared to without L.

with L without L
Ratio Std. Dev Ratio Std. Dev.

24.2 % 11.4 38.4 % 16.7

Table 6.11: Goal failure ratio for the with L and without L strategies in
Environment 10.

General results

In Table 6.12 a recap of the general results previously described are displayed.



6.4. RESULTS 117

E
n
v
.

w
it
ho
u
t
L

w
it
h
L

G
ai
n

E
S

G
ai
n

T
im
e

D
is
ta
n
ce

G
.
f.
r.

T
im
e

D
is
ta
n
ce

G
.
f.
r.

T
im
e

D
is
ta
n
ce

T
im
e

D
is
ta
n
ce

T
im
e

D
is
ta
n
ce

E
n
v
.
1

21
19

s
29

5
m

27
.1

%
17

15
s

27
7

m
7.

8
%

19
.1

%
6.

1
%

14
73

s
23

8
m

30
.5

%
19
.3

%
E
n
v
.
2

17
32

s
25

1
m

36
.5

%
16

36
s

26
5

m
15
.8

%
5.

5
%

−
5.

5
%

15
66

s
25

4
m

9.
6

%
−

1.
1

%
E
n
v
.
3

47
66

s
74

2
m

42
.1

%
41

97
s

67
9

m
11
.0

%
11
.9

%
8.

5
%

41
88

s
67

7
m

12
.1

%
8.

7
%

E
n
v
.
4

29
04

s
39

4
m

26
.3

%
24

82
s

37
9

m
4.

2
%

14
.5

%
4.

0
%

24
81

s
37

8
m

14
.5

%
4.

0
%

E
n
v
.
5

26
13

s
39

8
m

33
.3

%
24

47
s

41
2

m
14
.8

%
6.

4
%

−
3.

5
%

24
38

s
41

0
m

6.
7

%
−

3.
0

%
E
n
v
.
6

30
24

s
45

0
m

37
.6

%
28

42
s

47
2

m
9.

0
%

6.
0

%
−

4.
9

%
28

20
s

46
8

m
6.

7
%

−
4.

0
%

E
n
v
.
7

43
99

s
70

1
m

25
.3

%
42

65
s

70
4

m
9.

2
%

3.
0

%
−

0.
4

%
42

65
s

70
4

m
3.

0
%

−
0.

4
%

E
n
v
.
8

43
22

s
67

4
m

41
.4

%
35

37
s

56
8

m
23
.9

%
18
.2

%
15
.7

%
32

67
s

52
2

m
24
.4

%
22
.6

%
E
n
v
.
9

46
39

s
66

7
m

37
.1

%
42

75
s

67
3

m
17
.2

%
7.

8
%

−
0.

9
%

40
21

s
63

2
m

13
.3

%
5.

2
%

E
n
v
.
10

38
76

s
57

1
m

38
.4

%
35

08
s

55
3

m
24
.2

%
9.

5
%

3.
1

%
35

08
s

55
3

m
9.

5
%

3.
1

%

A
ve
ra
ge

34
40

s
51

4
m

34
.5

%
30

90
s

49
8

m
13
.7

%
10
.1

%
2.

2
%

30
03

s
48

3
m

12
.8

%
5.

4
%

T
ab
le
6.
12
:
A

a
re
ca
p
of

th
e
re
su
lt
s
p
re
v
io
u
sl
y
d
es
cr
ib
ed
.
�G

.
f.

r.
�
is
th
e
ab
b
re
v
ia
ti
on

of
G
oa
l
fa
il
u
re

ra
ti
o.

T
h
e

re
su
lt
s
co
rr
es
p
on
d
to

th
e
ex
p
lo
re
d
ar
ea

eq
u
al
to

10
0%

.



118 CHAPTER 6. EXPERIMENTAL RESULTS

6.5 Discussion

An interesting, although intuitively expected, result of our experimental anal-

ysis is that using the with L algorithm produces a speed up in the exploration

process. From the results described in Section 6.4, the fact that is remarkably

evident is that the algorithm produces a speed up, which is not uniformly

distributed over all the exploration process but concentrated at the end of the

exploration process. At the start the exploration strategy performs similarly

to the without L method until, approximately, the 90% of the total area has

been explored. From that moment on, our work performs consistently better

and lead to a speed up of the exploration.

In Figure 6.37 a recap of the time required to reach the 100% of the

exploration is shown. The average �nal gain of the with L algorithm is

shown in Table 6.13.

The results we obtained can be explained by the fact that the robot

starts with a very little knowledge of the environment (map), making it very

di�cult for the algorithm to make correct prediction. With the exploration

going on and incrementally building the map, however, the algorithm makes

more and more precise predictions, that lead to a speed up at the end of

the exploration. In conclusion, the inaccurate prediction made at the start

of the exploration does not jeopardize the gain obtained at the end of the

exploration. An example of an incrementally built map and the predicted

layout is shown in Figure 6.38 and in Figure 6.39.

The results also show that the with L algorithm is more robust with re-

spect to the without L algorithm. This feature is shown by the goal failure

ratio, that measures the ratio between a the number of times the explo-

ration selects a goal that is unreachable (typically a frontier that becomes

a wall) and the total number of goals selected before reaching the complete

exploration. Table 6.14 shows the average goal failure ratio on the 10 envi-

ronments for both our method and the baseline method. From these data we

can observe that our algorithm is more robust than the without L algorithm.

This is particularly evident in the late phase of the exploration, where it

become more and more important and di�cult to select the correct frontier
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Figure 6.37: The �gure shows the average time required in the 10 simulated
environments to reach the 100% explored area.
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(a) Map at 20% (b) Prediction at 20%

(c) Map at 40% (d) Prediction at 40%

(e) Map at 60% (f) Prediction at 60%

Figure 6.38: The �gures show the map and the predicted environment with
explored area equal to: 20, 40, 60 %. The complete map of the environment
is shown in Figure 6.1h.

to explore.
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(a) Map at 80% (b) Prediction at 80%

(c) Map at 90% (d) Prediction at 90%

(e) Map at 95% (f) Prediction at 95%

Figure 6.39: The �gures show the map and the predicted environment with
explored area equal to: 20, 40, 60, 80, 90, 95 %. The complete map of the
environment is shown in Figure 6.1h.

6.5.1 Consideration on early stop

An important aspect of our work is the capability of exploration strategy

to use the predicted layout of the environment to understand whether the
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with L without L
average time [s] Std. Dev. average time [s] Std. Dev. gain

3090 316 3440 313 10.1 %

Table 6.13: The table shows the average gain of our method on the 10 di�er-
ent environments. �average time� is the average time required to perform the
exploration on the 10 di�erent enviroments and �Std. Dev.� the correspond-
ing standard deviation. These parameters has been calculated for both the
exploration strategies used: with L and without L. The gain is the average
speed up of our algorithm.

with L without L
Average G. f. r. Std. Dev. G. f. r. Std. Dev.

13.7 % 7.3 34.5 % 11.4

Table 6.14: The table shows the average goal failure ratio on the 10 environ-
ments. �G. f. r.� is the abbreviation of Goal failure ratio.

exploration can be stopped since the map representing the environment can

be reconstructed from the data collected so far. In our implementation we

used a very conservative approach to trigger the ES, with the intention of

not stopping the exploration of the environment when potentially interested

frontiers can still be found. In our experiments, the ES has been successfully

triggered in 4 maps with an e�ective gain in terms of speed up. In other 3

maps the ES has been triggered, however the speed up is negligible, so we

do not count them as successful. From now we indicate as with L + ES the

exploration strategy that uses the layout predicted combined with early stop.

The results of the with L + ES are shown in Figure 6.40.

The average �nal gain of the with L is shown in Table 6.15.

As we can see the with L + ES algorithm leads to a small improvement

with respect to the with L (from 10.1% to 12.8% as average speed up overall

the environments). If we consider only the 4 maps in which the ES is suc-

cessfully triggered, we obtain a gain in term of exploration time of 20.1%.

However, if we manually observe the reconstructed map of the environment

at di�erent percentages of explored area, we can see that reconstructed envi-
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Figure 6.40: The �gure shows the average time required in the 10 simulated
environments to reach the 100% explored area for the without L, with L and
with L + ES algorithms. For the with L + ES we plot the time in which
the with L reaches the 100% of the exploration or the instant in which the
ES is triggered.
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with L + ES without L
average time [s] Std. Dev. average time [s] Std. Dev. gain

3003 321 3440 313 12.8 %

Table 6.15: The table shows the average gain of our method on the 10 dif-
ferent environments. �average time� is the average time required to perform
the exploration on the 10 di�erent enviroments and �Std. Dev.� the corre-
sponding standard deviation. These parameter has been calculated for both
the exploration strategies used: with L + ES and without L. The gain is the
average speed up of our algorithm.

ronments start to have an high reliability when the exploration is around the

80%−90% of the total area. If the exploration is manually stopped when the

explored area is around the 95%, the layout L of the environment would be

predicted with an high reliability, except for some minor inaccuracies. Then

environment could have been considered explored with a speed up around

the 38%. Instead, if we manually stop the exploration with the explored

area equal to the 90%, we would typically lose a room (in most of the en-

vironments) but the speed up would be around the 50%. Two examples of

predicted environments with the explored areas equal to 90% and 95% are

shown in Figure 6.41 and Figure 6.42.
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(a) (b)

(c)

Figure 6.41: Figure 6.41a shows the map of the environment. Figure 6.41b
shows the reconstructed environment with the explored area at 90%. Figure
6.41c shows the reconstructed environment with the explored area at 95%.
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(a) (b)

(c)

Figure 6.42: Figure 6.42a shows the map of the environment. Figure 6.42b
shows the reconstructed environment with the explored area at 90%. Figure
6.42c shows the reconstructed environment with the explored area at 95%.



Chapter 7

Conclusions and future work

In this thesis we have studied and developed a multi-criteria exploration

strategy for a mobile robot that explores an initially unknown indoor envi-

ronment. The selection of the next location is made according to the expected

information gain partially-observed rooms in terms of area visible from these

locations calculated using a predicted layout of the unseen part of the envi-

ronment.

We implemented our work in ROS, and tested it in 10 indoor environ-

ments simulated using Stage. The exploration strategy has been evaluated

comparing against a baseline exploration strategy that evaluates the infor-

mation gain as the maximum area visible from a location.

The results showed that a robot using our exploration strategy and one

using the baseline method have similar behaviours at the beginning of the

exploration process. However, at the end of the exploration process, the robot

that uses our proposed method is able to make very accurate predictions of

the environment, thus allowing to signi�cantly reduce the time required to

complete the exploration.

Moreover, we proposed a novel early stop (ES ) criterion that uses the

predicted layout to stop the exploration when only uninteresting areas are

left. This criterion has been successfully triggered in 4 out of the 10 envi-

ronments tested in the experimental evaluation, further decreasing the time

required to complete the exploration.

127
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Future work could address di�erent aspects of our exploration system.

Firstly, a more complex prediction about the unexplored part of the environ-

ment can be made, in order to create a layout closer to the real one also in

the early phases of the exploration. This, for example, can be performed by

keeping track of all the poses of the robot during the exploration, by knowing

the sensors perception model, and by making a more informative prediction

using these new data.

Another possible development could address the integration of our algo-

rithm with a database of previously explored environments, allowing to make

more informed predictions about the environment.

Moreover, it could be interesting to implement more aggressive criteria

to trigger the early stop, following the reasoning described in Section 6.5.1.

A further interesting future direction includes the development of an ex-

ploration strategy that is able to dynamically switch between classical explo-

ration strategies and our method when the prediction becomes more accurate.
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