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Abstract

My master thesis consists of a DFT study on the thermal transport prop-
erties of graphene and single-layer transition metal dichalcogenides.
Calculations have been performed using the SIESTA DFT package based on
atomic orbitals. In a first part, the phonon dispersion relation of graphene,
MoS2, MoSe2, WS2 and WSe2 were calculated. By means of the Landauer
formalism, the ballistic phonon transmission function and the thermal con-
ductance were computed and compared. Using the atomistic Green’s func-
tion technique, the influence of a disordered distribution of sulphur vacan-
cies on the thermal conductivity was analysed. The thermoelectric figure of
merit of MoS2 in presence of sulphur vacancies was obtained as well.
Finally, a procedure was developed to include in the calculations the effect
of phonon-phonon Umklapp scattering and scattering due to the roughness
of the boundaries. This method was successfully applied to compute the
lattice thermal conductivity of graphene, allowing to evaluate the impact of
scattering as a function of the temperature and of the size of the samples.
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Sommario

La mia tesi di laurea magistrale consiste in uno studio computazionale sulle
proprietà di trasporto termico in materiali bidimensionali, quali il grafene e
i monostrato dicalcogenuri dei metalli di transizione (single-layer TMDCs).
I materiali 2D sono un argomento di ricerca che è attualmente di particolare
interesse per uno svariato numero di possibili applicazioni in campi come
elettronica, fotonica, catalisi, immagazzinamento dell’energia e termoelet-
tricità.
Questa tesi si concentra sulle proprietà termoelettriche di grafene, MoS2,
WS2, MoSe2 e WSe2. Buoni materiali termoelettrici si identificano per
un’ottima conduttività elettrica, un elevato coefficiente di Seebeck e una
bassa conduttività termica.
Queste caratteristiche sono solitamente proprie di semiconduttori altamente
drogati. I single-layer TMDCs sono semiconduttori a gap diretto, con ot-
time potenzialità come materiali termoelettrici. Diversamente, il grafene è
un ottimo conduttore sia elettrico che termico e il suo coefficiente di Seebeck
è ridotto a causa dell‘assenza di un gap elettronico. Tuttavia, i nanoribbon
di grafene presentano un gap elettronico dovuto a effetti di confinamento
spaziale degli elettroni. Inoltre, in quanto capostipite della famiglia dei ma-
teriali bidimensionali, il grafene si presta ad essere il miglior sistema per la
comprensione dei fenomeni di trasporto in materiali 2D e per una compara-
zione con lo studio dei single-layer TMDCs.
Oltre a ricercare materiali con ottime proprietà termoelettriche intrinseche,
il modo più efficace con cui si cerca di incrementare l’efficienza di conver-
sione termoelettrica consiste nel ridurre la conduttività termica mediante
metodi come la nanostrutturazione del materiale e l’introduzione di difetti
(impurità, lacune, interfacce). L’obiettivo è quello di ostacolare il trasporto
fononico senza impattare in modo significativo sul trasporto elettrico, in
modo che gli elettroni si propaghino come in un mezzo cristallino e i fononi
come in un materiale amorfo.

L’intento di questo lavoro di tesi è quello di investigare con metodi com-
putazionali il trasporto dei fononi nei sopracitati materiali 2D alla scala
mesoscopica. Le simulazioni si basano su calcoli DFT eseguiti mediante il
metodo ”SIESTA” (Capitolo 1), con cui, tra le altre cose, si ottengono le
curve di dispersione fononiche. La funzione di trasmissione dei fononi e la
conduttanza termica sono calcolate nel contesto del formalismo di Landauer
(Capitolo 2).
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Nella prima parte, si mostrano le relazioni di dispersione dei fononi in
grafene, MoS2, MoSe2, WS2 e WSe2. Inoltre, si calcola la conduttanza
termica (contributo fononico) in funzione della temperatura in regime di
trasporto balistico. Le nette differenze tra le proprietà di trasporto termico
del grafene e dei TMDCs vengono evidenziate (Capitolo 4).
Nella seconda parte, si analizza l’impatto di vacanze di zolfo in single-layer
MoS2 al fine di ostacolare il trasporto di fononi e, di conseguenza, aumentare
l’efficienza termoelettrica del materiale. Mediante un metodo basato sulle
funzioni di Green, si valuta l’influenza di una distribuzione disordinata delle
vacanze. Gli effetti sulla conduttività termica sono investigati in funzione
della concentrazione delle lacune e delle dimensioni dei campioni. I risultati
mostrano una significativa riduzione della conduttività termica rispetto a
quella del materiale privo di difetti. Tuttavia, si mostra che anche le pro-
prietà elettriche sono inficiate dalla presenza di vacanze di zolfo; pertanto,
si procede al calcolo della figura di merito del sistema, traendone la conclu-
sione che l’efficienza del materiale può essere lievemente migliorata solo per
MoS2 drogato di tipo p (Capitolo 5). La valutazione della figura di merito
per MoS2 in presenza di un sistema disordinato di vacanze costituisce un
contributo originale rispetto a quanto presente in letteratura.

Nell’ultima parte si mostra una procedura sviluppata autonomamente per
includere l’impatto sul trasporto termico dei fenomeni di scattering fonone-
fonone (processo Umklapp) e di scattering fonone-interfaccia. Il metodo è
basato su un approccio che combina il calcolo della funzione di trasmissione
fononica secondo il formalismo di Landauer e la valutazione del cammino
libero medio dei fononi nel materiale, attraverso il calcolo del parametro
di Grüneisen . I fondamenti teorici di questo metodo sono descritti nel
Capitolo 3. La procedura è applicata con successo al fine di calcolare la
conduttività termica (contributo fononico) del grafene in un regime di tran-
sizione balistico-diffusivo (Capitolo 6).
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Introduction

0.1 2D Materials

Since the discovery of graphene in 2004 by Novoselov et. al. [62], two-
dimensional (2D) materials have attracted intensive attention due to their
unique physical properties and the potential technological applications in
fields such as electronics, photonics, catalysis, spintronics and energy stor-
age [59, 88, 12, 98].
There exists a huge variety of bidimensional materials. Some of them are
monolayers comprising a single element (e.g. graphene, phosphorene, ger-
manene and silicene), while others feature different atoms alternating in the
same layer (e.g. boron nitride, transition metal dichalcogenides (TMDCs)
and MXenes).
The combination of 2D layers in Van der Waals heterostructures, in which
different monolayers are freely mixed and matched, further expands the op-
portunities for exploring new physics and applications [38, 50].
Besides graphene, which is the first and most studied 2D material, this the-
sis will focus on the following TMDCs: MoS2, WS2, MoSe2 and WSe2.
The general formula of TMDCs is MX2, where M is a transition metal atom
(like Mo and W) and X a chalcogen atom (like S and Se). Their structure
consists of a layer of M atoms sandwiched between two layers of X atoms,
as depicted in fig. 1.

Layered transition metal dichalcogenides have shown high potential due to
their intriguing semiconducting properties. In fact, while pristine graphene
has no band gap, the above mentioned monolayer TMDCs exhibit direct
band gap, making them ideal for a wide range of potential applications in
electronics, optoelectronics and photovoltaics. Moreover, they present high
electron mobility and a unique layer-dependent band gap tunability, with a
transition from indirect gap (multilayer) to direct gap (monolayer) [72].
More recently these materials have attracted increased attention in the
prospect of thermoelectricity on both theoretical [1, 85, 88] and experi-
mental sides. [90, 95].
The aim of this thesis is to investigate the thermoelectric properties of MoS2,
WS2, MoSe2 and WSe2.
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Figure 1: Structure of monolayer transition metal dichalcogenides. MoS2, WS2,
MoSe2 and WSe2 are studied in this thesis.

0.2 Thermoelectric Materials

At this point, a few words about thermoelectrity are needed.
Thermoelectric (TE) materials can convert heat into electricity (Seebeck
effect) or viceversa (Peltier effect). Recently, these materials have been at-
tracting attention for the development of devices for power generation from
waste heat or as solid-state Peltier coolers.
Radioisotope Thermoelectric Generators are lightweight, compact space-
craft power systems that are extraordinarily reliable. For example, they
were used to power NASA’s Voyager and Cassini missions [61]. Nowadays
power generation applications are being studied by the automotive industry
with the aim to develop electrical power from waste engine heat.
A thermoelectric generator uses heat flow across a temperature gradient to
power an electric load through the external circuit. The physical principle at
the basis of thermoelectric power generators is known as the Seebeck effect.
When a temperature gradient is applied to a TE material, an electrostatic
potential builds up due to the diffusion of free charges from the hot end to
the cold end. An equilibrium is thus reached between the chemical poten-
tial for diffusion and the electrostatic repulsion caused by the separation of
charges. The Seebeck coefficient S, also known as thermopower, is defined
as the ratio between the build-up voltage and the applied temperature dif-
ference (S = ∆V

∆T
). Hence, in thermoelectric generators, the heat flow drives

the electrical current and supplies power to an external circuit. Vice versa
in Peltier coolers, the d.c. power, which is supplied by the external circuit,
drives the electric current (I) and the heat flow (Q). The result is the cooling
of the top surface thanks to the Peltier effect (Q = ST I) [70].
Thermoelectric refrigeration is an environment-friendly method of small-
scale localized cooling in computers, infrared detectors, electronics, opto-
electronics as well as many other applications. If significant economical
cooling is achieved, the resulting “cold computing” would produce large
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speed gains in some CMOS computer processors [79].
The usual design of TE devices corresponds to many thermoelectric couples
(fig. 2, bottom) consisting of n-type and p-type thermoelectric elements
wired electrically in series and thermally in parallel (fig. 2, top).

Figure 2: Thermoelectric module showing the direction of charge flow on both cooling
and power generation. From ref. [70]

The efficiency of thermoelectric conversion is characterized by the dimen-
sionless figure of merit ZT:

ZT =
σel S

2

κel + κph
T (1)

where S is the Seebeck coefficient, σel the electrical conductivity, T the ab-
solute temperature, κel and κph the thermal conductivity contributed by
electrons and phonons respectively. Materials with ZT ∼ 1 are nowadays
considered as good thermoelectrics, while their ZT values need to be at least
3 so that the conversion efficiency could be competitive with conventional
power generators and refrigerators [91].
To maximize the thermoelectric figure of merit of a material, a large See-
beck coefficient, high electrical conductivity and low thermal conductivity
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are required.
Thus, it is fundamental to optimize a series of conflicting parameters.
Metals own a high electrical conductivity, but their Seebeck coefficient is
very low (only a few mV/K). S is much larger for semiconductors (typically
a few 100 mV/K) [79]. Furthermore, their σel, which is several orders of
magnitude lower than the metals’ one, can be improved by doping. Hence,
good material candidates for thermoelectricity are highly doped semicon-
ductors with a narrow band gap.
Moreover, the most common approach to improve ZT embraces the mini-
mization of the phonon contribution to the thermal conductivity.
The heat flow is carried by a spectrum of phonons with widely varying wave-
lengths and mean free paths (from less than 1 nm to greater than 10 µm),
creating a need for phonon scattering agents at a variety of length scales.
Therefore, suitable thermoelectrics are crystalline materials that manage to
scatter phonons without significantly disrupting the electrical conductivity.
The ideal TE material behaves like a “phonon-glass electron-crystal”(Slack
1995). The electron-crystal requirement arises from the fact that crystalline
semiconductors provide the best electronic properties (Seebeck coefficient
and electrical conductivity). The phonon-glass requirement originates from
the need for as low a lattice thermal conductivity as possible.

During the past decades, it has been proved that low-dimensional or micro-
nano systems tend to exhibit better thermoelectric performance than tradi-
tional bulk materials [14, 91]. In fact, the thermal conductivity of these
nanostructures could be significantly lowered compared with their bulk
counterparts. Several ways have been tried to tune the phonon spectrum
and engineer the thermal properties of low-dimensional materials (via rib-
bon edges, grain boundaries, isotope composition, defect concentration, and
atomic-plane orientation).

0.3 Motivations and Goals

This thesis focuses on the computational study of the thermal transport
properties in bidimensional systems, in particular, graphene and single-layer
(SL) TMDCs. The first results, shown in Ch. 4, regard a comparison be-
tween the phonon dispersion relation and the lattice thermal conductance of
graphene, MoS2, WS2, MoS2 and WSe2. This first analysis is conducted on
pristine (defectless) materials and aims to understand the phonon transport
properties in ballistic regime.
Graphene is known for having extremely high thermal conductivity (2000-
5000 W m−1 K−1) and a low Seebeck coefficient. Hence it is a promising
material for heat removal applications, but not for thermoelectric devices.
However, the study of pristine graphene in this thesis is interesting for two
principal reasons: firstly because it is the most studied 2D material; it is the
model for understanding transport phenomena in a series of low-dimensional
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systems (e.g. carbon nanotubes). Secondly, graphene nanoribbons present
a gap due to size-confinement effects. This paves the way to their applica-
tion in thermoelectricity, provided that suitable ways are found to reduce
the high thermal conductivity.
Diversely, large Seebeck coefficient and low thermal conductivity were found
in SL TMDCs, both with computational simulations and experimental mea-
surements.
Theoretical estimates for the TMDCs’ thermal conductivity span from the
ultralow value of 3.9 W m−1 K−1 for WSe2 [102] to 33.6 W m−1 K−1 for MoS2

[57].
Experimental measurements on 2D systems are extremely complex due to
the dependence on a series of conditions, such as the particular measure-
ment technique, the sample’s quality, edge-roughness and interactions with
the substrate. This difficulty is reflected in different values reported in liter-
ature: for example, by utilizing micro-Raman thermometry, room temper-
ature thermal conductivity of 34.5± 4 W m−1 K−1[93] and 62.2 W m−1 K−1

[73] was measured for MoS2 monolayer flakes exfoliated by bulk crystal.

Because of the simple crystal structure of 2D materials and the increased
computational power, atomistic simulations are valuable tools to understand
the underlying phonon transport mechanisms and predict their thermal con-
ductivity. In order to study thermal transport in a crystal with periodic
lattice structure, one can model the lattice vibration and thermal conduc-
tivity from either real space or reciprocal space. In both the approaches,
the potentials or force-fields that describe the interatomic interactions are
essential.
In the real space approach, such as molecular dynamics (MD) simulations,
the thermal conductivity of the crystal is obtained by monitoring the move-
ment of each atom. In the classical MD simulations, empirical interatomic
potentials with simplified analytical expressions are used. They are usually
obtained by fitting only a few physical properties of the materials, such as
lattice constant, elastic constants or interatomic forces. As a matter of fact,
it is challenging to reproduce phonon properties accurately [22].
In the reciprocal space approach, the interatomic force-constants are com-
puted from first-principles (ab initio) by density functional theory (DFT)
calculations. The lattice vibrations are then decomposed to normal modes,
i.e. phonons in the quantum mechanics’ point of view. The contribution of
each phonon mode to the thermal conductivity is determined by the calcula-
tion of the phonon dispersion and the phonon scattering matrix [22]. Finally,
the thermal conductivity can be calculated by using the kinetic theory such
as Peierls-Boltzmann transport equation (PBTE) based method or with the
atomistic Green’s function (AGF) technique [96]. The Peierls-Boltzmann
approach is often applied within the relaxation time approximation. It con-
sists in a semi-classical theory with no quantum effects, which describes
scattering mechanisms by an effective relaxation time. This method is suit-
able to study diffusive transport, but it is impractical to analyse the spe-
cific contribution brought by different scattering mechanisms, as it occurs
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in presence of defects in the lattice.
The AGF technique is based on the Landauer formalism for transport in
ballistic or semiballistic regime. This method allows to fully investigate
scattering by a disordered distribution of defects in the lattice, since it re-
lies on ab initio calculations including realistic defects.

In this thesis, the interatomic force constants have been computed using
ab initio calculations, based on the SIESTA DFT package [71]. SIESTA
is both a method and its computer program implementation. It allows to
perform efficient electronic structure calculations and ab initio molecular
dynamics simulations of molecules and solids. SIESTA’s efficiency stems
from the use of strictly localized basis sets and from the implementation of
linear-scaling algorithms which can be applied to suitable systems.1

An introduction on DFT and on the main features to perform phonon cal-
culations with SIESTA is provided in Ch. 1. The transport properties have
been obtained using the AGF technique on the basis of the Landauer for-
malism, which is extensively described in Ch. 2.

This approach turned out to be fundamental to study the effect of a disor-
dered distribution of sulphur vacancies in SL MoS2. The aim in this part
was twofold: firstly to understand if the thermal conductance in presence of
sulphur vacancies is lower than in the pristine material; secondly to evaluate
the overall effect on the thermoelectric figure of merit by combining my anal-
ysis on the thermal conductance with the electronic properties computed
by Christophe Adessi. A similar study has been performed by Yongchun
Wang et. al. [87], who found that the lattice thermal conductivity of MoS2

nanoribbons is significantly suppressed by sulphur vacancies and substitu-
tional oxigens as well. It was also claimed that sulphur vacancies are helpful
to enhance the thermoelectric performance of MoS2. However, no ZT val-
ues were given in the paper to support this information. Moreover, the
study was based on non-equilibrium molecular dynamics and not on fully
ab intio calculations. Other works about the impact of sulphur vacancies
on the thermal conductivity of monolayer TMDCs are present in literature
[55, 94]. In these studies, which are based on first principles calculations
and on PBTE, the defective monolayers were generated by removing one
or two atoms in the simulated lattice. None of them evaluated the effect of
a realistic disordered distribution of vacancies, for which the AGF method
is required. The goal of the second part of this thesis is to examine the
figure of merit by changing the concentration of the defects and the length
of the samples. The analysis is based on a technique that allows to generate
random distributions of defects and to average over the data obtained for
different configurations.
This treatment, able to deal with disordered distribution of defects, is also

1SIESTA official web page: https://departments.icmab.es/leem/siesta/
SIESTA’s backronym is Spanish Initiative for Electronic Simulations with Thousands of
Atoms.

6



promising in the prospective of future studies. For example, a combination
of different kinds of defects can be inserted in the material, or the concen-
tration of defects can be tuned locally, with the purpose of finding better
and better strategies to achieve a good ”phonon-glass electron-crystal” be-
haviour via defect engineering.

The last part of the thesis is dedicated to the implementation of a method
to evaluate the effect of phonon-phonon Umklapp scattering on the ther-
mal conductivity. Taking inspiration from works published in literature
[28, 57, 7, 85], I proposed a mixed approach that combines the Landauer
formalism with the calculation of the phonon life time as it is done within
PBTE in relaxation time approximation. The scattering due to the rough-
ness of the boundary was included in a qualitative way as well. This method
is illustrated in details in Ch. 3. The main problem which has been faced
consisted in the calculation of the mode Grüneisen parameter, which char-
acterises the strength of the Umklapp phonon-phonon scattering and is
fundamental to evaluate the phonon life time according to the expression
given by Klemens [35]. This approach is based on the Landauer formalism;
hence, it is compatible with the AGF method, which is necessary to evalu-
ate the effect of scattering by defects and treat disordered systems.
This work has the merit to provide a technique to account for inelastic
scattering, which has never been done before by the team. Its reliability
has been tested by computing the thermal conductivity of graphene as a
function of the temperature and of the size of the sample. This study is
presented in Ch. 6.
Even if the recent availability of high quality single-layer graphene samples
has allowed for a high number of experimental studies [17], a large vari-
ety of estimates are reported in literature, spanning a rather wide range of
values between 1500 and 5000 W m−1 K−1 at room temperature. On the
theoretical side, the estimates are equally uncertain and vary in an even
larger range of κ between 1000 and 10000 W m−1 K−1 [48, 22].
The employed approach provided estimates in the same order of magnitude
of those reported in literature, therefore being able to treat the transition
between ballistic and diffusive regime.

7



0.4 Structure of the Thesis

This thesis is organised in two parts. The first one presents an overview of
the theoretical methods and of the formalisms which have been used. In
particular:

• In Chapter 1 a review of Density Functional Theory is discussed, paying
particular attention to the main features of the SIESTA method which
has been fundamental for the types of calculations performed. A de-
scription of the procedure employed to optimize the unit cell structure
is given. In addition, the main steps necessary in order to obtain the
phonon dispersion relation are examined.

• Chapter 2 focuses on the Landauer formalism to study transport phenom-
ena at the mesoscopic scale. A brief introduction gives an overview of the
relevant length scales to distinguish among different transport regimes.
The first part treats the case of electronic transport, deriving the formal-
ism to compute the thermoelectric transport coefficients, while the second
part deals with the transport of phonons. Great attention is devoted to
the meaning of the transmission function which is the key quantity of the
formalism. The two methods to compute the transmission are described
and compared: the first one is based on the direct calculation of the den-
sity of modes from the dispersion relation and can be applied to pristine
materials, the second one relies on the atomistic Green’s functions tech-
nique, which is essential to treat systems with a disordered distribution
of defects.

• In Chapter 3, one can find a detailed description of the method that I
have implemented in order to include the effect of phonon-phonon and
phonon-boundary scattering mechanisms in the derivation of the thermal
conductivity. A brief introduction discusses the Normal and Umklapp
phonon-phonon scattering processes. Then, the procedure to compute
the phonon mean free paths and evaluate the transmission coefficient is
examined; a key point regards the calculation of the mode Grüneisen
parameter. A final section is dedicated to explain the differences of the
approach used in this thesis with others presented in literature.

In the second part of the thesis the results of the calculations are presented:

• In Chapter 4 the thermoelectric transport properties of graphene and
TMDCs (MoS2, WS2, MoSe2, WSe2) are investigated. The electronic
band structure and the density of states of these materials are calcu-
lated as first step. Furthermore, the phonon dispersion relations and the
phonon density of states are discussed. Afterwards, the phonon transmis-
sion is computed. Finally, the curves of the ballistic thermal conductance
per unit width as a function of the temperature are presented and com-
pared.
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• Chapter 5 aims to evaluate the impact of a disordered distribution of
sulphur vacancies on the lattice thermal conductivity of MoS2. By using
the atomistic Green’s functions technique, two analyses are shown: the
first one considers a variable concentration of vacancies with fixed length
of the device; the second one takes into account different lengths of the
device by keeping the concentration of vacancies constant. Furthermore,
the information regarding the lattice thermal conductivity are combined
with the electrical properties in order to obtain the thermoelectric figure
of merit of the considered systems.

• In Chapter 6, the method introduced in Chapter 3 is applied in the case
of graphene in order to include phonon-phonon Umklapp scattering and
phonon-boundary scattering in the calculation of the thermal conduc-
tivity. Before achieving the final results, all the steps of the method
are presented, showing the calculations of phonon group velocities, mode
Grüneisen parameter, phonon life times and mean free paths.

Finally the conclusions of these studies are summarized in Chapter 7.
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Part I

Theoretical Methods
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Chapter 1

The SIESTA method for ab
initio calculations

This chapter describes the procedure used to perform calculations with
SIESTA [71, 2], aiming to compute the electronic band structure and the
phonon dispersion relation of materials from first principles. The first sec-
tion provides an introduction to density functional theory (DFT) and ex-
plains the main features of the SIESTA method with respect to other pro-
grams for DFT calculations.
In addition, the main steps necessary to compute electronic and phononic
properties will be discussed.

1.1 Introduction to Density Functional The-

ory

The aim of a theoretical ab initio study is to describe properties of matter
starting from fundamental principles and without empirical input.
To investigate the steady state electronic and vibrational properties of ma-
terials, the first step consists in solving the many-body time-independent
Schrödinger equation that, in non-relativistic approximation, is written as
follows:

ĤΨ
(
{xi}, {Rα}

)
= EΨ

(
{xi}, {Rα}

)
(1.1)

where xi represents the coordinates of electron i (both spatial coordinates ri
and spin1 coordinates σi), Rα are the spatial coordinates of nucleus α and Ĥ
is the many-body hamiltonian, which takes into account all the interactions:

Ĥ = T̂e + T̂n + V̂e−n + V̂n−n + V̂e−e (1.2)

with2:

1In this thesis, spin is considered purely to include the Pauli exclusion principle in
the computation of the density of states. In absence of magnetic fields, the dependence
on spin of the transport properties studied can be neglected with good approximation.
Thus, the spin coordinates will be left out hereafter to simplify the notation.

2Energies expressed with the CGS system of units.
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T̂e = −
∑
i

~2

2me

∇2 kinetic energy operator for the electrons

T̂n = −
∑
α

~2

2Mn

∇2 kinetic energy operator for the nuclei

V̂e−n = −
∑
i,α

Zαe
2

|ri −Rα|
electron-nuclei interaction

V̂n−n =
1

2

∑
α 6=β

ZαZβe
2

|Rα −Rβ|
nucleus-nucleus interaction

V̂e−e =
1

2

∑
i 6=j

e2

|ri − rj|
electron-electron interaction

Since the studied systems are infinite crystals, the electronic wave function
must respect Bloch’s theorem. The Schrödinger equation must be solved
with appropriate boundary conditions, which for a regular bulk solid are
typically the Born-Von Karman periodic boundary conditions.
Once the problem has been solved, knowing the many-body wave function,
it is possible to compute the expectation values of all the thermodynamic
observables:

〈Â〉 =
〈Ψ|Â|Ψ〉
〈Ψ|Ψ〉

=

∫
Ψ†ÂΨdrdR∫
Ψ†ΨdrdR

(1.3)

The total energy, which is a functional of the many-body wave function, is
the expectation value of the hamiltonian:

E[Ψ] = 〈Ĥ〉 =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

(1.4)

It is worth to note that the ground state energy, E0 can be obtained by
diagonalization of the eigenvalue problem solving (1.4), but also by min-
imization of the energy functional, according to the variational principle
[20]:

E0 = min
Ψ
E[Ψ] (1.5)

This second method is useful to compute the ground state properties of the
system when the exact many-body wave function is unknown. In fact, the
many-body Schrödinger equation can be solved analytically only for two
particles or for the harmonic oscillator; furthermore, numerical solutions
are possible only for systems of very few particles. Thus, the challenge is to
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deal with the complex many-body problem by introducing suitable approx-
imations, which will be demonstrated in the following paragraphs.

Firstly, within the adiabatic (or Born-Oppenheimer) approximation, the
nuclei can be considered as “frozen” in their equilibrium position3. This
allows to decouple the electronic and nuclear degrees of freedom. [20]
Hence, the total wavefunction Ψ is taken as the product of two independent
contributions of the electrons and the nuclei:

Ψ(r,R) = ψe(r|R)φn(R) (1.6)

with the nuclei coordinates acting as parameters in the electronic wave func-
tion expression4.
Therefore, the full many-body Schrödinger equation is reduced to two in-
dependent equations for the electrons (1.7) and the nuclei (1.8):

Ĥe(r|R)ψe(r|R) = Ee(R)ψe(r|R),

Ĥe(r|R) = T̂e−e(r) + V̂e−e(r) + V̂e−n(r|R)
(1.7)

Ĥn(R)φ(R) = Etotφ(R),

Ĥn(R) = T̂n + V̂n−n(R) + Êe(R)
(1.8)

In this way, given a static configuration of the nuclei, the Schrödinger equa-
tion for the electrons (1.7) is solved. At this point, the electronic energy
Ee(R), coming from the solution of the electronic problem, is inserted in
(1.8), where it acts as a mean potential generated by the electrons.
It should be noted that the energy eigenvalue Etot represents the total en-
ergy of the system, including nuclear and electronic contributions.

In order to deal with the electron-electron interaction term in the electronic
hamiltonian, different approaches have been tried, such as the Hartree-Fock
method, Perturbation Theory and Density Functional Theory (DFT).
The main feature of DFT consists in passing from solving the Schrödinger
electronic problem with respect to the many-electron wave function ψe(r|R)
to considering all the properties of the systems as unique functional of the
ground state electron density n(r). This provides an efficient and general
method to treat the many-body electron-electron interaction potential. The
fundamental of this approach lies in the first theorem of Hohenberg-Kohn
(H-K) [25], which proves that, given a system of interacting electrons in an
external potential Vext(r) (equivalent in our case to the nuclei electrostatic
potential V̂e−n), there exist a one to one correspondence between the ground

3Because of the nucleus-electron difference in mass and the conservation of total linear
momentum, the nuclei kinetic energy term T̂n in (1.2) becomes negligible when one wants
to evaluate its effect on electrons dynamics.

4The key point of the demonstration is that the nuclei coordinates act as parameters
in the electron-nuclei potential: V̂e−n(ri,Rα)→ V̂e−n(ri|Rα). [20]
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state electron density n(r|R) and the external potential up to a trivial
additive constant. Moreover, the second theorem of H-K [25] states that
the ground state many-body wave function is a unique functional of the
ground state electron density, valid for any number of particles and any
external potential:

ψ0 = ψ[n0] (1.9)

Therefore, any observable can be written as a density functional:

O[n] = 〈ψ[n]|Ô|ψ[n]〉 (1.10)

and in particular the total electronic energy reads:

E[n] = 〈ψ[n]|Ĥe|ψ[n]〉 = F [n] +

∫
Ve−n(r|R)n(r|R)dr (1.11)

where F [n] = 〈ψ[n]|T̂e + V̂e−e|ψ[n]〉 is a universal functional, in the sense
that it only depends on the nature of the electron-electron interaction po-
tential.

From this remarkable result, using the variational principle (1.5), it fol-
lows that minimization of E[n] with respect to variations of the density
would determine the exact ground state density n0 and ground state energy
E0 = E[n0].

At this point, it must be noted that the universal functional is unknown,
because it depends on the nature of the interaction among particles.
The milestone Kohn and Sham (K-S) ansatz [36] comes to the rescue of this
impasse, giving an approximation method5 for treating an inhomogeneous
system of interacting electrons. This ansatz states that, instead of solving
the complex interacting problem, it is possible to consider a gas of non-
interacting particles in an effective potential:

V̂eff = V̂e−n + V̂H + V̂xc (1.12)

where the classical electron-electron Coulomb interaction is contained in the
Hartree potential:

V̂H =

∫
n(r′)

|r− r′|
dr′ (1.13)

and all the non-trivial parts are recast in the exchange-correlation potential,
defined as:

V̂xc(r) =
∂Exc[n]

∂n(r)
(1.14)

This allows to rewrite the H-K functional (1.11) as follows:

EK−S[n] = Ts[n] +

∫ {
Vext(r)n+ EH [n] + Exc[n]

}
dr (1.15)

5The method is exact for systems of slowly varying or high density, but errors can
occur due to rapid variation of density and boundary effects for finite systems. [36]
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where Ts is the Kohn-Sham kinetic energy of the fictitious non-interacting
system and Exc is the unknown exchange-correlation energy term, which is
assured to be an universal functional by the H-K theorems.
As a result, given an effective external potential, the electron density of
the complex interacting system is found by the solution of an auxiliary
one-electron Schrödinger equation, the Kohn-Sham equation:(

− ~2

2me

∇2 + V̂eff [n(r|R)i]
)

︸ ︷︷ ︸
Ĥe

ψi[n(r|R)i] = εiψi[n(r|R)i] (1.16)

According to the Aufbau principle, the electron density can be computed:

n(r|R) =
∑
i

fFD(µ− εi)|ψi(r)|2 (1.17)

where fFD is the Fermi-Dirac distribution and µ is the Fermi level.

These two equations are interdependent and they must be solved in a self-
consistent way, as described in the following steps and schematised in fig.
1.1:

1) An initial guess is made for the electron density n(r|R)

2) The effective potential is computed as function of the electron density

3) The K-S equation is solved for the given V̂eff

4) The final electron density is computed by averaging the square modulus
of the eigenstates of the K-S equation, with weights given by the Fermi-
Dirac distribution.

5) The new density is inserted in the energy functional (1.15), which must
be minimized. If the difference between the evaluation of this functional
for the initial and final density lies within an acceptable tolerance value
δE, the ground state density has been found and all the properties can
be computed as (1.10). Otherwise, a new configuration is obtained by
mixing the two previously calculated densities and a new loop starts.

1.1.1 Exchange-Correlation Functional

In the previous section, the general structure of a DFT calculation, based
on solving the K-S equation in a self-consistent way, was shown. What
still needs clarification is the expression of the exchange-correlation (xc)
potential (1.14), containing all the unknown terms which allow to handle the
many-body problem by solving the much easier one-electron K-S equation.
If the exact dependence of the exchange-correlation energy upon the electron
density was known, this method would predict the exact ground-state energy
and density of a many-electron system. In practice approximations are
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Figure 1.1: Flow diagram of the self-consistent field (SCF) procedure.

needed.
The most popular functionals have a form appropriate for slowly varying
densities [58]: the local density approximation (LDA)

ELDA
xc =

∫
nεunifxc (n)dr (1.18)

and the generalized gradient approximation (GGA)

EGGA
xc =

∫
f(n,∇n)dr (1.19)

LDA approximation relies on the assumption that at each point in the sys-
tem, the xc energy is given by the xc energy of an homogeneous electron
gas with density equal to the local density [36]. While this model works
well with some solids, it is problematic with localised charge distributions,
due to the presence of defects.
An improvement is brought by the GGA, where the xc potential is a func-
tional of the density and of the gradient of the density as well. In most
cases it tends to overcompensate LDA [31, 58].
Other hybrid methods have been tried (for more details see reference [16]).
All the calculations that will be shown in this work have been performed un-
der the generalized gradient approximation of Perdew, Burke and Ernzerhof
[58]. The choice between GGA and LDA is solely based on the comparison
with experimental results.
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1.1.2 The Supercell Approach

Translational invariance in crystals allows to fully describe the properties
of the whole system by considering only the unit cell subjected to Born-
Von Karman periodic boundary conditions. However, one should be careful
when dealing with defects, since their distribution in the material will result
periodical as well.
For this reason, the primitive cell must be extended (“supercell approach”)
in such a way that, after a certain distance from the defect, the atoms will
show the same spatial distribution of the pristine material and will feel the
same forces.

A similar concept is at the base of the treatment of 2D materials too. In fact,
SIESTA automatically applys periodic boundary conditions in the three
dimensions of space. Since the third dimension is automatically considered
also for 2D systems, the unit cell must include a vacuum region in the out
of plane direction (fig. 1.2). This vacuum region should be large enough
that periodic images, corresponding to adjacent replicas of the supercell, do
not interact significantly.

Figure 1.2: Representation of the unit cell of graphene for DFT calculation (yellow
area). The top view (left) displays the usual primitive cell for graphene. The side view
(right) shows instead the presence of a primitive vector in the out-of-plane direction,
a3, which is much longer than a1 and a2. Hence, this is a supercell in which the
vacuum region is included to avoid interactions between the replicas of the graphene
sheets along z that are a consequence of the periodic boundary conditions. If the
vacuum was not be included, the system studied would be graphite.

1.1.3 Basis and Pseudopotentials

In order to solve the one particle Kohn-Sham equation 1.16, the eigenvectors
must be expanded in terms of a basis made of an appropriate set of functions
with known properties: ψi(r) =

∑
j cijφj(r).
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An expansion in a basis set of orthogonal plane waves, characterised by a
wave vector k, is one of the most convenient and used choices, which profits
of the periodicity of the crystal via the Bloch’s theorem:

φi,k(r) =
∑
q

ci(q)
1√
Ω
ei(k+q)·r (1.20)

where the sum is extended over all the reciprocal lattice vectors q and the
ci(q) are the expansion coefficients.
Many DFT methods use several different kinds of bases, like Augmented
Plane Waves (APW), Muffin-Tin Orbitals (MTO), Gaussians, Slater type
orbitals and others. Calculations in this thesis were performed with SIESTA,
which uses localised atomic orbitals as basis set. This choice is valuable
when dealing with interfaces, defects and in case of 2D systems, where
many additional plane waves would be necessary to describe the vacuum.

The reason why plane waves methods are the most common is that they
have the advantage of being asymptotically complete and allowing system-
atic convergence. However, a large number of plane waves per atom are
needed to achieve a good accuracy. This affects the computation time,
which for most codes scales as N3, where N is the dimension of the basis.[5]
Therefore, the expansion has to be truncated in such a way to include only
plane waves with associated kinetic energy lower than a cutoff energy Ecut.

Furthermore, to reduce the computational cost, the rapid oscillations of
the potential close to the nuclei are treated with pseudopotentials. The
pseudopotential is an effective potential constructed to replace the atomic
all-electron potential so that core states are eliminated and the valence elec-
trons are described by pseudo-wavefunctions with significantly fewer nodes.
This allows for the pseudo-wavefunctions to be described with far fewer
Fourier modes, thus making plane-wave basis sets practical to use [16].
There are several kind of pseudopotentials. Methods based on plane waves
usually employs ultra-soft pseudopotentials. Within SIESTA, norm-conserving
pseudopotentials are used, which are characterised by the following desirable
properties: [23]

1) Real and pseudo valence eigenvalues match for a chosen atomic configu-
ration.

2) Real and pseudo atomic wave functions match beyond a chosen “core
radius” rc.

3) The integrals from 0 to r of the real and pseudo charge densities match
for r > rc, for each valence state (norm conservation).

4) The logarithmic derivatives of the real and pseudo wave function and
their first energy derivatives agree for r > rc.

Properties (3) and (4) are crucial for the pseudopotential to have optimum
transferability among a variety of chemical environments.
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Figure 1.3: Comparison of a wavefunction in the Coulomb potential of the nu-
cleus (blue) to the one in the pseudopotential (red). The real and the pseudo
wavefunction and potentials match above a certain cut-off radius rc. From
https://en.wikipedia.org/wiki/Pseudopotential

Why SIESTA?

As mentioned above, methods based on plane waves are less efficient for 2D
systems, where several additional basis functions are needed to reproduce
the vacuum.
Moreover, for the systems studied in this thesis, the presence of defects
breaks the perfect translational symmetry of the crystal, implying the need
for a further extension of the basis set.
For these reasons, the SIESTA method was used. In fact, SIESTA is based
on finite-support numerical atomic orbitals, i.e. numerical solution of the K-
S hamiltonian for the isolated pseudo-atoms with the same approximations
(xc functional, pseudopotential) as for the condensed system. [2, 32]
The basis functions are composed of an angular and a radial part:

φi,nlm(r) = Ri,nl(|r|)Yi,lm
( r

|r|

)
(1.21)

where Y are the well-known spherical harmonics and R a radial function
that becomes 0 beyond a critical radius rc.
Analytical operations are possible for the angular part, while for the radial
terms they are performed in the reciprocal space using a finite mesh. [5]
In addition, Troullier-Martin norm-conserving pseudopotentials are employed.
[71, 80]
This has the advantage to require a very small number of basis functions,
resulting in reduction of CPU time and memory6.

6SIESTA was also implemented to be an Order-N method [5], for which the computa-
tional load scales linearly with the system size. Since a large number of plane waves per
atom are needed to achieve high accuracy, a plane wave basis set would be intrinsically
inadequate for Order-N scaling.
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The major drawback consists in a lack of systematic, since there is not a
unique way to enlarge the basis set. [5, 30] As a consequence, physical
understanding and convergence tests are necessary to search for a suitable
basis set before focusing on a realistic project.
In fact, to model correctly the changes which occur to the electronic struc-
ture on formation of bonds in the condensed system, variational freedom
for the valence electrons is required both for the radial and the angular
parts. Thus, the following features have to be wisely chosen to optimize the
efficiency-accuracy dichotomy: [2, 32]

• The size, i.e. the number of atomic orbitals per atom. The radial func-
tions in a given angular momentum channel can be increased (known as
multiple zeta), so that one radial channel is notated Sζ (“double-zeta”)
and two radial channels Dζ (“double-zeta”).
Moreover, angular flexibility is obtained by adding shells of higher angu-
lar momentum than the valence states, resulting in the so-called polarized
atomic orbitals. Another way to obtain polarized orbitals is to apply a
small electric field. [71]

• The range of the radial function, which depends on the critical radius rc.
A strict localization of the basis functions is ensured either by imposing
a boundary condition, by adding a confining (divergent) potential, or by
multiplying the free-atom orbital by a cutting function. [32]
It is worth to note again that the localized extension of the radial part
results in a remarkable reduction of the computational time. In particu-
lar, the numerical cost to deal with the vacuum surrounding 2D systems
becomes almost free with this basis choice.

• The radial shape, which must keep the consistency between the pseu-
dopotential and the form of the pseudoatomic orbitals in the core region.
This is done by using as basis the orbitals coming from the solutions of
the same pseudopotential in the free atom. The shape of the orbitals at
larger radii depends on the cutoff radius (see above) and on the way the
localization is enforced. [32]

The optimizations of pseudopotentials and basis parameters were performed
by Christophe Adessi. The electronic band structure and the phonon dis-
persion relation of MoS2, which were computed in this thesis with SIESTA,
were compared with calculations performed by Silvana Radescu7 using the
VASP package, which is based on plane waves. The match between the
calculations testified the reliability of the analysis performed in this work
with SIESTA.

7Private communication
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1.2 Structure Optimization and Electronic

Band Structure Calculation

At this point, the process to optimize the input structure of the unit cell will
be discussed. The key point consists in varying the location of the nuclei in
the lattice in order to minimize the energy functional (1.15) with respect to
the nuclei positions.
The procedure consists in the following steps:

1) By virtue of the Bloch’s theorem, the starting input consists only in the
data of the unit cell structure, which is built knowing the chemical com-
position of the system (types and number of atoms) and from a rough
enough knowledge of the nuclei positions in the lattice8.

2) A self-consistent field step is performed. As a result, n0(r|Ri), Ĥe(n0),
EK−S

[
n0

]
are known for the given set of nuclei positions Ri.

3) According to the Hellman-Feynman theorem [15], the atomic forces and
stresses are obtained by direct differentiation of the energy expression:

FI = −∂EK−S
∂RI

(1.22)

σαβ =
∂EK−S
∂εαβ

(1.23)

where the subscript I stands for the I-th nucleus and εαβ are the strain
tensor elements.

4) The values of the atomic forces and the stresses are compared to tolerance
values (typically F ∗ = 10−4 eV/Å for the forces and σ∗ = 0.1 MPa for
the stresses). If they are greater than the tolerance values, a Conjugate
Gradient (CG) iteration starts as described at point 5. Otherwise the
given configuration corresponds to the optimized structure.

5) The CG method is a technique that allows to update all the nuclei position
simultaneously. This is done by moving the atoms along the direction of
an energy gradient which is constructed to be conjugate to the directions
of all the previous iterations. The convergence to the energy minimum
employing the CG method is much more rapid than using the simpler
Steepest Descent approach, for which atoms are moved along the local
steepest gradient.[54, 67]
Once obtained a new set of coordinates Ri+1, another iteration starts
from point 2).

8These data can come from literature, experimental results or previous calculations.
It should be noted that an ideal perfectly symmetrical arrangement of the atoms does
not correspond to the minimum of the energy functional. This is related to the intrinsic
error due to the discretization of the space in numerical calculations (“eggbox effect”).
Therefore, structure optimization is always required with a target accuracy so that the
eggbox effect becomes negligible.
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The procedure described above is outlined in fig. 1.4.

Figure 1.4: Flow diagram of the procedure to optimize the structure of the unit cell.

The Monkhorst-Pack scheme [45] is used to set the mesh-grid to compute
quantities in the reciprocal space. For solving integrals in direct space the
mesh is specified by an energy cutoff value. The number of k-points and
the energy cutoff have been chosen in order to obtain a full convergence of
the calculations (typically 10x1x10 k-points and 600 Ry, respectively).
Technical details on the simulation parameters can be found on the SIESTA
User’s Guide, available on the official webpage of SIESTA 9.

At the end of this structure relaxation phase, the ground state electronic
Hamiltonian Ĥe of the system is known with accuracy. By diagonalization
of Ĥe, SIESTA provides the electronic band structure, the density of states
(DOS) and the projected density of states (PDOS)10.

9https://departments.icmab.es/leem/siesta/Documentation/Manuals/siesta-4.0.pdf
10The projected density of states gives information on the contribution to the DOS of

the states of each atom of the basis. It does not have to be confused with the phonon
density of states.
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1.3 Calculation of the Phonon Dispersion Re-

lation

This section is devoted to the calculation of the phonon dispersion relation,
which is the starting point to derive the thermal transport properties within
the Landauer Formalism.

Previously it was demonstrated how to obtain the electronic ground state
density, n(r|R) related to a fixed ionic configuration R. A key point in the
derivation consisted in the separation of the electronic and nuclei problems
thanks to the adiabatic approximation, which allows to consider the elec-
trons in their ground state for any instantaneous ionic configuration.
In crystals, the atoms are not frozen and they move around their mean
equilibrium positions Ra

k with displacements uakα, where a and k are the
labels of unit cells and atoms of the basis respectively, α = x, y, z is one of
the three cartesian directions (see fig. 1.5).

Figure 1.5: Representation of atom displacement in a generic lattice. The central
orange cell is the unit cell of reference. The ensemble of the nine cells, orange and
blue, constitutes a 3x3 supercell for phonon calculation.

The interactions among ions of the lattice are treated as a system of cou-
pled oscillators with a total potential energy Etot, which includes nuclear
and electronic contributions (see eq. 1.8). With small displacements at con-
stant volume, the problem of atomic vibrations can be solved in harmonic
approximation, expanding the potential around the equilibrium position
and arresting the expansion at second order:

Eharm
tot

(
{Ra

k(t)}
)
≈ Etot

(
{Ra

k}
)

+
∑
akα

∑
bk′β

1

2

(
∂2Etot

∂uakα∂u
b
k′β

)
uakαu

b
k′β (1.24)

The second derivatives of the energy coupling constants are defined as the
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interatomic force constants:

Ckα,k′β =

(
∂2Etot

∂uakα∂u
b
k′β

)
(1.25)

They must satisfy a number of conditions that arise from

• isotropy of space

• point group symmetry

• translation invariance upon displacement of the lattice by an arbitrary
lattice constant

From this last property it follows that the second derivative of the energy
can only depend on the distance between cells a and b:

∂2Etot
∂uakα∂u

b
k′β

=
∂2Etot

∂u0
kα∂u

b−a
k′β

(1.26)

The motion of the ions is ruled by classical Newton’s equations:

Mk
∂2uakα
∂t2

= −E
harm
tot

∂uakα

= −
∑
bk′β

(
∂2Etot

∂uakα∂u
b
k′β

)
ubk′β

(1.27)

For each atom there are three equations of motion of this type, one for each
cartesian direction. These equations are coupled. In order to know the
displacement of atom k, in unit cell a, along cartesian direction uakα, it is
required the displacement of atom k′, in unit cell b, along cartesian direction
ubk′β.

In order to solve the system a first ansatz is introduced regarding the tem-
poral dependency of all the displacements. Hence, one seeks for general
solutions of the form e−iωλt, being λ the index of mode:

uakα(t) = ηaλ(kα)e−iωλt (1.28)

For periodic structures, it is possible to write the displacements in terms of
a plane wave with respect to cell coordinates11:

uakα(t) = ηλq(kα) eiq·Ra e−iωλqt (1.29)

In contrast to a normal plane wave, this wave is only defined at the lattice
points.

11In order to avoid a confusion with the notation of the atoms of the basis, the reciprocal
space vectors will be denoted by q
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ηλq(kα) is the component along direction α of a vector called the polariza-
tion vector of the normal mode.
Inserting the ansatz solution in the equation of motion 1.27, and consider-
ing the translation invariance for the interatomic force constants, leads to
:

Mk ω
2
λq ηλq(kα) =

∑
k′β

[∑
b

Ckα,k′β(0, b) eiq·Rb

]
ηλq(k′β) (1.30)

The term in brackets is the discrete Fourier transform of the interatomic
force constant in real space. Therefore, the movement of the atoms can be
defined in terms of the following dynamical equation:

Mk ω
2
λq ηλq(kα) =

∑
k′β

C̃kα,k′β(q) ηλq(k′β) (1.31)

For each q vector, we have a linear homogeneous system of equations.
We can recover a standard eigenvalue problem redefining the displacements
in eq. 1.29 by incorporating the square root of the mass:

uakα(t) =
1√
Mk

γλq(kα) eiq·Ra e−iωλqt (1.32)

In this way, the dynamical equation reduces to:∑
k′β

D̃kα,k′β(q) γmq(k′β) = ω2
λq γλq(kα) (1.33)

where the dynamical matrix is defined as:

D̃kα,k′β(q) =
1√

MkMk′
C̃kα,k′β(q)

=
1√

MkMk′

[∑
b

Ckα,k′β(0, b) eiq·Rb

] (1.34)

In matrix form:[
D̃(q)

] (
γ(q)

)
= ω2(q)

(
γ(q)

)
Dynamical Phonon Phonon Phonon

matrix eigenvectors frequencies eigenvectors

(3Nb × 3Nb) (1× 3Nb) (1× 3Nb)

The dynamical matrix represents the key quantity in the computation of
phonon properties. Through its diagonalization the phonon eigenfrequencies
and eigenvectors are found.
From eq. 1.34, it is possible to compute the dynamical matrix for every
q-point knowing the force constants matrix in real space, which reads:

Ckα,k′β(0, b) =

(
∂2Etot

∂u0
kα∂u

b
k′β

)
= −

∂F b
k′β

∂u0
kα

(1.35)
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The forces acting on each atom when they are all in their equilibrium posi-
tion is known by the standard calculation of the electronic hamiltonian and
electronic density via the procedure explained in the previous section.
The force constants are computed using a simple finite difference formula.
Hence, to find the interatomic force constant Ckα,k′β(0, b), one has to dis-
place the atom k in the unit cell 0 along direction α, and repeat the SCF
procedure for the displaced atomic configuration. From the new electronic
density, the forces acting on each atom are computed. Finally, the deriva-
tive in eq. 1.35 is computed by finite differences, allowing to evaluate how
the force on atom k′ in unit cell b along direction β changes upon the dis-
placement u0

kα .

1.3.1 Supercell for Phonon Calculation

In principle, the atoms in the unit cell 0 should be displaced one by one in
all the three cartesian directions to account for variations in the forces with
all the atom of the crystal. From a practical point of view, the values of the
force constants matrix in real space decay with the distance between the
atoms. Hence, the sum over b in eq. 1.34 can include only a given number
of distant neighbours.
This is done by defining a supercell through the repetition of the primitive
cell to create adjacent replicas. All the distant neighbours, with no negligible
forces with the central primitive cell, must be included (see fig. 1.5). The
range in real space in which the force constants matrix decays to zero varies
widely from system to system, depending on the structure of the unit cell.
This is why the size of the supercell used will be indicated for each system
studied in the Results part.
Provided that the main time cost for running DFT calculations is associated
to the SCF procedure, which scales with the number of atoms of the systems,
it follows that a phonon calculation is much more time demanding because
it requires the use of a supercell. This supercell is different from the one
mentioned in section 1.1.2, when speaking about the optimization of the
unit cell in presence of defects. The study of phonons in systems with
defects requires in fact a “supercell of the supercell” (see fig. 1.6). As
a consequence, calculations become very time demanding when studying
systems with defects. Furthermore, a supercell built for dealing with a
realistic disordered distribution of defects would consist of millions of atoms,
making any calculation impracticable. For these systems it is necessary to
use the Green’s function technique, which will be introduced in the next
chapter. An analysis including disorder is presented in Ch. 5.2.
The procedure for computing the phonon dispersion is implemented within
SIESTA in a suite called VIBRA [51]. In the next chapter it will be ex-
plained how to start from the dispersion relation to obtain the phonon
transport properties of the system, namely lattice thermal conductance.
All transport calculations performed in the team relies on codes developed
by Christophe Adessi, which are based on the VIBRA codes, but add further
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Figure 1.6: Example of the supercell needed to compute the phonon dispersion of
systems whose unit cell includes a defect (red triangle). The orange + green cells rep-
resent the supercell necessary to compute the electrical transport properties; namely
it is equivalent to the unit cell of the Structure Optimization procedure in the case
of no defects. The ensemble of orange + green + blue cells is instead the supercell
required for phonon calculations (”supercell of the supercell”).

routines such as the one to compute the transmission within the Landauer
formalism.
During my internship I have learnt how to use the open source package for
phonon calculation PHONOPY [75, 77]. This software contains functions
that are not implemented in VIBRA and which turned out to be useful for
the evaluation of phonon-phonon inelastic scattering. One disadvantage is
the need to interface it with SIESTA.
My work consisted in understanding how to use a combination of SIESTA
for the DFT calculation and of PHONOPY to compute quantities such as
phonon group velocities and the Grüneisen parameter (more information
will be provided in Ch. 3 and 6).
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Chapter 2

Transport of Electrons and
Phonons at the Mesoscopic
Scale: The Landauer
Formalism

2.1 Relevant Length Scales

In order to study the thermoelectric properties of a material, the charge and
heat transport phenomena must be investigated. Different models are avail-
able to describe the transport mechanisms and refer to different regimes.
Important features of these transport regimes can be understood by com-
paring the length scales of the carriers with the device dimension.

Concerning electron transport, the relevant length scales are the following [44]:

• The De Broglie wavelength λDB, which in a semiconductor with effective
mass m∗ is defined as:

λDB =
2π~√
2m∗E

(2.1)

• The mean free path of the electrons between two elastic collisions Λel.
Elastic scattering is due to collisions with static defects. An essential
property of an elastic collision is that it changes the momentum k of the
carrier, but does not destroy its phase. Therefore the quantum coherence
of the electron motion is maintained.

• The mean free path between two inelastic collisions Λin.
Inelastic scattering is associated to dynamics alteration of the the perfect
periodicity of the lattice. It is the case of electron-phonon scattering and
electron-electron scattering. These processes change the momentum of
the carriers and introduce a random phase.
Hence, inelastic collisions destroy the coherence of the electron motion.
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An analogous classification is provided for phonons, whose wavelength is:

λph =
2π vg
ω

(2.2)

where vg = dω(q)
q

is the phonon group velocity.
Also phonons may lose their phase after inelastic scattering events, such as
Umklapp phonon-phonon scattering, phonon-impurity scattering and dif-
fusive phonon-boundary scattering. These scattering mechanisms are said
“incoherent ”, in contrast to “coherent scattering ” like phonon-phonon Nor-
mal scattering in which the phase is preserved1. Most of the conventional
approaches to reduce thermal conductivity, such as introduction of rough
surface and impurity scatterings, are based mainly on incoherent mecha-
nisms by shortening the mean free path of phonons [92].

These lengths characterising the motion of the carriers, must be compared
with the sizes of system. If the sizes of the system are macroscopic (L >> Λin),
the transport will be diffusive, due to the presence of both elastic and in-
elastic scattering mechanisms. This case corresponds to the classic regime,
in which charge and heat conduction are effectively described by Ohm’s and
Fourier’s law respectively.
Diversely, if the system dimensions are comparable to λDB and λph, quan-
tum mechanical effects, like tunneling, arise. This is the quantum regime.
The intermediate regime, for which Λin > L > λDB, is called mesoscopic
regime.

Furthermore, in the case where no scattering events occur during the trans-
port (L << Λin), the regime is called ballistic, otherwise it is diffusive.
Diffusive transport has been often described by the Boltzmann transport
equation (BTE) and simplifications of it, such as drift-diffusion equation for
electrons or Fourier’s Law for phonons [27].
A physically insightful description of ballistic transport is provided by the
Landauer approach, which has been widely used to describe quantized elec-
trical and thermal transport in nanostructures. Moreover, it is nowadays
well recognised that the Landauer approach describes diffusive transport as
well and provides a simple way to treat the ballistic to diffusive transition
[27].

This chapter is devoted to the study of electrons and phonons transport at
the mesoscopic scale based on the Landauer approach. This formalism will
be introduced following as guideline the description made by S. Datta in
the book “Quantum Transport: Atom to Transistor” (ref. [11]).
The dissertation will be divided in two parts: the first will focus on the
calculation of the electrical conductance and the second on the thermal
conductance. The transport of phonons will be treated in analogy with the
formalism developed for electrons.

1Phonon scattering phenomena will be treated in Ch. 3
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2.2 Electronic Transport

2.2.1 Ballistic Transport in Small Dimensional Con-
ductors: Failure of the Ohm’s Law

What is the electrical conductance G of a wire if the contacts were perfect
and its length is reduced to very small dimensions? Based on Ohm’s law,
one may reply that the conductance will increase indefinitely as the length
of the wire is reduced, since the conductance is inversely proportional to
the length:

I = GV

G =
1

R
= σ

A

l

(2.3)

where l and A are the length and the section of the wire respectively and σ
is the electrical conductivity, which is an intrinsic property of the material.
Instead, it has been established experimentally [82] that, once the length
of a wire has been reduced sufficiently that an electron can cross the wire
without an appreciable chance of scattering (ballistic transport regime), the
conductance will approach a maximum value given by:

G = G0 M(E)|E=Ef (2.4)

where G0 is a fundamental constant given by G0 = q2/h = 38.7µS and
M(E) expresses the number of conductive modes, or subbands, at an en-
ergy E. The meaning of M(E) will be deepen soon.
This behaviour proves that, at the mesoscopic scale, a quantum mechan-
ical treatment is necessary and that Ohm’s laws are only valid when the
dimensions of the conductive channel are much greater than the length
characterising the inelastic scattering processes, Λin [44].

2.2.2 Conductive Modes

The general setup for the study the transport properties within the Lan-
dauer framework is schematised in figure 2.2.
The sample of the studied material is often called device and it is represented
by a channel between two contacts. The contacts, or leads, are semi-infinite
perfect conductors, acting as charge reservoirs. When a positive potential
is applied at the right lead, the electrons are injected into the device from
the left lead and collected by the right lead.
The scheme is similar to the structure of a field effect transistor (FET),
where the left and right leads are called source and drain respectively and
the channel is sandwiched between an insulator that is attached to the gate
contact.

In this thesis, the transport direction coincides with the z axis. The device
is characterised by a length Lz, a width Lx, perpendicular to the transport
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Figure 2.1: In [82], ballistic point contacts, defined in the two-dimensional electron
gas of a GaAs-AlGaAs heterostructure, have been studied in zero magnetic field. The
conductance changes in quantized steps of 2G0 when the width, controlled by a gate
on top of heterojunction, is varied. Up to sixteen steps are observed when the point
contact is widened from 0 to 360 nm. An explanation was proposed, which assumes
quantized transverse momentum in the point-contact region.
The figure shows the point-contact conductance as a function of gate voltage at
0.6K. The conductance presents plateaus at multiples of 2q2/h. From ref. [82].

Figure 2.2: General scheme of a system treated within the Landauer Formalism.
The sample to study (or device) is represented by a channel between two perfect
semi-infinite metallic contacts (also called “leads”).
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direction, and a thickness Ly. In 2D materials, the channel has the thickness
of few atomic layers, so that:

Ly ≈ nm << Lz, Lx ≈ µm

In the case of ballistic transport, Lz and Lx are short as well (Lz,x << Λin),
but since electrons can flow in and out the contacts, a bulk description can
still be used by applying cyclic periodic boundary conditions.
Therefore, the electronic band structure in the channel is described by a
dispersion relation of the kind E(kx, ky, kz), with kz and ky ranging contin-
uously in the first Brillouin Zone and with ky assuming quantised values
depending on the integer number ny

ky =
2π

Ly
ny

Such a system can be described as a quantum well where electrons are free
to move in the z-x plane and they are confined in the y direction. Hence,
the band structure for the channel displays 1D subbands, each having a 2D
dispersion relation E(kz,kx).
Within effective mass approximation, the dispersion relation close to the
bottom of the conduction band reads

Eny(kz, kx) = Ec + n2
yεy +

~2(k2
x + k2

y)

2m∗
, (2.5)

with

εy =
~2π2

2m∗L2
y

(2.6)

A representation of this subbands scheme is shown in fig. 2.3.
The key point is that each subband represents a conductive channel and
each of these gives a contribution equal to 2G0 to the total conductance 2.

The minimum spacing between two subbands is given by εy and it increases
quadratically with decreasing thickness of the device Ly. In the case of 2D
materials, made of few atomic layers, Ly has the dimension of few angstroms.
Hence, the spacing between two subbands is very big and only the first
subband (ny = 1) is usually occupied by electrons, while the bands corre-
sponding to ny > 1 are much higher in energy than the Fermi level 3.

One has to notice that this “subbands scheme” occurs in correspondence of
every valley in the first BZ, since each local minimum in the band structure

2The factor 2 is due to the spin degeneracy of each subband.
3In this thesis, the materials studied are graphene and monolayer TMDCs. They

are pure 2D systems made of a single-plane of atomic thickness Ly (1 atomic layer for
graphene and 3 atomic layers for TMDCs), but a 2D Brillouin zone, with the only kx
and ky as reciprocal vectors. This is mathematically equivalent to consider an infinite
spacing between two subbands, so that only the first one can be occupied. This approach
is useful to understand the concept of subbands and to extend this procedure to few layers
systems.
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Figure 2.3: Graphical representation of the first three subbands (ny = 1, 2, 3 ) given
by the dispersion relation of eq. 2.5 (Ec set to zero).

can be approximated by a parabolic dispersion relation. For this reason,
also in the limit of single-layer materials, many different subbands could be
occupied.
Therefore, a full band-treatment is necessary when the studied material
present a complex dispersion relation, with many local minima close in en-
ergy.

2.2.3 A Single Level Model

Figure 2.4: Flux of electrons into and out of a one level channel at the source and
drain ends.

At this point, the electronic transport will be investigated for a simplified
model in which the device has a band structure with a single conduction
subband.
An external battery lowers the energy levels in the drain with respect to the
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source, such that a constant difference in electrochemical potential is kept
between the two leads:

µ1 − µ2 = eV (2.7)

Being both the initial electrochemical potentials equal to µ0, after the ap-
plied bias they are:

µ1 = µ0 + eV
2

µ2 = µ0 − eV
2

(2.8)

For this specific non-equilibrium problem, it is assumed that the two con-
tacts are such large systems that they cannot be driven out of equilibrium.
Thus, each lead remains in local equilibrium with its electrochemical po-
tential. As a consequence, the contacts display two different Fermi-Dirac
distributions:

f1(E) = fFD(E − µ1) = 1
/[

1 + exp
(
E−µ1
kBT

)]
f2(E) = fFD(E − µ1) = 1

/[
1 + exp

(
E−µ2
kBT

)] (2.9)

The channel is forced into a balancing act between the two reservoirs. Con-
sidering the “one level system” in fig. 2.4, ε is the energy of the single state
which lies in between the electrochemical potentials of the two leads and N
is the average number of electrons in the device at the steady state. N is
expected to be in between f1(ε) and f2(ε) 4. It is possible to write the net
fluxes across the left junction:

I1(ε) =
qγ1

~
(f1(ε)−N), (2.10)

and the right junction:

I2(ε) =
qγ2

~
(f2(ε)−N) (2.11)

The fluxes are proportional to the difference between the Fermi-Dirac dis-
tribution at ε of the lead and N.
γ1/~ and γ2/~ are the rates at which an electron occupying the level ε in
the device will escape into the source and drain contacts respectively. γ1

and γ2 have the dimension of an energy and they are linked to the energy
coupling of the level in the device and the leads.
At the steady state there is not a net flux (I1 + I2 = 0). It follows that the
average number of electrons in the device is:

N =
γ1f1(ε) + γ2f2(ε)

γ1 + γ2

, (2.12)

which is a weight average of the Fermi-Dirac distributions of the leads, with
the weights given by the rates.
The steady state current is:

I(ε) = I1 = −I2 =
2q

~
γ1γ2

γ1 + γ2

[f1(ε)− f2(ε)], (2.13)

4Because of the Pauli principle and without considering the spin degeneracy, only one
electron can occupy the single energy state in the device.
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where the factor 2 comes from including the spin degeneracy.
The flow of a current is the result of the difference in Fermi distribution
between the leads. It is also clear that the process of conduction requires
the presence of states in between the electrochemical potentials of the leads.
For fully periodic systems (no defects), the couplings between the device and
both the leads can be considered the same, γ1 = γ2 = γ?. Equation 2.13
reduces to:

I(ε) =
qγ?

~
[f1(ε)− f2(ε)] (2.14)

In this case one could expect the conductance to increase indefinitely with
the energy coupling, since the current is proportional to γ?. This is not in
agreement with what was found experimentally and the reason lies in the
broadening of the energy level when coupled with the leads.

2.2.4 Broadening of the Energy Level

Figure 2.5: (a) A single level system with µ1 > ε > µ2. The density of state
in the device corresponds to a Dirac delta. (b) The process of coupling to the
channel broadens the energy level. The broadened DOS is represented by a Lorentzian
function centred in ε and of width γ.

The broadened DOS could in principle have any shape, but in the simplest
situation it is described by a Lorentzian function of unitary area and centred
in E = ε:

Dε(E) =
γ/2π

(E − ε)2 + (γ/2)2
(2.15)

The width of this Lorentzian is equal to the broadening γ. It turns out that
γ = γ1 + γ2

5.
The single “sharp” state can be found from 2.15 in the limit γ → 0, i.e in
absence of couplings:

Dε(E) −−→
γ→0

δ(E − ε) (2.16)

5This results from a quantum mechanical treatment where γ1 and γ2 represent the
coupling Hamiltonians of the device with source and drain respectively (Ch. 8 of reference
[11]).
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Hence, the expression of the current of eq. 2.13 has to be modified to
account for the broadened density of states. By integration over Dε(E)dE,
it results:

I =
2q

~

∫ +∞

−∞
dE Dε (E)

γ1γ2

γ1 + γ2︸ ︷︷ ︸
T̄ (E)

[f1(E)− f2(E)] (2.17)

This expression is exact and it can be solved once the coupling energies and
the DOS related to the broadening of the single level ε are known.
T̄ (E) is the transmission, the key quantity of the Landauer formalism, which
will be extensively investigated. It is often thought as the probability of
an electron to be transmitted from source to drain and it contains the
dependence on the band structure of the device and on the couplings with
the contacts.

2.2.5 Linear Response Approximation

To recover the I-V relation for this single level system, the “linear response”
approximation is used: the problem consists in considering the variation of
the current in the case of an applied bias V << µ0. In this limit, the Fermi-
Dirac distributions of eq. 2.9 can be Taylor expanded at the first order
as:

f1(E) ≈ f0(E) + (−∂f0
∂E

) (µ1 − µ0)

f2(E) ≈ f0(E) + (−∂f0
∂E

) (µ2 − µ0)

(2.18)

From 2.18 and 2.7 it follows that

f1(E)− f2(E) ≈
(
− ∂f0

∂E

)
qV (2.19)

Substituting this expression in the integral of eq. 2.17 and dividing by V
at both the sides, one finds the conductance for this single level system in
linear response approximation:

G =
I

V
=

2q2

~

∫ +∞

−∞
dE Dε(E)

γ1γ2

γ1 + γ2

(
− ∂f0

∂E

)
(2.20)

2.2.6 Low Temperature case

In the low temperature limit, kBT << E − µ0,

f1(E)→ θ(E − µ1)

f2(E)→ θ(E − µ2)
(2.21)

where θ is the Heaviside step function. As a consequence eq. 2.17 becomes
equal to

I =
2q

~
γ1γ2

γ1 + γ2

∫ µ1

µ2

dE Dε(E) (2.22)
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Using again the linear response approximation, the DOS can be considered
constant over the range µ1 > E > µ2 and equal to Dε(µ0), giving

I =
2q

~
γ1γ2

γ1 + γ2

qV︷ ︸︸ ︷
(µ2 − µ1)

(γ1 + γ2)/2π

(µ0 − ε)2 + ((γ1 + γ2)/2)2︸ ︷︷ ︸
Dε(µ0)

(2.23)

From this expression it is clear that the current is maximum if ε = µ0, which
means that the energy level in the channel lies in between the electrochem-
ical potentials of the two contacts.
If the coupling between the contacts and the channel are the same, γ1 = γ2,
the maximum conductance for the single channel is 2 G0

6, with:

G0 =
I

V
=
q2

h
= 38.7µS = 1/(25.8× 103Ω) (2.24)

Despite what was found in 2.14, this result is consistent with the experi-
mental observations and G0 represents the quantum of conductance.
Furthermore, if more conductive levels are present in the range µ1 > E > µ2,
the total conductance can be written as7:

G = M(E)|E=Ef G0, (2.25)

with M(E) being the density of modes (DOM), which gives the number of
conductive channels when evaluated at E = Ef

8.
This expression, known as Landauer formula, is very powerful because it
states that there exist a quantised conductance per channel and it reduces
the problem to the knowledge of the function M(E). While the conduc-
tance per mode is independent of the dispersion relation E(k), the density
of modes M(E) is very dependent on the details of the problem at hand.

2.2.7 Elastic Resistors

In the previous section, it was shown that the flow of electrons is driven by
the difference in the Fermi-Dirac distributions of the two contacts. This is
a general truth for all the conductors independently on their size. However,
the simple relationship given by eq. 2.17 is possible in the case of elastic
resistors, i.e. in absence of inelastic scattering. For this reason, the model
is valid not only in ballistic regime, with electrons travelling in the channel
from source to drain in a straight trajectory (“like a bullet”), but also in
presence of elastic scatterers, like static defects.

6The factor 2 comes from considering the spin degeneracy of the level.
7The levels are here supposed to be independent from each others. This is a strong

assumption, whose validity will be discussed in the following section.
8In linear response approximation, µ1 ≈ µ2 ≈ µ0 and µ0 is equal to the Fermi level

of the device, Ef . It follows that the number of modes can be considered as a function
of the Fermi level.
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Energy conservation of the charge carriers in a resistor may appear like
a contradiction, since it is well known that a dissipation of Joule heat is
associated with every resistance. The point is that in absence of inelastic
scattering mechanisms, the electrons do not loose energy in the channel,
but they do loose energy in the contacts by thermalisation: (µ1− ε) energy
is dissipated at the source and (ε−µ2) at the drain. Thus, the total energy
dissipated is (µ1 − µ2) that is equal to the potential difference supplied by
the battery. This energy is dissipated at the interface between the leads
and the device by Joule effect

Q = I2 (Rs +Rd) (2.26)

with Rs and Rd that are the so-called “contact resistances”(see fig. 2.6).

Figure 2.6: Representation of the energy dissipation in an “elastic resistor” by Joule
effect. The resistances are localized in the contacts.

2.2.8 The Transmission

In presence of inelastic scattering, the density of modes is substituted by
the transmission function, T̄ (E), obtained by multiplying the DOM by a
factor which includes the effect of the inelastic scattering mechanisms:

T̄ (E) = M(E) T (E) (2.27)

T (E) is the transmission coefficient and takes values in between 0 and 1,
acting like a modulation function for the DOM.
If T (E) = 1, it means that there are no scattering phenomena (the resistor
is elastic) and the transmission coincides with M(E).
The nature of T (E) will be further explained when speaking about thermal
conduction and, in particular, about phonon-phonon scattering (Ch. 3 and
Ch. 6). For further information about T (E) related to electron-electron
and electron-phonon scattering refer to [28, 11].

2.2.9 Thermoelectric Transport Coefficients

The Landauer formalism in the linear response regime allows to find all
the thermoelectric parameters. The electrical conductance, Seebeck coeffi-
cient and the electronic thermal conductance can be find with the following
relations[28, 69]:
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G =
2q

h
I0 [1/Ω], (2.28a)

S = −kB
q

I1

I0

[V/K], (2.28b)

Ke = −2 k2
B T

h

(
I2 −

I2
1

I0

)
[W/K], (2.28c)

where

Ij =

∫ +∞

−∞

(
E − Ef
kBT

)j
T̄ (E)

(
− ∂f0

∂E

)
dE, (2.29)

Hence, all the coefficients can be calculated if the transmission T̄ (E) is
known. Thus, in ballistic regime the problem reduces to compute the DOM.
Two procedures are available to numerically evaluate the DOM.

2.2.10 Calculation of the Density of Modes

The “Counting Bands” method

First af all one has to identify a transport direction. In the case of graphene
and TMDCs, which have a honeycomb like structure, the two conventional
transport directions are pictured in fig. 2.7 and correspond to the so-called
“Zig-Zag” and “Armchair”.

Figure 2.7: Zig-Zag (red) and Armchair (green) directions for crystals with honey-
comb like structures

Then, it is necessary to define a conventional unit cell, in such a way that
the first Brillouin Zone results to be rectangular. In this way one reciprocal
vector will be parallel to the transport direction (z) and the other perpen-
dicular (x).

Transport through a periodic system (no defects) corresponds to ballistic
transport. In this case the DOM can be directly linked to the band struc-
ture.
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Known the dispersion relation E(k⊥, k‖), one has to fix a value of k⊥ and
count the number of bands crossing the energy of interest, E. Averaging
over all the k⊥ one finds the density of modes M(E), i.e. total number of
conductive channels of the system at a given energy E.

Figure 2.8: Example of the “counting modes” procedure: (a) the positive quadrant
of the rectangular first BZ. (b) the band structure plotted along the path in the first
BZ corresponding to the red line in (a). mi(E) is the number of band crossings
at energy E in the direction given by k⊥,i. The total number of modes M(E), is
obtained averaging the mi(E) over all the k⊥,i.

It is clear from this procedure, that M(E) is proportional to the the width
Lx of the unit cell that was chosen for the calculation.
Therefore, the relevant quantities to make comparisons among different sys-
tems are the DOM per unit width and the conductance per unit width. From
now on, M(E) and G(E) will refer to quantities per unit width, making the
following change in notation:

M(E) → M(E)/Lx

G → G/Lx

As said, this “counting bands ”procedure for the DOM calculation is valid
in the case of ballistic transport, when the system is fully periodic.
Instead, when the symmetry of the system is broken, as in the case of trans-
port through a material presenting a disordered distribution of defects, an-
other method based on Green’s functions is needed.

The Green’s Functions Technique

To deal with disordered systems, the trick is to divide the system into semi-
periodic contacts (leads) and a central part containing the defects (device).
The setup is shown in fig. 2.9.
The two leads are constituted of the pristine material. They are semi-infinite
and fully periodic. The device may have an arbitrary geometry and contains
all the non-periodic parts of the system. In Ch. 5.2, this scheme is used to
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Figure 2.9: Schematic diagram for a general contact-device-contact setup. The
contacts (leads) are semi-infinite and fully periodic. The device contains all the
non-periodic parts of the system.

investigate single-layer MoS2 with sulphur vacancies positioned in random
sites of the lattice. In that case, the leads are made of pristine MoS2 and
the device contains unit cells with a missing S-atom in different positions,
in order to reproduce a disordered distribution of vacancies.
With this decomposition, it is possible to define the Green’s function of the
infinite system by mean of a finite matrix equation. In this equation the
semi-infinite leads comes as the so-called surface Green’s functions, which
are finite. In order to solve this matrix problem for a very long device (and
thus to obtain the transmission), it is mandatory to have couplings only
between neighbouring blocks. This means that there are non-zero coupling
hamiltonians between each lead and the device (HL−D, HD−R) and zero-
coupling between the two leads (HL−R = ∅).
Only a code like SIESTA based on localised orbitals allows to obtain this
kind of hamiltonian in which distant blocks are not coupled. In fact, the
use of a basis set of plane waves, which spread infinitely in space, would
result in the presence of couplings among all the blocks.

A detailed explanation of the Green’s functions method can be found in
references [53] and [24]. Reference [11] provides the parallelism between the
detailed formulation of the Landauer Formalism, based on the Green’s func-
tions method, and the simplified way adopted to introduce the Landauer
formula in the previous sections.

At this point, assuming to have solved the Green’s functions problem, the
final formula to compute the transmission in presence of non-periodical
systems is given by [28]:

T̄ = Tr (Γ1GΓ2G
†), (2.30)

where G and G† are respectively the retarded and advanced Green’s function
of the system [53] and

Γ1,2 = i(Σ1,2 − Σ†1,2), (2.31)

being Σ1,2 the self-energies of the leads, which account for the coupling of
the device with the leads 9.

9The self-energies are somehow related to the coupling energies γ1 and γ2 that were
introduced in the treatment of the simple single level model (see ref. [11]).
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In the ballistic case, the leads and the device are made exactly of the same
material, hence the whole system is periodic and computing the transmis-
sion with the “counting bands” method or with the Green’s functions tech-
nique is equivalent.

2.3 Phonon Transport

In this section the Landauer formalism will be used to evaluate the phonon
thermal conductance. In fact, the procedure developed previously for elec-
tronic transport can be extended to phonon transport. A scheme of the
system is shown in fig. 2.10.

Figure 2.10: General scheme describing the study of the phonon transport within
the Landauer Formalism. The device is between two thermal reservoirs at different
temperatures. A heat flux crosses the device driven by the difference in Bose-Einstein
distribution from the hot lead to the cold one.

The setup is analogous to the one for electronic transport: there are two
leads kept at different temperatures (Thot at the source and Tcold at the
drain). The leads act as thermal reservoirs and a heat flux crosses the
device from the source to the drain.
The carriers of heat are phonons, which are bosons. Thus, the right statistics
to use is the Bose-Einstein (BE) distribution and not the Fermi-Dirac (FD)
as for electrons:

h1(ω) = fBE(Thot) = 1
/[

exp
( ~ω
kBThot

)
− 1
]

h2(ω) = fBE(Tcold) = 1
/[

exp
( ~ω
kBTcold

)
− 1
] (2.32)

While for electronic transport the driving force was a gradient in electro-
chemical potential, which determines a difference in the FD distributions
of the leads, the phonon motion is driven by a temperature gradient that
originate different BE distributions in the hot and cold leads.
The channel is characterised by its phonon dispersion relation ω(k), which
is found with ab initio calculations as explained in Ch. 1.3.
The couplings between the device and the contacts is given by the match-
ing in their phonon dispersion relations, in analogy with the matching in
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electronic band structures in the case of electron transport.

2.3.1 Phonon Thermal Conductance

With respect to eq. 2.17, the heat current can be obtained by making the
following substitutions:

• 2q︸︷︷︸
Charge carried per electronic state

→ ~ω︸︷︷︸
Energy carried per phonon

• f1,2(E)︸ ︷︷ ︸
Fermi-Dirac distribution

→ h1,2(ω)︸ ︷︷ ︸
Bose-Einstein distribution

• T̄ (E)︸ ︷︷ ︸
Transmission for electrons

→ T̄ (ω)︸ ︷︷ ︸
Transmission for electrons

So the heat current is expressed by:

IQ =
1

h

∫ +∞

0

(~ω) T̄ (ω) [h1(ω)− h2(ω)] d(~ω) (2.33)

In linear response approximation, i.e. assuming that the temperature of the
two leads are only slightly different from each other (Thot ≈ Tcold ≈ T ) 10,
it is possible to write:

h2 ≈ h1 +
∂h

∂T
∆T, with

∆T = Tcold − Thot

It follows that

[h1 − h2] ≈ − ∂h
∂T

∆T (2.34)

where,

∂h(ω)

∂T
=

~ω
kBT 2

1

(e
~ω

2kBT − e−
~ω

2kBT )

=
~ω
kBT 2

1

sinh2( ~ω
2kBT

)

Eq. 2.33 becomes

IQ =
~2

8πkBT 2
(−∆T )

∫ +∞

0

dω T̄ (ω)
ω2

sinh2( ~ω
2kBT

)
(2.35)

10In linear response regime, the temperature of the two leads is considered to be almost
equal to the lattice temperature in the channel. As a consequence, the device can be
considered at constant temperature T, neglecting the temperature gradient originated
by the temperature difference between the hot and cold leads.
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Finally, the phonon thermal conductance is:

Gph = − IQ
∆T

=
~2

8πkBT 2

∫ +∞

0

dω T̄ (ω)
ω2

sinh2( ~ω
2kBT

)
(2.36)

In order to visualize the difference in the expressions of the electric and
phonon conductance, it is useful to define the following “window functions”
for electrons and phonons [27]:

Wel(E) =

(
− ∂f0

∂E

)
Wph(~ω) =

{
3

π2

(
~ω
kBT

)2 (
− ∂h0

∂(~ω)

)} (2.37)

Their trend with respect to temperature is shown in fig. 2.11 and gives an
idea of the energy range of the electrons (phonons), which contribute to the
electric (phonon) conductance at different temperature T .

Figure 2.11: Comparison between the window function for electrons and phonons.
From ref. [40]

2.3.2 Phonon Transmission

In analogy with the electrons case, the phonon transmission T̄ (ω), is equal
to the product of the phonon density of modes M(ω), and the transmission
coefficient T (ω):

T̄ (ω) = M(ω) T (ω) (2.38)

M(ω) represents the number of conductive channels (phonon branches)
available to carry phonons with frequency ω.
T (ω) is the transmission coefficient, which takes values in between 0 and 1
according to the influence of scattering phenomena. In absence of scattering
T (ω)=1, hence T̄ (ω) = M(ω).
In Ch. 3, it will be explained how to deal with Umklapp phonon-phonon
scattering and with scattering by imperfections of the boundaries. The
impact of these inelastic scattering mechanisms on the lattice thermal con-
ductance was calculated as well. The results are provided in Ch. 6.
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Phonon Density of Modes by “Counting Bands” Method

While the derivation of the electronic DOM is based on the electronic band
structure E(k), the phonon DOM is computed from the phonon dispersion
relation ω(k).
In this thesis, the full dispersion relations of the studied materials are con-
sidered. ω(k) is computed by diagonalization of the the dynamical matrix,
which represents the key quantity to study phonons11.
Knowing the phonon dispersion relation in the whole Brillouin zone, M(E)
can be computed counting the bands crossing the energy of interest.12

A graphical example of the method is depicted in fig. 2.12

Figure 2.12: Example of the “counting modes” procedure for the phonon DOM
calculation. The phonon dispersion relation is plotted along a path in the first BZ.
In this case, with the solely aim to make an example, it corresponds to the phonon
dispersion of graphene along the path Γ → M . mi(E) is the number of branches
crossing the energy E in the direction given by k⊥,i. The total number of modes
M(E), is obtained averaging the mi(E) over all the k⊥,i.

Phonon Transmission with the Green’s Functions Technique

The Green’s functions formalism introduced in the case of electronic trans-
port can be extended to the study of phonon transport. This is essen-
tial to investigate the effect of defects, which introduce non-periodicity in
the studied systems. A detailed description of the method can be found
in references [96, 83, 84].

11The dynamical matrix can be seen as the analogous of the electronic hamiltonian for
electrons. The method to compute the it with SIESTA is described in Ch. 1.3.

12The procedure is analogous to the one explained for the electronic density of modes
(see. section 1.2.10)

48



2.3.3 Comparison between Full-Dispersion and Debye
Model Evaluation of Phonon DOM

According to the largely used Debye Model, the phonon dispersion relation
is approximated with a linear and isotropic dispersion, ω = vsk. Thus,
M(ω) per polarization is given as follows [27]:

Mλ(ω) = (Lx Ly)
ω2

4πv2
S,λ

(3D)

Mλ(ω) = Lx
ω

πvS,λ
(2D)

(2.39)

where vS,λ is the speed of sound (phonon group velocity at the Γ point)
and λ is the index related to the three possible polarizations of the acoustic
modes, λ = ZA, TA, LA.
While for 3D materials, the isotropic assumption could be reasonable for
many systems, it leads to a criticality dealing with 2D materials. The rea-
son lies in the differences between in-plane (TA, LA) and out-of-plane (ZA)
modes. The sound velocities of the TA and LA modes are high13, while
the one of the ZA mode is low (it is zero for pristine 2D materials [47]).
However, far from the Γ point, the group velocity of the ZA phonons is
not negligible. As a consequence, the ZA branch does contribute to heat
transport. Indeed, the thermal conductance of the 2D systems studied will
result strongly affected by ZA phonons with k far from the Γ point.
Moreover, also for the TA and LA in-plane modes, the dispersion relation
deviates from the linear trend predicted by the Debye model. Hence the
2.39 are valid only when the temperature is low enough that only phonons
with k close to Γ are populated.
A similar argument is valid for the optical branches. In fact, it is known
that the acoustic modes dominate the heat conduction, since the group ve-
locity of optical branches is zero at Γ. Optical phonons are less dispersed
as well. However, their group velocity is not-zero in all the Brillouin zone.
In references [28] and [27] the full-band versus effective mass evaluation of
the electronic DOM and the full-dispersion versus Debye model evaluation
of the phonon DOM are widely treated. It results that the effective mass de-
scription works quite well for electrons, while the Debye model for phonons
does not lead to the same accuracy. The reason is that the relevant energy
range for electrons lies near the bottom of the band, but for phonons the
entire phonon dispersion is important (see fig. 2.11).

2.4 Counting Bands or Green’s Functions?

In Ch. 4 the transport properties of graphene and TMDCs are studied in
ballistic regime. In Ch. 5.1 a monolayer of MoS2 is analysed in presence of

13for graphene they are ≈ 14 and 24 Km/s, respectively
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a single elastic scatterer (a sulphur vacancy). In these studies, the trans-
mission is equal to the DOM, because T (ω) = 1, since there are no inelas-
tic scatterers. The leads and the device are made of the same material.
Therefore the systems are fully periodic and it was possible to employ the
“counting bands” method to compute the phonon transmission.

In Ch. 6, the “counting bands” method is used as well, with the difference
that phonon-phonon Umklapp scattering is included. So, T (ω) will be eval-
uated according to a procedure described in Ch. 3.

Diversely, in Ch. 5.2, the effect of a disordered distribution of defects in
MoS2 was investigated. The systems consist of a single-layer of MoS2 with
sulphur vacancies disposed in randomised positions of the lattice.
The device is modelled by joining different blocks as in fig. 2.13. Here P
stands for a “pristine block”, i.e. a monolayer without defects, and Si stands
for a block whose unit cell present an S-vacancy at the i-th site of the lattice.
Four different locations were considered for the S-vancancy (i = 1, 2, 3, 4).

Figure 2.13: Device with a disordered distribution of defects. P stands for a “pristine
block”, i.e. a monolayer without defects, and Si stands for a monolayer whose unit
cell present an S vacancy in a lattice site labelled as i.

By changing in a random way the number, type and relative position of the
blocks, two analysis were done: the first varying the length of the device Lz,
at fixed concentration of S vacancies; the second varying the concentration
at fixed Lz.
The presence of such a random distribution introduces an asymmetry in the
transport property of the system and, in turn, different couplings. There-
fore, a matrix treatment with the Green’s functions formalism was necessary.
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Chapter 3

Effect of Inelastic Scattering
on Phonon Transport

This chapter is devoted to the effect of intrinsic inelastic scattering phe-
nomena on phonon transport. In particular, it will deepen the impact of
phonon-phonon Umklapp scattering (U-scattering) and diffusive phonon-
boundary scattering (B-scattering) on the phonon transmission.
Considering these inelastic scattering phenomena marks a transition to a
mixed ballistic-diffusive transport regime: the Landauer formalism contin-
ues to be valid, provided that the scattering effects are included in the trans-
mission coefficient. In other words, the phonon thermal conductance is still
given by eq. 2.36, but T̄ does not coincide with the only phonon density of
modes M(ω), as for the ballistic case, because the transmission coefficient
T (ω, T ) is not unitary. Therefore, the full expression T̄ (ω) = M(ω) T (ω, T )
must be considered to evaluate the phonon transmission.
This approach was used in the study of the thermal conductance of graphene
presented in Ch. 6, where it is investigated how the phonon transmission
changes with respect to the pure ballistic case (Ch. 4).
A suitable expression for the transmission coefficient, taking into account
the above mentioned scattering mechanisms, will be discussed hereafter.

3.1 Anharmonic Crystal Interactions

The calculation of phonon dispersion described in Ch. 1.3 relies on the har-
monic approximation: the expansion of the potential energy is arrested to
terms quadratic in the interatomic displacements. Considering higher order
anharmonic terms is necessary to explain phenomena like thermal expan-
sion, interactions between lattice waves and dependence of the interatomic
force constants on pressure and temperature [34].
Including anharmonic terms, and thereafter calculating the dynamic ma-
trix (see Ch.1.3), would in principle allow to evaluate these effects purely
ab initio. In practice this is not viable from a computation-time point of
view. Hence, suitable physical models are needed to describe anharmonic
phenomena without passing through the direct calculation of the dynamic
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matrix.
According to ref. [28] the transmission coefficient reads:

T (ω, T ) =
Λ(ω, T )

Lz + Λ(ω, T )
(3.1)

where Λ(ω, T ) is the phonon mean free path and Lz is the length of the
device in the transport direction.
Looking at this formula, the transmission coefficient can be physically in-
terpreted as the probability of a phonon with frequency ω to propagate
from one contact to the other without being annihilated by some inelastic
scattering processes. In fact, if Λ(ω, T ) >> Lz then T (ω, T ) → 1 and one
recover the ballistic case, meaning that there is a negligible probability that
the phonon is scattered along his way from the hot to the cold lead.
Diversely, if Λ(ω, T ) << Lz then T (ω, T )→ Λ(ω, T )/Lz. This corresponds
to the diffusive limit, in which phonons with frequency ω are scattered in
inelastic way before reaching the cold contact.1

Thus one has to find an expression for Λ accounting for all the relevant
inelastic scattering phenomena. According to Matthiessen’s rule, which as-
sumes that different scattering mechanisms are independent, the reciprocal
of the mean free path can be derived as [87]

Λ−1 = Λ−1
U + Λ−1

B + Λ−1
D (3.2)

where λU , λB and λD are the mean free path for Umklapp scattering, bound-
ary scattering and point defect scattering respectively.
In this thesis, the effect of point defect scattering is included in the ab initio
calculation of the dynamic matrix by use of the Green’s function technique
(see 2.4). Thus, ΛD is neglected in the sum in order not to count it twice,
while ΛU and ΛB have to be computed.

The final expression for the phonon thermal conductance is found plugging
eq. 3.1 into 2.36:

Gph(T ) =
~2

8πkBT 2

∫ ∞
0

[
M(ω)

Λ(ω, T )

Lz + Λ(ω, T )

]
︸ ︷︷ ︸

T̄ (ω)

ω2

sinh2( ~ω
2KBT

)
dω (3.3)

from which the lattice thermal conductivity is derived:

κ(T ) =
Lz

Lx Ly
Gph(T )

=
~2

8πkBT 2

Lz
Lx Ly

∫ ∞
0

[
M(ω)

Λ(ω, T )

Lz + Λ(ω, T )

]
ω2

sinh2( ~ω
2KBT

)
dω

(3.4)

1Other works, like [100], used directly the formulation T (ω, T ) = Λ(ω, T )/Lz in-
stead of the 3.1. Since the phonon mean free path can in principle exceed the length of
the device, then one should exclude the phonons with Λ(ω, T ) > Lz in order to avoid
T (ω, T ) > 1. In any case, the form of eq. 3.1 is preferable. As a proof, it is sufficient to
consider that a phonon with Λ = Lz must have probability 1/2 to be transmitted.
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It is useful to remark that in the ballistic case, Λ(ω, T ) >> Lz ∀ω, the
conductance is independent on the length of the sample in the transport
direction Lz, while the conductivity is proportional to Lz. Viceversa, in the
diffusive case Λ(ω, T ) << Lz ∀ω, the conductance is proportional to L−1

z

and the conductivity is independent of Lz (macroscopic systems).
The distinction between these two regimes is due to both the length of the
device and the strength of scattering phenomena, which affects phonons
with different ω in a dissimilar way. Since phonon-phonon inelastic scatter-
ing is an intrinsic resistive mechanism, independent on the quality of the
sample (defects, edge roughness), a regime where all the phonons propagate
in a pure ballistic way is possible only for Lz → 0. In this limit, equivalent
to consider a system of atomic size, all the periodic properties of the crystal
are lost, making meaningless the formalism developed so far that does not
include finite effects.
This mixed approach, based on the transmission function from the Landauer
formalism and on a mean free path to include the scattering processes2, is
instead very effective in the case of mesoscopic systems.

It is now the moment to understand how to deal with Umklapp and edge-
roughness scattering.

3.2 Phonon-Phonon Scattering: Normal and

Umklapp processes

If the forces between atoms were purely harmonic, there would be no mecha-
nism for collisions between different phonons, and the mean free path would
be limited only by collisions of a phonon with the crystal edges and by lat-
tice imperfections. With anharmonic lattice interactions, there is coupling
between different phonons limiting the value of the mean free path [34].
The effect of anharmonic terms can be understood with this argument by
Ziman [103]: Suppose that there is moving through the solid a disturbance
of wave vector q. As the lattice vibrates, some atoms come closer than
their equilibrium distance and others move farther apart. Another phonon
of wave vector q′, attempting to pass through the medium, will see the elas-
tic properties slightly altered. The phonon q will thus generate a periodic
variation in the refractive index of the medium, and the phonon q′ will be
reflected as if from a diffraction grating.

An important concept introduced by Peierls (1929) is that of normal (N) vs
umklapp (U) phonon-phonon scattering. N scattering conserves the phonon
momentum and induces no thermal resistance by itself, and it merely re-
distributes momentum among different phonon modes. In comparison, U

2This is somehow similar to a treatment based on solving Peierls-Boltzmann Transport
Equations (PBTE) in relaxation time approximation. A parallelism between Landauer
Formalism and PBTE can be found in reference [28].
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scattering is a momentum-destroying process that leads to thermal resis-
tance. The standard explanation [34, 3, 103] of the distinction between the
N and U process is illustrated in fig. 3.1.

Figure 3.1: Schematic illustration of Normal process (a) and Umklapp process (b),
as conventionally defined in the case of three-phonons absorption scattering.

Considering a three-phonon absorption scattering process, in which two
phonons of angular frequencies ω1 and ω2 merge into one of angular fre-
quencies ω3, energy conservation takes the form:

~ω1 + ~ω2 − ~ω3 = 0 (3.5)

In an N-process, momentum conservation expressed in terms of correspond-
ing phonon wave vectors takes the form:

q1 + q2 − q3 = 0 (3.6)

whereas in a U-process there is a non-zero reciprocal lattice vector G on
the right hand-side:

q1 + q2 − q3 = G (3.7)

The generally accepted statement that phonon-phonon scattering processes
consist of momentum-conserving normal scattering and momentum-destroying
Umklapp scattering has raised some questions; a complete understanding
of their contribution to thermal conductivity requires further studies and
clarifications.
In [42] it is emphasized that no rigid line between N and U processes can be
drawn because their definition depends on the choice of the primitive cell of
the reciprocal lattice. N-processes alone do not create thermal resistance,
but they do contribute to thermal resistance when U-processes (or scatter-
ing from defects or impurities) are present.
Recently, Ding et al. [13] observed that Umklapp scatterings are not neces-
sarily resistive : no thermal resistance is induced if the projected momentum
is conserved in the direction of heat flow. Looking at the scheme for Umk-
lapp scattering of fig. 3.1, it is clear that U scattering induces resistance in

54



the z direction but not in the x direction. This distinction becomes partic-
ularly relevant in systems with strong anisotropy and it is not supposed to
have a strong impact when considering in-plane transport in bi-dimensional
TMDCs, since the thermal conductance in the armchair and zig-zag direc-
tions is almost isotropic.

In this thesis, the phonon life time related to phonon-phonon inelastic scat-
tering was evaluated according to a formulation introduced by Klemens
based on time-dependent perturbation theory [19, 18], but introducing sep-
arate life-times for different phonon branches (τUλ ), as reported in many
works on graphene [46, 48] and TMDCs [85, 102, 100, 7]:

τUλ (ω, T ) =
M v2

λ(ω) ωmaxλ

γ2
λ(ω) kBT ω2

(3.8)

Here γλ is the Grüneisen parameter, which characterizes the strength of
the Umklapp phonon-phonon scattering process for branch λ. T is the
temperature, M the sum of the masses of the basis atoms of the unit cell,
and ωmaxλ is the highest frequency3 of branch λ. vλ(ω) is the modulus of
the phonon group velocity, given by the modulus of the phonon dispersion
slope:

vλ(ω) =

∣∣∣∣∂ω(q)

∂q

∣∣∣∣ (3.9)

Once known the life time, it is straightforward to obtain the Umklapp mean
free path:

ΛU
λ (ω, T ) = vλ(ω) · τUλ (ω, T ) =

M v3
λ(ω) ωmaxλ

γ2
λ(ω) kBT ω2

(3.10)

The properties such as phonon dispersion relation, phonon group velocity
and Grüneisen parameter were calculated by using SIESTA combined with
the open source package for phonon calculation PHONOPY [75, 77].

3.2.1 Grüneisen parameter

The Grüneisen parameter describes the thermal expansion of a crystal on
its vibrational properties and it is related to third-order force constants
directly [77]. The larger the Grüneisen parameter, the stronger anharmonic
vibrations. The expression for the Grüneisen parameter is given by [57]:

γ =
3αBVm
CV

(3.11)

3In some papers [102, 85, 7] ωmaxλ is referred to as the Debye frequency of the branch
λ. This comes probably from a diffuse use in the past years of the Debye-Callaway
model for lattice thermal conductivity [64, 99]. Therefore, only acoustic branches were
considered, in which a linear phonon dispersion relation is assumed and the maximum
frequency allowed coincides with the Debye frequency. Diversely, a full band treatment
is used in this thesis, hence the definition of highest frequency of the branch, given by
Nika and Balandin [48], seems more appropriate.
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where α is the linear thermal expansion coefficient, B is the bulk modulus,
Vm is the molar volume and CV is the isometric heat capacity.
This formulation is based on macroscopic quantities and it is useful to eval-
uate γ from empirical data. Otherwise, the bulk modulus B and linear
thermal expansion coefficient α can be calculated using the quasi-harmonic
approximation (QHA), which takes into account the first order anharmonic-
ity [76]. However, a more suitable approach for this thesis comes from the
definition of the so-called mode Grüneisen parameter, which is linked to the
variation of the phonon dispersion relation of the λ-th mode with the size
of the lattice parameter a [7]:

γλ(q) = − a0

ωλ(q)

dωλ(q)

da
(3.12)

where a0 is the relaxed equilibrium lattice constant.
The mode-averaged Grüneisen parameter can be obtained subsequently as:

γmodeave =
1

CV

∑
λ,q

γλ(q)CV,λ(q) (3.13)

In [57] it is shown that the two approaches 3.11 and 3.13 lead to the same
results.
This second approach is preferred in this work because it computes the
mode Grüneisen parameter from the knowledge of the phonon dispersion
relation, keeping track of the dependence on every q in the first BZ. Hence,
it is in line with the full-band treatment used in all the thesis.

To compute the mode Grüneisen parameter ab initio it is necessary to run
three phonon calculations with different values of the lattice parameter.
At first, the usual structure optimization process is performed in order to
find the lattice parameter a0. The phonon dispersion relation corresponding
to this relaxed structure is computed as well.
In addition, other two runs are performed by dilating and contracting the
lattice parameter a0 of ±0.5%, equivalent to consider the application of a
biaxial strain. Thus, two other dispersion relations are found corresponding
to the lattice parameters a1,2 = a0 ± 0.5%.
Finally, provided the three dispersion relations, the 3.12 can be solved by
finite differentiation to find the Grüneisen parameter γλ(ω(q)).
In this process SIESTA was used to perform the DFT calculations; namely
to compute the interatomic force constants of the three configurations and,
hence, the phonon dispersions for the different lattice parameters. The
PHONOPY code was used to compute the Grüneisen parameter by finite
differentiation.
Moreover, PHONOPY takes advantage of the system’s symmetry to opti-
mize the direction of the atomic displacements for the calculation of forces.
This is an advantage with respect to VIBRA because it allows to reduce
the number of displacements4 and so the number of SCF steps. As a con-

4Within VIBRA, every atom is displaced six times, corresponding to the positive and
negative directions of the three cartesian axis.
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sequence, in highly symmetrical systems (without defects) it is possible to
strongly reduce the computation time. In the calculation of the Grüneisen
parameter, which requires three phonon calculations as mentioned above,
symmetry is a valuable friend.

3.3 Diffusive Boundary Scattering

The presence of boundaries is not included in the treatment based on the
Landauer formalism due to the application of periodic boundary conditions.
In real samples, boundaries are imperfect and they are reason for inelastic
scattering.
Phonon-boundary scattering can be evaluated as [48, 47, 102, 18, 103]:

τBλ (ω) =
D

vλ(ω)

1 + p

1− p
(3.14)

where D is the nanostructure or grain size and p is the specularity parame-
ter, defined as the probability of specular scattering at the boundary. The
specularity parameter ranges from 0 for a completely rough boundary to 1
for a perfectly smooth boundary. In the case p = 1, the scattering process
at the boundary is completely elastic, while it becomes progressively inelas-
tic moving to lower p. The mean free path associated to scattering at the
boundaries is therefore:

ΛB
λ (ω) = vλ(ω) τBλ = D

1 + p

1− p
(3.15)

that does not depend on the phonon group velocity. The dependence on
ω is instead preserved because included in the specularity parameter p,
which can be found fitting experimental data or from the surface roughness
[48, 103].

3.4 Approximations and Differences with Other

Works

Calculating the Umklapp scattering life time in this way is usually associ-
ated with the following simplifications [47]:
1) substitution of the phonon velocities and Grüneisen parameters with ef-
fective values obtained by averaging over the acoustic phonon polarization
branches;
2) omission of the Umklapp processes characterized by the reciprocal-lattice
vectors that are not parallel to the heat flux direction;
3) approximate accounting of the phonon selection rules and simplified de-
scription of the regions of the allowed phonon transitions in the Brillouin
zone.
A more rigorous study of the lattice thermal conductivity of graphene was
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performed by Nika et. al [47], using the phonon dispersion obtained with the
valence-force field (VFF) method. The authors treated the three-phonon
Umklapp scattering considering all phonon relaxation channels allowed by
the energy and momentum conservation in graphene BZ.

Moreover, in the majority of articles the contribution of optical branches to
the thermal conductivity is considered negligible due to the short phonon
life time [102]. From the phonon dispersion relations calculated ab initio
and showed in Ch. 4, it is indeed found that the optical branches have a
zero group velocity at the Γ point and they are poorly dispersed through-
out the BZ with respect to the acoustic modes. However, calculations for
pristine graphene and TMDCs show that the phonon transmission function
is significantly higher than zero in the range of frequencies corresponding to
the optical modes. This means that optical branches do contribute to the
thermal conductance in pristine bi-dimensional materials. Moving to more
realistic systems with defects, as for MoS2 calculations in Ch. 5, it is found
that the transmission in the optical range of frequencies is lowered more
than in the acoustic one. In any case, the contribution of optical modes to
thermal conductivity is not negligible.
For these reasons, the choice has been made to use eq. 3.8 to evaluate
the phonon life times of the acoustic modes as well. The goal is to verify
a posteriori whether the acoustic branches do not contribute to thermal
conductance, because of extremely short mean free paths, or if a full-band
treatment may evidence a contribution that was not considered in previous
works based on a Debye-like model [27].

Together with considering optical modes, an original contribution of this
thesis consists in calculating τUλ as a function of ω(q), so that, for each
phonon, the corresponding life time, mean free path and transmission co-
efficient are known. In works based on PBTE [102, 85, 46], it is instead
common to employ an effective value Λ̄λ for the λ-branch by averaging over
the wave-vectors q in the BZ for a given mode λ.
To understand why this is important, one should notice that every integral
over ω corresponds in the codes to a finite sum over all the q-points in the
first BZ. Remembering that separate life-times were introduced for different
phonon branches, eq. 3.3 is rewritten to show the dependence on λ and q:

Gph(T ) =
~2

8πkBT 2

∑
λ

∫ ∞
0

[
Mλ(ω)

Λλ(ω, T )

Lz + Λλ(ω, T )

]
ω2

sinh2( ~ω
2KBT

)
dω

=
~2

8πkBT 2

∑
λ

∑
q∈BZ

[
Mλ(ω(q))

Λλ(ω(q))

Lz + Λλ(ω(q))

]
ω2

sinh2( ~ω(q)
2KBT

)

≈ ~2

8πkBT 2

∑
λ

Λ̄λ

Lz + Λ̄λ

∑
q∈BZ

Mλ(ω(q))
ω2

sinh2( ~ω(q)
2KBT

)

(3.16)
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Averaging phonon life times over the BZ to take the transmission coefficient
out of the integral introduces a numerical error. Moreover, keeping the
wave-vector dependence was necessary for technical details in the code that
Christophe Adessi and I wrote to compute the transmission. In fact, a code
was needed which combines the calculation of the density of modes M(ω),
based on VIBRA, with the transmission coefficient T that is function of the
group velocities and Grüneisen parameters computed with PHONOPY.

Finally, in the analysis developed in Ch. 6, arbitrary values were assigned
to the specularity parameter, neglecting the dependence on ω hidden in its
formulation, and with the only aim to visualize its impact on the lattice
thermal conductance. p is seen simply as an indicator of the effect of the
irregularities of the boundaries in real samples, in order to help comparing
ab initio results with experimental data.

59





Part II

Results
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Chapter 4

Thermoelectric Transport
Properties in Ballistic Regime

The first goal of this work is to determine the phonon transport proper-
ties of graphene and of single-layer (SL) transition metal dichalcogenides
(MoS2, WS2, MoSe2 and WSe2) in ballistic regime, i.e. considering pristine
materials in absence of any scattering phenenomenon.
The study of phonon properties in graphene and TMDC has attracted strong
attention of the physics and engineering community due to many unique
properties and potential applications [48, 102].

Graphene is known to have a very high thermal conductivity κ, with values
included in the interval 3080− 5300 W m−1 K−1 according to experimental
optical (non-contact) measurements near room temperature and in diffusive
regime [22]. This extremely high thermal conductivity could find interesting
applications for heat removal, which is a crucial issue especially for contin-
uing progress in electronic industry owing to increased levels of dissipated
power density and speed of electronic circuits [48].

Unlike zero-band gap graphene, TMDCs possess a direct band gap which
allows potential applications such as field effect transistors (FETs) [59] and
electroluminescent devices [72]. In addition, TMDCs monolayers are known
for large Seebeck coefficient (S) and low thermal conductivity (κ), which is
mandatory in thermoelectric application to improve the thermoelectric en-
ergy conversion efficiency [102]. Experimentally measured values of κ in few-
layers (FL) MoS2 are from 0.4-1.59 W m−1 K−1, to around 52 W m−1 K−1

by Raman spectroscopy approach. This large discrepancy may originate
from different sample quality, measurement methods and accuracy. Thus
numerical simulations has the potential to facilitate the understanding of
heat conduction in SL MoS2 [7].
The investigation of the thermal properties in two-dimensional systems has
many peculiarities not present in the study of bulk materials. In addi-
tion, theoretical studies suggested that phonon transport in strictly two-
dimensional and one-dimensional systems can reveal exotic behaviour, lead-
ing to infinitely large intrinsic thermal conductivity [48].
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For instance, once the conductance of a sample is obtained experimentally
or computationally, the thickness of the monolayer Ly has to be defined in
order to determine the conductivity. Unfortunately, this thickness has not
a unique definition for 2D materials. Indeed, the height of the unit cell
adopted for the calculation has the only purpose to reproduce the vacuum;
hence, it is not the measure of the layer thickness. In this thesis Ly has
been taken equal to the interlayer distance of the bulk materials (e.g. the
distance between two graphene layers in graphite).
In addition, the calculations employ periodic boundary conditions. There-
fore, all the samples consist in an infinite plane of atomic thickness, repro-
duced by periodical repetition of the selected primitive cell.
The relevant quantity to compare the phonon transport properties of ideal
pristine materials is the conductance per unit width:

Gph = Cph/Lx (4.1)

where Cph is the conductance and Lx is the width of the unit cell.
Furthermore, in the ballistic regime the conductance does not depend on
the length of the device (Lz) [1].
A different behaviour will be observed in the next chapters, which face the
transition to the diffusive regime. There, the conductance will strongly
depend on Lz

1 due to the inclusion of scattering mechanisms, such as the
collisions with a distribution of lattice defects (Ch. 5.2) and phonon-phonon
Umklapp scattering (Ch. 6). In these cases, the usual thermal conductivity
(κ) can be defined as:

κph =
Lz
LxLy

Cph (4.2)

All the calculations presented in this thesis have been performed using the
SIESTA ab initio package [71] under the generalized gradient approximation
(GGA) of Perdew, Burke and Ernzerhof [58] and by using Troullier-Martin
norm-conserving pseudopotentials [80]. The basis set used for the calcula-
tions of this chapter correspond to a dζp (“double-zeta-polarized”) basis,
which have been optimized using the simplex tool of the SIESTA package2.

4.1 Graphene

4.1.1 Electronic Band Structure and Density of States

As discussed in Ch. 1, the first step in any ab-initio calculation consists
in computing the Kohn-Sham hamiltonian. From its diagonalization it is
straightforward to obtain the electronic band structure and the density of
states. The study of these properties is important not only to compute S
and σel. In fact, they provide important information to find a strategy for

1The room temperature thermal conductivity of SL WSe2 can be decreased by about
95% passing from a 1µm sized sample to one with 10 nm size [102].

2 This step was performed by Christophe Adessi for previous works [1].
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reducing the phonon thermal conductivity without affecting too much the
power factor.

For the structure optimization step of pristine materials, the unit cell used
as input coincides with the primitive cell. A representation of graphene’s
primitive cell with its first Brillouin zone is given in fig. 4.1.

Figure 4.1:
(a) Frontal and side view of graphene’s unit cell and of the 5x5x1 supercell used
for the computation of the phonon dispersion relation. The unit cell, highlighted in
yellow, coincides with the primitive cell of the lattice. The distance between the two
C atoms of the basis is equal to 1.42 Å.
(b) First Brillouin zone with its high symmetry points and the reciprocal vectors.

The atomic structure was optimized up to forces less than 10−4 eV/Å and
stresses less than 0.1 MPa. The Monkhorst-Pack scheme [45] was used for
the integration of the Brillouin zone with a k-mesh of 10x1x10 k-points. A
mesh-grid with energy cutoff of 600 Ry was employed for solving integrals
in direct space with fast Fourier transforms.
Very restrictive tolerance parameters are needed to compute accurately the
dynamic matrix. In particular, high accuracy is required to reproduce the
correct trend of the phonon out-of-plane modes in 2D materials, which are
very susceptible to tiny variations in the structure geometry [77]. For this
reason, a series of test calculations have been carried out to identify the
best combination of parameters.3

The electronic band structure is plotted in fig. 4.2 along the path in the first
Brillouin zone connecting the high symmetry points Γ−M −K − Γ. This
plot is restricted to the range of energy close to the Fermi level (Ef ), which

3Another method is possible in order to use less restrictive relaxation parameters and
reduce the computation time. It requires an application of a post-calculation correction
on the inter-atomic force constants, based on the symmetry invariance under rotation of
the crystal [86]. Therefore, I wrote a code in Fortran to apply this correction.
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is the one of interest for transport properties. On the right, the density of
states (DOS), computed by using a mesh of 200x1x200 k-points, is shown.

Figure 4.2: Electronic band structure and density of states (DOS) of graphene in
proximity of the Fermi level (Ef ).

The following observations can be deduced from the plot of graphene’s elec-
tronic band structure:

1) The conduction and valence band touch each other at the K points (Dirac
cones [39]). This is the most characteristic feature of graphene, responsi-
ble for its ambipolar conductivity. The density of states is linear for both
the conduction and the valence band. The effective mass approximation
is not able to describe the conduction of carriers, which behave like mass-
less particles. This concept is at the base of the extremely high electronic
(and thermal) conductivity of graphene.

2) Graphene is not suitable to be employed in thermoelectric applications.
In fact, despite its huge electrical conductivity, the Seebeck coefficient
is extremely low, due to the absence of a band gap (semimetallic be-
haviour). However, graphene nanoribbons are semiconductors because a
band gap is opened through the presence of confinement effects. This is
why graphene nanoribbons are also promising for thermoelectric appli-
cations [91]. Hence, the study of methods to reduce the lattice thermal
conductivity is a promising research field4.

3) According to the Wiedemann-Franz law, an extremely high electrical con-
ductance implies a very high thermal conductance contributed by elec-
trons. Furthermore, the phonon contribution to the thermal conductance
is extremely high as well.

4For example, Cheng et. al. proposed the use of heavy adsorbed atoms and nanopores
to enhance the thermoelectric properties of graphene nanoribbons, predicting a ZT value
of 3 at low temperature (T=40 K) [9]
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Its extremely high electrical and thermal conductance make graphene
a material full of interest for electronics and heat removal applications.
Even if an ideally infinite graphene sheet is unsuitable for thermoelectrics,
its study is interesting to better understand the thermoelectric properties
of its derivatives. The presence of extensive studies make it a valuable
reference for testing the procedure that will be applied to the study of
single-layer TMDCs.

4.1.2 Phonon Dispersion Relation and Phonon Den-
sity of States

To compute the phonon dispersion relation, a 5x5x1 supercell has been used
(see fig. 4.1). Such a large supercell was required in order to reproduce the
correct parabolic trend of the out-of-plane acoustic phonon mode (ZA) close
to the Γ point. Indeed, the forces between the two C atoms in the primitive
cell and those in the outer shells, even if very small, cannot be approximated
to zero. Calculations both with SIESTA and VASP were performed with a
3x3x1 supercell, but the ZA mode displayed a linear dispersion relation at
low frequencies and negative eigenvalues for q-points in the neighbourhood
of the Γ point.
The forces have been measured as described in Ch. 1.3. The displacement
of the atoms was 0.04 Bohr (1 Bohr = 0.529177249 Å) and all the mesh
parameters in direct and reciprocal space were the same as in the structure
optimization run.

The phonon dispersion relation is plotted in fig. 4.3 along the path in the
first Brillouin zone connecting the high symmetry points Γ−M −K − Γ.

Figure 4.3: Phonon dispersion relation of graphene.
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Figure 4.4: Oscillation patterns for the six normal modes of graphene at the Γ point.

ZA TA LA ZO TO LO
Γ 0 0 0 868 1602 1602
K 534 1003 1237 534 1391 1237
M 468 629 1340 629 1435 1365

Table 4.1: Phonon frequencies in cm−1 of the six modes at the Γ, K and M points.
These values are in good agreement with other theoretical and experimental data
(see ref. [48] for a comparison).

Considerations about the phonon dispersion relation are listed here:

1) The out-of-plane ZA mode shows a parabolic trend in the neighbourhood
of the Γ point, due to the 2D nature of graphene. In fact, in the long
wavelength limit, the propagation of phonons in the out-of-plane direction
is unexpected, since it would consist in a “vertical jump” (translation) of
the monolayer.

2) The group velocities for the acoustic modes in proximity of the Γ point
(speeds of sound) are reported in tab. 4.2.

ZA TA LA
This thesis 0.07 14.20 23.27
Experimental, EELS (Ref. [52]) 0 ≈14 ≈24
Ab initio, LDA (Ref. [63]) 0 18 24
MD, Tersoff potential (Ref. [104]) ≈0 18.0 23.4

Table 4.2: Sound velocities in km/s for the acoustic modes in graphene. The results
of this thesis are compared with other experimental ant theoretical estimates.

The sound velocities calculated in this thesis are in good agreement with
the values that can be extracted from the experimental data of ref. [52].
TA and LA modes have very high speed of sound and their dispersion
relation is linear in a large range of frequencies. Thus, according to the
Debye model, a high thermal conductance is expected, due to the high
speed of sound of in-plane acoustic modes.

3) Following the same argument, the ZA mode would give a negligible con-
tribution to thermal transport since its sound velocity is about zero. Only
a full band treatment can highlight its contribution.
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4) At low temperature, only the low frequency phonons are occupied. As
a consequence, the thermal transport will be dominated by the acoustic
modes. The ZO mode is the first optical mode to be populated, while
TO and LO are high in frequency and start to be populated only at high
temperatures.

5) The contribution of the optical modes could be relevant only at high
temperatures. The propagation of optical phonons is further reduced by
Umklapp scattering. This is especially true in absence of a frequency
gap, as it will be explained when the case of TMDCs will be treated. A
confirmation of this observation will also come from the calculation in
Ch. 6, where the effect of Umklapp scattering is evaluated.

6) There is no frequency gap between the acoustic and the optical modes,
since the out-of-plane optical mode (ZO) crosses the acoustic branches.
This can be seen also by observing the DOS, which was computed con-
sidering the whole Brillouin zone. The absence of a frequency gap can be
explained by the fact that the basis of graphene is made of two atoms of
the same element. It will be shown that a gap is present in TMDCs.

7) At the K point there is a degeneracy between ZA and ZO, and between
LA and LO.

The consistency of these results was confirmed by a comparison with the
phonon dispersion relation obtained by a calculation with the VASP pack-
age5, which proved that the procedure and the parameter used for the cal-
culation are reliable and transferable for successive calculations.

4.1.3 Phonon Transmission

As discussed in Ch. 2.3.2, the transmission function is the key quantity to
investigate the phonon transport within the Landauer formalism. The first
step to derive it consists in choosing a transport direction. For graphene
and TMDCs, which possess a honeycomb-like atomic structure, the conven-
tional directions are the Armchair and the Zig-Zag ones (fig. 2.7). In this
thesis, all the transport calculations refer to the Armchair direction6. The
unit cell for the calculation is different from the primitive unit cell used to
investigate the phonon properties in the previous section. As a matter of
fact, a conventional unit cell must be chosen so that the primitive vector co-
inciding with the transport direction is orthogonal to the other two. Thus,
a unit cell of rectangular section with a basis of 8 atoms was used (fig. 4.5).
As convention, the transport direction coincides with the z axis and the
in-plane vector, perpendicular to the transport one, coincides with the x
axis.

5courtesy of Silvana Radescu
6Test calculations were performed by C. Adessi also with respect to the Zig-Zag di-

rection, finding very similar transmission functions (private communication). Thus the
thermal conductance is considered nearly isotropic.
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Figure 4.5: Frontal and side views of the 3x1x5 supercell used for the transmission
calculation. The primitive cell, having a basis of 8 carbon atoms, is highlighted in
yellow.

The atomic structure was relaxed up to forces less than 10−4 eV/Å and
stresses less than 10−4 eV/Å3. A direct space mesh with energy cutoff of
600 Ry and the Monkhorst-Pack scheme with 10x1x10 k-points were used,
both for the unit cell optimization and for the calculation of the forces.
A 3x1x5 supercell was taken to measure the interatomic forces. The choice
of the supercell is different from the one used to obtain the phonon disper-
sion relation in the previous section. The reason lies in the greater number
of atoms composing the basis (8 vs the previous 2) and in the requirement
of having dimensions along the z and x directions as similar as possible.
The atoms’ displacements corresponds to 0.04 Bohr.

The transmission shown in this section for pristine graphene is equivalent
to the density of modes, since the phonon transport is studied in ballistic
regime:

T̄ (ω) = M(ω)TLz(ω)
Ballistic−−−−→M(ω) (4.3)

where M(ω) is the density of modes (DOM) and TLz(ω) is the transmission
coefficient accounting for inelastic scattering phenomena, which reads7:

TLz(ω) =
Λ(ω)

Lz + Λ(ω)

Ballistic−−−−→ 1 (4.4)

being the phonon mean-free-path for backscattering Λ(ω)→∞ in ballistic
regime. Having found out the phonon dispersion, the DOM was calcu-
lated within the Landauer formalism with the “counting bands” method,
as explained in Ch. 2.3.2. The computation based on the Green’s function

7A detailed explanation of this formula is provided in Ch. 3.
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formalism, which is essential to deal with disordered systems, gave us the
same result (the equivalence of the two formalisms is shown in [28]).

Figure 4.6: Phonon transmission of pristine graphene in ballistic regime.

The maximum frequencies of both the acoustic and optical modes are high
and there is no frequency gap. Therefore a large thermal conductivity is ex-
pected, confirming what was already observed from the phonon dispersion
relation. In this context, it is worth to highlight that, in ballistic regime
and at high temperatures, the optical modes contribute significantly to the
thermal transport.

4.1.4 Phonon Thermal Conductance

At this point, the conductance can be computed as:

Cph(T ) =
~2

8πkBT 2

∫ ∞
0

dωM(ω)
ω2

sinh2( ~ω
2kBT

)
(4.5)

Dividing Cph by the width of the unit cell, Lx the conductance per unit
width Gph is obtained (fig. 4.7).
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Figure 4.7: Phonon thermal conductance per unit width of graphene in ballistic
regime.

Through the observation of the conductance trend as a function of the
temperature, one can note that:

1) In the low temperature limit the thermal conductance increases rapidly
with increasing temperature as more and more phonons are populated.

2) The growth is much faster until ∼ 700 K because the acoustic modes give
the greatest contribution. A saturation value of about 3.5 W/(m·K) is
reached when all the modes are populated.

3) Since there are no scattering mechanisms included, the conductance does
not show a decreasing trend at high temperature. This is a limitation of
all the models which analyse the thermo-electronic transport phenomena
at high temperatures in ballistic regime. To go beyond this approxima-
tive treatment, the effect of Umklapp phonon-phonon scattering will be
included in Ch. 6.

4) The conductance per unit width at room temperature is 1.4 W/(m·K). A
trend proportional to ∼ T2 is observed at very low temperatures. This is
a typical feature of 2D materials, while in bulk the low-temperature ther-
mal conductivity is proportional to ∼ T3. The difference in the tempera-
ture dependence between 2D and 3D materials is related to the different
phonon density of states. [47]
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4.2 Transition Metal Dichalcogenides: a Com-

parison among Monolayers of MoS2, WS2,

MoSe2 and WSe2

The thermoelectric properties in ballistic regime of SL TMDCs like MoS2,
WS2, MoSe2 and WSe2 were analysed and compared. Unlike graphene,
where all the C atoms lay in the same plane, TMDCs have a structure
made of a layer of M atoms sandwiched between two layers of X atoms.
The unit cell used to investigate the electronic properties and the relative
supercell for the phonon dispersion relation step is shown in fig. 4.8. The
interatomic distance between two metal atoms dM−M obtained from the
calculations are reported in tab. 4.3. As for graphene, the conventional
first Brillouin zone of monolayer TMDCs has an hexagonal shape.

Figure 4.8:
(a) Frontal and side view of the unit cell and of the 5x5x1 supercell used for the
computation of the phonon dispersion relation. The unit cell, highlighted in yellow,
coincides with the primitive cell of the lattice.
(b) First Brillouin zone, with its high symmetry points and the reciprocal vectors
(b1,b2).

Table 4.3: Interatomic distances (dM-M) in Å:

MoS2 WS2 MoSe2 WSe2

This thesis 3.20 3.25 3.33 3.36
Theoretical (ref. [88]) 3.179 3.183 3.309 3.319
Experimental (ref. [88]) 3.160 3.150 3.289 3.282

The optimized equilibrium lattice constants are slightly larger than the val-
ues measured experimentally. Indeed, the generalized gradient approxima-
tion for the exchange-correlation functional usually overestimates the lattice
constants [56].
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4.2.1 Electronic Band Structure and Density of States

A set of calculations have been performed to identify the parameters which
allow an optimal convergence for all the four materials studied. The atomic
structures were optimized up to forces less than 10−4 eV/Å and stresses
less than 10−4 eV/Å3 . The Monkhorst-Pack scheme [45] was used for the
integration of the Brillouin zone with a k-mesh of 10x1x10 k-points, while
a mesh with energy cutoff of 1000 Ry has been used for integrals in direct
space.

The electronic band structures for the four TMDCs are plotted along the
path in the first Brillouin zone connecting the high symmetry points Γ −
M − K − Γ. These plots are limited in the energy range of interest near
the Fermi level (Ef ), which is the relevant one for transport properties. On
the right, it is shown the density of states (DOS), computed by using a
mesh of 100x1x100 k-points, and the projected density of states (PDOS).
The PDOS gives important information on the contribution of the different
atomic species to the band structure.8

8The contribution of the two X atoms is equivalent for symmetry, thus the PDOS is
plotted for only one of them. Hence, the total DOS (green line) is the sum of the M
contribution (red line) and the double of the X contribution (yellow line).
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Figure 4.9: Electronic band structure and density of states of MoS2 (a), WS2 (b),
MoSe2 (c), WSe2 (d) monolayers. Bands are plotted in proximity of the Fermi level.



The following considerations can be derived by the plots of the electronic
band structures:

1) Single-layer TMDCs are direct semiconductors, which is really impor-
tant for optoelectronic applications. On the contrary, bulk materials are
indirect semiconductors [88].

2) The band gaps are not well reproduced by ab initio calculations with
GGA (PBE) functional. In fact, the predicted values are lower than the
experimental data reported in tab. 4.4. In addition, the inclusion of the
spin in the calculations would lead to a splitting of the valence band at the
K and K’ points of the BZ due to the strong spin-orbit coupling in TMDCs
[68]. In any case, this is irrelevant for the purpose of this work, since we
are not interested in optical transitions. Indeed, the exact magnitude of
the gap has no effect on the thermo-electric transport properties. The
band gap is large enough that the thermo-electric transport properties
are affected uniquely by the shape of the conduction and valence bands
in an energy range close to the Fermi level.

MoS2 WS2 MoSe2 WSe2

This thesis 1.70 2.20 1.48 1.69
Experimental 1.90 (2.05) 1.95 (2.36) 1.66 (1.85) 1.64 (2.04)
Ab initio 1.60 (1.75) 1.57 (1.97) 1.37 (1.56) 1.25 (1.71)

Table 4.4: Band gap energies (eV) between the valence (v) and the conduction (c)
band, corresponding to the vertical transition at the K point. The results of this
thesis are compared with the ab initio (GGA-PBE functional) and experimental data
reported in ref. [88]. In this work the authors evaluated the splitting of the valence
band at the K point due to the strong spin-orbit coupling. The two values associated
to each material refer to the transitions Kv → Kc and K ′v → Kc.

3) From the PDOS, it can be seen that, at the bottom of the conduction band
and at the top of the valence band, the total DOS is contributed mainly
by the transition metal atoms (Mo and W). These states immediately
above and below the energy-gap are those available for free electrons and
holes to conduct. Therefore, the contribution of chalcogen atoms (S and
Se) to the electrons transport is expected to have a secondary impact
with respect to the transition metal one. This opens the way to defect
engineering: the insertion of S or Se vacancies is expected to slightly affect
the electronic transport properties (i.e. the electric conductance Gel and
the Seebeck coefficient).
The electrical conductivity, Seebeck coefficient and power factor were
calculated in a previous work by Adessi et. al. [1] and they are presented
in fig. 4.10
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Figure 4.10: Adessi et. al. [1] : Powerfactor for MoS2, MoSe2, WS2 and WSe2
monolayer in ballistic regime. In inset is given the Seebeck coefficient S and the
electrical conductivity . Red and blue curves correspond respectively to hole and
electron doping. Calculations performed for the armchair transport direction.
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4.2.2 Phonon Dispersion Relation and Phonon Den-
sity of States

To compute the phonon dispersion relation, a 5x1x5 supercell (75 atoms)
has been used (see fig. 4.8). The atoms’ displacement was 0.04 Bohr and
the mesh parameters in direct and reciprocal space were the same as in the
structure optimization run.

The phonon dispersion relations for MoS2, WS2, MoSe2 and WSe2 are plot-
ted along the path K −M − Γ−K in the first Brillouin zone (fig. 4.15).

Figure 4.11: Phonon dispersion relation and projected density of states of MoS2

monolayer.

Figure 4.12: Oscillation patterns for the vibrational modes of TMDCs at the Γ point.
The mode frequencies of MoS2 at the Γ point are provided. A1 and A”

2 are out-of-
plane modes, while E

′
and E” are in-plane modes. IR and R denote infrared- and

Raman-active modes respectively.

The results listed in tab. 4.5 are in perfect agreement with the calculation
of ref. [56], in which the generalized gradient approximation (GGA) was
employed as well. The small deviations from experimental measurements
are caused by the overestimation of the lattice constant, which is a conse-
quence of the GGA.
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A1 A”
2 E

′
E”

This thesis 450.0 395.0 370.8 276.6
Ab initio 458.24 397.63 373.34 276.72
Experimental 470 402.4 383.5 287

Table 4.5: Phonon frequencies in cm−1 of the optical modes of MoS2 at the Γ point.
The results from this thesis are compared with other numerical [56] and experimental
[29, 89, 60] data.

Figure 4.13: Phonon dispersion relation and projected density of states of WS2

monolayer.

Figure 4.14: Phonon dispersion relation and projected density of states of MoSe2
monolayer.
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Figure 4.15: Phonon dispersion relation and projected density of states of WSe2

monolayer.

A series of important considerations are provided by looking and comparing
the phonon dispersion relations in the figures above. Firstly, the difference
between acoustic and optical modes is evident and, diversely from graphene,
a frequency gap is present. There is one question that must be asked: is
it possible to predict the contribution of the modes to the thermal conduc-
tivity? The following qualitative considerations based on the simple Debye
model may be advanced:

1) Acoustic phonons are coherent displacements of the atoms in the lattice.
If these collective movements propagate in the transport direction, they
will contribute significantly to the thermal conductivity. At very low
frequencies, the out-of-plane ZA mode is not as effective as TA and LA
modes in transporting heat in 2D materials. Indeed, as seen for graphene,
the ZA mode has a parabolic trend in the neighbourhood of the Γ point,
with zero speed of sound. A completely coherent transport in the out-of-
plane direction is meaningless, since it would signify the propagation of a
mechanic wave in the vacuum. However, it is important to remember that
this observation is correct only in the neighbourhood of the Γ point, cor-
responding to the long wavelength limit, where in fact the group velocity
tends to zero because of the parabolic trend. On the contrary, at higher
frequencies, the ZA mode does contribute to the thermal transport. In
fact, the interatomic force constants in the three cartesian directions are
coupled.
Studying the propagation of the ZA phonons within the simple Debye
model would result in taking into account only the group velocity at the
Γ point (speed of sound), which tends to zero because of the quadratic
nature of the dispersion relation. Therefore, it would lead to a big un-
derestimation of its contribution to the thermal conductance.
Due to its lower group velocity, one may expect the contribution of the
ZA mode to the thermal conductance to be less relevant than those of
in-plane LA and TA modes. Nonetheless, this statement is correct only if
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one considers the ballistic regime and the harmonic approximation. For
example, in ref. [102] it is proved that, in the case of WSe2, ZA phonons
have the dominant contribution to the thermal conductivity. As a matter
of fact, including phonon-phonon inelastic scattering in the analysis, ZA
phonons show a longer life time than TA and LA phonons.

2) Optical phonons are out-of-phase movements of the atoms in the lattice
and they are not able to transport heat effectively. This is reflected in the
fact that the optical modes are poorly dispersed. Their group velocity
tends to zero close to the Γ point and is much lower than for LA and TA
modes in all the Brillouin zone.

3) From the simple relation ω =
√

C
m

, higher frequencies are expected for

atoms having stiff bonds (high spring constant C) and low atomic mass.
High frequencies and a Debye-like dispersion relation are associated in
turn to high group velocity and high thermal conductivity.
The bonding in single-layer molybdenum and tungsten dichalcogenides
are surprisingly stiff. In general, the sulfides are 15% stiffer than the
selenides, while the molybdenum dichalcogenides are 4% less stiff than
tungsten dichalcogenides. [21]

4) The greater the mass difference between the M and X atoms of the basis,
the greater the energy gap between acoustic and optical modes. Materials
with a big gap will undergo less phonon-phonon Umklapp scattering: the
scattering channel acoustic+acoustic→optical becomes ineffective due to
the requirement on energy conservation for phonon-phonon scattering.
Therefore, we expect an impact on the studied materials due to the
phonon-phonon Umklapp scattering, increasing in this order: WS2, MoS2,
WSe2, MoSe2.
MoSe2 does not have a band gap between acoustic and optical modes,
but in between the optical range.

5) Looking at the phonon PDOS plots in the acoustic range, one may notice
that the greater the mass difference between the M and X atoms, the
higher the contribution to the collective motion coming from the M atom
and the lower from the X atom. The minimum difference corresponds to
MoSe2 (Mo = 95.95 amu, Se = 78.97 amu), for which the contribution of
Mo and Se is almost the same. In agreement with this principle, in WS2

(W = 183.84 amu, S = 32.06 amu) the contribution of W is way bigger
than that from S.
In LO1, TO1 and TO2 only the X atoms vibrate.
In LO2, ZO1 and ZO2 both M and X contributions are relevant.
On the base of these information, it is natural to think that the introduc-
tion of X vacancies could strongly affect the phonon thermal transport.
MoSe2 may undergo the highest reduction in thermal conductivity due
to the high contribution of Se to acoustic modes, which are the most im-
portant for heat transport.
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Combining these observations with what was said about the minor im-
portance that X atoms have on the electron transport, it seems like X-
vacancy doping could be a promising way to improve the thermoelectric
figure of merit.

4.2.3 Phonon Transmission

The orthogonal primitive cells used for computing the transmission of the
four TMDCs were made of 12 atoms. To measure the interatomic forces,
a 3x1x3 supercell was used (see fig. 4.16), and atomic displacements of
0.04 Bohr were used. The atomic structure was relaxed up to forces less
than 10−4 eV/Å and stresses less than 10−4 GPa. A direct space mesh with
energy cutoff of 1000 Ry was employed both for the unit cell optimization
and for forces’ calculation. The Monkhorst-Pack grid used had 10x1x10
k-points for the structure optimization and 4x1x4 for the calculation of the
forces.

Figure 4.16: Frontal and side views of the 3x1x3 supercell used for the transmission
calculation for SL TMDCs of the type MX2. The primitive cell, having a basis of
4 M atoms and 8 X atoms, is highlighted with a shadowed square. The axis in the
out-of-plane direction a3is interrupted for graphical reasons. It is in fact much longer
than a1 nd a2 in order to reproduce the vacuum.

The transmission function for pristine SL TMDCs was computed in the
armchair direction within the Landauer formalism. The procedure, which
is the same used for pristine graphene, is described in Ch. 2.3.2.
Fig. 4.17 shows the transmission functions for MoS2 (a), WS2 (b), MoSe2

(c) and WSe2 (d).
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Figure 4.17: Phonon Transmission at T=300K for MoS2 (a), WS2 (b), MoSe2 (c)
and WSe2 (d) monolayers. The transport direction is the armchair one.
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4.2.4 Phonon Thermal Conductance

Knowing the transmission function, it is straightforward to compute the
lattice thermal conductance per unit width via eq. 4.5.

Figure 4.18: Phonon thermal conductance per unit width of MoS2, WS2, MoSe2

and WSe2 monolayers.

It is remarkable to note that the maximum values of the thermal conduc-
tance per unit width in TMDCs are much smaller than the one found in
graphene: 0.39 − 0.56 W/(m·K) and 3.5 W/(m·K) respectively. The dif-
ference is significant also at room temperature: 0.38 − 0.51 W/(m·K) vs
1.4 W/(m·K).
Moreover, for TMDCs the thermal conductances grow rapidly with the tem-
perature up until about 100 K before they slowly converge towards a sat-
uration value. This trend is the consequence of the population of all the
phonon branches at temperature lower than the room temperature. On the
contrary, in graphene the rapid growth in thermal conductance continues
up until about 700 K, meaning that at room temperature not all of the
phonons are thermally activated.
The plot in fig. 4.18 allows to compare the conductance trends of the four
pristine single-layer TMDCs:

1) At room temperature and above, WSe2 is the material with the lowest
conductance, followed by WSe2, WS2 and MoS2, in increasing order. This
comparison should be taken only as a qualitative evaluation, since it does
not include the intrinsic reduction of the thermal conductivity due to
phonon-phonon Umklapp scattering.
By taking into account the Umklapp scattering9, the following order was

9Including this inelastic scattering mechanisms, the transport regime is not ballistic
any more. It follows that the conductance is dependent on the length of the device
Lz, which should be determined. This makes also possible to evaluate the thermal
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reported in ref. [21]: WS2 has the highest thermal conductivity,
142 W m−1 K−1 at room temperature, followed by MoS2 (103 W m−1 K−1),
MoSe2(54 W m−1 K−1), and WSe2 (53 W m−1 K−1).
It is clear that going beyond the ballistic regime is necessary to be able to
compare results from the simulations with the experimental values. For
this reason, a procedure to evaluate the transition to diffusive regime, due
to the intrinsic presence of Umklapp scattering, has been implemented
and it is shown in Ch. 6.

2) All the studied bidimensional materials present the typical quadratic
growth of Gph in the low temperature limit. Then the trend becomes lin-
ear with the temperature up until T ∼ 100 K for TMDCs and T ∼ 500 K
for graphene.

3) In an intermediate temperature range, the growth of the curves slows
down due to the presence of the energy gap in between acoustic and opti-
cal modes. In this range of temperatures, the conductance still increases
because it is related to the Bose-Einstein distribution (see fig. 2.11 ).
Nonetheless, the number of states contributing to the conductance re-
mains almost constant.
The heavier the masses of the atoms forming the basis, the lower the
frequency corresponding to the onset of the gap; hence, the lower the
temperature related to a slowdown of the conductance growth.
In particular, for T=150-250 K the conductances for selenides grow slower
than for the sulfides because the acoustic modes extend in a frequency
range up to an equivalent temperature of about T=150 K.
In addition, for T=100-300 K the conductance for WS2 shows a signifi-
cantly lower increase than that for MoS2. Indeed, W is heavier than Mo,
being the reason for the frequency gap in WS2 to start at lower frequency
(∼ 180 cm−1) than in MoS2 (∼ 240 cm−1). Despite an increase in tem-
perature, there are not states which could be occupied in that energy
range.

4) At higher temperatures, the conductances continue to grow because the
highest frequency optical phonons are populating. However, their contri-
bution is less relevant than that coming from the acoustic modes. This
is why the growth is very slow. Finally, when all the phonon states are
occupied, a saturation value is asymptotically reached.

conductivity (in ballistic regime we are instead considering the conductance per unit
width).
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Chapter 5

Effects of a Disordered
Distribution of Defects: The
Impact of Sulphur Vacancies
on the Phonon Thermal
Conductivity of SL MoS2

Defect engineering is one way to improve the figure of merit of materials
by manipulating the type, concentration, spatial distribution, or mobility
of defects within a crystalline solid [65].
The aim is to hinder the phonon transport by introducing defects in the
pristine lattice such as substitutional atoms, adsorbed dopants and vacan-
cies, without affecting the electrical transport properties.
The influence of substitution and adsorption doping in monolayer TMDCs
on the Seebeck coefficient, electrical conductance and power factor has been
examined by Adessi et al. in [1]. In this work, the electrical properties were
studied by analysing the impact of substitutional impurity atoms (Cl and P)
and adsorbed alkalies (Li, Na, K and Rb) on the electronic band structure.
The results highlighted a reduction of the power factor (PF) with respect
to calculations based on the rigid band model1.
It was found that the substitution doping mechanism by chloride induces
local states at the Fermi level, leading to a poor PF at low dopant concen-
tration. In contrast, alkalies act as almost perfect electron donors; the band
structure at the Fermi level is very similar to the band structure of the pris-
tine TMDCs layer. However, due to a degeneracy removal phenomenon, the
PF obtained with alkali doping is not as large as the one obtained within
the rigid band model.
This study stated that the highest power factor is expected for adsorbed
potassium atoms.

1This kind of modelling starts from the pristine layer properties and introduces the
effect of doping by shifting rigidly the Fermi level of the system. When the Fermi level
is shifted towards the valence band it mimics hole doping. When shifted towards the
conduction band it mimics electron doping.[1]
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In addition, Chee et al. [10] showed that the electrical and optical proper-
ties of WS2 and MoS2 can be modulated in a reversible and controllable way
via hydrazine doping and sulphur annealing. Hydrazine treatment of WS2

resulted to improve the field-effect mobilities, on/off current ratios, and
photoresponsivities of the devices. This behaviour was attributed to the
surface charge transfer doping of WS2 and to the sulfur vacancies formed
by its reduction2, which results in an n-type doping effect. In previous
studies, Lauhon et al. demonstrated that the field-effect mobility of MoS2

is enhanced due to an increase in electron doping related to higher concen-
tration of sulphur vacancies[33].
Furthermore, Tosun et al. [78] studied defect engineering in the fabrication
process flow of WSe2 n-type metal-oxide-semiconductor field-effect transis-
tors. A mild plasma treatment (He or H2) was used as an approach to reduce
the contact resistance of WSe2, by selective creation of anion vacancies at
the metal contact regions. Material characterization by X-ray photoelec-
tron spectroscopy, photoluminescence, and Kelvin probe force microscopy
confirmed defect-induced n-doping, which is attributed to the creation of
anion (Se) vacancies.
In Ch. 4, it was noticed that the electrical transport properties of MoS2 are
dominated by the contribution of Mo atoms. Moreover, the contribution
of Mo and S atoms on the phonon transmission is split in this way: both
the atoms give a similar contribution to the transport of acoustic phonons,
while the S atoms have the prevalent impact on the optical modes.
From these qualitative observations, it was hypothesized that the introduc-
tion of S-vacancies in the lattice could open the way for decreasing the
thermal conductivity without affecting significantly the power factor.
The aim of this chapter is to investigate in a quantitative way the effect of
a disordered distribution of sulphur vacancies on the phonon transport in
MoS2.

5.1 Introduction of a Single Sulphur Vacancy

in the Pristine Lattice

The first step of the analysis consists in inserting a single S vacancy in the
unit cell of the material. This unit cell must be large enough so that the
concentration of the S vacancies remains realistically low. In this way, the
defect affects solely the neighbouring atoms, modifying the properties of the
material only locally.
Fig. 5.1 shows a representation of the unit cell for the structure relaxation
run and of the supercell for the calculation of the forces.

2This reaction can be described by: N2H4 +WS2 →WS2−x +N2 + 2H2S
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Figure 5.1: Prospective view of the 3x1x3 supercell used for the calculation of MoS2

with a sulphur vacancy. The unit cell, highlighted with a yellow square, is made of
35 atoms: 12 Mo, 23 S. The sulphur vacancy is marked with a red circle.

The concentration of defects is x = 9.7190 · 1013 cm−2, corresponding to a
single S-vacancy over a cell of 36 atoms.
Since the systems are treated within DFT by applying periodic boundary
conditions, it is important to realize that the defect in the unit cell is re-
peated in a periodic way as well. As a matter of fact, the calculation shown
in this section is not suitable to analyse the impact of a real distribution of
vacancies. It will be clear soon that this kind of calculation consists in one
of the steps necessary to treat a disordered distribution of defects by using
the Green’s functions technique.
At this first stage, the transmission is computed with the “counting bands”
method. The transmission function and the conductance of this “single-
vacancy” monolayer are plotted in fig. 5.2 and fig. 5.3, where they are
compared with the curves for pristine MoS2 obtained in the previous chap-
ter.
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Figure 5.2: Phonon transmission of MoS2 in presence of a single sulphur vacancy
(red) and pristine material (blue).

Figure 5.3: Thermal conductance per unit width of MoS2 in presence of a single
sulphur vacancy (red) and pristine material (blue).

It is clear that the introduction of the sulphur vacancy significantly reduces
the transmission, especially in the optical range. Consequently, also the
phonon thermal conductance is strongly affected by the presence of the de-
fect.
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A Technical Note on the Employed Basis Set

The calculations presented in this chapter were obtained using the same
procedure and tolerance parameters for the structure optimization and the
forces calculation as in the previous chapter about pristine materials. The
only difference was the use of a single zeta polarized basis set (sζp). This
choice provides a slightly less accurate phonon dispersion and, in turn, a
transmission that is altered to a small degree (fig. 5.4). However, it does
not affect the thermal conductance curve, which is the final aim of the cal-
culation. In fact, fig. 5.5 demonstrates that the curve of Gph(T) is left
unaltered whether a dζp or a sζp basis is employed.

Figure 5.4: Comparison of the transmission of pristine MoS2 calculated with a single
zeta polarized basis(in blue) and a double zeta polarized basis (in yellow).

Figure 5.5: Comparison of the transmission of pristine MoS2 calculated with a single
zeta polarized basis (in blue) and a double zeta polarized basis (in yellow).

A slightly lower accuracy in the calculation is rewarded by a strong reduction
in the computation time. The choice of a single zeta polarized basis was
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fundamental to proceed with the analysis of the impact of a disordered
distribution of defects, which required calculations with computation time
in the order of a month.

5.2 Effect of a Disordered Distribution of Sul-

phur Vacancies in MoS2

This section is devoted to the study of a disordered distribution of sulphur
vacancies in MoS2.
In order to deal with disorder, the approach used in the previous section is
insufficient. In fact, the periodical symmetry of the lattice is broken by the
introduction of defects in randomised sites. Thus, the “counting bands”
method employed so far would fail and the use of the Green’s functions
technique becomes necessary.
A schematic representation of the studied systems is drawn in fig. 5.6.
The semi-infinite contacts are made of pristine material, while the device
is composed by a series of blocks. There are five different kinds of blocks;
each one represents a different unit cell.

Figure 5.6: Device with a disordered distribution of defects. P stands for a “pristine
block”, i.e. a monolayer without defects, and Si stands for a monolayer whose unit
cell present an S vacancy in a lattice site labelled as i.

The pristine material corresponds to the P block and, it is the constituent
of the semi-infinite contacts as well.
The other four blocks are related to unit cells which present a single S va-
cancy in four different locations of the lattice.
Several calculations were performed to compute the transmission of all the
sub-systems of the type P-Si and P-Si-P.
The difference with respect to the “single-vacancy” case, which was treated
in the previous section, consists in computing the Green’s function of each
sub-system. The total Green’s function of the “many-blocks” device, and
therefore the total transmission, is obtained the knowledge of the Green’s
functions of the “single-vacancy” systems.

Following this approach, two studies were conducted changing the configu-
ration of the blocks which compose the device.
The first one consisted in an analysis of the lattice thermal conductivity as
a function of the concentration of defects, when the length of the device was
fixed to 42 nm.
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The second one regarded the variation of the conductivity as a function of
the length of the device Lz, when the concentration was fixed to x = 3.3%.
A code was written in order to produce these different configurations of the
device. It generates random sequences of blocks with properties depending
on two parameters: the total number of blocks, which determines the length
of the device; the percentage of blocks containing sulphur vacancies, which
sets the concentration of defects.
A statistical analysis was carried out by averaging several different config-
urations having the same characteristics.
The results are shown in the following.

5.2.1 Variable Concentration at Fixed Length
(Lz = 42 nm)

The first study regarded a device of length Lz = 42 nm and concentration of
sulphur vacancies equal to 0.8% (9.7 ·1012 cm−2) and 3.3% (3.9 ·1013 cm−2).
These concentrations are in line with realistic values that can be obtained
experimentally. Indeed, Tsai et. al. [81] induced sulphur vacancies in
the basal plane of MoS2 with concentrations in the range 0 − 21.9% by
electrochemical generation3.

Figure 5.7: Phonon transmission as a function of the concentration of S vacancies.
The length of the sample is Lz = 42 nm

There is a remarkable reduction of the transmission with respect to the
pristine material, which affects both the acoustic and the optical modes.
The decrease is even more relevant for the optical phonons with frequen-
cies lower than 400 cm−1, corresponding to the transverse and longitudinal
optical modes TO1,2 and LO1,2 (see fig. 4.11). It was noticed that these

3Low concentrations were considered in this thesis because, at high concentrations,
vacancies tend to form clusters to stabilize the systems [81]. This phenomenon is not
included in our model.
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modes are dominated by the sulphur contribution. Thus, their suppression
upon introduction of S vacancies is in line with our prediction.

Figure 5.8: Phonon thermal conductance per unit width as a function of the tem-
perature and for different concentrations of S vacancies. The length of the sample is
Lz = 42 nm

Figure 5.9: Phonon thermal conductivity as a function of the temperature and for
different concentrations of S vacancies. The length of the sample is Lz = 42 nm

The plots of the conductance per unit width and of the conductivity confirm
the observations made for the transmission.
The conductance in presence of 0.8% S vacancies is almost halved with
respect to the pristine case, and it further reduces as the concentration in-
creases.
The curves of the conductivities were obtained by multiplying Gph with
the length of the device (Lz = 42 nm) and by dividing by the thickness of
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the single-layer, which was taken as the interlayer distance in bulk MoS2

(Ly = 0.65 nm [59]).
Our calculation confirm that SL MoS2 has undoubtedly an extremely low
thermal conductivity. At room temperature, κph is 16.3 W m−1 K−1 for
x = 0.8% and 9.6 W m−1 K−1 for x = 3.3%. These results are of the
same order of magnitude of values previously found in literature for the
pristine SL MoS2. A thermal conductivity of 34.5 (±4) W m−1 K−1 was
found from temperature-dependent Raman spectroscopy [93]. Through the
use of ab initio calculation combined with Boltzmann Transport Equation,
κph = 83 W m−1 K−1 was estimated in [37] for a sample with a typical size
of 1 µm and rough edges at room temperature.
In addition, with respect to these values, the inclusion of S vacancies re-
duces significantly the already low κph of SL MoS2. This consideration have
already been highlighted in ref. [55, 94]. However, the effect of disorder
have not been evaluated and no estimates of ZT have been reported.

In order to assess if the introduction of S vacancies has a positive impact on
the thermoelectric efficiency, the electronic transport properties are needed
as well. The electrical conductivity, the Seebeck coefficient and the elec-
tronic part of the thermal conductivity have been computed by Christophe
Adessi. All these electric properties depend on the electron transmission
T̄el via eqs. 2.28. T̄el is plotted in fig. 5.10 and it is possible to see that
the introduction of S vacancies leads to a strong reduction of the electron
transmission as well. Therefore, it is necessary to evaluate the thermoelec-
tric figure of merit (ZT), which will be shown at the end of the chapter.

Figure 5.10: Electron transmission for different concentrations of S vacancies. The
length of the sample is Lz = 42 nm

5.2.2 Variable Length at Fixed Concentration
(x = 3.3%)

The second study concerns the effect on the thermal conductivity in de-
vices with different lengths and the same concentration of sulphur vacancies,
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which is constant to 3.3%.

Figure 5.11: Phonon transmission as a function of the length of the sample. The
concentration of S vacancies is 3.3%

Figure 5.12: Phonon thermal conductance per unit width as a function of the tem-
perature and for different lengths of the sample. The concentration of S vacancies is
3.3%

The transmission and the conductance per unit with of the pristine material
are compared with those of devices including S vacancies and having lengths
Lz = 42, 120, 195 nm. The same remarkable reduction of the phonon trans-
port, which was observed in the previous case, is confirmed in this analysis.
Furthermore, the LO and TO modes are suppressed almost completely when
the length of the device is longer than 100 nm.
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Figure 5.13: Phonon thermal conductivity as a function of the temperature and for
different lengths of the sample. The concentration of S vacancies is 3.3%

The conductivity increases with the length of the device, passing from
9.6 W m−1 K−1 for Lz = 42 nm to 14.1 W m−1 K−1 for Lz = 120 nm and to
16.0 W m−1 K−1 for Lz = 195 nm.

The plot of the electron transmission shows that the transport of electrons is
strongly reduced by the increase in the length of the device. This reduction
is more significant at energy greater than the Fermi energy, corresponding
to transport of electrons in the conduction band. As a matter of fact,
the reduction of the electrical conductivity, due to sulphur vacancies, will
be stronger for n-type materials (injection of electrons) than for p-type
(injection of holes).

Figure 5.14: Electron transmission for different lengths of the sample. The concen-
tration of S vacancies is 3.3%
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5.2.3 The Thermoelectric Figure of Merit

At this point, the evaluation of the figure of merit (ZT) is necessary to
understand the balance between positive and negative effects on the ther-
moelectric efficiency due to the presence of a disorder distribution of S
vacancies.
ZT is a dimensionless quantity that expresses the ability of a given material
to efficiently produce thermoelectric power and it reads as:

ZT =
σel S

2

κel + κph
T (5.1)

The denominator is dominated by κph, since the electrical contribution to
the total thermal conductivity is approximately two times lower than the
phonon contribution.
The figure of merit has been computed as a function of the concentration of
sulphur vacancies, of the length of the device and of the temperature. In the
following figures, the trend of ZT is shown in the two cases of n-type (blue)
and p-type (red) materials. In fact, while the lattice thermal conductivity is
independent on the nature of the charge carriers, all the electrical properties
must be evaluated depending on whether the charges are electrons or holes.
The solid and dashed lines in the figures are related to ZT values at T=300
K and T=700 K respectively.

Figure 5.15: Thermoelectric figure of merit of SL MoS2 in presence of a disordered
distribution of sulphur vacancies with concentration of 0.8%
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Figure 5.16: Thermoelectric figure of merit of SL MoS2 in presence of a disordered
distribution of sulphur vacancies with concentration of 3.3%

Figure 5.17: Thermoelectric figure of merit of SL MoS2 in presence of a disordered
distribution of sulphur vacancies with concentration of 4.2%

It is clear from these plots that for n-type materials, the figure of merit
is worsened by the presence of S vacancies, independently on the defects’
concentration and on the temperature. The cause is the low power factor
(σel ), which is reduced more than the lattice thermal conductance.
A different behaviour is observed in p-type materials. A slight improvement
of the figure of merit is found at T=300 K, which grows with increasing va-
cancies’ concentration and with decreasing length of the device.
At T=700 K, the reduction of the power factor by the presence of S vacan-
cies prevails on the decrease of the lattice thermal conductivity, resulting in
a lower ZT.
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Let us summarize the main conclusions deriving from the case study exam-
ined in this chapter:

• The inclusion of a disordered distribution of S vacancies reduces signifi-
cantly the already low κph of SL MoS2. However this does not correspond
automatically to an improve of the thermoelectric figure of merit.

• For a realistic material (with disordered distributions of defects) the ZT
for p-type and n-type materials are drastically different. Overall, the
disordered distribution of S vacancies has a small positive impact on ZT
only for p-type SL MoS2 and at low temperatures. In fact, in the best
case (x = 4.2%, T = 300 K, p-type), ZT is passing from ≈ 0.3 for the
pristine material to ≈ 0.5 for the monolayer with S vacancies.
Instead, the ZT of n-type materials is always worsened by the inclusion
of S vacancies.

• In the optics of realizing a device, the total thermoelectric conversion ef-
ficiency depends on the combination of both the figure of merits of the
n-type and p-type materials which form the legs of the thermoelectric
couples (fig. ??). The inclusion of sulphur vacancies could be viable to
improve the ZT of the p-type leg, while a vacancy-free material is prefer-
able for the n-type leg.
Many other factors contribute to the overall efficiency. For example, our
analysis did not consider the reduction of the thermal conductivity caused
by phonon-phonon Umklapp scattering. Hence, the estimates of ZT ob-
tained in this chapter are suitable to take into account the impact of the
particular kind of defect included in the system. They are not intended
to predict the precise efficiency of realistic thermoelectric devices.

• The technique employed to deal with disordered distribution of defects is
suitable for a series of future studies. Different strategies may be tested
to engineer materials in order to achieve a good “phonon-glass electron-
crystal” behaviour. For example, the effect of a combination of different
kinds of defects could be evaluated at the same time. Moreover, the
concentration of defects could be tuned locally with the aim of producing
graded distributions of defects.
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Chapter 6

Effect of Inelastic Scattering
on the Lattice Thermal
Conductance of Graphene:
Towards Diffusive Regime

The phonon transport in ballistic regime was studied in Ch. 4 by pure ab
initio calculations within the Landauer Formalism. The reduction of the
conductance due to the presence of a disordered distribution of defects was
taken into account as well by using the Green’s functions technique (Ch. 5).
This chapter presents the effect on the lattice thermal conductivity of phonon-
phonon Umklapp scattering and boundary scattering. The former scattering
mechanism is a consequence of anharmonic terms in the expansion of the
interatomic potential, while the latter accounts for specular scattering due
to the roughness of boundaries in real samples. The materials studied are
pristine graphene and MoS2.
A detailed description of inelastic scattering processes was examined in
Ch. 3, together with the theoretical framework necessary. It is useful to
recall the main points in order to describe the process leading to the results.

The phonon thermal conductance per unit width is found within the Lan-
dauer Formalism as:

Gph(T ) =
~2

8πkBT 2

∑
λ

∫ ∞
0

T̄λ(ω, T )/Lx
ω2

sinh2( ~ω
2KBT

)
dω (6.1)

The key quantity to compute Gph is the transmission function T̄ , whose
expression reads:

T̄λ(ω, T ) = Mλ(ω) TLz(Λλ(ω, T )) (6.2)

where Mλ(ω) is the density of modes (DOM), which coincides with the
phonon transmission computed for the pristine materials (Ch. 4.1.3).
TLz(ω, T ) is the transmission coefficient, which accounts for the scattering
phenomena and acts like a function modulating the DOM. It depends on
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the mean free path value of each phonon Λλ(ω, T ) and on the length of the
system Lz through:

TLz(ω, T ) =
Λλ(ω, T )

Lz + Λλ(ω, T )
(6.3)

Since the Umklapp-scattering mean free path is inversely proportional to
the temperature, the transmission coefficient will depend on the tempera-
ture as well.

To evaluate the transmission function T̄ , a mixed approach is employed: the
full DOM is computed from first principles within the Landauer Formalism;
instead the transmission coefficient is computed from the knowledge of the
phonon life time, which is a feature typical of methods based on Peierls-
Boltzmann Transport Equations in relaxation time approximation. Ana-
lytical expressions, based on parameters computed with DFT calculations,
are used to evaluate the phonon life times due to Umklapp and boundary
scattering.
This approach allows to evaluate the phonon transport properties in the
intermediate ballistic-diffusive regime characteristic of mesoscopic systems.

6.0.1 Computation of the Phonon Life Time and Mean
Free Path for the Umklapp Scattering Process

Assuming different scattering mechanisms as independent, the effects of
Umklapp phonon-phonon scattering (τUλ ) and phonon-boundary scattering
(τBλ ) are combined in the the Matthiessens’s rule. The reciprocal of the
total phonon life time (phonon scattering rate) is thus given as:

1/τλ(ω) = 1/τUλ (ω) + 1/τBλ (6.4)

The Umklapp phonon-phonon scattering rate can be written as:

1/τUλ (ω, T ) =
γ2
λ(ω)kBTω

2

Mv2
λ(ω)ωmaxλ

(6.5)

where γλ(ω) is the mode Grüneisen parameter, which characterizes the
strength of the Umklapp phonon-phonon scattering process for the mode λ.
vλ(ω) is the modulus of the group velocity vector computed from the phonon
dispersion relation at frequency ω for the mode λ. M is the mass of the unit
cell and ωmaxλ is defined as the highest frequency of the mode λ.
The rate of phonon-boundary scattering reads:

1/τBλ (ω) =
vλ(ω)

D

1− p
1 + p

(6.6)

where D coincides with the sample size in the transport direction Lz and
p is the specularity parameter, which is defined as the probability of spec-
ular scattering at the boundary. The specularity parameter ranges from

102



0 for completely rough boundary to 1 for perfectly smooth boundary. In
the case that p = 1, the scattering process at the boundary is completely
elastic. Lower values of p correspond to an increasing impact of the in-
elastic phonon-boundary scattering mechanisms. The lower the specularity
parameter, the higher the probability of phonon diffusion.

Once the total life time is known, the phonon mean free path can be com-
puted as:

Λλ(ω, T ) = vλ(ω) τλ(ω, T ) (6.7)

In case of perfectly smooth boundary, the total phonon life time coincides
with τUλ . Thus the mean free path results to be:

Λλ(ω, T ) = vλ(ω) τUλ (ω, T ) =
Mv3

λ(ω)ωmaxλ

γ2
λ(ω)kBTω2

(6.8)

Grüneisen Parameter

The Grüneisen parameter and the group velocity were computed using
PHONOPY, as explained in Ch. 3.2.1.
The mode Grüneisen parameter as function of the frequency1 is depicted in
the following graphs.

Figure 6.1: Grüneisen parameter of pristine graphene as a function of the frequency.
The different colours correspond to each mode. For the ZA mode, the Grüneisen
parameter diverges to −∞ for ω → 0.

1To be precise, all the quantities are calculated as function of ω((q)), keeping track of
the dependence on wave-vectors in the whole first BZ (see Ch. 3.4). Therefore, phonons
with identical ω and different q do not have the same γ, v, τ and Λ, explaining the
multiplicity of values for each frequency ω in the plots.
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Figure 6.2: Mode Grüneisen parameter of pristine graphene as a function of the
frequency. Each mode is plotted in a separate window.

The mode Grüneisen parameter is associated to the degree of anharmonicity
of the interatomic force constants. The higher the Grüneisen parameter, the
stronger the impact of phonon-phonon Umklapp scattering. It is directly
proportional to the coefficient of thermal expansion (eq. 3.11).
The Grüneisen parameter is generally positive, in agreement with the usual
positive sign of the coefficient of thermal expansion [43]. In fact, it is well
known that, if the temperature increases, usually materials dilate.
However, graphene and its derivatives are notorious for their large negative
thermal expansion over a wide range of temperature, ascribed to the nega-
tive Grüneisen parameter of the ZA out-of-plane mode [41].
The data plotted in 6.1 and 6.2 confirms that ZA and ZO modes present
negative Grüneisen parameters. Moreover, for the ZA mode, the Grüneisen
parameter diverges to −∞ close to the Γ point.
Average values of the mode Grüneisen parameter, obtained from the graphs
above, are reported in tab. 6.1.

ZA TA LA ZO TO LO
γ̄λ -2.1365 0.5761 1.2470 -0.4178 1.7849 1.3512

σ(γλ) 1.3296 0.1619 0.0721 0.2198 0.1576 0.0471

Table 6.1: Average mode Grüneisen parameter and standard deviation.
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Phonon Group Velocity

The group velocity was computed from the full phonon dispersion in the
first BZ and plotted in fig. 6.3.

Figure 6.3: Group velocity of pristine graphene as a function of the frequency.

At low frequencies, the TA and LA modes have an almost constant and
high group velocity of about 22 Km/s and 14 Km/s respectively, in good
agreement with previous experimental results [52] and theoretical calcula-
tions [63, 104].
The ZA mode2 and the optical modes have lower group velocities on average
than the in-plane acoustic modes.

2The group velocity of ZA phonons vZA is supposed to tend to zero near the Γ point,
while finite values are observed in fig. 6.3. The reason lies in a numerical instability [77]
that commonly affects the phonon dispersion of the ZA mode in 2D materials, solely near
the Γ point. This instability could have been removed by performing a calculation with
more restrictive tolerance parameters, as done in Ch. 4. However, the group velocity
is needed only to derive the phonon life times; wrong values of the group velocity, close
to the Γ point, do not introduce relevant errors in the life times. In fact, taking vZA
correctly equal to zero, the life time is expected to be zero as well. Taking the finite vZA
from the calculation, wrong at low frequencies, it is found that τUZA tends to zero as well
(fig. 6.4). This is due to the divergence at low frequencies of the Grüneisen parameter
(see eq. 6.5).

105



Phonon Life Time and Mean Free Path for Umklapp Scattering

Knowing the Grüneisen parameter and the group velocity, it is straightfor-
ward to compute the phonon life times and the phonon mean free paths
associated to the Umklapp process. The life time values per mode at room
temperature are plotted in fig. 6.4.

Figure 6.4: Phonon life time associated to the Umklapp process, computed at room
temperature (300K).

It is clear from these graphs that TA and LA modes display by far the
longest Umklapp life times, which are in the order of nanoseconds at room
temperature.
Life times of in-plane acoustic and optical phonons (ZA and ZO) are in the
order of hundreds of picoseconds, while for in-plane optical phonons (TO
and LO), they are much shorter, in the order of a few picoseconds.
τUλ and ΛU

λ are inversely proportional to the temperature (eq. 6.5), hence
to obtain data at a different temperature one just needs to scale the values
at room temperature by a factor 300K

T
.

Multiplying the life times for the modulus of the group velocity and aver-
aging over the values of phonons of the same mode, one obtains the average
mean free path per mode. These values are listed in tab. 6.2, together with
their standard deviation.

ZA TA LA ZO TO LO
Λ̄ (µm) 0.2436 4.4341 0.6426 0.5975 0.0058 0.0113
σ(Λ) (µm) 0.1791 3.2897 0.5960 0.4122 0.0040 0.0165

Table 6.2: Average mean free path and standard deviation per mode at T=300K

106



An intriguing question in the theory of phonon transport in graphene is the
relative contribution to heat conduction by LA, TA and ZA phonon polar-
ization branches [48].
Indeed in literature there are many publications contradicting each other.
In ref. [66] it is shown that the relative contribution from ZA branch to
heat conduction is relevant and increases with decreasing the size, specu-
larity parameter, and temperature of graphene ribbons.
Diversely, in ref. [19, 46] the contribution of optical and ZA phonons to
thermal transport has been neglected “because of their low group velocity
and large Grüneisen parameter”[48], which imply in turn short life time and
mean free path.
In my opinion, this last assumption is mistaken when dealing with meso-
scopic systems. In fact, the difference in the life times magnitude among
different modes does not represent by itself the criterion to determine which
modes contribute to the thermal conductance. It is the transmission coef-
ficient that matters. As a consequence, one has to compare the values of
phonon mean free paths, at a given temperature, with the size of the sys-
tem Lz. In fact, one could follow this argument: imagine that the mean
free path is 1 mm for the generic mode-A, while it is 1 µm for the mode-B.
If the device was long several microns, it would be correct to state that
the contribution of mode-B phonons to the thermal transport is negligible
with respect to the one of mode-A phonons. Indeed there is a 103 differ-
ence in their mean free paths. But if Lz was about 100 nm, then also the
mode-B phonons would be transmitted with high probability; in this case
the contribution of mode-A and mode-B to the thermal conductance would
be similar.
For this reason, the phonon mean free paths require to be analysed as a
function of the temperature and then compared with the length of the sys-
tem.

Fig. 6.5 shows the phonon mean free paths at three different temperatures:
100 K, 300 K and 900 K. Let us consider for example a device of length
Lz = 1 µm (dashed lines in figures 6.5). It is evident that at T = 100 K
all the modes have many phonons with ΛU comparable to Lz, which can
contribute to the thermal conductance. Moving to T = 300 K, TO and LO
phonons display mean free paths significantly lower than 1 µm, meaning
that their contribution is inactive at room temperature. ZA and ZO have
mean free paths shorter than Lz, but still in the same order of magnitude.
Thus, their contribution is supposed to be smaller than LA and TA’s, but
it is not negligible.
Finally, at high temperature (900 K) only the in-plane acoustic modes dom-
inate the thermal transport.
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(a)

(b)

(c)

Figure 6.5: Phonon mean free path (Umklapp scattering) for T=100K (a),
T=300K(b) and T=900K (c) in the range 0 − 10 µm (ΛU of LA and TA phonons
extend in a range that is several order of magnitude higher).



6.0.2 Coefficient of Transmission

At this point, everything is ready to evaluate the transmission coefficient in
a quantitative way and thereafter proceed to the calculation of the lattice
thermal conductance.
A graphical representation of TLz(Λλ(ω, T )) is given in fig. 6.6 for a sam-
ple of length Lz = 1 µm at T=300 K; the only Umklapp phonon-phonon
scattering contribution is included (p=1).

Figure 6.6: Transmission coefficient for a graphene sample of length Lz = 1 µm at
T=300K. The boundaries are considered as perfectly smooth (p=1), therefore, only
the Umklapp contribution to the phonon life time is included. Every mode is plotted
in a different quadrant. The coloured dots are the values corresponding to all the q
points sampled in the first Brillouin zone, while the black line represents an average
over all the phonons with same ω and different q and λ.

In the following graphs, one can see the transmission coefficient varies with
the temperature with Lz = 1 µm (fig. 6.7), and how it depends on the
sample size at T=300 K (6.8).
In addition, the effect of boundary scattering is included in fig. 6.9, ob-
taining mean free paths which comprehend both Umklapp and boundary
scattering. In this context, the specularity parameter is varied as an arbi-
trary parameter, aiming to provide an idea of its impact on the transmission.
It is not computed on the base of the particular roughness of the samples’
boundary.
A black line is drawn to give a qualitative, but immediate idea of the im-
pact of T on the transmission function. It represents an average over all
the phonons with same ω and different q and λ.
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Temperature Dependence

(a)

(b)

(c)

Figure 6.7: Transmission coefficient for a sample of length Lz = 1µm at T=10K (a),
T=300K (b) and T=900K (c).



Size Dependence

(a)

(b)

(c)

Figure 6.8: Transmission coefficient at T=300K, for samples with Lz=100 nm (a),
Lz=1 micron (b) and Lz=10 micron (c).



Impact of Boundary Scattering

(a)

(b)

(c)

Figure 6.9: Transmission coefficient for a samples of length Lz=1 micron at T=300K,
with p=1 (a), p=0.9 (b) and p=0.6 (c).



6.0.3 Lattice Thermal Conductance

From the knowledge of the transmission coefficient and of the DOM pre-
sented in Ch. 4.1.3, the lattice thermal conductance per unit width Gph is
computed according to eq. 6.1. The trend of Gph as a function of the tem-
perature is shown for different sample sizes Lz and a specularity parameter
p = 0.9.3

Figure 6.10: Conductance in diffusive regime for graphene to the change of Lz,
considering Umklapp phonon-phonon scattering and boundary scattering (p=0.9).

While more and more phonons are populated as the temperature increases,
the conductance grows, but there is also a detrimental contribution brought
by Umklapp scattering which is more effective at high temperatures. Thus,
including inelastic scattering, the conductance reaches its maximum at lower
temperature with respect to the ballistic case and then slowly decreases.

A Technical Note on the Calculation

The physical quantities necessary to compute the phonon mean free path,
i.e the Grüneisen parameters and the group velocities, were calculated on
the base of a unit cell that coincides with the primitive cell of graphene (2
basis atoms). The values of these quantities as a function of the q points of
the supercell, which was employed to compute the transmission, were found
by interpolation with a code that I wrote with Matlab.
To validate this procedure, the conductance has also been computed directly
with mean free path values coming from the supercell (8 atom basis). The
difference between the two curves is minimal at low temperatures, while a

3This value of the specularity parameter was chosen in agreement with ref. [47]. It is
an approximated value introduced to consider diffusive scattering from a quasi-smooth
boundary. The dependence of p on ω is neglected as well.
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maximum error of ∼ 10% occurs at high temperatures (> 500 K). The use of
the interpolation method allows to reduce the computation time of at least
1 order of magnitude. An error of about 10% could than be acceptable
in the optic of extending this procedure to much more time demanding
calculations for systems with defects.

Figure 6.11: Validation of the mean free path interpolation method from the primitive
cell calculation. Comparison with the conductance obtained from the data related to
the supercell calculation.

6.0.4 Lattice Thermal Conductivity

In order to pass from the conductance per unit width to the conductivity
one needs to define the thickness Ly of the studied layer. In this case, Ly is
considered equal to 0.345 nm, which is the distance of two graphene layers
in bulk graphite. Thus:

κLz(T ) =
Lz
Ly

Gph(T ) (6.9)

where Lz is the length of the sample which is introduced as a parameter
in order to account for the Umklapp and boundary scattering. Gph is the
conductance divided by Lx, which is the width of the unit cell used for the
DFT calculation.

The conductivity is plotted in fig. 6.12 as a function of the temperature
and for different lengths of the sample, with Lz ranging from 100 nm up to
20 µm. Moreover, the effect of the boundary scattering is evaluated in a
qualitative way in fig. 6.13, where the specularity parameter p takes three
different values (p = 1, 0.9, 0.6).
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Figure 6.12: Conductivity in diffusive regime for graphene to the change of Lz,
considering Umklapp phonon-phonon scattering and boundary scattering (p=0.9).
The thickness of the graphene layer has been taken as Ly = 0.345nm

Figure 6.13: Conductivity in diffusive regime for graphene to the change of Lz and
of the specularity parameter p: p=1 (dashed line), p=0.9 (solid line), p=0.6 (dotted
line)

Through the observation of these figures, many qualitative considerations
can be drawn about the lattice thermal conductivity of graphene and the
method adopted to deduce it:

1) First of all, a strong dependence of the conductivity on the size of the
sample is observed.
This may seem like a mistake due to the fact that in macroscopic 3D
systems the conductivity is defined as a size independent quantity. The
reason lies in the physical phenomena arising in 2D materials and in the
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physics of transport processes in mesoscopic systems. When dimensional-
ity is reduced or the relevant sizes reach the mesoscopic scale (from tens of
nanometers to tens of microns), the knowledge developed on conventional
bulk crystals becomes insufficient, and novel properties emerge [8]. This
is consistent with the theoretical prediction that heat carriers in graphene
can propagate along distances up to the millimetre scale [6]. The origin
of such behaviour is under active investigation and it is debated, with
arguments focusing on dimensionality effects and on the reduction of the
allowed scattering processes [8].

2) Let us focus on the samples with sizes in the order of a few microns,
namely on the curves corresponding to Lz = 1, 3, 5, 10 µm, which corre-
spond to the sizes of samples usually tested experimentally. The ther-
mal conductivity at room temperature (T=300 K) varies in the range
2000 − 10000 W m−1 K−1. This is exactly the same order of magnitude
of most the theoretical and experimental findings.
It has to be noticed that, while it is universally recognised that graphene
has the highest known thermal conductivity, well-defined values of the
thermal conductivity as a function of temperature, size and other param-
eters are far from being uniquely determined. Indeed, even if the recent
availability of high quality single-layer graphene samples has allowed for
a large number of experimental studies, definitive results remain elusive.
The difficulty is reflected in a variety of estimates, spanning a rather large
range of values between 1500 and 5000 W m−1 K−1 at room temperature
[4]. On the theoretical side, the estimates are equally uncertain and vary
in an even larger range of κ between 1000 and 10000 W m−1 K−1 [17].
Undoubtedly, one thing is clear: graphene shows extremely high ther-
mal conductivity, some orders of magnitude larger than the one found for
single-layer MoS2in Ch. 5.2.
It results from these comparisons that the method used in this chapter
provides reliable estimates, at least from a qualitative point of view.

3) The thermal conductivity increases with temperature up to 300-400 K.
Then a decreasing trend is observed due to the 1/T dependence of the
Umklapp phonon mean free path.
In literature [66, 17], the conductivity usually reaches the maximum at
lower temperatures (T∼ 150 K) and then it decreases rapidly. On the
contrary, one has to go to very high temperatures (fig. 6.13) to see a
remarkable decrease of the conductivity in this calculation. In any case,
the method provides a qualitative correct behaviour. The difference in
the trend may occur partially due to the inclusion in this calculation of
the ZA optical mode, which displays a long mean free path.
There is still a lot of research going on to evaluate the phonon-phonon
scattering in a correct way and to understand which modes contribute
significantly to the thermal conductivity. The formula used for the cal-
culations of the life times (eq. 6.5), coming from the Klemens model, has
proven its efficacy in many works, but its broad range of applicability is
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questionable and requires further analysis. For example, a more precise
way of treating the three phonons Umklapp scattering should consider
the selection rules for all the allowed momentum transitions in the first
Brillouin zone [47].

4) Let us now consider the size effects arising for Lz shorter than 1 µm and
larger than 10 µm.

– According to eq. 6.1, for Lz << Λ:

Gph ∝
Λ

Lz + Λ

Lz<<Λ−−−−→ const

kph ∝ Lz ·
Λ

Lz + Λ

Lz<<Λ−−−−→ Lz

(6.10)

This behaviour is well reproduced by the model used. In fact, in the
limit of very short lengths, the ballistic case is recovered. In fig. 6.10
it is possible to see that the conductance curves approach the ballistic
conductance for decreasing Lz.

– At very long lengths of the sample (Lz >> Λ) the classical diffusive
regime should be recovered, with the conductivity that is supposed to
converge towards the value predicted by Fourier laws.
In the case of Lz >> Λ, eq. 6.1 provides the following information:

Gph ∝
Λ

Lz + Λ

Lz>>Λ−−−−→ Λ/Lz

kph ∝ Lz ·
Λ

Lz + Λ

Lz>>Λ−−−−→ Λ

(6.11)

The classical diffusive limit is more problematic to reproduce, because
the conductivity is proportional to the phonon mean free path, which
depends on many variables. Usually researchers are treating it by in-
serting a cut-off for the mean free path of phonons with very long
wavelength.
These correspond to phonons in the neighbourhood of the Γ point,
which are not expected to contribute to Umklapp scattering. How-
ever, it is still not clear how Normal processes contribute to resistive
phenomena by altering the phonon distribution in presence of other
inelastic scattering phenomena (see Ch. 3.2). A method that could
provide a better insight is based on solving iteratively the Boltzmann
transport equations, in order to go beyond the relaxation time approx-
imation (RTA) [8, 17].
Within the approach used in this thesis, no cut-off at low frequencies
was considered. This is why the conductivity curves do not converge at
the increase of Lz. Indeed, the mean free paths of TA and LA phonons
can be unusually large at low frequencies (in the order of millimiters).
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However, even if many ways are present in literature, none of them was
convincing due to the luck of a clear physical meaning. In addition,
Nika et al. showed that the use of an arbitrary low-bound cut-off for
the phonon frequency in the thermal conductivity integral for graphene
leads to erroneous results [49].

5) The model is not including other defects that are present in experimental
conditions, especially in large samples: isotope effect, grain boundaries,
Stone-Wales defects, strains, interaction with the substrate, ecc.
These scattering phenomena naturally limit the mean free path and avoid
the divergence of the conductivity with increasing sample size. In fact,
according to Matthiessen’s rule: Λ−1

tot =
∑

i Λ
−1
i , where i indicates the i-th

scattering mechanism.
These defects may be included in further analysis. This mixed approach
may turn out to be valuable in this prospective. In fact, naturally occur-
ring defects in the lattice, such as isotopes and Stone-Wales defects, can
be treated with great accuracy within the Landauer Formalism, and the
effect of anharmonicity can be included via the calculation of the phonon
life time, which is a typical concept of methods based on BTE.

In conclusion, the adopted method is able to give accurate estimates on the
thermal conductivity of graphene, providing an insight on the transition
between ballistic and diffusive regime.
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Chapter 7

Conclusions and Future
Perspectives

In this thesis the thermal transport properties of graphene and single-layer
TMDCs were investigated by DFT calculations using the SIESTA ab intio
package, within the framework of the Landauer Formalism.
The lattice thermal conductance of pristine graphene, MoS2, WS2, MoSe2

and WSe2 were studied as a function of the temperature in ballistic regime.
Comparing the results obtained for these 2D materials, it is clear that
TMDCs own a thermal conductance per unit width which is significantly
lower with respect to the one of graphene. It was highlighted that go-
ing beyond the ballistic regime, by including the Umklapp phonon-phonon
scattering processes, is essential for comparing the intrinsic thermal con-
ductivity of pristine materials with experimental results.

A strategy to further reduce the thermal conductivity of TMDCs consisted
in the introduction of chalcogen atom vacancies. The aim was to verify to
which extent the thermoelectric figure of merit can be improved.
Two analyses were conducted on SL MoS2 in the presence of a disordered
distribution of sulphur vacancies by changing the concentration of defects
and the length of the sample. The atomistic Green’s function technique
was used to deal with the presence of disorder in the systems. This rep-
resents an original contribution with respect to previous works present in
literature. The results for systems with sulphur vacancies demonstrated a
clear reduction of the thermal conductivity compared to the pristine case.
In particular, it was shown that the contribution of the optical modes to
the phonon transport is highly suppressed.
The lattice thermal conductivity decreases with higher concentration of sul-
phur vacancies and with longer length of the sample.
The thermoelectric figure of merit of the defective SL MoS2 was computed
by combining the results on the lattice thermal conductivity with data on
the electronic transport properties. It was found that for n-type materials,
ZT is decreased by the presence of sulphur vacancies, independently of the
concentration and of the temperature. Instead, a slight improvement of ZT
was observed for p-type materials at low temperature. Hence, the hypoth-
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esis regarding the reduction of the thermal conductivity upon introduction
of S vacancies was proved. Nonetheless, this is not sufficient to obtain a
significant improvement of ZT because of the detrimental impact on the
electric conductivity.
Still, the procedure used to deal with a disordered distribution of defects
opens the way for future studies. For example, a combination of different
kinds of defects can be inserted in the material. Another option may be
to tune the concentration of defects locally in the sample with the pur-
pose of finding better and better strategies to achieve a good “phonon-glass
electron-crystal” behaviour via defect engineering.

A method was implemented in order to include phonon-phonon Umklapp
scattering and phonon-boundary scattering in the calculation of the ther-
mal conductivity. The proposed approach combines the computation of the
transmission, the main feature of the Landauer Formalism, with the exam-
ination of the phonon life times, which is typical of methods based on the
Boltzmann transport equations. A key step of this procedure consisted in
the calculation of the mode Grüneisen parameter, which has been an origi-
nal addition which I contributed to the team.
The method was successfully applied in the calculation of the thermal con-
ductivity of graphene and it allowed to evaluate the transition from ballistic
to diffusive regime.
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