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Sommario

Questo progetto di tesi tratta dello studio effettuato per l’implementazione
di una logica di pilotaggio adattiva per un posizionatore lineare, movimen-
tato tramite motore passo-passo, senza l’uso di sensori e senza conoscerne
il carico. Si sceglie tale attuatore elettrico poiché, grazie alla sua proprietà
intrinseca di eseguire spostamenti incrementali di una quantità fissa, è
possibile sviluppare una logica di controllo ad anello aperto. Tuttavia, per
carichi ingenti, si può presentare il problema della perdita del passo.
Soprattutto, se si pilota il motore attivando la cosiddetta modalità mi-
cropasso, la quale è indispensabile al fine di ottenere un movimento fluido
del sistema meccanico. Dunque, l’obiettivo principale che si vuole sod-
disfare riguarda la realizzazione di una logica di pilotaggio in grado di
intervenire, in caso di perdita di passo, sulla traiettoria del moto, di modo
tale da riportare il sistema in condizioni di sicurezza.
La logica di controllo è stata sviluppata basandosi sullo studio dei diversi
componenti del sistema meccanico, quali: il carrello, la trasmissione cinghia
e puleggia, le guide lineari, il motore passo-passo, il driver e la scheda
Raspberry Pi. Dopodiché si è realizzato un opportuno modello teorico atto
alle simulazioni in ambiente Simulink. Scelta la traiettoria di riferimento,
si è sviluppato uno studio sulla cinematica del sistema, con il fine di im-
plementare una logica di pilotaggio adattiva. Quest’ultima è in grado di
modulare il profilo di velocità scelto, in modo tale da minimizzare il tempo
complessivo della traiettoria e nel contèmpo ridurre il rischio di perdita di
passi. In fine, i risultati delle prove sperimentali fatte in laboratorio hanno
validato la logica realizzata, permettendo il raggiungimento dell’obiettivo
prefissato. Quest’applicazione va a dimostrare che, nonostante usualmente
si adottino sistemi di controllo in retroazione per risolvere la perdita del
passo, sia possibile comunque adottare una strategia di controllo ad anello
aperto. Quest’ultima è ricercata al fine di ottenere vantaggi come: la
semplificazione del controllo e il risparmio economico sull’uso di sensori.

Parole chiave: motori passo-passo, controllo in anello aperto, controllo
in retroazione, logica di pilotaggio adattiva, modalità micropasso
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Abstract

In this thesis project, an experimental investigation of an adaptive sensor-
less open-loop strategy for mechanical systems through stepper motors
is developed. These electric actuators are usually selected because it is
possible to realise an open-loop driving logic, thanks to their intrinsic
property of performing incremental movements of a fixed quantity called
step. Unfortunately, during the transport of heavy loads, a problem of
step loss might occur. Especially if the motor is driven by activating the
micro-step mode, required in order to obtain a fluid movement of the
system. Therefore, the main objective of this thesis is the realisation of
a driving logic able to modify the trajectory of motion, in the event of
step loss, with the aim of bringing the system back to safe conditions. The
control logic has been developed by studying the main components of the
mechanical system, which are the cart, the belt-and-pulley transmission,
the linear guides, the stepper motor, the driver, and the Raspberry Pi board.
An appropriate theoretical model is realised, used for numerical analyses.
Then, by choosing the reference trajectory for the motion, a study of the
kinematics of the system was conducted, in order to implement an adaptive
driving logic. The latter is able to modulate the speed profile chosen, so as
to minimize the time trajectory and reduce the risk of step loss. Finally,
the results of the experimental tests performed in the laboratory validated
the coded logic and allowed the achievement of the objectives established
at the beginning of the project. It demonstrates that, although feedback
control systems are usually employed to solve step loss, it is possible to
adopt an open-loop control strategy. This is sought in order to obtain
advantages such as simplification of control and cost savings on the use of
sensors.

Keywords: stepper motors, open-loop control strategy, adaptive driving
logic, micro-step mode, feedback control systems
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Introduction

This thesis presents an experimental study of a sensorless open-loop control
strategy for a mechanical system drived by stepper motors.

The mechanical system taken into exam represents a linear positioner,
which is suitable for transporting mechanical components. It is typically
used for assembly, and production plants.
The project in exam is characterised by the following elements:

• Cart;

• Linear guides with limit swithces;

• Belt and pulley transmission;

• Stepper motor;

• Raspberry Pi board;

• Driver DRV8825;

• Driving Logic;

The cart is a plastic container, able to transport various components, which
moves from one limit switch to the other along the linear guides. With
regard to the chosen transmission, it is appropriate to make a comparison
between two solutions typically adopted for the realisation of linear posi-
tioners, such as ball screw and belt-and-pulley.
Ball screw has several advantages, such as greater rigidity and stopping
precision. It is, however, more expensive. On the other hand, belt-and-
pulley allows faster movements, shorter time cycles, higher productivity,
and it is less expensive than the former. However, belt-and-pulley has
poor stiffness and stopping precision, but for these applications a higher
stopping precision is not necessary, since the cart must go from one limit
switch to the other.

1



2 Introduction

Hybrid stepper motors are regularly used for simple point-to-point posi-
tioning tasks. In fact, these actuators present some important qualities
such as high reliability, ease of use, high torque at medium-low speeds,
high stopping precision and cost-effectiveness.
Thanks to their structure, stepper motors are able to move mechanical
components through increasing rotor positions with fixed quantities called
steps. Therefore, using a driver (a board able to drive bipolar stepper
motors) and after outlining a proper control logic, it is possible to drive
the mechanical system through an open-loop control strategy. However, if
heavy loads must be moved, making fast starts might result in a loss of
steps.
Therefore, to reduce the negative impact of this phenomenon, implement-
ing linear speed profiles, such as ramps, is customarily used. This avoids
abrupt starts. The control logic must be able to select the pulse frequency
and the duty cycle according to an appropriate trajectory, to realise the
pulse signal to be given as a reference to the driver. Then, the control logic
will be loaded into the Raspberry PI board, where it will be executed.
The DRV8825 driver was chosen for its ability to activate the micro-step
mode, through which to obtain a fluid and precise movement of the cart.
Micro-steps are likely to increase the resolution, which, in turn, results in a
more fluid motion. If higher loads are to be transported, the motor could
lose steps. Should the sum of the load torque plus friction and stopping
torque of the motor be greater than the incremental torque of a micro-step,
several micro-steps must be performed until reaching a sufficient accumu-
lated torque for the motion. Micro-steps are lost until this passage occurs.
Usually, the load curves give information about step loss. These curves
represent the limit load torque at varying frequencies, after which a loss of
synchronism occurs. Since the transported load is unknown, these curves
are not known previously. Therefore, the acceleration curve is considered
with respect to the frequency. This should represent a good approximation
to its behaviour. Consequently, the two key parameters to modify, in order
to prevent step loss, are acceleration and maximum velocity.
Therefore, an adaptive driving logic is required to modify the speed pro-
file (the slope and the peak of the ramp) without the use of sensors or
knowledge of the load. This would avoid step loss. To implement the code,
it is important to detect when step loss occurs. Typically, an encoder is
exploited. It directly gives information on the angular position of the rotor.
It thus allows to evaluate the error between the reference and the measure.
However, in the following thesis project, since the use of sensor will be
avoided, the step loss will be detected by estimating the actual number of
steps and comparing it with the theoretical number of steps need to reach
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the limit switch.

Purposes of the Thesis

The aim of this thesis is to create an open-loop adaptive driving logic for
the mechanical system without the use of sensors and without knowing the
load. This modifies the reference trajectory and has the aim of preventing
step losses and minimize time cycle.

Taking into account the difficulties of this task, it is necessary to pro-
vide a description of the main components of the mechanical system under
examination, in order to seek for theoretical models that describe their
behaviour. Then, it is necessary to implement the linear speed profile
through which to move the cart.
The realised trajectory will allow to delineate an appropriate driving al-
gorithm, which will supply the voltage pulses necessary to the driver.
Moreover, thanks to the study on the kinematics of the system, the code
will be able to calculate the number of steps needed to complete the tra-
jectory, and the error made with regard to the theoretical number of steps.
In fact, during the motion, due to heavy loads, this error could become
greater than zero, thus indicating the loss of steps.
A series of experimental tests will be carried out in the laboratory to
represent the load curve – or rather – the approximate load curve. The
experimental tests will be performed by inserting a certain load on the
cart, and by varying the acceleration and the maximum speed. Once the
load curve is obtained, it is possible to outline the adaptive driving logic.
Once the limit switch is reached, the adaptive driving logic calculates the
number of steps made and the time spent by the cart to move along the
path until the limit switch is reached.
Then, the error made between the number of theoretical and measured
steps is detected, and if it is bigger than the limit error, the code modifies
the trajectory accordingly, so to return it to safe conditions in the next
cycle. In particular, if the error made is higher than the limit value, the
acceleration is reduced and, if this occurs again, the speed is decreased.
Conversely, if the error made is less than the limit value, the acceleration
is increased and, if this occurs again, the speed is increased.
A qualitative example of the results that the code should obtain is repre-
sented in Fig. 1.
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Figure 1: Qualitative representation of the Adaptive Driving Logic working
principle.

The adaptive driving logic continues to increase the performance of the
speed profile, so to minimise the time cycle, until the motor does not lose
steps. when this happens, that is, when the arrow in the graph surpasses
the qualitative load curve, the code modifies the speed profile to bring the
system back to safe conditions. After a certain number of cycles, the code
has successfully changed the acceleration and the maximum velocity of the
speed profile, thus staying in the area of an optimum point. Under this
condition, the speed profile has the minimum time cycle without losing
steps. At this point, costs are minimised and productivity maximised.

Once the objectives of the following project thesis were set out, its structure
is introduced.



Introduction 5

Outline

The text of the thesis is structured as follows:

In the first chapter, the state of the art is outlined with regard to the
driving of stepper motors without the use of sensors. A comparison
between the closed-loop and open-loop control strategies is introduced,
highlighting the advantages and disadvantages of each of them. The
choice of adopting the open-loop control strategy is explained and
motivated. The control strategies adopted by other researchers are
introduced as well, together with some solutions to the various issues
that may occur during the development of the aforementioned project.
Guidelines for the implementation of the adaptive driving logic are
also outlined.

The second chapter introduces the main components of the mechanical
system. It provides a description of the theoretical models of its
main components, through which it is possible to realise a suitable
Simulink model. In the last section, the adaptive driving logic is
discussed through the use of pseudocodes.

The third chapter expounds the trajectory planning through which to
drive the mechanical system in open loop. Two speed profiles typically
used in the driving of stepper motors are treated, a ramp profile
realised with a pulse width modulation (PWM) Software and another
with an iterative algorithm. The trajectory chosen is discussed, and
the kinematics of the mechanical system is described. Finally, it
illustrates the fundamental parameters that the control logic revise.

In the fourth chapter, the simulation results of the Simulink model
describing the system under control are shown. These are carried out
by supplying the two speed profiles studied. Moreover, observations
on the behaviour of the mechanical system and the potential of the
model are here presented.

The fifth chapter shows the results of the experimental tests carried out
in the laboratory, which are reworked and shown through graphs.
The results of these tests are interpreted to implement the control
logic. In the section dedicated to the discussion of the tests, the
validity of them will be verified. Finally, conclusions are drawn on
the soundness of the control logic implemented.





Chapter 1

State of art

In this first chapter, the state of the art concerning the driving of stepper
motors without the use of sensors is reviewed. The main issues and their
resolutions by researchers will be discussed.

In general, mechanical systems for industrial production are controlled
according to two possible strategies, open-loop and closed-loop. Typically,
the closed-loop control strategy is preferred thanks to the feedback guar-
anteeing a better performance with regard to positioning accuracy and to
fluid motion, as opposed to the open-loop strategy.
Oftentimes, in industrial applications requiring position and speed control,
two conventional proportional (P) and proportional-integral (PI) closed-
loop controllers are used because of their simple design and low cost. Unlike
the simple proportional controller, the PI controller is also able to ensure
an optimum reference tracking; its integral action in fact reduces the steady
state error. However, it may present a slow response, large overshoots and
oscillations. In [14], a self-tuning PI controller using field-oriented control
(FOC) for hybrid stepper motor is presented. Unlike the conventional PI,
the self-tuning PI controller is able to adapt itself to the motor operating
conditions by varying the gains. The result is an improvement on the
performance of the mechanical system. However, manufacturers are looking
for new solutions to reduce production costs, for example, by adopting an
open-loop control strategy, which saves on sensor costs and sophisticated
controllers.
Hybrid stepper motors are widely open-loop controlled thanks to their prop-
erty to move mechanical components through increasing rotor positions
with fixed quantities. Moreover, this actuator presents some significant
qualities such as high reliability, ease of use, high torque at medium-low
speeds, high stopping precision and cost-effectiveness. For simple point-

7



8 Chapter 1. State of art

to-point positioning tasks, stepper motors thus represent a great and
low-cost solution. However, these presents several issues. The actuator is
supplied with tension pulses that generate some torque ripple, overshoot,
and resonance, which are responsible for mechanical vibrations and loss of
performance. Moreover, in industrial applications, where heavy loads need
to be moved quickly, the motor can lose steps. Therefore, if the mechanical
system presents variability on the parameters and external disturbances
caused by the load torque, it is preferred to adopt closed-loop control
systems, which ensure a greater position accuracy, and a reduction of the
sensitivity to load torque disturbances and inertia variations.
In fact, typical applications of closed-loop control systems are related to
high-precision machining such as machine tools and robotic manipulators.
However, the closed-loop control strategy also presents some disadvantages.
In fact, the feedback occurs by means of mechanical encoders, which in-
crease the size and cost of the system. Moreover, the mechanical measures,
such as position and speed, suffer in high-temperature and high-vibration
environments. Knowing these limitations, solutions have been sought for
the control of stepper motors without the use of sensors.
The following research [3] presents the results of experimental tests about
the closed-loop position control of stepper motors without the use of the
encoder. The mechanical variables have been estimated by the use of
steady state-extended Kalman filter. On the contrary, the uncertainty of
the load torque is reduced by the use of current feedback. However, it
is necessary to estimate the initial rotor position. In the aforementioned
reference, an impulse voltage technique is used.
As stated by [4], in order to estimate the initial rotor position of a syn-
chronous permanent magnet motor, two strategies are considered. These
are a vector of impulse tension and a vector of rotating tension. However,
the solutions mentioned above still require the use of electrical sensors,
sophisticated controllers, and a high computational cost.
In this thesis project, the objective is to demonstrate that it is possible
to drive linear positioners in open-loop, thus achieving a good dynamic
behaviour, productivity, and low costs. The goal is obtained by driving the
stepper motor through a proper driver, i.e. a board able to drive bipolar
stepper motors.
Driving the motor through a driver with an open-loop strategy has already
been studied in literature, for example in [1, 11]. The following [19] presents
guidelines on how to implement a simple driving system for stepper motors
through driver and Raspberry Pi board. The reference also includes a basic
guide on how to realise a code, which represents the driving logic, written
in Python with PigPio library [17]. The driver is an important tool as it
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directly excites the phase through a correct pulse sequence. It also allows
to activate the micro-stepping mode, through which the dynamic motion
affected by the torque ripple and resonances, is improved by increasing the
resolution – that is, the step is divided in a certain number of micro-steps.
The result is a more precise and fluid motion.
In [2], an optimum pulse width modulation (PWM) system is realised,
through which it is possible to drive stepper motors controlling the phase
currents. In the article quoted above, a model of the phase currents
suppling the stepper motor during the micro-stepping mode is developed.
However, studies and experimental results obtained by electric actuator
manufacturers confirm that the micro-stepping mode is not fail proof,
because, with higher loads to transport, the motor could lose steps.
In fact, by activating the micro-step, a load torque is generated, resulting in
a magnetic backlash that delays the rotor in reaching the desired position,
as reported in [16]. Consequently, if the load torque plus the friction and
stopping torque of the motor is greater than the incremental torque of a
micro-step, a series of micro-steps must be made until the accumulated
torque is enough for the motion. Until this scenario is reached, all micro-
steps are lost. Hence, to reduce the negative impact of this phenomenon,
implementing linear speed profiles, such as ramps, is customarily used. The
correct choice of kinematic quantities for trajectory planning is essential
to obtain a fluid and precise movement for the positioner.
The adaptive driving logic that will be developed in this thesis project
will modulate the speed profile, so to minimise the time cycle and the
risk of steps loss. Finally, to develop the code, it is important for the
mechanical system to detect step loss. Different studies about this topic
have been carried out, for example [6, 7]. Where the load angle is estimated
through the extended Kalman filter or by means of measurements of an
electromotive force. In fact, if the load angle is higher than the limit one,
a stall or lose of synchronism can be expected.

In conclusion, the approaches taken by other researchers have been exam-
ined alongside the main topics discussed in this thesis. This allowed to
raise awareness of the limits of this project, such as the lack of estimation
of the mechanical parameters, the uncertainty of the load that cannot be
reduced, and the impossibility of checking step loss through the sensors.
In the following thesis, new possible solutions are presented in order to
reach the target.





Chapter 2

Characteristics of the
Mechanical System and
modelling

In this chapter, the characteristics of the mechanical system, the design
and implementation of its dynamic model are presented. In section 2.1,
the behaviour of the mechanical system is briefly outlined. In section 2.2,
the theoretical models of the components of the main system are described.
In the last section 2.3, the logic implemented of driving the stepper motor
through the drafting of pseudocodes is presented.

2.1 Characteristics of the Mechanical System

Figure 2.1: Photo of the Mechanical System. The blue box is connected to the
linear guides through the bearings. It is connected to the motor
by belt and pulley transmission. The stroke is limited by the limit
switches.

The objective of this section is to present the main components of this
project, which are listed and discussed individually.

11



12
Chapter 2. Characteristics of the Mechanical System and

modelling

Cart

The cart is a plastic box measuring: 280x175x80 [mm]. It allows small
precision-assembly components to be transported, as well as other compo-
nent with a more relevant mass.

Linear Guides

The cart moves along linear guides, typically used for 3D printers. They
are made of aluminium bearings and steel axles. For each cart, there are
two pairs of bearings and axles. For more details on technical charac-
teristics, see Tab. 2.1. Their use creates an opposite force generated by
friction, which becomes the starting torque. The mechanical torque must
therefore overcome the starting torque to be set in motion. A further step
involves the calculation of the coefficient of the static and rolling friction.
However, due to the difficulty in estimating these parameters, and as such
computations are beyond the scope of this dissertation, an approximate
value taken from on [18] was preferred.

Mechanical Transmission

The transmission is characterised by the belt and the pulleys. The GT2
belts are made of rubber. They are synchronous and created specifically
for a round-tooth profile, which ensures that the tooth of the belt fits
properly into the groove of the aluminium roller. Thus, if the pulley is in
the opposite direction, there is no chance of movement in the thong area.
There are at least six teeth in touch with the roller. This minimises the
possibility of slippage and helps to further reduce play. For more details
on these technical characteristics, see Tab. 2.2.

Stepper Motor

The drive chosen for the movement is a NEMA-17-stepper motor. This
choice was made on the basis of the characteristics of its main perfor-
mance. These are excellent precision and repeatability of the step angle;
fair maintenance torque; and excellent promptness. In the industrial envi-
ronment, these features are highly sought-after, especially for position and
speed-control applications. It also represents a low-cost solution and it is
relatively simple to drive using the appropriate driver. In section 2.2.2,
its features and functionalities will be expounded further.
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Table 2.1: Data-sheet for Linear Guides.

Quantity Unit Module

Axle

Length mm 672
Diameter mm 8
Material Stainless steel

Linear bearing

Diameter mm 16
Hole diameter mm 8
Material Alluminum

A technical file is available, see Tab. 2.3.

DRV8825 Driver

The driving of stepper motors is performed through the driver, a hardware
device which receives the logic signals, processed by a software via logic
sequencer, and transforms them into current pulses. They excite the phases
sequentially to realise the steps at the desired frequency. The DRV8825
board was chosen. It is a low-cost solution for controlling a single bipolar
motor reaching a current up to 2.5 [A] and a supply voltage of 45 [V].
Further technical references are given in [10]. The device has two H-bridge
converters and a micro-stepping indexer, which allows the micro-step to
be exploited up to one thirty-second resolution.

Raspberry Pi Board

Raspberry Pi is a single-board computer developed in the United Kingdom
by The Raspberry Pi Foundation. It represents a power solution for mecha-
tronics applications. Through an appropriate port, it is in fact possible
to insert an SD card, for the operating system. Linux was chosen for the
present thesis. Some guidelines for stepper motor driving can be found
in [19]. Physical connection on the stepper motor with the microcontroller
is shown in Fig. 2.2.
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Figure 2.2: Driver Scheme. The power supply and the stepper motor are
connected to the DRV8825. The microcontroller sends the direction
and the pulse signals to the step and dir.

Figure 2.3: Picture of a Bipolar Hybrid Stepper motor
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Table 2.2: Belt and Pulley Transmission.

Quantity Unit Module

GT2 belt

Length mm 6
Step mm 2
Material Rubber

GT2 pulley

Diameter mm 16
Hole diameter mm 5
Teeth 20
Material Alluminum

Table 2.3: Data-Sheet Stepper Motor.

Quantity Unit Module

Step Angle deg 1.8
Holding Torque Nm 0.59
Rated Current/phase A/phase 1.7
Step Accuracy % 5
Phase Resistance ohms 1.8
Inductance mH 3.8
Rotor Inertia gcm2 82
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2.2 Models Exhibition

2.2.1 Model of Mechanical Systems

The purpose of this subsection is to present the study of the behaviour of
the mechanical system by considering a simple model with one degree of
freedom. For this system, it is possible to derive the appropriate differential
equation. The approach typically used to analytically describe the motion
of a generic mechanical system is to exploit the Lagrange equation. If we
consider a generic vector of variables q, the relation is represented by the
following:{

d

dt

(
∂E

∂q̇

)}T
−
{
∂E

∂q

}T
+

{
∂D

∂q̇

}T
+

{
∂V

∂q

}T
= Q (2.1)

Since the system has one degree of freedom, the state vector consists of a
single variable ϑ, which corresponds to the mechanical angle. Therefore,
its derivatives are: angular velocity ω and angular acceleration ω̇. For the
mechanical forces, we have: the mechanical and the resistant torques; the
latter is caused by the friction force contrasting the motion of the cart.
For clarity, only the friction force caused by the static component was
considered, neglecting the viscous one. Thus, the presence of conservative
force fields is not evaluated. The energy contributions involve only the
kinetic energy of the pulleys and the moving mass, while the potential
energy and the dissipative one are practically negligible, since there are
neither springs nor dampers. Given these considerations, the system’s
equation of motion is represented by eq. (2.2). Instead, in the tab. 2.4 the
main system’s parameters are listed.(

2Jd +MR2
d

)
ω̇ = Cm − µMgRd (2.2)

Where the following parameters are:

Jd = Pulley inertia [kgm2];

M = Mass to move [kg];

Rd = Primitive pulley radius [m];

µ = Friction coefficient;

Cm = Motor Torque [Nm];



2.2. Models Exhibition 17

Table 2.4: Model’s parameters

Quantity Symbol Unit Module

Pulley’s radius Rd m 0.0064
Cart’s mass M kg 0.5
Pulley’s inertia Jd kgm2 1.6211× 10−7

Mechanical torque Cm Nm
Load Torque Cr Nm

Notice that, it is possible to consider an equivalent inertia equal to:

Jeq = Jm +
(
2Jd +MR2

d

)
(2.3)

Where Jm is the motor inertia. Having obtained the equation of motion, it
is appropriate to switch from the time domain to the frequency domain
through the Laplace transform, in order to perform numerical simulations.
The following equation is thus obtained:

Jeqs
2Θ(s) = Cm(s)− µMgRd (2.4)

2.2.2 Stepper Motor’s Model

Figure 2.4: Cross-Section of a Hybrid Bipolar Stepper motor. It is possibile to
notice the stator windings and the toothed magnetic rotor.
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This subsection briefly introduces the features and the working principle
of stepper motor, with the purpose of obtaining the differential equations
that describe its behavior.

As examined in detail in [1, 11], the stepper motor is an electric actuator
powered by direct current, mainly used for the following applications:
point-to-point positioning (where high acceleration, speed and positioning
accuracy are required); speed control; and controlled path. There are three
main categories of them: the permanent magnet, the variable reluctance
and the hybrid.
The permanent magnet stepper motor presents rotor and stator poles that
are not toothed. Instead the rotor have alternative north and south poles
parallel to the axis of the rotor shaft. The hybrid stepper motor is a
combination of both permanent magnet and the variable reluctance. It
has a permanent-magnet toothed rotor, which guides well the magnetic
flux through the air gap. The magnetic rotor presents two sets of fifty
teeth each, which are offset by a certain angle. One ring is all south
poles, and the other ring is all north poles. In the stator, instead, there is
the excitation circuit consisting of windings around the poles, which are
used to encourage or discourage the flow of magnet flux through certain
poles according to the rotor position required. The hybrid stepper motor
has two phases, A and B, which are situated on four of the eight stator
poles. The windings of each phase can be excited by positive and negative
current. By exciting the phases in sequence through electrical impulses,
an electromagnetic force is produced, causing the realignment of the rotor
teeth, which rotate by a fixed quantity. Then, the continuous rotation of
the motor is produced by sequential excitation of the phase windings.
A generic representation of the stator and rotor of a hybrid stepper motor
is provided in Fig. 2.5.
Instead, in the variable reluctance motor the teeth tend to realign, so that
the reluctance of the stack’s magnetic circuits is reduced. When the rotor
teeth are aligned with the stator, the reluctance is at minimum, while the
magnetic flux in the stack is at maximum. The number of rotor teeth
is different from the stator’s, so that they are not already aligned at the
start.

After introducing the actuator and its physical working principle, the
dynamic model’s differential equations are defined.
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Figure 2.5: Representation of a Generic Hybrid Bipolar Stepper Motor. On
the left the stator with the eight poles is shown, while on the right
the toothed rotor is represented.

First, the equivalent excitation circuit represented by the following eq. (2.5)
is considered.

Veq = RIeq + L
dIeq
dt
− em (2.5)

em = Kmω sin (Nϑ+ ϕ) (2.6)

Where the following parameters are listed:

R = Excitation circuit resistance [ohm];

L = Inductance of the excitation circuit [H];

em = Electromotive force [V];

Km = Motor constant
[
Nm
Arad

]
;

ω = Angular speed of the motor;
[
rad
s

]
;

ϑ = Motor angular position [rad];

ϕ = Phase;

N = Number of rotor pole pairs;
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As the excitation circuit is composed by two phases A and B, it is repre-
sented by the following differential equations:

Va = RIa + L
dIa
dt
−Kmω sin (Nϑ+ ϕ) (2.7)

Vb = RIb + L
dIb
dt

+Kmω sin (Nϑ+ ϕ) (2.8)

Once the electrical component’s equations have been determined, it is
possible to define that of the mechanical torque. Assuming that the
magnetic circuit is linear, and that the mutual inductance between the two
phases is negligible, it can be considered as the sum of two components.

Cm = Ca + Cb (2.9)

Where, the mechanical torque generated by the two phases are:

Ca = −eaIa
ω

= −KmIa sin(Nϑ) (2.10)

Cb = −ebIb
ω

= KmIb cos(Nϑ) (2.11)

Consequently, the resulting final expression is the following:

Cm = −KmIa sin(Nϑ) +KmIb cos(Nϑ) (2.12)

Knowing the mechanical torque, the stepper motor’s differential equation
is thus found. It is obtained from a simple dynamic equilibrium between
the motor side and the load side, assuming that the latter is connected by
a rigid joint.

Jm

(
dω

dt

)
+D

(
dϑ

dt

)
= Cm − Cr (2.13)

Where the term D
(
dϑ
dt

)
represents an energy dissipation caused by the

intrinsic viscous friction component within the motor side. Furthermore,
the estimate of the parameter D is complex, and has not been considered
in this thesis project. For this reason, a value of good approximation is
chosen. The mathematical model that describes the behavior of a bipolar
hybrid stepper motor is represented by the following system of nonlinear
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differential equations:

dIa
dt

=
[Va −RIa +Kmω sin(Nϑ)]

L
dIb
dt

=
[Vb −RIb +Kmω cos(Nϑ)]

L
dω

dt
=

[−KmIa sin(Nϑ) +KmIb cos(Nϑ)−Dω − Cr]
J

dϑ

dt
= ω

(2.14)

Where the so-called dent torque Td is disregarded, as it is generally a
negligible contribution. Knowing the set of equations, it is then possible
to perform some dynamic analyses to understand the behaviour of the
motor, by carrying out, for example, a step response. For this reason, it is
necessary to move from the time domain to the so-called Laplace domain,
as to obtain a transfer function.

Stepper-Motor Transfer Function

The stepper-motor pulse response can be well approximated by a second-
order transfer function for a single phase actuator; as reported by [11,
p. 100].

The relation obtained is the following:

G(s) =
Θ0

Θi

=
ω2
n

s2 + 2ξωns+ ω2
n

(2.15)

ξ =
D

2Jmωn
(2.16)

Generally, the step response is oscillating, due to the fact that the damping
ratio, in ordinary stepper motors, is often less than 0.5, with a settling
time on the 5% of time. The step response is represented in Fig. 2.6.

The information given are useful to establish reliable values for parameters
that cannot be estimated without suitable experimental tests carried out
by means of sensors, as conducted in [3].
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Figure 2.6: Matlab plot showing the step response of the stepper motor second
order transfer function.

They are listed as follow:

• Km = 0.38
[
Nm
Arad

]
;

• ξ = 0.31;

• D= 2Jmωnξ = 0.01;
[
Nms
rad

]
;

Once the parameters have been estimated, the actuator’s performance
values are reported following the excitation.

• Rise time = 0.0007 [s];

• Settling time = 0.057 [s];

• Overshoot = 36.3 [%];

After determining the model of the motor, we are going to deal with
further characteristics of the stepping motor, such as static and dynamic
characteristic, and the resonance phenomenon.
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Figure 2.7: Static Characteristic of Stepper Motor.

Static Characteristic

The static characteristic of the stepping motor represents the relation-
ship between the mechanical torque applied to the motor shaft and the
angular displacement from the equilibrium position, when the actuator
is powered in static conditions as shown in Fig. 2.7. Applying the maxi-
mum torque, called Holding Torque, the maximum angular displacement
is reached, beyond which another equilibrium position is reached. The
Holding Torque, therefore, represents the maximum torque that can be
applied to the motor shaft without causing a rotation.

Dynamic Characteristic

The dynamic characteristic of the stepper motors presents two charac-
teristic curves: pull-in and pull-out. The pull-in characteristic curve
represents the range of the load torque caused by friction, in which the
motor can start and stop without losing its synchronism (therefore steps)
at various frequencies. The pull-in curve decreases as the inertia of the load
increases. The pull-out characteristic curve, on the other hand, represents
the limit load torque at varying frequencies, after which a loss of synchro-
nism occurs. The frequency range between the two curves represents the
operating range of the stepper motor. This is shown in Fig. 2.8.

In this dissertation, these curves are not known previously as the trans-
ported load is unknown. Therefore, the acceleration curve is considered
with respect to the frequency. This represents nonetheless a good ap-
proximation to its behaviour. Consequently, the two key parameters are
acceleration and max velocity. Both of these values are considered at the
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Torque

Pulse rate

Figure 2.8: Qualitative Dynamic Characteristic Curves of Stepper Motor. The
white area is called start/stop region, while the gray area is the
working region. The latter is bounded by the pull-in and pull-out
torque.

variation of the load. The tracing of this curve is carried out through
experimental tests, and is treated in Chapter 5.

Resonance Effect

The functionality of the stepper motor is affected negatively when resonance
occurs. This is a highly oscillatory phenomenon that causes vibrations
and disturbances to the overall motion. If the amplitude of the oscil-
lations is high, such instability might also cause a loss of synchronism
and, consequently, of the step. Resonance phenomena also influence the
pull-in and pull-out characteristic curves. In particular, in the pull-out
curve, there are three types of resonances: low (100− 200 Hz), medium
(500 − 1500 Hz) and high (2500 − 4000 Hz) frequencies. On the other
hand, in the pull-in curve certain instabilities occur for specific stepping
rates. They are indicated by dips of torque drop, typically visualised in
the graph as small regions also known as small islands. For high-load
applications, the use of speed ramps is crucial to reduce the risk of step
loss. Unfortunately, this solution makes running into resonance almost
unavoidable for the motor. The solution is then to ensure that the motor
goes through the velocities at risk at a higher speed and as fast as possible,
to reduce the undesired resonance. Finally, the micro-step mode is an
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Figure 2.9: Block Diagram of the Driving System for Stepper Motor. The
impulse signal enters in the Logic sequencer, that generates the
eccitation signals for the Driver. The latter drive the bipolar
stepper motor.

effective answer even for this harmful phenomenon.

2.2.3 Driver Model

In this subsection the working principle of the Driver is presented. This is
a fundamental device for the correct driving of the stepper motor. Going
back to [11], we find a driving system represented by a block diagram,
where there is a train of pulses in input. These represent the number of
steps/s that the actuator must perform, which enter the Logic sequencer
(the logic circuit). It will execute the sequential excitation signals of the
motor windings. Subsequently, the hardware component receives them and
translates them via the H-bridge into electrical excitation signals, which
feed effectively the actuator windings. Depending on the appropriate
switching sequence, the rotor will perform a series of fixed steps. A sketch
of the block diagram is represented in Fig. 2.9. With reference to this
article [2], it is possible to exploit the operation of this device according to
different modes. The so-called full-step mode, which allows the motor to
perform a full-step angle per second. The Half Step, instead, lets the rotor
rotate at an angle equal to half of the step. Other modes are the one-fourth
mode and the micro-step, the latter allowing the motor to execute smaller
angles like: 1/8, a 1/16 and 1/32 of step.

As the stepper motor is a four-wire bipolar motor, the stator has the
following phases: A +, A-, B +, B-. The representative diagram of the
motor phases is represented in Fig. 2.10.
The different driving modes allow to excite these phases with proper out-of-
phase voltage pulses. If we consider the full-step drive mode, for example,
phases A and B are fed by two square-wave voltage signals which are



26
Chapter 2. Characteristics of the Mechanical System and

modelling

Figure 2.10: Bipolar Stepper motor with phase A and B.

π
2
phase-shifted between them. During the movement of the mechanical

system, it is possible to obtain an unsatisfactory result from the dynamic
viewpoint due to a damaging phenomenon called torque ripple, which
causes mechanical vibrations and a loss of engine performance. The tech-
nique that moderates this harmful phenomenon is the micro-step mode,
which allows to attenuate the mechanical vibrations of the moving mass
reducing the step angle. The resulting motion is more fluid.
The basis of this mode is the possibility of controlling the current supply
of the phases, so to produce a constant torque and rotor angles in stable
positions. From the electrical standpoint, as illustrated in [8], both motor
windings are powered by quantised sinusoidal and co-sinusoidal current
signals, which can be described by the following relationships:

Ia = Ipkcos

(
hπ

2N

)
, h = 0, 1, . . . , 4N − 1. (2.17)

Ib = Ipksin

(
hπ

2N

)
, h = 0, 1, . . . , 4N − 1. (2.18)

Where Ipk represents the peak current e N is the number of micro-steps. A
qualitative example of the signals obtained is shown in Fig. 2.11, where the
micro-step is set to an eighth of a step. Knowing the analogue signals in
output from the driver, it is then possible to simulate them in a Simulink
environment. The article [2] highlights how the latter are obtained through
PWM by setting an appropriate fixed frequency, or step/s executed, and
a certain duty cycle, which divides the duration of on-off time. This is
typically set at 50 %.
However, in the present project, these analogue input signals are simulated
exploiting the so-called Embedded Matlab Function in Simulink. Thus,
the realized algorithm allows to reconstruct square wave signals for the
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Figure 2.11: Current signals in Full Step mode at left, Half step mode in the
center e Microstep mode at right

Full-Step and sine and cosine signals for the Micro-Step, also with variable
frequency. These are not chirp signals, since the frequency must be varied
every quarter of a period in order to realize linear speed ramps in real time.
For a qualitative representation of the phase voltage signals for the two
driving modes (full-step and micro-step), see Fig. 2.12.
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(a) Matlab Plot of Phase Voltage Signals A and B at Full-Step Mode.
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Figure 2.12: An example of voltage signals in input to the Simulink model of
stepper motor.
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2.3 Driving Logic

In the following section, the logics implemented for driving the stepper
motor through the drafting of pseudocodes is presented.

The following pseudocode for driving the stepper motor has been realised:

Start code
Insert the acceleration
Insert the maximum velocity
Calculation of trajectory (dti) and theoretical number of steps Nth

profile realization
if time > dti then

Update velocity of PWM
Update time interval dti+1

Update time
end if
cicling...
if Read end-stroke then

Measure number of steps Nm

Calculation of error: Nm −Nth

Adaptive Code
Initialization
Calculation of trajectory

end if
and so on ...

After launching it, it asks the acceleration and the maximum ramp speed
in input. Then, it calculates the relative time intervals dti at which to
increase speed, so to obtain the desired trajectory and the number of
theoretical steps to be taken. When the time instant is greater than the
dti, the frequency of the PWM is increased, and the next interval of time is
considered. During the motion, the code works, and the PWM is updated
with all the frequencies of the ramp. After n cycles, the carriage reaches
the limit switch. Then, the code calculates the number of steps taken and
the error made. Next, it activates the adaptive control function. Finally,
it recalculates the trajectory for the new stroke, and starts again.
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The pseudocode of the adaptive driving logic is reported:

Start adaptive code
if error < limit value then

Stepper motor not fails
if index1 = pari then

Increase acceleration
index2 write dispari

else
if index1 = dispari then

Increase maximum velocity
index2 write dispari

end if
end if
index1 + +

end if
if error > limit value then

Stepper motor fails
if index2 = pari then

Decrease maximum velocity
else

if index2 = dispari then
Decreas acceleration
index1 write dispari

end if
end if
index2 + +

end if
Calculation trajectory

In Fig. 2.13 the block diagram representing the operating principle of the
adaptive driving logic is shown.

Once the limit switch is reached, the number of actual steps taken is
calculated. Afterwards, it is possible to calculate the error, made be-
tween the number of theoretical and measured steps, through which the
adaptive-control function modifies the trajectory. As it can be seen from
the pseudocode above, if the error made is less than the limit value, the
acceleration is increased and, if this occurs again, the speed is increased.
For this reason, an index index1 is used, which can take an even or odd
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Figure 2.13: Block Diagram of the Adaptive Driving Logic.
The adaptive code receives the error as input, and based on it, the
code sets the acceleration and the maximum speed to generate
the ramp.

number. The index is increased every time it reaches the switch.
Notice that the index2 belonging to the next case is immediately set as
an odd number. Therefore, the code first reduces the acceleration in case
of fail. Since the load curve decreases as the frequencies increase, it is
possible that, for a given frequency, the motor will return to safe conditions
reducing the acceleration. On the other hand, if the error persists, the
velocity is reduced. Once the main parameters have been modified, the
trajectory is recalculated and the motor restarted.
A qualitative example of what is expected from the code is shown in
Fig. 2.14.

In conclusion, a simple schematisation of the working principle of the
real code written in C has been given. It will be tested in Chapter 5,
where the results of the experimental tests carried out in the laboratory
are reported.
In the next chapter, the kinematics of the mechanical system on which the
driving logic is based will be discussed.
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Figure 2.14: Qualitative representation of the adaptive driving logic working
principle.



Chapter 3

Trajectory Planning and
Kinematics

The aim of this chapter is to motivate the choices made, and how the
trajectory can be implemented into the system. In Section 3.1, two ways
of implementing speed profiles are discussed. Section 3.2 studies the
kinematics of the mechanical system. The fundamental parameters that
affect its dynamic behaviour are thus revealed.

3.1 Implementation of Speed Profiles

In order to move mass through a stepper motor, it must be noted that
this actuator is sensitive to the starting and stopping phases, especially for
heavy loads. Therefore, in order to avoid loss of steps or stall during the
starting motion, it is necessary to create a linear speed profile, which allows
the mass to start slowly and then speed up gradually. For this purpose,
after setting the desired acceleration, two methods for the realisation of
speed ramps are considered. Following this, comparison between them and
the reasons for these choices are discussed.

3.1.1 Real-Time Speed Profile

This speed profile is obtained through an appropriate iterative algorithm,
based on the physical working principle of stepper motors. This drive
receives as input a train of pulses at a certain frequency and duty cycle,
by means of which the rotor makes successive rotations of fixed angular
step. As such, it generates an incremental movement, or discrete from a
temporal standpoint.

33
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Some kinematics fundamental parameters are listed below:

• Stepping-rate/frequency f [step/s];

• Speed v [rad/s];

• Acceleration a [rad/s2];

• Step time/delay δt [s];

The rotor’s rotational speed increases as the number of pulses received per
second rises – that is, when the stepping rate increases. On the other hand,
if the frequency grows, the time period between one pulse and the following
is reduced. The algorithm’s objective is to calculate the delay between
consequent impulses moment by moment, so that the resulting velocity
profile is a linear ramp. To implement that, the following references have
been consulted [15, 12]. The time delay between one pulse and the next
one is calculated by considering that, at each instant, the speed increases
producing a rotation of a fixed angle α. The following relationship is thus
evaluated:

δti =
α

vi
(3.1)

Considering two time instants ti and ti+1, with good approximation, it is
possible to say that the speed increases almost linearly according to the
following relation:

vi = vi−1 + aδti−1 i ≥ 1 (3.2)

If the code is implemented by a microprocessor, it is useful to consider
the so-called counter ci, which counts the number of pulses at a given
frequency f . This makes it possible to write:

δti = ci/f (3.3)

Taking into account the equation (3.1) and combining it with (3.2), the
iterative algorithm is obtained.

ci =
αf

vi
=

αf

vi−1 + a ci−1

f

(3.4)

In order to execute the code, it is necessary to know the initial value of
the counter c0. To determine it, the first impulse has to be considered as
having initial speed of zero. Therefore, the angular position is given by:

α = 1/2 a δt20 (3.5)
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The speed at time istant t1 is calculated as:

v1 = aδt0 =
√

2αa (3.6)

If a mean value between v0 and v1 is considered, the relation (3.6), combined
with (3.4), allows to evaluate the value c0.

c0 = f

√
2α

a
(3.7)

The code is thus completed and ready to operate. It requires the accel-
eration and the maximum speed to reach with a fixed number of steps
in input. The number of steps also represents the number of iterations
required for the algorithm. They are calculated keeping in mind that the
integral of speed represents the displacement. The area of the triangle, or
the ramp, divided by the fixed step α equals the number of steps.

N =
1

2

tacc vmax
α

(3.8)

A qualitative example is represented by Fig 3.1. Note that, between the
reference speed and the one obtained with the algorithm, there is a certain
offset. The latter can be reduced with appropriate corrections, but a small
percentage of error remains.

The algorithm is written in C. It is then loaded in the Raspberry Pi card,
running on Linux OS. For the following step, a small test bench is used,
where no load and no other mechanical components are taken into exam.
This is characterised by a stepper motor, the relative driver, and the card
with a microprocessor. After starting the code, the motor runs a perfectly
working ramp. If the micro-step mode is activated, the motor rotation
results more fluid and precise.
Even if it represents a high-potential solution, the velocity profile is not re-
alised in this thesis work with this method. The reason being the fact that,
in order to realize the pulse train, C presents a function called nanosleep,
which suspends the microprocessor’s work for fractions of second equal
to the time delay between one impulse and another. This was deemed
not acceptable, since the application requires a communication system
between the considered mechanical system and the central network, which
simultaneously manages other multiple complex systems, the threads of
which cannot be suspended. Moreover, the trajectory must be discretized
with a certain sampling time. Therefore, the stepper motor driving is
realised by writing a code, in which the pulse train is directly sent to
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Figure 3.1: Matlab Plot: Reference Speed vs Stepper Speed generated by Real-
Time Algorithm: Speed profile of stepper motor in blue. Reference
speed profile in red.

the actuator by the PWM Software. This one can be activated at the
beginning of the code, making it work independently of the other threads.
However, it is important to update the frequency of pulse train when the
speed of the ramp increases at the correct time.

3.1.2 Speed Profile with PWM Software

Since the aforementioned method was not optimal for this project, the
design and implementation of another code is considered. This one is also
written in C using PigPio library functions, (references on the topic can be
found in [17]). The train of pulses is realized by PWM Software, which
could only be exploited for fixed imposed frequencies and is dependent on
the clock time set in the code. Under these conditions, the ramp profile
presents the following stepping-rates:

ramp = [800, 1000, 1250, 1600, 2000, 2500, 4000, 5000, 8000] [mustep/s]
(3.9)

Where [mustep/s] refers to the active state of the micro-stepping mode; in
this case one eighth. Therefore, a fraction of step is obtained. In order to
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reach the same velocity, the motor will do more step per seconds, precisely
the value m of micro-steps multiplied by the stepping rates. In this way,
a simple stepped ramp is obtained, which is acceptable for the present
application. However, there are some issues due to the limitations of PWM
Software. In fact, as in the previous method, there are no possibilities to
increase the velocity instant by instant, but only in time intervals dt. These
are calculated by trying to maintain the acceleration constant. Therefore,
having set the acceleration, it is possible to consider the following relation
to calculate the time intervals:

dti =
Vi+1 − Vi

A
i = 1, 2, . . . , n− 1; (3.10)

Where n refers to the length of the vector ramp. The number of steps
computed depends on the stepping rate, which permits to calculate the
time pulse tpulse, and the time interval according to the following relations:

N =
dt

tpulse
(3.11)

tpulse = 1/f (3.12)

The PWM works properly if the motor performs an integer number of
steps. Therefore, the time interval dt must be a multiple value of tpulse. In
the C algorithm, is implemented a code where, if the number of steps is
not integer, the time intervals dt are corrected. However, the acceleration
is also varied, as can be seen in the Fig. 3.2b, although its value remains
close to the initial one

The next section presents the kinematics of the mechanical system. It also
presents an example of trajectory planning realised as such.

3.2 Mechanical System Kinematics
In this section, the study of the kinematics of the mechanical system as
introduced in 2.2.1 is used.
It is important to introduce two hypotheses on the system under examina-
tion. In the first, the angular velocity is transmitted from the drive shaft
to the pulleys by means of rigid joint. The other one concerns the belts
connected to the cart, which are in tension, so that the effect of elasticity
can be considered negligible. They can be considered as inextensible rope.
Under these assumptions, the fundamental kinetics parameters are intro-
duced considering a practical example.
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An acceleration value of the cart equal to 250 [step/s2] and a maximum
speed of 1000 [step/s] are given as input to the algorithm for trajectory
planning introduced in the section 3.1.2. Following this, using the code
previously explained, the proper time intervals dt are evaluated. The shaft
velocity could be expressed in [m/s] or in [rpm] by the use of the following
relation:

vrpm =
60 f

200 m
(3.13)

vrad = vrpm
π

30
(3.14)

Knowing the shaft velocity, the speed of the cart is evaluated. Since the
belt and pulley transmission are connected with the shaft through a rigid
joint, the velocity is calculated as:

vabs = vrad Rp (3.15)

Where Rp is the primitive radius of the pulley. Since the PWM is updated
each dt seconds, the time spent by the ramp is calculated as:

trampa =
n∑
i=1

dti · fi (3.16)

Where n is the size of vector rampa, which gives the stepping-rates.
When the time needed to perform the speed profile is elapsed, it is possible
to estimate the time spent by the cart to reach the end stroke with the
following relations:

St =
1

2
trampavmax + vmax (tcorsa − trampa) (3.17)

tcorsa =
St
vmax

− 1

2
trampa +

trampa
vmax

(3.18)

Where the relation (3.17) refers to the cart displacement during the tra-
jectory (the length of the stroke), which was measured in the laboratory.
The results obtained from the practical example are collected in Tab. 3.1.
The speed profiles obtained are shown in Fig. 3.2 and Fig. 3.3.
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Table 3.1: Kinematics data

Quantity Unit Module

trampa s 3.61
tstroke s 3.91
St m 0.38

The time elapsed to reach the limit switch is therefore measured through
a code. The time measured can be used to calculate the real number of
pulses made during the stroke.

This number is calculated as:

Nrampa =
n−1∑
i=1

f · dt (3.19)

Where f is the stepping rate in step/s, and dt is the time interval spent
to update the speed in seconds. The number of steps made at constant
velocity is evaluated with the following relations:

Ncost = (tcorsa − trampa) ∗ fmax (3.20)
Ncorsa = Nrampa +Ncost (3.21)

The main property of stepper motors is the possibility to carry out motion
with a series of fixed steps at a certain frequency. However, if the velocity
imposed to the cart transporting a heavy load is too high, the motor might
lose steps. This compromises the motion by causing undesirable slippages.
To avoid this, once the number of measured steps is higher than the ideal
one, it is necessary to decrease the acceleration and maximum velocity.
Whence, the two important parameters are acceleration and maximum
speed.
In conclusion, the study of the mechanical system’s kinematics allows to
develop a non-traditional feedback based on the comparison between the
measured number of steps and the theoretical one. If the error made is
higher than a limit value (yet to be defined), the loss of steps may occur.
Finally, the two parameters to be changed by the adaptive driving logic in
order to prevent step loss have been highlighted.
In the next chapter, the numerical analysis performed on the mechanical
system, driven by both trajectories, will be presented. In chapter 5, the
limit value of the error, based on the results of the experimental tests
carried out in the laboratory, will be estimated.
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Figure 3.2: An Example of Speed Profile: in figure(a) the dotted line stress
the linearity of the speed profile.
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Chapter 4

Numerical Analysis

The results of the simulations carried out considering the theoretical model
examined in section 2 are presented in this chapter.

In the present dissertation project, given the unfeasibility of using sensors,
the theoretical model has not been validated. Therefore, the results of
these simulations cannot be compared with the experimental ones to give
proof for the loss of steps. However, the simulations were carried out to
show the potential of the model, and to give an idea of the mechanical
system behaviour. The simulation software chosen is Simulink. Suitable for
modelling, simulation and analysis of dynamic systems, this tool was devel-
oped by the American company MathWorks. The open-loop block diagram
is represented by Fig. 4.1. The block called Trajectory is responsible for the
realisation of the reference trajectories. In input, it receives acceleration,
maximum speed of the ramp, the micro-step fraction. Given the trajectory
in input, the block called Driver, realises proper phase-voltage signals
suppling the motor. Following this, the block diagram of the stepper motor
generates the cart position at the output.

Trajectory Driver
Mechanical

Model

a

vmax

m

Xref

vref

m

Va

Vb

Xout

vout

Figure 4.1: Open-loop Block Diagram.
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Simulations of PWM Software Speed Profile

These simulations are carried out by setting as a solver ode-4 (Runge-
Kutta). On the other hand, the iteration step is fixed with a sampling
time of ts = 10 [µs]. The Embedded Matlab function Trajectory deals
with the realisation of the stepped speed profile by setting the acceleration
a = 250 [step/s2], the maximum speed v = 1000 [step/s], and the micro-
step fraction set at one eighth. The results of the simulation are shown
in Fig. 4.2. The simulation time is equal to the time required to execute
the ramp, that is t = 3, 605 [s]. Taken the velocity profile as reference,
the motor model outputs the position assumed by the cart, as shown in
Fig. 4.3. If the output is compared with the aforementioned reference,
an error is obtained. As shown in Fig. 4.4, after covering 0.3 [m], the
maximum error is about 4[mm], which, after being divided for n steps, is
still very limited, thus demonstrating the validity of the micro-step. The
other mechanical quantities under examination are reported in Fig. 4.5.
The mechanical angular velocity shown in Fig. 4.5a respects the stepped
profile. The phase currents shown in Fig. 4.5c, are reduced in form as
speed increases, and present discontinuities caused by the rapid change of
speed. The mechanical torque oscillations are reduced in module when
speed increases. This does not guarantee path accuracy for high load
torques.

Simulations of Speed Profile with Iterative Code

The model of the mechanical system is simulated under the same conditions
as the previous case. This is done by applying the reference trajectory
generated through the iterative algorithm. The results obtained are shown
in the following Fig. 4.6. The mechanical system generates the position
of the cart represented by Fig. 4.7. It can be noted that, compared to
the previous case, the position curve is softer without changes in slope.
In fact, the error made on the reference is smaller than in the previous
case, as shown in Fig. 4.8. Other mechanical quantities under examination
are reported, as shown in Fig. 4.9. The mechanical angular velocity is
shown in Fig. 4.9a. It follows a linear trend. The phase currents shown in
Fig. 4.9c are reduced in form as the speed increases. The mechanical torque
oscillations are reduced in module as the currents are reduced. Hence, the
path accuracy for high load torques is not guaranteed.
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Chapter 5

Experimental Tests

The aim of this thesis is to realise an adaptive algorithm capable of change
the trajectory in a way that would prevent step losses with variable and
unknown loads.

In order to realise the code properly, it is necessary to understand whether
step losses occur. Sensors have not been employed in the present thesis
project. The electric measurements registered with an oscilloscope are
not useful due to the presence of noise. Therefore, it has been decided to
observe carefully the mechanical system during the motion.
To do that, some experimental tests have been carried out. By increasing
the load and the velocity, the cart should present vibrations, slips and
metallic noises. These conditions confirm step loss. Following this premise,
a proper code for the experimental tests can be written.
Its operating principle was introduced in section 2.3. It calculates the
number of steps theoretically needed to performed by the trajectory, as
explained in 3. The code then compares this number with an estimate
of the actual number of steps, which is obtained by taking into account
the measures of time spent by the cart to complete the stroke. The code
recognises the step loss from the error made. In order to properly cor-
rect the trajectory, the algorithm changes two variables, acceleration and
maximum velocity. The experimental tests are performed by inserting a
mass into the cart, and then driving it at different speeds and accelerations
via an open-loop control mode. Once the cart reaches the end-stroke, if
the algorithm records no step loss, it will increase the cart’s maximum
velocity for the following stroke. If it does not fail, the acceleration is also
augmented in the next cycle. Conversely, if the code records a step loss, it
reduces the acceleration for the next stroke. If this situation is repeated,
the velocity is decreased in the following cycle. Once the step is lost, it is
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expected that the code is able to return the cart to safety conditions, and
that is keeps oscillating around an optimum point.

However, some issues arise. First, the uncertainty affects time measure-
ments. Tests made about this issue demonstrate that uncertainties depend
on the code written to prepare the ramp profile. The time intervals needed
to upgrade the speed present an error of several microseconds. Another
factor is the implemented PWM software, which presents delays of mi-
croseconds in updating pulse frequency. Other problems could be caused
by the structure of the code and the time elapsed to recall the functions.
Finally, there are effects generated by the elasticity of the belt, which are
not considered in this thesis. The elasticity of the belt could compromise
the precision of the movement.

5.1 Experimental Results

Figure 5.1: Experimental Setup.

The experimental tests were carried out in the Group MERLIN Mecha-
tronics and Robotics Laboratory.
For the first set, a load p = 0.380 kg was chosen to be inserted into the
cart. Then, by setting different accelerations and maximum velocities of
the profile, the cart is moved from an end-stroke to another. Once the
latter reaches the limit switch, the number of steps are measured, and the
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number of theoretical steps are calculated, as explained in Section 3.2.
In each test, the maximum velocity and the acceleration are increased.
For any combination of acceleration and maximum velocity, the numbers
of steps measured are registered into an Excel sheet for both empty and
loaded carts. Having observed the results recorded, it is possible to notice
the presence of uncertainty. Hence, step loss is difficult to understand from
the error made.
The last possibility to understand motor failure is to carefully observe the
motion of the cart and look for slips or metallic noises. In fact, when accel-
eration increases at fixed speed, the number of steps performed decreases.
After making the tests for any combination of speed and acceleration, a
curve was obtained. This is represented in Fig. 5.2.
On the y-axis, the acceleration is in [step/s2], while on the x-axis the
velocity is in [step/s]. From the figure, it is possible to see that the curve is
outlined by the points in which the stepper motor fails. It is quite similar
to the characteristic curve of the motor. Therefore, it could be employed
to realign the code to the behaviour of the mechanical system.
From these results, it is possible to notice a repeated fixed error that
increases alongside the velocity. It is possible to compensate for the former
by doing an initial calibration with a series of experimental tests using
an empty cart. Once the algorithm is realigned with the behaviour of
the empty system, the error made is caused by the step losses, with the
presence of ± 2 step uncertainty.
Therefore, the minimum error value could be set 3. The implemented code
is thus able to modify the trajectory planned for the following stroke, in
order to avoid step losses.

The next experimental tests were carried out with the aim of validat-
ing the adaptive driving logic developed.

Experimental Test with 0.380 kg

In this phase of experimental tests, an acceleration value of a = 100 [step/s2]
and a maximum velocity of v = 200 [step/s] were given as input to the
algorithm. After Setting these initial values, it is ensured that the motor
does not lose steps. Then, the micro-stepping mode at one eighth of step
was activated. In this way, the trajectory planned at the initial state
generated a slow travel of the cart and a fluid start.
Once the end-stroke is reached, the speed is increased to v = 250 [step/s]
while the acceleration is kept constant. Cycle after cycle, the two parame-
ters are modified as shown in Fig. 5.3.
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The adaptive driving logic continues to increase the performance of the
speed profile, minimising the time cycle until the motor does not lose steps.
As represented in Fig. 5.3a, the motor loses steps at a maximum velocity
of v = 625 [step/s], and acceleration of a = 160 [step/s2].
However, once the end-stroke is reached, the algorithm reshapes the tra-
jectory and brings the cart back to safe conditions in the following stroke,
as is shown in Fig.. 5.3b.
Then, the code continues to modify the two parameters, remaining in the
area of the qualitative characteristic curve intercepting an optimum point
in v = 625 [step/s] and a = 140 [step/s2].
The comparison between the experimental curve, represented in Fig. 5.2,
and the results just obtained prove the validity of the code.

Experimental Test with 0.215 kg

The same test was conducted with a load of p = 0.215 [kg]. Since the
load inserted into the cart is lower than the previous case, a higher load
curve was expected. The stepper motor should fail at higher maximum
velocity and acceleration values. The kinematics parameters given as input
to the algorithm, at initial state, are the same as the previous case. The
results obtained are represented in Fig. 5.4. It is possible to observe that
the motor loses steps at a maximum speed profile of v = 1000 [step/s]
and acceleration of a = 180 [step/s2]. However, the load curve is only a
qualitative representation. Once the step is lost, the algorithm modifies
the trajectory and brings the cart back to safe conditions. Then, it con-
tinues to orbit around an optimum point equal to v = 625 [step/s] and
a = 180 [step/s2].

Experimental Test with 0.526 kg

The last test of the code was carried out with a load of p = 0.526 [kg]. In
this case, the total weight is higher than that of the first test performed. It
is therefore expected that the motor fails at maximum speed and accelera-
tion lower than in the previous cases. The kinematics parameters given as
input to the algorithm, at initial state, are the same of the previous experi-
ment. The results obtained at the end of these laboratory test are shown in
Fig. 5.5. The cart loses steps already at a speed of v = 312.5 [step/s] and
acceleration of a = 120 [step/s2], thus confirming the initial assumptions.
Once the step is lost, the algorithm modifies the parameters, generating a
velocity profile that orbits around an optimum point of v = 250 [step/s]
and a = 120 [step/s2].
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5.2 Discussion about the Present Tests
The aim of this thesis is to realise an adaptive driving logic able to revise
the trajectory in accordance with the step loss without the use of sensors
and with a variable load. Observing the results of the tests, the goals seem
to have been met. In the first part of the tests, since the load curve could
not be measured, a decision was taken to estimate the curve acceleration
vs speed at fixed load. This represents a good approximation of a load
curve. Therefore, a series of experimental tests with variable maximum
velocity and acceleration were performed. The results show that the test
target was met. The measurements taken seem to reconstruct the load
curve sought. It should be noted that the speeds imposed by the PWM
Software are a limiting factor for the execution of these tests. Hence, the
curve has empty spaces. As for the tests performed on the adaptive code,
the expectations were also met. The results show that the code, even with
some variability, is able to modify the trajectory of the cart to return it to
safety conditions and thus staying in the area of an optimum point. Under
this condition, the speed profile has the minimum time cycle without losing
steps. At this point, costs are minimised and productivity maximised.
Then, the tests, carried out by inserting higher or lighter loads, demonstrate
that the code is able to reconstruct load curves also in different scenarios.
Negative aspects, however, are the presence of uncertainty in the time
measurements, which compromises the calculation of the number of steps
made. Another aspect is the impossibility of checking for step loss. This is
done by observing the behaviour of the system during these experimental
tests.
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Figure 5.3: Test Adaptive Algorithm with a Load of 0.380 kg: The dashed
curve represents the qualitative load curve. The green arrows show
safety condition, while the red arrow show step loss.
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Conclusions

This thesis project dealt with the experimental study of an open-loop
control strategy, without the use of sensors, for a mechanical system set in
motion by stepper motors.

In order to properly implement the control logic, it was necessary to
study the different components of the mechanical system examined one by
one. Its main features and characteristics have been identified. As far as the
mechanical apparatus is concerned, its dynamic behaviour has been studied
through the Lagrange equation. The same thing was done for the electric
actuator. A system of non-linear differential equation was derived for it.
The driver’s behaviour has also been represented by embedded Matlab
functions that reproduce the voltage signals of the full-step and micro-step
modes. It was thus possible to implement a block diagram through which
numerical analyses were performed in a Simulink environment. Knowing
the characteristics of the project, it was possible to implement the adaptive
driving algorithm. For the trajectory to be given as a reference to the
system to execute motion, the speed profile most commonly used in these
cases is the speed ramp. Two possible solutions have been examined, the
profile realised by PWM Software and the one computed by an iterative
algorithm. Numerical simulations were performed in Simulink on both
trajectories. The results managed to detect useful information on the
dynamic behaviour of the overall system. The profile realized with an
iterative code is better in fluidity and precision than the one with PWM
Software. However, it was decided to drive the stepper motor via PWM
Software, seen that the trajectory is discretised according to the sampling
time chosen. It is hence not possible to provide information moment by
moment. The analysis of the kinematics considering the chosen trajectory
allowed to calculate the number of theoretical steps performed by the cart
to cover the path. Knowing the trajectory, it was possible to drive the
cart in open-loop. Afterwards, an experimental test campaign was carried
out in the test bench of the Merlin Group Mechatronics and Robotics
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Laboratories, with the aim of validating the adaptive driving logic. To
perform the tests, a C code was created. This presents functions capable
of measuring the number of steps taken and the time spent by the cart to
move along the path until the limit switch is reached. Tests were carried
out by inserting a certain load on the cart, and by varying the acceleration
and the maximum speed. These allowed to identify a curve very similar to
the load curve of the system, which gives useful information on the loss of
steps. Observing the results of the tests, a certain variability of the error
made between the number of theoretical and effective steps was observed.
Through other experimental tests on the cart unloaded, it was possible to
align the code with the behaviour of the system taken into exam. Thus,
the variability has been greatly reduced. Then, a series of experimental
tests confirmed that the adaptive code works effectively. In the event of a
loss of step, the adaptive driving logic is able to change the trajectory of
the cart. In this way, the latter can be returned safely for the next cycle.

The study presented showed that it is interesting to investigate further
the driving of stepper motors via open-loop control strategy. In fact, by
adopting it, it is possible to have a considerable saving on the control
instruments. The total mechatronic system is less expensive. For any
future developments, it is advisable to try to reduce the variability of time
measurements performed by software as much as possible.
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