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Abstract

Water can be considered the scarce resource in the production of
hydroelectric energy. With the liberalization of electricity market in Italy,
the application of optimization techniques to reservoir operation has become
a major focus in water resources planning and management.

The optimization problem is characterized by non-linear objective
function and constraints, subject also to boolean conditions. In literature
the studies refer majorly to simple water systems optimization or, to more
complex problems but on a short time period, due to the considerable
computational resources needed.

In this thesis is presented a method for complex systems optimization
on a long time period, a "divide and conquer" optimization technique based
on linear programming (LP) is implemented and tested. The adopted
technique is demonstrated to be efficient and effective with respect to a
comprehensive optimization, input data uncertainty has also been modelled
to analyse to what extend the model can be segmented without significantly
affecting the confidence interval of the optimal result.

The Italian electricity market modus operandi is analysed and a strategy
to generate a bidding offer profile is proposed, thus demonstrating that
the optimization model is both useful on the long term planning and on
the short term operations.

A dynamic programming (DP) optimization approach is also explored,
DP resulted to be more effective in the introduction of non-linear logics into
the model with final higher optimization performances. The application of
this model is demonstrated to be more efficient than LP in solving long
term single reservoir problems but cumbersome in case of multiple-reservoir
system.
Keywords: PoliMi, Optimal reservoir operation, Optimization, Linear
Programming, Dynamic Programming, ARMA, Synthetic streamflows
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Sommario

Nella produzione di energia idroelettrica l’acqua è considerata la risorsa
scarsa. Con la liberalizzazione del mercato elettrico in Italia, l’applicazione
di tecniche di ottimizzazione ha guadagnato sempre più importanza nella
gestione delle aste idriche.

Il modello del problema è caratterizzato da una funzione obiettivo e
da vincoli non lineari, spesso descritti da condizioni booleane. In letter-
atura, la soluzione di questo tipo di problemi si concentra soprattutto
sul breve periodo, oppure sul lungo periodo ma solo caso di sistemi idrici
relativamente semplici, a causa del grande costo computazionale richiesto.

In questa tesi viene presentato un metodo per l’ottimizzazione sul lungo
periodo di aste idriche complesse, secondo un approccio al problema di
tipo "Divide et impera" basato sulla programmazione lineare. La tecnica
adottata si è dimostrata efficiente e non meno efficace rispetto ad una
ottimizzazione globale del sistema, questa affermazione è basata anche
sull’analisi quanto la soluzione ottima perda di significato in funzione
dell’incertezza sui dati in ingresso.

Il modus operandi del mercato elettrico italiano è stato inoltre analizzato
al fine di individuare una strategia per la composizione di un profilo di
offerta che tenga conto della natura e dello stato attuale dell’asta idrica. Il
modello sviluppato si dimostra quindi utile sia per la gestione sul lungo
periodo che per la programmazione operativa nel breve.

Un ulteriore approccio basato sulla programmazione dinamica è stato
implementato per verificarne le potenzialità. Il modello si è dimostrato
più efficace da un punto di vista dell’ottimo, in quanto è stato possi-
bile introdurre relazioni non lineari. Nella soluzione di un’ asta idrica a
singolo bacino sul lungo periodo, la programmazione dinamica ha costi
computazionali inferiori a quella lineare, si è però dimostrata inefficiente
nella risoluzione di aste idriche con più bacini.
Parole chiave: PoliMi, Gestione ottima, Ottimizzazione, Programmazione
Lineare, Programmazione dinamica, ARMA, Afflussi sintetici
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Chapter 1

Introduction

1



2 Introduction

1.1 Description of the problem environment
In order to better understand the work accomplished, a general de-

scription of the context subject of study is given. In the following section
some notions on how the Italian energy market works, the main character-
istics of a multi-reservoir hydroelectric system, the case study taken into
consideration and the differences between a long term and a short term
optimization are described.

1.1.1 The Italian Power Exchange Market

Figure 1.1: Equilibrium price

The Power Exchange Market plays
a fundamental role in the balancing and
in the regulation of electric energy pro-
duction. Since 1st April 2004, with the
liberalization of the market in Italy, a
system of interconnected power auc-
tions determines the price of the en-
ergy. Understanding the dynamics be-
hind the energy price is fundamental for
a correct optimal allocation of power
production.

The principles at the base of the
Power Exchange Market are similar to
the ones of a classic market, where the
price is determined by the equilibrium
between supply and demand, as shown
in figure fig. 1.1.

Due to the fact that electric energy cannot be stored, maintaining this
equilibrium is of fundamental importance. Thanks to the implementation
of a optimization algorithm described in Manuale utente per operatori
di Mercato [19], to each producer is assigned a proportion of the energy
that will have to provide at a determined period of time and the price
associated.

As defined in Guida al Mercato Elettrico [18], Electricity market is
composed by different sections divided on the base of the time-frame to
which are referred. A synthetic representation is given in fig. 1.2 on the
next page.

The focus will be on the MGP (Mercato del Giorno Prima) and MI
(Mercato Infra-giornaliero) as they are the main markets for volume of
energy traded. In particular the MGP is referred at the day after with
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Figure 1.2: Electrical market structure

Figure 1.3: Electrical markets time slots

respect to the day in which the auction is held, meanwhile MI is articulated
in 7 different decreasing-length time slots and the auction is held on the
same day of the energy dispatch. As can be seen from figure 1.3 there is
a partial overlap of the different auctions, this makes the optimal offer
profile (in term of quantity of energy and price) very difficult to estimate,
moreover there is a strong uncertainty on the success probability of the
producer’s offers.

Due to the complexity of the problem in short term analysis only the
MGP will be considered, which is the main and most independent market,
for each hour the producer can offer 4 different quantities of energy at 4
different prices. If the realized market equilibrium is above price set by
the producer it wins the auction and must produce the amount of energy
agreed at the final market equilibrium price. An example of an auction
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outcome is reported in table 1.1.

Table 1.1: Example of electricity market auction outcome

Hour 1 2 3
Offer profile
Offer 1 energy offered MW h 10 20 5

at price e/MW h 55 60 45
Offer 2 energy offered MW h 20 30 15

at price e/MW h 60 65 50
Offer 3 energy offered MW h 30 40 20

at price e/MW h 65 70 55
Offer 4 energy offered MW h 60 50 25

at price e/MW h 70 75 65
Outcome

Market equilibrium price 63 75 40
Total energy sold MW h 30 140 0
at price e/MW h 63 75 -

rejected
accepted

1.1.2 Generic system of Hydro-Electric Power Sta-
tions in cascade

In this paragraph a generic discussion of a multiple reservoir problem
connected in cascade and the mathematical dynamics equations that govern
the system are presented. The objective function and the main physical
constraints are also modelled while particular considerations related to
specificities of the case study taken into consideration are described in
1.1.3. Let’s consider a cascade of hydro-electric power stations like the one
shown in fig. 1.4 on the facing page.

The water volume in the considered reservoir i at time t is Qi(t), where
i = 1, 2, . . . , Ireservoirs and the flow that pass through each control variable
v at time t is Xv(t), where v = 1, 2, . . . , Nvariable. Please note that each
hydroelectric power station (designed in fig. 1.4 on the next page with Xv
) can be composed by more than one variable, for example a power station
can have two turbines and an emergency bypass for a total of 3 control
variables. The emergency bypass is a variable allows the water to flow
from the reservoir without producing power, and thus revenues. It is used
to manage cases in which high streamflows in the reservoir cannot be fully
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Figure 1.4: Example of a general cascade reservoir system
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discharged by the turbines, they thus physically represents the locks of the
dam or the river in case of on-the-river plants. Other data that influence
the system are the price of the energy at hour t, P (t) and the streamflow
of water coming into each reservoir i at time t Ai(t).

The equations that govern the volume of water inside a reservoir is
described by the following discrete-time control system:

Qi(t+ 1) = Qi(t) + Ai(t) +
∑

v∈Ini

Xv(t)−
∑

v∈Outi

Xv(t) (1.1)

t = 1, 2, ..., T

i = 1, 2, ..., I

Vi(0) = V0

Where Vi(0) is the vector of initial stored water volumes in the reservoir
i, Ini represents the set of variables that are tributaries of the reservoir
i while Outi is the set of emissary variables of the reservoir. Please note
that the time has been discretized according to time segments of 1 hour.
There are two main reasons for the discretization, the first is that the
control of power load on turbines is set hourly and also the price of energy
is given hourly, the second motivation is that more efficient optimization
approaches can be applied for discrete systems, as explained in chapter
2.2.

Considering fig. 1.4 on the preceding page, the water balance for the
reservoir Q5 is written as:

Q5(t+ 1) = Q5(t) + A5(t) +X3(t)−X4(t)

A control variable Xv(t) can used to represent both a turbine or a pump,
this is due to the fact that in some plants the water can be pumped in
reverse direction overnight(or when the price of energy is considerably
low) to be accumulated and then used to produce electric energy when
it’s price is high. Spillways are not explicitly considered in this model but
are introduced into the streamflow, that are net of the spillway for each
reservoir.

The control variables and the reservoirs are subject to the following
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constraints, that can be function of time:

Hmin(t) ≤ Hi(t) ≤ Hmax(t) max and min height

(1.2)
∆Hmin(t) ≤ ∆Hi(t) ≤ ∆Hmax(t) max and min rate of change

(1.3)
XV,min(t) ≤ Vv(t) ≤ XV,max(t) max and min flows

(1.4)
Pwv,min(t) ≤ Pwv(t) ≤ Pwv,max(t) max and min power

(1.5)
Xcmin(t) ≤

∑
v∈C

Xv(t) ≤ Xcmax(t) combined max and min flow

(1.6)
Pcmin(t) ≤

∑
v∈C

Pv(t) ≤ Pcmax(t) combined max and min power

(1.7)

and to the following boundary conditions:

Qi(tstart) = Qi,start intitial reservoir volume (1.8)
Qi(tend) = Qi,end final reservoir volume (1.9)

Constraint 1.2 limits the maximum and minimum altitude that a
reservoir can have, this constraint is used to respect the physics of the
system but also the legislations about flood and draught, thus can be time
dependant on a seasonal basis. The height of a reservoir is strictly related
to its volume, depending on the shape of the basin considered, the function
can be expressed with the following relation: Hi(t) = fi(Qi(t)). Constraint
1.3 refers instead to the maximum rate of change in height, this limit is
present on certain cases where problems related to the basin structure
may arise, the constraint is often a step function, based on the volume
of water stored into the reservoir. Constraints 1.4 and 1.5 refers to the
upper and lower limits of the control variables in term of water flow and
power generated. If the variable is a turbine this limit is discontinuous,
the turbine can be turned off or it can control its output between a
minimum flow and a maximum one, so the range of controllability is:
Xv(t) ∈ {0;Xmin(t)÷Xmax(t)}. In the case of a pump, a similar discussion
can be done, but now maximum and minimum values are taken negative.
The combined flow 1.6 and power limits 1.7 are used when a single power
plant has more than one variable, in this case a minimum vital outflow or
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a maximum admissible flow for the river downstream must be defined, the
constraint is expressed as the sum of all the variables of that plant. Please
note that constraints 1.4 and 1.6 can be imposed also at the same time.

Considering a discrete-time optimal control problem, the functional,
representative of the profit, is written as:

L(X(t), Q(t), P (t)) =
T∑

t=1
Price(t) ∗

Nv∑
v=1

[Xv(t) ∗ ken(Hv(t)) ∗ ηv(Xv(t))]

(1.10)
Where ken(Hv(t)) is the energetic coefficient of the water indicative of
its potential energy, it tells how much energy is stored in a cubic meter
of water: kWh/m3 , it is function of the pressure head of water which is
proportional to the height of the reservoir Hv(t) from which the turbine
takes water from. The efficiency of the turbine is expressed with ηv(t) and
depends from the load curve of the turbine, usually it reaches maximum
at nominal capacity, while it decreases at lower flow rates the efficiency
degrades.

The final objective of the optimization is to find a set of X(t) that
maximize 1.10 subject to the dynamics described in 1.1 and to constraints
eqs. (1.2) to (1.7).

1.1.3 Case study presentation
In the previous chapter a general problem for multiple Hydro-Electric

Power Stations in cascade has been defined, now a detailed description of
the real system taken as case study is provided.

The studies are focused on the existent hydroelectric concession, for
disclosure reasons name and location of the water system along with
the specific data regarding the system cannot be provided, although the
principle scheme is described in figure 1.5; reservoirs are marked in blue,
while power plants are in red. Informations about the main parameters of
the concession are reported in table 1.2 for what concerns the variables,
and in table 1.3 for informations about the reservoirs1. The method is
valid for a wide range of systems, absolute value are not descriptive of
the system physics; what defines the behaviour of a reservoir/power plant
system is the ratio between the reservoir capacity and the nominal flow of
the related turbine. This ratio represents the maximum hours of stock, a

1For disclosure reasons the displayed data are normalized, no real data regarding
the case study are provided
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Figure 1.5: Case study principle scheme
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high ratio corresponds to a big reservoir while a low ratio indicates a small
reservoir with respect to the turbine capacity.

Table 1.2: General information about variables in the system considered as
case study, normalized with respect to plant P10

variable plant / reservoir typology nominal flow norm. nominal power MW
X1 P6 turbine 32 30
X2 P6 turbine 32 30
X3 P6 turbine 32 30
X4 P6 turbine 32 30
X5 P6 turbine 32 30
X6 P10 turbine 100 50
X7 P4 turbine 96 90
X8 P2 turbine 31 20
X9 P1 turbine 8 30
X10 P3 turbine 10 15
X11 P5 turbine 8 15
X12 Q8 bypass 400 0
X13 Q7 bypass 400 0
X14 Q4 bypass 400 0
X15 Q2 bypass 400 0
X16 Q1 bypass 400 0
X17 Q6 bypass 400 0
X18 Q5 bypass 400 0
X19 Q3 bypass 400 0

Table 1.3: General information about reservoirs in the system considered as
case study

reservoir hours of stock2

Q1 750
Q2 38
Q3 4
Q4 6
Q5 6
Q6 2
Q7 0.2
Q8 1

2Hours of stock is the amount of water stored in the reservoir expressed in hours,
calculated as the ratio between reservoir capacity and turbine nominal flow
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The dynamics that governs the system, the constraints imposed and
the input data coming from real operational data and are only partially
described by the eqs. (1.1) and (1.3) to (1.7); with respect to the general
case, particular constraints are added. From figure 1.5 can be noticed how
the structure of interconnected reservoirs is not a pure cascade one, there
are run-of-the-river generation plants P7, P8, P9, P10, moreover P4 power
plant has an inflow coming both from Q4 and Q5 Basins. The case of
run-of-the river plants is trivial to optimize, in the turbine should flow the
most water possible respecting the constraints since no storage capacity is
available, thus for the purpose of this thesis they are not relevant variables
and have been neglected. Q4 and Q5 reservoirs presents instead an added
limit, since the pressure pipes that bring water to P4 are interconnected,
there is a backflow from one basin to the other in case their height is not
equal, moreover the portion of water collected from the two reservoirs is
not constant but is function of their pressure head.

Another important constraint regards the operation of turbines, if
a turbine is turned on several times in a day there may be the risk of
premature wear and failures. This can be considered a soft limitation since
it’s only a preference expressed by the operator of the plant, in fact, if the
price of energy is particularly high in a determined time span the optimal
solution is to power the turbine disregarding the number of activations.

The last important variable to consider is the concentration time; if the
upstream reservoir is far from the downstream one the transfer of water
is not immediate but may take a while, so the balance of water in the
reservoir is shifted in time, and equation 1.1 becomes:

Qi(t+ 1) = Qi(t) + Ai(t) +
∑

v∈Ini

Xv(t− Tcv)−
∑

v∈Outi

Xv(t) (1.11)

Where Tcv is the concentration time of the variable Xv and referred to the
downstream reservoir.

The problem presents also uncertainty in input parameters, in particular
for what concerns streamflows to reservoirs and forecasted price. Variance
in this data causes a variation in the optimum solution. In order to analyse
the system behaviour, a synthetic generation of input time series that
reflect the real ones is generated as described in chapter 3.
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1.1.4 Long term and short term optimizations
Optimization of electric energy production is performed on different

time horizons. Long-term objectives focus on calculating the best strategy
to generate as much revenues as possible, keeping into account that there is
a yearly cyclicity, and so the state of the system at the end of the year must
be coherent with the initial conditions (see eqs. (1.8) and (1.9)). However, in
reality, it is often the short-term optimization that dictates the operational
strategy, in the short term there is lower uncertainty on the input variables
and constraints, for example the number of turbine activations becomes
an important decisional factor. Short-term optimization is run more than
one time per day, according to the market outcomes, and the optimization
time-span is usually 3 to 7 days length; thus the algorithm is required to
solve the problem in a short computational time.

Also the objective changes: on the long-term the optimal strategy is
based on the forecasted energy price while on the short-term also the
electrical market dynamics described in 1.1.1 play a fundamental role.
Therefore, incorporating long-term goals into short-term objectives is
crucial. It’s not only important to follow the guidelines dictated by the
long-term optimization, but It’s also needed to identify a suitable offer
profile for the energy auction in the different hours (see 1.1).

1.1.5 Considerations about problem complexity
As can be seen from sections 1.1.1 to 1.1.3 the problem presents an

high degree of complexity. Although its dynamic(1.11) has an intrinsically
linear structure, the majority of constraints and the functional 1.10 are
expressed through non-linear functions. Linearisation of some functions is
possible, in particular if a linearisation is applied to Hi(Qi(t)), ken(Hv(t))
and ηv(Xv(t)) the objective function ends up to be cubic-dependent from
the control variables:

L(X(t), P (t)) =
T∑

t=1
Price(t) ∗

Nv∑
v=1

[Xv(t) ∗ a ∗Qi(t,Xv)(t) ∗ b ∗Xv(t)]

where a and b are the two linearisation coefficients (for the sake of simplicity
the linearisation line intercept coefficients are neglected). Please note that
the linearisation of ken function is split in 3 steps: firstly the function is
linearised around Hi, then the height of reservoir is linearised according to
Qi which is considered to be in linear dependency with Xv.

Step and boolean constraints such as the minimum load for the turbines,
maximum height rate of change and the maximum number of turbine



1.1. Description of the problem environment 13

activation cannot be linearised or even, in the latter case, expressed by
an algebraic function. This impose serious limits to the algorithms that
can be used for the optimization. Moreover, for what concerns the long-
term, the problem dimension is huge: it requires to find the optimal value
for each control value in each hour on a one year period (8760 hours).
This further limits the types of optimization techniques that can be used
since computational time and memory are scarce resources. Another
important thing to consider is the uncertainty in input parameters, this
causes a variance in the possible outcome of the optimization problem,
thus diminishing the importance of getting the optimal solution and shifts
the focus to the calculation of a more robust solution.

It clearly appears that in order to deal with the problem it is needed
to find a trade-off between approximation of the model (and so the choice
of algorithm used), computational resources required and optimal result.
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1.2 Outline
The thesis is structured as follows:

In this chapter A general description of the context subject of study is
given. Some notions on how the Italian energy market works, the
main characteristics of a multi-reservoir hydroelectric system, the
case study taken into consideration and the differences between a
long term and a short term optimization are described.

In the second chapter a state of the art in hydro-economics optimiza-
tion of multiple reservoirs systems operation is provided. The different
models are classified, both implementation examples and results are
reported from literature and an overview of the main optimization
techniques for reservoir management is reported. In this chapter
also methodologies for daily streamflow identification and synthetic
time-series generation are described. The latter section is dedicated
instead to the introduction of the currently adopted base optimization
model on which this work of Thesis is based.

In the third chapter the analysis of historical time series identification
and the methods for the generation of synthetic data-set are de-
scribed. Water streamflows and electricity price are the two time se-
ries analysed in this chapter. Assumptions made, techniques adopted,
considerations and results are reported in this chapter.

In the fourth chapter the optimization technique adopted for the long
term optimization is described. The long term optimization pf
problem with objectives and assumptions are reported. Details about
the working principles of the "divide and conquer" strategy and a base
line on the algorithm implementations are given. Performances are
reported and compared with the base optimization approach, optimal
model parameters identification and optimum variance analysis is
also performed.

In the fifth chapter the short term optimization is introduced. The
focus is shifted on the generation strategy of a possible bid profile
to be offered on the market. The assumptions made, the analysis
method utilized, comments on results and a final practical example
of strategy evaluation is reported.

In the sixth chapter the optimization technique of dynamic program-
ming (DP) is introduced. Objective and assumptions made are
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reported and a different model of the problem is implemented for
the solution with DP. Dynamic programming algorithm implementa-
tion is reported with particular attention to underline potentialities
and weaknesses. Methods of state space discretization are described
and implemented, basics on a possible optimal allocation logic are
given. Finally performances of the new approach are compared to
the existing base model, pointing out strength points and limitations.





Chapter 2

State of Art

2.1 Hydro-economic models of multi-reservoir
systems

The management and operation of a system responsible for the storage
of a valuable commodity will always be a topic open for investigation and
potential improvement, attention focuses on improving the operational
effectiveness and efficiency of existing reservoir systems for maximizing
the beneficial uses. This dissertation provides a state of the art in hydro-
economics optimization of multiple reservoirs operation, the aim of these
models is to provide support to decision making in water resources man-
agement.

As described in [30] the different hydro-economics models can be classi-
fied according to the following three main characteristics:

1. Simulation vs Optimization: Simulation models uses rule-based al-
gorithms to describe the system, Optimization models maximize
an objective function in respect to a set of constraints. Simulation
models are better suited in the case a system is governed by complex
non-linear system dynamics but their application is limited to small
scale problem since they are computationally more expensive than
optimization techniques.

2. Representation in time:

(a) Deterministic models, that uses an historical or synthetically
generated time-series as input. A general dissertation of these
techniques can be found in [13].

17
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(b) Stochastic models, that include the statistical profiles charac-
teristics in the model input and provide the results in form of
probability distributions. Labadie in [15], defines these tech-
niques as Explicit Stochastic Optimization.

(c) Dynamic optimization models, is both a mathematical opti-
mization method and a computer programming method. The
sub-problems are nested recursively in time inside larger prob-
lems so that dynamic programming methods are applicable.
This technique is applied in chapter 6.

3. Model integration

(a) Modular approach, where the components (water reservoirs in
the case of this work) are optimized independently.

(b) Holistic approach, where all the components are integrated in
one single problem. The benefits of this latter technique is that
can be easier to find a global optimum, on the other hand, the
problem formulation is much more complex.

Table 2.1, reported by Vat in [30], presents an overview of publications
on the application of hydro-economic models for optimal reservoirs opera-
tion, describing informations about the location and type of technique used
for optimization. Most of the researches listed in the table optimize the
reservoir use not only from a power generation point of view but consider
also other uses such as irrigation or flood control.

Please note that all the listed models presented follow an holistic
approach based mainly on optimization techniques such as mathematical
programming. The majority of the models inspected presents strong
simplifications in the description of the water system, this is mainly due to
cope with the constraints given by the different optimization techniques.

The holistic based approach has been applied in this thesis since these
techniques are the most widespread in literature for the economic opti-
mization of reservoirs operation. Moreover, thanks to the general diffusion
of these approaches also in other fields they have solid mathematical the-
oretical basis and a robust demonstration of their effectiveness. In the
following table 2.2, reported from [30], are listed the (dis-)advantages of
holistic programming versus modular heuristic programming.
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Table 2.1: Overview of studies using hydro-economic models for reservoir
optimization

References Location Functions Model type

Lund and Ferreira,
1996

Missouri River USA Hydropower, flood con-
trol, recreation, water sup-
ply and navigation

Holistic, ISO, deterministic,
linear programming

Rosegrant et al, 2000
Cai et al, 2003

Maipo River Chili Irrigation, hydropower
and environmental flow

Holistic, non-stochastic, de-
terministic, non-linear pro-
gramming

Bielsa and Duarte,
2001

Vadiello Reser-
voir, Spain

Irrigation and hydropower Holistic, non-stochastic, de-
terministic

Babel et al, 2005 Nong Pla Lai
Reservoir

Thailand Irrigation, domes-
tic, industry, hydropower

Holistic, deterministic, lin-
ear programming

Whittington et al,
2005

Nile Ethiopia, Egypt and Sudan
Irrigation and hydropower

Holistic, non-stochastic, de-
terministic, non-linear pro-
gramming

Ringler et al, 2006 Dong Nai River Vietnam Irrigation, hy-
dropower, domestic and
Industry

Holistic, non-stochastic, de-
terministic, non-linear pro-
gramming

Pulido-Velázquez et al,
2006

Adra River Spain Irrigation and domes-
tic

Holistic, non-stochastic, de-
terministic, non-linear pro-
gramming

Schoups et al, 2006a
and 2006b

Yaqui River Mexico Irrigation Holistic, ISO,deterministic,
non-linear programming

Watkins and Moser,
2006

Panama Canal System Water supply,
hydropower, navigation and
flood control

Holistic, ISO, deterministic,
linear programming

Consoli et al, 2007 Pozzillo Reser-
voir, Italy

Irrigation Holistic, non-stochastic, de-
terministic, non-linear pro-
gramming

Tilmant et al, 2008 Euphrates Turkey and Syria Irrigation
and hydropower

Holistic, ESO, Stochastic
Dual Dynamic Program-
ming

Goor et al, 2010 Nile Ethiopia, Egypt and Sudan
Irrigation and hydropower

Holistic, ESO, Stochastic
Dual Dynamic Program-
ming

Tilmant et al, 2010 Tilmant and
Kinzelbach

Mozambique Environmental
flows, irrigation and hy-
dropower

Holistic, ESO, Stochastic
Dual Dynamic Program-
ming

Bartlett et al, 2012 Nam Ngum
River

Laos Irrigation and hy-
dropower

Holistic, non-stochastic, de-
terministic, non-linear pro-
gramming

Xu et al, 2014 Nanpan River China Hydropower, irriga-
tion and water quality

Holistic, non-stochastic, de-
terministic, dynamic pro-
gramming

Mirchi et al, 2015 Florida USA Irrigation, public water
supply, flood protection and
environmental flows

Holistic

Rougé and Tilmant,
2015

Tigris and Eu-
phrates

Turkey and Syria Irrigation
and hydropower

Holistic, ESO, Dynamic Pro-
gramming

Satti et al, 2015 Blue Nile South Sudan Irrigation and
hydropower

Holistic, non-stochastic,
non-linear optimization
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Table 2.2: (Dis-)advantages of holistic approach and modular approach in
hydro-economic reservoir optimization

Holistic programming Modular heuristic

Widespread and efficient algo-
rithms can be applied (+)

Usually they are expensive from a
computational point of view (-)

Able to identify unique global opti-
mal solution (+)

Approximation of the optimal so-
lution, risk of identifying a local
optimum (-)

Optimization of release flow only,
operation rules have to be derived
(-)

Optimization of any simulation
model input, also possible directly
on operation rules (+)

Requires recoding and simplifica-
tion to model the water resources
and economic systems (-)

Can be constructed around existing
simulation models (+)

2.2 Optimization techniques for optimal multi-
reservoir operations

Optimizing the benefits in a water resource system is a non-trivial task.
The solution to the problem is difficult since the system dynamics are
often non-linear, a large number of variables is involved and boundary
conditions have often a stochastic nature. Nevertheless, different mathe-
matical programming techniques have been developed for the computation
of optimal operating strategies in multiple water reservoirs systems([10]).
The majority of these techniques produce satisfactory results for the tasks
they are developed for but a generic methodology that can handle the
most complex problems in a generic form has yet to be identified. The
rapid development in computer technologies has made the adoption of
more sophisticated mathematical methods possible, the nature of reservoir
systems problems usually require the optimization of an objective function
in a large decision space of optimal parameters set. This problems has
motivated the development of various optimization techniques.

As seen in the table 2.1 and in literature [13, 15, 35], the use of
mathematics, in particular Operational Research and Optimal control
techniques, is a widely and well established approach to develop optimal
management strategies for the operation of water reservoir systems.
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According to [13] the most commonly used mathematical optimization
techniques can be classified as follows:

1. Linear programming(LP)

2. Non-linear programming(NLP)

3. Augmented Lagrangian Optimization

4. Dynamic programming(DP)

5. Computational intelligence

6. Simulations

The first three methods require an holistic formulation of the problem
while the latter two can be implemented through a modular approach.

In the state-of-the-art review by Labadie in [15], where the different
techniques for optimal reservoir operation have been investigated, Linear
Programming(LP) is praised for its efficiency and capability to reach a
global optimal solution. However also Mixed Integer Linear Programming
and Dynamic Programming models have been considered, although less
computationally efficient, these models provide an alternative solution
for representing non-linear constraints. In extension to Yeh work in [35],
Labadie explores also heuristic methods, simulation methods and neural
network models; this is due to improvements in computer technologies
since the latter techniques are computationally expensive.

2.2.1 Linear Programming
In a problem where the objective function is linear and all the constraints

(equalities and inequalities) can be expressed in a linear way too, the LP
technique can be used. It is one of the most widely used technique due to
its implementation simplicity and computational efficiency, moreover the
solution provided is a global optimal result.

A practical example on the Linear Programming implementation and
solution of an optimal control problem of hydro-electric power stations in
cascade is discussed in [26]. The system was considered with a possibility
of turbining and pumping in some of the power stations and was trans-
lated into a discrete-time optimal control problem that has been solved
numerically, adopting a penalty function method. Computation were done
with real data and pointed out that the reservoirs only produce electricity
when the price is high enough to justify that production, this is index
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of a good formulation and solution of the problem. The optimization
has been computed over a period of 24 hours, no informations about the
computational costs were provided but according to [30] the methods used
are particularly computational demanding.

A simple model developed by Arthur E. Mc Garity in [3] describes the
fundamental behaviours of a single reservoir system and the description of
the constraints and variables are similar to the eqs. (1.1) and (1.3) to (1.7)
used in this thesis.

Another demonstration of LP application to an optimal reservoir op-
eration problem is presented by Maass et al. in [16], the goal was to
maximize the revenues coming from water exploitation while satisfying
the constraints of the system. Maass et al. analysed the problem in its
dual form: a first implementation used as decision variables the volumes
in reservoirs, while in the second implementation the decision variables
where the target releases from the basins.

In [34] is described the use of a model called HYDROSIM, implemented
for the Tennessee Valley reservoir system, that employ LP to compute the
optimal level of basins water level for hydro-power generation.

A technique of separation of long term problems in smaller time domain
sub-problems based on sequential LP optimization is cited by Labadie in
[15] but no actual implementation examples have been found.

2.2.2 Non-Linear Programming
Non Linear Programming technique is generally used when either the

objective function and the constraints are non-linear functions. Non-linear
programming techniques refer to the generic problem:

Minimize: L = f(x1, x2, ..., xn) (2.1)
Subject to: gi(x) = 0 i = 1, ...,m (2.2)
Subject to: cj(x) ≤ 0 j = 1, ...,m (2.3)

Yeh in his state of the art review [35], lists the NPL algorithms generally
utilized due to their robustness and efficiency:

(i) Sequential Linear Programming (SLP)

(ii) Sequential Quadratic Programming (SQP)

(iii) Augmented Lagrangian Methods, or Method of Multipliers (MOM)

(iv) Generalized Reduced Gradient Method (GRG)
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SQP and can be applied in case the objective function is quadratic and
the constraints are linear, it is computational efficient and generally, the
result is a global optimum. If the problem can be demonstrated as convex
(objective function must be concave and constraints set must generate a
convex space), efficient methods for convex optimization can be used. In
the case study considered in this thesis the constraints aren’t convex and
so this techniques cannot be applied.

Methods "i" and "ii" require the eqs. (2.1) and (2.3) to be differentiable,
moreover sufficient conditions for optimality are difficult to demonstrate
and the solution of the necessary Karush–Kuhn–Tucker (KKT) conditions
is computationally heavy.

Hiew, in [12], performed a comparative evaluation of SLP and MOM
algorithms in a large-scale multi-reservoir hydro power system and con-
cluded that the two methods differ only for 1% in final optimization value
but SQL is about two orders of magnitude faster than MOM algorithms.
The comparison between these methods has been deepened by Labadie in
[15], in his works is reported that the Taylor approximation of non-linear
function, typical of Sequential Programming methods, brings to a reduction
in process convergence.

NLP is not very popular in the solutions of optimal reservoirs oper-
ation due to the computational complexity and the difficult theoretical
formulation although some successful cases have been reported by Husain
in [13] where a quadratic optimization model for the California Central
Valley Project has been compared with a LP model, model was compared
with an LP model, and it was found that a significant increase in the
total energy production could be obtained using SQP models. Another
example of application, based on the Augmented Lagrangian Method is
proposed in [4], where a model for solving the short term management of
water reservoirs with variable waterfall is proposed. Even with a short
time problem is reported that the solution is obtained after a moderate
number of iterations with all constraints being satisfied.

2.2.3 Dynamic Programming
Dynamic programming (Principle of optimality by Bellman 1957) for

discrete space-time system and the Hamilton-Jacoby-Bellman (HJB) equa-
tions that constitutes the continuous form counterpart are well know and
largely used sufficient conditions for optimal control problems. In particular
the Dynamic Programming (DP) technique, due to it’s easiness of imple-
mentation and powerfulness in describing complex systems is largely used
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in multi-reservoir operational optimization. DP can deal with non-convex,
non-linear and discontinuous objective and constraint functions, moreover
it reaches a global optimum. On the other hand the computational cost
scale with a power of two proportion in function of the complexity of the
system considered.

Being DP suitable to describe the most complex systems, the technique
has been adopted in this thesis but it’s usage has been limited to a smaller
set of sub problems due to the demanding computational power of the
algorithm.

As can be seen in table 2.1, Dynamic Programming is the second used
method after Linear Programming. An dissertation is reported by Opricovic
S. in [25], where a first rough optimization if followed by the application
of Dynamic Programming to solve the problem of optimal control. A
similar two stage optimization method for Dynamic Programming has been
implemented in this thesis although the optimal reservoir problem and
the objective function are completely different. Opricovic S. implemented
the method to solve the optimal planning of a single reservoir in which
water was needed as primary need to irrigation and power production was
considered as secondary benefit.

Although computationally heavy, DP has been compared with Mixed
Integer Programming by Labadie in [15], and his works pointed out that
the two formulation provided comparable accuracy, but at a fraction of
the computer execution time required by the MIP model.

2.2.4 Computational Intelligence
Computational intelligence techniques (fuzzy logics, neural networks,

neuro-fuzzy systems and evolutionary algorithms) are successfully ap-
plied in various fields of engineering. A lot of these methods have been
implemented for solving control problems in packet switching network
architectures. Therefore, as stated in [13], a generic technique for the
optimisation of complex systems is yet to be identified. Different cases
of computational intelligence techniques applied to reservoir optimization
can be found in literature although they refer to very specific and non
generalized problems.

An example is from [24], in which an extended two-stage stochastic
programming with fuzzy variables is developed for water resources manage-
ment under uncertainty. In the first optimization stage a MIP technique
is used, while for the second stage of optimization the problem is imple-
mented by using fuzzy variables and solved using fuzzy chance-constrained
programming. The model is suitable to deal with cases under uncertainty,
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however the main motivation for the use of fuzzy logic is due to the partic-
ularity of the object to be optimized: the water was needed to be allocated
at different stakeholders, the value function keeps track of the utility to
allocate water to one actor to another. This problem significantly differ
from the objective of this thesis, where the optimization object is related
to hydro power production.

The most significant difference of computational intelligence models
with respect to the traditional ones are that they use probabilistic transition
rules, not deterministic rules.

As reported by Labadie in [15] and also by Husain in [13] computational
intelligence is mainly used when multiple actors enter in the value function
and strong non-deterministic components affect not only the inputs of
the model but also its structure. Moreover the use of these models often
requires a training of the algorithm, and so the need to provide already
optimal solutions.

2.2.5 Conclusions
Reservoir system operations has a very rich and extended history for

what concerns the application of optimization models. However the use in
real-word of these techniques is still limited, as stated by Labadiein [15]:
"system operators states that they don’t like being told what to do and that
they prefer to make decisions in his own way. This is due also to the fact
that avoidance of difficulties and perceived system failures are dominant
goals with respect to improving efficiency. Labadie also lists 3 key-factors
for a successful implementation of reservoir systems optimization models:

1. Improving levels of trust by a more interactive involvement of decision
makers in system development

2. A good implementation of these systems in the actual Enterprise
Resource Planning

3. Improved linkage with simulation models that are easily interpreted
by operators

2.3 Time series analysis
Historical time series about water streamflows in each of the reservoirs

are already available for our case study, also the whole time history of
electricity price in Italy is available at http://www.mercatoelettrico.

http://www.mercatoelettrico.org/it/
http://www.mercatoelettrico.org/it/
http://www.mercatoelettrico.org/it/
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org/it/ [17]. Streamflows time-series are defined over a daily basis while
electricity price for the MGP (see 1.1.1) has an hourly resolution. In order
to test the behaviour of the model implemented in this thesis, historical
data are not enough and the generation of synthetic time series is needed.
In particular it is fundamental to generate a realistic time series for the
streamflow, since this input directly affect the feasibility of the solution.
To simulate electricity price a simple model is adopted, although a rich
literature about this topic is available, complex and reliable models require
a deep electrical market analysis and must be fed with a big amount of
exogenous data. A refined implementation of an electricity price generator
is therefore out of the scopes of this thesis, the argument could be certainly
among the ones to consider for a future development of this work.

2.4 Streamflow identification and synthetic
generation

A good prediction and simulation of daily synthetic streamflow data
has a significant importance in water resource management, the simulation
of real-world alike streamflows is necessary to analyse the robustness of
the optimization models implemented in different scenarios. Moreover, the
data generated incorporate a certain degree of uncertainty that is then
transferred by the optimization model to the final value of the objective
function.

It is important to note that, for the scopes of this Thesis, the focus is
on synthetic generation of streamflow and not in their prediction, therefore
in the following state-of-art-review is focused on statistical analysis and
fitting methods rather than forecasting techniques. For similar reasons
given in 2.3, this consideration is valid also for electricity price and allows
to consider more simple and analytical models. The assumption made
is mandatory to prevent the work of this thesis from going out of scope,
complex models are often multiple input systems that include terrain
characterization, atmospheric and oceanic patterns, an example is [7] and
can be seen how the work is out of vision for the purposes of this thesis.

In his report [8], D.J. Holtschlag identifies two main branches of
methodologies for daily streamflow identification, classified as follow:

1. Statistical models for estimating daily Streamflow

(a) Trend and seasonal components identification
(b) Ordinary-least-squares regression

http://www.mercatoelettrico.org/it/
http://www.mercatoelettrico.org/it/
http://www.mercatoelettrico.org/it/
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2. Stochastic models

(a) Autoregressive moving-average model
(b) Transfer function-noise model
(c) Composite model

According to [8], this models are parsimonious for a statistical point of
view, it means that the number of parameters required for the estimation
is relatively small, given the accuracy of the estimates.

Trend and seasonal components identification

Trend and seasonality are the main components of a time-series, as
shown by the additive model [5] in section 2.4.

y(t) = L(t) + T (t) + S(t) + ε(t) (2.4)

Where L(t) is the level of the time series, T (t) is the deterministic trend
component of y(t), S(t) is the seasonal component and ε(t) is the model-
error component. In case of trend and seasonal component decomposition
model the erratic component is generally considered to be normally dis-
tributed.

In time-series identification, the trend and seasonal components in
equation 2.4 are generally approximated by the use of a deterministic
function of time and then subtracted from the streamflow data before
the analysis of the erratic component. This procedure is described by
D.J. Holtschlag in [8] and applied for streamflow analysis, but is also
commonly used in general statistics methods, for example in [9]. The
technique is also, in part, used for the time history identification in this
Thesis.

D.J. Holtschlag in [8], analysed the time series of 20 streamflows related
to different reservoirs is U.S.A. and pointed out that, although no evident
trend can be often spotted, a strong yearly seasonal component can be
always identified. Due to variability in seasonal components along the year,
they have been identified by means of a moving average along the time
history. The same approach has been applied in this Thesis.

2.4.1 Ordinary-least squares regression
Ordinary-Least-Square Regression Models (OLSR) are extensively used

in streamflow identification due to their easiness of application. In the
investigation about Cost Effectiveness of the Stream-Gaging Program in
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Maine, [28] shown that this method could bring to inaccuracies of the
resulting streamflow estimates. As also stated in [8], the full equation for
OLSR tends to include explanatory variables that had little computed
statistical significance and the to break the principle of parsimony.

2.4.2 Autoregressive moving-average

Autoregressive moving-average (ARMA), autoregressive integrated
moving-average (ARIMA) and seasonal autoregressive moving average
(SARMA) models are commonly used in streamflow identification thanks to
their capability to describe the phenomenon and their relatively widespread
diffusion also in other fields.

ARMA models joined with trend and seasonality identification are used
in this thesis, the combination of these two techniques is proved to be
effective by a widespread literature about streamflow identification and
synthetic flow generation.

In the study conduced in [8], about 20% of streamflow analysed pre-
sented an Auto Regressive (AR) part only while the remaining 80% were
described by autoregressive moving-average equations.

Mondal and Uddin Chowdhury in [21], introduced a time series model
to be used in river hydrology for synthetic generation, a model called
"deseasonalized Autoregressive Moving Average" (deseasonalized ARMA)
is introduced for the generation of decadal (10-day) flows. The model
proposed has strongly influenced the method used for the identification
and generation of streamflow in this Thesis. Differently from the Thesis
work, Mondal and Uddin Chowdhury used a Fourier analysis to remove
the seasonal component, then the an ARMA(1,3) model is fitted to match
with historical data. The validation synthetic flow generated demonstrated
that the deseasonalized ARMA model was able to capture the decadal
variability of the Brahmaputra River taken as case study.

A parameter estimation of an ARMA model for river flow forecasting
with the objective of managing long-term reservoir operation is proposed by
Mohammadi, R. Eslami, and Kahawita in [20]. An important consideration
made in the paper is that the characteristics of a time series may vary
within a decade, so it’s important to maintain the model updated and
historical data should not be taken too far in the past.

A comparison between ARMA and ARIMA model is performed in [14],
the statistical index mean absolute percentage error (MAPE), root mean
squared error (RMSE) and nash efficiency (NE) were calculated and no
substantial difference between the two models emerged.
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2.4.3 Transfer function noise model
Transfer function model is a statistical model describing the relation-

ship between an output variable and one or more input variables. Many
applications can be found both in hydrology and economics models. Due
to their simplicity, discrete-time linear models are the most widespread
in literature, an exhaustive dissertation about this family of models is
reported in [22] notes.

In [2] the original Box and Jenkins formulation of the noise transfer
function has been used to estimate parameters for streamflow time series.
The model provided satisfactory results in short term and is defined as
particularly interesting for the small number of parameters needed to be
estimated and the possibility to implement it even if a short period of
records is available.

Single and multiple-input transfer function models and their applica-
tions in modelling streamflows systems is reviewed also in [32]. A multiple
input model has been introduced, snow-melt and effective rain are con-
sidered the two most important input and have been modelled too. A
practical application to the Saugeen River system in Canada has been
taken as case study, the method implemented showed promising results and
a demonstrated to be a quite straightforward approach for multiple-input
models.

The transfer function noise model is mainly applied in literature as
a simple method for modelling multiple-input systems in a short term
forecasting window. Although providing promising results, the model field
of application in quite opposite to the interests of the thesis, where a long
term synthetic streamflow must be generated starting from a single input
(streamflows time history). Moreover the focus of this methodology is
about forecasting a time series rather than generating a synthetic one that
could represent a realistic real-world behaviour.
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2.5 Currently adopted base model
This thesis takes as starting point an already existing model, developed

in Politecnico di Milano. The model is based on a matricial representation
of the system and uses as optimization technique a linear programming
approach. The optimizer structure is intrinsically linear, although different
techniques to deal also with non linear constraints and objective function
have been introduced. The programming language used is Matlab.

A description of the actual implemented model is necessary to under-
stand the work done in this thesis, mainly for what concerns chapter 4.
In the following section an overview of the base model is given, the main
concept about the working principle, model limitations and performances.

2.5.1 Working principle
The structure of the model is capable to describe and solve a generic

water system by changing its inputs but, for the sake of simplicity, all the
practical examples are referred to the case study 1.1.3 taken in considera-
tion.

In order to deal with the multiple non-linear constraints and non-linear
objective function (sections 1.1.2 and 1.1.3) a two stage optimization has
been introduced. In the first stage only linear constraints are applied
and the objective function is linearised around the mean water level in
the reservoirs. The second stage uses the results coming from the first
optimization as base point to linearise all functions around the first so-
lution, moreover to deal also with strongly non-linear constraints (such
as the number of turbine’s activations or the minimum turbine power)
some control variables are arbitrarily imposed before starting the second
optimization. The diagram in figure 2.1 represents the schematized working
principle of the algorithm.
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Figure 2.1: Schematized optimizer’s working diagram

Model inputs

To describe how the algorithm is structured the main inputs are here
introduced, considering the system in the case study with: I_reservoirs =
8 the number of reservoirs, N_variables the number of variables and
T_hours the number of optimization hours (I,N and T are used for
simplicity).

(i) price_vect [T × 1]: is the vector containing all the future hourly
electricity price, in e/kWh

(ii) streamflow_matrix [T × I]: is a matrix containing the predicted
streamflows in m3 h−1, in columns for each reservoir

(iii) structure_matrix [I × N ]: is a matrix defined as: Mi,x = −1 if
control variable x takes water from reservoir i, Mi,x = +1 if control
variable x discharge water from reservoir i, zero otherwise. Note that
in case a control variable takes water from two or more reservoirs
the value −1 is split in fractions, an example in 1.5 is P4 that takes
water from Q4 and Q5. To better understand, the matrix for case
study is drawn:
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19

Q1 0 0 0 0 0 -1 1 0 0 0 0 -1 0 1 0 0 0 1 0
Q2 -1 -1 -1 -1 -1 1 0 0 0 0 1 1 -1 0 0 0 1 0 0
Q3 0 0 0 0 0 0 -0.3 0 0 0 0 0 0 -1 0 0 0 0 0
Q4 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0
Q5 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0
Q6 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 0 0
Q7 0 0 0 0 0 0 -0.7 1 0 1 0 0 0 0 1 0 0 -1 1
Q8 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 1 0 0 -1

(iv) power_vector [N × 1]: = +1 if the variable produces power(is a
turbine) or = 0 if the variable doesn’t produce power(is an emergency
bypass). In the case study variables X12 to X19 are bypass, while
the others are turbines.

(v) concentration_time_vector [N × 1]: contains for each variable the
concentration time in h

(vi) max/min_flow_matrix [T ×N ]: contains the maximum/minimum
flows that each variable can have at each hour, in m3

(vii) max/min_power_matrix [T × N ]: contains the maximum/mini-
mum power that each variable can have at each hour, in kW

(viii) max/min_volume_matrix [T × I]: contains the maximum/mini-
mum volumes in m3 that each reservoir can have in each hour

(ix) max_height_rate_matrix [#constraints× 3]: contains the maximum
height rate of change in m on which a reservoirs can undergoes in a
certain period. First column address to the reservoir index, second
column the hours in which the constraint is active and the third
column the maximum height change during the period

(x) initial/final_volume_vector [I × 1]: contains the initial/target
volume in m3 that each reservoir must have

(xi) volume/height_vector [I × 1]: contains the description of each
reservoir’s shape, basically describe the curve Hi(t) = fi(Qi(t)) (with
ref to 1.1.2).

In the list above only the essential and most relevant inputs have been
described, but there are also other inputs to take account of: combined
min/max flow limits, combined min/max power limits, maximum height
rate of change and maximum number of activations plus other service
input values.
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Model structure

In order to relate the different flows from the control variables Xv with
the volume of water in each reservoir Qi along the time history, a way
to represent the water balance equation 1.11 is needed. Moreover, since
the model must be optimized through a linear programmer, a matricial
representation is necessary. A generic linear programming algorithm finds
the minimum of a problem specified by:

min
x
fT · x such that


Amax · x ≤ bmax

Aeq · x = beq

lb ≤ x ≤ ub

(2.5)

Thus matrix A, when multiplied by control variables x should provide
a vector containing the volumes of all reservoirs at any hour. To do this,
matrix A is generated according to the following formulation:

Am,k = subdiagonal_matrix(CT (j)) · structure_matrixi,j

with: (i− 1)T ≤ m ≤ i · T

with: (j − 1)T ≤ k ≤ j · T

Where the variable CT (j) = concentration_time_vector(j) and variable
subdiagonal_matrix(CT (j)) is a subdiagonal matrix of ones shifted from
the diagonal by a number of cells defined by the concentration time. Thus
the final matrix dimensions is [Ireservoirs ·Thours×Xvariables ·Thours] A visual
example of the matrix composition is shown in figure 2.2.

The state vector x represents instead all the control actions Xv(t)
described at any time t, the dimension of the vector is thus [Xvariables ·
Thours × 1].

It is fundamental to focus on the meaning of the multiplication b = A ·x,
the resulting vector b, of dimensions [Ireservoirs · Thours × 1], contains the
marginal water volumes increments/decrements for each reservoir for all
the hours considered. In practice, the multiplication results is an expression
of how the control variables marginally affect the volume of water inside
the reservoirs.
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Figure 2.2: Composition of the system matrix

First optimization stage: linear constraints

Once the water increment/decrement in reservoirs is defined as conse-
quence of the decisional variables, its limits must be assessed in order to
respect the constraints. In particular the constraints that affects bmax are
eqs. (1.2) and (1.3), which corresponds to the model inputs items (viii)
and (ix).

For what concerns the maximum volume, bmax is calculated as:

bmax(j) = max_volume_matrix(:, r)− initial_volume_vector(r)−
− Cumulatives[streamflow_matrix(:, r)]

with: (Thours(r − 1)) ≤ j ≤ (Thoursr) ; r res: 1 ≤ r ≤ Ires

For the constraint of minimum volume the same procedure is followed but
sign of A and bmin are inverted.

Other constraints to be introduced are the maximum and minimum
flow that each control variable must respect at any hour, in the first step
only capping on the flow is considered disregarding the turbine power
limits. This is due to the fact being ken(Hv,t) function of the reservoir
height Hi(t), it’s implicitly affected by the decision variables Xv(t); even if
a linear relation between ken and Xv(t) exists the final power expressed
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as Pv(t) = Xv(t) ∗ ken(Hv,t) would be a quadratic function of Xv(t) and
no quadratic functions are allowed by the linear programming algorithm.

The flow limits are easily expressed by the direct relations:

Xv(t) ≤max_flow_matrix(t, v) maximum flow
Xv(t) ≥min_flow_matrix(t, v) minimum flow

Equality constraint is also introduced in the first stage and represents
the target volume of each reservoir (reference to constraint 1.9). The
problem cannot be open ended: if no final volume constraint are imposed
the optimization converge always to a solution in which the final reservoir
volume is equal to its minimum since this represents always an optimal
choice to maximize profit in the time window considered. In the algorithm
this constraint introduced by the relation Aeq · x = beq, where beq is the
final volume of the reservoir, while Aeq is a matrix containing all the row
of A corresponding to Tend for each single reservoir. In mathematical
formulation:

Aeq(r, :) = A(r ∗ Thours, :)
The result of Aeq · x is a vector [Ireservoirs × 1] containing the volume at
Tend for all the reservoirs.

Maximum height rate of change in a reservoir can be introduced ac-
cording to the following expression:

[A(T, :)− A(Ts, :)] ∗ x ≤
Tend∑

t=Tstart

streamflows(t, r) +max_rate(r, 3)

Where Tstart and Tend are the initial and final time of the constraint, to add
this limitation to the linear programmer is enough adjoining to Amax and
bmax the elements on the left and on the right of the equation, respectively.
As can be noticed the constraint is expressed in reservoir height, to express
it in volume an interpolation of the volume/height_vector is done to
extract the correspondent volume of water.

In some cases the maximum rate of change is function of reservoir
height,often, due to the conical shape of the reservoir this equation is
non-linear and creates the necessity of an approximation; moreover the
constraint is expressed through a step function. The first approximation
could be treated in the second stage of the optimization, while, in the case
of a step function the strategy adopted is to limit the maximum rate of
change according to its lowest value, in a prudential way.
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The objective function 1.10 is rewritten considering energetic coeffi-
cient constant and neglecting the effects of power load on efficiency, this
simplification is valid since the variation in height of the free water level is
negligible with respect to the total water head.

L(X(t), Q(t), P (t)) =
T∑

t=1
Price(t) ·

Nv∑
v=1

[Xv(t) ∗ ken(Hv,mean)]

Where ken(Hv,mean) is the energetic coefficient, taken as a constant cal-
culated over the mean height of the reservoirs. This formulation allows
to write the function as required from the linear programming algorithm:
x · fT , where fT = Price(t) · ken(Hv,mean).

Second optimization stage: introducing non-linear constraints

In the second optimization step the matrices A,Aeq and the vectors
bmax, beq, lb and ub are adjoined with secondary constraints that, due to
their non-linear dependency from x couldn’t be considered. A distinction
between two main typologies of non-linearity can be made:

(i) Soft non-linear: are constraints that can be linearised after consider-
ing an approximation in the dynamic of the system

(ii) Hard non-linear: are constraints that include boolean or step func-
tions that cannot be linearised

A soft non-linear constraint, neglected in the first step , is the limit
on the minimum and maximum power that a turbine can produce. Since
both flow and power limit the same variable, only the most restrictive
constraints is taken into consideration. In the case of maximum capping
on a generic variable Xv(t) the two limits are expressed as follows:

Xv(t) ≤ max_flow_matrix(t, v) max flow
Xv(t) ∗ ken(Hv(t)) ∗ ηv(Xv(t)) ≤ max_pw_matrix(t, v) max power

The effects of efficiency are neglected, ηv(Xv(t)) = 1 and the energetic
coefficient is approximated to a constant value calculated over the reservoir
height coming from the previous optimization, ken(H1st step(t)). Thanks
to this simplification the maximum power constraint is translated into a
maximum flow constraint:

Xv,max,power(t) = max_power_matrix(t, v)/ken(H1st step(t))
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Finally, to set the upper bound the smaller values is taken:

ub(v, t) = min(Xv,max,flow(t), Xv,max,power(t))

The simplification applied hold if the height of reservoirs undergoes little
variations from the first step to the second. Similar procedure is applied
in case of a minimum constraint. In the case of bypass control variables,
X12,13,...,19 only the maximum flow represents a limit since the energetic
coefficient associated is null. It’s important to notice that at this level no
minimum idle power has been introduced yet, the turbine power can varies
continuously from a minimum value(set equal 0) to its maximum rather
than assume the power interval: [0;Pmin ÷ Pmax].

In order to include this non-linearisable behaviour all the variables that
present a power value between 0 and Pmin after the first optimization step
are arbitrarily constrained to at 0 or Pmin according to the following rule:

Xv(t) = 0 if Pv,1st step ≤ 0.5 ∗ Pv,min(t) (2.6)
Xv(t) = Pv,min if Pv,1st step ≥ 0.5 ∗ Pv,min(t) (2.7)

Where Pv,1st step is the power generated by the flow Xv(t) at step 1.
Another non-linearisable constraint is the limit over the turbine number

of activations in a given period. No variable in the model controls the
effective state switch (powering on/off) of the turbine but it can be only
deduced from the control vector x once optimization has been completed.
Since it’s not possible with a linear programmer to deal with this constraint,
between the first optimization step and the second, arbitrary decisions are
taken on the control variables (Xv(t)) that don’t respect the limit. The
logic with these decisions are takes is the following:

(i) The turbine state change is identified over the control variables
obtained from the first step Xv,1st step.

(ii) In case of a "short shut down", defined as a turbine shut down which
is shorter or equal than one hour, the turbine is forced to produce
at least the minimum power by imposing Pv,2nd step(t) ≥ Pminv(t).
This strategy reduces the number of activations, but if the constraint
is still not respected the further steps are necessary.

(iii) In case the power plant in which the variable Xv(overlinet) exceeds
the number of power on contains more than one turbine, part of the
daily power production is transferred to the other variables in order
to respect the constraints. This allows the respect the activations
limits without changing the optimal solution.
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(iv) If no turbines are available to share the power load, the variable
Xv(t) is forced to keep at least the minimum power at time t in order
to reduce the number of activations. The constraint of minimum
power is introduced with the criterion of shortest down-time first in
order to reduce at maximum the perturbation around the optimal
solution.

For what concerns the value function, in the second optimization step
is expressed as follows:

L(X(t), Q(t), P (t)) =
T∑

t=1
Price(t) ·

Nv∑
v=1

[Xv(t) ∗ ken(H1st step(t))]

Where ken(H1st step(t)) has been introduced before and the turbine effi-
ciency, function of Xv(t) is still neglected and fixed constant to 1. Once
the second step of optimization is concluded, the optimal solution x is used
to calculate all the actual values of ken and η and the different non-linear
variables are updated with their correct value.

2.5.2 Performances

The results obtained with the current model reflect a behaviour which is
similar to the actual reservoir operation strategies applied in the real case.
Moreover, from a mathematical point of view, linear programming is a tool
that allows to find the global optimum of a problem, if it exist, without the
requirement of an initial guess. Even though the introduction of a two step
approach and the approximation of non-linear function and constraints
doesn’t allow the system to be optimized in its overall completeness, the
sub-optimal solution is near to the global optimum and can be considered
a satisfactory trade-off between model complexity and optimal result.

Better results could be obtained with a time discretization refinement
but, due to the fact that reservoir operations are managed hourly, no
practical advantages are achieved.

2.5.3 Main limitations

The limitations of this algorithm are related mainly to two points of
view: necessity to adopt non-linear functions in the model and computa-
tional costs.
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Non-linear dynamics

The approximations related to ken coefficient and turbine efficiency
mainly act as a bias on the estimation of the optimal parameters, this issue
could be easily solved adding more optimization stages that iteratively
refine the optimal solution. But due to the intrinsic uncertainty of the
input models, the computational costs required and the small marginal
gain obtained the optimization steps are limited to the necessary number
of two.

Moreover some step constraints, such as the maximum height change
rate, approximated to the minimum step value, could result in a too
prudential limitation that biases in an excessive way the operation of the
system.

The hard non-linear constraints are the ones that generate major issues,
they have been introduced adding arbitrary constraints between the two
steps; if the problem is ill-defined and near an unfeasibility region, the
addition of these constraints could result in a non feasible solution during
the second optimization round. This issue often arises during the initial
hours of the optimization, when the system is near the initial boundary
condition and cannot easily satisfies the constraints since in these hours
the already sold power production is imposed.

Another limitation of this approach is that when the constraints are
imposed among the two steps, all the variables in the neighbourhood of the
constraint are free to change and no control over new potential un-respected
non-linear constraint is applied.

For example, due to the limit over activations a variable is set from
off-state to Pmin at time t, the optimization process in the second step
could shift the deactivation of the turbine at the instant t+ 1.

As already stated, despite the model limitation, a satisfactory solution
is found for the case study taken in consideration. But for particular cases,
where non linearities play a more fundamental role in the dynamic of the
system, the approximation made could not hold and a different strategy
should be applied. A possible approach to these kind of problem could be
the use of the Dynamic Programming implemented in chapter 6.

Computational costs

The main motivation that brought this thesis work to find a modified
approach to the problem, with respect to the tool already developed, is
the huge amount of computational resources needed to solve the optimal
problem. Even if the Linear Programming is known to solve a linear
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problem with algorithms that are among the most efficient, the problem
dimensions are huge. The model requires to solve a number of optimal
control variables which is Nvariables ·Thours. A typical long term optimization
is run over minimum 1 year, to respect the annual cyclicity, for a total hours
amount of Thours = 365 ∗ 24 = 8760. Thus in the case study considered,
where 19 variables are used, the overall number of control variables is
#CV = 19 · 8760 = 166440, which is a considerable amount.

Moreover, the matrix needed to characterize the model would easily
saturate RAM memory since problem size expands quadratically in with
time. This is due to the dimensions of matrix A necessary to describe the
system, as seen in 2.5.1, it has a size of [Ireservoirs ·Thours×Xvariables ·Thours];
considering a long term optimization on the case study problem(Thours =
8760, Ireservoirs = 8, Xvariables = 19) the memory needed to store the matrix
in RAM is:

RAMusage = Ireservoirs ∗Xvariables ∗ Thours ∗
8byte
10243 ∗ 2 Matrixes = 174Gb

Due to the large amount of time and memory requirements that makes
the optimization almost impossible for a generic user, an alternative ap-
proach to the problem has been developed and successfully applied in
chapter 4.



Chapter 3

Generation of synthetic input
data

In order to test the performances of the models implemented in this
thesis, historical data are not enough and the generation of synthetic time
series is needed. A high number of long term simulated inputs is used in
chapter 4 to conduce a Montecarlo analysis and to asses the behaviour
of the system. Moreover synthetic data are also used in the short term
optimization (chapter 5) to identify the optimal operating conditions.

The two data-set taken in input by the model, and that are needed to
be simulated, are the streamflows into each reservoir and the electricity
price. Realistic time series are needed for a correct evaluation of results, in
particular it is important to generate a process capable to reproduce both
the variance of historical data and, for what concerns the streamflows, a
realistic pattern.

3.1 Streamflow time series identification and
generation

As introduced in section 2.3, it is fundamental to generate streamflow
time-series capable to characterize the stochastic process since it’s necessary
to use realistic streamflows in order to correctly evaluate the robustness
of the algorithm. As emerged from preliminary studies, the streamflow
data strongly affect the results of the solution and, for problems near
to the unfeasibility region there is a strong bias on the estimation of
the optimal solution. The only identification of variance and the sub-
sequential generation of noisy data is thus not enough, even if it could
be an acceptable method for a Montecarlo approach, when applied to the

41
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Figure 3.1: Historical streamflows for reservoirs in the case study

model, the dynamic of the system could bring to erroneous results.
All the data used come from real flow measurement and are specifically

referred to the case study taken in consideration. The values, in m3/h,
are provided daily and represent the net streamflow for each reservoir,
for net streamflow is intended the water flow that enter in a reservoir
minus the spillover that naturally occurs and minus the already considered
streamflows of the upstream reservoirs.

In figure 3.1 time series referred to year 2018 are exhibited, the stream-
flows refer to all the 8 reservoirs related to the case study taken in consid-
eration, figure 1.5. For disclosure reasons the data have been normalized,
anyway this doesn’t affects the considerations made.

In the following sections the identification methodology is proposed,
for the sake of simplicity the applied procedure is described taking into
consideration only a single basin (Q1, in figure 3.2 ), then the results for all
the reservoirs analysed are reported. The methodology adopted is similar
to the one proposed in [21, postnote], the theory on which the procedure
relies on is the same but some modifications have been adopted in order
to better capture the noise modulation along the year.

The main steps are: 1. Trend and seasonality removal 2. Fitting ARMA
model 3. Noise envelope and modulation 4. Synthetic flow generation
According to the analysis made in 2.3, ARMA models joined with trend
and seasonality identification is used in the thesis since this technique
is proved to be effective for streamflow identification and synthetic flow



3.1. Streamflow time series identification and generation 43

generation; with respect to SARMA modelling is capable to better identify
noise modulation during the year.

3.1.1 Trend and seasonality removal
Before fitting an ARMA time series model it is needed to clean the his-

torical data from the trend components and from its periodicity (adopting
a more specific terminology, periodic component of streamflows will be
called also seasonal component).

To remove the trend component, a moving average centred on a window
of time length n is performed on the time series:

pSM = pM + pM−1 + · · ·+ pM−(n−1)

n

= 1
n

n−1∑
i=0

pM−i

The trend component then is subtracted from the data:

Sdt(t) = Sh(t)− T (t)

Where T (t) = pSM is the trend component, Sdt(t) is the detrended time
series and Sh(t) is the original streamflow data.

In order to remove the seasonal component the period of seasonality
is identified by applying the autocorrelation function 3.1 to Sdt(t). Auto-
correlation is the correlation of a signal with a delayed copy of itself, it is
used as a tool for finding repeating patterns, such as the periodicity in a
signal when it’s obscured by noise. If a signal contains a periodicity, its
autocorrelation is periodic with a time-period equal to the original signal.

rk =
∑N−k

i=1 (pi − p̄)(pi+k − p̄)∑N
i=1(pi − p̄)2 (3.1)

Once the seasonal time-span is evaluated, seasonality coefficients are iden-
tified by applying a stable seasonal filter to the detrended series. First the
seasonality period is selected (365 days), then all the indices corresponding
to each period are stored and finally the average of data corresponding
the these indices is computed. The same process is repeated to all the 365
days.

With the same procedure used for trend component, seasonality is
removed from Sdt(t):

n(t) = Sdt(t)− S(t)
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Where n(t) is the detrended and deseasonalized time series and S(t) the
seasonal component. From now on, we will refer to the term n(t) as “noise”
or “erratic component”.

3.1.2 Fitting ARMA model
The erratic part is fitted with an autoregressive moving average model.

ARMA(p,q) is one of the most common techniques for time series analysis
and also among the most used for streamflow identification. The considered
model is in the form:

Xt = ϕ0 + ϕ1Xt−1 + · · ·+ ϕpXt−p + Zt − ϑ1Zt−1 − · · · − ϑqZt−q (3.2)

With p is the order of the autoregressive component, q is the order of the
moving average component, ϕ1, . . . , ϕp are the estimated autoregressive
parameters, ϕ0 is the constant offset, ϑ1, . . . , ϑq are the moving average
parameters and Zt is the actual erratic term.

The model selection process consists two stages: i Model identification
(orders p and q are determined) ii Model parameters estimation

Model identification

To determine the moving average order q and the autoregressive order
p is necessary to calculate the autocorrelation function and the partial
autocorrelation function for the noise, the plot of these two functions
provides information about the possible model orders. An exhaustive
dissertation about ARMA model identification can be found at https:
//people.duke.edu/~rnau/411arim3.htm,[23].

Model parameters estimation

The bias term ϕ0 is known and considered null since the noise has null
average(due to the fact that trend has been removed).

For the estimation of the other parameters the maximum likelihood
method has been used due to its best performances in comparison to other
methods (see [29]). The parameters that maximize the likelihood value
are computed in Matlab environment using “arima” function.

3.1.3 Noise envelope and modulation
The erratic component in streamflow usually exhibits a periodical

behaviour in the variance. Autoregressive moving average model is not

https://people.duke.edu/~rnau/411arim3.htm
https://people.duke.edu/~rnau/411arim3.htm
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capable to describe periodicity in the variance. The envelope of noise has
been calculated and then the synthetic signal is modulated by the envelope,
in this way original noise periodicity is restored.

The procedure applied is more advanced, with respect to the one
proposed by Mondal and Uddin Chowdhury in [21], where the noise signal
is simply divided by the respective seasonal standard deviation.

The envelope of the noise is obtained by computing its analytic signal
with the Hilbert transform:

x⇒ x̂

ẑ =

x̂× 2 if x > 0
0 if x < 0

(3.3)

Where x̂ represents the Fourier transform of x.
Hilbert transform allows the description of noise through its analytic

signal, which is basically the representation of the original signal in polar
coordinates:

Sa(t) = Sm(t)ejϕ(t)

Where Sm(t) is the instantaneous amplitude or envelope of the signal,
while ϕ(t) is the instantaneous phase, therefore by taking the module of
the analytic signal its envelope can be calculated.

3.1.4 Synthetic streamflow generation

For the final generation of artificial streamflow the opposite path is
taken, first of all a synthetic noise is generated thanks to the ARMA model
previously fitted, then the noise is modulated over the envelope, finally
seasonality and trend components are added. A normalization over the
maximum value of the envelope was necessary to modulate noise. The
described procedure can be expressed by the following equations:

Ns(t)⇐ ARMA(p̂, q̂)
Nm(t) = Ns(t) ∗ Env(t)/max(Env(t))
Ss(t) = T (t) + S(t) +Nm(t)

Where Ns(t) is the noise generated from the ARMA model, Nm(t) is the
modulated noise, T (t) and S(t) are trend and noise component and Ss(t)
is the comprehensive synthetic streamflow generated.
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Figure 3.2: Historical streamflow for Q1 reservoir

3.1.5 Application of the model

As can be seen from figure 3.2, a trend component and a seasonal
component is contained in the time series analysed. In the data are
present some negative spikes, clearly due to errors in measurement, where
a negative value is found in historical data is replaced by the mean value
of the streamflows in its neighbourhood. By performing a moving average
on the time series provided, the mean component of the flow is extracted
(the red line in figure 3.2). Even though it shows no particular trend (on
three years time-span there is no significant increment or decrement in the
water flows) the mean component must be removed to have an unbiased
estimation of seasonal component. It is important to notice that the
window time-length chosen to perform the moving average lasts 365 days,
to avoid removing variance intra-day components that must be modelled
later in the ARMA series.

The trend component is removed and the autocorrelation function has
been applied as shown if figure 3.3.

Looking at 3.2, it’s evident that a one-year seasonality is contained in
the time series, a mathematical evidence is provided by the autocorrelation.
From figure 3.3, can be clearly seen that the peaks are at 0, 359 and 710
days of lag, this confirms that a seasonality of about one year is present.

Seasonality is removed, figure 3.4 shows the whole process of detrending
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X 359

Y 6.429e+07
X 710

Y 4.623e+07

Figure 3.3: Autocorrelation function on Q1 reservoir streamflow

and deseasonalization for the considered the time series.
As can be seen the remaining noise 3.4c has a zero mean but the erratic

component exhibits a periodical behaviour in the variance. Seasonality
3.4c instead, it’s exactly the same over the three years since the periodic
components estimated have no variance.

Looking at the autocorrelation function (ACF), 3.5a and at the partial-
autocorrelation function (PACF), 3.5b it’s possible to see how autocorrela-
tions are significant for a large number of lags, but the autocorrelation at
lag 2 and above are mainly due to the propagation of the autocorrelation
at lag 1. This can be seen from the PACF plot where PA at lag 1 is
significantly higher than the others, meaning that all the higher-order
autocorrelations are effectively explained by the lag-1 autocorrelation, [23].

According to the theory, partial autocorrelation at lag k is an estimation
of the autoregressive coefficient ϕp in equation 3.2, thus by inspecting the
PACF it is possible to determine which and how many autoregressive terms
are needed. In the case taken in consideration the PACF clearly cuts-off
at lag k = 2, so the order of the AR part is 2. Looking at the ACF, due to
slow decay of autocorrelations value, [23] suggests the fitting with a model
containing a MA order of 1.
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(a) time series, trend removed (b) time series, seasonal component

(c) time series, seasonality and trend removed

Figure 3.4: Detrending and deseasonalization process
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(a) Autocorrelation function (b) Partial-autocorrelation function

Figure 3.5: Autocorrelation and Partial-Autocorrelation Functions

In respect of the considerations made, the model to be fitted is and
ARMA(2,1), a comparison between real noise and synthetic noise is reported
in figure 3.6. As can be seen, although following a similar process, the
generated noise is quite different in term of amplitude, this is due to the
fact that ARMA cannot simulate a periodic behaviour.

Thus, to adjust the generated noise according to the original variance,
the modulation signal is identified. Original noise and the envelope are
shown in figure 3.7. In order to smooth the envelope curve a moving root
mean square window over 50 samples have been applied before calculating
the analytical signal.

The final synthetic noise generated results in a correct representation
of the measured erratic component, as seen in figure 3.6c.

The final synthetic streamflow is presented in figure 3.8, compared to
3.2 can be asserted that the streamflow generated synthetically with the
adopted method is a good representation of the real phenomenon. The
same conclusions can be drawn for all the others synthetic streamflows
generated for the case study and reported in 3.9. Negative values could
be present since the data are generated synthetically, in these cases the
negative streamflow is set to zero.
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(a) Real noise (b) Synthetic noise

(c) Enveloped synthetic noise

Figure 3.6: Real noise vs Synthetic noise
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Figure 3.7: Noise envelope for Q1 streamflow

Figure 3.8: Synthetic streamflow Q1 reservoir
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Figure 3.9: Normalized synthetic streamflows of case study reservoirs
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3.2 Electricity price perturbation
The second input to be modelled is the price of electricity, the whole

time history of electricity price in Italy is available at [17]. For the time
series analysis has been taken into consideration a period of data that
ranges from 2013/01/01 to 2018/12/31, unlikely streamflow data that are
given daily, price time series resolution is of one hour.

To simulate electricity price a statistical model is adopted, although a
rich literature about this topic is available, complex and reliable models
require a deep electrical market analysis and must be fed with a big amount
of exogenous data such as production and consumption forecasts. A refined
implementation of an electricity price generator is therefore out of the
scopes of this thesis, the argument could be certainly among the ones to
consider for a future development of this work.

The procedure is described in the following steps.

3.2.1 Identification of the main periodic components
Through a Fourier analysis on the whole set of data, periodic com-

ponents are identified in figure 3.10. As can be seen two main periodic
components are present and correspond to 1 cycle and 2 cycles per day.
It’s important to notice that Fourier analysis is performed on the whole
set of data of 6 years length since longer time series allows for a better
frequency resolution.

Once certified that exists a daily component, a Normal distribution is
fitted for each of the 24 hours in a day. The number of samples per each
our corresponds to the number of days considered.

Two cases has been inspected: Normal distribution computed on the
whole time history, considering a data set of 6 yrs× 365 days, and Normal
distribution computed over the last 200 days. The comparison between
the two cases is fundamental to understand which data use to generate
a synthetic electricity price, plot 3.11 clearly shows how energy price
has risen in the last six years. This suggests to use only recent data for
price generation in order to avoid having a biased synthetic time history,
moreover in case only the last 200 days are taken into account normal
distributions are fitted with much less dispersion.

3.2.2 Synthetic energy price generation
Box plot in figure 3.12 represents the identified daily statistics that

are then used to generate energy prices. It’s important to remark that
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Figure 3.10: Fourier analysis on the whole time history

this simple approach doesn’t allow to reconstruct the real price behaviour,
it can only generate a time series that has a similar periodicity and that
correctly represent hourly mean value and variance. Marked dynamic
is not considered, a limitation example could be that usually prices are
higher/lower than the mean for a certain group of hours (if a price is high
at time t it’s likely to be high also at time t+ 1), this fact is not described
by the model.

Figure 3.13a refers to the mean price calculated considering the 200
days prior to the date considered, the two cycles/day identified in Fourier
analysis are here shown with two peaks at about 9:00 and 20:00. Figure
3.13b presents 3 synthetic time series generated for the next 24 hours, as
can be seen, the mean value on average is respected but the process is
completely random since is governed by random Gaussian variables.
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Figure 3.12: Energy price distribution during the day

(a) Mean hourly price (b) Set of 3 syntetic prices over 24 hours



Chapter 4

Long term optimization

In literature, referring to chapter 2, most of the applied optimization
methods regard the optimal management of reservoirs in the short term
periods (weeks at most), however from a practical perspective it is necessary
to run the simulation over period of at leas one year. Being the terminal
boundary conditions of the system (the reservoirs water levels) unknown,
they must be arbitrarily fixed and if a short optimization period is chosen
they affect considerably the optimal solution outcome. The period of at
leas one year has been selected the streamflows, and therefore the system
operation, presents an annual cyclicity as demonstrated in 3.1.

Due to the long term optimization and the annual cyclicity of the
problem, final reservoirs water level are set to values similar to the initial
ones without greatly affecting the optimal result.

It’s important to notice that the problem cannot be open-ended since
the optimal solution would be always to use all the water contained in the
reservoirs and at Tend all the basins will result in reaching their minimal
value.

4.1 Objective
Long term optimization has a dual purpose: first of all it can be used for

budgeting reasons since can be considered as a predictor of a good reservoir
operation management; then, it is also used to draw the nominal height
trajectory that reservoirs should follows along the year, this is necessary
to furnish an indication for ending reservoirs volumes in the short therm
optimization problem, as seen in chapter 5.

Due to the computational limits described in 2.5.3, it’s necessary to
find an alternative method to solve the problem over the long term. The

57
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objectives of the work described in this chapter are thus to implement a
new resolution method based on the algorithm already developed, capable
to solve the optimal problem and to test its performances compared to
the actual approach. The focus is mainly on the study of the trade-off
between computational costs and final value of the optimal solution, taking
into account not only the robustness of the new approach but also its
behaviour with respect to the input uncertainties modelled in chapter
3. It’s important to understand to which extend uncertainties affect the
optimal solution and, as consequence, how much computational costs can
be reduced at the expenses of the solution optimality.

4.2 Adopted methodology
The new optimization strategy uses the same model structure described

in section 2.5 but, in order to reduce computational costs, the problem is
segmented into smaller sub-problems that are easier to solve; the adopted
technique is known to be called "divide and conquer", since thanks to
the problem decomposition its complexity is strongly reduced. The two
dimensions in which the problem is broken down are space and time, for
space segmentation is intended the problem simplification in its structure:
from the optimization of a complex network of plants and reservoirs to the
optimization of a single reservoir isolated from the others. Time simplifi-
cation instead refers to the problem description in its overall structural
complexity but solved on smaller time windows sequentially concatenated.

The segmentation strategy adopted is a two step process, first the
problem is solved in his space discretized form, then the solution of the first
step is used to solve the problem segmented in time. The process can be de-
scribed according to the following steps, it is represented also schematically
in figure 4.1, where the working principle’s logics is diagrammed.

(i) Identification of seasonal reservoirs

(ii) Spatial segmentation of the problem

(iii) Optimization of individual seasonal reservoirs sub-problems on the
whole time span

(iv) Time segmentation of the system in its completeness

(v) Optimization of the time segments
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Figure 4.1: Schematized segmented optimizer’s working diagram

Even if the overall number of optimizations needed is higher, being the
complexity of the sub-problems much smaller than the original one, the
total computational effort is strongly reduced. The optimization algorithm
used is the one described in 2.5; what changes is the framework in which
has been used: instead of the overall problem, the single sub-problems
are fed into the base algorithm and the results assembled in a secondary
moment.

4.2.1 Identification of seasonal reservoirs
Are denominated as ”seasonal” all the reservoirs that follow a particular

water level path along the year, typically these reservoirs have a very large
capacity with respect to the maximum flow allowable to the turbines in
the related power plant. The large capacity smooth out all the daily and
weekly variations of the free surface of the basin, this means that once the
optimal solution has been computed, variations in the control variables
around the optimal solution only marginally affect the reservoir free surface
height. The lecturer may notice that no considerations have been made
about the positioning of the basins inside the system, a seasonal reservoir
has not to be necessarily upstream with respect to the others, it is only
required a sufficient water capacity.

In the case study taken into consideration, represented in fig. 1.5 on
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page 9 , the reservoirs considered to be seasonal are Q1 and Q2 due to
their big dimensions. Also Q4 and Q5 could be included among seasonal
reservoirs but due to their particular common relation with P4 (described
in section 1.1.3 on page 8) cannot be optimized independently.

4.2.2 Spatial segmentation of the problem
In order to be optimized independently, the seasonal reservoirs must be

isolated from the rest of the model, all the inputs needed for optimization,
described in chapter 2.5.1 must generated by taking only the parts related
to the reservoir considered. For what concerns the time dimension, the
single basin is optimized over the overall time span, so no cuts to input
matrix in time direction are performed. The main changes in the inputs
are listed below, considering a seasonal reservoir of index r

(i) S_streamflow_matrix = streamflow_matrix (:, r) [T × 1]: only
the streamflow considering reservoir r are taken into consideration

(ii) S_structure_matrix [1×Nr]: the structure matrix collapses in a
vector of ones, since only one reservoir and the related turbines are
taken into account

(iii) S_power_vector [Nr × 1]: only the variables related to reservoir r
are taken into consideration

(iv) S_concentration_time_vector = null: with a single reservoir case
the concentration time loses its meaning

(v) S_max/min_flow_matrix [T ×Nr]: only the variables related to
reservoir r are taken into consideration

(vi) S_max/min_power_matrix [T × Nr]: only the variables related
to reservoir r are taken into consideration

(vii) S_max/min_volume_matrix = max/min_volume_matrix(:, r) [T×
1]: only limits on reservoir r are considered

(viii) S_max_height_rate_matrix [#constraints×3]: only the constraints
referred to reservoir r are copied in the matrix

(ix) initial/final_volume_value = initial/final_volume_vector(r) [1×
1]
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In case the seasonal reservoir is not upstream but downstream with
respect another control variable to the S_streamflow_matrix must be
summed up the flows coming from that variables. Two cases have to be
considered, if the upstream variable is related to a non-seasonal reservoir
all the input streamflow of that reservoir are directly summed to the
streamflow S_streamflow_matrix matrix with a time lag corresponding
to the concentration time. In case the upstream control variable is related
to a seasonal reservoir, optimized flows coming from the sub-problem of
the upstream reservoir are added to the S_streamflow_matrix of the
basin considered.

4.2.3 Optimization of single reservoirs
It can be noticed that, according to the adjoining procedure of stream-

flows described, the single sub-problems must be necessarily optimized in
series starting from the most upstream reservoir, thus no parallel computing
is possible in the spatial segmented optimization.

The sub-problems to be optimized have a much smaller number of
variables, from #CV = Ntot · 8760 to #CV = Nreservoir,r · 8760 where
Nreservoir,r is the number of control variables related only to reservoir r.

In the case study considered, for reservoir Q2 the variables number
pass from #CV = 19 · 8760 = 166440 to #CV = 2 · 8760 = 17520, it’s
evident how the problem complexity is reduced. Moreover the dimensions
of the system matrix A passes from [Ireservoirs ·Thours×Xvariables ·Thours] to
[1 · Thours ×Xvar,r · Thours], for the case study studied this means a matrix
76 times smaller which results in a much smaller ram consumption.

4.2.4 Time segmentation of the problem
Once the single seasonal reservoirs has been optimized the problem

discretization is shifted to the optimization of sub-problems that contain
the overall structure of the problem but over just a portion of the total
optimization time. For these sub-problems the boundary conditions are
provided from the solution of the single reservoirs optimization, in fact,
the inputs of the original problem only specify initial and final set-points,
no information about intermediate reservoir levels are provided. From
the previous optimization the optimal profiles for the singles seasonal
reservoirs are known, these profiles are considered as a base curve over which
extrapolate initial and final water reservoirs volumes for the different sub-
problems in time. Please note that only seasonal reservoirs are optimized
in the previous step, smaller basins are considered to be cyclical within a
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day or more, thus for these reservoirs initial and final state is always set
to be equal to the initial boundary conditions.

The input of the sub-problem are rewritten according to the time
segment considered, starting at time Tstart and finishing at Tend. Note that
∆T = Tend−Tstart is a constant value and represents the length of the time
step in which the overall optimization window is divided: ∆T = Ttotal/Ns,
where Ns is the total number of segments. An exception is made the last
segment duration, as will be explained later. Inputs are written as follows:

(i) S_price_vect = price_vect(Tstart : Tend) [∆T × 1]: only the prices
corresponding to the actual segment hours are selected

(ii) S_streamflow_matrix = streamflow_matrix (Tstart : Tend, :) [∆T×
I]: the whole reservoirs data are used but only for the corresponding
segment time

(iii) S_power_vector = power_vector [N × 1]: since is not time depen-
dent remains unvaried

(iv) S_concentration_time_vector = concentration_time_vector: in
opposition to the space segmentation, now the whole concentration
time vector is used

(v) S_max/min_flow_matrix = max/min_flow_matrix (Tstart, : Tend, :
) [∆T ×N ]: all the variables but only constraints related to the time
segment

(vi) S_max/min_power_matrix = max/min_power_matrix(Tstart :
Tend, :) [∆T × N ]: all the variables but only constraints related to
the time segment

(vii) S_max/min_volume_matrix = max/min_volume_matrix(Tstart :
Tend, :) [∆T × I]: all the reservoirs but only constraints related to
the time segment

(viii) S_max_height_rate_matrix [#constraints×3]: only the constraints
referred to the related time segment are copied in the matrix

(ix) initial/final_volume_value :

init_volume_value(r) =

 opt_volume(Tstart, r) if r seasonal
init_volume_value(r) if r is cyclic
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fin_volume_value(r) =

 opt_volume(Tend, r) if r is seasonal
fin_volume_value(r) if r is cyclic

Where optimal_volume is a matrix containing, for each column, the
optimal volumes of water for the seasonal reservoirs along the whole
optimization period. This matrix is generated thanks to the first
optimization stage over the single basins.

4.2.5 Optimization of time segments
It is of fundamental importance to evaluate the problem complexity

and understand if it’s necessary to adopt the described divide and conquer
technique in place of the global optimization. An algorithm has been
introduced to establish if a problem is too complex and needs to be
decomposed.

The described algorithm effectively reduce the computational costs
only if the problem structure presents at least two reservoirs, of which one
of the two must be seasonal. This because in case of only one basin the
problem is already in it’s minimum spatial subdivision and if non-seasonal
reservoirs only are present no optimization is run over the whole period
and thus no set points are available for the time segmentation.

If the problem respects the previous necessary conditions to be decom-
posed, its complexity is evaluated according to the problem dimensions:
P_dim = Ireservoirs ∗ Nvariables ∗ T 2

hours. From the problem dimensions
the cost in term of RAM memory usage is computed, if the maximum
memory installed is exceeded the problem is solved in its decomposed form.
Another condition that triggers the divide and conquer approach is that
the optimization time cannot be longer than the maximum time segment
length ∆Tmax. For further informations about the evaluation algorithm, a
part of it is reported in listing A.1 on page 127.

In the case divide and conquer approach is chosen it is necessary to set
rules for the division in time of the optimization problem. The segment
length ∆T must respect the following constraints:

1. ∆T ≤ ∆Tmax

2. ∆T must be multiple of 24 hours

3. Remainder of Thours/∆T at least 0.4 ∗∆Tmax

4. If the remainder is smaller than 0.4 ∗∆Tmax but remainder+ ∆T ≤
∆Tmax the selected ∆T is a valid value but the last segment length
is remainder + ∆T



64 Chapter 4. Long term optimization

5. Among the whole set of ∆T that respect the constraints, ∆T =
max ∆T is chosen

Condition 2 is necessary to respect the cyclicity of non-seasonal reservoirs
that usually have one day frequency variation (filling up overnight and
discharge during peak price hours). Conditions 3 and 4 are necessary to
ensure a sufficient length of the last time time segment, if the resulting step
is too short boundary conditions strongly affect the optimal solution and
there is the risk that no solutions to the problem can be found due to lack
of flexibility. Last condition is to select the maximum time window size
possible in order to remain in the neighbourhood of the optimal solution
that would be obtained from a global optimization. The algorithm is
reported in listing A.2 on page 128.

The last parameter that remains to be identified is the maximum period
length ∆Tmax, the choice of this variable is of fundamental importance
since it directly affects the trade-off between computational performances
and optimal solution obtained. For bigger ∆Tmax the problem is divided
into a smaller number of more complex sub-problems, this is beneficial
from an optimality point of view but detrimental in terms of computational
costs since the solution of a bigger number of smaller sub-problems is much
faster. The analysis conduced in this chapter are not only useful to validate
the divide and conquer strategy but also to determine a ∆Tmax value that
guarantee a good trade-off between costs and results.

4.3 Simplifying assumptions and considera-
tions

Since the final optimization of the sub-problems is based on the approach
described in 2.5, this methodology shares also all its the limitations, except
for the ones related to the computational costs.

Considering that the model input are affected by uncertainties; in
reality, over the long term, the exact global optimum solution is not needed
but it’s satisfactory to be in its neighbourhood. This consideration allows
to apply a divide and conquer strategy knowing that the solution obtained
with the implemented model will be certainly sub-optimal to the global
optimization, performed with the base algorithm.

For what concerns more operative assumptions, the seasonal reservoirs
are considered not only to have small daily/weekly variations but also
to have a considerable weight in the optimization of the system. The
importance of a reservoir is not only defined by the nominal power of the
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Figure 4.2: Example of split constraint

turbines related but also from their positioning into the system, an upstream
reservoir for example has much more importance than a downstream
reservoirs, since its water has an higher intrinsic value and due to the fact
that thank to its dominant position it directly affect all the water flows
downstream.

Smaller reservoir are instead considered to play a secondary role into
the system, their main purpose is to decouple the daily demand of energy
during the day from the water availability thanks to accumulation and
discharge during a daily/weekly cycle. No long term effects of these
reservoirs are considered, since their boundary conditions are set equal for
each time segmented sub-problem.

An added approximation with respect to the base model is that if a
constraint that last for more than an hour is defined in coincidence with
the separation of one time segment to another, also the constraint is split
into two parts. A graphical example is provided in figure 4.2, it shows how
a constraint on the maximum change in height of 10m over a period that
goes from hour 10 to hour 20 is proportionally divided into the two time
segment. Due to the subdivision of constraints along the separation of two
segments and to the reduced time-span between two boundary condition
the model has loss of flexibility in the possible solution field.

4.4 Performances comparison with original
approach

In this section is evaluated the behaviour of the divide and conquer
approach with respect to the original approach, before analysing the effects
of input uncertainties, results consistency and robustness must be assessed.
Four different deterministic cases have been investigated, each case is solved
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according to: a complete optimization, a 3 segmented optimization and
a 12 segments optimization. The case study used as a base is 1.1.3, the
constraints introduced and the physics of the system is set as a constant,
what changes from one case to another are the initial and final boundary
conditions and the streamflows in input for each reservoir. The total
optimization time length is 2170 h, which is considerably smaller than the
number of hours in a year, this choice is necessary in order to compute the
optimal solution also in case of the global optimization, 2170 h is in fact
the maximum allowable optimization length with the original approach
solution given the computational hardware available.

Table 4.1 describes the characteristics of each case:

Table 4.1: Deterministic cases description table

case 1 2 3 4
initial volume half res. capacity half res. capacity half res. capacity half res. capacity
final volume minimum res. capacity half res. capacity half res.r capacity half res. capacity
streamflows nominal nominal x2 x4

In case 1, final volume equal minimum reservoir capacity only for basins
Q1,2,3,4,5, reservoirs Q6 and Q7 are set to half of reservoir capacity to not
compromise the feasibility of the solution.

As can be seen, with the only exception of case 2, case 1,3 and 4
represents particular conditions that are very unlikely to happen in reality.
These stress-tests of the systems are used to highlight the differences
in the global and segmented optimizers behaviours. An important key
performance indicator that can be measured for the different cases is
the quantity of wasted water value, for wasted water is intended the
difference between the amount of water which is discharged from the
bypass variables in the segmented optimization and the water bypassed in
the global optimization. Mathematically it’s represented as:

wasted_watervalue =
Tend∑
t=1

Price(t) ∗
19∑

v=12
[flow_matrix_global(t, v)−

flow_matrix_segmented(t, v)] ∗KEN_matrix(t, v)

Losses due to bad allocation can be obtained subtracting wasted water
value from the total revenue losses, bad allocation losses represents the
diminished value of the revenue function due to "bad choices" in allocating
water along the time profile. Thus total revenue losses can be decomposed
according to its two main components, wasted water and bad allocation.

Nominal streamflows are intended to be similar with respect to the
average streamflow values encountered in reality for the case study, as can
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Figure 4.3: Deterministic nominal streamflow, normalized

be seen from figure 4.3, in deterministic case the streamflow adopted are
composed only by long steps functions since in the deterministic study
only the comparison among the different cases and approaches is evaluated.
Please note that, for disclosure reasons, the order of magnitude along y
axis is omitted.

4.4.1 Optimization results
A typical optimization outcome produces different outputs, results are

provided in a matricial form similar to the inputs described in 2.5.1. The
most important ones are described below:

(i) flow_matrix [T × N ]: it contains the flow rate of the different
control variables in m3/h defined at each time step

(ii) power_matrix [T×N ]: the energy produced by each control variable
in the given hour expressed in MW h

(iii) volume_matrix [T × I]: the volume of water contained in each
reservoir at each hour expressed in m3

(iv) height_matrix [T × I]: the height of the free surface water level
contained in each reservoir at each hour expressed in m, it’s the dual
of volume_matrix
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(v) KEN_matrix [T × N ]: it contains the values of the energetic
coefficient for a given control variable at a given hour, the coefficient
accounts for the final reservoir height contained in height_matrix
and associated to the given control variable

(vi) optimal_value [1× 1]: it is the final optimization value coming from
the linear programmer, expressed in e

It is important to notice that for both approaches, overall optimization or
divide and conquer, the output structure is exactly the same. For the sake
of simplicity the results about reservoir levels will be always expressed in
reservoir water volume rather than reservoir water height.

As can be noticed the optimal value is a redundant information since
it can be calculated also according to the following equation:

optimal_val =
T∑

t=1
Price(t)∗

Nv∑
v=1

[flow_matrix(t, v) ∗KEN_matrix(t, v)]

This equation is used to calculate the optimal values since it is more
representative of the real process.

Case 2 - nominal case

Figure group 4.3 shows an example of outputs, the solution for case
2 which is considered the nominal case. Results presented are computed
optimizing on the overall time length.

Plot 4.4a: represents the optimal flow profile in time for control variable.
Red and yellow lines represent the maximum and minimum capacity
values allowed and,as represented, are fully respected by the optimiza-
tion. As can be seen the boundary conditions for all the reservoirs
are consistent with the constraints imposed, the start at half total
volume capacity and end at the same value. It’s important to notice
that the reservoirs have a periodicity which is proportional with
their capacity, the bigger ones (Q1, Q2, Q3, Q4, Q5) show slow volume
variation along time, while the smaller ones are characterized by a
very high cyclicity (Q6, Q7, Q8). An important observation useful to
validate the hypothesis of annual cyclicity in seasonal reservoirs is
that the two basins Q1 and Q2, assumed to be seasonal in the case
study considered, present no repetition pattern in the optimization
period (around 3 months). Since the figures refer to the global opti-
mization, can be said with certainty that the reservoirs considered
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have a seasonal cycle. Better investigations could have been done
considering a longer optimization period but, as already stated for
the global optimization, computational costs would have been too
high.

Plot 4.3b: represents the optimal water flow rate in time for each control
variable. Red and yellow lines represent the maximum and minimum
flow rate allowed for a certain control variable, as shown, they can
vary in time, for example a maintenance stop is simulated for variable
3 between hours 1000 and 1500. According to table 1.2 on page 10
variables from 1 to 11 are turbines meanwhile variables from 12 to
19 are the emergency bypass of the different reservoirs, variable 20
is just a service bypass that has no physical meaning and can be
neglected. As can be seen the bypass variables have always zero flow
rate since, from an optimization point of view they don’t produce
revenues.

Plot 4.3c: represents the optimal energy to be produced for each control
variable. As can be seen, for variable 9 and 11 there seems to be a
capping over the maximum power value that a turbine can generate
which is smaller that the actual constraint, this could be confused
with an optimization error, but looking at 4.3b can be seen that that
what limits the maximum productivity of the turbine is its maximum
flow rate. What determines which of the two constraints is active
is the value of the energetic coefficient (ken) in the corresponding
hours, for high ken more power is produced with a lower flow rate,
so in that case the power produced will be the effective limitation
for the variable considered. Variables from 12 to 19 instead produce
always zero power, since they are emergency bypass.

Plot 4.3d: represents a detail in the flow rate for variable 10, can be
clearly seen that during the day a typical optimal power production
profile is an on/off scale function where production peaks load are in
coincidence with the two daily peaks of energy price.



70 Chapter 4. Long term optimization

(a) reservoirs normalized volume in time

(b) control variables normalized flows

Figure 4.3: Case 2 optimization outcome, on overall time length
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(c) energy produced

Figure 4.3: Case 2 optimization outcome, on 12 segments optimization

(d) Variable X10, turbine flows (blue) vs price (red)

Figure 4.3: Case 2 optimization outcome, on overall time length
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Figure group 4.4 shows the solution for case 2 but this time, instead
of a global optimization, the applied method is the divide and conquer
approach. As can be better seen from 4.5, reservoirs Q1 and Q2 have been
at first optimized singularly (violet line) and in the second optimization
round optimized on the overall system but on 12 independent segments
(blue line). Green circles represent the separation point of the different
segments, as shown, optimal solution for single seasonal reservoirs and for
seasonal reservoirs in the overall system coincide. Green circles represents
the set point over which the segmented optimization in time is based.

A comparison between 4.3 and 4.4 shows how the two solution, although
different, have a very similar behaviour. A more detailed comparison
between the global approach and the segmented approach is given in the
next section.

(e) reservoirs normalized volume in time

Figure 4.4: Case 2 optimization outcome, on 12 segments optimization
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(f) control variables flows

Figure 4.4: Case 2 optimization outcome, on 12 segments optimization

Figure 4.5: Case study principle scheme
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Case 1 - reservoirs emptying

This case is not representative of reality since in normal operating
condition no final volume target is set to minimum on all the reservoirs
but it’s useful to understand the behaviour of the optimizer, moreover this
case allows to better highlight the differences in the final optimality value
since it’s require to exploit all the water resources available in the basins.

In all the three optimization typologies (global, 3 segments and 12
segments) similar results are obtained, for the sake of simplicity only the
results from the global optimization are shown, a comparison among these
methods is the performed in the section below. Figure 4.6 shows how the
reservoirs Q1,2,3,4,5 are set to assume their minimum value at tend, with
respect to case 2 flow rates in the different are generally higher, this is due
to the fact that a greater water amount can be used to produce electric
energy.

(a) reservoirs normalized volume in time

Figure 4.6: Case 1 optimization outcome, global optimization
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Cases 3 and 4 - high streamflows

In cases 3 and 4 nominal streamflows are multiplied by x4 and x6
respectively, these cases are unlikely to happen in a real system but they
are useful to characterize the behaviour of the different optimizers, if case
1 is useful to understand how the global optimization exploit resources
better than the segmented one, case 3 and 4 are used to understand how
much water is wasted in critical conditions and how the flexibility of the
system is affected by the segmentation.

In section 4.4.1 can be seen how the variables X12,13,14,15,16,17,18,19, re-
lated to bypass, are active and a noticeable amount of water is allowed to
flow through them. The amount of wasted water is shown to be higher in
the 12 segments optimization due to the reduced flexibility of the optimiza-
tion. The two figures demonstrate also how the water flows for the different
turbines is always at its maximum value for both the optimizations, this is
due to the large amount of water available in the system.

Case 4: control variables flows, global optimization
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Figure 4.7: Case 4: control variables flows, 12 segment optimization
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4.4.2 Cases comparison
Commented optimization results are provided in the previous section,

to effectively validate and compare the different optimization approaches a
direct comparison between the results is needed. Since global optimization
is considered to provide the best knowledge of optimum for the problem
and, given the fact that the divide and conquer approach is a sub-optimum
solution, all the results on which a differential analysis is needed are based
on the solution provided by the global approach.

In figure 4.8, by directly superimposing solutions of the global optimiza-
tion with the 12 segments optimization (168h time segments) it’s shown
how the two optimization results are similar but not exactly the same.
Global optimization is compared with the 12 segments one neglecting the
3 segments optimization since, as expected, it shows a behaviour which
is intermediate between the two. Reservoirs Q1,2,4,5 are reported in figure,
being among the bigger, they have a slower variation cycle and differences
are better appreciated.

In both cases the constraints and target values are respected by the
two optimization typologies. It’s important to notice that in all the cases
presented the reservoirs water levels are higher for the case of a 12 segments
optimization, this is consistent with the fact that a global optimization
considers the total system from the first instance. Upstream reservoirs
are affected the downstream portion of the system that can use the same
water to produce additional electric energy, thus water in the upstream
portion of the system has greater economical value and tends to be used
earlier with respect to the global optimization.

It is also of fundamental importance to compare the losses in the
maximization of value function, figure 4.9 shows the different 4 cases
and the associated revenue loss in percentage points (losses considered
differential with respect to the global optimization). As expected the
revenue losses are higher in the 12 segments optimization; this is mainly
to the fact that, although the different segmented optimizations share the
same optimal single seasonal reservoir policy, if the overall optimization
time is divided in only three segments the solution space is bigger due
to the higher flexibility of the system, moreover the effects of boundary
conditions on the segments only partially influence the optimum due to
the big length of time segments.

A can be seen, revenue losses in cases 1 and 2 are way bigger than case
3 and 4, this is due to the fact that the augmented streamflows introduce a
big quantity of water into the system that partially hides the sub-optimal
water management. Overall performances are shown to be still very good,



78 Chapter 4. Long term optimization

(a) case 1 - reservoirs normalized water level comparison

(b) case 2 - reservoirs normalized water level comparison

Figure 4.8: Comparison between optimal and segmented optimization
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Figure 4.9: Percentage of revenue losses with respect to the global optimization

even in the worst case, only a 0.68 % reduction of the final value function
is observed.

It is interesting to analyse how the total revenue loss is divided into
its components (wasted water and bad allocation) for the different cases
taken into consideration and for the two different optimizations divided
respectively in 3 and 12 segments. Total revenue is thus decomposed
according to its two main components, wasted water and bad allocation,
as shown in figure 4.10.

From 4.10a be noticed that case 1 and 2 presents a very small absolute
loss and it is only due to the bad allocation component, this demonstrates
that in case of no augmented streamflows the segmented optimization
is sufficiently flexible to avoid wasting water. Bad allocation is anyway
presents and, looking at figure 4.9, can be concluded that in nominal
conditions it is the main loss component in both absolute and percentage
terms.

Cases 3 and 4, with augmented streamflows, have big absolute losses
(see 4.10a); in particular case 3, with intermediate augmented streamflows
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(a) Absolute normalized values (b) Percentage values over total revenue
losses

Figure 4.10: Total revenues decomposition in wasted water and bad allocation
values

seems to suffer the major losses, this is due to the fact that in case 4
streamflows are set so high that also the global optimization has to waste
big amounts of water and consequently the differential wasted water value
decreases. Figure 4.10b shows the increasing weight of water losses due to
the reduced flexibility of the segmented optimization.

4.5 Effects of uncertainty on optimal results
In the previous section, where deterministic results are compared,

the consistency of the new methodology has been assessed. It is now of
fundamental importance to understand how uncertainty in the input models
affect the optimal results, if the uncertainty of the modelled synthetic data
in chapter 3 is strongly reflected on the final results, the meaning of getting
a global optimal solution is reduced. Objective of this section is to set a
correct value for the maximum segment length δTmax that allows to reduce
computational costs without affecting the final outcome, considering that
the problem is subject to uncertainty.

To perform this analysis Monte Carlo method is used, a single base
case has been considered and different sets of synthetically generated data
are used as input for the optimizations, each optimization (adopting the
divide and conquer approach) is solved according to a variable segment
length δT in order to analyse the differences in optimal results and compu-
tational costs. All results obtained are normalized from 0 to 1 in case of
computational cost or optimal value and from 0 to 100 in case of segment
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length.
The base case considered is a long term optimization of the case

study 1.1.3, the total length of the optimization is 7840 hours, considerably
higher than in the deterministic case since with the segmented optimization
computational costs are lower. The optimizations are run for 12 different
lengths of time segments, respectively of: 96, 168, 216, 264, 336, 432, 528,
576, 672, 792, 888, 984, 1152, 1344, 1584, 1680 hours; segment length of
1680 hour corresponds to 100% length when normalization is applied. The
12 optimizations are run on the same set of data, for 100 different set of
data in order to have sufficient values to fit a distribution.

The approach just introduced is performed in 3 main different cases:
streamflows uncertainty, price uncertainty and both streamflows price
uncertainty; for a total number of optimizations equal to 12∗100∗3 = 3600.

In the first case only streamflow data are perturbed, according to the
procedure described in chapter 3, a set of 100 different streamflows similar
to the ones in figure fig. 3.9 on page 52 is generated.

In figure 4.11 the result of optimal value and computational costs,
evaluated as optimization time, is reported for all the 100 optimizations
and for the different time segments length. As can be clearly seen the
optimization time increases with an exponential trend while the optimal
value has a strong increment at the beginning and then tends to an
asymptote with increasing time segment length. A peak in simulation time
around 50% of maximum segment length is found, this is mainly due to
the last segment, that as described in 4.2.4, can varies and if it is longer
than the previous time segments causes an optimization time increase.

Box-plot in figure 4.12 represents the variance of the optimal solution
final value and of computational time. As expected, computational time
variance is very small since all tests are performed on the same hardware,
while variance in the optimum is much larger due to uncertainties in the
streamflows. Can be also noticed how, for small time segments, the variance
is higher due to the lower system flexibility. From the box-plot is clear how
for segment length longer than the 53% of the maximum length no effective
benefit is obtained, the optimal value curve presents an asymptote which
is largely inside the variance interval of the optimum solution. Execution
time instead increases exponentially, thus the limitation of the segment
length to the 53% of the maximum strongly reduces the computational
effort, with a reduction of 60% on the execution time.
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Figure 4.11: Normalized trade-off between computational costs and optimum,
streamflow uncertainty

The presence of some outliers for higher segment length are mainly due
to the shrink in variance of the optimal value which no more hides some
simulation results that, due to the synthetic data generations, are distant
from the mean value.

The lower flexibility of the optimization for smaller time segments is
evidenced also in the variation of reservoirs volumes, figure 4.13 compare the
probability density function of the reservoir volumes along the optimization
time for a short segments optimization and a long segments one. X axis
represent the time, Y axis the volume of the reservoir and the colour
intensity the probability density function associated. Can be clearly seen
how the volume is dispersed over a wider area for longer time segments,
this is due to the fact that the optimizer has a larger space of action, the
final value function is in fact characterized by a higher value and lower
variance.

Introducing also the price uncertainty in the model, the final variance
of the optimal solution increases as demonstrated in figure 4.14. As can
be seen the incrementing trend of the optimal value is no more evident
as before, when also the uncertainty in prices is introduced the optimal
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Figure 4.12: Box-plot trade-off between computational costs and optimum,
streamflow uncertainty

value behaves more like a step function, with great uncertainty for short
time segments optimization. Is thus fundamental to select a segment
length above the 53% of the maximum length, where value function is
characterized by an asymptotic behaviour and low variance, moreover
computational costs are 60% less than the ones related to the maximum
segment length. Selecting a length much higher than the 53% is thus not
beneficial from an optimal solution point of view but it is only detrimental
for what concerns computational costs.

The variance of reservoirs operation is shown in figure 4.15 for the
case of minimum time segment (96h) and maximum time segment length
(1680h). As shown before, the variance of reservoirs with longer time
segment is higher due to increased flexibility, moreover variance in case of
uncertainty on both streamflows and prices is much higher due to their
combined effect. In some cases can be seen how the variance collapses to a
single value, it happens in correspondence of a set-point where a seasonal
reservoir is forced to have a volume equal to the one obtained from the
single reservoirs optimization.
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(a) 6% of the maximum segment length

(b) 100% of the maximum segment length

Figure 4.13: Volume probability density function in time
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Figure 4.14: Box-plot trade-off between computational costs and optimum,
streamflow and price uncertainty



86 Chapter 4. Long term optimization

(a) Uncertainty on streamflows

(b) Uncertainty on streamflows and price

Figure 4.15: Variance of reservoir operations
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4.6 Discussion on final results
The approach to the problem with a divide and conquer strategy is

shown to be sub-optimal with respect to the global optimization. However
the results are fully consistent with the system physics and similar to
the ones provided from the global optimization. Performances in all the
deterministic cases considered are fully satisfactory, the optimality losses
are in the order of 5% for worst case scenario and no problems related to
shrinking of the possible solution space have been encountered. The com-
putational time required for the solution of a problem with a length of 2170
hours is about 15 times lower with respect to the global optimization. For
problem size orders of 1 year (8760 hours) only the segmented optimization
is shown to solve the problem since global optimization results in being too
demanding even for advanced hardware. Revenue losses, as expected, are
higher considering a smaller optimization segment; this is mainly due to the
shrinking of the possible solution space that has a negative effect on both
the optimal operation of the turbines and on the system flexibility. The
reduction in flexibility is clearly visible in the higher wasted water value of
the 12 segments optimization with respect to the 3 segment, moreover the
effects of boundary conditions strongly influence the optimum solution in
the case of shorter segments

The stress tests 3 and 4 where the streamflows have been considerably
increased demonstrated that, in all the optimization methods, a solution
can be found thanks to the activation of emergency bypass. The revenues
losses, with respect to the global optimization, are reduced from case 3 to
case 4 (streamflows increased of x4 and x6 times respectively), this is due
to the fact that over a certain limit the water system tends to saturate
and all the results converge to the common solution of maximum power
load in all the hours.

Montecarlo approach suggested that, for the case study taken into
consideration, the optimal choice for the time length segments results
to be the 53% of the maximum segment length, in absolute value: 793
hours, corresponding to around the 10% of the global optimization time
window. Variance analysis demonstrated that no effective benefits are
obtained in further increasing the segment length, however particular
attention must be made in selecting values below the optimal one (53%
of the maximum segment length), since the optimal value shows a step
behaviour in case both price and streamflow uncertainties are introduced
in the model. For longer time segments is also observed a reduction in
the variance of the optimal solution due to the increased system flexibility,
for the same motivation, the variance in operational range of reservoirs is
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instead increased. Thus for a smaller number of time steps not only the
optimal value is higher but presents also a smaller uncertainty which is
useful to better asses operational strategies on the long term.

The choice of dividing the problem into an higher number of smaller sub-
problems is demonstrated efficient from a computational cost point of view.
Global execution time cannot be measured due to the impossibility to solve
the global problem, however the choice of selecting a 10% segment length
of the total optimization window has brought to a 60% computational time
reduction with respect to the solution of a problem with a 20% segment
length of the total optimization window.



Chapter 5

Short term optimization

In the previous chapter the importance to run a long term optimization
and the related strategies are described, in reality the effective operational
strategy is based on a short-term vision of the system. For short term
optimization is intended a time horizon of about 96 hours (4 days), electrical
markets are open for a maximum of 34 hours ahead of the actual time but
extra optimization time is added to reduce boundary condition effects.

Brokers are required to make multiple offers on the different electric
markets more time per day, as described in sections sections 1.1.1 and 1.1.4.
The auctions can have different outcomes according to the offer profile
proposed and to the market conditions itself. Thus if in the long term is
useful to understand, on average, which is the optimal set of strategies
to arrive in a certain point, in the short term the optimization outcomes
cannot be directly applied since market dynamics strongly affect the desired
optimal production strategy calculated.

The desired optimization result can be completely different from an
auction outcome, a showcase is reported in table 5.1. According to the
market equilibrium price the total energy sold (and so the energy that must
be produced) differs significantly from the optimal strategy computed.

89
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Table 5.1: Example of electricity market auction outcome compared to optimal
strategy

Hour 1 2 3
Optimal strategy

Optimal production MW h 60 80 20
at price e/MW h 65 70 50

Offer profile
Offer 1 energy offered MW h 10 20 5

at price e/MW h 55 60 45
Offer 2 energy offered MW h 20 30 15

at price e/MW h 60 65 50
Offer 3 energy offered MW h 30 40 20

at price e/MW h 65 70 55
Offer 4 energy offered MW h 60 50 25

at price e/MW h 70 75 65
Outcome

Market equilibrium price 63 75 40
Total energy sold MW h 30 140 0
at price e/MW h 63 75 -

rejected
accepted
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5.1 Objective

According to the considerations made, the short term optimization
must not only be able to furnish an optimal production profile for a given
deterministic case but, more importantly, should provide informations
about a possible bid profile to be offered on the market. The main objective
is thus to provide a tool that can help the market brokers to integrate the
knowledge they have of the market with the optimal operating conditions
and actual state of the system.

5.2 Assumptions

Given the intrinsic complexity of the problem and its aleatory nature,
for the short term analysis different simplification have to be made. Looking
at the auctions structure in figure fig. 1.3 on page 3 it can be clearly seen
how the different auctions time slots are superimposed, this adds further
complexity to the system since the optimal offer profile is not related only
to the 4 offers bundle in a given auction but is a combination of all the
offers coming from the intersecting auctions. To simplify the problem
only MGP (Mercato del Giorno Prima) is take into account, since it’s the
biggest market in volume and the less influenced from the other markets.

An important assumption made for the analysis is that in the short time
period the only uncertainty that affects the system is on the equilibrium
price. Streamflow are considered to be known since a good knowledge of
meteorological and soil conditions is available in the short term.

Moreover, an actor can both offer or buy energy from the electrical
market, this allows to apply different trading strategies on different markets,
however this kind of operations are not in the interest of this thesis, therefore
the buy option will be neglected and an energy producer is assumed to be
only able to sell energy over the market.

Another assumption made is that, often, each power plant is accounted
as a single producer on the market, all the considerations made are about
the total power production however, they could be easily extended to take
into account the power plants singularly.



92 Chapter 5. Short term optimization

5.3 Identification strategy for the bidding
profile

As asserted in the objectives description, the focus is to provide useful
informations about the offers to be proposed in the market. Due to the
intrinsic uncertainty in the results a Montecarlo method is used to evaluate
the system behaviour in the short term. It’s of particular interest spotting
repetitions in operating patterns for different input conditions, from an
operating point of view these patterns suggest that a good solution to the
problem could be in its neighbourhood.

The adopted strategy can be summarized as:

(i) Synthetic electricity price time series generation

(ii) Computation of the optimal strategy for each input data

(iii) Results aggregation and analysis

Contrarily to the uncertainty analysis performed for the long-term now
Montecarlo method is used to compute possible solution for the short-term
problem, is thus necessary to generate a much larger set of perturbed
optimizations, moreover this kind of analysis is performed several times a
day by te brokers on different markets. Due to the computational effort
required and the short time available to obtain the results the optimizations
are run over a very short period of 96 hours, in contrast with the long-term
optimization considerations. However results coming from the long term
optimization are available and are used, in a similar way to what has been
done for the seasonal reservoirs, to set the 96 hours ahead target volume
values for the reservoirs. This is possible considering the fact that short
term optimization doesn’t affect the long term optimal results which can
be updated on a weekly basis.

For the Montecarlo analysis the global optimization technique adopted
since, due to the short time length of the problem, computational costs
are low and in the short term operative phase it’s of interest to reach the
maximum optimum possible. Small problem means also small memory
usage so parallel computing is adopted to cut down optimization times.

For the short term analysis 1000 different optimizations are carried
out, the nominal operating case (case 2, in section 4.4.1 on page 67) of the
long term optimization has been adopted as base case. Streamflows are
kept fixed for all the optimizations while electricity prices are generated
according to 3.2. Boundary conditions for the reservoirs volume are set as
follows:
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(i) initial_volume_vector(r) = [max_volume_matrix(1, r)−
min_volume_matrix(1, r)]/2:

initial volume is half of maximum capacity of the reservoirs

(ii) final_volume_vector(r) = volume_matrix(96, r): final volume is
equal to the optimal reservoirs’ volume obtained from the long term
optimization in the hour 96

Results of all the simulations are then aggregated, the distribution
in time, price and power produced is analysed. As will be seen, the
distribution of power/price in a determined hour in indicative of the offer
profile that should be proposed in the market.

In all the analysis, as shown in figure 5.1, where each circle represents
the optimal power production in a determined hour for the first 35 hours,
circles marked in blue seems to overlap on a single value, this behaviour
reflects the fact that power production for these hours is decided by a
previous auction which is already closed. The blue sector thus represents
the amount of energy already sold in the past closed auctions which has yet
to be dispatched. Therefore in the first 35 hours the output of the optimizer
is closer to a simulation rather than an optimization since constraints of
minimum and maximum power production are set equal to produce the
exact amount of energy sold. The simulation is necessary to adapt the first
deterministic part of initial boundary conditions and energy sold with the
effective optimization (in green colour).

In the first hours of a ST optimization is thus not necessary to generate
an offer profile and the analysis is performed over the subsequent hours.

5.4 Interpretation of results
Contrarily to the long term optimization the single optimum result now

loses its meaning, due to the high uncertainty in the auctions’ outcome it
is of major interest the study of aggregated results. For this reason all the
results presented are in aggregated form and no particular attention was
given to the single optimization.

Figure 5.1 reports all the 1000 optimization outcomes on a single plot,
each circle represents the optimal power production in a determined hour,
so for each hour there are 1000 circles that can overlap to each other.
Red line represents the average electricity price calculated over the 1000
synthetic time series; as can be clearly seen, even with some differences,
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Figure 5.1: Aggregated optimization results for power production

power production in the optimized part tends to be concentrated in the
period where the electricity price is higher.

Figure’s group 5.2 represents how the different optimization results are
distributed if a single hour is taken into consideration. Looking at figure
5.2a for example, in the x axis is reported the realized market equilibrium
while on the y axis is reported the total energy produced from the overall
system, every circle represents the single result of one optimization that at
a given price indicates which is the optimal energy amount to produce.

The patterns and the accumulation areas that the circles generate
provide useful suggestions on how to create the bidding offers profile for
the hour taken into consideration. To better identify how the circles are
distributed an algorithm that generate a centroid line has been developed.
In figure 5.2b the same data of 5.2a are reported but with the addition of the
centroid line, in red. Centroid line, as the name suggests, is representative
of the optimizations’ outcome’s density and is calculated according to the
following procedure:

(i) Electricity price distribution is divided into 20 equals segments of
range:

Prange = [maxpp Price(h, pp)−minpp Price(h, pp)]/20

Where pp = 1, 2, · · · , 1000 is the index of the optimization while h is
the the hour considered.
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(ii) For each optimization pp the segment in which the correspondent
electricity price belongs is identified

(iii) The mean of the optimal energy productions related to the opti-
mizations that belong to the same price segment is calculated and
corresponds to the Y value of the centroid for that segment

(iv) X value of the centroid is calculated,for a certain segment, as the
mean value of all the electricity prices that belong to that same
segment

It’s important to notice that the choice to divide the x axis into 20 segments
is arbitrary and has been choose considering the best compromise between
centroid curve points resolution and averaging effects.

Centroid line is a useful tool to evaluate the bidding offers characteristics,
as said, the offer are identified by the amount of energy to be sold and the
related price; thus an offer can be represented by a point in the figure’s
group 5.2.

All the combinations that are below the centroid line (violet line) are
considered as "conservative offers" since the same amount of energy is
offered to an higher price with respect to the majority of possible outcomes
and therefore the tendency is to sell energy only if a price higher that the
mean of the market. On the opposite side, all offers identified by a point
above the centroid line (green line) are considered as aggressive offers, since
they have an higher propensity to sell energy on the market due to the
fact that the offered price is below the mean electricity price for that hour.
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(a) (b)

(c) (d)

Figure 5.2: Optimal result dispersion in power produced vs price for a deter-
mined hour
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(e) (f)

(g) (h)

Figure 5.2: Optimal result dispersion for total power produced vs price in a
determined hour
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5.4.1 Examples of strategy evaluation

Figures 5.2b and 5.2d show a ”S” shape curve with an homogeneous
power production distribution along increasing market price. In this case
a possible offer profile could be identified from a low value of energy pro-
duction, corresponding to the initial part of the ”S” curve, an intermediate
value of energy offered and an high value of energy offered corresponding
to the final part of the curve.

Figure 5.2e instead shows a completely different situations, a stratifi-
cation of electricity prices over precise values of energy production. Due
to the fact that the different aggregated ”lines” of energy production are
superimposed from a price point of view there are different prices combi-
nations that can be made keeping the energy offered fixed to those values.
The offers could be for example identified by intersecting the centroid curve
with the different levels of optimal energy to be produced. Since each offer
correspond to a specific amount of energy, reducing the price related to
that amount of energy (moving left in the graph) increases the probability
to win that offer.

From the last case observed, in figure 5.2h, it is clear how, for every
situation considered, the optimal solution is to produce only the determined
amount of energy, disregarding the price. This happens during cases in
which the price is particularly low and doesn’t justify the production of an
extra amount of energy, but the minimum flow constraints (for example
the minimum vital outflow of a river) forces the system to use at least
a minimum amount of water that, instead of being wasted, is used to
produce electricity even at very low prices.

It is of fundamental importance to notice how, in al the cases there
is a minimum energy production, even for very low prices. This is due
to the fact that the constraints of the system (as happens in 5.2h) forces
the production of a minimum energy quantity, thus one bid in the offer
profile can be composed by the identified minimum energy to be produced
in any case, at a zero price. In this way there is the certainty to sell that
energy; please note that offering electricity at no price doesn’t mean to
giveaway free energy (see: 1.1.1), the final electricity price is anyway the
one established form the market equilibrium.

An example of applied strategy can be found in table 5.2 , where all
the considerations made are applied to the situations in figure 5.2
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Table 5.2: Examples of applied offer profiles, with respect to figure 5.2

Hour 57 45 53 29
Offer profile
Offer 1 energy MW h 40 40 32 151

at price e/MW h 40 60 45 0
Offer 2 energy MW h 80 100 40 -

at price e/MW h 80 90 63 -
Offer 3 energy MW h 160 160 45 -

at price e/MW h 100 85 65 -
Offer 4 energy MW h 200 200 55 -

at price e/MW h 120 105 70 -

5.4.2 Analysis of single power plants

As anticipated in the assumptions; often different power plants, even if
referred to the same reservoirs system, are operated independently from a
market bidding point of view. This means that for each plant is necessary to
identify the optimal offer profile for the different hours, the considerations
made up to now are still valid, what changes is the data aggregation level:
now the different variables (the turbines) contribute to the total energy
production only within the same power plant, and no more from a global
system point of view.

An important consideration to be made is that the physical characteris-
tics of the power plant, such as the installed power or the related reservoir
capacity, strongly affects its operational behaviour and so the different
offer profiles that are suitable for a certain plant.

From figure 5.3, where all the optimization results are grouped for
each plant and displayed, it is clear how for a determined hour (hour 54)
different plants behave in different ways. Power plants P1,2,3,5 present an
on/off behaviour where the optimal solution is to not produce energy or
to produce at maximum load. Looking at figure fig. 1.5 on page 9, can be
clearly seen how plants 1 and 5 takes water from relatively big reservoirs,
thus they can modulate the output between maximum and minimum
according to the electricity price. Plant 3 shows the same behaviour even
though the associated reservoir Q3 is relatively small, this is due to the
fact that at the upstream of Q3 there is plant P1 which works with an
on/off logic and forces the downstream plant to work accordingly.
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Figure 5.3: Optimal result dispersion for single plant power produced vs price
for hour 54

Plants P4,6,10 instead, due to the smaller reservoir associated, have a
much more varied results distribution in power, moreover these plants are
downstream in the system, thus they are also subjected to the variability
of the upstream power plant. Another thing to notice is that their power
production never goes to zero, this is due to the fact that, discharging the
water into a river, they are subjected to environmental limitations.

Figures’ group 5.4 demonstrate that the typical behaviour of the dif-
ferent power plants persists for the overall optimization time. On the x
axis is reported the timeline, on the y axis the electric energy price, while
the colour-bar represents the density of energy generated for a given price
at a given hour. Red colour indicates high energy density while white is
associated to zero energy production.

Figure 5.4b clearly shows how power plant P2 operates according to an
on/off logic since high power density is associated only at high electricity
price, moreover for the hours in which the mean price is very low (between
45÷55 and 70÷80) there are significantly large white bands, meaning that
no power is produced at all. Power plant P10 in figure 5.4c, instead, shows
an opposite behaviour, with no white bands and a power production much
more distributed along the price y axis. For the first 35 hours a major
energy density is visible but this is due to the effect of the pre-allocated
energy to be sold in the simulation period.
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(a) Aggregated power plants

(b) (c)

Figure 5.4: Power production density according to electric energy price in
time





Chapter 6

Single reservoir optimization -
Dynamic Programming

The optimization models introduced up to now are proven to be consis-
tent with the physics of the model, however different simplifications have
been made in order to deal with non-linear constraints and functions (see
2.5.3). In particular the linear optimization introduced up to now neglects
that the energy coefficient variations is function of the reservoir height and
that the efficiency is not constant but function of the turbine’s power load.
These considerations directly affect the value of the optimal function that
has to be maximised and consequently the behaviour of the overall system.
Moreover some non-linear constraints are taken into account performing
arbitrarily decisions that, even if reasonable, are not directly included in
the optimization process.

The optimization technique of dynamic programming (DP) is here
introduced, dynamic programming allows to overcome most of the previous
model’s limitations. Energetic coefficient, efficiency, activation cost of the
turbines, constraints that shows step functions and boolean constraints
can be introduced.

Due to the powerfulness of this model and the relatively implementation
easiness, combined to the fact that a global optimum is reached, in literature
(see 2.2.3) different cases are demonstrated to be successfully solved with
this approach. DP is, on the other side, quite computationally expensive
but, as will be shown, the dimension of the state space variables can be
reduced with a first attempt optimization thus reducing computational
costs.
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6.1 Objective
In accordance with the observations done in chapters 4 and 5 the

importance of reaching the perfect optimum to a certain extend loses of
meaning. However a different approach to the problem is investigated
in order to understand how the simplifications affect the solution and if
the Dynamic Programming could be a viable solution to solve optimal
reservoirs management problems.

Since DP optimization requires a completely different approach to
the problem, the objective of this chapter is to develop and apply a
dynamic programming optimizer on a specific case, as proof of concept
of its performances, and to evaluate the possible introduction of this new
approach inside a generalized framework for the solution of a generic
reservoir system, as done for the global and segmented optimizers.

6.2 Assumptions
The case study 1.1.3 considered up to now for the analysis of the model

is too complex for the purposes of this chapter. A simple water system
based on a single reservoir and related power plant is instead adopted,
for the sake of simplicity, the power plant is considered to have only one
turbine and one emergency bypass.

All the analysis are carried out on a short term period in order to
contain computational costs, a short term optimization is anyway proved
to be sufficient for the analysis needed in this chapter.

Activation cost of the turbine is introduced into the model but, for a
direct results comparison with the linear optimizer, it has been neglected;
also the implementation of other non-linear constraints is demonstrated
but, for the same reasons, is neglected during the comparison of the two
optimizations models. Thus, only the non-linearities that act directly of the
final value function are considered for the analysis (the energetic coefficient
and the efficiency values), since they represents the main limitations of the
linear model.

6.3 Model of the problem
The case study taken into consideration is a single reservoir single plant

water system, it can be considered as a portion of the main case study
(1.1.3) since reservoir’s and power plant’s data used are the one related to
Q2 and P2 respectively, main data are reported in table 1.2 on page 10.
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In addition to the already existing data that characterize the system,
now energetic coefficient and efficiency of the turbine are introduced. For
the sake of simplicity the energetic coefficient is expressed as a linear
function of the reservoir volume but any other different function could
have been implemented. For what concerns the turbine efficiency instead,
it is expressed by a polynomial curve which is function of the power load.
No real data about turbine’s efficiency are available, so a typical efficiency
curve for a Francis turbine is taken from Sangal, Garg, and Kumar in [27]
and normalized to fit maximum and minimum power load of the considered
turbine. Ken and efficiency curves normalized are shown in figure 6.1.
Boundary conditions for the reservoir’s volumes are set to half of the
maximum capacity for bot the initial and final target volumes. Streamflow
introduced in the reservoir is equal to Q2 streamflow in the nominal case
of figure fig. 4.3 on page 67, also electricity prices are taken from the same
nominal case.

(a) ken curve (b) Efficiency curve

Figure 6.1: Energetic coefficient and efficiency normalized curves

6.4 Adopted methodology
Dynamic optimization is implemented following a completely different

approach with respect to the linear optimization developed in the previous
chapters. The first big difference is that the model is now seen as a discrete
dynamic systems that evolves in time, the state of the system is represented
by the water volume contained in the reservoir that evolves from one time
step to another according to the control variable which is the combined
outflow of turbine and bypass. For each time interval the cost(gain) of
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going from one state to another is evaluated by calculating the necessary
control action and evaluating the relative cost.

It’s important to notice that the problem formulation adopted is the
dual of the classic linear formulation used up to now. In the previous case
the optimization algorithm seeks for the optimal combination of control
variables to maximize revenues and defines as consequence the state of
the system. With DP the optimal combination of states of the system is
assessed and, as consequence, the control variables are defined.

6.4.1 Dynamic programming generalities
Dynamic programming technique is based on the Principle of Optimality

developed by Richard Bellman (1949), which states that ”If the optimal
solution for a problem passes through an intermediate point X1, T1 , then
the optimal solution to the same problem starting at X1, T1 must be the
continuation of the same path”. This principle allows to solve a discrete
dynamic optimization problem (with known final conditions) starting from
the end and, thanks to backward calculations, finding the optimal states
path. The method, synthetically described, allows for an efficient solution of
dynamic problems, the most known example in literature is the ”travelling
salesman problem”, (see [33]).

In order to apply the optimality principle it is necessary to discretize
both time and space, this is an important consideration since it means that
state variable (i.e. the water level in the reservoir ) must be also discretized;
in the linear optimization this is not necessary, only time discretization
was needed.

Once the system is dicretized in time and space its possible evolutions
can be represented by the grid in figure 6.2, representing all possible
states in the different time instants. Evaluating all options with forward
calculation would require the computations of all the possible combinations,
the principle of optimality is thus of fundamental importance to reduce the
computational cost. When the cost function is evaluated backwards, the
computation of all the possible combination is not required but the final
optimum is exactly the same to the one calculated with an Exhaustive
research. If the problem is thus dicretized on the overall state space the
principle of optimality represents a global optimization technique.
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Figure 6.2: Example of system evolution grid

6.4.2 Model of the problem
A generic dynamic programming problem can be formulated as follows:
Minimize:

J =
∫ t1

t0
f (x(t),u(t), t) dt (6.1)

Subject to: 
ẋ(t) = g (x(t),u(t), t)
X(t0) = X0

X(tend) = Xend

(6.2)

It is important to notice that, differently from before, X is a vector that
contains the states of the system for a determined time step. J is the
cost(revenue) function that is minimized(maximized), it is determined by
the function f(x(t),u(t), t) which describes its marginal increment in time.
Function g instead describes the evolution dynamic of the system, while
u(t) is the control action.

In order to apply the optimality principle it is necessary to discretize
both time and space, time discretization follows the hourly segmentation
already described in 2.5. For the space discretization (state X), instead,
different techniques have been inspected and evaluated in the following
sections.

The discretized problem, with direct reference to the case study consid-
ered, is described by the minimisation of:

J(X(t), u(t), u) =
T∑

t=1
Price(t) · u1(t) · ken(X) · η(u1(t)) (6.3)
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Subject to: 
X(t+ 1) = X(t) + A(t)− u1(t)− u2(t)
X(t0) = X0

X(tend) = Xend

(6.4)

Considering the case study taken into account X is the state variable that
describes volume of the reservoir at time t (previously has been defined
as Qi(t)), u1(t) is the control variable related to the turbine’s flow, while
u2(t) refers to the outflow due to the bypass control variable. A(t) is the
streamflow of water coming into the reservoir, while X0 and Xf are the
final target volumes.

As can be noticed, the discretization of 6.1 into 6.3 results in an equation
very similar to the functional eq. (1.10) on page 8, with the only difference
that now a single turbine is considered. If the cost function J is calculated
in backward direction (the sum index i goes from Tend to 1) takes the name
of residual cost function J∗. The system dynamics in 6.4 is the dual of the
water volumes balance equation in eq. (1.1) on page 6, with the difference
that no upstream flows are considered to discharge water into the reservoir.

Constraints eqs. (1.2) to (1.7) can be easily implemented into the model
since due to the nature of DP both the state X(t) and the control variables
u(t) are directly accessible during the optimization process. In particular,
direct limitations on the state space and on the control variable space can
be imposed:

Xmin(t) ≤ X(t) ≤ Xmax(t) max and min volumes (6.5)
u1,min(t) ≤ u1(t) ≤ u1,max(t) max and min turbine flow (6.6)
u2,min(t) ≤ u2(t) ≤ u2,max(t) max and min bypass flow (6.7)
|X(t+ 1)−X(t)| ≤ δXmax(X(t), t) max volume change rate (6.8)

Inequality 6.8 can be now easily implemented even for step functions
of δXmax(X(t), t), since the state X(t) is an explicit value in the DP
optimization. As proof of concept, also strongly non-linear constraints
such as turbine’s activation cost or minimum idle power are implemented
into the model and described in the further sections.
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6.4.3 Dynamic programming algorithm implementa-
tion

A Matlab algorithm has been developed to solve the DP problem,
which is built according to the following steps:
(i) Calculation of the cost increment at each step for each possible state

transition

(ii) Backward evaluation of the optimal residual cost function J∗

(iii) Forward evaluation of the state’s path correspondent to the optimal
residual cost function

cost increment calculation

In a determined time step, accordingly to the state transition considered
the cost function undergoes to an increment/decrement, the increment
mus be calculated for each state combination at each time step. With
reference to the figure 6.3, where each circle represents a possible value
of the state X of the system, the cost of going from state xa(tk) to state
xb(tk+1) is defined by the following equation.

cost_matrix(k, a, k + 1, b) = opt_alloc_func(xa(tk), xb(tk+1), t) (6.9)

Where cost_matrix is a four dimensional matrix containing all the costs of
switching from one state to another with a size of [ThoursNstatesThoursNstates],
while the optimal allocation function defines the effective cost value and
the correspondent control action to be applied for the state switch.

Figure 6.3: Example of cost function composition matrix

Evaluation of the cost matrix is performed by the algorithm in listing A.3
on page 128, only the core of the matrix composition algorithm is shown.
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residual cost function evaluation

Once that all the cost increments have been evaluated the optimal
residual cost function is calculated backward for each time step, according
to the formula:

J∗(xa
k, tk) = min

xb
k+1

[cost_matrix(k, a, k + 1, b) + J∗(xb
k+1)]

The portion of algorithm that perform the backward computation can
be found in listing A.4 on page 129. It is important to notice that com-
puting the residual cost function in backward direction, thanks to the
optimality principle, a lot of computational cost is saved. The overall
states combinations that needs to be evaluated are Thours ∗N2

states which is
only a small number with respect to a comprehensive calculations of all
the possible states combination in time, that would have required NThours

states

computations.

optimal state’s path calculation

Although the optimal residual cost function has been calculated, the
algorithm is still incomplete since the minimum cost is known but the
states through which the optimal solution passes through are yet to be
identified. Starting now from the beginning the cost of going from time tk
to each of the states at tk+1 is added to the cost function (which is set to
have a starting value equal to zero at tstart). The state corresponding to
the cost increment that minimize the function J(tk+1) is chosen as optimal
state for tk+1. The procedure is expressed by the equation:

find: xi
k+1 that: min

xi
k+1

[J(tk) + cost_matrix(k, a, k + 1, i)]

and reported, more in detail, in listing A.5 on page 129. Please note
that the objective is the minimization of the function since, for resolution
methods, the revenues are defined to have a negative value.
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6.4.4 Discretization of the state variables space
In order to apply DP, the problem has to be discretized both in space

and time, in the case of time discretization, as done up to now, hourly
segments are used. Discretization in space is much more critical for two
main motivations: it directly affects the convergence of the solution to
an optimal results and, according to the calculations required by DP
(Thours ∗N2

states), quadratically affects the computational costs.
Discretization level is strongly determined by the system taken into

consideration, in particular the ratio between reservoir capacity and maxi-
mum turbine flow. In order for the DP to work properly the maximum
discretization interval of the reservoir should be at least one order of mag-
nitude smaller than the maximum turbine flow. In this way, from one
time step to another, the state space is sufficiently dense to allow a fine
regulation of the turbine outflow. Thus the constraint on the minimum
discretization level can be written as:

Nmin ≥ Nstates so that Xmax −Xmin

Nstates

≤ u1,max

10

In the case study considered the reservoir capacity is 63 times the
maximum turbine flow. Thus the discretization level should at least be
Nmin ≥ 630, which is demanding from a computational point of view.

In order to save computational cost the discretization on the whole
state space is not performed but two different strategies are introduced.
Since the linear model, even with all the limitations introduced, returns a
solution which is in the neighbourhood of the optimal one; it is used to
perform a first trial solution in order to determine a base water level profile,
on this profile are then constructed two tolerance regions in which the
water level can varies in the subsequent DP optimization. With this exploit
the result optimality has not been compromised, but the computational
power required is greatly diminished since now the interval of variation
Xmax −Xmin of the water volume is reduced. In particular two different
strategies have been tested, the first one, in figure 6.4a , takes the minimum
and maximum water level measured during the linear optimization and
creates a constant minimum/maximum limit. The second strategy, in
figure 6.4b , is more advanced since maximum and minimum allowable
volume curves are made to follow the linear optimization result.
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(a) Fixed min/max variation

R
e

s
e

rv
o

ir
 v

o
lu

m
e

 m
^
3

(b) Dynamic min/max variation

Figure 6.4: Volume discretization strategies for DP

6.4.5 Optimal allocation function logic
The passage from one state to another is not straightforward since the

control action u is composed by two variables, the turbine flow u1 and the
bypass flow u2. Being the control action of dimension 2 and the dynamic
equation 6.2 of dimensionality 1, there could be infinite possible solutions
to the problem. Moreover, the optimal allocation logic must take into
account also for the constraints and for the unfeasible state transitions.

basic logic introduction

Due to the fact that water could be allocated both to the turbine or
to the bypass flow, a base logic to maximize the profits is needed. In
the transition from state xa

k to state xb
k+1 , the amount of water to be

discharged from the reservoir is calculated as:

∆X(tk) = xa
k + A(t)− xb

k+1 (volume reduction if positive)

According to the different values that ∆X can assume the strategy is
modified as consequence:

(i) ∆X < 0: this means that the target volume to be reached in the
state transition is too high with respect to the initial state volume
and input streamflows. No control action is set and the revenues
coming from transition are set to −109.

(ii) 0 ≤ ∆X < u1,min: the water to be discharged from the reservoir
is positive, but not enough to reach the minimum idle load of the
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turbine, so water is all routed to the bypass.
u1 = 0
u2 = ∆X
revenues = 0

(iii) u1,min ≤ ∆X ≤ u1,max: the water to be discharged is in the oper-
ational range of the turbine, thus the flow is entirely allocated to
it. 

u1 = ∆X
u2 = 0
revenues = u1 · ken((xb

k+1 + xa
k)/2) · η(∆X)

(iv) u1,max < ∆X ≤ (u1,max +u2,max): the water to be discharged is above
the operational range of the turbine, turbine load is saturated and
the remaining water discharged from the bypass.

u1 = u1,max

u2 = ∆X − u1,max

revenues = u1 · ken((xb
k+1 + xa

k)/2) · η(∆X)

(v) ∆X > (u1,max +u2,max): the water to be discharged is above the max-
imum combined outflow of both bypass and turbine, the transition
is thus unfeasible. 

u1 = 0
u2 = 0
revenues = −109

As can be noticed the evaluation of energy coefficient and of turbine
efficiency now correctly affect the value function to be optimized. In
the case of an unfeasible transition instead, a high and negative value
of revenues is set to avoid considering the transition as optimal during
the residual cost function evaluation. The algorithm used to evaluate the
optimal allocation is reported in listing A.6 on page 130.

non-linear constraint introduction

The optimal policy to pass from one state to another can be coded
according to the requirements of the system, it is possible to implement
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non-linear functions and boolean constraints in an easy way since, for each
transition the initial and the target state of the system is known.

Maximum change rate in reservoir height or volume according to a step
function related to reservoir capacity is introduced as:

∆X ≤ ∆Xmax(tk)

If the constraint is not respected, as in the other cases, revenues value is
set to −109. The constraint, which was set to the most restrictive value
in the linear optimizer, is no more approximated but follows the exactly
imposed step function.

During the basic logic introduction is already kept into account the
constraint of minimum turbine load, which was among the most problematic
constraints in the linear optimization.

Maximum number of turbine activations is substituted by the turbine’s
cost of activation since, as described in 1.1.3, it is not a hard constraint
but just a preference and the cost of activation introduction is better
suited for the real system operation. Cost of activation is added during
the backward evaluation of the residual cost function, starting from the
end the count number of activations has been substituted with the number
of deactivations, which is the same.

A deactivation is defined as:

deactivation count +1 if: u1(tk) > 0 ∧ u1(tk+1) = 0

The deactivation cost is immediately added to the residual cost function
in the transition from one state to the other:

J∗(xa
k, tk) = J∗(xb

k+1) + cost_matrix(k, a, k + 1, b) + act_cost

Please note that for the comparison with the linear optimizer, the activation
cost is set to zero in order to not introduce a bias in the estimation of final
revenues.

6.5 Limitations of the model
Although DP optimization method seems to perform better for what

concerns the real system modelling, it is not free from limitations.
The main concern is about the computational effort required. The model

scales linearly in time (Thours ∗N2
states) and, for long term optimizations,

has a relative advantage over the linear optimization method that scales
quadratically. However this advantage is maintained only in the case of
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a single reservoir systems, for multiple-reservoirs system the number of
states combinations increases exponentially according to:

(Nstates,single reservoir)2·Ireservoirs

thus the problem scales exponentially with the number of reservoirs. This
makes computationally heavy to optimize a big water system such as
the case study in section 1.1.3 on page 8. Another factor that strongly
affects the computational costs is the presence of concentration times, to
optimize systems in which the water takes more than one hour to flow from
upstream to downstream reservoir is necessary to include inside all the
possible state transitions not only the ones related to states Xk and Xk+1
but also the effect of states Xk−c, where c indicates the concentration time
value. The introduction of states related to earlier time lags exponentially
increases the possible combinations. The final number of incremental costs
to be calculated for each time step in case of multi reservoir system with
concentration time is thus:

(Nstates,single reservoir)2·(Ireservoirs+
∑

r
c(r)) (6.10)

Where ∑
r c(r)) is the sum of the concentration time related to the different

reservoirs.
As can be noticed, shifting to the complementary problem (from the

optimization on the control variables to the optimization on the states path)
the problem computational cost has been shifted from the time dimension
to the space dimension. With the new approach the problem has less
limitations in maximum optimization time but it grows exponentially in
function of the system complexity.

6.6 Analysis of the performances
All the analysis are performed on the single reservoir - single power

plant taken into consideration, optimizations are run over a time period of
100 hours. Comparison of results with the linear global optimization model
is performed considering a nominal streamflow and boundary conditions
are set for initial and target volumes as half of the maximum reservoir
capacity.

Before analysing the performance of the DP optimization an assessment
on the optimal choice of the number of discretized states is needed. Figure
6.5 shows the trade-off between optimal value and computational costs in
function of the discretization density. According to the observations made
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Figure 6.5: Normalized trade-off between computational costs and optimal
value

in 6.4.4, the dimension of the segmented reservoir space is normalized
by dividing the segmented capacity for the maximum flow allowed by
the turbine. As can be seen, the optimal value has not reached a stable
asymptotic behaviour for the segmentation density considered, but con-
sidering the very high exponential rate of the computational time needed
a discretization level of 6% of the maximum turbine load is selected, this
choice corresponds to a discretization of the state space into 300 segments.
The state space variation method used is the one related to figure 6.4a
since implies a constant discretization range.

It’s important to notice how the computational cost has a similar
behaviour with respect to fig. 4.11 on page 82, both the curves increase
with a quadratic trend but, in this case, to obtain a satisfactory result
an higher increment in the discretization level is needed compared to the
increment in time length segment of the previous case.

The performances of the two discretization methods in figure 6.4 are
compared considering variations in the number of state space levels and
in maximum range of variation. Optimization outcomes are summarized
in table 6.1, from the results can be seen how the dynamic variation
around the first attempt optimization computed with the linear optimizer
performs generally better that the fixed variation range. In line with
this consideration, further optimizations are run with a 300 values state
discretization and adopting a dynamic reservoir volume variation range of
30%.
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Table 6.1: Segmentation method performance comparison

number of states 200 300
variation range +/- % 10 30 100 10 30 100
normalized value - static variation 0.94 0.96 0.93 0.97 0.99 0.96
normalized value - dynamic variation 0.95 0.98 0.95 0.96 1 0.99

Once determined the discretization levels and strategy for the case
study taken in consideration, it is of interest to determine to what extend
the introduction of non-linear functions in the optimization process makes
the results differs from the approximated linear optimization model. In
particular the results presented below are affected by a correct estimation
of energy coefficient and efficiency, moreover the allocation of power to
respect the minimal turbine flow is varied in the optimization model instead
of being decided arbitrarily.

In figure 6.6 are reported the optimization results for both the linear
optimizer and the dynamic programmer. As can be immediately noticed
from 6.6b the DP optimization results are about 20% higher than the LP
approach. Better performances are mainly due to the fact that dynamic
programming considers the energetic coefficient ken as variable with respect
to the reservoir’s water level, this can be clearly seen in figure 6.6a, where
the optimal level of the reservoir in DP is made to increase as soon
as possible in the first part of the optimization and then decreased to
respect final target volume only in the final optimization period. The same
behaviour can be observed also in 6.6c where, contrarily to the LP turbine
flow, DP optimization keeps the turbine deactivated for the initial period
to make the reservoir increasing in level, even in time period in which the
electricity price is high. Water is then discharged in the latter period with
an higher intensity even if prices are not particularly competitive since,
due to the higher reservoir level, the energetic value of the water is higher.

Correct selection of the solution space is demonstrated for this problem
by looking at 6.6a, the reservoir volume for the DP optimization is well
defined within the boundaries, so no need of an increment in the solution
space is needed.

Consistency of the model is demonstrated by figure 6.6c, all the con-
straints of minimum and maximum turbine flow are respected, moreover
the optimal solution tends to modulate the power production according to
the on/off behaviour in proximity of electricity price peaks, as already seen
from linear optimization. Small residual values of turbine and bypass flows
are present on the whole optimization time, even if the minimum turbine
flow is respected they are to be considered as numerical errors introduced
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by the state discretization. An more dense discretization would reallocate
the small residual production near the already existing flow peaks, this is
the main explanation of the optimal solution increasing trend seen in 6.5.

Effects of efficiency value implementation on the final optimum are
considered to be negligible since LP optimization mainly works with an
on/off logic which tends to mitigate the efficiency losses caused by working
conditions of the turbine far from the nominal ones.

With reference to figure 6.7, the effect of energy coefficient function on
the reservoir level has been investigated, optimization results are plotted
on the same graph for different ken curves. It can be clearly notice how,
for an increasing slope of the curve in figure 6.1a, the reservoir optimal
water level tends to increase in the initial part due to a postponement of
the production in the final optimization part, this is due to the higher
weight that ken value assumes with a steeper curve.

Another advantage of DP is that a grid, containing the optimal solution
for all the possible states starting from a time tk, shown in figure 6.8,
is implicitly calculated by the algorithm. Each node represents a state
discretization value, its value is proportional to the y height of the point,
state values are organized in columns according to the different time steps
on x axis. The arrow that connects each state value to the next value in
time represents the optimal path, if no arrows are present the solution is
unfeasible starting from the correspondent state.

This graph is very useful since it shows how certain states, marked in
red, represent to some extend a waypoint in which most of the optimal
paths tend to pass trough. Moreover, in case of system uncertainty, if the
real state in a future time step won’t coincide with the expected one the
optimal solution with respect to the new real state is already available.



6.6. Analysis of the performances 119

(a) Reservoir level comparison (b) Normalized optimal value

(c) Decisional variables flow

Figure 6.6: Comparison between LP and DP optimization
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6.7 Discussion on final results
Dynamic programming optimization is demonstrated to perform con-

siderably better with respect to the previous linear model in cases in which
the problem presents a small (or a singular) number of reservoirs. The
possibility to introduce non linear functions and constraints improves the
optimal result of about 20%, moreover for long term optimizations the
problem complexity scales linearly and not quadratically as in the first
optimization approach, the possibility to parallelize the computation of
different states further increases the computational advantage on long term
problems.

The discretization of the state space has been turned out to be a
fundamental choice for the effective functionality of the DP model. A
too wide discretization space would require an excessive number of states
resulting in a computationally demanding optimization. If a narrow state
space is instead selected, the solution could converge to an optimum which
is not the global one; if the space instead is not sufficiently discretized
the solution does not converges at all. The segment dimensions have
been expressed in function of the nominal turbine flow, which has been
demonstrated to be an important index for the selection of the discretization
level. To solve the discretization problem an efficient two steps method,
based on an initial linear optimization, is used effectively. The optimal
volume range, selected for the case study considered, is a dynamic variation
of +/- 30 % on the linear optimization value. The trade-off curve between
optimal value and computational costs showed that a discretization level of
at least the 6% of the turbine nominal flow is needed to achieve satisfactory
results. Further increments in the discretization levels are demonstrated
to only marginally improve the revenue function value and to strongly
increase computational costs

Although DP method outperforms LP optimization in simple long term
problems, in case of complex water systems, with multiple reservoirs and
concentration times, the number of states increases exponentially according
to 6.10, this makes almost impossible to solve the optimization for problems
similar to the case study considered in section 1.1.3 on page 8.





Conclusions

This work of Thesis has led to the implementation of a comprehensive
computational framework which is capable to optimize a multi-reservoirs
hydroelectric system. In order to test the performances and validate the
model developed, identification of input historical data and generation of
synthetic time series has been performed. For what concerns the stream-
flows identification and generation, a de-seasonalized ARMA model with
residual noise envelope has been applied (3.1). The daily streamflows
generated with this method are shown to be a good representation of
the real phenomenon, the assumption of non-correlation among different
streamflows is made since reservoirs are geographically separated. For
electricity price perturbation the data are generated with an hourly fre-
quency, a simple statistical model has been adopted due to the fact that
more complex and reliable models would have required a deep electrical
market analysis, which out of the scopes of this Thesis. Through a Fourier
analysis two main periodic components has been identified, corresponding
to 1 and 2 cycles per day. The adopted method of normal distribution
identification for the same hour on different days demonstrated to be effec-
tive in reproducing price statistics. The method pointed out the necessity
to use only recent data (maximum 200 days in the past) in order to avoid
a biased estimation of the phenomenon.

The approach to the problem with a ”divide and conquer strategy” is
shown to be sub-optimal with respect to the global optimization, however
the results are fully consistent with the physics of the system. During
the analysis of the deterministic cases, performances are shown to be
fully satisfactory with an optimality loss in the worst case scenario of
only 0.5%. The computational time required for the solution of the
same problem is about 15 times lower with respect to the global linear
optimization, moreover, the divide and conquer approach is the only one
of the techniques considered capable to solve problems with a length order
of 1 year. Montecarlo analysis suggested that, for the case study 1.1.3
taken into consideration, an optimal choice for the length of the time
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segment is at least 793 hours, roughly corresponding to the 10% of the
global optimization time window. The computational time saved, with
respect to the longest segment that could have been optimized (due to
hardware limitations), is 60%, with an optimal value loss of less than
0.5%. For longer time segments is also observed a reduction in the variance
of the optimal solution, due to the increased system flexibility; for the
same motivation, the variance in operational range of reservoirs is instead
increased. Thus, for longer steps not only the optimal value is higher but
presents also a smaller uncertainty.

Variance analysis demonstrated that no effective benefits can be ob-
tained in practice if the time segment length is further increased, due to
uncertainty in input data. Even if for longer segments no benefits are
obtained, results have shown that particular attention must be taken in
not underestimating the minimum time length since optimal value shows
a step behaviour.

For the short term optimization instead, the focus is shifted on the
generation of a possible bid profile to be offered on the market. The analysis,
based on a Montecarlo method, allows the identification of recurrent
solutions with a similar price/power generation profile; the extrapolation of
this results allows the evaluation of an aggressive or conservative strategy.
Of particular importance is the possibility to identify the minimum basal
power production that a certain water system must produced due to the
imposed constraints. Short term analysis allows also to describe the physic
of the different power plant from a price/production curve point of view.

A different model and optimization approach based on dynamic pro-
gramming has also been investigated. DP is demonstrated to perform
considerably better with respect to the previous linear model in cases in
which the problem presents a singular reservoir. The discretization of
the state space has been turned out to be a fundamental choice for the
effective functionality of the DP model. A too wide discretization space
would require an excessive number of states resulting in a computationally
demanding optimization. If a narrow state space is instead selected, the
solution could converge to an optimum which is not the global one The
segment dimensions have been expressed in function of the nominal tur-
bine flow, which has been demonstrated to be an important index for the
selection of the discretization level.

The optimal result is improved of about 20% with respect to the linear
model; moreover, for long term optimizations, the problem complexity
scales linearly and not quadratically, resulting in a computational advantage
on long term problems. Although DP method outperforms LP optimization
in simple long term optimizations, in case of complex water systems the
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DP model grows exponentially making impossible to find a solution even
for small time windows. This result would suggest that a "divide and
conquer" approach better suits complex and long term problems while
DP performs way better in the solution of single reservoir problems with
long optimization windows. In case of simple system and short term
optimization both approaches are valid, taking into account that linear
programming in this case is demonstrated to be more efficient but less
effective.
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6.8 Future developments
On the basis of the analysis performed and of the considerations made,

future activities have been identified
Electricity price advanced modelling. To simulate the electricity price a

simple statistical model is currently adopted. The model is suitable for
the Montecarlo analysis since it is capable to correctly represent mean and
variance of the historical time series. Although, given the huge amount of
public data available on the electricity market, more complex models could
be implemented in order to improve the uncertainty analysis and, more
importantly, the operational strategies in the short term. A more advanced
modelling means the introduction of new inputs to the system, in literature
numerous studies can be found about the prediction of electricity price
in correlation with other factors, such as power consumption, country’s
principal energy source, etc...

Analysis of the brokers actual strategy. Bidding strategy evaluation is
based on a statistical and quantitative approach, which is often different
from the real strategy adopted by the brokers, mainly based on expertise
and knowledge of the system. Possible improvements in the short term
problem modelling could be done analysing real broker’s choice in different
scenarios, trying to implement the considerations and strategies that they
adopt in an algorithm.

Bidding strategy on the overall electricity markets. In 5.2, the assump-
tion made is that only MGP is considered for the generation of a bidding
profile. Although approximative, the assumption is valid since MGP is
the main reference market and the less perturbed by the others. Thus, for
a comprehensive offer profile the whole set of auctions should be taken
into account in order to provide better results and a wider vision of the
system. This possible refinement of the model should be coupled with the
advancements in electricity price modelling, since a global bidding profile
estimation makes sense only if the electricity price is correctly predicted.

Integration of the DP approach within the existing framework. Dynamic
programming has been shown to perform better than LP on single-reservoirs
problem, however at the actual development stage, the model has not yet
been generalized. Automatic selection of optimal state space dimension
and discretization should be developed and the integration of DP with the
exiting framework, created for the linear optimizer, should be performed.
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Codes and algorithms

In the following pages are reported fragments of the code developed and
used in this thesis, all the programs are written in MatLab language. This
is not a full description of the scripts but just the most relevant portion of
code are included.

A.1 Divide and Conquer evaluation algorithm

Listing A.1: Divide and Conquer evaluation algorithm
1 ott_spezzata = 0;
2 dim_prob = m_bacini * n_variabili *n_ore ^2; %system

complexity
3 consumo_ram_stimato = dim_prob * 8 * 7.5 / 1024 /

1024 / 1024 ; %[Gb]
4 m_bacini_stagionali = sum( BACINI_STAGIONALI );
5

6 if consumo_ram_stimato > RAM_max &&
m_bacini_stagionali >0 && m_bacini >1 %limit on

system complexity
7 ott_spezzata = 1;
8 end
9

10 if n_ore > periodo_max && m_bacini_stagionali >0 &&
m_bacini >1 %limit on maximum allowable
segment length

11 ott_spezzata = 1;
12 end
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A.2 Period length calculation

Listing A.2: Period length calculation algorithm
1 resti = [];
2 unisco_ultimo_periodo = 0;
3 divisori = 24:24: floor( periodo_max /24) *24;
4 if ott_spezzata == 1
5 for kk = divisori
6 resti = [resti , rem(n_ore ,kk)]; % must be

multiple of 24 hours
7 end
8 n_ore_periodo = max( divisori ((( divisori +resti)

<= periodo_max ) | (resti > periodo_max *0.6)));
9 resto = resti( n_ore_periodo == divisori );

10 if resto + n_ore_periodo <= periodo_max
11 unisco_ultimo_periodo = 1; % add remain

hours to the last segment
12 end
13 end

A.3 Cost matrix computation

Listing A.3: Cost matrix computation
1 for tt = 1: n_ore -1
2 states_in = linspace (Q_low(tt),Q_up(tt),

n_stati_V (tt));
3 states_out = linspace (Q_low(tt +1) ,Q_up(tt +1) ,

n_stati_V (tt +1));
4

5 for s_in = 1: n_stati_V (tt)
6 for s_out = 1: n_stati_V (tt +1)
7 [f_val ,~] = rev_eval ( states_in (s_in),

states_out (s_out),X_max(tt ,:) ,X_min
(tt ,:) ,dQ_max(tt),afflusso (tt),ken(
states_in (s_in)),VETTORE_PREZZI (tt)
);

8 cost_matrix (tt ,s_in ,tt+1, s_out) =
f_val;
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9 end
10 end
11 end

A.4 Residual cost function calculation

Listing A.4: Residual cost function calculation
1 %% best path calculation ( backward calculation )
2 V(n_ore , n_stati_V (end)) = 0;
3

4 for tt = n_ore -1: -1:1
5 for s_in = 1: n_stati_V (tt)
6 rev_earned = zeros( n_stati_V (tt +1) ,1);
7 for s_out = 1: n_stati_V (tt +1)
8 rev_earned (s_out) = gain_M(tt ,s_in ,tt

+1, s_out) + V(tt+1, s_out);
9 end

10 end
11 V(tt ,s_in) = min( rev_earned );
12 end
13 end

A.5 Optimal state path calculation

Listing A.5: Optimal state path calculation
1 %% find states of minimal path ( forward

calculation )
2 percorso_ottimo = zeros(n_ore -1 ,1);
3 pos_attuale = 1;
4 for tt = 1: n_ore -1
5 rev_earned = zeros( n_stati_V (tt +1) ,1);
6 for s_out = 1: n_stati_V (tt +1)
7 rev_earned (s_out) = gain_M(tt ,pos_attuale ,

tt+1, s_out) + V(tt+1, s_out);
8 end
9 [maxv , pos_attuale ] = min( rev_earned );

10 percorso_ottimo (tt) = pos_attuale ;
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11 %clear rev_earned
12 end
13 percorso_ottimo = [ pos_attuale ; percorso_ottimo ];

A.6 Optimal allocation function

Listing A.6: Optimal allocation function
1 %% constraints
2 if dQ < 0 % negative reservoir variation
3 f_val = -1e20;
4 end
5 if dQ > dQ_max % maximum change rate
6 f_val = -1e20;
7 end
8 if dQ > X_max (1) + X_max (2) % non riesco a

svuotare il bacino in tempo
9 f_val = -1e20;

10 end
11 %% optimal choice
12 if f_val ==0
13 if X_max (1) >= dQ
14 X(1) = dQ;
15 else
16 X(1) = X_max (1);
17 X(2) = dQ - X_max (1);
18 end
19 if dQ < X_min (1)
20 X(1) = 0;
21 X(2) = dQ;
22 end
23 eta = funzione_rendimento (X(1) ,X_min (1) ,X_max

(1));
24 f_val = ken(Q)*eta*X(1)*prezzo;
25 end



Acronyms

ACF Auto-Correlation Function

ARIMA Auto Regressive Integrated Moving Average

ARMA Auto Regressive Moving Average

DP Dynamic Programming

GRG Generalized Reduced Gradient Method

HJB Hamilton-Jacoby-Bellman

KKT Karush–Kuhn–Tucker conditions

LP Linear Programming

LT Long Term optimization

MGP Mercato del Giorno Prima

MI Mercato Infragiornaliero

MILP Mixed Integer Linear Programming

MOM Method of Multipliers

NLP Non Linear Programming

OLSR Ordinary-Least-Square Regression Models

PACF Partial Auto-Correlation Function

PO Principle of Optimality

RAM Random Access Memory

SARMA Seasonal Auto Regressive Moving Average
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SLP Sequential Linear Programming

SQP Sequential Quadratic Programming

ST Short Term optimization
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