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Abstract

Developing robotic applications is a complex task that requires skills that
are usually possessed by highly qualified robotic developers. We believe that,
while formal methods techniques that support developers in the creation and
design of robotic applications exist, they must be explicitly customized to be
impactful in the robotic domain and to effectively support the growth of the
robotic market. Specifically, the robotic market is asking for techniques that:
(i) support a systematic and rigorous design of robotic applications though
high-level languages; and (ii) enable the automatic synthesis of low-level
controllers that allow robots to achieve their missions. To address those
problems we present the PuRSUE (Planner for RobotS in Uncontrollable
Environments) approach, which aims at supporting developers in the rigorous
and systematic design of high-level run-time control strategies for robotic
applications. The approach introduces PuRSUE-ML, a high-level language
that allows modeling the environment, the agents deployed therein, and their
missions. PuRSUE is able to automatically check whether a controller that
allows robots to achieve their missions exist and synthesize it. We evaluated if
PuRSUE offers a more compact way than Timed Game Automata (TGA) for
modeling robotic applications, the effectiveness of its automatic computation
of controllers, as well as whether it helped designers in reasoning on real-time
properties of the scenarios, and how the approach supports the deployment
of controllers on actual robots. To answer those questions we considered
13 scenarios coming from 3 different robotic applications presented in the
literature. The results show that: (1) PuRSUE-ML does offer designers a
more compact way for formal modeling of robotic applications compared to a
direct encoding of the latter in low-level modeling formalisms; (2) PuRSUE
effectively supports designers in the generation of controllers, compared to
their manual development and supports them in reasoning on their temporal
properties; and (3) the plans generated with PuRSUE are indeed effective
when deployed on actual robots.
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Sommario

Negli ultimi anni le applicazioni robotiche sono diventate parte integrante delle
nostre vite. Piattaforme mobili e manipolatori vengono sempre più utilizzati
nella nostra società per eseguire azioni ripetitive, alienanti o pericolose per un
essere umano. I robot, fianco a fianco con i lavoratori, sono utilizzati in ogni
settore industriale, dalla meccanica, chimica al settore manifatturiero, per il
trasporto di materiali e persone. Grazie alla loro flessibilità, personalizzabilità
e vasta gamma di scelta nel mercato globale, questo genere di prodotto è in
grado di soddisfare richieste e bisogni di molte tipologie. Per questo motivo
le aziende che si affidano ad applicazioni robotiche necessitano di strumenti
di programmazione sempre aggiornati in modo da rendere i loro prodotti
sempre più disponibili per necessità di tipologie differenti.

Gli sviluppatori di software hanno il compito di garantire strumenti
flessibili e riutilizzabili in modo da soddisfare ogni necessità del consumatore.
Il progetto Co4robots [44] all’interno del quale questa tesi è stata sviluppata,
ha l’obiettivo di fornire strumenti che agevolano la programmazione nel
contesto di applicazioni robotiche. Co4robots mira ad introdurre nel campo
della robotica principi e tecniche caratteristiche dell’ingegneria del software
per fornire un approccio ingegneristico alla programmazione di robot. Il
progetto analizza principalmente applicazioni multi-robot nelle quali un team
di robot collabora al fine di raggiungere il soddisfacimento di una data
missione, che risulterebbe non eseguibile da un singolo robot. Per esempio,
una missione potrebbe richiedere al team di robot di caricare e muovere
oggetti o rifornimenti in un determinato ambiente p.e. uffici, alberghi od
ospedali. L’ obiettivo finale del team di robot è descritto e assegnato come
una missione definita da un linguaggio di alto livello.

Co4robots progetta di elaborare un approccio sistematico per lo sviluppo
di applicazioni robotiche. Questo approccio include tecniche che riguardano
diversi aspetti tra cui (i) la possibilità di lavorare con agenti eterogenei, tra
cui lavoratori e supervisori, (ii) lo sviluppo di algoritmi per la computazione
delle azioni che i vari agenti devono eseguire per raggiungere la missione
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assegnata, (iii) un controllo decentralizzato che permette ai robot di interagire
con l’ambiente circostante attraverso l’utilizzo di sensori e la comunicazione
tra i componenti del team, (iv) facile integrazione con i diversi sistemi presenti
sul mercato, (v) l’utilizzo di un linguaggio di alto livello per la definizione
delle missioni, in modo da non richiedere all’utente particolari nozioni di
robotica.

Questa tesi tratta uno dei vari aspetti considerati all’interno del progetto
Co4robot: la generazione di controllori partendo da un linguaggio di alto
livello.

La nostra analisi dello stato dell’arte ha sottolineato richiesta nell’ambito
robotico di strumenti che (i) diano la possibilità di descrivere ad alto livello,
attraverso una grammatica strutturata, un’applicazione robotica e (ii) gener-
ino un controllore per i robot coinvolti nell’applicazione. In particolare, ci
focalizziamo sul fornire tali funzioni in situazioni in cui il designer desidera
descrivere ad alto livello agenti controllabili e non controllabili e di considerare
una rappresentazione esplicita del tempo. Questo lavoro propone PuRSUE,
un framework mirato al risolvere i problemi sopra citati. PuRSUE fornisce:

• Un Domain Specific Language (DSL) chiamato PuRSUE-ML. PuRSUE-
ML offre la possibilità di descrivere applicazioni robotiche in termini
di descrizione dell’ambiente e degli agenti che interagiscono in questo
ambiente, includendo rappresentazione esplicita del tempo.

• Una traduzione automatica del modello definito con PuRSUE-ML in
un modello nel formalismo dei Timed Game Automata (TGA). La
traduzione in questo formalismo permettere di usare tecniche di model-
checking esistenti per generare un controllore per l’applicazione robotica
presa in considerazione.

Per valutare PuRSUE, abbiamo preso in considerazione i seguenti punti: se
PuRSUE offre un modo più compatto dei TGA per modellare un applicazione
robotica, se PuRSUE supporta i designer nella generazione di controller i
robot negli scenari considerati e nel ragionare su proprietà temporali e se i
controller generati da PuRSUE sono efficaci se utilizzati su un robot reale.

Sono state prese in considerazione alcune varianti di scenari robotici
ispirati dalla letteratura, per un totale di 13 scenari totali. I risultati mostrano
che (1) PuRSUE-ML offre un modo più compatto di modellare formalmente
un’applicazione robotica, (2) PuRSUE è efficace nel supportare i designer
nella generazione di un controllore per applicazioni robotiche e nel ragionare
su proprietà temporali del sistema descritto e (3) i controller generati da
PuRSUE sono efficaci quando utilizzati per comandare robot reali.
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Chapter 1

Introduction

Robotic applications are becoming pervasive in human lives. Robots are
increasingly used in our society to perform alienating and repetitive tasks.
This occurs for example inside airports, where baggage management and
delivery are mostly automatized by using appropriate robots, inside hospitals,
to assist doctors during surgeries, or in many manufacturing plants where
automation is nowadays unavoidable.

Autonomous robotic applications are moving from industrial to more
commonplace scenarios, such as driverless cars and people houses, as domestic
assistance for the elderly and autonomous vacuum cleaners, which can be
easily found nowadays in many households. These systems are becoming
even more and more autonomous and complex with the advance of the IoT
(Internet of Things) technology and the industry 4.0.

The increased interest in these technologies is leading to a huge develop-
ment of the global market in the sectors of robotic applications.

Market predictions estimate an increasing trend of development for the
robotics industrial sector. The spread of robotic applications has also been
confirmed by the world Robotics Survey [1], which evidenced an increment
of the use of service robots for professional use and indoor logistics. For
example, sales of professional service robots had registered a growth of 28%
in 2014 in logistics that resulted in an increase of USD 2.2 billion in the value
of sales. This growth must be sustained by techniques that allow the effective
development of robotic applications.

Developing robotic applications currently requires a set of skills and a level
of craftsmanship that are not possessed by average designers. This problem
has also been evidenced by the H2020 Multi-Annual Robotics Roadmap
ICT-2016 [1] which states that usually, there are no consolidated system
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development processes for robotic applications. Specifically, in the robotic
domain, solutions are generally conceived ad-hoc and on a per problem basis,
rather than being designed for supporting their reuse and for making them
accessible to non robotic experts. As a consequence, robotic development
remains confined to a small set of highly qualified robotic experts.

We believe that, to effectively support the growth of the robotic market it
is necessary to make development of robotic applications more accessible to
general developers. Specifically, the boost in the robotic market can only be
sustained by effectively handling two problems: (P1) supporting a systematic
and rigorous design of the robotic applications; (P2) enabling automatic
synthesis of controllers that allow robots to achieve their missions.

P1: Enabling systematic and rigorous design. Current practices
in robotic development require designers to use low-level primitives, and do
not support reasoning on high-level logical elements. For example, the Robot
Operating System (ROS) [42], the de-facto standard platform for developing
robotic applications, requires developers to publish low level messages on the
ROS master node to control the robot behavior. These messages represent
low level primitives, whose composition depends on the channel and the kind
of information that needs to be transmitted. For example, for the autonomous
navigation to take place, a message needs to be sent including the time stamp
and the target position in terms of coordinates in a previously defined map
of the environment stored in the robot. The lack of high-level constructs
introduces an error-prone process even for experienced designers and asks
the programmer to deeply know the robots dynamics and kinematics, as well
as the ROS System.

Rather than being obsessed by developing ad-hoc solutions and implement-
ing them, we believe that robotic applications development should proceed
in a more systematic way, where a rigorous high-level design of the problem
domain and of the components of the robotic application is performed first.
This practice is in line with current Model-Driven Engineering (MDE) tech-
niques, which ask for the creation of domain models that allow designers to
reason on the problem under consideration. During the modeling activity de-
signers may want to consider different applications and scenarios, accounting
for different environments and actors, and automatically fulfill the tasks of
both programming of the robots behavior and verification of the application
feasibility. Furthermore, this preliminary modeling activity is pivotal for
enabling automatic reasoning.

P2: Controller Synthesis. Robots are essentially agents that are
deployed within a given environment to fulfill some mission. A mission is a
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high-level goal a robotic application (i.e., a single robot or a set of robots)
must accomplish [25, 30, 34, 35]. The mission achievement is reached through
the execution of a set of actions that specify how robots change the state of the
environment, and how robots react to environmental changes. Controllers are
software components that are designed to compute from a high-level mission
a set of actions that, if executed, ensure its achievement. The computation
of controllers is far from trivial, as it must take into account not only the
robots’ behavior, but also the evolution of the environment in which they are
deployed. The controller synthesis problem has been deeply studied in the
formal methods (FM) domain. For example, in [19], [7] and [23] a control
problem is encoded into a finite state machine in order to generate a controller.
While these techniques effectively handle the controller synthesis problem,
they are not designed for being reusable and applicable in different domains.
This fact makes their usage difficult in the robotic domain as designers need to
know the low level modeling constructs and languages proposed by FM rather
than having a generic high-level language equipped with domain specific
elements. In essence there is a need to make controller synthesis techniques
accessible to people working on the robotic domain in order to turn FM
controller synthesis algorithms into widespread used robotic solutions.

We believe that enabling a systematic and rigorous design of robotic
applications through rigorous languages and the integration of these languages
with off-the-shelf tools that enable controller synthesis is a primary goal to
make the usage of FM techniques accessible in the robotic domain. While
works that address these two problems exist (e.g., [26], [13] [43], [18] — see
Chapter 2), our research is tailored for robotic applications that work under
two assumptions: (A1) uncontrollable agents can move and interact with the
robots and their environment; and (A2) missions and system model require an
explicit representation of time. As discusses through our motivating example,
these are two central aspects in the development of novel robotic applications.

A1: Handling uncontrollable agents. Robots constantly interact
with their environments. In many applications, the collaboration of robots
side by side with human workers is essential, as they are deployed in every
industrial field, from mechanic, chemical and manufacturing industries, to
the support of human activities. However, human behavior is sometimes not
predictable. Expressing the correct intended behavior becomes more critical
in case of human-robot collaboration, where the operator needs to execute
certain actions before (or after) that robot performs some other actions, for
the sake of his/her physical safety.

For this reason, one of the most prominent challenges in planning and

8



verifying robotic systems involves its interaction with the environment sur-
rounding it.

Formal and non-formal models of the real world are prone to the problem
of the reality gap, where models produced are never close enough to the
real world to ensure successful transfer of their results. A first step in this
direction has been taken via static models of the environment, in which the
robots are the sole actors (e.g. [43]). Some other works have contributed
to planning with partial-information on the environment such as [33], [32].
These models however fail to capture the uncertainty in the environment’s
behavior, that is, even under the assumption of a fully known environment,
there might be uncontrollable actors, e.g. humans, who can interact with the
robot and the environment itself. In some works such uncontrollable events
are only modeled as an input (e.g. [27]), these works fail to take advantage
of further knowledge on the possible behaviors of the environment which
do not directly affect the controlled system. An explicit representation of
uncontrollable agents can be found in some works (e.g. [37], [17]), but
these works more currently cater to the verification of some of the system’s
properties rather than the generation of a control strategy.

A2: Handling missions and system models that require explicit
representation of time. Specification of time aspects has a prominent role
in the definition of robotic missions. Forcing a robot to achieve a certain
mission within a bounded time, or being able to specify that a reaction
has to occur within a specific time frame are examples of timed mission
requirements that may need to be specified in robotic applications. Allowing
designers to consider these requirements is extremely important in novel
robotic applications. Unfortunately, while controller synthesis techniques
able to consider these requirements exist, their usage is mainly confined to
robotic or formal method experts.

Overview of the work. This works tries to address problems P1 and
P2 by considering the assumptions A1 and A2. Specifically, it

(i) proposes a language that allows designers to easily model robotic
applications;

(ii) enables automatic controller synthesis.

This work has been developed within the Co4robots project. The
Co4robots project [44] tries to overcome the issues outlined in the pre-
vious paragraphs. It aims at introducing software engineering principles
and techniques within the robotics domain. The final goal is to shift the
design of robotic applications towards well-defined engineering approaches,
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which stimulate components reuse and to have a final impact on the robotic
market-places. Co4robots assumes that a robotic application is composed of
robots that aim at performing a (set of) missions in a collaborative way. A
mission is a high-level goal a robotic application must achieve. For example,
a mission may require a team of robots to bring medical supplies to a surgery
room in the hospital environment. Missions are typically defined in terms of
a high-level (formal) description of the goals that robots shall achieve.

Co4robots tries to develop systematic software engineering techniques for
the development of robotic applications. These techniques include, among
others: (i) new techniques that allow heterogeneous agents (including hu-
mans) to collaborate in manipulating and moving objects; (ii) techniques for
decentralized real-time planning algorithms; (iii) techniques for decentralized
real-time perception, allowing robots to perceive their environment either by
using its own sensors or by exchanging sensory information with other nearby
agents. In addition, Co4Robots promotes the development of: (iv) a software
integration platform that enables an easy deployment of robots, this platform
aims at integrating the software produced within the project and drives the
implementation of the outcomes of research made within the project; (v) a
user-friendly specification language that enables users, without expertise in
robotics and information technology (such as the personnel of a hotel or a
hospital), to specify missions to be accomplished by the robots.

1.1 The Drug Delivery Example (DD)

We consider a realistic example from the medical domain indicated in the
following as Drug Delivery example (DD). In the DD example, a robot
(medBot) has to retrieve some medicine (medicine) from a storage room and
deliver it to an emergency room, while it has to avoid interfering with the
transportation of patients on stretchers. A high-level graphical representation
of the example is presented in Figure 1.1.

The emergency room is graphically indicated through a solid line that
describes its boundaries. It has three entrances (door1, door2, door3) that
can be either open or close. The robot, for security reasons, is not allowed
to walk through the emergency room, and any delivered medicine can be
positioned on one of the tables set inside the emergency room, next to all of
the entrances (table1, table2, table3). The medicine is initially located
in the storage room (storage room) and the robot should move it to one of
the three entrances, when it is open. At the same time, additional agents
are present in the area, i.e. the nurse and the stretcher-bearer. The nurse
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is located in the emergency room and she has the capability to open closed
doors to allow the medBot to deliver the medicines, this can be requested by
the controller through a beeper, though this request can only be triggered
between set time intervals. The stretcher-bearer can move in the environment,
around the emergency room, and can possibly close open doors when they
hinder his/her movements. The robot needs to always avoid being in the same
location as the stretcher-bearer, as that could obstacle his/her movement.

The goal of this work is provide an automatic tool which allows designers
to (i) systematically model and design robotic applications like the one
presented (P1); and (ii) synthesize suitable sequences of actions performed
by the robot (if it exists) that always guarantees, in this case, the delivery
of the medicine, regardless of the behavior of the stretcher-bearer and given
specific geometric information on the environment and the speed of the
agents (P2). As clearly evidenced by this example, in real life scenarios, it
is necessary to handle uncontrollable agents (A1). Specifically, in a game-
theoretic representation, the robot is the “player”, as well as the nurse, which
we assume to be cooperative and immediately open a door upon request,
while the stretcher-bearer is the “opponent” whose unpredictable behavior
might hamper the realization of the goal that the player has set. In such
theoretical framing, the problem we are investigating amounts to determining
the existence of a winning strategy for the player, that always guarantees
the player to win the game. In the DD scenario, the existence of a winning
strategy corresponds to the successful delivery of the medicine operated by
the robot in any situation, given a model of the scenario including real-time
constraints (A2). Hence, the designer has to determine a strategy that
can then be implemented on the medBot robot. If this task is performed
manually, it could easily result in an error prone and time consuming activity.
It is indeed necessary for the developer to reason about the behaviors of
the uncontrollable agents and program the robot to properly react to these
behaviors. In the DD example, one may for example program the robot to
pick up the medicine and reach the table at door1. However, this may be
a failure strategy since the stretcher-bearer may reach door1, thus leaving
the robot to fail the mission of avoiding to interfere with the transportation
of patients on stretchers. Intuitively, as mentioned, the correct strategy
should take into account the position of the stretcher-bearer before choosing
which door to use to deliver the medicine; this needs to take into account the
specific distances between locations, the speeds of the different agents and
the duration of actions such as picking up the medicine and setting it on the
table, which is indeed nontrivial, especially in topologies not as simple as the
one presented. Moreover, as agents may behave in many different ways, and
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Figure 1.1: A graphical representation of the Drug Delivery example

the number of agents might be usually high in real scenarios, it is desirable
to have some automatic support in designing the robot strategies.

Hereafter, we will refer to the actors in the system which are controllable
by the designer, e.g. the medBot, as “controllable agents”, while all the others
are “uncontrollable”. Any detectable action performed by controllable or
uncontrollable agents will be referred to as “event”.

We will call “collaborative events” those events who require the presence
of another specific agent, from now on called “reacting" agent, so that an
agent, called “acting”, can trigger said event.

1.2 Research Challenges

To effectively tackle the high-level problems previously described and high-
lighted by the Drug Delivery motivating example (Sec. 1.1), it is necessary
to handle the following challenges:

• C1: Providing a language that allows designers to easily model robotic
applications where uncontrollable agents can move and interact with
the robot and the environment. To handle problem P1 it is necessary
to define a language that easily allows describing a robotic problem,
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and that possesses precise semantics that allow reasoning about the
behaviors of the considered application.

DSLs catered to high-level planning in the domain of robotics have
been proposed in several works, as shown in [39]. This is done both
for the purpose of verification [36], [21], and for the purpose of plan-
ning [26], [13], [43]. While the different focuses of these works will be
better discussed in Chapter 2, they do not take into account explic-
itly possible uncontrollable agents and their behavior relevant to the
control problem in the environment, or missions that contain real-time
constraints. This is however an important field of research. Given all
the possible environment configurations, the best possible guarantee
a producer can provide is that an agent will never deliberately make
a choice that will lead to a condition it believes to be unsafe [14], it
is therefore a relevant task to provide a high-level system description,
including uncontrollable agents, that allows for either the verification
of properties of the system or the computation of a control strategy
capable of achieving a certain mission.

As the developer focuses on high-level control, he/she desires a high
language which abstracts the description of the problem from imple-
mentation details i.e. issues such as the ability to reach a location on
the map and low level motion control. We consider this to be a weak
assumption, as it is indeed very common for a robot (Sec. 3.4.3) to have
lower level modules to provide navigation and motion control features.

Example. The developer desires a language that allow easily identifying the
controllable and uncontrollable agents, the actions that they can perform and
how they can move within their environment. In our example, the designer is
interested in modeling the presence of the storage room and the doors where
the robot should deliver the medicine. The only uncontrollable agent is the
stretcher-bearer, who can interact with the robot by interfering with each other
and with the environment by closing the doors.

• C2: Providing a framework that supports reasoning on properties that
contain an explicit representation of time. To effectively handle both
P1 and P2, it is necessary to include an explicit representation of time.
Indeed developers of robotic applications are usually interested in the
capability of a framework to handle real-time, especially when the goal
of the model is to generate a run-time controller. Indeed, for practical
applications, a mission such as "if asked, deliver the item eventually"
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might not be a sufficient guarantee, the designer might want to specify
constrains such as "if asked, deliver the item within 60 seconds".

Explicit time representation is indeed the focus of research in papers
such as [29], [8], [40] and [9], where the paradigm of Timeline-Based
Planning is used to solve planning problems. Real time is easily im-
plementable using the formalism of TA (Timed Automata) and its
extension, as is done in this thesis, which explains why such formalism
is very common in the context of formal verification of robotic appli-
cations [19], [7], [23]. Though the aforementioned works do use the
formalism to generate a controller, they do not provide an automatic
generation of the model through a DSL to provide support to designers
for more general situations. A more general framework that allows
for modelling of a robotic application with real-time represenation can
be found in [16] and [37], though these works limit themselves to the
verification of the system rather than the generation of a controller.

Example. In our example, explicit modeling of time is necessary in order to
include in the control strategies information such as distance between locations,
speed of movement and duration of actions. The timed property could be an
explicit request in the mission of the control problem, e.g. the medicine having
to be delivered within a certain amount of time from request.

• C3: Automatically synthesizing a run-time controller capable to achieve
the mission defined in the scenario. The automatic generation of
high-level controllers is directly related to the problem P2. Indeed,
the generation of controllers for robotic applications is an active field
of research. This is why works such as [11], [29] , [8], [40] and [9]
make a contribution towards the automated generation of models and
controllers capable of achieving the designer-specified mission. All these
works however do not really support the designer looking for a solution
catered to the specific challenges faced in robotic applications.

There are works more focused on robotic applications, such as [26], [13]
and [43], which provide a framework for automatic generation of both
a model of the scenario and the controller, but they either do not
include the capability to model explicitly the environment in which the
robots move and the avoidance/cooperation of/with other agents in
the environment. In [19] and [7] there is a more clear description of the
controlled system interaction with the environment, and in [23] there is
an explicit description of the possible behavior of uncontrollable agents;
all these methods generate a controller, but they focus on a single case
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study and do not provide a framework capable of generating controllers
from designer-defined scenarios.

We believe that a framework allowing designers to freely define a robotic
application with all the aforementioned features and being capable
of automatically generate a controller for it to be a very valuable
contribution.

The controllers generated in this work are assumed to have full knowl-
edge of the state of the system. While this is a strong assumption, it
reasonable to expect a smart building in which such robotic application
is deployed to have a network of sensors allowing the controller to have
full observability of the system. In case such system wasn’t available,
a predictor could be implemented on top of the control system, able
to guess the current state based e.g. on the available information and
historical data.

Example. In our example, the designer is interested in generating a controller
defining, for each state of the system, an action to be performed by the medBot
and nurse, depending on the state of the system as a consequence of all of
the agents interacting with it.

1.3 Contributions of the Thesis

We present PuRSUE (Planner for RobotS in Uncontrollable Environments),
a framework aimed at supporting designers in the design of a high-level
run-time controller for robotic applications. PuRSUE supports developers
in synthesizing a high-level control strategy in cases in which the considered
robotic application contains both controllable and uncontrollable agents. The
PuRSUE framework allows the designer to focus the description of the system
as the environment, the agents in it and the robotic mission, and obtain a
controller for the controllable agents, as long as one exists. PuRSUE provides
a set of features that allow addressing the problems introduced in Sec. 1.2:

• F1: PuRSUE supports the designer in modeling the robotic application.
It provides a DSL called PuRSUE-ML that contains a set of keywords
and DSL constructs that allow to easily describe (i) the environment
where the robotic application is executed; (ii) the controllable and
uncontrollable agents acting and moving in it; (iii) a set of constraints
between the defined events and (iv) a mission the robotic application
should achieve. The support provided by PuRSUE through F1 allows
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tackling problem P1. The designer only needs to describe the environ-
ment, the controllable and uncontrollable agents acting and moving in
it, a set of constraints between the defined events and a mission, at
high-level through PuRSUE-ML that will be further described in 4.2.

Example. In our Example, the designer is supported through the use of
certain keywords in PuRSUE-ML in defining the locations relevant to the
control problem: doors, storage room and emergency room. Then he/she can
describe how they are located in the environment with respect to each other.
Similarly he/she can describe at high-level agents, such as medBot, where
they are located in the environment and the actions that they can perform. In
the case of agent medBot, it will be defined as an agent which can move in
the environment and examples of actions it can perform are picking up the
medicine and delivering it.

• F2: PuRSUE allows the designer to use explicit time to specify the
duration of events in time units, as well as the distance between locations
and the movement speed of different agents. PuRSUE-ML also allows
the designer to include real-time constraints to the mission. This fully
addresses P2.

Example. In our example, the designer is able to define the distance between
locations and the traveling speeds of both robot and stretcher-bearer, and
he/she can prescribe a mission such as “the medicine needs to be delivered
within 60 seconds after it is requested”.

• F3: With PuRSUE the designer is capable of reasoning and automat-
ically synthesizing a control strategy, when one exists, on complex
situations where multiple agents, both controllable and uncontrollable,
interact in an environment. It is indeed very simple for the designer,
thanks to PuRSUE-ML, to devise plans including any number of con-
trollable agents and uncontrollable agents indistinctly, thus effectively
handling a team of robots as well as scenarios with any number of
opponents. The designer can also easily change conditions in the en-
vironment to reason on how such changes affect the control strategy.
This is done by describing the scenario at a high-level, rather than the
possible interactions between the agents and the environment, thus
avoiding the error-prone job of hard-coding all the possible conditions
that this environment might reach, while also avoiding the useless task
of taking into considerations conditions that could never be reached
as a result of how the agents are positioned in the environment. The
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system as described through the PuRSUE-ML is thus automatically
coded into a Timed Game Automaton (TGA) [2], and the controller
will be generated via model checking.

Example. In our Example, focusing on the task of avoiding collision between
the two agents, the designer does not need to think of when and where the
medBot and the stretcher might run into each other, he/she only needs to
describe the distances between the several locations, the speed of movement of
the agents and their initial location. Furthermore, if the designer finds that the
mission results impossible to be accomplished with one robot, he/she can easily
try to see if a faster robot, or two robots, are capable of accomplishing the
mission. In a similar manner, the designer can add another stretcher-bearer
to produce a controller able to handle a situation with two elements to avoid.

All these features are implemented in a tool which allows for automatic
generation and deployment of the controller, taking as input the description
of the system in PuRSUE-ML, and deploying the run-time controller on
the selected hardware. A high-level description of the PuRSUE components
and how these components address the previous features is described in the
following.

• PuRSUE takes as input a description of the system through the
PuRSUE-ML. The language (Sec. 4.2), allows the designer to describe
the environment at a high-level (F1).

• A parser then translates this description of the environment into a
network of TGAs structured as shown in Sec. 4.3. The transformation
used is shown in Sec. 4.4. The capability of TGAs to handle explicit
time allows the system to formally model scenarios including real time,
both in terms of model of the system and mission (F2), and it allows
for a simple representation of controllable and uncontrollable agents.

• The finite state machine representation of the scenario is then pro-
vided as input to the model checker UPPAAL-TiGA. UPPAAL-TiGA
is an integrated tool for creating models, validation and verification of
real-time systems implemented as networks of TGA. UPPAAL-TiGA
supports the verification of specifications written in TCTL language,
which allows the designer to describe the desired behavior of the con-
trolled system and generate a control strategy accordingly. In PuRSUE,
UPPAAL-TiGA is used to analyze the model of the system and to
produce a controller to fulfill the designer defined mission (F3).
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We evaluated (RQ1) does PuRSUE offer a more compact way than TGA
to model robotic applications? (RQ2) how does PuRSUE support designers
in generating controllers for robotic applications? (RQ3) is the control
strategy generated by PuRSUE effectively implementable on actual robots?
To answer these questions we considered 3 different robotic applications
inspired by case studies from literature ( [24], [3], [46]): a robotic application
in which a robot has to catch a thief, a work cell and a robot in charge of
collecting the thrash. For each of these robotic applications we considered
different scenarios with varying complexity, leading to 13 distinct scenarios.

To answer RQ1 we used PuRSUE-ML to model our scenarios and evalu-
ated the size of the proposed model, in terms of PuRSUE-ML constructs. We
evaluated whether PuRSUE-ML allowed the designer to model the system
and compare the number of constructs used to model the robotic application
in PuRSUE-ML with respect to the number of states and transitions that
are necessary to model our problem in TGA. The TGA models are obtained
by using our automatic translation. The results show that the number of
constructs used to model the robotic application in PuRSUE-ML is less than
19% of the the number of construct that would have been necessary to model
our problem using TGA, showing the advantage of using PuRSUE-ML.

To answer RQ2 we evaluated how fast was PuRSUE able to generate the
model of the system and a run-time controller, as well as the size of the gener-
ated controller. The results show that in 10 cases over 13 PuRSUE was able
to generate a run-time controller. The average size of the generated controller
is 4603, while the average time required for computing the controller is 1083
milliseconds. The large size of the generated controller shows that manually
designing such controllers is complex, if not even impossible, showing the
effectiveness of the automatic computation procedure provided by PuRSUE.
The time required for computing those controllers is reasonable for practical
usage (given the size of the controllers). In 2 of the three cases no controller
was generated as there was no controller able to ensure the satisfaction of
the robotic missions, i.e. the scenario provided was unfeasible. In one case
PuRSUE was not able to compute the run-time controller due to exhaustion
of the address space available with the 32-bit version of the model-checking
software.

To answer RQ3 we deployed the controller generated by PuRSUE to
the robot TurtleBot (Sec. 3.4.3), and checked whether the hardware would
behave as expected.

We implemented 2 of the 13 scenarios analyzed, simulating the exchange
of information with the environment by sending the appropriate signals to
the observer-controller system generated. The robot was indeed capable of
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achieving both missions.

1.4 Structure of the Thesis

This thesis is organized as follows:

• chapter 2 - Related Work
Discusses the state of the art. The analysis is focused on works solving
the problem of planning for robotic applications, especially in uncon-
trollable environments, as well as the use of TGAs for the modeling of
uncontrollable events.

• chapter 3 - Background
Presents the background concepts and notation necessary to understand
this work. We describe Timed Game Automata (TGA), the language
adopted in this work to model the system and the missions of interest.
We briefly introduce the UPPAAL-TiGA Model Checker, explaining the
support provided by this tool to generate a TGA model, to simulate its
behavior, and to verify the properties of interest. Finally we introduce
the material used for the practical experimentation, as well as the
robots used for the experimental evaluation.

• chapter 4 - Contribution Presents the PuRSUE framework. First
the PuRSUE modeling language is thoroughly explained. Then the
encoding of the model in TGAs is explained, using our motivating
example as constant reference. Then the procedure to translate a
PuRSUE-ML model in TGA is presented. Finally, the procedure to
generate a run-time controller using UPPAAL-TiGA is discussed.

• chapter 5 - Implementation
Presents our implementation of the PuRSUE framework. These include
a description of the parser, the algorithm to translate the specification
into TGA, how the controller is synthesized and how the controller
is executed in the ROS environment. The design-time and run-time
components of PuRSUE are explained in detail.

• chapter 6 - Evaluation
Reports the experiments run to evaluate PuRSUE and the analysis of the
results of said experiments. Different possible scenarios of applicability
of the framework are presented, with focuses on different capabilities of
PuRSUE. We evaluated PuRSUE’s capability in supporting designers
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in modeling robotic applications, its capability in supporting designers
in the generation of controllers and its effectiveness when deployed on
a robot.

• chapter 7 - Conclusions and Future Work
Presents the conclusions of this thesis and provides an overview of some
possible extensions of the presented work.
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Chapter 2

Related Work

Autonomous robots are becoming more popular and accessible every year, as
such there is a growing amount of works aimed at either modeling a specific
problem, building tools or formalizing techniques especially catered to model
them, for either planning or property checking. Game models to solve control
problems is also an area of research that has been explored. What follows
is an overview of the state of the art in all these areas of research, to help
the reader better contextualize the work presented and its difference with
what has been proposed so far in the literature. First, in sec. 2.1, we present
a table where all the analyzed works have been classified.

We identified the following two major categories of works:

• Supporting the design of Robotic Applications (Sec. 2.2). We analyze all
the works that aimed at providing tools or theoretical frameworks aimed
at supporting developers in the robotics field in either the development,
verification or the creation of controllers or plans.

• Game Models (Sec. 2.3). In this section we analyze all the works in
which scenarios and their missions are modeled as multi-player games
in order to create strategies capable of achieving mission.

2.1 Classification of related work

Table 2.1 classifies related work considering the following dimensions:

• Mod. : whether the paper provided automatic model synthesis from a
higher level description of the problem.
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Table 2.1: classification of related work

F1 F2 F3

Paper Mod. Env. unc. Team Time Con. exp.

[27] 7 3 7 3 7 3 3

[16] 3 7 7 7 3 7 3

[37] 3 3 3 7 3 7 7

[36] 3 7 7 7 3 7 7

[26] 3 7 7 7 3 3 3

[13] 3 3 7 7 7 3 3

[28] 3 3 7 7 7 3 3

[43] 7 3 7 3 3 3 7

[18] 7 7 7 3 7 3 7

[19] 7 - - - 3 3 7

[7] 7 - - - 3 3 7

[23] 7 - 3 3 3 3 7

[12] 7 7 7 3 3 3 7

[11] 3 - 7 7 3 3 7

[29] [8] [40] [9] 3 - 7 3 3 3 3

[17] 7 - 3 7 3 7 7

• Env. : whether the environment in which the agents act is explicitly
described.

• unc.: whether uncontrollable agents interacting with the controllable
ones are explicitly described.

• Team: whether teams of agents are considered.

• Time: whether explicit time is included.

• Con. : whether the paper provides automatic controller synthesis for
the scenario.

• exp. : whether the work was implemented in experimental setups.

If a column appears marked with the “-” symbol, it means that the corre-
sponding paper treated a topic that differed a lot from a robotic application,
as such the discussion of more robotic specific features is meaningless.
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We classified in total 19 works. none of them provides a framework
catered to robotic application set in a known environment, that allows
designers to describe at high level a robotic application, inclusive of any
number of controllable and uncontrollable agents, including explicit time in
the model and generate form it a run-time controller capable of functioning
in experimental setup.

2.2 Support to Designers of Robotic Applications

The works presented in this chapter aim at supporting developers in the
creation of robotics applications. In Sec. 2.2.1 we discuss how formal methods
can be used to model and reason on robotic applications. In Sec. 2.2.2we
present Domain Specific Languages (DSL) tailored to the robotic domain.

2.2.1 Formal Methods Formalisms as Tool to Model Robotic
Applications

Different formalisms have been proposed to model problems of interests
through formal languages that enable automatic support for developers.
Among these formalisms, the most commonly found in the state of the
art are LTL (Linear Temporal Logic) and FSM (Finite State Machine)
(e.g. [32, 33, 45, 47]). Example of this can be found in works such as the
one in [20], where probabilistic finite state machines are used to model a
swarm of foraging robots in order to verify their behavior. Here the possible
behaviours of a single robot are described as a probabilisitic finite state
automata, which is given as input to the model checker PRISM [22] together
with a probabilistic temporal property expressed as PCTL. Then, a counting
abstraction approach is taken in order to model the behavior of the entire
swarm, rather than simulation the product of the models of the all FSA
representing the elements of the swarm. This work shows how model checking
can be used to verify a robotic application, to show how certain properties
can hold for all possible runs/configurations.

In [27] FSM are used as baseline formalism to represent supervisor control
theory (SCT). In this work, SCT is applied in order to obtain a system
capable of automatically generating code according to a description of what
the system can do and what the system should do. The controller is generated
by considering synchronous composition between system description and
specification generators. This work is implemented using the open source
software Nadzoru [41].
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In both the aformentioned contributions there is no explicit representation
of the possible behaviours of the enviroment in which the agents exist. We
believe that one of the most prominent and key challenges in verifying robotic
systems involves their interaction with a possibile uncontrollable environment,
given all the possible environment configurations, the best possible guarantee
a producer can provide is that an agent will never deliberately make a choice
that will lead to a condition it believes to be unsafe (as argued in [14]).

In [16] an effort was made toward automating the generation of formal
input for the model checker NuSMV [10]. The software focuses on translating
the Control Rules of the Care-O-Bot system. These control rules are specified
through behaviors, where a behavior is a set of atomic preconditions and a
sequence of actions. Such specifications are translated into LTL, which is in
turn translated into SMV, the modelling language accepted by NuSMV. The
extent to which the environment is modeled in this system is as again as a
series of preconditions which can either be true of false (i.e. sensor outputs).

In [37] the undeterministic environment has been modelled using MDPs,
where probabilistic transitions model the uncontrollable events in the envi-
ronment. The tool support allows checking for the probability of the system
to meet requirements in an unknown environment. The tool is catered to
support design-time decision making and does not provide the feature of
controller-generation. The authors of the paper discuss how the information
provided by the tool is strictly tied to the accuracy of the probabilistic model,
which is what makes it especially interesting to analyze design decisions.

However all the aforementioned works differ from the one presented in
this paper, as they do not provide robotic applications designers with a
framework allowing them to describe the application at high level, to create
in an automatized manner a model of the controllable and uncontrollable
agent in the environment, and use this model to automatically generate a
run-time controller.

2.2.2 DSL for Robotics

Automatic generation of models from a DSL in the field of robotic applications
is a topic of interest that has been explored in many works. This domain is
well explored in the survey presented in [39].

In [36] RoboChart is presented. A graphical user-interface, di facto
restriction of UML, allows designers to describe low level components of
a robotic application, as well as the controller and the expected behavior
of the system. This description is used for an automatic generation of
mathematical definitions that support automatic proof of key properties of
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robotic controllers. This paper’s focus is indeed on the validation of the
model, and the model itself is centered on low level control problems instead
of high level decision making. Furthermore, they do not include explicitly
opponents in the high level description of the system.

In [26], a DSL for programming the behavior of autonomous agents is
presented. This paper shares with this thesis the idea of translating a system
defined at a high level by the user into a FSM. This finite state machine is
essentially a decision graph that connects between them options and their
subsequent basic behaviors. It also focuses on having a modular system,
indeed any “option” is it self composed of other “options” or basic behaviors,
thus forming a hierarchy that leads to the aforementioned decision graph.
However the focus is placed on allowing the designer to define the desired
strategy and reaction of the autonomous agent as a response to a certain
state of the system or environmental variables, while the work here presented
allows the designer to simply describe the system and the objective o the
controller,and subsequently output an always winning strategy. Furthermore
it does not allow the designer to model the environment and adversary agents
in order to check for the correctness of the generated strategy in front of their
possible behavior.

A similar work was performed in [18], where collaborative robots are
programmed through NaoText, a DSL based on the concepts of contexts
and roles in these contexts. This work ,as well, does not include an explicit
representation of the opponents in order to generate a controller accordingly.

An interesting effort towards the description of high level activties for
robots is presented in [21], where SRDL is presented, a semantic for describing
robot components, capabilities and actions. The aim of this work is to provide
the autonomous agents with knowledge of their capabilities of performing
different tasks. This is done by describing actions required by the user as
a set of sub-actions, each of which is tied to the capability of each robot
to perform such action, which ultimately depends from the components the
agent is provided with. Furthermore an explicit description of the robot past
attempts to perform actions is provided, so that the robot can estimate its
chance of success of fulfilling the user request. This work is tied to the one
presented in this paper as it provides a semantic to model high level actions
of a robot, but it differs as it does not concern with an explicit representation
of the environment, nor with controller generation.

The work done in [13] presents a DSL that allows designers to write in
a structured English grammar the specifications of the robot. The desired
behavior of the robot is specified through a set a of assumptions on the
environment and desired behavior of the agent expressed as conditions be-
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tween events. They however focus on interfacing these high level decisions
with low level modules with a hybrid controller. Explicit description of
other agent behavior, while conceptually achievable through environmental
assumptions, is not an explicit concept as it is in the work presented in this
thesis. Furthermore, they do not handle teams of robots and explicit time.

SPECTRA [28], a specification language for reactive systems. It allows for
modeling of the environment behavior through assumptions and guarantees.
SPECTRA allows to consider discrete LTL specifications, but does not
support reasoning with explicit and continuous time specifications, such as
the one considered in this work.

Finally, in [43] a formalism is proposed which allows, much like the work
in this thesis, to explicitly describe the topology of an environment and tasks
that need to be performed in different locations, expressed as services to be
delivered in certain locations in a certain time range. Multi-robot scheduling
is also included, thus allowing the designer to schedule the movements of
a set of robots having to deliver a set of services in a certain time frame
without interfering with each other movements. This work, while strongly
focused on vehicle routing strategy, does not really allow for representation
of more complex tasks; furthermore, uncontrollable agents are not taken into
consideration.

2.3 Game Models

The idea of generating control strategies by modeling the control problem as
a 2-player game against the environment has been used in many works. In
Sec. 2.3.1 we show papers which take a specific control problem and encode
it in TGAs, with the aim of showing the potential of such technique to solve
control problems. In Sec. 2.3.2 we discuss how TGAs have been used for a
more systematic modeling and planning in works that translate other existing
formalisms into state machines in order to solve them via model checking.

2.3.1 TGAs to encode specific scenarios

In [12] TGAs are used to model a multi-agent game. This work shows the
potential of modeling a strategic problem in an uncontrollable environment as
a timed game. The controller for the specific mission is obtained via dynamic
programming rather than using a general technique such as model checking.

The works in [19] and [7] show how to translate control problems into
TGAs, which are then given as input to UPPAAL-TiGA to automatically
synthesize a controller. The first work presents the solution of a temperature
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control problem, while the second of an embedded system composed of
an oil pump and an accumulator. Expecially [7] focuses on showing how
this technique is indeed effective at solving the control problem, as well as
convenient for the designer. Both these works focus on a low level model of
actuators and sensors, rather than a more high-level strategic scenario.

In [23], a control problem related to the transport domain is modeled as
Priced Timed Game Automata (PTGA) with the purpose of automatically
synthesizing a control strategy using model checking. The model is extended
to include many agents and uncontrollable agents, including explicit temporal
constraints as well, and it is focused, like the contribution presented in this
thesis, on a high-level planning problem.

In all the aforementioned works, while it was showed how TGA allow for
a convenient and automatic synthesis of controllers in different scenarios and
scopes, no effort has been presented in the direction of automatic generation
of the models themselves, as indeed all the models were designed ad-hoc by
the authors. This is however a tedious and time-consuming task that does
not lend itself well to a more systematic use of TGAs and model checking
in order to generate controllers for different missions and scenarios and to
reason on their temporal properties.

2.3.2 TGAs to encode existing formalisms

In [11] TGA are used to encode Simple Temporal Networks with Uncertainty
(STNU). STNU is a data structure for representing and reasoning about
temporal knowledge in domains where some time-points are controlled by
the executor (or agent) while others are controlled by the environment. The
authors first expand the formulation of STNU to more explicitly define
the scenario as a 2-players game between the controllable agents and the
environment. Then, they offer an encoding from the presented formalism
into TGA and prove its correctness. While this work offers an automatic
generation of a TGA starting from a higher level description of the problem,
this is useful to a user looking to solve a problem already encoded into the
STNU formalism rather than offering a framework to solve a problem any
real-life scenario.

In [29] TGAs have been use to encode the formalism of Timeline-based
Planning. This is a paradigm in which the system is expressed as a set of
states and the allowed transitions between those states, the control system
objectives are expressed as values those states should assume in certain
temporal intervals. A limitation of this method is that it does not provide
a explicit definition of action and it differs from the classical action-based
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planning, as it is more declarative and it focuses on actions with uncertain
duration. Other forms of uncertainty, such as non-determinism (i.e., which
tasks the environment chooses to perform), are not supported. This technque
has been applyed for plan generation for a rover tasked with in a space
exploration mission in [8]. The framework presented has been expanded
in [40], where the output timeline-based plan and the state variables of the
system are encoded into TGAs in order allow for planning and validation.
The framework has been further extended in [9], where a general purpose
library is proposed. Finally, in [17] game-like scenarios in which the evolution
of state variables is triggered by either a user or an opponent in a turn-based
mechanic are considered.

This set of works is strongly related to the one presented in this thesis,
as it presents a general framework for automatic generation of both model
and controller. However it suffers from the limitation of using TGAs as
a tool to solve flexible timeline-based planning problems. While for some
scenarios this might be ideal, it also does not take full advantage of the strong
representative power of TGAs for timed games and it requires the designer to
be knowledgeable about this particular formalism for being effectively used.
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Chapter 3

Background

This chapter presents background concepts and formalism. Section 3.1 pro-
vides an overview over the notation of Timed Game Automata. Section 3.3 de-
scribed UPPAAL-TiGA, a key component that will be exploited to synthesize
controllers. Section 3.4 describes the main tools used for the implementation
of the thesis.

3.1 Timed Game Automata

To introduce Timed Game Automata (TGA), we first present quickly the
simplest model of Timed Automata (TA) [2] and then extend it to TGA.

Let χ be a set of clock variables, which are real, positive variables with
values evolving with the same rate as the time. The set C(χ) of clock
constraints over χ contains formula φ generated by the following grammar:

φ := x ∼ c|x− y ∼ c|φ ∧ φ (3.1)

where c ∈ Z, x, y ∈ χ, and ∼∈ {<,≤,=,≥, >}We denote by B(χ) the subset
of C(χ) that uses only rectangular constraints of the form x ∼ c.

A timed automaton (TA) is a tuple A = 〈Σ, χ,Q, I,∆〉, where Σ is a finite
set of actions, χ is a finite set of clocks, and Q is a finite set of states. The
mapping I : Q→ B(χ) associates with each state q ∈ Q an invariant I(q), also
called staying condition. The set of transitions is ∆ ⊆ Q×C(χ)×Σ×2χ×Q.

A transition in ∆, also written q g, l ,r−−−→ q′, specifies the source q and the
target q′ states, the guard g which is a clock constraint to be satisfied when
the transition is executed, the label of the transition l, and the subset of
clocks to be assigned to 0 (r) as effect of the transition. This basic model
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q0 q1

C1 ≤ 4

q2

t1, C1 := 0 t2, C1 ≥ 2

Figure 3.1: Example of a TGA

of TA can be extended to allow state variables with finite values in guards,
invariants, and assignments.

For instance the automaton depicted in Fig. 3.1 is defined as Aex =
〈Σex, χex, Qex, Iex,∆ex〉 where the actions are Σex = {t1, t2}, the clocks
are χex = {C1}, the locations are Qex = {q0, q1, q2}, the invariants are
Iex = {q1

C−→1≤ 2} and the transitions are ∆ex = 〈q1
C1:=0−−−−→ q0, q1

C1≥2−−−→ q2}.
A timed game automaton is a timed automaton A = 〈Σ, χ,Q, I,∆〉 where

the set of actions Σ is split in two disjoint sets: Σc the set of controllable
actions and Σu the set of uncontrollable actions. For instance the automa-
ton depicted in Fig. 3.1 the controllable actions are Σc,ex = {t1}and the
uncontrollable are Σu,ex = {t2}.

The standard semantics of a TA is given in terms of configurations, i.e.,
pairs (q, v) defining the current location of the automaton and the value of all
clocks and variables, where q ∈ Q and v is a function over X ∪ Y assigning
every clock of X with a real and every variable of Y with an integer.

Definition 3.1.1. Given a TGA A and three symbolic configurations Init ,
Safe, and Goal , the reachability control problem or reachability game RG
〈A, Init ,Safe,Goal〉 consists in finding a strategy f s.t. A starting from Init
and supervised by f stays in Safe and enforces Goal . More precisely, a
strategy is a partial mapping f from the set of runs of A starting from Init
to the set Σ ∪ λ. For a finite run ρ, the strategy f(ρ) may say (1) no way to
win if f(ρ) is undefined (2) do nothing, just wait in the last configuration of
ρ if f(ρ) = λ, or (3) execute the discrete, controllable transition labeled by l
in the last configuration of ρ if f(ρ) = l.

A strategy f is state-based or memory-less whenever its result depends
only on the last configuration of the run.

3.2 Timed Computation Tree Logic

UPPAAL properties allow for specifying missions through a BNF-grammar
based on the CTL logic, which also contains “time related" constraints
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(TCTL). Let e be a boolean combination of formulae on variables and clocks
such as, for instance, x ≤ 10 ∧ c1.Done indicating that clock x is less than or
equal to 10 and that component c1 is in location Done. TCTL allows the
specification of properties in the form

• A�e (“for all path globally e holds");

• A♦e (“for all paths finally e holds");

• E�e (“exists a path in which always e holds") and

• E♦e (“exists a path in which finally e holds").

3.3 UPPAL-TiGA

UPPAAL [6] is a toolbox for modeling, simulation and verification of real-time
systems, based on constraint-solving and on-the-fly techniques, developed
jointly by Uppsala University and Aalborg University. UPPAL-TiGA [5]
is part of the UPPAAL toolbox for verification of real-time systems which
provides an algorithm to synthesize controllers.

UPPAAL-TiGA allows the user to generate strategies for input models
specified through a set of Timed Game Automata (3.1), together with winning
and losing conditions specified through TCTL formulae. Given these inputs,
UPPAAL-TiGA allows the user to:

• Test possible runs of the TGA network though the graphical interface.

• Generate a controller, provided ones exists.

• Play the game against the a controller implementing the generated
strategy.

A system of TGA is defined in UPPAAL-TiGA through the following
elements:

• Channels : used to synchronize between transitions; once a channel has
been defined, that channel can be used as synchronization label on
transitions either with the ! (master) or the ? (slave) appendix. Tran-
sitions exhibiting the ! appendix are allowed to trigger the transition,
while transitions exhibiting the ? appendix are only able to synchronize
with that channel, that is, when a transition master to that channel
is triggered, the slave channel will also evolve accordingly. There are
two main types of channels, normal and broadcast. A normal channel
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is used for binary communication; a master transition can only trigger
the evolution when at least one slave transition is also available for
triggering, when the transition is triggered, only one slave transition
will also be triggered. A broadcast channel does not have such blocking
property; a master transition can trigger at any point in time, however
all slave transitions available for triggering will synchronize with it
instead of only one.

• Integer variables: used to store information, they can be updated by
transitions and used in guards.

• clocks: they represent the clocks of the system.

• automata model : they are composed of locations (states in the model
presented in Sec. 3.1) and transitions between those locations. Each
location can be endowed with an identifier and an invariant. An
invariant is a conjunction of conditions of the form x < i or x ≤ i
where x is a clock reference and i evaluates to an integer. If the invariant
isn’t satisfied the system cannot evolve, as such, the invariant forces the
system to leave a state endowed with it within the time limit prescribed
by the condition.

Transitions are defined through one origin location and one target
location, which the transition connects. They can be endowed with the
following labels:

– Synchronization labels: they are used to synchronize between
locations as explained earlier, though the use of channels and the
! and ? appendices.

– Update labels: they assign a new value to either a variable or a
clock.

– Guard labels: they are logical conditions on either variables or
clocks that must hold true in order for the transition to be trig-
gered.

Furthermore, each transition can be set as controllable or uncontrollable.

The UPPAL-TiGA graphical interface, depicted in Figure 3.2, allows
the user to inspect the TGA by running possible evolutions of the system.
The interface allows the user to 1 trigger both controllable and uncontrol-
lable transitions; 2 read the trace of the evolution thus far; 3 inspect the
configuration of the system; It also provides 4 its Gantt chart; and a 5
communication diagram.
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Figure 3.2: screenshot of the UPPAAL-TiGA graphical interface

Plans Generated by UPPAAL-TiGA.

UPPAAL-TiGA supports both reachability and safety games. Given a timed
game automaton A in starting condition init, a set of goal states (win)
and/or a set of bad states (lose), four types of winning conditions can be
issued, which are expressed as a more restricted version of TCTL:

• Pure Reachability
control:A � win (must reach win)

• Strict Reachability with Avoidance
control:A[ not( lose ) U win ] (must reach win and must avoid
lose)

• Weak Reachability with Avoidance
control:A[ not( lose ) W win ] (should reach win and must avoid
lose)

• Purse Safety
control:A � not( lose ) (must avoid lose)

For all of them, the goal is to find a controllable strategy f such that A
supervised by f satisfies the conditions imposed by the formula.
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Once the model of the TGA and the formula representing the winning
conditions, a strategy can be generated using the verifytga executable provided
by UPPAAL-TiGA, though the use of the command:

./verifytga − t0 UPPAAL_model.xml

Where UPPAAL_model is the specific name given to the file containing the
model. A winning strategy generated by UPPAAL-TiGA is composed of a
state: statement for every reachable configuration of the TGA network. A
state: statement is composed as shown in Listing 3.3.

1 State: (automa_states) variables_states:
2 While you’re in (clock_conditions), wait.
3 When you’re in (clock_conditions), take transition transition

Each state: statement could include any number of when you’re in
statements, prescribing different transitions for different clock configurations
in each state. Each transition is reported as which states it connects, as well
as any guards, updates and synchronizations associated with it. All other
transitions that would be triggered due to synchronization are reported as
well. An example of of a generated controller is reported in 4.4.

Furthermore, UPPAAL-TiGA provides the possibility of playing the 2-
player game. In case of successful generation of the winning strategy, the
user will play as the opponent, choosing the uncontrollable transitions to
be triggered, while UPPAAL-TiGA will play the controller according to the
strategy generated. In case the controller generation fails due to UPPAAL-
TiGA not being able to find a strategy to always win, the user in instead
given the role of the controller, choosing the controllable transitions to be
triggered, while UPPAAL-TIGA will trigger the controllable ones, performing
a trace that shows how the controller cannot win. This function is used with
the command:

./verifytga − p UPPAAL_model.xml

3.4 Implementation Tools

In this section we shortly present the main tools used to implement the
contribution.

3.4.1 Xtext

Xtext is an open-source software framework for developing programming
languages and domain-specific languages (DSLs). Unlike standard parser
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generators, Xtext generates not only a parser, but also a class model for
the abstract syntax tree, as well as providing a fully featured, customizable
Eclipse-based IDE.

To specify a language, the developer has to write a grammar in Xtext’s
grammar language. This grammar describes how an Ecore model is derived
from a textual notation. From that definition, a code generator derives an
ANTLR parser and the classes for the object model. Both can be used
independently of Eclipse.

3.4.2 Robot Operating System (ROS)

Robot Operating System (ROS) [42] is robotics middleware (i.e. collection of
software frameworks for robot software development). ROS is an open-source,
meta-operating system for robots. It provides the services such as hardware
abstraction, low-level device control, implementation of commonly-used func-
tionality, message-passing between processes, and package management. It
also provides tools and libraries for obtaining, building, writing, and running
code across multiple computers.

Running sets of ROS-based processes are represented in a graph archi-
tecture. The ROS runtime "graph" is a peer-to-peer network of processes
(potentially distributed across machines) that are loosely coupled using the
ROS communication infrastructure, structured as follows:

• A node is a process that performs computation. Nodes are combined to-
gether into a graph and communicate with one another using streaming
topics.

• Topics are named buses over which nodes exchange messages.

• Communication is handled via the topics: (i) Nodes that are interested
in data subscribe to the relevant topic; (ii) nodes that generate data
publish to the relevant topic. There can be multiple publishers and
subscribers to a topic.

3.4.3 TurtleBot

TurtleBot [15](Figure 3.3) is a personal robot kit with open source software.
TurtleBot was created and developed at Willow Garage by Melonee Wise and
Yully Foote in November 2010. TurtleBot is a robot capable of driving in the
environment and has enough power and skills to preform different actions
and create various types of applications. The TurtleBot kit is composed by
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Figure 3.3: the TurtleBot

a mobile base, 2D/3D distance sensor, laptop computer and the TurtleBot
mounting hardware kit. In addition to the TurtleBot kit, users can download
the TurtleBot SDK from the ROS wiki. TurtleBot is designed to be easy
to buy, build, and assemble, using off the shelf consumer products and
parts that easily can be created from standard materials. As an entry level
mobile robotics platform, TurtleBot has many of the same capabilities of the
company’s larger robotics platforms, like PR2.
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Chapter 4

Contribution

PuRSUE (Planner for RobotS in Uncontrollable Environments) is a frame-
work that allows developers to model robotic applications and to synthesize
controllers for those applications that can be implemented on robots to
achieve a specific mission.

While many control problems can be modeled with PuRSUE, the focus is
on modeling scenarios in which one or more robots move and interact with
both the environment and possibly many uncontrollable agents. The scenarios
that PuRSUE focuses on will be hereafter called Robotic Applications with
Uncontrollable Agents (RAUA applications).

Section 4.1 presents an overview on PuRSUE. Section 4.2 presents the
PuRSUE modeling language that supports developers in the creation of a
RAUA application. Section 4.3 describes the desired format for the interme-
diate TGA that should be obtained from the PuRSUE modeling language.
Section 4.4 describes how the PuRSUE modeling language is translated into
an intermediate TGA. Finally, Section 4.5 describes how the intermediate
TGA can be used to compute a controller that can be used at run-time.

4.1 The PuRSUE Framework

An overview on the PuRSUE Framework is presented in Figure 4.1. PuRSUE
allows designers to tackle the challenges described in Section 1.2. The
framework allows them to model RAUA applications, with real-time time
properties, and generate a controller capable of achieving the specified mission
when deployed on a robot in the environment. PuRSUE is made of a set
of artifacts and automatic procedures, indicated in Fig. 4.1 by means of a
symbol � and a symbol 2, respectively. Specifically, PURSUE relies on the
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Figure 4.1: The PuRSUE Framework.

following artifacts:

• 1 PuRSUE Modelling Language ( PuRSUE-ML ) (Section 4.2). It is a
high level language that easily allows describing RAUA applications.

• 3 Intermediate TGA (Section 4.3). It is an intermediate encoding
of the RAUA application defined through TGA that is tailored to
the creation of a run-time controller. The controller is automatically
obtained from the TGA model by using the UPPAAL-TiGA tool.

• 5 Run-time controller (Section 4.5). It encodes the run-time controller
that is executed by the robot to achieve the mission of interest in the
scenario modeled by means of 1 .

PuRSUE relies on the following automatic procedures:

• 2 PuRSUE Compiler (Section 4.4). It allows the translation of the
PuRSUE-ML model of the RAUA application into a (intermediate)
TGA.

• 4 UPPAAL-TiGA (Section 4.5). It allows the generation of the Run-
time controller from the (intermediate) TGA.
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Figure 4.2: the Drug Delivery example.

4.2 The PuRSUE Modeling Language

The PuRSUE Modeling Language ( PuRSUE-ML ) is a high level modeling
language for RAUA applications. The designer of RAUA applications can
describe the control problem through (i) a series of locations relevant to the
control problem and how they are connected, (ii) the agents interacting in
these locations, (iii) the actions they can perform, (iv) constraints between
those actions and (v) the mission the controllable agents need to achieve. To
present the features of the language, the Drug Delivery scenario (Sec. 1.1) is
used to facilitate the analysis of the motivations and the needs that led to
the design of the language. The physical environment is shown in Figure 4.2
with some additional information that is useful to understand the encoding
in PuRSUE-ML. The PuRSUE-ML description of the scenario is presented
in Listing 4.1. In particular, POIs a, b, c, d are added in Fig. 4.2 to indicate
special positions of the environment where the robot or the uncontrolled agent
can pass through. The rest of the section focuses on the different aspects of
the RAUA application that can be expressed with PuRSUE-ML.
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Listing 4.1– Description for the Drug Delivery example in PuRSUE-ML .

1 //locations
2 poi "medicine"
3 poi "room"
4 poi "door1", "door2", "door3"
5 poi "a", "b", "c", "d"
6
7 //connections
8 connect a and door1 distance 6
9 connect door1 and b distance 13

10 connect b and door2 distance 8
11 connect door2 and c distance 20
12 connect c and door3 distance 7
13 connect door3 and d distance 12
14 connect d and medicine distance 14
15 connect medicine and a distance 14
16
17
18 //events
19 event "giveMedicine1" location

door1 duration 3
20 event "giveMedicine2" location

door2 duration 3
21 event "giveMedicine3" location

door3 duration 3
22 event "takeMedicine" location

medicine duration 2
23 event "confirmDelivery"
24 event "openDoor1" location room

duration 2
25 event "openDoor2" location room

duration 2
26 event "openDoor3" location room

duration 2
27 event "crossRoom" location room

duration 20
28 event "closeDoor1" location door1

duration 2
29 event "closeDoor2" location door2

duration 2
30 event "closeDoor3" location door3

duration 2
31
32 //rules
33 rule "nurseBehaviour" : ((

openDoor1 or openDoor2) or

openDoor3) before crossRoom
34 rule "robotTask" : takeMedicine

before ( ( (giveMedicine1 or
giveMedicine2) or
giveMedicine3 ) before
confirmDelivery)

35
36 //states and dependencies
37 state "door1open": initially false

, true_if openDoor1 false_if
closeDoor1

38 state "door2open": initially false
, true_if openDoor2 false_if
closeDoor2

39 state "door3open": initially false
, true_if openDoor3 false_if
closeDoor3

40
41 stateDependency: giveMedicine1

only_if door1open is_true
42 stateDependency: giveMedicine2

only_if door2open is_true
43 stateDependency: giveMedicine3

only_if door3open is_true
44
45
46 //agents
47 agent "medBot" controllable mobile

1 location a can_do
giveMedicine1, giveMedicine2,
giveMedicine3, takeMedicine,
confirmDelivery

48 agent "nurse" controllable
location room can_do openDoor1
, openDoor2, openDoor3,
crossRoom

49 agent "stretcher" mobile 1
location c can_do closeDoor1,
closeDoor2 ,closeDoor3

50
51 //objectives
52 reach_objective: do

confirmDelivery
53 objective: medBot never_with

stretcher
54
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4.2.1 Environment

The physical environment in which the robotic application is deployed is de-
fined by the user through a series of Points Of Interest (POI) and connections
among these POI.

• POI are used to represent high level physical locations through a textual
representation. They represent locations of the environment that are
relevant for the behavior of the RAUA applications and that can be
occupied by the agents while they move in the environment. They are
generic and designed to identify different types of locations, such as
buildings, rooms, logical areas or (x, y, z) points coordinates, according
to the considered scenarios. Each POI is defined through the keyword
poi as follows:

poi x

Where x is the identifier of the POI.

Table 4.1: POIs for the Drug Delivery case

Name Description

medicine the storage room where the medicine is located

room the emergency room where the nurse is located and
where the medicine should be delivered

door1, door2, door3 the doors where the medBot can go to deliver the
medicine

a, b, c, d virtual points added to better define the topology
of the environment

Example. In 4.1 the locations relevant to the Drug Delivery case are listed
with their respective significance for the modeling of the scenario.

• Connections describe how agents can move among POI, i.e., they
describe physical links that allow agents to move from one POI to
another. They can for instance represent corridors, elevators or any
other sort of physical or logical connection among POI.
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Connections are labeled with a meta information, that is the length
of the path between a pair of POIs, key feature to model scenarios
with real-time concerns. A connection is defined through the use of the
keyword connect, as follows:

connect x and y distance n (unidirectional)?

Where x and y are the two locations to be connected and n is the
distance between them. Connections are bidirectional by default, but
unidirectional connections can also be modeled by adding the keyword
unidirectional at the end of the definition. Here and for the remainder
of this section, the question mark symbol is used to mark optional
keywords in the definition of a construct. While connections must
be textually specified by the user, future extensions may integrate
PuRSUE with graphical interfaces and techniques that map a graphical
representation of the locations to the textual representation provided
by PuRSUE.

Example. In the Drug Delivery case, in Listing 4.1, Lines 7-15 describe in
PuRSUE-ML how these locations are connected.

4.2.2 Events

Events represent atomic behaviors that agents can execute through the usage
of appropriate actuators and that modify the configuration of the environment.
All events are considered to be observable by both the controller and the
opponents. Indeed, as we are interested in generating a controller capable
of selecting an action given the full configuration of the system, we need to
assume for the controller to have full observability of said system.

Every event, in order to be triggered, is associated with an agent that
is able to perform it. In case an event is not associated with any agents in
the environment, e.g. a blackout, a dummy agent with the sole function of
triggering it can be defined with no loss of generality. Events are defined by
means of the keyword event as follows:

event e (collaborative)? (location x)? (duration n)?

The keywords have the following meanings:

• collaborative: it defines an event that requires collaboration between
two agents when triggered. Intuitively, if in the DD scenario, the
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medBot can only fetch a medicine from another agent, e.g., a medicine
dispenser capable of moving through the environment, then the event
representing the “medicine retrieval” has to be modeled as collaborative.
The semantic of collaborative events is better explained in 4.2.5.

• location x: it indicates that the event can only occur when the agent
performing it is in POI x.

• duration n: defines an event modeling a task whose execution requires
n time units. When reasoning on temporal properties, it is very useful
to be able to analyze how the controller generated changes according
to the duration of the events performed by the agents. This allows
the designer to explicitly model events that take the physical agents
some time to perform, e.g.the time to raise the robotic arm and grab a
medicine for the takeMedicine event.

Example. The events relevant to the Drug Delivery case are the ones depicted
in Table 4.2.

Another set of events, related to the movement between through POIs
and connections can be automatically defined by PuRSUE. This is done for
all agents defined by the designer as capable of moving, concept which will
be further explained in 4.2.5. To prevent an agent from moving between two
POIs, PuRSUE-ML includes keyword prevent:

prevent a moving_beween x and y (unidirectional)?

If the keyword unidirectional is used, then the order between x and y
determines the direction that is not allowed.

4.2.3 Rules

Rules allow the user to model constraints in the evolution of the environment
through the description of possible behaviors of its subsystems. The evolution
is expressed in terms of temporal relationships (i.e., precedence) between
events. In other words, rules express any sequence of events that could be
described as a regular expression having as alphabet the set of events of
the system/scenario. In the current implementation, a subset of regular
expressions is used: only the concatenation operator, before) and the (or)
operator are available, as with these two operators we could capture all the
scenarios considered in this work. The reason motivating this design choice
is twofold: (a) regular expressions are a formalism that designers generally
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Table 4.2: Events Relevant to the Drug Delivery case

Name coll. location dur. description

giveMedicine1,
giveMedicine2,
giveMedicine3

7 door1, door2, door3 3 the delivery of
the medicine
on respectivly
table1, table2 or
table3

takeMedicine 7 medicine 3 picking up the
medicine from
the storage room

confirmDelivery 7 7 7 signal that the
medicine has
been delivered

openDoor1,
openDoor2,
openDoor3

7 room 2 the opening of re-
spectively door1,
door2 and door3
(from the emer-
gency room)

crossRoom 7 room 20 a general repre-
sentation of the
nurse being busy
between opening
of doors

closeDoor1,
closeDoor2,
closeDoor3

7 door1, door2, door3 2 the closing of re-
spectively door1,
door2 or door3
(from the out-
side)

know and can easily use; (b) methods to translate regular expressions into
FSA are currently available in the literature. This is very valuable to us, as
in the PuRSUE framework the model as expressed in the PuRSUE-ML will
be translated into a TGA (as shown in Sec. 4.3).

All rules are cyclical, that is once the last action of the rule is completed,
the initial action returns available for triggering. Cyclic rules are useful to
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model several behaviors of the environment which by nature don’t have a
terminal conditions, e.g. you need to pick up coffee before serving it, at which
point you can pick it up again.

Rules are defined by means of the keyword rule as follows:

rule r: rule

Where r is the identifier of the rule, and rule is the regular expression defined
through the aforementioned operators. Some examples of expressions are
here presented:

• Events A, B and C must happen in order:

(A beforeB) before C

or equivalently
A before (B before C)

• Event A must be followed by either event B, C or D

A before (B or (C orD))

or equivalently
A before ((B or C) orD)

Observe that rules have a blocking property on the agents: if an event
is included in a rule but not available for triggering in the current state of
the rule, the event cannot be triggered by any agent. However, rules do
not enforce the triggering of any of the events included in them, as such an
agent could decide to stay indefinitely in any given state thus stalling the
evolution of the system. For instance, rule (A beforeB) before C does not
impose/enforce the eventual triggering of event C, but it only prescribes that,
if C is triggered, then event B must have been triggered earlier than C. The
designer should keep this in mind, to avoid ill-defined scenarios.

To explain why incorrect modeling might derive from the wrong use of
rule, we use a simple scenario: consider a controllable robot that has to
deliver coffee to an uncontrollable human and that the mission of the system
is expressed by means of event takeCoffee that, when triggered, certifies
the winning of the game. Moreover, consider that takeCoffee can only be
triggered by the uncontrollable agent, i.e. the human that takes the coffee. In
such a scenario, the designer might be tempted to set a rule which prescribes
bringCoffee before takeCoffee, expecting the agent human to eventually
trigger the event takeCoffee. However, the agent human could never trigger
the event thus making the game impossible to win.
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Example. In the Drug Delivery case, there are two rules defined. The first
(Line 33) is nurseBehaviour, this rule models how the nurse should do the
event crossRoom, a fake event act to modeling the nurse not being able to
continuously open doors, between any two events of opening doors.

The second rule (Line 34) is robotTask, this rule describes how, in order
to be able to trigger the event confirmDelivery, one of the three events
related to medicine delivery should be performed, and again how in order to
perform this events, the event takeMedicine needs to take place.

4.2.4 States and State Dependencies

States are a modeling construct useful to represent the configuration of some
entities of the environment, either physical or abstract, whose state affects
the overall evolution of the system and changes according to the triggering of
certain events. States are defined using the keyword state, as follows:

state s initially (true/false), true_if e1 ,true , . . . , en,true false_if
e1 ,false , . . . , em,false

where s is the identifier for the state, initially is used to set the ini-
tial condition of the state, either true or false, and e1 ,true , . . . , en,true and
e1 ,false , . . . , em,false are two disjoint sets that identify the events that change
the state of s, respectively, to true or false, during the evolution of the
system. States can trivially be extended beyond the Boolean definition used
in this thesis. However, the Boolean domain turned out to be enough to
capture all the case studies considered in the work.

State dependencies describe the necessary conditions that must hold to
allow certain events to occur. A state dependency is defined through keyword
stateDependency, for any event e and and any Boolean formula exp defined
on state variables, as follows:

stateDependency e only_if exp

Example. In the Drug Delivery case, there are three states defined (Lines 36-
40), describing whether the doors are open or closed, the initial value is false
for all three states, that is, all doors are closed at the beginning of the execution.
The three state dependencies at at Lines 41-44, describing how the medicine
can only be delivered at each POI when the corresponding door is open.

4.2.5 Agents

Agents are used to describe the entities interacting in the environment, whose
behavior is defined by the sequence of actions that they perform over the time.
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The set of the agents contains both controllable and uncontrollable agents.
An agent is controllable when its behavior can be controlled by a controller
that determines the actions it has to perform based on the current system
configuration, encoded as the current state of the state machine representing
the system. An agent is uncontrollable when it spontaneously moves or
performs actions.

Agents are defined using the keyword agent, as follows:

agent a: (controllable)? (mobile sp)? location x (can_do e1, . . . , en)?
(reacts_to e1, . . . , em )?

Where a is the identifier of the agent, and the keywords controllable,
mobile, location,can_do have the following meanings:

• controllable: it is used to define controllable agents, as explained in
the above paragraph.

• mobile sp : It is used to define agents that can move through the user
defined POIs. The mobile keyword must be followed by an integer
sp representing the time in which the agent covers a distance unit as
defined in the connections (4.2.1).

• location x : It defines the initial POI, x, where the agent resides at
the beginning of the execution of the system.

• can_do e1, . . . , en : It defines a set of n events that a certain agent is
able to perform.

• reacts_to e1, . . . , em : It defines a set of m events that a certain agent
enables for collaboration. A collaborative event is an event that requires
the presence of two agents to be triggered. When an event is defined
as collaborative, both agents capable of performing it (can_do) and
agents capable of reacting to it (reacts_to ) should be defined. The
event will be available for triggering when at least one acting and one
reacting agents for that event are in the same POI. If an event is defined
as collaborative but no reacting agents are defined, the event will always
be allowed to be triggered.

Example. In the Drug Delivery case, there are three agents. The two
controllable ones are medBot, representing the robot we wish to control, and
nurse, a nurse that we assume is acting in order to receive the medicine.
MedBot is capable of picking up the medicine (takeMedicine) and delivering
it to one of the three tables (giveMedicine). Nurse is capable of opening the
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Table 4.3: Available Objectives

Name Type Syntax

Reaction safety if e1 then e2 within n
Event Avoidance safety avoid e
Execution reachability do e (after n)?

Positional Avoidance safety a1 never_with a2

three doors. The event crossRoom, emulates the busy work of the nurse, this
combined with the rule nurseBehaviour simulates how the nurse needs to
perform several tasks and can not spend the whole executing time opening
doors. The nurse is not modeled as a mobile agent, as to the end of the model
it is confined to the emergency room. Finally we have one uncontrollable
agent, stretcher. This is a mobile agent that represents a patient being
carried on a stretcher.

4.2.6 Objectives

An objective describes a desired goal or a behavior of the system that the
controlled agents have to achieve. Objectives can be expressed by means of
different constructs, some including the use of real-time constraints. The
semantics of objectives supported by PuRSUE-ML are presented in Table 4.3,
where every safety objective is preceded by the keyword objective: and
every reachability objective is preceded by the keyword reach_objective:.
Their meaning is described hereafter. For any event e, e1, e2:

Reaction : If e1 happens, then event e2 must be triggered within n time
units.

Event Avoidance : e should never happen.

Execution : after n time units from the initial time instance, e must
eventually happen. If the second part of the syntax is omitted, n will
be considered zero.

Positional Avoidance : at no time during the execution agents a1 and a2
can be in the same POI or traveling over the same connection linking
two POIs but towards opposite directions.
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It is possible to expand objectives to include more complex missions for
the controllable agents. This could for instance be done by including the
representation of several patterns. The work in [35] shows a collection of
patters which could be implementable to enrich the representative capabilities
of PuRSUE, this was not done as the missions defined resulted sufficient, in
combination with the other constructs, to represent the scenarios taken into
consideration.

Example. In the Drug Delivery case, the mission is, to deliver the medicine
to the emergency room, while avoiding to obstruct the stretcher. That is,
to manage to trigger the event confirmDelivery while avoiding for agents
stretcher and medBot to ever be in the same location or traveling in opposite
directions between the same two locations. This is translated through the use
of an Execution objective and a Positional Avoidance objective.

4.3 Intermediate TGA

This section elaborates on the design of the automata that are automatically
generated by PuRSUE and used for the the generation of the controller. In
particular, the descriptive model of RAUA applications, that are described
through the PuRSUE-ML, are translated into a network of TGA, that properly
captures all the aspects characterizing the evolution of the modeled scenario
over the time. Therefore, all the aspects that are discussed in Section 4.2 will
be mirrored in the TGA network by means of specific constructs or resources,
such as, for instance, automata, integer values or synchronization channels.

The TGA model has been designed in order to properly model the behavior
of the system and the following assumptions:

• A1: Once an agent is committed to an event, whether it is a movement
or the performing of an event with duration, it cannot do anything else
until that event is completed.

• A2: A collaborative event with or without duration is considered
available for triggering if the following condition is verified: acting and
reacting agent are in the same location. In case of a collaborative event
without duration, the event is considered available for triggering also if
acting and reacting agent are traveling between the two same locations
in opposite directions.

• A3: Once an agent reaches a location, it needs at least one time unit
of inactivity to pass before performing events or movements.
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• A4: give priority to events performed by uncontrollable agents over
events performed by controllable ones.

A1 represents the assumption that events are atomic components of the
system modeled, in order to allow an agent to interrupt during the execution
of an event or a movement, the designer should define more events or POIs,
thus changing the granularity of the model.

We consider A2 to be a reasonable assumption, it is up to the designer
to keep this in mind, when defining the system. It is also reasonable to
assume that two agents traveling in different directions between the same
two locations will meet at some point, it is again important that the designer
keeps in mind how this mechanic works when modeling the scenario. A3
is a very important assumption for our model, as without it, due to A4,
uncontrollable agents could avoid cooperative events, at a model level, by
spending zero time at any given location. It is also a reasonable assumption,
as any agent occupying a physical space will need a finite amount of time
to cross it and/or start any task in it. A4 is necessary in order to provide
robustness to the plans, it would not be recommendable to deploy a plan
which capability to meet the mission requirements relays on acting before an
opposing agent when the system constraints would allow both agents to act.
The fulfillment of A4 depends on the model checked selected to generate the
controller (Sec. 4.5).

The final network of TGA representing a RAUA application is composed
of the following automata:

• State automaton (Section 4.3.2): it performs the update of the variables
related to the states. The state automaton is composed by one state
and a series of transitions performing the necessary variable updates.

• Rule automata (Section 4.3.3): the automata representing the rules, as
defined in PuRSUE-ML. A rule automaton is composed of transitions
labeled by the events that occur in the rule. A rule automaton associated
with a rule can only accept a sequence of events as accepted by the
rule. The synchronization of this automaton with the system ensures
that the whole system can only evolve through patterns accepted by
said rule.

• Agent automata (Section 4.3.4): the automata representing the agents
of the system. An agent automaton is composed of a location for every
POI in which the agent can move and locations representing the agent
being busy performing certain events or movements.

50



• Objective automata (Section 4.3.5): the automata that, together with
the automatically generated logic formula, defines the mission of the
system. An objective automaton composition depends on the specific
mission being represented.

Implementation of Extended Broadcast Channels in UPPAAL-TiGA.

The channels as offered by UPPAAL-TiGA do not provide the feature of both
having blocking capability, as do normal channels, and allowing synchroniza-
tion between more than two automata, as do broadcast channels. We wish
have both these features, e.g. to have an event e, that can be triggered by
automaton Am (Master), only when the event is available for triggering in
both As1 and As2 (Blocking Slaves), and when the event e is triggered, both
As1 and As2 should evolve accordingly. To do so, we declare the channel e as
broadcast; we then endow a transition in Am with the label e! thus allowing
the automaton to trigger the transition, and endow transitions in As1 and
As2 with the e? label; as such, when Am triggers the transition, the transition
will also be triggered in As1 and As2. Furthermore, guards are set on the
transition in Am, so that the transition can only be triggered when As1 and
As2 are both in a location from which they can trigger a transition labeled
with e?. This ensures that Am can only trigger the transition labeled with e!
only when all the automata containing a transition labeled e? are available
to be slaves to that transition, thus effectively implementing the blocking
property of normal channels. Furthermore, it is still possible to define further
automata that synchronize with the channel by do not block its execution
simply by not implementing said guard (Simple Slaves).

4.3.1 Variables declaration

To correctly model the evolution of the environment, i.e. the coordinated
evolution of all the automata modeling the interaction of the agents in the en-
vironment, the network of TGA is endowed with integer variables, clocks and
channels that are use to model the progress of the agents performing actions in
the environment, the time elapsing with respect to relevant events occurring
in the environment and the coordinated evolution of two, or more, automata
on the occurrence of certain events in the environment. The declaration of
said variables for the Drug Delivery case is reported in Listing 4.2.
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Listing 4.2– Variable declaration for the Drug Delivery case
//events

//movements
broadcast chan medBot_a2door1, medBot_door12a, medBot_door12b,

medBot_b2door1, medBot_b2door2, medBot_door22b, medBot_door22c,
medBot_c2door2, medBot_c2door3, medBot_door32c, medBot_door32d,
medBot_d2door3, medBot_d2medicine, medBot_medicine2d,
medBot_medicine2a, medBot_a2medicine, stretcher_a2door1,
stretcher_door12a, stretcher_door12b, stretcher_b2door1,
stretcher_b2door2, stretcher_door22b, stretcher_door22c,
stretcher_c2door2, stretcher_c2door3, stretcher_door32c,
stretcher_door32d, stretcher_d2door3, stretcher_d2medicine,
stretcher_medicine2d, stretcher_medicine2a, stretcher_a2medicine ;

//actions
broadcast chan giveMedicine1, giveMedicine1DONE , giveMedicine2,

giveMedicine2DONE , giveMedicine3, giveMedicine3DONE , takeMedicine,
takeMedicineDONE , bumpInto, confirmDelivery, openDoor1,

openDoor1DONE , openDoor2, openDoor2DONE , openDoor3, openDoor3DONE
, crossRoom, crossRoomDONE , closeDoor1, closeDoor1DONE , closeDoor2
, closeDoor2DONE , closeDoor3, closeDoor3DONE ;

int PnurseBehaviour=0, ProbotTask=0;

//Agents
clock CmedBot, Cnurse, Cstretcher;
int PmedBot=6, Pnurse=2, Pstretcher=8;
int Sdoor1open=0, Sdoor2open=0, Sdoor3open=0;

The elements generated are now presented.

Channels.

Channels model the movement of an agent from a POI to another one and to
model the occurrence of an event of the environment. Channels are necessary
to represent events happening in the system, thus allowing for synchronization
between automata in the model, as well as representing the triggering of an
event in the run-time architecture when the transition is sent to the robot as
an execution choice by the controller.

• For any pair of connected POI x and y and for all the agents a in the
environment defined with the keyword mobile, two broadcast channels
called a_y2x and a_y2x are introduced. The semantics of a synchro-
nization event occurring through such channels is that “agent a begins
the moving from location x to location y” or vice versa.
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• For every event e, a broadcast channel called e is introduced. The
semantics of a synchronization event occurring through such channels
is that “ the execution of event e has started”. Furthermore, for every
event e defined with the keyword duration, a channel called eDONE is
introduced as well. The semantics of a synchronization event occurring
through such channels is that “ the execution of event e has ended”.
When an event with duration is triggered, the triggering agent will go
to through the triggering of e in a location marking it as busy, and will
be allowed to leave such location after the appropriate time through
the triggering of eDONE.

Example. Channel medBot_a2door1 is triggered anytime agent medBot starts
moving from POI a to POI door1. Channel giveMedicine1 is triggered when-
ever an agent starts performing the event giveMedicine1, while giveMedicine1DONE
is triggered when the agent is done performing it.

Clocks.

For every agent a in the environment a clock Ca is introduced. Clock Ca is
used to keep track of the time elapsed from the beginning of a movement or
an event execution of agent a, and it is reset every time a new movement or
event is executed.

Moreover, for every objective including real-time constraints o, as defined
in Sec. 4.2.6, a clock Cobj is introduced. Clock Cobj is used to keep track of
the passing of time and it is reset according to the dependency of the specific
mission on time, as presented in Sec. 4.3. How these resets are handled is
explained for each objective construct in Sec. 4.3.5.

Example. Clocks Cmed, Cnurse and Cstretcher are used to keep track
respectively of the three agents. No clock is declared for the objectives.

Integer variables.

They are used to model collaboration among agents and the implementation
of extended broadcast channels as explained in 4.3.

• For every rule r in the set a rule state variable Pr is introduced. The
value of Pr ranges over a finite domain {0, . . . ,Mr − 1} of integers,
where Mr is the number of locations of the automaton representing rule
r and every location q of the rule is associated with an integer h(q) = i.
This allows to have global variables keep track of the evolution of every
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rule automaton. These variables are then used to ensure that agents
only evolve through sequences of events allowed by the rules.

• For every agent a, an integer Pa is introduced. Value Pa is set to a
unique identifier defined internally every time agent a reaches a POI,
starts a movement between two connected POIs or is busy performing
an event at a certain POI. Let P be the set of POIs in the scenario.
Every POI is associated with an Integer in the domain {1,Ml}, where
Ml is the cardinality |P | of set P . For every p ∈ P , let l(p) be the
integer value associated with p. We now define operator ◦: given two
integer values n and m, the value n ◦m is equal to n × 10 + m, e.g.
1 ◦ 3 = 13, 3 ◦ 1 = 31. The value of Pa is defined as follows:

– When agent a is in POI p not performing an event, then Pa is set
to l(p).

– When agent a is performing an event in POI p then Pa is set to
−l(p) ◦ l(p).

– When agent a is moving from POI p to p′ then Pa = −l(p) ◦ l(p′);
whereas if a moving from POI p′ to p then Pa = −l(p′) ◦ l(p).

These variables allow the system to keep track of where agents are
and whether they are busy or not, this information is then used to set
appropriate guards to implement collaboration.

Example. PmedBot is the variable associated with the location of medBot.
When it is set to 3, it means medBot is at door1, if it is set to −33, it means
it is busy in door1, if it is set to −36, it means medBot is going from door1
to a, if it is set to −64, it means medBot is going from a to door1.

• For every state s, an integer Ss is introduced. The value of Ss can be
either 0 or 1, and is updated according to the logic defined by the user
through PuRSUE-ML as explained in sect. 4.2.4. Conditions are then
set on these variables to implement State Dependencies. The decision
to implement this value as an Integer and not as a Boolean is dictated
by the fact that states could be easily expanded to include any number
of values.

Example. Variable Sdoor1open is associated with the state of door1, which
can be open or close. Its value is set to 0 when event closeDoor1 is triggered,
and to 1 when openDoor1 is triggered.
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et?, s := 1

ef?, s := 0

Figure 4.3: State automaton with two transitions updating the value of a
state s.

4.3.2 State Automaton

A state automaton manages the updates of the values of the state variables
throughout the evolution of the environment over time. To this end, for every
RAUA application only one state automaton is introduced. By definition,
every state s defined in the environment is associated with two sets of events
Etrue and Efalse that determine a modification of its value (see Sec. 4.2.4).
The state automaton has only one location. Moreover, for every state s, the
state automaton is endowed with two transitions, one for each element of
Etrue and Efalse . In particular, a transition is labeled with a synchronization
guard ei ,true? and assignment Ss = 1 for every element of set Etrue ; one is
labeled with a synchronization guard ei ,false? and assignment Ss = 0 for every
element of set Efalse . If the same event is tied to the change of value of
several state constructs, only one transition per event is kept and an update
(according to the previously explained logic) is added for each state the event
is associated with. This allows us to update the value of the states whenever
the corresponding event is triggered by any agent. Figure 4.3 exemplifies the
case of a state s of the form (0, {et}, {ef}). In case event e has a duration,
the event eDONE is used instead, as we assume that the effect of a durable
event on the environment is determined at its conclusion.

Example. The state automaton for the DD exapmple is depicted in Fig. 4.4.
Once the event openDoor1DONE is triggered, the variable Sdoor1open is set to
1, while if closeDoor1DONE is triggered, the same variable is set to 0. This
in turn allows us to set conditions making it possible to trigger the event
giveMedicine1’ only when Sdoor1open is set to 1,that is, when the event
openDoor1 was the last one triggered of the two, so we assume the door to be
open.
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openDoor1DONE?, sdoor1open := 1

closeDoor1DONE?, sdoor1open := 0

openDoor2DONE?, sdoor2open := 1

closeDoor2DONE?, sdoor2open := 0

openDoor3DONE?, sdoor3open := 1

closeDoor3DONE?, sdoor3open := 0

Figure 4.4: Example of a state automaton for the Drug Delivery case

4.3.3 Rules Automata

A rule automaton represents a single rule operating in the environment. Since
a rule expresses a constraint on a subset of events of the environment, a rule
automaton simply determines the set of allowed sequences of events described
by the associated rule. For this reason, a rule automaton does not use clocks
and location invariants, as no real-time constraints are encoded in the rules.
A rule automaton can be built piecewisely. Two are the patterns allowed to
appear in a rule and each one is translated into a suitable sub-automaton
that can be combined piecewisely with others to capture the whole rule.
Every rule r is of the form (a before b) or (a or b) where a and b can be
either an event e or recursively a rule r1. We will refer to as “union” of two
locations l1 and l2 when two locations are replaced by a one, l3, having as
incoming transitions all the incoming transitions to l1 and l2 and, as out
coming transitions, all the outcoming transitions of l1 and l2.

• An event e is translated by means of a transition, labeled with e, which
connects two locations l0 and l1. We call l0 and l1 as “initial” and “final”
location, respectively.

• r1 before r2 is defined through the union of the final location of r1 and
the initial location of r2 (Fig. 4.5)

• r1 or r2 is defined through the union of the initial locations of r1 and
r2, and the union of final locations of r1 and r2 (Fig. 4.6)

Every rule is cyclic. This means that once the last event accepted by
the rule has been triggered, the first one returns available for triggering. To
implement such a behavior, after the rule is composed as explained, a union
is performed between the final and initial locations of the rule.
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l0 l1 l2
e1 e2

Figure 4.5: Automaton representing the statement “e1 before e2”

l0 l1

e1

e2

Figure 4.6: Automaton representing the statement “e1 or e2”

Furthermore, every rule r is associated with an integer Pr as explained in
4.3.1. Pr is assigned an integer value uniquely associated with every location
of the rule, so every location q of the rule is associated with an integer
h(q) = i, as such it is possible to define guards on agent automata based
on the location of a rule automaton. These values are assigned by PuRSUE
at design time and depend on the order of declaration of the locations, the
initial location being always 0.

Events with duration ed, defined with the keyword duration, used to
model events that take a finite amount of time units for the agent to perform,
can be included in rules as well. PuRSUE will automatically implement it as:

ed before ed,DONE

The rule automaton so implemented will synchronize with channels of both
beginning and end of ed. This ensures that, if a designer defines a rule
prescribing that picking up the coffee, event with a finite duration, happens
before serving the coffee, the event of serving the coffee becomes available
after the transition related to the ending of picking up the coffee (ed,DONE )
has been fired.

Example. The automaton representing the rule robotTask, can be seen in
Figure 4.7, where the labels are instantiated as follows: regarding synchroniza-
tion labels, e1 is takeMedicine, e2 is giveMedicine1, e3 is giveMedicine2,
e4 is giveMedicine3, e5 is confirmDelivery, while completion events (e.g.
takeMedicineDONE) are instantiated as ei ,D (e.g. e1 ,D). Regarding update
labels, u0 is ProbotTask := 0, u1 is ProbotTask := 1, u2 is ProbotTask := 2,
u3isProbotTask := 3, u4 is ProbotTask := 4, u5 is ProbotTask := 5 and u6 is
ProbotTask := 6.

The automaton allows one of the three giveMedicine events only once
the event takeMedicine has been completed. Since the takeMedicine events

57



e1?, u1 e1 ,D?, u2

e2?, u3 e2 ,D?, u6

e4?, u5 a4 ,D?, u6

e3?, u4 e3 ,D?, u6

e5?, u0

Figure 4.7: Automaton representing the rule robotTask

have a duration, their are modeled as two consecutive events, takeMedicine
and takeMedicineDONE for each one of them. In the same way, the event
confirmDelivery can only be triggered once one of the threegiveMedicine
has been completed. Once confirmDelivery is triggered, we can see how Pr
is set back to 0, value always corresponding to the initial position of the rule.
Pr is then set to 1 when the first transition is triggered and so on, always
keeping track of the automaton state.

4.3.4 Agent Automata

An agent automaton represents an agent in the environment.
For any agent a, the corresponding automaton is composed by several

elements that model the following aspects: (i) the position of a, if a is idle,
(ii) the act of motion of a or the act of performing of an event and (iii) whether
a is capable of triggering a certain event or not, according to the constraints
defined by the user.

These aspects are modeled through these portions of the agent automata:

• POI locations: they model the presence of an agent in a certain POI
of the environment and that the agent resides there for a non null period
of time. If an agent is “mobile” (i.e., it is defined by using keyword
mobile of PuRSUE-ML) then for every POI x in the environment, the
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x
rc, up gc0 , up′

Figure 4.8: POI location with one incoming and one outgoing transition

corresponding POI location x is introduced in the set of locations of
the automaton. Otherwise, the automaton for an agent that is not
defined with the keyword mobile only contains the unique POI location
identified with the keyword location.

As already discussed in Sec. 4.2.1, every POI is an abstraction of a
physical space in a realistic world that has no geometric characteriza-
tion and dimension. However, modeling realistic behavior of agents
requires an assumption on the physical space occupied by the POI. This
assumption entails that an agent passing through a POI, while moving
towards another position, takes at least a certain positive amount of
time, being every POI associated with a physical location with non null
size.

For this reason, all incoming transitions resets the clock Ca (rc), and
all outgoing transitions have a guard requiring Ca > 1 (gc0 ), which will
be referred to from now on as “base clock guard”. This is to ensure
that the system maintains a physically feasible behavior. This might
happen due to the fact that uncontrollable agents are assumed to
have the possibility to always act first when both a controllable and
uncontrollable transitions are available; as such, an uncontrollable agent
could move to the same POI of a controllable one and immediately
move to another location, not allowing the controllable agent to trigger
any collaborative event in the meantime, which is a clearly unfeasible
behavior.

Every transition updates the value of Pa according to the system
explained in 4.3.1. All incoming transition to a location x sets Pa = l(x)
(up). An outgoing transition going to the movement location modeling
the movement from x to y sets Pa = −l(x) ◦ l(y) (up′). he resulting
automaton is reported in Fig 4.8.

Example. In Figure 4.9, a snippet of the automaton representing the location
a agent medBot is presented, considering its connection to the movement
location towards door1. The incoming transitions set the value of PmedBot to
l(a) = 6, as l(a) = 6 and resets the clock. The outgoing transition present the
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a

PmedBot := 3
CmedBot := 0

PmedBot := −63
CmedBot > 1

Figure 4.9: example of a POI location of agent turtleBot

guard gc0, and it set the value of PmedBot to −63, as the movement location
is towards door1, location associated with value 3 (i.e. l(door1) = 3).

• Movement locations: these locations represent the robot being in
the act of moving from one POI to another. Given two connected
POIs x and y, the two corresponding movement locations generated
are respectively going_x_to_y and going_y_to_x. Every agent set as
mobile will have two movement locations per every connection defined
in the PuRSUE-ML. For the location going_x_to_y, the incoming
transition is labeled with the synchronization a_x2y! (ax,y!), while
the incoming transition into the location named going_y_to_x, the
transition will be labeled a_y2x! (ay,x!). The timing of the movement
needs to be modeled, as this allows the designer to reason on different
solutions depending on different topologies of the environment and
speeds of the robots.

Given a mobile agent with speed sp ( the speed parameters is defined as
the amount of time units neccessary to cover a distance unit as discussed
in Sec. 4.2.5) and two locations of distance dist , the movement between
them is handled as follows.

Upon entering a movement location, the clock Ca is reset (rc), the
location has the invariant Ca ≤ (sp × dist) + 1 (invmov), and the
transition going from the movement location to the target location has
a “movement duration guard” gdm, defined as Ca > sp× dist.
This ensures that the agent will spend no less than int × distance
and no more than (int× distance) + 1. The time unit is considered a
reasonable margin as it is the smallest unit of time that the model can
handle.

Furthermore, all transitions coming from a POI location have the
clock base guard gc0 For each of the two locations, the transition
updates the value of Pa according to the system explained in 4.3.1.
The incoming transition sets Pa := −l(x) ◦ l(y), value corresponding
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x

going_x_to_y
invmov

going_y_to_x
invmov

y

ax,y!, rc
upx,y

, gc0

gdm, upx

gdm, upy

ay,x!, rc
upy,x

, gc0

Figure 4.10: a couple of movement locations associated to a single connection
POIs

to the movement location between x and y(upx,y), the same happens
for the other movement location, where Pa := g = −l(y) ◦ −(x) (upy,x).
The outgoing transition from the movement locations set Pa =: l(x)
(upx) and Pa := l(y) (upy). This is to update Pa to the value of the
corresponding POI.

a general example is shown in Fig 4.10.

Example. Taking into consideration the movement locations between a (x)
and door1 (y) , for agent medBot the labels in Figure 4.10 are instantiated as
follows: m! is medBot_a2door1!, m′! is medBot_door12a!, the guards gdm
are mathttCmedBot > 6 while the invariant invmov is CmedBot ≤ 7; upxy is
PmedBot := −63, upy,x is PmedBot := −36, upx is PmedBot := 6 and upy is
PmedBot := 3.

• Durable events locations: they model when an agent is busy per-
forming a certain event, as well as whether an event is availible for
triggering in the current state of the agent automaton.

As discussed in Sec. 4.2.5, an agent a can perform event e, in the
definition of a, event e is declared after the keyword can_do. If e is
defined as POI specific, using the keyword location followed by POI x,
e is only available for triggering when the automaton is at the location
corresponding to x, otherwise it will available at all POI locations.

For every POI x in which the agent can perform event e, if the event
is defined with a duration of n time units, a durable event location is
defined with name doing_e_in_x, always having one incoming transi-

61



tion from the POI location and one outgoing back to the same POI
location.

The timing of the duration is handled like the timing of movements.
The clock is reset upon entering the durable event location (rc), the
invariant Ca ≤ n+ 1 (invev) checks that the agent does not stay in the
durable event location longer than the defined duration of the event
plus one time unit, and the “event duration guard” gde defined as Ca > n
ensures that it does not stay less than n time units, thus effectively
modeling the passing of n time units while the agent is busy performing
the event.

The transition going from the POI location to the durable event location
is endowed with an “event guard” ge,x, defined as ge,x = gs ∧ gcoll,x ∧
gr ∧ gc0, where gs, gcoll,x, gr and gc0 are respectively defined as follows:

– gs, state dependency guard: in case e is associated with a state
dependency, a guard is added checking whether this condition on
the state is respected in order to trigger the event. For instance,
if the event can only be triggered if state s is set to true, a
guard Ss == 1 is be added, if he event can only be triggered if
state s is set to false, a guard Ss == 0 is be added instead. In
case several state dependencies s1, . . . , sm are tied to the same
event, the state dependency guard will be composed as follows:
gs = gs1 ∧ gs2 · · · ∧ gsm ; this models how all the state dependencies
must be satisfied in order for the event to be triggered.

– gcoll,x, collaboration guard: in case e is defined as collaborative
through the use of the keyword collaborative, a guard checking
for the presence of at least one reacting agent in the current POI
x is also introduced (reacting agent for e being an agent that
is defined with e in its reacts_to set ). For instance, if event
e is a collaborative event which can be performed by agent a
and agent b is a reacting agent for it, the guard Pb == l(x) is
added to the transition going from a POI x location to the durable
event location. In case several agents b1, . . . , bm are defined as
reacting to event e, the collaboration guard will be composed as
gcoll,x = gcollb1 ,x ∨ gcollb2 ,x · · · ∨ gcollbm ,x , thus modeling how it is
sufficient for one agent to be present for the event to be triggered.

– gr, rule guard: in case e is included in a rule r, a guard is is
introduced ensuring that the automaton associated with r is in a
location where e can be triggered. In case event e is included in
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x
doing_e_in_x

invev

e!, rc, up′x , ge,x

eDONE !, ge′ , upx

Figure 4.11: A durable event location, modeling agent a performing e in POI
x

several rules r1, . . . , rm, the rule guard will be composed as follows:
gr = gr1 ∧ gr2 · · · ∧ grm ; this models how all the guards must be
satisfied in order for the event to be triggered.

– gc0 clock base guard: as for every transition outcoming from any
POI location, the guard Ca > 1 is added.

The transition going from the durable event location to the POI location
is endowed with a guard (ge′) defined as ge′ = gr ∧ gde, where gr and
gde are the rule and duration event guards previously defined.

The value of Pa is updated according to the system explained in 4.3.1.
The transition going from the POI location x to the durable event loca-
tion will have the update Pa := −l(x) ◦ l(x) (up′x), while the transition
going to the POI location will have the update Pa := l(x) (upx).

Finally, the transition from the POI location to the durable event
location has the synchronization label e!, while the transition going
from the durable event location to the POI location is labeled eDONE ! .
In the UPPAAL-TiGA semantics, once a channel is defined (4.3.1), only
the transitions labeled with the ! symbol are capable of triggering its
transitions, while the ones labeled with the ? appendix must synchronize
with the transition if it is available. Only agents have transitions labeled
with the ! appendix, as such, only agents are capable of triggering
transitions.

a general example is shown in Fig 4.11.

Example. In Figure 4.12, we focus on the location modeling the performing
of event giveMedicine1 in location door1 for agent medBot. The incoming
transition has the guards “ProbotTask==2", to ensure synchronization with
the corresponding rule, and “Sdoor1==1", so to allow the triggering of the
event only when the state “door1" is set to 1.
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door1
doing_giveMedicine1_in_door1

CmedBot ≤ 4

giveMedicine1!, CmedBot := 0, PmedBot := −33
Sdoor1open == 1 && ProbotTask == 2 && CmedBot > 1

giveMedicine1DONE !, PmedBot := 3
ProbotTask == 2 && CmedBot > 3

Figure 4.12: example of a durable evetn location for agent turtleBot

• Instantaneous events self-loops: they model whether an event that
has a null duration, i.e. that is defined with no use of keyword duration,
is available for triggering in the current state of the automaton.

As for events with duration, If e is defined as POI specific, using the
keyword location followed by POI x, e is only available for triggering
when the automaton is at the location corresponding to x, otherwise it
will available at all POI locations. Unlike events with duration, non-
location specific instantaneous events are also available for triggering in
movement locations, that is, while performing movement. This models
the assumption that the agent does not need to stop a movement to
perform an instantaneous event.

The guards on the self-loop related to the instantaneous event e in
location x are identical to the ones on the transition going from a POI
location to a durable event location. The event guard ge,x is defined as
ge,x = gs ∧ gcoll ,x ∧ gr ∧ gc0 , where gs, gcoll,x, gr and gc0 are as defined
in the previous point. Furthermore, as for every transition incoming
in a POI location, they present the clock reset (rc), for the reasons
explained earlier.

The guards on the self-loop related to the instantaneous event e in a
transitional location present some differences. The movement event
guard ge,x,y is defined as ge,x,y = gs ∧ gcoll,x,y ∧ gr, where gs, gr and are
as defined in the previous point, while gcoll,x,y, in case of a movement
between POI x and y, is defined as Pb == −l(y) ◦ l(x), b being an
agent reacting to event e. This models, according the the positioning
rules as defined in 4.3.1, how for collaboration to take place during a
movement, the two agents need to be moving between two POIs in
different directions. This modeling choice is done under the assumption
that the two agents, moving along the same path between two POIs
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but with opposite directions, will surely meet at some point during the
transition. Furthermore, the guard gc0 is missing, as the assumption
that the base clock guard is design to model is reserved to POI locations.

Finally, these transitions perform no updates to Pa . This is because
self-loops do not change the location of the automaton.

A general example of a instantaneous event-self loop in a POI location
Fig 4.13a, while Fig. 4.13b represents a instantaneous event self-loop
on a movement location, where labels not directly related to the instan-
taneous event-self loops have been removed for simplicity.

It is to be observed that, by construction, the transition exemplified in
Fig. 4.13b does not enforce any check on the number of times event e
might be triggered at any time instance, as there are no clock guards
on it. This means that event e, without any additional guards, could
be triggered an infinite amount of times without any time passing, thus
blocking the evolution of the system. As such, the designer should
be careful to introduce appropriate rules to ensure that this does not
happen, or that the instantaneous event is a terminal condition for the
scenario.

For example, let an event beep be introduced, instantaneous event mod-
eling the robot emitting a noise, not location specific and not included
in any rule, and let this event being assigned to an uncontrollable agent
b; in case of a reachability type of mission (e.g. controller must execute
event e ), a valid strategy for b to stop the controller from winning
would be to go into a movement location and trigger beep an infinite
amount of times, never letting time pass and effectvly stopping the
controller from ever triggering e. This can be solved by either making
beep location specific, or by introducing it into a rule that binds its
execution with other, non-instantaneous, events e.g. “chargeBeeper
before beep".

Example. Figures 4.14b and 4.14a represent two instantaneous event self-
loops as instantiated in the automa representing medBot. Event confirmDelivery
is present on both POI locations and movement locations, as it is not defined
as location specific nor with a duration. The guards only include the rule guard
gr, as the event is not included in state dependencies nor is it collaborative.

Finally, in case the agent is not defined as controllable, the model generated
is identical, however all the transitions will be set as uncontrollable.

65



x

e!, rc, ge

(a) Self-loop on location x dealing with the occurrence of an instantaneous event e
in location x

x

going_x_to_y

y

e!, ge,x,y

(b) Self-loop dealing with the occurrence of istantaneus event e in a movement
location between x and y

a

confirmDelivery!, CmedBot := 0
ProbotTask == 6 && CmedBot > 1

(a) example of a self-loop in location a for agent medBot

a

going_a_to_door1

door1

confirmDelivery!
ProbotTask == 6

(b) example of a self-loop in a transitional location for agent medBot
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In order to have all agents behave accordingly to all the rules defined,
a synchronization between several agents is needed, feature which is not
availible in UPPAAL-TiGA.

As explained in 4.3, we could circumvent this problem by implementing
ourselves the construct, indeed the guards as defined in the previous sections
defined agents as masters of extended broadcast channels, rules as blocking
slaves and state automaton and objective automata (which we discuss in 4.3.5)
as simple slaves.

4.3.5 Objective Automata

An objective automaton implements an (objective) element of the kind
Reaction, Event Avoidance and Execution (see Sec. 4.2.6).

Every automaton is mission specific as it depends on the objective it
represents. The objective of the kind Positional Avoidance is encoded through
a formula alone instead of an automaton.

The mission in a scenario is modeled by using a specific temporal formula
that includes the objective formulae and that constraints the executions of
the corresponding objective automata.

As with the state automaton (Sec. 4.3.2), since events included in the
objective definition might be instantaneous or durable, in the following
constructions if an event e is instantaneous then the considered label is e?,
otherwise it is eDONE? (the effect of a durable event on the environment is
determined at its conclusion).

The available missions in PuRSUE are the ones presented in Table 4.3:

• Reaction : it models the mission that, in case event e1 is triggered, event
e2 must be triggered within n time units. It is translated by means of
three locations idle, atRisk, lose and three transitions, one going from
idle to atRisk labeled e1?, one going from atRisk to idle labeled e2?
and one going from atRisk to lose. When the automaton is in state idle,
it means that e1 hasn’t been triggered, when the automaton is in atRisk,
it means that e1 has been triggered and the system should act in order
to trigger e2 before n time units have passed, finally if the automaton
is in state lose it means that e2 has not been triggered in time and the
controller lost the game. Moreover, the automaton is equipped with a
clock Cobj that is used to measure the time elapsing between e1 and e2.
The clock Cobj is set to zero when the automaton moves from idle to
atRisk (uc). The invariant Cobj ≤ n (inv) of location atRisk ensures
that not more than n time units pass between the triggering of e1 and
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that of e2, hence e2 is a proper reaction to e1 occurring by n time
units; otherwise, the automaton evolves to the lose location, capturing
a wrong execution such that the reaction to e1 has not been triggered
on time. The automa is depicted in Fig. 4.15. This is combined with
a formula prescribing the avoidance of location lose, in order to fully
represent the mission.

• Event Avoidance: it models the mission of avoiding, at any time, the
triggering of event e. It is translated by means of two locations, idle
and lose, and a transition going from one to the other, labeled e?. The
automaton is in location idle from the beginning of the execution, if
the automaton is in location lose, it means the controller has lost the
game. The automaton will go to location lose if e is triggered at any
moment, thus capturing a wrong execution such that event e has been
triggered. The automata is depicted in Fig: 4.16. This is combined
with a formula prescribing the avoidance of location lose, in order to
fully represent the mission.

• Execution: It models the mission of executing event e, after at least n
time units have passed. the automaton is translated by means of thee
locations, initialLocation, idle, win, and two transitions, one going
from initialLocation to idle, and one going from idle to win, labeled
with e. The automaton is in location initialLocation at the beginning
of the execution, in this location the triggering of e will not result in
reaching location win. When it is in idle, a triggering of e will result in
the transition to location win. Finally, if the automaton is in location
win, it means the controller has won the game. Furthermore a guard
defined as CexeObj > n is set on the first transition, ensuring that at least
n time units pass before the event can be triggered to reach location
win. The automata is depicted in Fig. 4.17. In case no time units have
been defined by the user, the automaton will be translated only in the
two locations idle and win. It evolves with the same mechanisms just
explained, having as starting location idle. This is combined with a
formula prescribing to reach location win, in order to fully represent
the mission.

• Positional Avoidance: it models the mission of two agents , a1 and a2,
never being in the same POI or traveling over the same connection
linking two POIs but towards opposite directions. It is translated by
prescribing in the logic formula that, for every POI x, if a1 is in x, a2
can not be in x or in any durable event location directly connected
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idle atRisk

inv

lose
e1?, uc

e2?

Figure 4.15: Automaton representing the Reaction mission.

idle lose
e?

Figure 4.16: Automaton representing the Avoidance mission.

to x, that is, performing an event in x. Furthermore, for any pair of
connected POIs x and y, if a1 is in the movement location between
POI x and y, a2 can not be in the movement location between y and x.

Example. Figure 4.18 represents the execution objective defined for the Drug
Delivery case. The automaton will evolve into the location win when the event
confirmDelivery is triggered. Furthermore, it needs be prescirbed in the logic
formula to reach location win. To model the positional avoidance objective,
it is coded into the logic formula that the two agents can never be in the same
POI at the same time. The resuting formula is depicted in Listing 4.3.

Listing 4.3– Logic formula generated for the Drug Delivery case
1 control : A[not((stretcher.a and medBot.a) or (stretcher.b and medBot.b)

or (stretcher.c and medBot.c) or (stretcher.d and medBot.d) or (
stretcher.medicine and medBot.medicine) or (stretcher.medicine and
medBot.doing_takeMedicine_in_medicine) or (stretcher.door1 and
medBot.door1) or (stretcher.door1 and medBot.
doing_giveMedicine1_in_door1) or (stretcher.door2 and medBot.door2)
or (stretcher.door2 and medBot.doing_giveMedicine2_in_door2) or (
stretcher.door3 and medBot.door3) or (stretcher.door3 and medBot.
doing_giveMedicine3_in_door3) or (stretcher.going_a_to_door1 and

initialLocation

idle win
CexeObj ≥ n e?

Figure 4.17: Automaton representing the Execution mission.
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idle win

confirmDelivery?

Figure 4.18: Execution Mission automaton in the Drug Delivery case

medBot.going_door1_to_a) or (medBot.going_a_to_door1 and stretcher.
going_door1_to_a) or (stretcher.going_door1_to_b and medBot.
going_b_to_door1) or (medBot.going_door1_to_b and stretcher.
going_b_to_door1) or (stretcher.going_b_to_door2 and medBot.
going_door2_to_b) or (medBot.going_b_to_door2 and stretcher.
going_door2_to_b) or (stretcher.going_door2_to_c and medBot.
going_c_to_door2) or (medBot.going_door2_to_c and stretcher.
going_c_to_door2) or (stretcher.going_c_to_door3 and medBot.
going_door3_to_c) or (medBot.going_c_to_door3 and stretcher.
going_door3_to_c) or (stretcher.going_door3_to_d and medBot.
going_d_to_door3) or (medBot.going_door3_to_d and stretcher.
going_d_to_door3) or (stretcher.going_d_to_medicine and medBot.
going_medicine_to_d) or (medBot.going_d_to_medicine and stretcher.
going_medicine_to_d) or (stretcher.going_medicine_to_a and medBot.
going_a_to_medicine) or (medBot.going_medicine_to_a and stretcher.
going_a_to_medicine)) U (reachObj.win)]

4.4 DSL to TGA translation

In this section, we present a PuRSUE-ML model in abstract form and then
the logic used to translate this model into the TGA presented in 4.3.

4.4.1 Abstract Representation of the PuRSUE-ML Model

A PuRSUE-ML model can be represented in an abstract form as a tuple
(P,C,E, F,R, S,D,A,O) where:

• P is a finite set of POI defined through the keyword poi.

• C is a multiset of elements of elements in P × P × N, defined through
the keyword connection and distance. A triple (pi, pj , n) ∈ C is a
connection from pi to pj with distance n. If a connection is bidirectional
then (pi, pj , n) ∈ C and (pj , pi, n) ∈ C whereas only one of the two is
in C if the connection is unidirectional.

• E is a multiset of elements in {0, 1}×N×P ∪{#} defined through the
keyword event. A tuple (b, n, p) ∈ E is a collaborative event if b = 1
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and it has duration n. The event is bound to POI p if p ∈ P , otherwise
p = #.

• F is a set of elements in P × P × A defined through the keyword
prevent. A tuple (i, j, a) ∈ F is a prohibition for agent a of moving
from POI i to POI j.

• R is the set of regular expressions defined with keyword rule;

• S is a set of elements in {0, 1}×2E×2E such that, for every (b, Et, Ef ) ∈
S it holds that Et∩Ef = ∅. Every triple (b, Et, Ef ) ∈ S is a state which
is initially set to b and that becomes true, if some event in Et occurs
(keyword true_if), and false if some event in Ef occurs (keyword
false_if’).

• D is a set of elements in E × Ψ, where Ψ is the set of propositional
formulae that are built through conjunction and negation of formulae
and state variables, that are atomic formulae in Ψ. A pair (e, ψ) ∈ D
is state dependency constraining the occurrence of e with ψ.

• A is a multiset of elements in {0, 1} × N × P × 2E × 2E . A tuple
(b, sp, x, {eact,1, . . . , eact,n}, {ereact,1, . . . , ereact,m}) is an agent that is
controllable if b = 1 (keyword controllable), it is mobile if the velocity
sp > 0 (mobile), it is initially located in x (keyword location), it
can perform the actions associated with events {e1, . . . , en} (keyword
can_do) and it can react to events in {e1, . . . , em} (keyword reacts_to).

• O is a set of objectives, that are elements of the form:

– (e1, e2, n), with e1, e2 ∈ E and n > 0, for Reaction objectives,

– (e), with e ∈ E, for Event avoidance objectives,

– (e, n), with e ∈ E and n ≥ 0, for Execution objectives,

– (a1, a2), with a1, a2 ∈ A, for Positional avoidance and

The following section refers to an instance model of the form (P,C,E, F,R, S,A,O).

4.4.2 Transformation between the PuRSUE-ML Model and
TGA

The declaration of the variables of the system is generated as follows:
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1. For all the connection (x, y, n) ∈ C and for all the agents a ∈ A the
corresponding broadcast channels called a_x2y is introduced, unless
(x, y, a) is a prohibition in F .

2. For every event e ∈ E, the corresponding broadcast channel e is
introduced. Furthermore, if e = (b, n, p) is such that n > 0, then the
channel eDONE is introduced.

3. For every rule r ∈ R, variable Pr is introduced.

4. For every state s ∈ S, an integer Ss is introduced.

5. For every agent a ∈ A, clock Ca and a bounded integer Pa is introduced.

6. For every element o of O including a property with real-time constraints,
as defined in Sec. 4.2.6, a clock Cobj is introduced.

The logic used to generate the automata composing the TGA network is
the following:

1. For every rule r ∈ R, the automaton Ar representing the corresponding
regular expression is generated. Since a rule r is expressed by means
of a regular expression, Ar is simply an acceptor of a regular language
that can be built by using well-known procedures in the theory of
Formal Languages. All the transitions of Ar obtained from a rule r
are synchronized with specific channels (only events in E are allowed
on transitions) and perform specific updates. If e ∈ E is the event
associated with a transition then the transition is synchronized with
e?. Let Q be the set of states of Ar and h be a bijection from Q to
{1, . . . ,Mr}. All the incoming transitions in a location q update Pr
with the update Pr := h(q).

2. For every state s ∈ S of the form (b, Et, Ef ), the state automaton
is endowed with |Et| + |Ef | distinct transitions, one for each event
e ∈ Et ∪ Ef . In particular, every transition is labeled with a synchro-
nization guard of the form e? and the assignment Ss := 1, if e ∈ Et, or
assignment Ss := 0 otherwise. Furthermore, if a transition labeled with
event e is already present in the automaton (because it was present
in another state), only the corresponding assignment is added to that
same transition.

3. An agent automaton Aa represents an agent a = (b, sp, x, Eact, Ereact) ∈
A.
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• If agent a is “mobile” (i.e., sp > 0) then Qaloc = {qx | x ∈ P} (for
every POI x in the environment, the corresponding POI location qx
is introduced in the set of locations of the automaton). Otherwise,
Qaloc = {qx}. The initial state of Aa is qx.

• For every (x, y, d) ∈ C, set Qamov is {q(x,y,d) | (x, y, a) 6∈ F}. Every
location q(x,y,d) ∈ Qamov is connected with qx and qy by means of
a transition from qx to q(x,y,d) and from q(x,y,d) to qy such that:

– The incoming transition to q(x,y,d) is endowed with the syn-
chronization label, ax,y!, clock reset rc,the update upx,y and
the guard gc0.

– The outgoing transition from q(x,y,d) is labeled with the guard
gdm, and the update upy

• Set Qaev is {qe,x | e = (b, d,#) ∈ E1 ∪E2 and x ∈ P and d > 0} ∪
{qe,x | e = (b, d, x) ∈ E1 ∪E2 and d > 0} In other words, for every
event e ∈ E with non null duration:

– If e = (b, d,#) and e ∈ E1 then a location qe,x is introduced
in Qaev for all the POI x ∈ P (e is not bound to a specific POI
and agent a can perform it in every POI).

– Otherwise e = (b, d, x) and e ∈ E1 then a location qe,x is
introduced in Qaev only for POI x ∈ P (e is bound to POI x
and agent a can perform it only in POI x).

Every location qe,x ∈ Qaev have one incoming transition from the
POI location qx and one outgoing transition towards POI location
qx such that:

– The incoming transition to qe,x is endowed with the synchro-
nization label e!, clock reset rc, clock update up′x , and guard
ge,x.

– The outgoing transition from qe,x is labeled with the synchro-
nization label eDONE !, the update of upx and guard ge′ .

• Instantaneous events transitions model agent actions that have a
null duration, i.e., that are associated with an event e = (b, 0, p)
for some b ∈ {0, 1} and p ∈ {P ∪ #}. For every instantaneous
event e ∈ E:

– If e = (b, 0, x) then a transition from qx to qx is introduced.
It is endowed with the synchronization label is e!, the guard
ge,x and the clock reset rc.
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– Otherwise, if e = (b, 0,#), a transition from the POI location
qx to qx is introduced, for all the POI x ∈ P , and labeled with
the same guard and synchronization as the ones used in the
previous case.
Moreover, a transition from the movement location qx,y to
qx,y, for all x, y ∈ P , is introduced. The synchronization label
is e! and the guard ge,x,y.

4. For every objective o ∈ O, the corresponding automaton as presented
in Sec. 4.3.5 is generated:

• Reaction: The automaton representing o is the one depicted in
Fig. 4.15, where elements e1, e2 and n are instantiated as defined
in the tuple (e1, e2, n).

• Event avoidance: The automaton representing o is the one depicted
in Fig. 4.16, where element e is instantiated as defined in the only
element of o: e.

• Execution: the automaton representing o is the one depicted in
Fig. 4.17, where elements e and n are instantiated as defined in
the tuple (e, n).

• Positional Avoidance: Positional avoidance for two agents a, a′ ∈ A
is translated into the following two formulae (and no automaton
is introduced), where qx ∈ QaPOI and q

′
x ∈ Qa

′
POI are POI locations

of agents a and a′, respectively, and qx,y ∈ Qamov and q′x,y ∈ Qa
′

mov

are movement locations of agents a and a′, respectively, for any
x, y ∈ P :

φsame-pos(a, a
′) =

∨
x∈P

(qx ∧ q′x)

φsame-move(a, a
′) =

∨
x,y∈P

(qx,y ∧ q′y,x)

Formula φsame-pos(a, a
′) encodes the conditions that hold when

the agents a and a′ reside on the same POI, i.e., when the current
configuration of the automata (q, v) and (q′, v′) is such that the
locations q and q′ refers to the same POI x ∈ P . Similarly,
formula φsame-move(a, a

′) encodes the conditions that holds when
the agents a and a′ are traversing the same path between POI
x, y ∈ P towards opposite directions.
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5. The objective automata and formulae defined in Sec. 4.3.5 are used
to characterize the reachability (control) game RG〈A, Init ,Safe,Goal〉,
for TGA A obtained by combining all the agent automata, the rule
automata, the state automaton and the objective automata modeling
the scenario. The sets Safe and Goal are sets of configurations of A
that are determined by means of the following formulae φSafe and φGoal

encoding, respectively, the set of “safe” configurations that N has to
exhibit along all the executions starting from the an initial configuration
in Init and possibly leading to some “goal” (or target) configuration in
Goal . Let o be an objective in O of the form (e1, e2, n), with e1, e2 ∈ E,
and n > 0, or of the form e ∈ E, or of the form (e, n), and Ao be
the corresponding objective automaton; or o be a tuple (a, a′), with
a, a′ ∈ A. With abuse of notation, we write q ∈ Ao to indicate a
location q of automaton Ao and qwin , qlose to indicate locations that
are called win, lose in Sec. 4.3.5.

φSafe :=
∧

(a,a′)∈O

¬φsame-move(a, a
′) ∧ ¬φsame-pos(a, a

′) ∧ (4.1)

∧
qlose ∈ Ao s.t. o ∈ O
o = (e1, e2, n) or o = e

¬qlose (4.2)

φGoal :=
∧

qwin ∈ Ao s.t. o ∈ O
o = (e, n)

qwin (4.3)

Formula φSafe encodes the Positional avoidance, the Reaction and the
State avoidance objectives. The two subformulae in φSafe have the
following meaning: (i) the first formula (4.1) holds if all the pair of
agents (a, a′) ∈ O do not reside in the same POI or they do not traverse
the same path between two POI with opposite directions; (ii) the second
formula (4.2) holds if the current location of all the automata Ao for
objectives of the form (e1, e2, n) or o = e is not qlose .

Formula φGoal encodes the Execution objectives. The formula holds
when the current location of all the automata Ao for objectives of the
form (e, n) is qwin .

Finally, the reachability (control) game aims at defining a strategy such
that a certain mission formula is satisfied by all the executions of A
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where the actions performed by all the controllable agents comply with
the strategy.

4.5 Controller Generation

In order to generate the controller for the system, we need to use a model
checker capable of (i) accepting models expressed as TGA, (ii) generate a
controller for controllable transitions in order to satisfy the provided formula,
provided one exists; we also require it, in the evolution of the system, to
(iii) give priority to actions performed by uncontrollable agents over actions
performed by controllable ones.

It would furthermore be desirable to have (iv) a feature allowing the
designer to test the controller in a theoretical environment, in order to check
for its correct functioning before deployment on the robotic platform.

Among the model checkers available, we decided to use UPPAAL-TiGA.
In order to include UPPAAL-TiGA in the PuRSUE framework and thus

generate plans in an automatized manner, we take advantage of the executable
file verifytga.exe.

Once the framework has generated the model in the UPPAAL-TiGA encod-
ing, that is a model composed of (a) a TGA in the UPPAAL encoding named
“UPPAAL_model.xml" and (b) a logic property named “UPPAAL_model.q",
the controller is obtained with the command:

./verifytga − t0 UPPAAL_model.xml

Where UPPAAL_model is the specific name given to the file containing the
model.

Example. The plan generated for the Drug Delivery case is composed of
5376 States and 9768 Execution Choices (Sec. 3.3), and it was generated in
32680 ms. A snippet of the plan is reported in Listing 4.4.

When the system is in the state defined in Line 1, that is, when all the
variables have the prescribed values and all the automaton are in the prescribed
states, the controller is going to wait as long as the clock conditions defined
in Line 2 hold, while it is going to trigger the transition between the locations
going_medicine_to_d and d of agent medBot when the clock conditions in
Line 3 hold true.
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Listing 4.4– Snippet of the plan generated for the Drug Delivery case
1 State: ( states.base medBot.going_medicine_to_d nurse.room stretcher.

going_medicine_to_d reachObj.idle nurseBehaviour._nurseBehaviour0
robotTask._robotTask0 ) PnurseBehaviour=4 ProbotTask=2 PmedBot=-19
Pnurse=2 Pstretcher=-19 Sdoor1open=1 Sdoor2open=0 Sdoor3open=1

2 While you are in (0<Creach && CmedBot<=14 && Cstretcher-CmedBot<-13),
wait.

3 When you are in (14<CmedBot && 0<Creach && CmedBot<=15 && Cstretcher<1),
take transition medBot.going_medicine_to_d->medBot.d { CmedBot > 14,
tau, PmedBot := 9, CmedBot := 0 }
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Chapter 5

Implementation

In this section we present the implementation of PuRSUE. First, Section 5.1
describes the tool support provided by PuRSUE in designing a robotic
application. Then, Section 5.2 presents the run-time environment used to
control the robot according to the run-time controller generated by PuRSUE.

5.1 Design-Time Support

The design time workflow of PuRSUE is depicted in Figure 5.1, and is
composed of the following elements:

• PuRSUE Eclipse Plug-In: Figure 5.2 presents a screenshot of the
interface provided by the PuRSUE-ML plug-in. The plug-in provides
static grammar validation (i.e. validation of the grammar while writing
it) on the basic constructs of the grammar.

• PuRSUE main pc-side: it coordinates the interaction between all the
other components and aims at generating the plan that will be exe-
cuted by the robot and sending it to the Turtlebot using REST2ROS
(component that acts as a bridge between the run-time and design-time
environments.) [31]. This component takes as input the grammar as a
.pur file, runs in order the parsers presented in the upcoming sections
and finally sends the run-time components to the TurtleBot.

• PuRSUE sender: it sends the run-time components to the TurtleBot.

• PuRSUE-ML 2 UPPAAL: it takes as input the model in PuRSUE-ML
and generates the TGA model according to the transformation described
in 4.4. The generated model is expressed as an .xml file representing
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Figure 5.1: PuRSUE: design time workflow

Figure 5.2: ScreenShot of the Eclipse Plug-In
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the automata in UPPAAL-TiGA language and a .q containing the
properties, expressed as temporal logic; indeed as was explained in 4.3.5,
the objective of the system is translated into a temporal property which
needs to be placed in a different file.

The current implementation of the parser is missing the following
constructs presented in Chapter 4:

– Keyword prevent.

– Keyword unidirectional.

– State Dependencies can only handle a single state, rather than a
Boolean expression.

• UPPAAL-TiGA: It takes as input the TGA model and property and
generates a controller for the problem at hand, if one exists, as explained
in Sec. 4.5.

• Controller 2 Runtime_Controller.py: it takes as input the controller
generated by UPPAAL-TiGA (expressed though the formalism expained
in Sec. 3.3 and generates the python script of the controller that will
be executed at run-time, called runtime_controller.py.

• Model 2 Runtime_Observer.py: it takes as input the model of the
system as TGA reprsented in the .xml used as input by UPPAAL-TiGA
and generates a component that will monitor the environment at run-
time, called runtime_obsrver.py. As described in Sec. 4.5, the controller
constraints the behavior of the robot depending on the behavior of the
other agents in the environment and the resulting state of the system,
for this reason run-time monitoring is necessary.

• PuRSUE Receiver: it takes care of the reception of runtime_controller.py
and runtime_obsrver.py and places them in the appropriate folders in
the run-time platform, i.e. the TurtleBot.

5.2 Run-Time Support

The run-time architecture of PuRSUE is presented in Figure 5.3. Its compo-
nents are detailed in the following.

• Observer Node. It updates the current instance of the TGA used by
the controller based on the occurrence of events within the system. It
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Figure 5.3: Run-time architecture

does so by executing the script runtime_observer.py generated during
design time (Sec. 5.1). The observer is subscribed to the topic “pur-
sue/events” and publishes to the topic “pursue/system_state”. The
current configuation of the model is updated by means of the events that
the Observer can read in “pursue/events”. When an event is published
on the topic “pursue/events”, the automata modeling the system are
updated accordingly, as well as the clocks of the system. The updated
state is then published to the topic “pursue/system_state”. Note that
the “pursue/system_state” topic has a queue of one, this ensures that
any subscriber to the topic can only read the latest published state.

The node implements at runtime the automata as defined in 4.3 using
the python library “transitions” [38].

In a system composed of the network of automata A and their respective
clocks Ca, upon the reception o the event e, the following happens:
Telapsed ← (Tcurrent − Tstart)
Tstart ← Tcurrent
for all a ∈ A do
a.trigger(e)
if a.needReset then
Ca ← 0

end if
Ca ← Ca + Telapsed

end for

Where the function a.trigger triggers the evolution of the automaton
if the triggering of event e is available, and the Boolean a.needReset
informs the system of whether the later transition caused a reset to
that automaton clock.

• Controller Node: It defines the operating logic of all the controllable
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components, through the triggering of actions as a consequence of the
of the current state and the strategy it is implementing. It does so by
running the received component runtime_controller.py, as well as pur-
sue_lubrary.py, exeggutor.py, action_sender.py, move_command_sender.py
and transition_sender.py, which interact as shown in Fig. 5.4.

The controller node reads the state of the environment, chooses the
action to take according to the strategy generated by PuRSUE and
sends the corresponding command to the appropriate topics. The
controller node is subscribed to the topic “pursue/system_state”, as
well as “pursue/events”, the latter only to read the start command at the
beginning of the execution. It publishes on the topics “pursue/events”,
“pursue/actions” and “move_base_simple/goal”.

The controller node reads the system state from the topic “pursue/sys-
tem_state”. according to the system state and clock values, it selects
whether the robot should perform an action or wait, and if so, how
long it should wait. This is done according to the strategy that is
obtained by UPPAAL-TiGA, discussed in Sec. 4.5. It also takes care
of the interface between the events and POIs as defined at high level
in the PuRSUE-ML and their low level implementation, that is, the
association of a POI as a set of coordinates in the environment and the
association of the triggering of an event with a string that signals to
the appropriate actuator an action to perform. When an action has to
be performed, the controller node sends the appropriate message either
to the “move_base_simple/goal” topic, in case of movement actions, or
to “pursue/actions” topic, in case of any other actions.

Furthermore, all events triggered b the controller are sent to the topic
“pursue/events". While events on this topic should ideally be published
by sensors that detect the events in the system in order to have a real
feedback controller; we have them as published by the controller as a
system capable of detecting events in the environment was not available
at the time of implementation of this thesis.

The node is composed of the following major components, depicted in
the class diagram in Figure 5.4:

1. Runtime_controller.py : this block is generated at design-time
from PuRSUE. It implements the controller generated as shown
in Section 4.5. It reads from the topic “pursue/system_state” the
state of the system, selects whether to wait or trigger the execution
of an event and then invokes exeggutor.py to send the trigger to
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the appropriate channels.

2. Pursue_library.py : this library provides the standard functions
used by the controller.

3. Exeggutor.py : it takes as input the events to be triggered as sent
from the runtime_controller.py and handles their deployment
to the robot. It is the interface between the events as modeled
in PuRSUE-ML and the robot’s API, as such it handles the
association of POIs with their correspondent location, as well as the
actions with their actuators. A designer wishing to implement the
system on different hardware should change this block accordingly.

4. Move_command_sender.py, action_sender.py, transition_sender.py :
they handle the composition of the messages and the publishing
to the appropriate topics.

• PuRSUE UI: It allows the developer to read from all the topics
relevant to the system, as well as sending signals to the topic “pur-
sue/events” in order to emulate the triggering of uncontrollable events.
It allows the designer to select the topics it desires to read and either
start a predetermined sequence of timed events or select an event to be
triggered during the execution time.

Figure 5.5 is a sequence/communication diagram referring to the following
scenario/use-case:

1. The system is started from the UI.

2. The Observer publishes the initial state.

3. The controller node enters a state, waits and then pings the observer
to check that the state hasn’t changed during the wait.

4. The controller node sends the command to move to a target location
to the Turtlebot.
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Figure 5.4: modules of runtime controller

Figure 5.5: run-time communication diagram

84



Chapter 6

Evaluation

In this chapter we evaluate PuRSUE by answering the following research
questions:

• RQ1: does PuRSUE offer a more compact way than TGA to model
RAUA applications? We check if PuRSUE allows modeling (complex)
RAUA applications and variations on them, in presence of uncontrolled
agents. We also compare the size of the PuRSUE-ML model compared
to the size of the generated TGA.

• RQ2: how does PuRSUE support designers in generating controllers
for RAUA applications? We would like to evaluate whether PuRSUE
allows to effectively compute the run-time controllers for the considered
applications. Furthermore, we would like to estimate the development
time that is saved for designing controllers through the usage of PuRSUE.
To do so we evaluate the time taken to generate compute the controller
by PuRSUE. We report the size of the generated controller and show
that PuRSUE allows easily generating complex controllers.

• RQ3: is the control strategy generated by PuRSUE effectively im-
plementable on actual robots? We deploy controllers generated by
PuRSUE on an actual robot and check whether the robot behaves as
expected.

To answer these questions we considered three RAUA applications: Catch
the Thief (CT ), Work Cell (WC ) and EcoBot (EB), further described in
Section 6.1. The applications considered were inspired by case studies found
in the literature, respectively in [24], [3] and [46]. From these applications,
13 variants (scenarios) were extrapolated, by changing the specifications of
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the application (6 for CT, 3 for WC and 4 for EB). These scenarios are used
in Sec. 6.2, 6.3, 6.4 to answer respectively RQ1, RQ2 and RQ3.

6.1 Scenarios

6.1.1 Catch the Thief (CT)

A robot-cop (policeBot) and a human (thief) are both located in an
complex environment. The policeBot has to catch the thief by means of
an immobilizer mounted on a baton. The thief is free to move in the
environment to avoid being captured.

Table 6.1: Variations of the Catch the Thief application.

Sc. Env. Description

CT1 E1 Base scenario

CT2 E2 The base scenario is enriched with an additional constraint:
the robot needs first to pick up his weapon in a weapon
closet before catching the thief.

CT3 E1 There are two (CT3a) or three (CT3b) policeBot robots
that are active in seizing the thief. Moreover, the
policeBot will move at the same speed as the thief.

CT4 E3 The base scenario but in a more complex environment.

CT5 E4 The thief robot can steal objects, located in three lo-
cations( a, b and d) and then escape through either a
window or the stairs. The goal of the policeBot robot
is to catch the thief before the thief leaves the area
after a successful theft.

CT6 E4 The same scenario as 5 where however controllable and
non-controllable agents play an exchanged role. The con-
trollable robot has to steal from the office, while an un-
controllable security agent has to stop it. The speeds of
the two agents are set equal so that the thief objective is
achievable.

The robot is assumed to be faster than the human, otherwise the scenario
is trivially unfeasible and no strategy exists for the robot. In such a case,
PuRSUE would not be able to generate a controller for it; indeed, the key
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(a) A graphical representation of the
environment E1 used in scenarios CT1
and CT3.

(b) A graphical representation of the
environment E2 used in scenario CT2.

(c) A graphical representation of the
environment E3 used in scenario CT4.

(d) A graphical representation of the
environment E4 used in scenarios CT5
and CT6.

Figure 6.1: Graphical representation of the environments used in the different
scenarios.

variables that the designer needs to take into consideration when reasoning
on the possibility of the controller to achieve its goal, for this application, are
the topology of the environment and the relative speeds of the two agent.

The environments taken into consideration are the following (Fig. 6.1):

• E1: A room of the Jupiter building of the University of Goteborg that
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is surrounded by a corridor is considered as the environment in which
the application is deployed (Figure 6.1a).

• E2: The same room of the Jupiter building as in E1, with the addition
of a weapon closet located next to it (Fig. 6.1b).

• E3: The third floor of the Jupiter building of the University of Goteborg
is considered (Fig. 6.1c).

• E4: The same floor of the Jupiter building as in E3, withthe addition
of windows and stairs in the model (Fig. 6.1d).

The variations of this scenario considered in this work are reported in
Table 6.1, where column Sc. is the acronym identifying the scenario, Env.
is the environment in which it is set and Description is a short summary of
what characterizes this variation.

6.1.2 Work Cell (WC)

A work cell, in its simplest form, is composed of a work unit, operating specific
tasks on boxes, and a conveyor belt that carries boxes to the work unit. The
following sequence of tasks is performed by a human (human) on a box upon
its arrival to the work unit: the box is first lifted, then jigs are to screwed in
it, then the box is put back on the conveyor belt. This must be done within a
time limit set by the factory. A robotic assistant (asisstBot) is provided to
the human to support him in performing said tasks. Both the robot and the
human are capable of performing any of the three tasks required at the work
unit. Moreover, all combinations of robot/manual tasks are admitted and,
as such, the robot will overtake any task that human delays in performing.
To tackle this issue, one must design a controller taking into consideration
all the possible ways in which controllable and uncontrollable agents might
cooperate, which is in general a non-trivial task. The key parameter the
designer needs to take into consideration in this application is the duration
of the tasks to be performed in respect to that of the time limit assigned by
the factory to the work cell.

The variations of this scenario considered in this work are reported in
Table 6.2, where column Sc. is the acronym identifying the scenario and
Description is a short summary of what characterizes this variation.
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Table 6.2: Variations of the Work Cell application.

Sc. Description

WC1 We assume the presence of a structure where the box can be
placed for operation of screwing. As such, a single agent could
independently perform all the three tasks required from the station

WC2 We consider that, if an agent picks up the box, it will be considered
busy holding it until the box is put down, this implies that another
agent will have to screw the jigs in. There can be one (WC2a) or
two (WC2b) robots.

Figure 6.2: A graphical representation of the EB example

6.1.3 EcoBot (EB)

A robot (ecoBot) has the task of collecting the trash from an office (office)
and throwing it into the trash bin (bin), located in a separated area(trash
room). The robot is initially located in another room, base. The three
aforementioned locations are connected through the hallways of the building
(hallway). A human (human), located in office, can activate the robot,
hence, starting a cleaning task in office. Upon calling, the robot is expected
to collect the trash from the office withing a defined amount of time units.
The robot can only carry one piece of trash at the time. Finally, it is assumed
that any two consecutive requests from the human are always separated by a
positive time delay.

The key variables of this scenario are represented by the topology of
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the environment and the duration of events, as compared to the time limit
to achieve the mission as specified by the designer and the positive delay
between two requests from the human.

The scenario is set in a portion of a floor of the Jupiter building of the
University of Goteborg, depicted in Figure 6.2.

The variations of this scenario considered in this work are reported in
Table 6.3, where column Sc. is the acronym identifying the scenario and
Description is a short summary of what characterizes this variation.

Table 6.3: Variations of the EcoBot application.

Sc. Description

EB1 The base scenario as presented

EB2 The bin can be moved in the environment

EB3 The human must specify whether he/she needs to throw paper or plastic,
and the bot should go to the correspondent bin. The robot can hold one
piece of trash per type.

EB4 A combination of EB2 and EB3. There are two distinct bins for paper
and plastic and both can be moved in the environment

6.2 Modeling support (RQ1)

To answer RQ1, we evaluated the ability of PuRSUE to model the scenarios
depicted in Sec. 6.1. We checked whether PuRSUE-ML was able to describe
all the considered scenarios (Sec. 6.2.1). To estimate the effort needed for
using PuRSUE-ML w.r.t. manually developing the model, we compared the
number of constructs used to model the RAUA application in PuRSUE-ML
and the number of states, transitions and variables that are necessary to
model our problem using TGA (Sec. 6.2.2).

6.2.1 Effectiveness in Encoding the Considered Scenarios

In this section we show how we could model the scenarios using PuRSUE-ML.
The CT scenarios were encoded as follows:

• CT1: the environment is modeled through four POIs (a, b, c and d).
The agents acting in it are modeled through the two agents policeBot
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and thief. The act of catching is modeled through a collaborative event
catch, which has policeBot as acting agent and thief as reacting
agent. Finally, the mission of the control system is modeled with the
reach_objective: do catch construct. This encoding of the mission
event is kept identical for all the following scenarios if not specified
differently. The encoding is reported in Listing 7.1.

• CT2 : the environment is modeled through the same four POIs as CT1,
with the addition of the WeaponCloset location, which is connected
to a. The agents are the same of CT1. The additional constraint is
implemented in two different ways: through a rule (CT2a), and through
states (CT2b). The first implementation is done by enforcing that the
event of catching the thief (catch) can only be triggered after the event
of picking up the weapon (pickUpBaton) has been triggered. In the
second implementation, a state is added (hasBaton), this state, initially
false, is set to true if the event pickUpBaton is triggered. Furthermore,
a state dependency is defined, ensuring that the event catch can only
be triggered when the state hasBaton is set to true. The encodings are
reported in Listings 7.2 and 7.3.

• CT3: The environment is modeled as in CT1. The agents are the
same of CT1, with the difference that two (CT3a) or three (CT3b)
policeBot agents are declared. Moreover, the policeBot will move at
the same speed as the thief. The encodings are reported in Listings 7.4
and 7.5.

• CT4: The environment is modeled by defining POIs in every location
in which an agent could change direction on the map. The rest of
the definition is identical to that of CT1. The encoding is reported in
Listing 7.6.

• CT5: the environment is modeled as in CT4, with three additional
POIs: window1, window2 and stairs, located as shown in Figure 6.1d.
To model the capability of the thief to enter or exit the building, state
away is added; when away is true, thief is outside the building, when
it is false, thief is inside. Accordingly, location specific events leave1,
leave2 and leave3 have been defined to change the state of away to
true, and location specific event enter has been defined to change the
state of away to false.

To model the capability of the thief to steal objects in the three locations,
three location specific events have been defined (steal1, steal2 and
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steal3).

These events are included in state dependencies, stating that it is only
possible for thief to perform the three steal events if away is false.

To model the objective of the control system, the event stolen is
introduced. Event stolen represents the act of the thief to successfully
steal an object and leave the floor. This event is included on the rule
stealing, which prescribes that after one of the three steal events has
been performed, either event stolen or event catch can be performed.
Furthermore, stolen can only be triggered when away is true, while
catch can only happen if away is false. Finally, the construct use
to define the mission is objective: avoid stolen. The encoding is
reported in Listing 7.7.

• CT6: This scenario is modeled as CT5, with the difference that
thief is the controllable agent and policeBot the uncontrollable
one. The speeds of the two agents are set equal so that the objec-
tive is achievable. Finally, the mission is defined with the construct
reach_objective: do stolen. The encoding is reported in Listing 7.8.

The WC scenarios can be encoded as follows:

• WC1: As the environment is not relevant in the considered example,
it is modeled as a single POI (station). The agents in the model are
human and assistBot. One event is defined for every task (pickUpBox,
screw and putDownBox), as well as an event modeling the arrival of a
new box (newBox). The three task related events are assigned to both
agents as all of them should be able to perform all tasks, while it is
up to the human to signal the arrival of a newBox. The rule workFlow
describes the expected sequence of events. Finally, the mission is
defined with the construct objective: if newBox then putDownBox
within 30, thus ensuring that the box is put back on the conveyor belt
within 30 seconds of its arrival. The encoding is reported in Appendix
(Listing 7.9).

• WC2: To model one of the agents being busy, we need to distinguish at
a modeling level which agent performs every action. As such, events are
defined for every task and for every agent (e.g. for human, pickUpBoxH,
screwH and putDownBoxH). Furthermore a state for every agent is added,
(e.g. busyH) modeling whether an agent is busy holding the box or not.
This state is initially false, becomes true if the agent picks up the box,
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and false if the agents puts it back down. One state dependency per
agent ensures that the act of screwing jigs can only be done if the agent
is not busy (e.g.screwH only_if busyH is_false). For every agent, a
rule is defined ensuring that they only put down a box after they have
picked it up and vice-versa (e.g. pickUpBoxH before putDownBoxH).
The rule workFlow is similar to the one presented before, but considering
that any agent performing the event should forward the workflow, and
with the addition of an event, done, used to signal that the procedure is
complete (as there are several putDownBox events). Finally, the mission
is defined with the construct objective: if newBox then done within
30, thus ensuring that the box is put back on the conveyor belt within
30 seconds of its arrival. The scenario is implemented with one (WC2a)
and two (WC2b) robots. The encodings are reported in Listings 7.10
and 7.11.

The EB scenarios can be encoded as follows:

• EB1: The envrionment is modeled with 3 POIs (room, base, trash) all
connected to a fourth POI (hallway). The agents are human, ecoBot
and bin. Bin is a non mobile agent located in trash. The events
defined to describe the system are callBot, to model when human calls
for a cleaning task in the office, getTrash, to model the act of the
robot of picking up trash, and throwTrash, a collaborative event having
as acting agent the robot and reacting the bin, to model the act of
throwing the trash. The event officeClean is also defined, modeling
the robot notifying that it has completed its task. The behavior of
the system is modeled through the following rules. Rule getTrash,
states that the events of calling the bot (callBot), is followed by that
of the robot picking up the trash (pickUpTrash) and confirming the
completion of the mission (officeClean). Rule TrowingTrash states
that after getTrash is triggered, trowTrash must be triggered before
getTrash is available again for triggering, this models how the robot
can only hold one piece of trash at the time. To model the delay
between consecutive summonings of the robot, i.e. triggering of the
event callBot, an event with duration as long as the requested delay is
defined (wait); the rule makingTrash is also introduced, which states
that event wait must be triggered between two consecutive triggerings
of callBot.

The mission is defined with the construct objective: if callBot then
officeClean within 20 , thus ensuring that the trash is retrieved
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within 20 second of calling the robot. The encoding is reported in
Listing 7.12.

• EB2: The encoding is identical to the one of EB1, with the uncontrol-
lable agent bin set as mobile, this allows to model the agent being moved
around by other entities. The encoding is reported in Listing 7.13.

• EB3: The presence of two bins is modeled by the presence of two non-
mobile bin agents (paperBin and plasticBin). The state (ispaperOrPlastic)
is introduced. It is true if the new event isPaper is triggered, and false
if the new event isPlastic occurs; these events model human selecting
whether he/she needs to throw paper or plastic. These events are added
to the rule makingTrash, forcing human to select a type of trash before
summoning the robot. Furthermore, all the rules and events explained
in EB1 are extended to cover two different types of trash (e.g. in-
stead of only having getTrash two events are defined, getPaperTrash
and getPlasticTrash). Finally, a state dependency is set so that the
robot can trigger getPaperTrash only if ipaperOrPlastic is true and
getPlasticTrash only if ipaperOrPlastic is false. The encoding is
reported in Listing 7.14.

• EB4: The encoding is identical to the one of EB3, but with the two
bin agents set as mobile. The encoding is reported in Listing 7.15.

We can conclude that we were able to model all the considered scenarios
through PuRSUE-ML.

6.2.2 Assessing the Design Effort Saved by the Usage of
PuRSUE-ML

To assess the effort of using PuRSUE-ML in real applications compared with
manually developing the model, we compared the number of constructs used
to model the RAUA application in PuRSUE-ML and the number of states,
transitions and variables that are necessary to model our problem using the
TGA. Specifically:

• The size of the description of the scenario in PuRSUE-ML, is measured
by computing the sum of the constructs (locations, connections, events,
rules, states, state dependencies, agents and objectives) used in the
PuRSUE-ML specification.
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• The size of the TGA is measured by computing the sum of locations,
transitions and number of variables (clocks and Integers) of the TGA
specification. Note that, in our case the TGA specification is obtained
by using the PuRSUE-ML to TGA procedure presented in Section 4.4.

Table 6.4: comparison of scenarios to answer RQ1

PuRSUE-ML UPPAAL-TIGA

scenario constructs variables locations transitions total

CT1 12 4 26 45 75
CT2a 16 4 36 61 101
CT2b 18 5 35 62 102
CT3a 13 6 38 73 117
CT3b 14 8 50 101 159
CT4 36 4 98 185 287
CT5 56 7 121 291 419
CT6 56 6 121 291 418

WC1 9 6 19 23 48
WC2a 19 10 31 44 85
WC2b 26 14 42 63 119

EB1 19 10 36 40 86
EB2 19 10 45 52 107
EB3 28 14 49 62 125
EB4 28 14 63 86 163

The presented scenarios are confronted according to these parameters in
Table 6.4.

The size of the corresponding TGA specification ranges from a minimum
value of 48 to a maximum value of 419. PuRSUE allows the designer to
define very complex automata through the use of a few lines of code, ranging
from 9 (19% of the size of the PuRSUE-ML model) to a maximum of 56
(13% of the size of the PuRSUE-ML model).

It is worth noting how most of the lines of the two most complicated
scenarios (CT5 and CT6 ) are needed for the environment definition. This
definition can be easily automatized by relying on a graphical interface.
Furthermore, the proposed language allows handling different scenarios with
simple changes. Consider for example the scenarios EB1 and EB2, a simple
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change in one of the keywords allows the designer to model two conceptually
very different scenarios. The same task would require the addition of 9 states
and 12 transitions in the TGA.

We can conclude that PuRSUE is effectively providing a more compact
way to formally model RAUA applications compared to a manual encoding
in TGA.

6.3 Automatic Controller Generation (RQ2)

To evaluate whether PuRSUE allows effectively computing the run-time
controllers for the considered RAUA applications, we considered the scenarios
presented in Section 6.1 and evaluated whether PuRSUE was effectively able
to compute the run-time controllers. To estimate the development time that
is saved for designing controllers through the usage of PuRSUE we evaluated
the time taken to generate the controller by PuRSUE and report the size of
the generated controller to provide an estimation on how complex they would
be to be manually developed. The time required to generate the controller
includes the time needed to (Step1) translate the PuRSUE-ML specification
into a TGA as specified in Section 4.4 and to (Step2) compute the run-time
controller from the TGA as specified in Section 4.5. The time needed to
perform Step1 and Step2 is indicated in the following as time m and time
c, while the total time needed to compute the controller is indicated as time.
These three columns report the time elapsed during the corresponding step in
milliseconds. The size of the generated controller is obtained by computing
the sum of the number of states (states) and execution choices (when) of
the computed controller. The total size of the controller, computed as the
sum of the two, is reported in size. Table 6.5 contains the results of our
experiment.

The average size of the generated controller is 4603, while the average time
required for computing the controller is 1083 milliseconds. The capability
of the designer to simply reason on complex temporal properties in RAUA
scenarios is a key feature of PuRSUE. To show this we use the EB scenarios.
Assuming all other variables to be set (that is the distances between POIs,
their connections, the speed of agents and duration of all other events), the
value assigned to the positive delay between requests from the human (i.e.
the duration of the event wait) determines whether the robot is capable
of fulfilling the task or not; indeed if it is set too low, the robot will not
have time to throw the trash in the bin between request thus making the
scenario unfeasible. To quantify the exact amount of time units to assign to
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Table 6.5: comparison of scenarios to answer RQ2, time reported in millisec-
onds

scenario time m states when size time c time

CT1 1231 164 194 358 83 1314
CT2a 1639 588 751 1339 207 1846
CT2b 1238 617 800 1417 240 1478
CT3a 1238 7 7 7 unfeasible 7

CT3b 1319 2301 3022 5323 815 2134
CT5 1307 7989 9005 16994 915 2222
CT6 1018 9547 12896 22443 2399 3417

WC1 963 10 6 16 58 1021
WC2a 985 7 7 7 unfeasible 7

WC2b 1015 16 14 30 78 1093

EB1 1020 77 82 159 86 1106
EB2 1002 887 987 1874 6850 7852
EB3 1021 332 348 680 182 1203
EB4 1287 - - - out of memory -

the duration of wait in order to make the scenario feasible, the PuRSUE
framework was run several times with different values assigned to said variable
in the PuRSUE-ML. In EB1, the minimum duration of event wait required
is 37. In EB2, the minimum duration of event wait required varies according
to the speed at which we assume the bin is moving. If we set it to 2, the
duration of wait needs to be 60 in order for the scenario to feasible, while if
we set it to 5, the minimum wait is 65, this is because the robot in the worst
case scenario needs to wait for the bin to finish transiting before it can throw
the trash in it, a slower bin will lead to a longer wait. In EB3, the minimum
duration of event wait required is 36. The time unit of difference when
compared to EB1 is due to the fact that the human needs to select the type
of trash before calling the bot, thus intrinsically allowing it one extra time
unit to throw the trash and come back. The encodings reported in 7 used for
the evaluation of the framework are modeled with the aforementioned values.
PuRSUE allows designers to easily perform this type of temporal reasoning,
which is highly non-trivial in an arbitrary complex environment, through the
change of a few lines in the PuRSUE-ML.

No plan was generated for CT3a, this can be explained by the fact that
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thief can wait indefinitely until a robot tries to reach it at its location,
at that point, thief can leave said location as the robot prepares to catch
it (as we remember, it is a modeling assumption that every agent needs
to wait a time unit before performing any even upon arrival in a location).
Furthermore, given the topology of the environment, all POIs are connected
to two other POIs, as a consequence as one of the two robots goes to catch
it, one of the two connected POIs will always be free. This is solved in CT3b,
where three robots are provided to accomplish the task, this will allow two
robots to stay in both the POIs thief could move towards, while the third
goes to the POI it is located at.

No plan can be generated for WC2a either. Similarly to the aforemen-
tioned scenario, since the robot depends on the human to fulfill the task, and
the human could decide to indefinably wait, the scenario results unfeasible.
In WC2b instead, if the human decides to no perform a task, the other robot
can perform it, thus ensuring that the mission is always achievable regardless
of the strategy of uncontrollable agents.

Both the previous problems could be solved through the implementation
of a feature to force the uncontrollable agents to move from a location (or
perform an event) within a given amount of time units, which will be better
explained in the Future Work in Chapter 7.

No plan was generated for EB4 either. However, in this case, the analysis
performed by UPPAAL-TiGA has not been completed because of the exhaus-
tion of the address space available with the 32-bit addressing. Unfortunately,
since the version of UPPAAL-TiGA supporting 64-bit architectures is not
publicly available, we were not able to conclude the analysis of the EB4 case.

An estimation of the development time that is saved for designing con-
trollers through the usage of PuRSUE is shown by the results in Table 6.5.
The size of the generated controllers (states and when clauses), clearly ev-
idence that a manual design of such controllers is far for being trivial and
feasible.

We can conclude that PuRSUE is effectively supporting designers in the
generation of controllers for the models of RAUA applications.

6.4 Experimental Evaluation (RQ3)

To answer RQ3, we evaluated whether the control strategy generated by
PuRSUE if effective when deployed on real robots. We generated, sent
and executed the controller for slightly modified versions of scenarios EB2
and EB3 described in Sec. 6.1.3 by exploiting the PuRSUE implementation
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support described in Sec. 5. Our controller was executed by the TurtleBot
robot (Sec. 3.4.3). We checked whether the robot was behaving as expected
over the considered scenarios. Videos of the experimental evaluation are
available online1.

6.4.1 EB2 Scenario

The ecoBot robot is asked to retrieve the trash and notify the use that the
office is clean (officeClean) within 40 seconds of being called by the human
(callBot). Furthermore, the bin can be relocated in other POIs by another
person. The PuRSUE-ML model of the scenario as reported in Listing 7.16
is used to generate the controller which is then deployed on the TurtleBot,
then the PuRSUE UI is used to emulate the reading of events happening in
the environment.

We observed that the TurtleBot performed the expected actions according
to the uncontrollable events triggered by the environment. For example,
in the considered case, after the start signal is sent, callBot is triggered
immediately, as a consequence the TurtleBot starts moving towards office,
passing through hallway. In the meanwhile, the bin is being moved from its
original location (trashRoom) to base, passing through hallway. Once the
Turtlebot reaches the location office, it sends on the topic “pursue/actions"
the event takeTrash, triggering the human in the office to put to trash on
the TurtleBot. Then the robot sends the event officeClean, confirming the
cleaning of the office, and starts moving towards the bin, which has now
completed its movement towards base; the movement again passes through
hallway. After its arrival in base the robot sends the event throwTrash on
topic “pursue/actions", thus causing the human to take the trash from the
robot and throw it in the bin. Whenever a movement transition is performed
by an agent, the corresponding signal is published on topic “pursue/events".

6.4.2 EB3 Scenario

The ecoBot robot is asked to retrieve the trash and notify that the office
is clean (officeClean) within 40 seconds of being called by the human
(callBot). The trash can be of two types, paper or plastic, which need to be
thrown in the corresponding bins, plasticBin located in base or paperBin
located in trashRoom. The bins cannot be moved from their locations. The
PuRSUE-ML model used is reported in Listing 7.17.

1https://youtu.be/w6SfCmgdCsk, https://youtu.be/XmOY-urEDD0
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After the start signal, the human immediately defines the types of trash
he wants to throw with the event isPaper and then calls the robot (callBot).
The robot moves to office, going through hallway, and triggers the human
to give him the trash with the event takePaperTrash. Then the robot
notifies the human that the office is clean (event officeClean) and moves
towards the corresponding bin, which is in location trashRoom. Once it
reaches the bin, the event throwPaper is published on topic “pursue/actions",
causing the human to throw the trash in the bin. While the robot is perfoming
throwPaper, human triggers the events isPlastic and callBot, thus starting
another cleaning task. The task is performed identically to the first one,
but the robot then heads to location base, where plasticBin is located, to
perform event throwPlastic. As in the previous case, whenever a movement
transition is performed by an agent, the corresponding signal is published on
topic “pursue/events".

The robot did indeed behave as expected in the considered scenarios. We
can conclude that the plans generated with PuRSUE are indeed effective
when deployed on actual robots.
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Chapter 7

Conclusions and future work

This thesis aimed at extending the support provided to developers in the
creation of robotic applications. The analysis of the literature showed the
absence of a general framework able to address current robotic developers
needs, as evidenced in the Co4robots project [44], within which this thesis
has been developed. The analysis of the state of the art showed the absence
of an approach capable of (i) supporting a systematic and rigorous design of
robotic applications through a high-level structured semantic; (ii) enabling the
automatic synthesis of controllers that allow robots to achieve their missions;
and (iii) allowing the designer to reason on real-time properties.

This thesis developed PuRSUE, a comprehensive framework that supports
designers in the creation of controllers for robotic applications. Specifically,
the contribution of this thesis can be summarized as follows:

• PuRSUE provides a high-level language called PuRSUE-ML, that al-
lows high-level modeling of robotic applications. PuRSUE-ML allows
designers to describe a robotic application in terms of its key locations
as well as how they are connected, the relevant events agents can trigger
in it and the agent themselves. Furthermore constructs such as rules
and states allow the designer to better describe how the agents and the
environment interact. Finally, the objective constructs of PuRSUE-ML
allow the designer to provide the mission the controller should achieve.

• PuRSUE automatically generates a model of the robotic application
as a TGA. This model allows for the computation of a controller for
the controllable agents included in the scenario prescribing a sequence
of actions ensuring that the controlled agents achieve their missions
regardless of the behavior of the uncontrollable agents. This allows
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the designers to easily reason on how different configurations of the
environment allow for the accomplishment of the provided missions, as
well as whether a mission can be accomplished regardless of uncontrol-
lable agents behavior. Finally, PuRSUE allows designers to deploy the
controller on the target hardware.

• We evaluated PuRSUE considering three different aspects:

1. We evaluated whether PuRSUE offers a more compact way than
TGA to model robotic applications by trying to encode several
robotic applications using PuRSUE-MLand compare the sizes of
the model in PuRSUE-ML with that of the TGA model generated.
We were capable of modeling all the robotic applications considered
using PuRSUE-ML.

2. We evaluated the capability of PuRSUE in supporting designers
in the generation of controllers and reasoning on time-explicit
properties for robotic applications. To do so, we generated con-
trollers using PuRSUE for the scenarios considered. While for
most scenarios we were able to generate a controller, some scenar-
ios resulted impossible to solve regardless of the behavior of the
controllable agents. This showed how PuRSUE is indeed capable
of generating controllers for robotic applications described with
PuRSUE-ML, as well as its capability to support developers in
reasoning on real-time properties.

3. We evaluate whether the generated controllers were effective once
deployed on a robotic platform. To do so we deployed the con-
trollers generated for 2 of the considered robotic applications on
the TurtleBot robot in the Jupiter building of Chalmers University.
The robot behaved as expected and achieved the mission in both
the scenarios, showing that the controllers generated by PuRSUE
are effective when deployed on actual robots.

This work opens several directions of future work:

• Improving the implementation of PuRSUE. As mentioned in Chapter 5,
there is a small number of features presented in Chapter 4 that were
not implemented, as not relevant for the evaluation of this work. These
include

– The keyword prevent.

– The keyword unidirectional.
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– The inclusion of general Boolean expression in State Dependencies.

• Improving the robustness of the generated controller. The current
implementation of the controller assumes that the real system behaves
as expected, e.g. uncontrollable agent cannot perform actions that
are not modeled and change in the state of the system only occurs as
a consequence of the modeled actions. While this is an assumption
for our work, in order to allow designers to the deploy the controllers
generated by PuRSUE in real-life scenarios, the controller generated
needs to be able to handle these uncertainties.

• Expanding the expressiveness of PuRSUE-ML. There are many features
that can be added to PuRSUE-ML. These include:

– Developing the user-interface of PuRSUE. While an Eclipse plug-
in is available for the generation of a PuRSUE-ML model, work can
be done in the direction of providing PuRSUE as an off-the-shelf
product. A visual interface allowing the designer to define the POIs
and their connections with more ease should be developed, as well
as an automatic system to link these POIs with the coordinates
on the robots internal map.
The same should be done with signal from sensors in the environ-
ment and actuators of the robot, this would ultimately allow the
designer to model and deploy robotic applications without hav-
ing any expertise on ROS, thus rendering PuRSUE available not
only for robotic application designers, but for anyone interested in
deploying a controller on a robot.

– The inclusions of more constructs used to specify the mission
of the controller in the robotic application. Patterns provide
solutions for recurrent specification problems, they allow designers
to more easily and clearly define robotic missions. The patterns
to be implemented could be taken from work done in [35], where a
number of key patterns for robotic applications have been analyzed
and classified.

– The addition of a construct forcing an uncontrollable agent to
leave a location after it has stayed there for a certain amount of
time units. The PuRSUE framework generates a controller only
when one can be found that is capable of winning, regardless of
the strategy of the opponent. This makes it difficult to model
some scenarios, e.g. a robot has the task to pick up an object in a
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POI, without interfering with the movement of other uncontrol-
lable agents in the application. When encoding this scenario, the
designer might run into the situation in which an uncontrollable
agent chooses, as strategy, to spend an indefinite amount of time
in the POI where the object is placed, thus making the control
problem unfeasible. This is however an unrealistic behavior in
some scenarios, e.g. a human in an office will likely not spend
his entire day occupying the POI where the object is located. A
construct forcing an agent for leave any POI after a certain amount
of time could solve this modeling issue, thus greatly increasing
PuRSUE-ML’s expressive power.

– The explicit inclusion of forbidden location for certain agents, thus
automatically preventing them from ever entering them.

– The extension of event constructs to include events with uncertain
duration, in which the designer can provide the minimum and
maximum duration of the event.

– The modeling of an agent being busy while collaborating with
another agent. In the current implementation of the system,
collaboration is defined as the need of an agent to be in a location
in order to allow another agent to trigger a certain event. In many
robotic applications it might be important to model a collaborative
action that keeps both agents busy for the duration of the event.

– The extension of rules to include any general expression. As previ-
ously discussed, only a subset of regular expressions was included
in rules for the scope of this thesis, but it would indeed greatly
increase the expressiveness of the model to include any general
expression in rules, as they would allow designers to implement
many different constraints on the evolution of the system. This
would be trivial, as transformation between regular expressions
and TA are available in the literature.

– The extension of states to include any number of states. In
this work, only boolean states have been considered. It would
however be simple to implement constructs allowing user to define
generally complex states, which could be very useful to model a
more complex behavior of the environment.
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APPENDIX

7.1 Scenarios from Evaluation modeled in PuRSUE-
ML

Listing 7.1– Description for the CT1 scenario in PuRSUE-ML .

1 //locations
2 poi "a"
3 poi "b"
4 poi "c"
5 poi "d"
6
7 //connections
8 connect a and b distance 10
9 connect b and c distance 10

10 connect c and d distance 10
11 connect d and a distance 10

12
13 //events
14 event "catch" collaborative
15
16 //agents
17 agent "police" controllable mobile

1 location a can_do catch
18 agent "thief" mobile 2 location c

reacts_to catch
19
20 //objectives
21 reach_objective: do catch

Listing 7.2– Description for the CT2a scenario in PuRSUE-ML .

1 //locations
2 as 7.1, (2-5)
3 poi "weaponCloset"
4
5 //connections
6 as 7.1, (8-11)
7 connect weaponCloset and a

distance 3
8
9 //events

10 event "catch" collaborative
11 event "pickUpBaton" location

weaponCloset duration 5

12
13 //rule
14 rule "howToCatch": pickUpBaton

before catch
15
16 //agents
17 agent "police" controllable mobile

1 location a can_do catch,
pickUpBaton

18 agent "thief" mobile 2 location c
reacts_to catch

19
20 //objectives
21 reach_objective: do catch
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Listing 7.3– Description for the CT2b scenario in PuRSUE-ML .

1 //locations
2 as 7.1, (2-5)
3 poi "weaponCloset"
4
5 //connections
6 as 7.1, (8-11)
7 connect weaponCloset and a

distance 3
8
9 //events

10 event "catch" collaborative
11 event "pickUpBaton" location

weaponCloset duration 5
12 event "putDownBaton" location

weaponCloser duration 5
13
14 //states

15 State "hasBaton": initially false,
true_if pickUpBaton false_if

putDownBaton
16
17 //state dependencies
18 stateDependency: catch only_if

hasBaton is_true
19
20 //agents
21 agent "police" controllable mobile

1 location a can_do catch,
pickUpBaton, putDownBaton

22 agent "thief" mobile 2 location c
reacts_to catch

23
24 //objectives
25 reach_objective: do catch

Listing 7.4– Description for the CT3a scenario in PuRSUE-ML .

1 //locations
2 as 7.1, (2-5)
3
4 //connections
5 as 7.1, (8-11)
6
7 //events
8 event "catch" collaborative
9

10 //agents

11 agent "police1" controllable
mobile 1 location a can_do
catch

12 agent "police2" controllable
mobile 1 location a can_do
catch

13 agent "thief" mobile 1 location c
reacts_to catch

14
15 //objectives
16 reach_objective: do catch after 0

Listing 7.5– Description for the CT3b scenario in PuRSUE-ML .

1 //locations
2 as 7.1, (2-5)
3
4 //connections
5 as 7.1, (8-11)
6
7 //events
8 event "catch" collaborative
9

10 //agents
11 agent "police1" controllable

mobile 1 location a can_do
catch

12 agent "police2" controllable
mobile 1 location a can_do
catch

13 agent "police3" controllable
mobile 1 location a can_do
catch
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14 agent "thief" mobile 1 location c
reacts_to catch

15

16 //objectives
17 reach_objective: do catch

Listing 7.6– Description for the CT4 scenario in PuRSUE-ML .

1 //locations
2 poi "a"
3 poi "b"
4 poi "c"
5 poi "d"
6 poi "e"
7 poi "f"
8 poi "g"
9 poi "h"

10 poi "i"
11 poi "l"
12 poi "m"
13 poi "n"
14 poi "o"
15 poi "p"
16
17 //connections
18 connect a and p distance 11
19 connect g and h distance 11
20 connect c and n distance 16
21 connect a and b distance 10

22 connect p and o distance 10
23 connect b and c distance 4
24 connect o and n distance 4
25 connect c and d distance 3
26 connect n and m distance 3
27 connect d and e distance 4
28 connect m and i distance 4
29 connect d and f distance 9
30 connect m and l distance 9
31 connect f and g distance 4
32 connect l and h distance 4
33 connect e and g distance 9
34 connect i and h distance 9
35
36 //events
37 event "catch" collaborative
38
39 //agents
40 as 7.1, (17-18)
41
42 //objectives
43 reach_objective: do catch

Listing 7.7– Description for the CT5 scenario in PuRSUE-ML .

1 //locations
2 as 7.6, (2-15)
3 poi "stairs"
4 poi "window1"
5 poi "window2"
6
7 //connections
8 connect a and window1 distance 5
9 connect window1 and p distance 5

10 connect g and window2 distance 5
11 connect window2 and h distance 11
12 connect c and stairs distance 8
13 connect stairs and n distance 8
14 as 7.6, (21-34)
15

16 //events
17 event "catch" collaborative
18 event "steal1" location a
19 event "steal2" location b
20 event "steal3" location g
21 event "stolen"
22 event "leave1" location window1
23 event "leave2" location window2
24 event "leave3" location stairs
25 event "enter" location stairs
26
27 //Rule
28 rule "stealing": ((steal1 or

steal2) or steal3) before (
stolen or catch)

29
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30 //states
31 state "away" : initially false,

true_if leave1, leave2, leave3
false_if enter

32
33 //state dependencies
34 stateDependency: catch only_if

away is_false
35 stateDependency: steal1 only_if

away is_false
36 stateDependency: steal2 only_if

away is_false
37 stateDependency: steal3 only_if

away is_false

38 stateDependency: stolen only_if
away is_true

39
40 //agents
41 agent "police" controllable mobile

1 location a can_do catch
42 agent "thief" mobile 2 location

stairs can_do steal1, steal2,
steal3, leave1, leave2, leave3
, enter, stolen reacts_to
catch

43
44 //objectives
45 avoid stolen

Listing 7.8– Description for the CT6 scenario in PuRSUE-ML .

1 as 7.7, (1-38)
2 //agents
3 agent "police" mobile 1 location a

can_do catch
4 agent "thief" controllable mobile

1 location stairs can_do

steal1, steal2, steal3, leave1
, leave2, leave3, enter,
stolen reacts_to catch

5
6 //objectives
7 reach_objective: do stolen

Listing 7.9– Description for the WC1 scenario in PuRSUE-ML .

1 //locations
2 poi "station"
3
4 //events
5 event "newBox"
6 event "pickUpBox" location station

duration 2
7 event "screw" location station

duration 10
8 event "putDownBox" location

station duration 2
9

10 //rules
11 rule "workFlow": (newBox before

pickUpBox ) before (screw
before putDownBox )

12
13 //agents
14 agent "bot" controllable location

station can_do pickUpBox,
screw, putDownBox

15 agent "human" location station
can_do pickUpBox, screw,
putDownBox, newBox

16
17 //objectives
18 objective: if newBox then

putDownBox within 30
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Listing 7.10– Description for the WC2a scenario in PuRSUE-ML .

1 //locations
2 poi "station"
3
4 //events
5 event "newBox"
6 event "pickUpBoxR1" location

station duration 2
7 event "pickUpBoxH" location

station duration 2
8 event "screwR1" location station

duration 10
9 event "screwH" location station

duration 10
10 event "putDownBoxR1" location

station duration 2
11 event "putDownBoxH" location

station duration 2
12 event "done"
13
14 //rules
15 rule "workFlow": ((newBox before (

pickUpBoxR1 or pickUpBoxH ))
before (screwR1 or screwH ))
before ((putDownBoxR1 or
putDownBoxH ) before done)

16 rule "pickUp1" : pickUpBoxR1
before putDownBoxR1

17 rule "pickUpH" : pickUpBoxH before
putDownBoxH

18 state "busyR1" : initially false,
true_if pickUpBoxR1 false_if
putDownBoxR1

19 state "busyH" : initially false,
true_if pickUpBoxH false_if
putDownBoxH

20 stateDependency: screwR1 only_if
busyR1 is_false

21 stateDependency: screwH only_if
busyH is_false

22
23 //agents
24 agent "bot1" controllable location

station can_do pickUpBoxR1,
screwR1, putDownBoxR1, done

25 agent "human" location station
can_do pickUpBoxH, screwH,
putDownBoxH, done, newBox

26
27 //objectives
28 objective: if newBox then done

within 30

Listing 7.11– Description for the WC2b scenario in PuRSUE-ML .

1 //locations
2 poi "station"
3
4 //events
5 event "newBox"
6 event "pickUpBoxR1" location

station duration 2
7 event "pickUpBoxR2" location

station duration 2
8 event "pickUpBoxH" location

station duration 2
9 event "screwR1" location station

duration 10
10 event "screwR2" location station

duration 10
11 event "screwH" location station

duration 10
12 event "putDownBoxR1" location

station duration 2
13 event "putDownBoxR2" location

station duration 2
14 event "putDownBoxH" location

station duration 2
15 event "done"
16
17 //rules
18 rule "workFlow": (newBox before (

(pickUpBoxR1 or pickUpBoxR2)
or pickUpBoxH ) ) before ((( (
screwR1 or screwR2 ) or screwH
) before ((putDownBoxR1 or

putDownBoxR2) or putDownBoxH )
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) before done)
19 rule "pickUp1" : pickUpBoxR1

before putDownBoxR1
20 rule "pickUp2" : pickUpBoxR2

before putDownBoxR2
21 rule "pickUpH" : pickUpBoxH before

putDownBoxH
22 state "busyR1" : initially false,

true_if pickUpBoxR1 false_if
putDownBoxR1

23 state "busyR2" : initially false,
true_if pickUpBoxR2 false_if
putDownBoxR2

24 state "busyH" : initially false,
true_if pickUpBoxH false_if
putDownBoxH

25 stateDependency: screwR1 only_if
busyR1 is_false

26 stateDependency: screwR2 only_if

busyR2 is_false
27 stateDependency: screwH only_if

busyH is_false
28
29 //agents
30 agent "bot1" controllable location

station can_do pickUpBoxR1,
screwR1, putDownBoxR1, done

31 agent "bot2" controllable location
station can_do pickUpBoxR2,

screwR2, putDownBoxR2, done
32 agent "human" location station

can_do pickUpBoxH, screwH,
putDownBoxH, done, newBox

33
34 //objectives
35 objective: if newBox then done

within 30

Listing 7.12– Description for the EB1 scenario in PuRSUE-ML .

1 //locations
2 poi "office"
3 poi "base"
4 poi "hallway"
5 poi "trashRoom"
6
7 //connections
8 connect office and hallway

distance 5
9 connect base and hallway distance

2
10 connect trashRoom and hallway

distance 7
11
12 //events
13 event "throwTrash" collaborative

duration 3
14 event "getTrash" location office

duration 5
15 event "callBot"
16 event "wait" duration 37
17 event "officeClean" location

office
18
19 //Rule
20 rule "makingTrash" : callBot

before wait
21 rule "pickingUp" : (callBot before

trash) before officeClean
22 rule "throwingTrash" : getTrash

before throwTrash
23
24 //agents
25 agent "ecoBot" controllable mobile

1 location base can_do trash,
throwTrash, officeClean

26 agent "human" location office
can_do callBot, wait

27 agent "bin" location trashRoom
reacts_to throwTrash

28
29 //objectives
30 objective: if callBot then

officeClean within 20
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Listing 7.13– Description for the EB2 scenario in PuRSUE-ML .

1 as 7.12, (1-26)
2 agent "bin" mobile 2 location

trashRoom reacts_to throwTrash

3
4 //objectives
5 objective: if callBot then

officeClean within 20

Listing 7.14– Description for the EB3 scenario in PuRSUE-ML .

1
2 as 7.12, (1-10)
3
4 //events
5 event "throwPaper" collaborative

duration 3
6 event "throwPlastic" collaborative

duration 3
7 event "getPlasticTrash" location

office duration 5
8 event "getPaperTrash" location

office duration 5
9 event "callBot"

10 event "wait" duration 36
11 event "isPaper"
12 event "isPlastic"
13 event "officeClean" location

office
14
15 //Rule
16 rule "makingTrash" : (isPaper or

isPlastic) before (callBot
before wait)

17 rule "pickingUp" : (callBot before
(getPlasticTrash or

getPaperTrash)) before
officeClean

18 rule "throwingPaper" :
getPaperTrash before
throwPaper

19 rule "throwingPlastic" :
getPlasticTrash before

throwPlastic
20
21 //states
22 state "paperOrPlastic": initially

true, true_if isPaper false_if
isPlastic

23
24 //stateDependencies
25 stateDependency: getPaperTrash

only_if paperOrPlastic is_true
26 stateDependency: getPlasticTrash

only_if paperOrPlastic
is_false

27
28 //agents
29 agent "ecoBot" controllable mobile

1 location base can_do
getPlasticTrash, getPaperTrash
, throwPlastic, throwPaper,
officeClean

30 agent "human" location office
can_do callBot, wait, isPaper,
isPlastic

31 agent "plasticBin" location
trashRoom reacts_to
throwPlastic

32 agent "paperBin" location
trashRoom reacts_to throwPaper

33
34 //objectives
35 objective: if callBot then

officeClean within 20
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Listing 7.15– Description for the EB4 scenario in PuRSUE-ML .

1 as 7.12, (2-30)
2 agent "plasticBin" mobile 2

location trashRoom reacts_to
throwPlastic

3 agent "paperBin" mobile 2 location

trashRoom reacts_to
throwPaper

4
5 //objectives
6 objective: if callBot then

officeClean within 20

Listing 7.16– Description for the EB2 experimental scenario in
PuRSUE-ML .

1 //locations
2 poi "office"
3 poi "base"
4 poi "hallway"
5 poi "trashRoom"
6
7 //connections
8 connect office and hallway

distance 3
9 connect base and hallway distance

4
10 connect trashRoom and hallway

distance 4
11
12 //events
13 event "throwTrash" collaborative

duration 3
14 event "takeTrash" location office

duration 5
15 event "callBot"
16 event "wait" duration 111
17 event "officeClean" location

office
18
19 //Rule
20 rule "robotCallBuffer" : callBot

before wait
21 rule "pickingUp" : (callBot before

takeTrash) before officeClean
22 rule "throwingTrash" : getTrash

before throwTrash
23
24 //agents
25 agent "ecoBot" controllable mobile

3 location base can_do
takeTrash, throwTrash,
officeClean

26 agent "human" location office
can_do callBot, wait

27 agent "bin" mobile 4 location
trashRoom reacts_to throwTrash

28
29 //objectives
30 objective: if callBot then

officeClean within 40

Listing 7.17– Description for the EB3 experimental scenario in
PuRSUE-ML .

1 //locations
2 poi "office"
3 poi "base"
4 poi "hallway"
5 poi "trashRoom"
6

7 //connections
8 connect office and hallway

distance 3
9 connect base and hallway distance

4
10 connect trashRoom and hallway

distance 4
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11
12 //events
13 event "throwPaper" collaborative

duration 3
14 event "throwPlastic" collaborative

duration 3
15 event "takePlasticTrash" location

office duration 5
16 event "takePaperTrash" location

office duration 5
17 event "callBot"
18 event "wait" duration 54
19 event "isPaper"
20 event "isPlastic"
21 event "officeClean" location

office
22
23 //Rule
24 rule "makingTrash" : (isPaper or

isPlastic) before (callBot
before wait)

25 rule "pickingUp" : (callBot before
(takePlasticTrash or

takePaperTrash)) before
officeClean

26 rule "throwingPaper" :
takePaperTrash before
throwPaper

27 rule "throwingPlastic" :
takePlasticTrash before
throwPlastic

28
29 //states
30 state "paperOrPlastic": initially

true, true_if isPaper false_if
isPlastic

31
32 //stateDependencies
33 stateDependency: paperTrash

only_if paperOrPlastic is_true
34 stateDependency: plasticTrash

only_if paperOrPlastic
is_false

35
36 //agents
37 agent "ecoBot" controllable mobile

3 location base can_do
takePlasticTrash,
takePaperTrash, throwPlastic,
throwPaper, officeClean

38 agent "human" location office
can_do callBot, wait, isPaper,
isPlastic

39 agent "plasticBin" location base
reacts_to throwPlastic

40 agent "paperBin" location
trashRoom reacts_to throwPaper

41
42 //objectives
43 objective: if callBot then

officeClean within 40
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