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Abstract

In the Web of Data, in which Data are increasing in Volume, Variety, and Velocity, the

Stream Reasoning and RDF Stream Processing research areas try to make sense of these

continuous streams of schemaless data, by taking advantage of both the vast Stream

Processing literature and Semantic Web technologies at the same time. State-of-the-art

solutions proposed so far mostly proved that taming Variety and Velocity simultaneously

is feasible.

In this Thesis, we propose µCR, an infrastructural redesign based on micro-services of

two existing approaches, i.e., Cascading Reasoning (CR) and Network of Stream Reason-

ers (NoSR). Our proposal, taking inspiration from the Unix philosophy, merges the two

existing approaches, producing a network of simple reasoners, each with its reasoning

expressiveness, that can be used as rewriting target for continuous queries. To enable this

approach, we present a Stack and propose our solutions for its foundational layers.

Finally, to produce a Proof of Concept of a µCR enabled stream reasoner, we focus

on rewriting directly to Raw Stream Processing systems based on the Dataflow execution

model. In fact, accordingly Stonebraker’s principles, we recognize as a necessity the ability

to perform little expressive reasoning on fast changing data in an horizontally scalable

way.Therefore, we present Metamorphosis, i.e., a proof-of-concept implementation for

RDF Stream Processing over Kafka Streams using the Dual Streaming model. We then

prove the feasibility of our approach using SRBench benchmark for query expressiveness.





Estratto

Nel Web of Data di oggi, per il quale gli aspetti di "Volume", "Variety" e "Velocity" sono

sempre più di crescente importanza, Stream Reasoning e RDF Stream Processing si pro-

pongono come campi di ricerca volti al dare un significato a questo continuo stream di

dati, utilizzando al contempo gli strumenti dello Stream processing e le tecnologie del

Semantic Web. Le soluzioni proposte finora si sono concentrate principalmente sulla

fattibilità di gestire contemporeamente "Variety" e "Velocity" dei dati.

In questa tesi proponiamo µCR, una reinterpretazione infrastrutturale basata su micro

servizi di due approcci già proposti in letteratura, "Cascading Reasoning" (CR) e "Network

of Stream Reasoners" (NoSR). La nostra proposta, ispirata alla filosofia Unix, unisce

i due approcci sopra citati, producendo un network di "reasoners" semplici, ognuno

caratterizzato da una specifica espressività di ragionamento, che possono essere utilizzati

come obbiettivo per la riscrittura di query continue. Al fine di attuare questo approccio,

abbiamo proposto uno "Stack" e delle soluzioni per i suoi livelli fondamentali.

Infine, per produrre un esempio di Stream Reasoner abilitato ad interagire all’interno

della rete µCR, ci siamo concentrati sulla riscrittura verso sistem di "Raw Stream Process-

ing" basati sul modello di esecuzione Dataflow. Infatti, seguendo i principi proposti da

Stonebraker, riconosciamo come una necessità l’essere capaci di eseguire ragionamenti

poco espressivi su dati in rapido cambiamento scalando orizzontalmente, per poter gestire

anche la componente "Volume" nei dati. Per questi motivi, presentiamo Metamorphosis,

un esempio di implementazione di RDF Stream Processing utilizzando "Kafka Streams" e

il "Dual Streaming model". Quindi, proviamo la fattibilità del nostro approccio testando

l’espressività delle query implementabili grazie al benchmark SRBench.
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Chapter 1

Introduction

1.1 Motivations

In the Web of Data, in which Data are increasing in Volume, Variety, and Velocity, the

RDF Stream Processing research area tries to make sense of these continuous streams of

schemaless data, by taking advantage of the vast Stream Processing literature and thanks

to Semantic Web technologies and techniques. State-of-the-art solutions proposed so far

mostly proved that taming Variety and Velocity simultaneously is feasible, but few have

addressed the Volume aspect through horizontal scaleability.

Therefore, in this thesis, we propose an infrastructural redesign of two existing ap-

proaches for Stream Reasoning/RDF Stream Processing, i.e., Cascading Reasoning and

Network of Stream Reasoners [31], in order to be able to address also Volume. Our pro-

posed approach will be based on micro-services. In particular, we will focus onto targeting

Big Data Stream Processing systems based on the Dataflow model.

1.2 Research questions

The general research question the RSP and SR fields try to answer focus on taming Velocity

on the Web of Data without neglecting Variety, trying to explore the tradeoffs between

these two aspects. In this general framework, we try to focus on trying to tame also

the Volume aspect by applying the Cascading Reasoning approach to the Network of

Stream Reasoners, trying to overcome the limitations of the former with the strengths

of the latter. In the context of these questions, we will focus mostly on the fundamental

choices necessary to enable such an approach. Therefore, exploring the space of possible
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solutions for what we will call Streaming Platform and Orchestrator, to build the underlying

infrastructure for our vision.

1.3 Contributions

We contribute a vision, that of µCR, which consists of a novel framework combining

Cascading Reasoning (CR) and Network of Stream Reasoners (NOSR) by Stuckenschmidt et

al. [37], that could enable rewriting streaming queries against a microservice architecture

of differently capable Stream Processors. Therefore we propose a Stack of choices that

have to be made. We then frame some of the existing solutions through this stack and

show what they are missing in order to be able to fit into our framework. We tackle

at first the choice for a common Data Infrastructure and then focus on the choice of a

Stream Processing system and model for a proof of concept of a µCR enabled reasoner,

Metamorphosis, which constitutes our second contribution. We have chosen to target a

system built upon the Dataflow model, recognizing it as a necessary component to achieve

our vision and to be able to tackle also the Volume dimension of the Web of Data. To do

so, we propose a model to represent and process RDF streams using a Dataflow system.

Finally, we choose a State of the Art orchestrator and deploy the Streaming Platform on it

and as future work we outline how it could be instrumented to handle the µCR Network of

Stream Reasoners completely.

1.4 Outline of the thesis

This thesis develops in the following chapters:

1 Background We provide an overview of the main research areas related to this thesis.

We introduce the Semantic Web technologies stack and research field of RDF Stream

Processing, presenting some of the existing systems. We cover the CQL model over

which many of the existing systems have been based. Then we explore the state of

the art of streaming query rewriting. And go on outlining the Stream Processing

research field, its core principles and requirements, some of the modern stream

processing engines, giving a more in depth description of Apache Kafka and its Dual

Streaming model. We end with a description of the Dataflow processing model.

2 Problem Statement We introduce the context for our research, Velocity on the web,

reducing then our scope to that of Expressive Stream Reasoning and presenting our

µCR vision as a Cascading Reasoning system over a Network of Stream Reasoners
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and propose a stack that have to be covered to achieve our vision and focus our

research on the lower layers of the stack.

3 Design We present the choices we had to make to enable our vision, explaining the

motivations that brought us to choose a PubSub system as Data Infrastructure and

a Dataflow model to implement our proof of concept of a µCR enabled reasoner

targeting Raw Stream Processing through query rewriting directly to its DSL. We

then propose a model to bridge the gap between the Dual Streaming model and

RDF data.

4 Implementations We present the implementation of the choices done in the previ-

ous chapter, the choice of a specific PubSub system, the technologies used to allow

efficient communication and our proposed proof of concept for a µCR enabled

Dataflow reasoner. We propose an algorithm to translate RSP-QL queries into logical

plans executable as a specific Dataflow system topologies. Then we show how we

deployed our solution in a state of the art orchestration system. We then present an

evaluation of the feasibility of our approach by checking the compatibility of our

system with queries in the SRBench benchmark[39].





Chapter 2

Background

2.1 Semantic Web

The Semantic Web as first presented by Berners Lee et al. [8] is a research area enabling

data interoperability in the World Wide Web. Semantic technologies allow to serve and

consume data with clear semantics and, therefore, understandable also to automated

agents. The World Wide Web Consortium (W3C) proposed the Semantic Web stack, i.e., a

framework that organizes semantic technologies in layers (Figure 2.1).

Fig. 2.1 The semantic web stack.

In the following, we give details about those technologies that were more relevant for

this thesis, i.e., RDF, SPARQL, and OWL.
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The Resource Description Framework (RDF) is a graph data model to publish semanti-

cally enriched information on the Web. RDF combined with the Web Ontology Language

(OWL) can be used to allow reasoning on these data.

2.1.0.1 Resource Description Framework (RDF)

RDF is the W3C specification for data interchange and information representation for

the Semantic Web [19]. Information is organised in sets of statements in the form of

(subject,predicate,object) triples, formally:

Definition 1. An RDF statement d is a triple

(s, p,o) ∈ (I ∪B)× I × (I ∪B ∪L)

A set of RDF statements is an RDF graph.

Triples’ elements can be IRIs, Blank nodes or Literals: (i) IRIs (Internationalized Re-

source Identifiers), string uniquely identifying a generic resource, allowing to enable

equality checking among nodes of different RDF graphs. (ii) Blank nodes, representing

anonymous resources, disjoint from IRIs and literals. (iii) Literals, representing values

through strings associated with an IRI identifying their datatype.

RDF is a data model, therefore multiple possible representations and serialization

formats have been presented. The main syntax for RDF models standardized from W3C is

RDF/XML1, which defines an XML syntax for encoding RDF. A recently proposed format is

JSON-LD2, a JSON based serialization format allowing to transparently exploit the RDF

format in systems already using JSON.

RDF Schema (RDFS)3 is a vocabulary to model RDF data, standardized by the W3C,

providing a way to describe groups of related resources and their relationships.

2.1.0.2 Web Ontology Language

The Web Ontology Language (OWL) is the ontology language for the Semantic Web, stan-

dardized by the W3C in 2004, updated in 2012 to OWL24. It allows to represent ontologies,

which are explicit representations of concepts, modeling domain-specific knowledge.

1https://www.w3.org/TR/rdf-syntax-grammar/
2https://w3c.github.io/json-ld-syntax/
3RDFS https://www.w3.org/TR/rdf-schema/
4 https://www.w3.org/TR/owl2-overview/



2.1 Semantic Web 7

OWL builds on the RDF Schema Language, providing classes, properties, individuals,

and data values. Ontologies itself can be serialized in RDF graphs using the RDF/XML

syntax.

OWL enables reasoning, i.e., the possibility to infer implicit knowledge from asserted

axioms relying on the theoretic semantics of Description Logics. Both OWL and OWL2 are

in the worst case highly intractable, for this reason OWL2 defines three different tractable

profiles5, language subsets with useful computational properties. These are OWL EL,

OWL QL and OWL RL.

OWL 2 EL, was designed for applications employing ontologies with a very large

numbers of properties and/or classes. It is a subset of OWL 2 that allows to perform basic

reasoning in polynomial time w.r.t. the size of the ontology. EL reflects the profile’s basis

in the EL family of Description Logics, providing only Existential quantification.

OWL 2 QL, instead, was aimed at applications that use very large volumes of instance

data, and where the most important reasoning task is query answering. Conjunctive query

(CQ) answering can be implemented using conventional RDBMS systems. Therefore,

sound and complete CQ answering can be performed in LOGSPACE w.r.t. the size of the

data. The QL acronym reflects the fact that query answering can be implemented through

query rewriting into standard relational Query Languages.

Finally, OWL 2 RL, was designed for applications requiring scalable reasoning without

sacrificing too much expressive power. Reasoning systems using this profile can be

implemented using rule-based reasoning engines. Ontology consistency, class expression

satisfiability, class expression subsumption, instance checking, and conjunctive query

answering problems can be solved in polynomial time w.r.t. the ontology size.

2.1.0.3 SPARQL

SPARQL is the W3C standard6 RDF query language. SPARQL is a graph-matching query

language, therefore it allows to express queries through the specification of graph patterns

an algebra operators to combine them.

SPARQL offers four different types of queries, each of which can have a WHERE block

to specify graph-matching patterns: (i) SELECT queries return a set of variables and their

possible values in the input graph. (ii) CONSTRUCT queries allow returning multiple RDF

graphs created through templating directly from query results. (iii) ASK queries return a

boolean value signifying whether or not the query pattern has a solution. (iv) DESCRIBE

queries allow obtaining an RDF graph containing RDF data about the retrieved resources.

5OWL2 Profiles http://www.w3.org/TR/owl2-profiles/
6SPARQL https://www.w3.org/TR/rdf-sparql-query/



8 Background

1 PREFIX foaf : <http : //xmlns .com/ foaf /0.1/ >
2 SELECT ?name ? email
3 FROM <http : //www.w3. org /People/ Berners−Lee/card>
4 WHERE {
5 ? person foaf : name ?name .
6 OPTIONAL { ? person foaf : mbox ? email }
7 } ORDER BY ?name LIMIT 10 OFFSET 10

Listing 2.1 Example SPARQL query.

SELECT queries are composed of the following clauses:

1. PREFIX : allows associating a prefix label to an IRI within the query, to ease user

experience.

2. SELECT : specifies variables to be returned and their formats, like in the SQL coun-

terpart.

3. FROM : allows specifying the source RDF dataset over.

4. WHERE: provides the graph pattern, which can be of various types 7 to be matched

against the source data graphs specified in FROM clauses.

5. Solution modifiers like ORDER BY, LIMIT,... allows to modify the results of the query,

much like their SQL counterparts.

SPARQL 1.1 extends the 1.0 version with additional features, like aggregations and

subqueries. SPARQL queries can take as input explicitly given graphs or can work under

some entailment regime8, therefore taking into account also inferable RDF statements

given an entailment relation (e.g., RDF entailment, RDFS entailment).

Given an RDF graph, SPARQL queries typically contain one or more triple patterns,

called a Basic Graph Pattern (BGP). Triple patterns are similar to RDF triples, but they may

contain variables in place of resources.

Definition 2. A triple pattern tp is a triple (sp, pp,op) s.t.

(sp, pp,op) ∈ (I ∪B ∪V )× (I ∪V )× (I ∪B ∪L∪V )

where V is the infinite set of variables. Therefore, a BGP is a set of triple patterns.

7simple graph patterns, group patterns, optional patterns, ...
8Entailment Regimes https://www.w3.org/TR/sparql11-entailment/
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BGPs in a SPARQL query can include other compound patterns defined by different

algebraic operators, such as OPTIONAL, UNION and FILTER.

The semantic of evaluation of a SPARQL query is based on the notion of solution

mappings.

Definition 3. A solution mapping µ is a partial function

µ : V → I ∪B ∪L

from a set of Variables V to a set of RDF terms.

Given an RDF graph, a SPARQL query solution can be represented as a set of solution

mappings, each assigning terms of RDF triples in the graph to variables of the query.

SPARQL operators therefore are defined over mapping.

Definition 4. Defined ω1 and ω2 as multisets of solution mappings. A JOIN is defined as

follows:

Joi n(ω1,ω2) = {mer g e(µ1,µ2) |µ1 ∈ω1 ∧µ2 ∈ω2 ∧µ1 and µ2 are compatible}

Where mappings’ compatibility is defined as follows:

Definition 5. µ1 and µ2 are compatible iff:

∀x(∈ dom(µ1)∩dom(µ2) ⇒µ1(x) =µ2(x))

Moreover, SPARQL queries operate over collections of one or more RDF graphs, named

RDF datasets.

Definition 6. An RDF Dataset DS is a set:

DS = {g0, (u1, g1), (u2, g2), ..., (un , gn)}

where g0 and gi are RDF graphs, and each corresponding ui is a distinct IRI. g0 is called

the default graph, while the others are called named graphs. During the evaluation of a

query, the graph from the dataset used for matching the graph pattern is called Active

Graph. Multiple graphs can become active during the evaluation.

Finally, SPARQL defines four Query Forms, i.e. ASK, SELECT, CONSTRUCT, and DE-

SCRIBE, and other constructs such as solution modifiers, e.g. DISTINCT, ORDER BY,

LIMIT, applied after pattern matching.
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Definition 7. A SPARQL query is defined a tuple (E ,DS,QS) where E is a SPARQL algebra

expression, DS an RDF dataset and QF a query form.

The evaluation sematics of a SPARQL query algebra expression w.r.t. an RDF dataset

is defined for every operator of the algebr as eval (DS(g ),E) where E denotes an algebra

expression and DS(g ) a dataset DS with active graph g .

2.1.0.4 Reasoning

Reasoners, given an RDF graph and an ontology, are able to infer the implicit knowledge

in the data.

The main problem of reasoning is its computational cost. Reasoning procedures, if too

expressive, can become computationally too expensive or even undecidable and, therefore,

have been applied initially only to static data. However, balancing expressiveness, e.g.

choosing appropriate an OWL2 profile, and designing specific tools, performances can be

optimized, allowing to apply reasoning also on dynamic data.

For a given ontology, a number of reasoning tasks can be performed:

1. consistency checking: Checking whether a specific ontology has any model, i.e. its

axioms are not contradictory.

2. instance checking: checking whether an individual belongs to a specific class.

3. subsumption checking: checking wether a class is subclass of another one.

4. class satisfiability checking: checking whether a class can have instances.

2.2 Stream Processing

2.2.1 The 8 Requirements of Real-Time Stream Processing

In [36], Stonebraker et al., defined the following 8 requirements that a stream processing

system should satisfy:

R1 Keep the Data Moving

process messages “in-stream”, without any requirement to store them to perform

any operation or sequence of operations. Ideally the system should also use an

active (i.e., non-polling) processing model.
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R2 Query using SQL on Streams (StreamSQL)

support a high-level “StreamSQL” language with built-in extensible stream-oriented

primitives and operators.

R3 Handle Stream Imperfections (Delayed, Missing and Out-of-Order Data)

have built-in mechanisms to provide resiliency against stream “imperfections”,

including missing and out-of-order data, which are commonly present in real-world

data stream.

R4 Generate Predictable Outcomes

must guarantee predictable and repeatable outcomes.

R5 Integrate Stored and Streaming Data

have the capability to efficiently store, access, and modify state information, and

combine it with live streaming data. For seamless integration, the system should

use a uniform language when dealing with either type of data.

R6 Guarantee Data Safety and Availability

ensure that the applications are up and available, and the integrity of the data

maintained at all times, despite failure.

R7 Partition and Scale Applications Automatically

have the capability to distribute processing across multiple processors and machines

to achieve incremental scaleability. Ideally, the distribution should be automatic

and transparent.

R8 Process and Respond Instantaneously

must have a highly-optimized, minimal-overhead execution engine to deliver real-

time response for high-volume applications.

Moreover, they classified the software technologies for stream processing, distinguishing

three main classes of that can potentially be applied to solve high-volume low-latency

streaming problems: Database Management Systems (DBMSs): widely used for storing

large data sets and processing human-initiated queries. Their in main-memory variant

can provide higher performance than traditional DBMSs by avoiding the disk for most

operations, given sufficient main memory. Rule Engines: systems like the early 1970’s

PLANNER and Conniver or later Prolog. Typically accepts condition/action pairs, watches

an input stream for any conditions of interest, and then takes appropriate action when

the condition is met. Stream processing engines (SPEs): specifically designed to deal

with streaming data. They perform SQL-like processing on the incoming messages as
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they fly by, without necessarily storing them. Comparing them w.r.t. the previously listed

requirements R0-8:

2.2.2 CQL

Arasu et al. in [3] presented CQL, a continuous query language, in the form of an expres-

sive SQL-based language for registering continuous queries against streams and stored

relations. They argued that stream processing queries execution semantics in previous

works was usually left unclear and therefore they try to give it a precise abstract semantics

for continuous queries, based on two data types, stream and relations, and three classes

of operators: Relation-to-stream (R2S), stream-to-relation (S2R) and relation-to-relation

(R2R) operators. They give the folowing definitions for the two data types:

Fig. 2.2 CQL’s interaction between streams and relations.

1. Stream: A stream S is a (possibly infinite) bag (multiset) of elements 〈s,τ〉, where s

is a tuple belonging to the schema of S and τ ∈ T is the timestamp of the element.

2. Relation: A relation R is a mapping from each time instant in T to a finite but

unbounded bag of tuples belonging to the schema of R.

They defines as instantaneous relation the bag of tuples in a relation at a given point

in time, therefore given relation R, R(τ) denotes an instantaneous relation. Given the

semantics of the three class of operators they define the continuous semantics of a query

Q, as a composition of any type-consistent composition of operators and a set of inputs

streams and relations, whose result is then computed at time τ, assuming all inputs up to

τ are available. They split two cases w.r.t. the outermost operator in Q:

1. It is a R2S operator, therefore the outcome will be a stream S.

2. It is a S2R or R2R operator, therefore the outcome will be a relation R.
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In both cases the outcome will be the result of recursively applying the operators in Q to

the input streams and relations up to τ.

They then present all the S2R, R2R and R2S operators available in CQL. R2R ones

are the usual relational operators adapted to handle time-varying relations. S2R are all

based on the concept of a sliding window over a stream, divided in three subclasses:

time-based, tuple-based and partitioned. Time-based and tuple-based sliding windows

are windows defined respectively on its time duration and number of tuples in the window,

by default tumbling windows are assumed, but sliding windows can be specified through

the addition of a sliding parameter in both cases. Partitioned windows instead behaves

similarly to the SQL GROUP BY construct, it takes a stream S as input and a subset of S’s

attributes as parameters. It splits the input stream into different substreams based on

the equality of requested attributes and then can be composed with tuple or time-based

windows which will be applied to all the substreams generated.

R2S operators are the following:

1. Istream ("insert stream"): streaming out all new entries w.r.t. the previous instant.

2. Dstream ("delete stream"): streaming out all deleted entries w.r.t the previous

instant.

3. Rstream ("relation stream"): streaming out all elements at a certain instant in the

source relation.

Istream and Dstream could be derived from Rstream along with time-based sliding win-

dows and some relational operator, but they preferred keeping them as syntactic sugar to

facilitate writing queries.

In the STREAM prototype they proposed streams’ imperfections were handled through

an additional "metainput" heartbeat stream, consisting in a stream of timestamps sig-

nifying that the system won’t be receiving no elements with timestamps previous to the

heartbeat’s one. Offering multiple possible implementations for heartbeats’ streams.

2.2.3 Modern Stream Processing Engines

We here present a list of modern stream processing engines:

2.2.3.1 Apache Flink

Apache Flink [17] is an open source platform for distributed stream (DataSet API) and

batch (DataStream API) data processing. Flink’s core is a streaming dataflow engine that
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provides data distribution, communication, and fault tolerance for distributed computa-

tions over data streams. Both the API for stream and batch processing are available in Java

and Scala. Apache Flink features two relational APIs - the Table API and SQL - for unified

stream and batch processing. The Table API is a language-integrated query API for Scala

and Java that allows the composition of queries from relational operators such as selection,

filter, and join in a very intuitive way. Flink’s Streaming SQL support is based on Apache

Calcite which implements the SQL standard. Queries specified in either interface have

the same semantics and specify the same result regardless whether the input is a batch

input (DataSet) or a stream input (DataStream). Has to be said that Table and SQL API are

still in beta at the best of our knowledge.When executed, Flink programs are mapped to

streaming dataflows, consisting of streams and transformation operators. Each dataflow

starts with one or more sources and ends in one or more sinks. The dataflows resemble

arbitrary directed acyclic graphs (DAGs). This allow to exploit parallelization through

stream partitioning when possible. Flink is growing in adoption and the Table and SQL

API should become stable soon.

2.2.3.2 Apache Spark Streaming

Apache Spark [4] is a fast and general-purpose cluster computing system. It provides high-

level APIs in Java, Scala, Python and R, and an optimized engine that supports general

execution graphs. It also supports a rich set of higher-level tools including Spark SQL

for SQL and structured data processing, MLlib for machine learning, GraphX for graph

processing, and Spark Streaming. At a high level, every Spark application consists of a

driver program that runs the user’s main function and executes various parallel operations

on a cluster. The main abstraction Spark provides is a resilient distributed dataset (RDD),

which is a collection of elements partitioned across the nodes of the cluster that can

be operated on in parallel. Spark SQL is a Spark module for structured data processing.

Unlike the basic Spark RDD API, the interfaces provided by Spark SQL provide Spark

with more information about the structure of both the data and the computation being

performed and so the engine can perform extra optimizations. There are several ways

to interact with Spark SQL including SQL and the Dataset API. When computing a result

the same execution engine is used, independent of which API/language you are using to

express the computation. This unification means that developers can easily switch back

and forth between different APIs based on which provides the most natural way to express

a given transformation. When running SQL from within another programming language

the results will be returned as a Dataset/DataFrame. Recently Structured Streaming have

been intruduced, it is a scalable and fault-tolerant stream processing engine built on the
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Spark SQL engine. Streaming and batch computation can be expressed in the same way.

Then the Spark SQL engine will take care of running it incrementally and continuously and

updating the final result as streaming data continues to arrive. Dataset/DataFrame API are

available in Scala, Java, Python and R. Finally, the system ensures end-to-end exactly-once

fault-tolerance guarantees through checkpointing and Write Ahead Logs. Spark is one the

most used batch processing systems nowadays and thanks to the increasing reliability

and number of features added with new releases it’s becoming also really used to perform

streaming jobs. Spark Streaming leverages the spark infrastructure to perform streaming

computation, it offers a purely declarative API based on automatically incrementalizing

a static relational query (expressed using SQL or DataFrames). The engine runs in a

microbatch execution mode by default but it can also use a low-latency continuous

operators for some queries because the API is agnostic to execution strategy.

Fig. 2.3 The components of Structured Streaming [4]

2.2.3.3 Apache Apex

Apache Apex 9 is an enterprise-grade streaming technology which processes data at a very

high rate with low latency in a fault tolerant way while providing processing guarantees

like exactly-once. Apex comes with Malhar, a library of operators for data sources and

destinations of popular message buses, file systems, and databases. Recently thanks to

Apache Calcite, which parses SQL and converts SQL Node Tree to Relational Algebra,

optimized and used to create a processing pipeline in Apex. This pipeline of relational

algebra is converted by Apache Apex engine to its set of operators to perform business

logic on data-in-motion.

9https://apex.apache.org/
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2.2.3.4 Apache Beam

Apache Beam [27] is an open source, unified model for defining both batch and streaming

data-parallel processing pipelines. Using one of the available Beam SDKs a pipeline can be

defined and then executed by one of Beam’s supported distributed processing back-ends,

which include Apache Apex, Apache Flink, Apache Spark, Apache Gearpump and Google

Cloud Dataflow or locally for testing purposes.

The Beam SDKs provide a unified programming model, compliant with the Dataflow

model proposed by Akidau et al. [1], that can represent and transform data sets of any

size, whether the input is a finite data set from a batch data source, or an infinite data set

from a streaming data source. The SDKs use the same classes to represent both bounded

and unbounded data, and the same transforms to operate on that data. Beam currently

supports language-specific SDKs for Java and Python, but a Scala interface is also available

as Scio.

2.2.3.5 Apache Kafka

Apache Kafka [29] is a distributed streaming platform. Kafka is run as a cluster on one or

more servers, called brokers, that can span multiple datacenters. The Kafka cluster stores

streams of records in unbounded append only logs called topics. Each record consists of

a key, a value, and a timestamp. Communication between the clients and the servers is

performed through a high-performance, yet simple, language agnostic TCP protocol.

Compared to other Pub/Sub systems, such as RabbitMQ 10 and Apache ActiveMQ 11,

both widely adopted message brokers, Kafka presents a noticeable performance difference

[29] and it satisfying most of our requirements, we have in the end decided to opt for

Apache Kafka. Moreover, we found Apache Kafka already adopted as an ingestion system

in more than one recent RSP systems [32, 28], therefore it was quite a natural fit.

2.2.3.5.1 Topics and Logs: A topic is a category or feed name to which records are

published. Multiple consumer can subscribe to the same topic. For each topic, the

Kafka cluster maintains a partitioned log, the number of partition is a tunable parameter.

Each partition is an ordered, immutable sequence of records at which new messages

are continuously appended. Records in a partition are assigned a sequential id number

called the offset, uniquely identifying each record within the partition. The Kafka cluster

persists all published records, whether or not they have been consumed, for disk usage

needs a retention period can be configured. For example, if the retention policy is set to a

10https://www.rabbitmq.com/
11http://activemq.apache.org/
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(a) Producer performances. (b) Consumer Performances.

Fig. 2.4 Kafka, RabbitMQ and ActiveMQ performance comparison from [29].

Fig. 2.5 Kafka components.

week, then it will be available for consumption for the following week, after which it will

be deleted to free some disk. Kafka’s performance is effectively constant with respect to

data size so storing data for a long time is not a problem performancewise, it could be a

problem for the size of the disk obviously. This is due to the fact that the only metadata

retained for each consumer is the offset or position of that consumer in the log. This offset

is controlled by the consumer, it advance its offset as it reads records, but since it controls

it, it can consume records in any order it likes. Therefore it could reset to an older offset to

reprocess data from the past or skip ahead to the most recent record and start consuming

from "now". The number of consumers and producers can be dynamically modified at

runtime. Partitioning allows the log to scale beyond a size that would fit on a single server.

Each individual partition must fit on the servers that host it, but a topic may have many

partitions so it can handle an arbitrary amount of data. Moreover, they act as the unit of

parallelism. The partitions of the log are distributed over the servers in the Kafka cluster
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Fig. 2.6 Topics’ partitioning.
Fig. 2.7 Topics’, producers’ and consumers’
interaction.

with each server handling data and requests for a share of the partitions. For fault tolerance

each partition is replicated across a configurable number of servers. Each partition has

one server acting as "leader" and zero or more servers as "followers". The leader handles

all read and write requests for the partition while the followers passively replicate it. On a

leader failure one of the followers will be elected as new leader and handle all read and

write operations. Each server acts as a leader for some of its partitions and a follower

for others so load is well balanced within the cluster. Total ordering is guaranteed only

inside a single partition, not between different partitions in a topic. Key based partitioning

combined with per-partition ordering is sufficient for most applications. However, if total

ordering is required, it can be achieved with a topic that has only one partition, though

this will imply that only one consumer thread per consumer group will be able to consume

the topic.

Kafka gives these high level guarantees:

• Messages sent by a producer to a particular topic partition will be appended in the

order they are sent.

• A consumer instance sees records in the order they are stored in the log.

• For a topic with replication factor N, up to N-1 server failures can be tolerated

without losing any records committed to the log.

2.2.3.5.2 Architecture: In Kafka we have mainly four roles:

• Brokers: the servers handling the partitions.

• Apache Zookeeper: centralized service used to maintain naming and configuration

data and to provide synchronization within distributed systems. Zookeeper keeps

track of status of the Kafka cluster nodes and it also keeps track of Kafka topics,



2.2 Stream Processing 19

partitions etc. The Zookeeper atomic broadcast (ZAB) protocol allows to act as an

atomic broadcast system and issue ordered updates. A Kafka cluster uses Zookeeper

to perform leader election, maintain topics’ configuration and access control lists

(ACLs) and keep track of cluster members’ status.

• Producers: publishing data to required topics. They are responsible for choosing

which record to assign to which partition within the topic. They send data directly

to the broker leader for the partition they chose without any intervening routing tier,

therefore the brokers need to offer information about the topics and their partitions’

locations.

• Consumers: labeled together as a Consumer Group, each record published to a topic

is delivered to one consumer instance within each subscribing consumer group.

Consumer instances can be in separate processes or on separate machines. If all the

consumer instances have the same consumer group, then the records will effectively

be load balanced over the consumer instances. If all the consumer instances have

different consumer groups, then each record will be broadcast to all the consumer

processes. Consumption is implemented in Kafka by dividing up the partitions in

the log over the consumer instances so that each instance is the exclusive consumer

of a "fair share" of partitions at any point in time. This process of maintaining

membership in the group is handled by the Kafka protocol dynamically. If new

instances join the group they will take over some partitions from other members

of the group; if an instance dies, its partitions will be distributed to the remaining

instances.

Fig. 2.8 Consumer groups and topics’ partitioning.

2.2.3.5.3 APIs: Kafka has five core APIs:

• Producer API allows an application to publish a stream of records to one or more

Kafka topics.
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• Consumer API allows an application to subscribe to one or more topics and process

the stream of records produced to them; seamlessly handles consumer groups.

• Streams API allows an application to act as a stream processor, consuming an

input stream from one or more topics and producing an output stream to one or

more output topics, effectively transforming the input streams to output streams.

It is possible to do simple processing directly using the producer and consumer

APIs. However, Streams API is suited for more complex transformations, adopting a

Dataflow approach. This allows building applications that do non-trivial processing

that compute aggregations off of streams or join streams together seamlessly using

intermediate topics if necessary to perform rekeys.

• Connector API allows building and running reusable producers or consumers that

connect Kafka topics to existing applications or data systems, e.g. a connector to a

relational database captures every change to a table.

• KSQL allows to use a SQL-like language (KSQL) to write queries against Topics

present in Kafka, writing the results to console or to other topics, ready to be con-

sumed by other components. Queries are converted to Kafka Streams topologies

and executed.

2.2.3.5.4 Kafka Streams APIs: Kafka Streams is a client library for writing applications

processing and analyzing data stored in Kafka, transforming input Kafka topics into out-

put Kafka topics (if needed, calling external services, updating databases, etc.). It allows

to process events using both event time and processing time, supports windowing and

real-time querying of application state. It is designed to be embedded in existing Java

application too and integrated with all packaging, deployment and operational tools,

enriching applications with the features of Kafka. It has no external dependencies on

systems other than Apache Kafka itself as internal messaging layer. It uses Kafka’s partition-

ing model to horizontally scale processing, while still maintaining per partition ordering

guarantees. It allows applications to take advantage of fault-tolerant local state, enabling

stateful operations like windowed joins and aggregations. It supports exactly-once pro-

cessing semantics, even in case of client or broker failure. It adopts a one-record-at-a-time

processing, achieving millisecond processing latency. It supports event-time based win-

dowing operations handling late arrival of records too. Moreover it offers both a high-level

Streams DSL and a low-level Processor API.

A Stream is the key abstraction provided by these APIs, it represents an unbounded,

continuously updating data set. It’s an ordered, replayable and fault-tolerant sequence of
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immutable key-value pair records. Streams are consumed by stream processing applica-

tions, which defines the computational logic through one or more processor topologies.

These are graphs of stream processing nodes connected through streams. Nodes represent

a processing step to transform streams of data one input record at a time coming from its

upstream node in the topology and producing one or more output records to downstream.

Sources and Sinks are special kind of processor nodes, respectively without upstream

and downstream processors and reading from or writing to, specific Kafka topics.

Kafka Streams is able to handle Event, Processing and Ingestion time, each data record

is assigned a timestamp and the assignment can be customized through the implementa-

tion of an interface. These timestamps describe the progress of a stream with regards to

time and are leveraged by time-dependent operations such as windowing operations.

Sax et al. [33] proposed the Dual Streaming Model, which is implemented in Kafka

Streams. This model presents the result of an operator as a stream of successive updates,

which induces a duality of results and streams, providing a natural way to cope with

inconsistencies between the physical and logical order of streaming data in a continuous

manner, without explicit buffering and reordering. They recognize the fact that in most

existing streaming models, operators directly yield an output data stream and the state

operator treatment is considered an implementation detail, e.g. CQL [3] ignores how

physical and logical ordering inconsistencies of a stream may influence the computation

of operator state and, therefore, the resulting output stream. Out-of-order records are

neglected by models and are left to the implementation layer, therefore usually this

translates into postponing any computation until the logical ordering of records has

been established. As a consequence, the latency with which outputs are emitted grows

linearly with the maximum allowed lateness of records. Therefore they propose a model

in which operator result are updated continuously. Thus allows to drop any assumption

on the consistency of the logical and physical order of records. Furthermore, operators’

result can be seen either statically, as their materialization from processing a stream

up to a certain record, or dynamically, as a stream of successive updates. Both views

are just different ways of programming w.r.t. time, one may process a stream of result

updates or continuously query the materialized result to achieve the same computational

logic. The model comprises the notions of table, table changelog stream and a record

stream. The static view of an operator’s state is a table, updated for each input record.

Tables, as Streams, have a primary key attribute. For instance, for an aggregator operator,

grouping conditions define the primary key of a table. Out-of-order records increase the

respective key as if they were in-order, therefore handling them does not increase the
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latency. Updating an older entry is not more expensive than updating a recent one, they

are both a lookup in a hash table (Fig.2.9).

Fig. 2.9 Duality of stream and tables.

The dynamic view on the result of an operator is a table changelog stream, consisting

of records that are updates to a table. The semantics of an update is defined over both keys

and timestamps. Replaying a table changelog stream allows to materialize the operator

result as a table.

Applying a table changelog stream to an empty table results in a table with all the latest

values per key. But, that’s not sufficient for stream processing operators having temporal

semantics (e.g. joins between tables), it is necessary to reason about the table content over

time. Therefore, they consider tables as collections of versions, one for each point in time

in which its content has been updated, using as version number the timestamp of the

update and maintaining multiple versions at once. Out-of-order records update or add

the corresponding version of the table and all the depending versions. To reason about

the state of a table, they are assigned a generation number, which is incremented for each

processed input record. Each table generation may consist of multiple table versions.

Finally, as said, record streams are part of the model too and represents facts, instead

of updates. Record streams and changelog streams are special cases of streams. Record

streams’ model immutable facts, therefore each record must have a unique key other the

whole strea, e.g. a unique id.

Stream processing operators are divided in stateless and stateful ones, may have one

or multiple input streams and might be defined over special types of input streams only

(Fig.2.10)

To abstract over ordered and unordered input streams, they define stream equivalence

for record streams and table changelog streams. They see ordered streams as a canonical

representation of an equivalence class of streams, both ordered and unordered. Therefore

provide definitions for operators over ordered streams and then extend them to unordered
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Fig. 2.10 Transformations between record streams, tables and changelog streams.

ones, using the equivalence. Two record streams are defined equivalent if and only if their

corresponding multi-sets of timestamps-value pairs are equal.

Stateless operators process one record at a time and produce zero or more records,

preserving ordering and the timestamp of the input records. A stateless operator is defined

correct if and only if, given two equivalent streams, one ordered and one unordered, the

resulting streams obtained by applying the operator to both streams are equivalent.

Record stream aggregation operators take as inputs a stream and produce an ever

updating result table. Correctness for this kind of operator is defined through table

equality, therefore given two equivalent streams the aggregation operator should yield

two equivalent tables. Table equality implies that both tables contains the exact same

versions, therefore timestamps have to be handled correctly and updates have to be

emited for out-of-order input records. If no maximum lateness threshold is set, the whole

history of the operator has to be kept in memory, if this is not possible a retention-time

parameter can specified and defines the maximum delta w.r.t. current event time a record

should have in order to be accepted and used to update the content of a table. The main

difference between retention-time and watermark/punctuation mechanisms is that it

does not introduce any latency, it represent just a mean to let the user choose between

memory usage and correctness in case of out-of-order arrivals.

The model support windowing as a particular case of grouping by key, where the key

has been modified to embed the windowing information.

Moreover, the model offers a set table operators, table, which materializes a table

changelog stream, filter, limited projection, map, aggregation and primary key equi join

for tables. All of them produce tables, which are updated at each source update. The

semantics of these operators follow a temporal-relationa model, therefore updates on an

input table version trigger update on output table with the same version. Table-table joins

are defined over the corresponding table version.
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A variety of equi-join operators for streams are included too, i.e. both stream-stream

and stream-tables joins. Joins between streams are defined over a join attribute as well

as a sliding window on event-time centered around the new element’s timestamp. Two

records join if their timestamps are "close to each other", the distance is less than or

equal to the window size. Join results get the larger timestamp among the ones of the

input records. Stream-table joins produce a stream by performing a key table lookup

join over the key join attribute. It’s a temporal join, the table lookup is done into the

table version corresponding to the stream record’s timestamp. Stream-table joins can also

left-outer-join. Stream-stream instead can be inner, left-outer and full-outer joins.

Out-of-order records are handled differently in the various cases. Stream-table joins

do not require special handling if the out-of-order comes from the stream, instead if it is

an update to the table to arrive late, the stream input records needs to be buffered in the

operator to be able to retrigger the join computation for late table updates. Updates in

this case would overwrite previously emitted join records. For full and full-outer stream-

stream joins the same techniques applies. Records that did not match are emitted eagerly

and might be updated if a matching record appears in the other stream later on, therefore

the resulting stream is no more a record stream. This allows to implement totally non-

blocking joins. Inner stream-stream joins, being a monotonic operation, can never yield

an early result that has to be updated later on, therefore producing a record stream in

output.

Kafka Streams APIs implement the Dual Streaming Model through two first-class

abstractions, KStream and KTable, respectively an abstraction of a record stream and both

changelog stream and its materialized tables. Moreover KTables can be queried via DSL in

real-time. All the operators of the model are implemented and can be seen in Fig.2.11

Kafka Streams Applications are able to handle partitioned topics, clustering, scaling

number of instances and faults seamlessly by using the kafka cluster as intermediate

state store whenever a rekey is necessary and to keep the index each consumer have

reached of consumed topics. The messaging layer of Kafka partitions data for storing

and transporting it. Kafka Streams partitions data for processing it. In both cases, this

partitioning is what enables data locality, elasticity, scaleability, high performance, and

fault tolerance. Kafka Streams uses the concepts of stream partitions and stream tasks

as logical units of its parallelism model. An application’s processor topology is scaled by

breaking it into multiple stream tasks. More specifically, Kafka Streams creates a fixed

number of stream tasks based on the input stream partitions for the application, with

each task being assigned a list of partitions from the input streams (i.e., Kafka topics).

The assignment of stream partitions to stream tasks never changes, hence the stream
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Fig. 2.11 Kafka Streams Api operators.

task is a fixed unit of parallelism of the application. Tasks can then instantiate their

own processor topology based on the assigned partitions; they also maintain a buffer for

each of its assigned partitions and process input data one-record-at-a-time from these

record buffers. As a result stream tasks can be processed independently and in parallel

without manual intervention. The maximum parallelism at which your application may

run is bounded by the maximum number of stream tasks, which itself is determined

by maximum number of partitions of the input topic(s) the application is reading from.

Kafka Streams provides so-called state stores, which can be used by stream processing

applications to store and query data. The Kafka Streams DSL, automatically creates and

manages such state stores for stateful operators. Every stream task in a Kafka Streams

application may embed one or more local state stores that can be accessed via APIs to

store and query data required for processing. These state stores can either be a RocksDB

database, an in-memory hash map, or another convenient data structure. Kafka Streams

offers fault-tolerance and automatic recovery for local state stores.

Kafka Streams builds on fault-tolerance capabilities integrated natively within Kafka.

Partitions are replicated; data persisted to Kafka is available even if the application fails

and re-process it is needed. Tasks in Kafka Streams leverage the fault-tolerance capability

offered by the Kafka consumer client. Tasks that run on a failed machine, are automatically
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restarted in one of the remaining running instances of the application. Kafka streams

offers local state stores robust to failures. For each state store, it maintains a replicated

changelog as a Kafka topic in which it tracks any state updates. These are partitioned as

well so that each local state store instance has its own dedicated changelog topic partition.

Log compaction is enabled on the changelog topics so that old data to reduce memory

consumption. If tasks run on a machine that fails and are restarted on another machine,

Kafka Streams guarantees to restore their associated state stores to the content before the

failure by replaying the corresponding changelog topics prior to resuming the processing

on the newly started tasks. As a result, failure handling is completely transparent to the

end user.

2.2.4 Dataflow model

Akidau et al. in [1] propose a fundamental shift of approach to handle unbounded data,

stopping waiting for data to be complete or assume they will ever be and just then process

them, leaving the user the choice of the appropriate tradeoff between correctness, latency

and cost. The Dataflow Model describes the processing model of Google Cloud Dataflow,

which is based upon previous projects such as FlumeJava and MillWheel. Opposed to

widely adopted batch systems such as MapReduce, FlumeJava and Spark, suffered of the

latency problems inherent with collecting all data into a batch before processing it, the so

called Lambda architecture. The streaming systems at the time fell short either on fault

tolerance at scale, expressiveness or correctness.

The authors’ main critics to the vast majority of streaming systems, as we said, is in

the approach is their belief that at some point in time the streaming data will be complete

and they define it as "fundamentally flawed when the realities of today’s enormous, highly

disordered datasets clash with the semantics and timeliness demanded by consumers".

The Dataflow model instead is aimed at allowing computation of event-time ordered

results, windowed by features of the data themselves over unbounded, unordered data

source with tunable correctness, latency and cost. Therefore choosing between batch,

micro-batch or streaming engine becomes a simple choice along these axes. Concretely

this model translates into models for Windowing, Triggering and Incremental Processing

and a set of core principles for the Dataflow model.

W.r.t. windowing they propose Fixed (a.k.a. Tumbling), Sliding and Sessions windows.

Session windows are windows that capture some period of activity over a subset of the

data, in this case per key, typically defined by a timeout gap. Windowing has two time

domains over which can be applied, Event and Processing Time.
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Fig. 2.12 Dataflow windowing model [1].

Fig. 2.13 Time Domain Skew [1].

The Dataflow model itself then is formally presented. It’s two core primitives operating

on the (key, value) pairs flowing through the system are ParDo for generic elementwise

parallel processing producing zero or more output elements per input, and GroupByKey

for key-grouping tuples, which collects data for a given key before sending them down-

stream for reduction, being data unbounded it needs windowing in order to be able to

decide when it can output.

Windowing is usually treated as key modifier, this way GroupByKey will group also

by window. Windows can be aligned, i.e. spanning the entirety of a data source, or

unaligned, i.e. spanning only a subset of it. Key point of this model is that windowing

can be split in two sub operations, AssignWindows, which assigns an element to zero or

more windows, and MergeWindows, which merges windows at grouping time, allowing

datadriven windows to be constructed as data arrive and are grouped together. The actual

merge logic is defined by the windowing strategy, for example session windows get merged

if they overlap. Window merging is then further split in five parts: DropTimestamps,
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GrouByKey, MergeWindows, GroupAlsoByWindow, ExpandToElements. All but the last

step names are quite self explanatory and ExpandToElements takes care of expanding

per-key, per-window groups of values into (key, value, event time, window) tuples, with

new per-window timestamps.

After having described how windowing for unaligned windows is performed in the

model, they address the problem of window completeness, being that watermarks can

introduce incorrectness if set too fast or too high latency if too slow, they postulate that they

are insufficient. To solve this issue they recognize a key aspect in the lamba architecture,

that is that the fact that the streaming pipeline provides just the best low-latency estimate

of a result, with the promise of eventual consistency and correctness once the batch

pipeline runs, assuming that data will be complete at that time. Therefore being desirable

to maintain a single pipeline, the streaming system should be able to provide both the

lowest latency best answer possible, and the most complete one whenever possible. In

order to be able to do so, the system needs a way to provide multiple answers for any given

window and they call this feature Triggers.

They present them as a mechanism to stimulate the production of GroupByKeyAnd-

Window results in response to external signals. Windowing and Triggering are com-

plementary in that the first determines when in event time data are grouped together

for processing whereas the second determines when in processing time the results of

groupings are emitted. Multiple trigger implementations are provided, e.g. watermarks,

percentile watermarks, at points in processing time, in response to data arriving, they

can be composed with logical operators, loops, sequence and other constructs, or they

can be user defined function too. The triggering system also provides ways to control

how multiple panes for the same window have to be handled: Discarding, therefore upon

triggering windows’ contents are discarded and later results are independent from previ-

ous ones, allowing downhill consumers to assume inputs as independent; Accumulating,

upon triggering windows’ contents are left intact and later results become refinement

of previous results; Accumulating and Retracting, upon triggering, in addition to the

Accumulating semantics, a copy of the previous value is stored and used before the next

trigger to retract the previous data.

The Principles they propose and that brought to the Dataflow model are the following:

1. Never rely on any notion of completeness.

2. Be flexible, to accommodate the diversity of known use cases, and those to come in

the future.
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3. Not only make sense, but also add value, in the context of each of the envisioned

execution engines.

4. Encourage clarity of implementation.

5. Support robust analysis of data in the context in which they occurred.

2.3 Stream Reasoning

Stream reasoning is the research area investigating "how to perform online logical reason-

ing over highly dynamic data" [25]. RDF Stream Processing (RSP) is a sub research area of

SR that investigates ways to query continuous RDF streams.

2.3.1 Inference Process

In the stream reasoning context, processing of streams requires a critical design choice

about the moment in which the inference process must be taken into account. This

choice can impact both performances and expressiveness and characterizes the different

solutions proposed to approach the stream reasoning problem.

The discussed RSP Engines do not implement, as default, any entailment regime

and do not consider ontologies and inferential processing. C-SPARQL and CQELS can

operate under RDFS entailment regime, but this deteriorates performances. To face this

issue, Barbieri et al. proposed an approach to incrementally maintain the entailed triples

(materialization) avoiding recomputing it from zero at each window change [6].

2.3.1.1 Query rewriting

The problem of answering queries over an ontology has been approached in different

ways, but query rewriting represents an important and promising technique under some

expressiveness constraints. Based on the idea of transforming the original query into an

expanded query capturing the information of the ontology TBox and then executing it over

the ABox, providing answers that extract implicit knowledge from the data, this approach

has been successfully adopted in scenarios such as OBDA (Ontology Based Data Access), in

which data are stored in relational databases, but user queries are written against an higher

level ontologies, rewritten and then translated to SQL queries. Various Description Logic

(DL) languages have been explored and used to specify the TBox over which rewriting

can be performed. The DL-Lite family of languages presented by Calvanese et al. [15]

represented the first milestone in this area, derived into . The first including functionality
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restrictions on roles and the latter disjointness assertions between roles. These logics

are first-order reducible or FOL-rewritable, meaning that rewritten queries are first-order

queries, allowing them to be converted to languages like like SQL without the need for

recursion, with tractable complexity. OWL2 QL was inspiderd by this family of DLs and

designed to keep low the rewriting complexity as first-order rewritability. Main difference

OWL2 QL introudced was the lach of Unique Name Assumption (UNA).

The EL H IO¬ description logic used by Perez-Urbina et al. [31] is more expressive,

it extends DL-Li teR , but does not preserve first-order rewritability property, meaning

that depending on the query and the ontology’s expressiveness the generated Datalog

may contain recursive predicates. Therefore some queries cannot be rewritten to Union

of Conjunctive Queries (UCQ) and have to be rewritten to recursive Datalog. Nonetheless,

the computational complexity of the rewriting remains tractable (PTime-complete).

Query rewriting is based on the idea of expanding the original query taking into

account the ontology TBox and then evaluate the expanded query over a given ABox,

providing answers that extract implicit knowledge of the data.

Given an input query q and an ontology O = (T ,A ), a query rewriting algorithm

transforms q using T into a query q ′, such that for every ABox A the set of answers that

q ′ obtains from A is equal to the set of answers that are entailed by q over T and A . As

long as some restrictions are imposed to the ontology language, q ′ can be unfolded and

expressed as union of conjunctive queries (UCQ). Assuming the ontology T as statical,

rewriting can be executed only once.

The ontology TBox can be described using different languages or logics. Calbimonte

et al. [14] focused on EL H IO logic, as it is one of the most expressive logics currently

used for query rewriting. Nonetheless, it is not FOL-reducible in general, in fact if cyclic

axioms are present, it may produce recursive datalog programs, but still remain tractable

(PTime-complete) for the rewriting process. For these reasons we decided to adopt acyclic

EL H IO for describing TBoxes.

As we said, to be sure queries are rewriteable we have to constraint them to the form

of conjunctive queries (CQ):

qh(x) ← p1(x1)∧ ...∧pn(xn)

where qh is the head of the query, x a tuple of distinguished variables, x1...xn tuples of

variables or contraints, pi (xi ) are unary or binary atoms in the query’s body. Certain

answers for this kind of queries can be defined as the set:

cer t (q,O ) = {α|q ∪T ∪A |= qh(α)}
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The rewriting algorithm produces a query q’ in the form of UCQ such that:

cer t (q,O ) = {α|q ′∪A |= qh(α)}

To apply query rewriting to continuous queries, a usual assumption is to consider the

TBox static, while the ABox dynamic, therefore Calbimonte et al. defined an instantaneous

ABox A (t ) and represented the stream as a sequence of ABoxes over time.

Calbimonte et al. also implemented and open-sourced a prototype, StreamQR, consist-

ing of two separate components: a query rewriter kyrie, using EL H IO ontologies, and

an RSP query engine CQELS, which executes the rewritten queries, producing continuous

answers.

2.3.1.2 RSP-QL

Dell’Aglio et al. in [21] proposed the RSP-QL model, a unifying semantic for RSP engines

and continuous SPARQL extensions. This model proposes semantics similar to the one

used in DSMSs [2].

The RSP-QL model can explain the operational semantics of existing RSP Engines and

can be used to describe the semantics of the different continuous SPARQL extensions

proposed by these engines.

RSP-QL defines RDF streams as an unbounded sequence of pairs (Gi , ti ), being ti the

associated timestamp and Gi either an RDF triple or an RDF named graph RDF graph.

similarly to CQL, RSP-QL defines time-based window operators using three parameters,

the starting time t0, the window width α and the sliding parameter β. Given an RDF

Stream S, a time-based sliding window operatorW applied to S defines a Time-Varying

Graph, a function returning for each time instant an Instantaneous RDF Graph.

RSP-QL extends the SPARQL definition of a query to a quadruple (SE ,SDS,ET,QF ),

where SE is an RSP-QL algebraic expression, SDS is an RSP-QL dataset, ET is the sequence

of time instants on which the evaluation occurs and QF is the Query Form. While the QF

values are the same of SPARQL (i.e. SELECT, CONSTRUCT, DESCRIBE and ASK), SDS and

SE are extended w.r.t. SPARQL’s DS and E to take into account the time dimension.

An RSP-QL streaming dataset (SDS) is composed of:

1. an optional default graph G0

2. n named graphs (u1,G1), ..., (un ,Gn)

3. m named time-varying graphs obtained applying a sliding window operator over a

stream (w1,W1(S1)), ...(wm ,Wm(So).



32 Background

Evaluation time instants (ET) are defined by mean of reporting policies that can be

specified over the inputs windows and combined using logical operators, "On Content

Change" (CC) if the window content changes, "Non-empty Content" (NC) if the cur-

rent window is not empty, "On Window Close" (WC) if the current window closes, and

"Periodic" (P) reporting at regular intervals.

Outputs of an RSP-QL query may be either a sequence of solution mappings, i.e., a se-

quence of compliant SPARQL answers, or a sequence of timestamped solutions mappings

if a streaming operator is applied. Streaming operators, RStream, IStream and DStream,

are defined similarly to the R2S operators in [3] and append at each evaluation a new set

of elements to the output stream with respect to the logic they implement.

RSP-QL evaluation semantics is defined for a query with n windows as:

eval (SDS(G0, ...,Gn),SE , t )

where SDS(G1, ...,Gn) is a streaming dataset having n active Time-Varying Graphs. The

evaluation is computed over the instantaneous graphs Gi (t ) as eval (SDS(Gi , t ),SE).

2.3.1.3 C-SPARQL engine

Continuous SPARQL (C-SPARQL) is a continuous extension of SPARQL allowing to register

continuous queries over RDF Streams presented by Barbieri et al. in [7] that adopted

an approach comparable to that of CQL [2]. RDF Streams’ elements are represented as

timestamped RDF triples. Queries written in C-SPARQL are executed in CSPARQL-engine,

an RSP engine whose architecture consists into a DSMS piped into a SPARQL engine,

therefore windowing is delegated to the DSMS and the remainder of the query to the

SPARQL engine. It has a fixed reporting policy, on window close and non-empty content

(WCNC), and provides RStream operator only as a streaming operator.

A C-SPARQL query is first parsed and then sent to an orchestrator, which splits it into

a dynamic part then sent to the DSMS and a static part for the SPARQL engine. The static

queries will be only issued at registration time, therefore no further updates to the non-

stream data is taken into consideration. The static parts are then loaded into materialized

relations as inputs for the DSMS. These relations together with the RDF streams are then

used to compute the queries result via cascading views created as CQL queries; the first

views in the query pipeline are window views over RDF streams, that are then joined with

the static data and aggregated if needded.
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2.3.1.4 Morph-stream

Calbimonte et al. in [13] presented SPARQLstream, a SPARQL streaming extension to query

virtual RDF streams composed of timestamped RDF triples. Morph-stream is the engine

translating SPARQLstream queries into several DSMS queries over relational streams of

data, by means of R2RML mappings. The mapping language is S2O, an ad-hoc extension

of R2O, to include time constructs as windowing. Has a fixed reporting policy WC.NC. and

all the R2S operators are available.

2.3.1.5 Strider

Ren et al. [32] presented Strider, a system aimed at efficiently integrating reasoning ser-

vices within a real-time processing platform, through inference materialization and query

rewriting. They pose particular attention on performances and therefore present optimiza-

tions to reduce stored knowledge memory usage and an adaptive query processing (AQP)

for continuous SPARQL queries, mixing static heuristic-based and dynamic cost-based

query optimization approaches.

They recognize the need for a distributed stream processing system as target system

for executing queries in order to meet their performance requirements, therefore they

adopt Apache Kafka as communication bus and Apache Spark as engine (Fig. 2.14).

As can be seen in Figure 2.14, Strider’s architecture is split in multiple layers.

Due to the nature of the incoming data streams they have to translate data source

messages into an RDF serialization, therefore the first layer of the architecture is dedicated

to this.

Upfront to any data stream processing, an Encoding layer encodes concepts predicates

and instances of registered KBs, this is to provide an efficient encoding scheme and data

structures to support reasoning tasks. They target the ρdf subset of RDFS. Then encoded

terms are used to encode incoming data streams.

The Optimization layer tries to optimize the execution of queries through a static and

adaptive hybrid strategy in order to reduce network usage due to data shuffling required

by the numerous joins that could have to be performed. The optimization layer creates

a Undirected Connected Graph (UCG), where vertices correspond triple patterns and

edges to joins between them. Vertices and edges are assigned weights corresponding to

the selectivity of the triple pattern and joins respectively. This graph is then used during

Static Optimization phase to generate, independently of the effective data, the logical

plan for the query execution, which will be kept during its whole lifetime. The static plan

could lead to suboptimal performances, therefore they have added an adaptive query
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Fig. 2.14 Strider architecture [32].

optimization component. A component takes care of watching for specific conditions to

be met, specified through simple rules defined over execution parameters and then notify

the adaptive optimization component. Then UCG elements’ weight will be recomputed

on the basis of statistics of the data and the query plan recomputed and redeployed.

2.3.1.6 CQELS

Le-Phuoc et al. [30] criticize existing systems’s "black box" approach, which delegate

the processing to other Stream Processing Engines and SPARQL Query Processors by

translating to their provided languages. To address this issue, the authors propose CQELS

(Continuous Query Evaluation over Linked Streams), a native and adaptive query proces-

sor for unified query processing over Linked Stream Data and Linked Data. CQELS uses a

“white box” approach and implements the required query operators natively to avoid the
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overhead and limitations of the aforementioned approach. Moreover, CQELS is able to

dynamically adapt the query execution plan to changes in the input data. In fact, during

query execution, it continuously tries to reorder operators according to defined heuristics,

in order to improve the query execution performance.

The adaptive processing model of CQELS defines two types of data sources, RDF

streams and RDF datasets and builds relational trees on top of windowed or static sources,

that are then executed incrementally. The CQELS query engine allows to register Con-

tinuous queries using an homonymous language. Moreover, they propose to adopt the

dictionary encoding, to reduce the number of required accesses to disk for data collections

not fitting in main memory. This approach, commonly used by triple stores, allows to map

RDF node to integers, reducing their size considerably. Moreover, since data comparison

is now done on integers, rather than strings, pattern matching operations’ performance

result improved. Although, converting high rate data on the fly might not always be con-

venient, in fact, the cost of updating a dictionary and decoding the data might worsen

performance instead. Therefore, they propose an optimized technique to encode RDF

nodes in at most 64-bit integers, not encoding strings shorter than 63 bits.

2.3.1.7 Streaming MASSIF

Bonte et al. presented Streaming MASSIF [11] which applies a Cascading Reasoning [37]

approach to perform efficient processing of IoT data streams. They combine RDF Stream

Processing, expressive DL reasoning and Complex Event Processing to perform expressive

and temporal reasoning over high volatile stream. They manage to combine CEP and DL,

enabling the definition of patterns using high-level concepts, integrating complex domain

models within CEP and a temporal notion in DL (Fig.2.15) . They present an associated

query language bridging to allow defining the required temporal patterns.

They propose a generalized vision over Cascading Reasoning (Fig.2.16) , originally the

role of RSP and raw stream processing was limited to streaming data integration, but they

can support reasoning tasks too, through entailment regime or query rewriting.

Streaming MASSIF presents a layered architecture, composed of:

1. Input Module, the entrypoint of the platform.

2. Annotation Module, where raw data can be semantically annotated if necessary.

3. Selection Module which implements both the Stream Processing and the Continu-

ous Information Integration Layer of the Cascading Reasoning approach and selects,

through RSP, those parts of the RDF stream that are relevant. It uses YASPER, an
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Fig. 2.15 MASSIF’s Cascading Reasoning Approach from [11].

Fig. 2.16 MASSIF’s generalized Cascading Reasoning piramid.

RSP engine fully implementing RSP-QL semantics and consuming time annotated

graphs. Multiple RSP engines can be deployed in parallel to handle multiple streams.

4. Abstraction Module implementing the DL inference sub-layer. Receives selected

events from the Selection Module and abstracts them to high-level concepts. It

allows for semantic publish/subscribe mechanism, here services in the service

module will be able to subscribe to events by a generic description. It operates on a

OWL reasoner (HermiT).

5. Event Processing Module, implementing the temporal reasoning sub-layer. If

needed this module is used to execute EPL queries over the abstracted events

coming from the Abstraction module.
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6. Service Module, receives the processed data and can perform additional analysis.

Information needs can be formulated though this module using a custom DSL.





Chapter 3

Problem Statement

In this chapter, we define the Distributed RDF Stream Processing problem, we discuss its

relevance, and we provide the research question, its hypotheses and requirements.

3.1 Velocity on the Web

Nowadays, Web applications need to continuously manage streams of data and detect

events reactively, therefore taming data Velocity is a necessity. To this extent, Web tech-

nologies evolved to embrace these new challenges. For instance, one of the web pillars,

HTTP was extended into HTTP Long-Polling1, HTTP Streaming2, WebSocket3 to provide

streams of continuous updates like Twitter’s stream feeds, or WebHooks4, see Github

repositories’ hooks, to provide reactive update.

The Web of Data (WoD) is an extension of the World Wide Web, aiming at data share-

ability and intoperability. The WoD builds on the Web infrastructure and approaches

intoroperability by providing the following guidelines,i.e.,the Linked Data Principles [9]:

1. Use URIs as names for resources.

2. Use HTTP URIs so that people can look up those names.

3. Provide useful information using the standards (RDF, SPARQL) on URI resolution.

4. Include links to other URIs, so that related informations can be retrieved.

1https://realtimeapi.io/hub/http-long-polling/
2https://realtimeapi.io/hub/http-streaming/
3https://realtimeapi.io/hub/http-streaming/
4https://www.w3.org/TR/websub/
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The WoD is an evolving environment and, although built on top of this up-to-date web

infrastructure, its main abstractions, RDF Triples, Named Graphs and RDF data sets are

not adequate to tackle Velocity, as they were only designed to tame Variety.

During the last 10 years, the Semantic Web (SW ) community investigated under the

name of Stream Reasoning [20], the following research question:

Q1 Can we tame Velocity on the Web of Data without neglecting Variety?

The initial effort of the community was put into proving the approach feasibility,

providing data models, query languages and artifacts for RDF Stream Processing (RSP),

empirically proving SR effectiveness. RSP represents the junction point between previous

approaches such as Complex Event Processing (CEP), Data Stream Management Systems

(DSMSs) and Semantic Web technologies. The goal of RSP is enriching the stream process-

ing capability to tame Velocity with the ability to tackle Variety. Nevertheless, most of the

existing solutions do not prioritize scaleability. Instead, they address Variety and Velocity

simultaneously, tackling Volume only through vertical scaleability, due to the intrinsic

difficulty of parallel graph computation, even just on static data. Requirements for RSP

systems have been specified in [24].

3.2 Expressive Stream Reasoning

In order to tackle Variety, the Semantic Web world represents knowledge using formal

languages and derive implicit information through the use of reasoning algorithms. In-

tuitively, opting for more expressive languages to model the domain requires reasoning

algorithms with high computational complexity. To handle the increasing Volume and

Velocity of the WoD, Semantic technologies have to perform reasoning scalably and fastly,

but that’s not always possible for highly complex and expressive methods.

Indeed, existing Stream Reasoning solutions only partially address this problem, pre-

senting either highly expressive solutions with limited throughput or little expressive ones

with better performances.

Stuckenschmidt et al. [37] envisioned two complementary approaches, both aimed at

reaching the highest expressiveness possible in a context where data Velocity and Volume

are of central importance. From an architectural point of view, they propose to connect

multiple agents in a Network of Stream Reasoners (NoSR) (Fig.3.1) able to collectively

process streams of data. These stream reasoners would be able to perform tasks otherwise

impossible to the single, by taking advantage of each reasoner’s strengths. The obvious

drawback of a completely decentralized solution, as the NoSR, is the need for the agents
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Fig. 3.1 A network of stream reasoners from [37].

to discover each other and qualify their capabilities in an open environment, like the Web,

before being able to collectively perform any task.

The other approach focus on the applicative aspect. Stuckenschmidt et al. envisioned

to split the reasoning complexity across multiple layers, each optimized for a particular

set of tasks. This model goes by the name of Cascading Reasoning (CR) (Fig.3.2). Less

expressive reasoning methods are used to extract only the needed parts of a stream and

then more complex and expressive methods can be applied to a reduced amount of

data, which they will be able to handle. And this pipeline can be of arbitrary length

Fig. 3.2 Cascading Reasoning pyramid.
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with increasingly complex reasoning methods, achieving the expressiveness of the most

complex ones, but over large Volumes of streaming data, pushing subtasks down to little

expressive, yet more efficient reasoners whenever possible. Tasks could be rewritten into

smaller subtasks accordingly to each layer’s capabilities, therefore a coordinator that has

full knowledge of the actors involved.

Streaming MASSIF [11] is the first and only example of a system adopting the CR

approach, performing expressive reasoning and complex event processing over high

velocity streams.

Fig. 3.3 a) MASSIF architecture. b) Covered parts w.r.t. the Cascading Reasoning pyramid.
[11]

Being Streaming MASSIF mainly focused on the feasibility of a Cascading Reasoning

approach, it presents the following limitations with respect to a solution embracing A1 too:

(i) Layers are embedded in the same artifact, therefore reasoners are not independently

scalable and deployable. (ii) Communication between layers is specific for each step, so

reasoners are not interchangeable in their order during planning. (iii) Does not targets a

Raw Stream Processing directly directly, limiting therefore the change frequency it can

handle.

In order to be able to handle Volume, Velocity and Variety at the same time, both

architectural and applicative aspects have to be considered simultaneously. We envision a

new approach that combines the best of both NoSR and CR, targeting the reasoners in the

network for rewriting, each with different reasoning powers, collaborating as needed to

produce results to streaming queries of arbitrary complexity and expressiveness. Tasks
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could be split both across layers based on the complexity of the sub-tasks and layers could

be organized in subnetworks too. Agents belonging to the same layer of expressiveness

would be able take advantage of data locality or just share the load if possible. Therefore

we focus on the following research question which highlights the need of proving the

feasibility of the approach:

Q2 Can we combine multiple Stream Reasoners into a Network of Stream Reasoners,

exploiting different expressive powers through Cascading Reasoning to tame Velocity and

Volume on the WoD?

Streaming MASSIF’s approach to CR (Fig.3.2) targets only the top two level of the

aforementioned pyramid, omitting to address Raw Stream Processing directly. Therefore,

being able to handle complex reasoning for lower frequency changing RDF stream inputs,

but in order to achieve the Network of Stream Reasoner vision over the Web of Big Data,

also its basis have to be addressed.

We have identified two approaches as the endpoints of our solution space:

A1 Network of Streaming Reasoners driven.

A2 Cascading Reasoning driven.

Solutions totally embracing A1 are distributed, highly reconfigurable systems of inde-

pendent and interoperable agents, in which qualified resources can be used to execute

tasks through planning. Therefore the available resources have to be discovered and cata-

logued. An example of this approach could be Semantic Web Services. Main drawbacks

these systems have are the fact that discovery have to be handled dynamically, agents’

qualification has to be flexible and therefore planning can be hard or even impossible.

Solutions oriented completely towards A2 are monolithic systems of tightly coupled

components, each with well defined and known characteristics, used in a prescribed order

to optimally rewrite queries. Achieving theoretically high performances, but without the

ability to scale horizontally and with limited expressiveness given the difficulties to extend

them.

3.3 Microservices for CR

The NoSR strengths are that it is decentralized, reconfigurable, fault tolerant, but has

drawbacks too, like the need to discover, catalogue and describe reasoners; CR can be
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more efficient, being layers tightly coupled, but is bounded in its expressiveness and

reconfigurability. We envision hybrid solution, which we will call µCR (microservices

Cascading Reasoning), in which the environment is closed as in CR, but still based on

small independent reasoners performing single tasks each as in the NoSR, and thanks to

their description can be reorganized in layers and used as rewriting target.

The Microservice architecture has become the de facto standard for modern Web

application development. It structures an application as a collection of loosely coupled

fine-grained services usually talking through light weight protocols, mostly HTTP. This

approach allows each microservice to be developed, deployed and operated in parallel by

different teams, enabling Continuous Integration and Continuous Deployment. These

services need to cooperate to achieve their goals, therefore service discovery is a central

issue in the microservice world. In fact, new services could be added by developers,

needing to speak with old ones or vice versa.

Fig. 3.4 The solution space and µCR positioning.

Therefore, the question we pose ourselves is the following:

Q3 Can we overcome Cascading Reasoning limitations targeting the Network of

Stream Reasoners for rewriting?

Being the enabling of the NoSR mainly an architectural shift in the approach to RSP

w.r.t. CR, we have identified an architectural stack (Fig.3.5) that should be covered in order

to achieve our vision and answer Q3. The stack is composed of:

• Infrastracture Orchestrator: organizing and managing agents’ bookkeeping and

taking care of their orchestration.

• Streaming Platform: allowing streams’ storage, access and processing. Split it in

two components:

1. Stream Processing Engine: which will be agent specific.

2. Data Infrastructure: which instead will be common to all agents, no matter

their implementation, allowing interoperability.
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• Domain Abstraction through which to interpret the single streams’ elements. Ex-

pressing and answering the information needs that our µCR infrastructure is de-

signed to solve.

Fig. 3.5 Proposed stack to enable the NoSR.

The Data Infrastructure should allow Reasoners to be independently scalable and de-

ployable, allow complete decoupling between consumers and producers and its necessary

for part of the Network of Stream Reasoners to be able to target Raw Big Streams.

Analyzing Streaming MASSIF w.r.t. this stack we can say that it uses Events as Domain

Abstraction. W.r.t. the two bottom layers Streaming MASSIF adopts an embedded solution,

where all the components are part of a single artifact adopting OSGI5, a custom tailored

component as Orchestrator for the various layers and multiple Stream Processors, i.e.,

YASPER[38], HermiT and Esper. Not necessitating of any networking, they use the main

memory as Data infrastructure to handle communication between layers.

We decided to focus mainly on the Streaming Platform layer and to produce an example

of NoSR enabled Reasoner, adopting the industry standard regarding the Orchestrator

layer and leaving as future works its instrumentation. We will describe a possible approach

to it using the chosen orchestrator.

Once we will have chosen a common Data Infrastructure, our focus will be onto choos-

ing which existing Stream Processing Engine could be used to create an agent covering

also the lower part of the Cascading Reasoning pyramid, performing rewriting directly

against Big Data Raw Stream Processing systems.

Few approaches have been already explored in the literature in this sense, targeting

systems offering SQL-like interfaces. Morph-Stream [13], for example, rewrites queries to

EPL and then execute them on Esper, which is a mainly vertically scalable system6. Another

example of this approach has been proposed in Strider [32] where SPARQL operators

5https://www.osgi.org/
6At least in it’s not enterprise version



46 Problem Statement

are mapped to Spark SQL7 ones and then the plan executed in microbatched mode, by

doing so, Strider is able to handle Volume through horizontal scaling, but is limited in

expressiveness and not easily extensible. Therefore w.r.t. our proposed stack, Strider has

chosen Apache Yarn to orchestrate only the Stream Processor, Apache Spark Streaming,

and not the Data Infrastructure, for which they use Apache Kafka as ingestion layer. Its

formalization w.r.t. our stack can be seen in Figure 3.6a.

(a) Strider (b) MASSIF

Fig. 3.6 Proposed Architectural Stack already implemented.

The other possible approach we see is to target directly a Dataflow Stream Processing

system, but no previous attempt has been proposed in literature for RDF streaming graph

computation.

To choose the Data Infrastructure for the Streaming Platform we took inspiration from

the Web, following Ian Robinson’s principle for microservices architecture design: "Be of

the Web, not behind the Web". Indeed, the Web has its roots in two important aspects:

interoperability and composability.

Similarly, the idea of NoSR prescribes to build a network of "simple" reasoners, each

performing a single specific task that can be combined to achieve greater goals and com-

municating through simple yet versatile interfaces. This approach strongly reminds the so

called Unix Philosophy, which is at the core of all modern *nix systems, that recommends

developing minimal tools communicating through the simplest format possible, i.e., text.

Moreover, Stonebreaker et al. [36] described a set of requirements for Stream Process-

ing systems (see Section 2.2.1) and we followed them to guide our choice for a Stream

Processor for the implementation of a reasoner enabled to be part of a Network of Reason-

ers, i.e., a Dataflow System [1] directly rather than a microbatched one. Part of these very

same requirements then guided us in the choice of the target Streaming Platform.

7https://spark.apache.org/sql/
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To be more specific, R3 ("Handle Stream Imperfections") and R8 ("Process and Re-

spond Instantaneously") backed our choice for Stream Processor built on top of the

Dataflow execution model, given that it allows natively to handle stream imperfections

without sacrificing latency, allowing to have always updated results even in presence of

late arrivals brought us to choose such approach over a microbatched one. This choice

respects also R1 ("Keep the Data Moving"), R4 ("Generate Predictable Outcomes"), R5

("Integrate Stored and Streaming Data") and R7 ("Partition and Scale Applications Auto-

matically").

Indeed, producing timely results (R8) implies that results can be updated in the future,

therefore downstream operators have to be able to manage late updates to already received

messages, possibly indefinitely if not instructed differently. Therefore, a really important

shift has to be made in order to embrace the Dataflow model: results are always correct

w.r.t. the data received so far.

R2 ("Query using SQL on Streams") guided us in the choice of a standardized streaming

language to encode queries the stream processor should execute.

The choice for the Streaming Platform has been guided by R1 and R5 again and

R6("Guarantee Data Safety and Availability"), given that reasoners should be able to read

from streams both as soon as a new element appears and as late as needed to fit their

consumption pace.

In the following Chapter, we approach the design of a system satisfying the require-

ments we have intrisically exposed here, mainly focusing on the Data Infrastracture and

Stream Processors layer. These requirements can be summerized as follows:

1. Data Infrastructure MUST:

DI.R1 "Be of the Web, not behind the Web"

DI.R2 Enable Interoperability providing a common communication layer

DI.R3 Generate Predictable Outcomes 8

DI.R4 Guarantee Data Safery and Availability 9

2. Stream Processors MUST:

SP.R1 Keep the Data moving 10

SP.R2 Querying according to domain abstractions

8R4 from Stonebreaker et al. [36]
9R6 from Stonebreaker et al. [36]

10R1 from Stonebreaker et al. [36]
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SP.R3 Integrate Stored and Streaming Data 11

SP.R4 Speak the same language, i.e., enabling interoperability

11R5 from Stonebreaker et al. [36]



Chapter 4

Design

In this chapter, we explain the design choices we had to make and the reasons behind

them. We have split the choice for a Streaming Platform in two parts: a common Data

Infrastructure and a Stream Processor for each NoSR enabled stream reasoner.

4.1 Choosing the Data Infrastructure

In order to enable composability and interoperability of reasoners in a network a common

data model and an agreement over a communication medium is needed. The Web’s

ability to scale has its roots in the Client/Server architectural pattern it has adopted since

its first days, allowing servers to serve thousands of clients at a time. The evolution

of this architectural pattern oriented toward Velocity is the Publish-Subscribe (PubSub)

architecture, allowing publishers to not know in advance to which receivers their messages

have to be sent and instead leaving it as subscribers’ duty to declare their interests for

specific kinds of events. This communication paradigm allows to achieve full decoupling

of the communicating entities w.r.t. time, space, and synchronization [26]. It provides

subscribers with the ability to express their interest in an event or a pattern of events, so

to be notified of any event that matches their registered interests.

The PubSub architecture can sustain the communication in the Network of Stream

Reasoners, providing in particular,it meets our need to decouple stream producers and

consumers, enabling composability, and implies the necessity for a centralized system able

to manage streams, store them and serve them asynchronously to multiple consumers.

Modern implementations of this architecture all have a unique component at their

heart, a broker, handling all the communication. At best they can be deployed as a cluster,

to be able to handle faults. This reflects our choice of a closed world of known reasoners

over which to perform planning, what we have called µCR.
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Fig. 4.1 A PubSub system example.

4.2 Choosing the Stream Processor

The second requirements for our streaming platform is enabling interoperability between

reasoners.

Semantic Web technologies cover this providing a common data model, RDF, and

logical languages to design and share vocabularies describing the domain. The RSP

community extended such model to support streaming data by introducing RDF Streams.

Therefore, we decided to adopt RDF Stream as common language, to be able to leverage the

whole semantic technologies stack. Moreover, RSP-QL is a SPARQL streaming extension

[22], that we can use for our stream processing layer.

Dell’aglio et al. [22] formalised this approach into RSP-QL, a model to describe the

behaviour of the different existing RSP dialects. In [23] they presented an homonymous

language which covers the needed constructs to tame velocity and variety simultaneously.

RSP-QL model too has its roots in the CQL [3] approach to stream processing.

CQL allows to switch between the streaming and relational world only through Stream-

to-Relation and Relation-to-Stream operators as in Fig.4.2, where windowing is an example

of the first kind. Due to it being focused mostly on demonstrating the feasibility of the RSP

approach. They decided to put windowing operators, as separator between the streaming

and static worlds. Such an approach allowed to reuse the whole SPARQL algebra without

modifications, taking as inputs the windowed data in batches and executing queries as if

they were static data.

This approach does not take advantage of any optimization possible in the streaming

realm, executing queries only at fixed instant in time, defined through reporting policies.

Moreover, RSP-QL has already shown its limitations as an actual set of implementation

guidelines as described by Tommasini et al. [38] obliging to choose between the ability to
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Fig. 4.2 CQL’s interaction between stream and relation.

handle late arrivals and reporting latency. This lack is due to its interpretation of the CQL

model influenced by Botan et al. SECRET model’s [12] rigid execution semantic, separating

between Streaming and Relational world and performing batched computation only at

fixed time instants, named ticks, when data can be considered to be complete.

Most existing solutions only manage to achieve low latency, e.g. CQELS, or high

throughput, e.g. C-SPARQL or MorphStream. CQELS represents a first step toward timely

computation of results, implementing itself the execution logic instead of offloading it to

an external "black box" DSMS systems such as Esper, it is able to perform adaptive query

execution, but still without any horizontal scaleability.

We decided to address the Raw Stream Processing layer of the Cascading Reasoning

pyramid proposed by Stuckenschmidt et al. [37], targeting directly a Big Data Stream

Processing Engine for our PoC because the only example in literature to date of a CR

system, Streaming MASSIF [11], did not target this layer. Being able to address also Big

Data Streaming Systems, in our opinion, is a necessary step toward enabling the NoSR

and being able to handle the increasing Volume and Velocity of the modern Web of Data.

A Dataflow approach would allow to achieve both low latency and high throughput,

always having the most recent results, being the result updated at each new message.

Obvious drawback is that of result correctness, that has to be relaxed in order to allow for

later updates if needed. The Dataflow execution model could be applied with the CQL

model to guarantee timely results in a horizontally scalable manner, still maintaining the

well defined relational semantic of the R2R operators.

In the following, we describe how we mapped RSP-QL to the Datalofow execution

model.

4.3 From RSP-QL to Dataflow

To be able to perform reasoning tasks on Big Data streams, as per the CR model [37], we

have to find the maximum reasoning expressiveness that can still be pushed down to a



52 Design

Big Data Stream Processing system. In literature, one of the proposed approaches consists

into mapping SPARQL queries directly to other languages. This method has already been

successfully adopted in scenarios such as OBDA (Ontology Based Data Access) where

data, stored in one or more relational databases, can be queried in terms of high-level

ontological model, hiding to the final user the internal schema of the relational data

sources. This approach is named query rewriting and has already been shown to be

applicable over RDF streams too [14]. This rewriting is performed through the usage of

mappings from the relational schema to the RDF graphs and queries are translated to a

SQL-like target languages, e.g. Ontop with R2RML mappings by Calvanese et al. [16].

Few existing works have already explored the translation and execution of SPARQL

queries over RDBMS by constraining the data’s schema to RDF tables, therefore producing

algorithms to convert the SPARQL algebra into Relational Algebra over these data, e.g.

Chebotko et al. [18]. To be able to adopt this approach too, we need to find a model

bridging the Dataflow execution model and relational world, and a way to represent RDF

streams that would allow it to be processed through Relational Algebra operators.

Fig. 4.3 The Architecture of Information Integration Systems.

Therefore, to execute UCQ RSPQL queries we had two options. The one adopted in

the OBDA world in which the data is given in some specific form, usually relational, and

therefore mappings are needed to be able to virtually query these data as RDF graphs.

Mappings implies that knowledge of the original data and the windowing semantic in this

context is still not clear in the literature. The other approach is to rethink the SPARQL query
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algebra and map it to another language, constraining the data underneath it, without

needing any mapping. Given the lack of knowledge about the data in our context and the

need for minimal human intervention, we opted for the second approach.

Chosen as our target the Dataflow execution model, to be able to execute SPARQL

UCQs we need to map the SPARQL algebra extended with windowing to the Dataflow

operators described by Akidau et al. [1]. Although, the Dataflow model itself has only few

generic operators (mostly ParDo and GroupByKey) and is really just an execution model,

not a language. For these reasons we decided to tackle first the choice of a specific Dataflow

system and then work directly with its Domain Specific Language (DSL) operators.

As a bridging model we have found the Dual Streaming Model by Sax et al. [33].

This model presents Streams and Tables as two alternative views that can be always

reconducted the one to the other. Tables can be seen as a materialization of a Stream

and Streams as a stream of updates to a Table. This allows to think as for the CQL model

in terms of R2R operators, but thanks to the Dataflow execution model, still be able to

produce timely results without increasing latency and being constrained to complicated

reporting policies with dubious semantics as in SECRET.

Fig. 4.4 Duality of stream and tables.

Models such as CQL and SECRET completely ignored inconsistencies between physical

and logical ordering of a stream and operators directly yielded an output data stream, while

the treatment of operator state is considered to be an implementation detail, resulting

into buffering data until their logical ordering has been established.

Sax et al. propose the Dual Streaming model in which operators results are updated

continuously, allowing to drop any assumption over the consistency between logical and

physical ordering. The model presents the notions of tables, table changelog stream and

record stream. The static view on the current result of an operator is a table, updated

for each new input record. Out of order records are processed updating the respective

key similarly to in-order records, therefore not increasing the operator latency. The
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dynamic view on the result of an operator is a table changelog stream which consists of

records representing updates to a table. The semantic of updates is defined over keys and

timestamps, therefore record keys in this case have primary key semantics. Replaying a

changelog stream allows to materialize the operator state as a table and that’s the stream

and table duality represented in Figure 4.4. Operators with temporal semantics need

to maintain multiple versions at once, therefore a table is a collection of table versions

and new versions can be added while older ones can be updated, triggering updates in

downstream operators’ corresponding versions. Record Streams, finally, are streams of

facts, each having a unique id with an infinite key-space. Practically temporal operators

achieve to handle windowing by enriching original keys with data about the assigned

windows.

On top of this stream and table duality model all the usual relational operators have

been defined, but due to the key-value nature of the underlying Dataflow execution model

they mainly take in consideration the keys semantic, leaving the value’s content handling

up to the implementer. In order to be able to use the Dual Streaming model to process

relational data in the value part of the messages, the model has to be further extended.

We took the approach by Chebotko et al. as inspiration to translate RSP-QL queries

to Relational algebra, adapting it to the Dual Streaming Model and then mapping the

produced relational logical plan into Kafka Streams’ operators. This mapping will be

straight forward given that the Dual Streaming Model allows to build the same logical

plans on tables, with the advantage of timely update computation due to the Dataflow

model it is built upon. But as said, the Dual Streaming model describes how to handle the

relational operators w.r.t. keys, so we will need to define appropriate data structure and

semantic also for values.

To sum up, thanks to the Streams and Tables duality we could be able to execute

relational plans, produced from RSP-QL queries, but with a Dataflow execution model.

4.3.1 Representing RDF streams

In the Dataflow model stream items are seen as a timestamped key-value pair that flows

through a Directed Acyclic Graph (DAG) of stateful and stateless operators. Therefore in

order to be able to process RDF streams with a Dataflow system we have to decide how

should its elements be represented in the key-value format.

Values can be of any form, but we have found two approaches in literature to represent

RDF streams, both representing elements as tuples < o,τ> where τ is a timestamp and o
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can be either an RDF triple [5]

[..., (〈sub ji , pr edi ,ob ji 〉,τi ), (〈sub ji+1, pr edi+1,ob ji+1〉,τi+1), ...]

∀i ≥ 0(τi ≥ τi+1)

or an RDF graph [24, 38]. Therefore, the choice of the Value format implies the choice of a

corresponding Key.

Choosing to use graphs as Values implies to choose a vertex or edge in the graph or

any combination of multiple of them as Key. Being the key used to compute the physical

positioning of the data, in the case of stateful operation that need to operate on multiple

streams simultaneously, it would be necessary to decide ahead of time which key would

allow to match all the elements that have to match of the two streams. This to be sure they

were consumed by the same processor, but in the context of the NoSR, where no prior

knowledge of the consumers is given to the consumers, this approach can not be applied.

Keys in Dataflow systems, in a distributed scenario, are used to ensure that elements

with a specific characteristic, encoded through the key, end up to the same processor

and therefore can correctly concur to the computation of outputs. This is particularly

useful for stateful operations, like simple counts or more complex joins. For example,

joins can be executed only on co-partitioned streams, i.e., having the same key, otherwise

we have no guarantees over the location of the data. If this is not the case a rekey operation

is needed which plays in the Dataflow context a similar role to the reshuffling phase in

MapReduce systems and its derivatives.

On the other hand, the alternative is to use timestamped triples, where the key can be

one among Subject, Predicate or Object or a combination of them. It has already been

shown in literature that triples can be indexed in six different ways, nonetheless we’ll

assume that all the streams will always have the Subject as Key, because in absence of

prior knowledge about their successive usages, at least, we guarantee that simple star

pattern can be recognized without any rekeying operation. If a diffent key will be needed

we will always be able to perform a rekey obtaining the desired new key or if instead we

want to leave the keying strategy up to the data producers we should associate the keying

strategy to the stream and inform reasoners about it before consuming the stream and

they would in case perform a rekey before consuming.

In the following we propose a model to represent RDF streaming data as relational

data, compatibly with the Dataflow execution model, in order to then be able to execute

relational logical plans over it.
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The basic intuition behind our model is to see input and output streams as infinite

tables with four columns (sub j ect , pr edi cate,ob j ect , t i mest amp) and a key associated

to each row, where new triples can only be appended and every update is streamed out to

consumers, rows with the same key are guaranteed to end up in the same downstream

processing node, Fig. 4.5.

Definition 8. A Stream s is a:

s = (K , [..., ti , ti+1, ...])

tk = (〈sk , pk ,ok〉, t sk )

having 〈sk , pk ,ok〉 ∈ ((I ∪B)× I × (I ∪B ∪L)) where I, B and L are sets of IRIs, blank nodes

and literals respectively and K (tk ) ∈ (sk , pk ,ok ). K is a function s.t. K (tk ) = key of the triple

tk .

tsobjpredsubj

t0:o1:p1:s1

t1:o1:p2:s2

:s1

:s2

:s3

:s1

t2:o2:p1:s3

t0:o1:p3:s1

Fig. 4.5 A Stream in our representation.

In the following we describe the operators we have defined to cover the part of RSP-QL

we were interested in. The main stream-to-stream (S2S) operator we have taken into

consideration is the Filter, that takes a stream as input and produce a stream as output,

maintaining schema and key of the original stream. W.r.t. the Dataflow model Filter is

clearly just a specific instantiation of the ParDo operator, a stateless operator over a single

element at a time that can run in parallel on different keys guaranteeing per-key ordering.

Fig. 4.6

Definition 9. A filter can be defined over a stream s = (K , [..., ti , ...]), in which case:

f i l ter ( f , s) = s′ s.t. s′ = (K , [..., ti , ...]) iff f (ti ) = tr ue
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tsobjpredsubj
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t0:o1:p1:s1:s1

:s3 t2:o2:p1:s3

t.pred == :p1

Fig. 4.6 A Filter over a Stream.

where f is a function checking a condition over a triple ti and returning a boolean, e.g.

f (ti ) = (ti .sub j == " : s1")

In order to be able to apply more complex operators, e.g. joins, we have to pass to

the Tables. This is done via grouping by key or windowing, the latter assigning stream

elements to zero or more windows and is always followed by a groupByKey operation

where the key have been enriched with metadata regarding the window. As in the CQL

model we can see this as a S2R operation. Windowing will take a Stream as input and

produce what we call a Cube for each window, Fig. 4.7.

To allign RSP-QL to the stream and table model it is convenient to have a more intuitive

view of data in table form w.r.t. their actual distribution due to the underlying Dataflow

execution, therefore we introduce the next definition.

Definition 10. A Cube c is defined as:

c = (S,K ,T )

Where S is a schema, K is a key belonging to the schema header S, T is a set of pairs 〈ke y, t

s.t. t is a table, intended as representation of Relations in the Relational Model, having

each row ri has ri .K = ke y

Definition 11. Windowing is defined over a stream s = (K , [..., ti , ti+1, ...]), given a win-

dowing function W , and a triple pattern τ= (s, p,o), where s,p and o can be variables or

associated to a term, as follows:

W i ndow(W, s) = [..., (Wi ,ci ), ...]
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Fig. 4.7 Windowing applied to a filter to obtain a Cube.

having Wi = (αi ,βi ), αi opening and βi closing time associated with the i -th window. And

ci is the cube:

ci = (S,K ′,T )

where the columns of S = τ, K ′ = K (τ) and

T = [〈k,q(k) 〉 for each k in the set of the values v s.t. ∃r in s ( v = K (s) ) ]

where q(k) = "SELECT subj AS τ.s, pred AS τ.p, obj AS τ.o FROM s WHERE K = k AND

αi ≤ t s ≤βi ".

A single Cube has a fixed schema s and is composed by multiple tables with the same

schema s. A table for each value the key has assumed so far in the stream, e.g. if the input

stream had key k with values k1,k2,k3, applying the window operator will produce a cube

with three tables, one for each value of the key S. Each table of a Cube is associated to a

single key and all the rows it contains have that exact key. Timestamps are dropped after

windowing and out of order arrivals will be handled directly by the Kafka Streams APIs

through Generations and Versions as explained by Sax et al. [33].

The Cube representation allows us to have a direct intuition of the physical distribution,

in fact each table in a cube could end up in a different processor, on a different machine,

based on the assigned key. As we’ll see this will allow us to simplify the join logic still

correctly computing results achieving the Dataflow model’s timely updates, because no

check will have to be done on the join condition as long as the keys are matching and

therefore as long as the join sides are correctly keyed. In fact, this will allow us to perform

joins without the need for a scan, similarly to the usage of indexes in RDBMS.
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Specifically, the Join operator, in all its variants (Inner, Left, Outer), will take as input

two Cubes and produce a single Cube, having as schema the merge of the 2 schemas of

the input cubes, with columns corresponding to keys merged. The number of tables of

the output Cube will depend on the variant of join, e.g. for Inner-joins it will be the size of

the intersection between the values the key assume in both input cubes’ schemas:

nr _t ables(out put ) = si ze(values_ke y(i nput1)∩ values_ke y(i nput2))

Rows of the output tables for key k will be the cartesian product of the rows of the input

tables associated with key k in both input cubes, Fig. 4.8.
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Fig. 4.8 A join between two cubes.

In order to be joined cubes have to share the same key, as said, but if this is not the

case and we need to join them on a different column w.r.t. the key, a rekey operation is

needed.
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Definition 12. Rekey takes a Cube C = (S,K ,T ) keyed by a column c, a new column c ′

and produce a Cube having the same schema and a number of tables equal to the number

of values assumed by c ′, having c ′ as key, Fig. 4.9.

r eke y(C ,c ′) =C ′ = (S,K ′,T ′)

where K ′ = c ′ and T ′ is formed by the same rows in all the tables in T , but grouped by the

new key c ′.
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Fig. 4.9 A rekey operation over a cube.

Definition 13. Joins, of any type, can be performed only if the keys Ki and K j of the two

input cubes ci = (Si ,Ki ,Ti ) and c j = (S j ,K j ,T j ) are equal and they are defined as follow:

join(ci , c j ) = cl s.t. cl = (S′,K ,T ′)

where S′ is the merge of the schemas Si and S j , K = K j = Ki and T ′ is the result of the join

of ti and t j for each 〈ki , ti 〉 in Ti , 〈k j , t j 〉 in T j in which ki = k j

A rekey operation over a cube c = (S,K ,T ) given a new key K ′ produces a cube c ′ =
(S,K ′,T ′) where T ′ is equal to T but keyed by K ′ instead of K .

Definition 14. Filters can also be defined over a cube c = (S,K ,T ):

f i l ter ( f ,c) = c ′ s.t. c ′ = (S,K ,T ′)

where T ′ is defined as follow:

T ′ = (〈k,"SELECT * FROM t WHERE f holds"〉 for each 〈k, t〉 in T)
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More in general, any classical Relational Algebra operator can be applied to a Cube by

applying it to one table at a time; joins can be applied to two cubes if and only if they have

the same key and aggregations can be performed only if the key of the cube is part of the

grouping key.

In the next chapter we’ll see how we have implemented these operators and what

data structure we have chosen in order to reduce to the minimum the cost of incremental

update, postponing as much as possible any computation.





Chapter 5

Implementation

In this Chapter, we will evaluate the feasibility of our design. Moreover, we will test the

potential of our solution using SRBench, i.e. a benchmark for RSP query expressiveness.

In the proposed stack, the Data Platform has to be split in two parts, one common to

all µCR Stream Reasoners, the Data Infrastructure, and one specific for each of them, the

actual Stream Processor they are built upon.

In Chapter 3, to enable our µCR vision of a Network of cooperative Stream Reasoners

we have proposed a stack (Figure 3.5). In Chapter 4, we have presented and motivated the

design choices of a distributed PubSub for the Data Infrastructurea and a Dataflow system

for the RDF Stream Processor.

In the following, starting from the bottom of our stack, we present tech technological

choices, i.e., Kubernetes as, Apache Kafka as Data Infrastructure and Kafka Streams as a

target Dataflow System.

Fig. 5.1 Implemented stack choices enabling the muC R.
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5.1 Technical Stack

In this Section, we will describe more in details the technologies we have used, Kubernetes,

Apache Kafka, Apache Avro and the Kafka Streams APIs.

5.1.1 Kubernetes as Orchestrator

Given its rising adoption, we decided to adopt Kubernetes as Infrastructure Orchestrator.

Kubernetes1 is an open-source system for automating deployment, scaling, and manage-

ment of containerized applications, born from a project by Google and then opensourced

under the Cloud Native Computing Foundation (CNCF). It offers a declarative API through

which define different kinds of workloads, with different characteristics, through manifests

written in YAML. In order to be able to use Kubernetes as Orchestrator we have produced

manifests to deploy a cluster of a configurable number of instance of Kafka brokers and

Zookeper’s instances, which can be then be used by other applications deployed in the

Kubernetes using the resolvable service name.

5.1.2 Apache Kafka as Data Infrastructure

We have decided to adopt Apache Kafka, as we needed a PubSub distributed system, able

to handle, store and serve streams of data for multiple Consumer and Producers.

Apache kafka reads and writes serializable messages. XML and JSON formats are

widely adopted due to their flexibility, but parsing them, especially JSON, can impact

performances, being instead AVRO a binary format. For this reason Apache Kafka offers a

native integration with a data serialization system, Apache Avro 2, through an additional

component included in the Confluent Platform 3, the Schema Registry 4.

Apache Avro is a data serialization system providing compact, fast, binary data se-

rialization and code generation tools for multiple languages (e.g. Java) for improved

performance. Through the definition of schemas, which have to be known by both the

receiver and the sender for each message, data are fully self-describing. Being the schema

shared among all the communicating parts, no per-value overhead is needed. When Avro

data are stored in a file, their schema is stored along contestually, allowing any program to

be able to read it even in absence of the schema. Avro can also be used for RPC, in which

case schema are exchanged during the connection handshake, therefore correspondence

1https://kubernetes.io/
2https://avro.apache.org/
3https://www.confluent.io/product/confluent-platform/
4https://docs.confluent.io/current/schema-registry/docs
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between same name, missing or extra fields can be easily resolved. Schemas are defined

through JSON. Schemas allows to formally specify the data in the messages, with types,

meaning and also human readable documentation.

1 { "namespace" : "example . avro " ,

2 " type " : " record " ,

3 "name" : " user " ,

4 " f i e l d s " : [

5 { "name" : "name" , " type " : " s t r i n g " } ,

6 { "name" : " favorite_number " , " type " : " i n t " }

7 ]

8 }

Listing 5.1 An Apache Avro schema example

The Schema Registry provides a serving layer for Avro schemas associated with mes-

sages in Kafka topics. It provides RESTful APIs for storing and retrieving them, allowing

to keep a versioned history of each. Schema evolution is also provided, accordingly to

configured compatibility settings. It also provides pluggable Serializers for Kafka clients,

that at boot will read the correct schema from the schema registry and use it to deserialize

data.

5.1.2.1 Data Infrastructure deployment on Kubernetes

The Kafka deployment consists of two StatefulSets, one handling the Kafka brokers’ cluster

and one handling the ZooKeeper instances’ one.

Statefulsets are the Kubernetes API object used to handle stateful workloads, they allow

to handle multiple replicas of the same application, keeping for each of them a unique

identity w.r.t. network and volumes associated. Each instance of an application runs as

a Pod, the minimum schedulable unit in Kubernetes, which in this case are created and

restarted in case of failure by the associated StatefulSet.

The ZooKeeper cluster’s is reachable from the Kafka Pods through a Service, which can

be seen as a loadbalancer associated with an internally resolvable domain. A special kind

of Service, named Headless Service, is needed for the instances to form a cluster, both for

Kafka and ZooKeeper.

In order to able to use AVRO as a serialization format for messages in Kafka topics,

as previously said, a Confluent Schema Registry is needed to share schemas and handle

schema versioning. Given that the Schema registry uses Kafka topics as storage we do

not need a StatefulSet to deploy it. Instead, we used a Deployment, another Kubernetes

API object more suitable for stateless applications, able to handle rollouts and rollbacks
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between new and old versions of a same application through the usage of multiple Repli-

caSets, which are responsible of keeping the number of replicas coherent with the desired

state of the cluster. A single Service is needed to talk with the Schema registry from inside

the Kubernetes cluster.

Other API objects were needed in order to be able to deploy correctly the aforemen-

tioned components, e.g. ServiceAccounts, Roles and Rolebindings for Zookeeper and

Kafka pods to be able to talk with the Kubernetes API server to discover other members of

their cluster thanks to the Endpoints associated to the Headless Service.

A graphic representation of the main components can be found in Fig.5.2.

Fig. 5.2 The needed Kubernetes API objects to deploy Kafka, Zookeeper and the Schema
Registry.

5.1.3 Kafka Streams APIs

Kafka Streams APIs offer a DSL to handle streams as both Streams and Tables, imple-

menting the Dual Streaming model. Therefore, it offers most of the relational operators

directly or that can be implemented depending on the value data structure, on top of the

Dataflow execution model. It uses keys to partition topics, so stateful operations can only

be performed on co-partitioned streams, otherwise a rekey operation is needed before

being able to apply them.

Kafka Streams consists of a library that can be embedded in any Java application, used

to process data from and to Kafka topics and allows to take advantage of many features

automatically e.g. failure handling, consumer groups work partitioning and organization.

Application having the same consumer group id will be automatically handled as a single

consumer groups, therfore instances of such applications can be dynamically scaled up

and down and the library will take care of repartitioning topics’ partitions to consumers

and splitting topologies’ tasks among them whenever possible.
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Topologies in Kafka Streams are split in tasks, each containing a part of the topology,

called subtopology, joined by specific topics and that can be executed even on different

hosts. Tasks distribution is transparently handled by the Kafka Streams library. Topologies

are split in subtopologies whenever a rekey operation is needed. Rekeying through new

kafka topics allows to reshuffle correctly the data by writing each message to the appropri-

ate partition of the destination topic, then read by the right consumer which will receive

all the messages for a certain subset of the key space. Subtopologies can be executed in

parallel, on different instances of the same Kafka Streams application. Notably, the max

number of parallel processors equal to the minimum number of partition of the input

topic or the number of partitions for all the co-partitioned input topics.

5.2 Metamorphosis

We here present Metamorphosis, our proof of concept for a µCR enabled Dataflow RDF

Stream Processor based on the Kafka Streams APIs.

Given a conjunctive RSP-QL query we will have to perform the following 4 steps:

S1 Parse the RSP-QL query and produce a parse tree.

S2 Convert the parse tree to a logical query plan in form of a DAG.

S3 Apply optional optimizations to the logical query plan.

S4 Convert to a physical query plan targeting Kafka Streams APIs.

5.2.1 Representing RDF in AVRO

First of all, we have to decide a schema for both the Key and the Values of the messages.

Keys will be simply a wrapper around a String (Listing 5.4), while for the value we have

more complex structures, the single triples will be represented as SJSONTriple (Listing

5.2) and will be used for input and output between the reasoners, while SJSONTripleMap

(Listing 5.3), a wrapper around multiple lists of triples, will be used as internal schema in

Methamorphosis.

With reference to the Cube and Streams model presented in Section 4.3.1, SJSON-

TripleMap encodes a single table of a cube, the arrays it contains are the triples coming

from the source represented by the key of the map. The data structure has been chosen

with the purpose to delay as much as possible the joining and windowing computational

cost and memory and network usage. In fact, these operations are not performed until
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1 { " type " : " record " , "name" : "SJSONTriple" ,
2 " f i e l d s " : [
3 { "name" : " s " , " type " : " s t r i n g " } ,
4 { "name" : "p" , " type " : " s t r i n g " } ,
5 { "name" : "o" , " type " :
6 { " type " : " record " , "name" : " TripleObject " ,
7 " f i e l d s " : [
8 { "name" : " value " ,
9 " type " : [ " null " , " s t r i n g " , " i n t " , " long " , " f l o a t " ]

} ,
10 { "name" : " datatype " , " type " : [ " null " , " s t r i n g " ] } ,
11 { "name" : " type " ,
12 " type " : {
13 "name" : "Kind" , " type " : "enum" ,
14 "symbols" : [ " l i t e r a l " , " uri " , "bnode" ] } } ]
15 } } ,
16 { "name" : " t s " , " type " : " long " } ] }

Listing 5.2 The AVRO schema for the SJSONTriple.

1 {
2 " type " : " record " ,
3 "name" : "SJSONTripleMap" ,
4 "namespace" : " phisco . streams . polimi . i t . avro " ,
5 " f i e l d s " : [
6 { "name" : " data " ,
7 " type " : {
8 " type " : "map" ,
9 " values " : {

10 " type " : " array " ,
11 " items " : { " type " : "SJSONTriple" }
12 } } ] }

Listing 5.3 The Value AVRO schema.

1 {
2 " type " : " record " ,
3 "namespace" : " phisco . streams . polimi . i t . avro " ,
4 "name" : "SJSONtKey" ,
5 " f i e l d s " : [
6 { "name" : "key" , " type " : " s t r i n g " }
7 ]
8 }

Listing 5.4 The Key AVRO schema.

strictly necessary, e.g., when projecting the data for outputting. Consequently, the cost of

updating reduces, because updating becomes a simple append to the appropriate list.
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5.2.1.1 Parsing RSP-QL with Antlr

We have decided to use RSP-QL [22] as input language in order to describe the SPARQL

queries over RDF streams that the system shall be able to execute. Given the choice of

constraining the possible queries to conjunctive queries we have targeted a subset of

the RSP-QL grammar, that we have defined in EBNF (simplified version can be found in

Listing A1 in Appendix).

In order to parse an RSP-QL query we have decided to adopt ANTLR5 (ANother Tool for

Language Recognition). ANTLR is a parser generator for reading, processing, executing,

or translating structured text or binary files. Given an input context-free grammar in

Extended Backus–Naur Form (EBNF) it generates the corresponding lexer and a parser

for that grammar that can automatically build parse trees. ANTLR can also generate tree

walkers, in the form of Visitors or Listener, that can be used to visit the nodes of those

trees and execute application-specific code.

We have written the necessary parts of the RSP-QL grammar in EBNF, then we have let

ANTLR generate the needed parser, lexer and implemented the logic for translating the

syntax tree into a logical query plan S2 as an ANTLR Visitor. We have chosen to implement

a Visitor, because it allows to modify the visit order through custom code, while Listeners

only allow to be notified whenever specific conditions hold during a depth first descent of

the tree, e.g. entering or exiting a specific node.

5.2.1.2 Converting the parse tree into a logical query plan DAG

In the following, we describe the a simplified version of the algorithm we have applied to

convert the parsed syntax tree generated by ANTLR in the previous step S1 from an RSP-QL

query into a logical plan in form of DAG. We’ll assume a simplified RSP-QL grammar that

can be found in Appendix A1 6.

We will use the two queries in Listings 5.5 and 5.6 as running examples.

1 SELECT ? s ?o
2 FROM NAMED WINDOW : win ON STREAM : source [ RANGE PT1H]
3 WHERE{
4 WINDOW : win { ? s : p1 : ?o . }
5 }

Listing 5.5 Example query 1.

5https://www.antlr.org/
6Integral version: https://github.com/phisco/thesis/blob/master/Metamorphosys/src/main/antlr4/phisco/streams/polimi/it/antlr4/RSPQL.g4
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1 SELECT ? s1 ? s2 ?o
2 FROM NAMED WINDOW : win ON STREAM : source [ RANGE PT1H]
3 WHERE{
4 WINDOW : win {
5 ? s1 : p1 : ?o .
6 ? s2 : p2 ?o .
7 }
8 }

Listing 5.6 Example query 2.

Starting from a selectQuery at each datasetClause corresponds a source node, reading

from a graph or a windowed stream, in the latter case both a source node and a window

node will have to be added, Listing 5.7.

1 f o r e s t = map : nodename −> node
2 f i l t e r s = l i s t of f i l t e r s
3 roots = l i s t of top l e v e l nodes
4 i = 0
5
6 for datasetClause in datasetClauseList :
7 f o r e s t [ i r i ] = SourceNode ( datasetClause )
8 # e . g . AnonymousGraph , NamedGraph or NamedWindow

Listing 5.7 Data set clauses.

At each triple pattern in the whereClause will correspond a filter node downhill to the

corresponding source, Listing 5.8. The association follows rewriting techniques already

adopted for example query federation. In our running examples, both the SourceNode

":source" and WindowNode ":win" are added, Figures 5.6 and 5.7.

1 for graphPatternNotTriples in groupGraphPattern:
2 source = source . varOrIr i
3 for triplesSameSubject in graphPatternNotTriples :
4 s = triplesSameSubject . varOrTerm
5 for property in propertyListNotEmpty:
6 p = property . verb
7 for object in o b j e c t L i s t :
8 add f i l t e r ( s , p , object , source ) to forest , f i l t e r s and roots

Listing 5.8 Filter creation.

Once we have added all sources and filters, we have to join the filters accordingly to

the graph pattern they have to match. To recognize necessary joins, we build a Undirected

Connected Graph (UCG) [35] in which vertexes are triple patterns ( what we call filters )
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and edges are labelled with variables present in both the connected triples, meaning these

two triple patterns will have to be joined over at least that variable (Listing 5.9). Notably, a

pair of nodes can be connected through multiple edges, e.g. (?s ?p :o1) and (?s ?p :o2), in

which case the joining condition will be specified accordingly. The generated UCGs for

our running examples can be seen in Figures 5.3 and 5.4, the former consisting of a single

node, while the latter of two nodes connected through an edge labeled "?o" which is the

common variable among the two triple patterns.

1 joinGraph = UndirectedGraph { vertexes = f i l t e r s , edges = variables }
2
3 for f in f i l t e r s :
4 joinGraph . addVertex ( f )
5
6 # a l l the p o s s i b l e couples of v e r t i c e s
7 for f1 , f2 in ( f i l t e r s × f i l t e r s − ( f1 , f2 ) s . t . f1 == f2 ) :
8 for var in ( vars ( f1 ) ∩ vars ( f2 ) ) :
9 joinGraph . addEdge ( f1 , f2 , var )

Listing 5.9 Building the join UCG.

Once the Graph has been built, we need to choose the order in which the joins have

to be performed. The ordering will take into account a customizable cost function. In

our current implementation, the cost function takes into account the number of rekeys

operations needed by one or both the sides of the join in order to be joinable. Keying

metadata are propagated and updated consequently while building the DAG.

Each time two nodes, n1 and n2, are joined in the UCG their two nodes have be merged

into a single node n3 substituting n1 and n2 in all the remaining edges, until no more

edges remain (Listing 5.10).

Given the two UCGs for our running examples, we can see that only the second query

(Listing 5.6) needs a join over the variable ?o, therefore the node "J1" is added. Assuming

the input streams to be partitioned by subject both sides of the join will need to be rekeyed,

but this operation will be performed before the windowing node to reduce its cost.

After the last iteration of the previous step, the number of remaining nodes will be in

equal to the number of connected components initially present in the UCG. If more than

one node is present, they will all have to be joined through a particular kind of join, that we

call an unconditional join. An unconditional join does not have a joining condition, but

both sides of the join have to have been satisfied at least before forwarding the combined

result.

Then, a projection node specified by the query in the selectClause is added and if the

query is in construct form also a construct node. Both our running examples presented a



72 Implementation

1
2 numberOfVertices = sizeOf ( ConnectedComponentsList ( joinGraph ) )
3 # numberOfVertices w i l l be the f i n a l number of v e r t i c e s obtained
4
5 while ( joinGraph . v e r t i c e s > numberOfVertices ) :
6
7 lessExpensiveEdge = getLessExpensiveEdge ( sortedEdges , joinCostFunction )
8
9 v1 , v2 = lessExpensiveEdge . v e r t i c e s

10 v1v2edges = edgesBetween ( v1 , v2 )
11
12 variables = set of a l l variables on edges between v1 and v2
13 remove a l l edges in v1v2edges from joinGraph
14
15 newJoinNode = join ( v1 , v2 , variables , ConditionalJoin )
16 f o r e s t [ newJoinNode .name] = newJoinNode
17 # update roots consequently , removing v1 and v2 and adding the new node
18
19 joinGraph . add( newJoinNode )
20 add edges ( newJoinNode , k , l ) from newJoinNode to k with l a be l l i f f an edge

between f1 or f2 and k with l a be l l e x i s t s
21
22 joinGraph . remove( v1 )
23 joinGrap . remove( v2 )

Listing 5.10 Reduce vertices adding joins to logical plan DAG.

Fig. 5.3 Produced UCG for the example query 1.

Fig. 5.4 Produced UCG for the example query 2.

select clause and therefore a projection node "P" is added to both (Figures 5.6 and 5.7). In

the first query it will project the incoming triples to "?s ?o", while in the second to "?s1 ?s2

?o".
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1
2 DAG. head = project ( vars or * from selectClause , DAG. head )
3
4 i f Construct query:
5 DAGHead = construct ( construct graph pattern to be templetized , DAG. head )

Listing 5.11 Unconditional join, projection and construct node.

Fig. 5.5 Legend DAGs graphical representation.

Fig. 5.6 DAG for example query 1.

Fig. 5.7 DAG for example query 2.

5.2.1.3 Logical Plan Optimization

The DAG is then optimized through a simple rule engine. Rules are applied if specified

preconditions are met until no more rules are applicable.

The main optimization performed at the moment is PushFiltersBeforeWindows which

works as in Figure 5.8. W.r.t. our running examples the result of applying the PushFilters-

BeforeWindows rule can be seen respectively in Figure 5.9 and 5.10.

5.2.1.4 From Logical to Physical plan

The generated DAG is then converted into a Kafka Streams Topology through a depth

first visit, converting each node to its Streams APIs counterpart. Totally custom logic

had to be implemented to handle correctly values using the classes generated by the

aforementioned AVRO schemas.
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Fig. 5.8 Application of PushFilterBeforeWindows rule on node F1.

Fig. 5.9 Optimized DAG for example query 1.

Fig. 5.10 Optimized DAG for example query 2.

The nodes of the Logical Plan are directly mapped to Kafka Streams APIs operators

plus custom value handling logic. For example, Filter Nodes are implemented in Java, the

only language officially fully supported by the APIs, in Listing 5.12.

5.2.1.5 Metamorphosis Software Organization

The software can be found on GitHub [34] and is split in five Packages:

1. Antlr4: which contains the classes and interfaces for lexer, parser, listener and visitor

generated through a Maven plugin, from the provided RSP-QL grammar. Given a

input stream the lexer produces the specified tokens which are then interpreted by

the parser to build the parse tree, that can then be visited and used to perform any

needed action in step S1.

2. Algebra: containing all the extension to the abstract class "RelNode", which will

be used to build the DAG out of the parse tree in step S2. The available nodes are

shown in Fig.5.12.
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1 package phisco . streams . polimi . i t . executor ;
2
3 @Accessors ( f luent = true )
4 public class KafkaFilterNode extends KafkaNode {
5 public KafkaFilterNode ( KafkaExecutor executor , FilterNode node) {
6 KafkaNode child = executor . nodes ( ) . get (node . children ( ) . get ( 0 ) .name( ) ) ;
7 i f ( child . stream ( ) != null )
8 t h i s . stream ( child . stream ( )
9 . f i l t e r ( getStreamingPredicate (node . f i l t e r s ( ) ) ) ) ;

10 else
11 t h i s . table ( . . . ) ;
12 }
13
14 private Predicate <SJSONtKey , SJSONTriple> getStreamingPredicate ( F i l t e r s

f i l t e r s ) {
15 Predicate <SJSONtKey , SJSONTriple> p = ( k , v ) −> true ;
16 for (Map. Entry <Key , java . u t i l . function . Predicate > e :

f i l t e r s . entrySet ( ) ) {
17 f i n a l Predicate pf = p ;
18 switch ( e . getKey ( ) ) {
19 case S :
20 p = ( k , v ) −> pf . t e s t ( k , v ) && e . getValue ( ) . t e s t ( v . getS ( ) ) ;
21 break ;
22 case P :
23 p = ( k , v ) −> pf . t e s t ( k , v ) && e . getValue ( ) . t e s t ( v . getP ( ) ) ;
24 break ;
25 case O:
26 p = ( k , v ) −> pf . t e s t ( k , v ) &&

e . getValue ( ) . t e s t ( v . getO ( ) . getValue ( ) . toStr ing ( ) ) ;
27 }
28 }
29 return p ;
30 }
31 }

Listing 5.12 KafkaFilterNode implementation in Metamorphosis.

3. Parser: mostly composed of the implementation of the Visitor interface offered by

Antlr4, "Gregor", which include all the logic to translate the parse tree produced

by the parser into a DAG suitable to be executed S2. It also contains the abstract

class "OptimizationRule" which can be extended to provide custom optimization

rules to be applied on the produced DAG. To find the connected component in the

join graph (UCG) needed by the algorithm we adopted an existing java graph library,

jGraph 7.

7https://www.jgraph.com/
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Fig. 5.11 Dependencies between the Metamorphosis packages.

Fig. 5.12 Algebra Package nodes structure.

4. Avro: contains the classes generated by a Maven Plugin from the Avro schemas

provided, which allows to serialize and deserialize the topics content.

5. Executor: an abstract class "Executor" and its extension "KafkaExecutor", plus all

the Kafka Streams specific classes to translate the generic DAG into a Kafka topology

and accomplish S4.

1 CharStream input = new ANTLRInputStream ( " . . . query . . . . " )
2 RSP−QLLexer l e x e r = new RSP−QLLexer ( input ) ;
3 CommonTokenStream tokens = new CommonTokenStream( l e x e r ) ;
4 RSP−QLParser parser = new RSP−QLParser ( tokens ) ;
5 Gregor gregor = new Gregor ( ) ;
6 gregor . v i s i t ( parser . queryUnit ( ) ) ;
7 gregor . optimize ( Arrays . a s L i s t (new PushFiltersBeforeWindows ( ) ) ) ;
8 Executor executor = new KafkaExecutor ( " executor−" + new

Timestamp( System . currentTimeMillis ( ) ) . getTime ( ) ) ;
9 executor . execute ( ) ;

Listing 5.13 Example usage of Metamorphosijs to execute an RSP-QL query.

5.2.2 Metamorphosis Deployment on Kubernetes

To deploy the various Stream Reasoners, like Metamorphosis, various Kubernetes API

objects can be used depending on the type of task to be performed. For long running tasks
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a Deployment can be more suitable, while Jobs can be used for tasks that should run to

completion or CronJobs for Jobs that should run periodically completing a specific task

each time. Seen that most of the Stream Reasoners should be long running applications

interacting with the Kafka Cluster to read, process and write back data to specific topics,

Deployments will be the most suitable choice. In fact, Metamorphosis has been set up as

a Deployment, running a single query at a time, replicas will be handled out of the box

by the Kafka Streams APIs, but the number of replicas will be limited by the number of

partitions of the input topics.

A complete representation of the whol µCR stack can be seen in Figure 5.13.

Fig. 5.13 Communication diagram with multiple Stream Reasoners.

5.3 Evaluation

Given our work mostly centering on the feasibility of applying the Dataflow approach

through the usage of the Kafka Streams APIs to execute RDF Streaming queries, we de-

cided to evaluate our system and model over the capabilities it has, underlining which

limitations are due to the current implementation and which are due to intrinsic lacks of

our model and approach.
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5.3.1 SRBench

Zhang et al. proposed SRBench [39], a general-purpose benchmark for streaming RDF/S-

PARQL engines based on data from the Linked Open Data, the LinkedSensorData data

set. This data set contains 1.7 bilion triples regarding the US weather data published by

Kno.e.sis. Moreover it includes also data from DBpedia and GeoNames.

The SRBench benchmark consists of 17 queries, conceived to assess a system’s capa-

bilities at streaming RDF data, i.e.:

Q1 Get the rainfall observed once in an hour.

Q2 Get all precipitation observed once in an hour.

Q3 Detect if a hurricane has been observed.

Q4 Get the average wind speed at the stations where the air temperature is >32 degrees

in the last hour, every 10 minutes.

Q5 Detect if a station is observing a blizzard.

Q6 Get the stations that have observed extremely low visibility in the last hour.

Q7 Detect stations that are recently broken.

Q8 Get the daily minimal and maximal air temperature observed by the sensor at a

given location.

Q9 Get the daily average wind force and direction observed by the sensor at a given

location.

Q10 Get the locations where a heavy snowfall has been observed in the last day.

Q11 Detecting if a station is producing significantly different observation values than its

neighbouring stations.

Q12 Get the hourly average air temperature and humidity of large cities.

Q13 Get the shores in Florida, US where a strong wind, i.e., the wind force is between 6

and 9, has been observed in the last hour.

Q14 Get the airport(s) located in the same city as the sensor that has observed extremely

low visibility in the last hour.
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Q15 Get the locations where the wind speed in the last hour is higher than a known

hurricane.

Q16 Get the heritage sites that are threatened by a hurricane.

Q17 Estimate the damage where a hurricane has been observed.

5.3.2 Implementable Queries

In the following we show which queries of the SRBench benchmark can be be implement

and the motivations for the ones that are not:

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

Y N Y Y Y Y Y Y Y Y N N Y Y N N N

Q2, Q15, Q16 and Q17 are not executable due to the presence of an arbitrary length

path query, which our model is not able to execute due to the missing recursion in the

target language, Kafka Streams DSL.

Q11 and Q12, instead, are not executable because of the necessity of select subqueries,

in fact only construct subqueries allow to pipe their output as source for the wrapping

query.

5.3.3 Query Translation

We will now show the generated DAG for the queries Q1 and Q4 from SRBench [39].

For query Q1 in Listing 5.14, the UCG in Fig. 5.14 is produced and then used to build

the DAG in Fig. 5.15, where "srbench:observations" is the source stream, ":win" the

windowing operator, "F*" are the filters, "J*" are all natural joins, given that filters rename

input cubes schemas with triplepattern’s terms; "P1" is a projection node, performing

the projection to "?sensor ?value ?uom" as specified in the select clause. To be executed

using the Kafka Streams APIs’ Dataflow execution model the output of "J2" has to be

rekeyed before being used as input for "J4", rekeying is not represented as a node in the

DAG because it is an implementation detail due to how joins must be performed in the

Dataflow execution model.

Q4 can be seen in Listing 5.15, the generated UCG in Figure 5.17 and the generated

DAG in 5.18. Here three rekeys have to be performed: the output of "J2" before "J6" to

match the key of the output of "J3"; the output of "J5" to match the key of "F10"; the

output of both "J6" and "J7" will have to be rekeyed to be joined in "J8".
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1 PREFIX om−owl:
2 <http : // knoesis . wright . edu/ssw/ont/ sensor−observation . owl#>
3 PREFIX weather: <http : // knoesis . wright . edu/ssw/ont/weather . owl#>
4 PREFIX srbench: <http : //www. cwi . nl /SRBench/>
5 SELECT ? sensor ? val ?uom
6 FROM NAMED WINDOW ON STREAM srbench: observations [RANGE PT1H] AS : win
7 WHERE {
8 WINDOW : win {
9 ? observation om−owl: procedure ? sensor ; // −> F1 ( corresponding

f i l t e r s )
10 a weather: RainfallObservation ; // −> F2
11 om−owl: r e s u l t ? r e s u l t . // −> F3
12 ? r e s u l t om−owl: f loatValue ? val ; // −> F4
13 om−owl: uom ?uom . // −> F5
14 }
15 }

Listing 5.14 SRBench first query.

Fig. 5.14 Produced UCG for the SRBench query Q1 in Listing 5.14.

5.3.4 Needed Tooling

Given that the LinkedSensorData 8 used by the SRBench benchmark was not in the format

expected by our system, we had to write a producer able to stream the N-Triples serialized

blob of RDF data and write it to a topic in the specified AVRO format in chronological

order. We have chosen to split our solution in two components, both implemented in

python.

The original data are split by huricanes, e.g. 2009 Bill or 2008 Ike; each of them is then

split in multiple RDF files, with no clear ordering, therefore we load them in memory,

query them to find the timestamps, sort them and then get the observations associated to

that timestamp. To be as customizable as much as possible we have decided to split the

8http://wiki.knoesis.org/index.php/LinkedSensorData
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Fig. 5.15 DAG generated from the SRBench query Q1 in Listing 5.14.

Fig. 5.16 DAG generated from the one in Fig.5.15 by applying PushFiltersBeforeWindows
rule.

two queries and allow them to be passed as argument to the script. The first query can be

seen in Listing 5.16 and the second in Listing 5.17 will be executed binding ?o to each of

the found timestamps.

So, the first component, given the two queries, a set of files and their serialization

format, splits the files in batches and executes the two queries on each batch separately,

assuming reasonably that data regarding a single observation are in same file or at least in

the same batch. Each of the producers will write to a single file in json format, compatible

with the StreamingTriples AVRO schema that will be used to serialize it to AVRO afterwards,
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1 SELECT ? sensor (AVG( ? windSpeed ) AS ? averageWindSpeed )
2 (AVG( ? temp) AS ? averageTemperature )
3 FROM NAMED WINDOW : win ON STREAM srbench: observations [RANGE PT3H SLIDE PT10M]
4 WHERE {
5 WINDOW : win {
6 ?tempObs om−owl: procedure ? sensor ; // −> F1
7 a weather: TemperatureObservation ; // −> F2
8 om−owl: r e s u l t ?tempRes . // −> F3
9 ?tempRes om−owl: f loatValue ?temp ; // −> F4

10 om−owl: uom ?uom . // −> F5
11 FILTER ( ? temp > "32"^^xsd: f l o a t ) // −> F6
12 ?windSpeObs om−owl: procedure ? sensor ; // −> F7
13 a weather: WindSpeedObservation ; // −> F8
14 om−owl: r e s u l t ? r e s u l t . // −> F9
15 ? r e s u l t om−owl: f loatValue ?windSpeed . // −> F10
16 } }
17 GROUP BY ? sensor // −> Agg

Listing 5.15 SRBench query Q4 in RSP-QL.

Fig. 5.17 UCG generated from SRBench’s Q4

i.e. {"s" : ...,"p" : ...,"o" : {"value" : ...,"t y pe" : ...,"l i ter al" : ...},"t s" : ...}, and write all of

them to standard out, if needed the output can be redirected into a file for later usage.

The second component will take directly from standard in a triple at a time, extrapolate

the key and the timestamp and write each message to a configurable Kafka Topic using

the specified AVRO schema.

The intended usage for these two components is to use the first to convert the whole

dataset into a file containing a single triple per line and sort it by timestamp, if multiple

process have been used, given that in such case ordering is not guaranteed. The first step
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Fig. 5.18 Optimized DAG generated from SRBench’s Q4

1 SELECT DISTINCT ?o
2 WHERE {
3 ? s owl−time: inXSDDateTime ?o
4 }

Listing 5.16 Timestamp extraction query.

can be performed once and the second component can be deployed, as many times as

needed, with the whole file to be streamed into a topic one triple at a time.

Both components have been containerized producing two distinct Docker container

and the second component already comes with a Job manifest for deploying it on a

Kubernetes cluster and a Makefile to run it locally.

The first component code can be seen in Listing A20 and the second in A21.
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1 CONSTRUCT {
2 ? s owl−time: inXSDDateTime ?o ;
3 a ?o2 .
4 ? s2 om−owl: samplingTime ? s ;
5 a ?o3 ;
6 om−owl: observedProperty ?o4 ;
7 om−owl: procedure ?o5 ;
8 om−owl: r e s u l t ? s3 ;
9 om−owl: samplingTime ?o6 .

10 ? s3 a ?o7 ;
11 om−owl: f loatValue ?o8 ;
12 om−owl: uom ?o9 .
13 } WHERE {
14 ? s owl−time: inXSDDateTime ?o ;
15 a ?o2 .
16 ? s2 om−owl: samplingTime ? s ;
17 a ?o3 ;
18 om−owl: observedProperty ?o4 ;
19 om−owl: procedure ?o5 ;
20 om−owl: r e s u l t ? s3 ;
21 om−owl: samplingTime ?o6 .
22 ? s3 a ?o7 ;
23 om−owl: f loatValue ?o8 ;
24 om−owl: uom ?o9 .
25 }

Listing 5.17 Construct query.
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Conclusions and Future Work

In our Thesis Work, we proposed µCR, a novel approach to RDF Stream Processing and

Stream Reasoning mixing Cascading Reasoning (CR) and Network of stream reasoners [31]

to the the Microservice architecture. In order to enable our approach we have outlined a

Stack (Figure 3.5), composed of an Orchestrator, a Streaming Platform, divided further in

one single Data Infrastructure and multiple Stream Processors, and a Domain for Stream

elements. We have proposed and motivated our choices w.r.t. this stack, Kubernetes

as an Orchestrator, Apache Kafka as Data Infrastructure and Kafka Streams APIs as a

Stream Processor. We have chosen to focus on producing a Proof of Concept (PoC) for

a µCR enabled Stream Processor targeting the Raw Stream Processing layer of the CR

pyramid (Figure 3.2) and therefore to target a Dataflow system [1]. To allow rewriting

RSP-QL queries to a Dataflow system, mixing the approach on SPARQL query rewriting

to relational algebra by Chebotko et al. [18] with the Dual Streaming Model by Sax et al.

[33], we have proposed a model to execute queries on RDF streams compatible with the

Dataflow distributed execution model.

6.1 Limitations and future work

In this section, we present the limitations we recognize w.r.t. our Work and enumerate the

future work necessary to overcome these limitations or to further implement our vision.

L1 To evaluate our proposed PoC we have decided to use the SRBench benchmark

[39]. Such benchmark focuses on the abilities of RSP dialects only, not checking

correctness or performance in any way. To allow these really important aspects to

be tested too an extension to SRBench has been proposed, CSRBench 1. This second

1https://www.w3.org/wiki/CSRBench
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benchmark offers a subset of the original queries and their results against which to

test an RSP engine. Given that we have chosen to focus on describing our vision,

explore its enabling pieces and then proposing a novel approach to target Dataflow

systems for rewriting, we have decided to adopt the original benchmark based on

query feasibility to be able to at first evaluate the capabilities of our proposed model,

outlining what are the boundaries and limitations of our approach.

L2 We have only marginally explored the query rewriting aspect, deciding for our PoC

to accept queries in the form of Union of Conjunctive Queries (UCQ), being it the

rewriting output of recent systems such as Kyrie by Calbimonte et al. [14].

L3 In this Thesis Work, we have limited ourselves to use Kubernetes as an Orchestrator

for workloads, therefore describing how to deploy the Data Infrastructure and Meta-

morphosis, our PoC. Although, in our vision the Orchestrator should also be able to

handle more natively the Reasoners and the streaming query.

L4 The true power of the µCR is in the cooperation enabled by the centralized Data

Infrastructure and common language we have chosen. Nonetheless, we have only

shown how the Reasoners could interoperate and proposed PoC of a Stream Proces-

sor enabled to interoperate.

To overcome each of these Limitations respectively we formulated the following Future

Work propositions:

FW1 We leave as future work the systematic and comparative performance and correct-

ness benchmarking using CSRBench and COST [10].This will help us understand

the bottlenecks and tune the PoC performance. Nonetheless, our hypothesis is that

performance will be negatively influenced by the number of rekeying operations

required, making such kind of systems suitable for simple queries on large volumes

of data, condition that reflects exactly the CR model. Rekeying, as the reshuffling

phase in other Big Data systems, will be one of the most costly w.r.t. query execution

performance.

FW2 We have left as future work automating the integration between our PoC with Kyrie,

but also to explore further ways to overcome the limitations of the only existing CR

system to date, Streaming MASSIF [11], w.r.t. automatic query rewriting to reasoners

with differents expressive powers.

FW3 In Appendix A4 we will propose how this could be achieved by extending Kubernetes

APIs to handle custom resources, such as Reasoners, Data Infrastructure, Queries
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and Streams both incoming and outgoing. Which implementation is a necessary

future work.

FW4 We leave as future work identifying existing systems that can be enabled to be used

on the µCR network and if needed producing connectors for them to be able to

consume and produce data from it. Therefore testing the real interoperability of our

solution.
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Appendix

A1 RSP-QL Grammar

1 selectQuery : selectClause datasetClause * whereClause solutionModifier ? ;

2 selectClause : ’SELECT’ ( ( resultVar ) + | STAR ) ;

3 resultVar : var | ( ’ ( ’ expression ’AS ’ var ’ ) ’ ) ;

4 datasetClause : ’FROM’ ( anonymousGraph= i r i | namedGraphClause |

namedWindowClause ) ;

5 namedGraphClause : ’NAMED’ graphIRI= i r i ;

6 namedWindowClause : ’NAMED’ ’WINDOW’ windowIRI= i r i ’ON’ streamIRI= i r i ’ [ ’

windowDefinition ’ ] ’ ;

7

8 // window

9 windowDefinition : physicalWindow | logicalWindow ;

10 physicalWindow : physicalRange physicalStep ? ;

11 physicalRange : ’ELEMENTS’ INTEGER ;

12 physicalStep : ’STEP ’ INTEGER ;

13 logicalWindow : logicalRange logicalS tep ? ;

14 logicalRange : ’RANGE’ DURATION ;

15 logicalStep : ’STEP ’ DURATION ;

16 DURATION : ’P ’ ( INTEGER ’Y ’ ) ? ( INTEGER ’M’ ) ? ( INTEGER ’D’ ) ? ’T ’

17 ( INTEGER ’H’ ) ? ( mins=INTEGER ’M’ ) ? ( INTEGER ( ’ . ’ INTEGER ) ? ’S ’

) ? ;

18

19 whereClause : ’WHERE’ groupGraphPattern ;

20 groupGraphPattern : ’ { ’ ( graphPatternSub ) + ’ } ’ ;

21 graphPatternSub : ( triplesSameSubject ’ . ’ ? | graphPatternNotTriples ) ;

22 graphPatternNotTriples : graphGraphPattern | windowGraphPattern

23 graphGraphPattern : ’GRAPH’ varOrIr i ’ { ’ ( triplesSameSubject ’ . ’ ? ) + ’ } ’ ;

24 windowGraphPattern : ’WINDOW’ varOrIr i ’ { ’ ( triplesSameSubject ’ . ’ ? ) + ’ } ’ ;

25 varOrIr i : var | i r i ;

26

27 triplesSameSubject : triplesSameSubjectNoBlankNode ;

28
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29 triplesSameSubjectNoBlankNode : varOrTerm propertyListNotEmpty ;

30 propertyListNotEmpty : property ( ’ ; ’ ( property ) ? ) * ;

31 property : verb o b j e c t L i s t ;

32 verb : varOrIr i | TYPE ;

33 o b j e c t L i s t : object ( ’ , ’ object ) * ;

34 object : varOrTerm ;

35 varOrTerm : var | graphTerm ;

Listing A1 A simplified version of the RSP-QL grammar.

A2 SRBench Queries

1 PREFIX category : <http : //dbpedia . org / resource / Category: >
2 PREFIX dbpprop: <http : //dbpedia . org / property/>
3 PREFIX dcterms: <http : // purl . org /dc/terms/>
4 PREFIX foaf : <http : //xmlns .com/ foaf /0.1/ >
5 PREFIX gn: <http : //www. geonames . org / ontology#>
6 PREFIX om−owl: <http : // knoesis . wright . edu/ssw/ont/ sensor−observation . owl#>
7 PREFIX owl: <http : //www.w3. org /2002/07/owl#>
8 PREFIX rdf : <http : //www.w3. org/1999/02/22− rdf−syntax−ns#>
9 PREFIX rdfs : <http : //www.w3. org /2000/01/ rdf−schema#>

10 PREFIX skos: <http : //www.w3. org /2004/02/ skos / core#>
11 PREFIX srbench: <http : //www. cwi . nl /SRBench/>
12 PREFIX weather: <http : // knoesis . wright . edu/ssw/ont/weather . owl#>
13 PREFIX wgs84_pos: <http : //www.w3. org /2003/01/geo/wgs84_pos>
14 PREFIX xsd: <http : //www.w3. org /2001/XMLSchema#>
15 PREFIX yago: <http : //dbpedia . org / c l a s s /yago/>

Listing A2 Common prefixes to all SRBench queries.

1 SELECT DISTINCT ? sensor ? value ?uom
2 FROM NAMED WINDOW : win ON STREAM srbench: observations [RANGE PT1H]
3 WHERE {
4 WINDOW : win {
5 ? observation om−owl: procedure ? sensor ;
6 a weather: RainfallObservation ;
7 om−owl: r e s u l t ? r e s u l t .
8 ? r e s u l t om−owl: f loatValue ? value ;
9 om−owl: uom ?uom .

10 } }

Listing A3 SRBench query Q1 in RSP-QL.
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1 SELECT DISTINCT ? sensor ? value ?uom
2 FROM NAMED WINDOW : win ON STREAM <http : //www. cwi . nl /SRBench/ observations > [RANGE PT1H]
3 WHERE {
4 WINDOW : win {
5 ? observation om−owl: procedure ? sensor ;
6 rdf : type / rdfs : subClassOf * weather: PrecipitationObservation ;
7 om−owl: r e s u l t ? r e s u l t .
8 ? r e s u l t ?p1 ? value .
9 FILTER( REGEX(STR ( ? p1 ) , " value " , " i " ) )

10 OPTIONAL {
11 ? r e s u l t ?p2 ?uom .
12 FILTER( REGEX(STR ( ? p2 ) , "uom" , " i " ) )
13 }
14 }
15 }

Listing A4 SRBench query Q2 in RSP-QL.

1 ASK
2 FROM NAMED WINDOW : win ON STREAM <http : //www. cwi . nl /SRBench/ observations > [RANGE PT1H STEP PT10M]
3 WHERE {
4 WINDOW : win {
5 ? observation om−owl: procedure ? sensor ;
6 om−owl: observedProperty weather: WindSpeed ;
7 om−owl: r e s u l t [ om−owl: f loatValue ? value ] .
8 }
9 GROUP BY ? sensor

10 HAVING ( AVG( ? value ) ≥ "74"^^xsd: f l o a t )

Listing A5 SRBench query Q3 in RSP-QL.

1 SELECT ? sensor (AVG( ? windSpeed ) AS ? averageWindSpeed )
2 (AVG( ? temperature ) AS ? averageTemperature )
3 FROM NAMED WINDOW : win ON STREAM srbench: observations [RANGE PT3H SLIDE PT10M]
4 WHERE {
5 WINDOW : win {
6 ? temperatureObservation om−owl: procedure ? sensor ;
7 a weather: TemperatureObservation ;
8 om−owl: r e s u l t ? temperatureResult .
9 ? temperatureResult om−owl: f loatValue ? temperature ;

10 om−owl: uom ?uom .
11 FILTER ( ? temperature > "32"^^xsd: f l o a t )
12 ? windSpeedObservation om−owl: procedure ? sensor ;
13 a weather: WindSpeedObservation ;
14 om−owl: r e s u l t [ om−owl: f loatValue ?windSpeed ] .
15 } }
16 GROUP BY ? sensor

Listing A6 SRBench query Q4 in RSP-QL.

1 CONSTRUCT { ? sensor om−owl: generatedObservation [ a weather: Blizzard ] }
2 FROM NAMED WINDOW : win ON STREAM srbench: observations [RANGE PT3H SLIDE PT10M]
3 WHERE {
4 WINDOW : win {
5 ? sensor om−owl: generatedObservation [ a weather: SnowfallObservation ] ;
6 om−owl: generatedObservation ?o1 ;
7 om−owl: generatedObservation ?o2 .
8 ?o1 a weather: TemperatureObservation ;
9 om−owl: observedProperty weather: _AirTemperature ;

10 om−owl: r e s u l t [om−owl: f loatValue ? temperature ] .
11 ?o2 a weather: WindObservation ;
12 om−owl: observedProperty weather: _WindSpeed ;
13 om−owl: r e s u l t [om−owl: f loatValue ?windSpeed ] .
14 }
15 }
16 GROUP BY ? sensor
17 HAVING ( AVG( ? temperature ) < "32"^^xsd: f l o a t ∧ # fahrenheit
18 MIN( ? windSpeed ) > " 40.0 "^^xsd: f l o a t ) #milesPerHour

Listing A7 SRBench query Q5 in RSP-QL.
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1 SELECT ? sensor
2 FROM NAMED WINDOW : win ON STREAM <http : //www. cwi . nl /SRBench/ observations > [RANGE PT1H]
3 WHERE {
4 WINDOW : win {
5 { ? observation om−owl: procedure ? sensor ;
6 a weather: V i s i b i l i t y O b s e r v a t i o n ;
7 om−owl: r e s u l t [om−owl: f loatValue ? value ] .
8 FILTER ( ? value < "10"^^xsd: f l o a t ) # centimeters
9 }

10 UNION
11 { ? observation om−owl: procedure ? sensor ;
12 a weather: RainfallObservation ;
13 om−owl: r e s u l t [om−owl: f loatValue ? value ] .
14 FILTER ( ? value > "30"^^xsd: f l o a t ) # centimeters
15 }
16 UNION
17 { ? observation om−owl: procedure ? sensor ;
18 a weather: SnowfallObservation .
19 }
20 }
21 }

Listing A8 SRBench query Q6 in RSP-QL.

1 SELECT DSTREAM DISTINCT ? sensor
2 FROM NAMED WINDOW : win ON STREAM <http : //www. cwi . nl /SRBench/ observations > [RANGE PT1H]
3 WHERE {
4 WINDOW : win {
5 ? sensor om−owl: generatedObservation ? observation .
6 }
7 }

Listing A9 SRBench query Q7 in RSP-QL.

1 SELECT ( MIN( ? temperature ) AS ?minTemperature ) ( MAX( ? temperature ) AS ?maxTemperature )
2 FROM NAMED WINDOW : win ON STREAM <http : //www. cwi . nl /SRBench/ observations > [RANGE PT24H]
3 FROM NAMED GRAPH : sensors <http : //www. cwi . nl /SRBench/ sensors >
4 WHERE {
5 WINDOW : win {
6 ? sensor om−owl: generatedObservation ? observation .
7 ? observation om−owl: observedProperty weather: _AirTemperature ;
8 om−owl: r e s u l t [ om−owl: f loatValue ? temperature ] .
9 }

10 GRAPH : sensors {
11 ? sensor om−owl: processLocation ? sensorLocation .
12 ? sensorLocation wgs84_pos: a l t "%Alt i tude%"^^xsd: f l o a t ;
13 wgs84_pos: l a t "%Latitude%"^^xsd: f l o a t ;
14 wgs84_pos: long "%Longitude%"^^xsd: f l o a t .
15 }
16 }
17 GROUP BY ? sensor

Listing A10 SRBench query Q8 in RSP-QL.
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1 SELECT ( IF (AVG( ? windSpeed ) < 1 , 0 ,
2 IF (AVG( ? windSpeed ) < 4 , 1 ,
3 IF (AVG( ? windSpeed ) < 8 , 2 ,
4 IF (AVG( ? windSpeed ) < 13 , 3 ,
5 IF (AVG( ? windSpeed ) < 18 , 4 ,
6 IF (AVG( ? windSpeed ) < 25 , 5 ,
7 IF (AVG( ? windSpeed ) < 31 , 6 ,
8 IF (AVG( ? windSpeed ) < 39 , 7 ,
9 IF (AVG( ? windSpeed ) < 47 , 8 ,

10 IF (AVG( ? windSpeed ) < 55 , 9 ,
11 IF (AVG( ? windSpeed ) < 64 , 10 ,
12 IF (AVG( ? windSpeed ) < 73 , 11 , 12) ) ) ) ) ) ) ) ) ) ) )
13 AS ? windForce )
14 ( AVG( ? windDirection ) AS ? avgWindDirection )
15 FROM NAMED WINDOW : win ON STREAM <http : //www. cwi . nl /SRBench/ observations > [RANGE PT24H]
16 FROM NAMED GRAPH : sensors <http : //www. cwi . nl /SRBench/ sensors >
17 WHERE {
18 WINDOW : win {
19 ? sensor om−owl: generatedObservation ?o1 ;
20 om−owl: generatedObservation ?o2 .
21 ?o1 om−owl: observedProperty weather: _WindSpeed ;
22 om−owl: r e s u l t [ om−owl: f loatValue ?windSpeed ] .
23 ?o2 om−owl: observedProperty weather: _WindDirection ;
24 om−owl: r e s u l t [ om−owl: f loatValue ? windDirection ] .
25 }
26 GRAPH : sensors {
27 ? sensor om−owl: processLocation ? sensorLocation .
28 ? sensorLocation wgs84_pos: a l t "%Alt i tude%"^^xsd: f l o a t ;
29 wgs84_pos: l a t "%Latitude%"^^xsd: f l o a t ;
30 wgs84_pos: long "%Longitude%"^^xsd: f l o a t .
31 }
32 }
33 GROUP BY ? sensor

Listing A11 SRBench query Q9 in RSP-QL.

1 SELECT ? l a t ? long ? a l t
2 FROM NAMED WINDOW : win ON STREAM srbench: observations [RANGE PT1H]
3 FROM NAMED GRAPH : sensors <http : //www. cwi . nl /SRBench/ sensors >
4 WHERE {
5 WINDOW : w {
6 ? sensor om−owl: generatedObservation [ a weather: SnowfallObservation ] .
7 }
8 GRAPH : sensors {
9 ? sensor om−owl: processLocation ? sensorLocation .

10 ? sensorLocation wgs84_pos: a l t ? a l t ;
11 wgs84_pos: l a t ? l a t ;
12 wgs84_pos: long ? long .
13 }
14 }

Listing A12 SRBench query Q10 in RSP-QL.

1 SELECT DISTINCT ? sensor
2 FROM NAMED WINDOW : win ON STREAM <http : //www. cwi . nl /SRBench/ observations > [RANGE PT1H]
3 FROM <http : //www. cwi . nl /SRBench/ sensors >
4 WHERE {
5 ? sensor om−owl: generatedObservation ? observation ;
6 om−owl: hasLocatedNearRel [om−owl: hasLocation ? nearbyLocation ] .
7 ? observation a ? observationType ;
8 om−owl: observedProperty ? observationProperty ;
9 om−owl: r e s u l t [ om−owl: f loatValue ? value ] .

10 { SELECT (AVG( ? value2 ) AS ? avgValue )
11 WHERE {
12 ? sensor2 om−owl: generatedObservation ? observation2 ;
13 om−owl: hasLocatedNearRel [om−owl: hasLocation ? nearbyLcation2 ] .
14 FILTER ( sameTerm( ? nearbyLocation , ? nearbyLocation2 ) )
15 ? observation2 a ? observationType ;
16 om−owl: observedProperty ? observationProperty ;
17 om−owl: r e s u l t [ om−owl: f loatValue ? value2 ] .
18 }
19 }
20 FILTER ( ABS( ? value − ? avgValue ) / ? avgValue > " 0.10 "^^xsd: f l o a t )
21 }

Listing A13 SRBench query Q11 in RSP-QL.
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1 SELECT ?name ( AVG( ? temperature ) AS ? avgTemperature ) ( AVG( ? humidity ) AS ? avgHumidity )
2 FROM NAMED WINDOW : win ON STREAM <http : //www. cwi . nl /SRBench/ observations > [RANGE PT24H STEP PT1H]
3 FROM <http : //www. cwi . nl /SRBench/ sensors >
4 FROM <http : //www. cwi . nl /SRBench/geonames>
5 WHERE {
6 ? sensor om−owl: generatedObservation ? temperatureObservation ;
7 om−owl: generatedObservation ? humidityObservation ;
8 om−owl: hasLocatedNearRel [ om−owl: hasLocation ? nearbyLocation ] .
9 ? temperatureObservation om−owl: observedProperty weather: _AirTemperature ;

10 om−owl: r e s u l t [ om−owl: f loatValue ? temperature ] .
11 ? humidityObservation om−owl: observedProperty weather: _RelativeHumidity ;
12 om−owl: r e s u l t [ om−owl: f loatValue ? humidity ] .
13 { SELECT ?name
14 WHERE {
15 ? nearbyLocation gn: featureClass ? featureClass ;
16 gn: name • gn: officialName ?name ;
17 gn: population ? population .
18 FILTER ( ? population > 15000 ∧ REGEX( ? featureClass , "P" , " i " ) )
19 }
20 }
21 UNION
22 { SELECT ?name
23 WHERE {
24 ? nearbyLocation gn: parentFeature+ ? parentFeature .
25 ? parentFeature gn: featureClass ? parentClass ;
26 gn: name • gn: officialName ?name ;
27 gn: population ? parentPopulation .
28 FILTER ( ? parentPopulation > 15000 ∧ REGEX( ? parentClass , "P" , " i " ) )
29 }
30 }
31 }
32 GROUP BY ?name

Listing A14 SRBench query Q12 in RSP-QL.

1 SELECT ?shoreName ? l a t ? long
2 ( IF (AVG( ? windSpeed ) < 31 , 6 ,
3 IF (AVG( ? windSpeed ) < 39 , 7 , IF (AVG( ? windSpeed ) < 47 , 8 , 9) ) )
4 AS ? windForce )
5 FROM NAMED WINDOW : win ON STREAM <http : //www. cwi . nl /SRBench/ observations > [RANGE PT1H]
6 FROM NAMED GRAPH : sensors <http : //www. cwi . nl /SRBench/ sensors >
7 FROM NAMED GRAPH : geonames <http : //www. cwi . nl /SRBench/geonames>
8 WHERE {
9 GRAPH : geonames {

10 ? shore gn: featureClass ? shoreClass ;
11 gn: name•gn: officialName ?shoreName ;
12 gn: parentFeature+ ? f l o r i d a ;
13 wgs84_pos: l a t ? l a t ;
14 wgs84_pos: long ? long .
15 ? f l o r i d a gn: name•gn: officialName ? floridaName .
16 FILTER ( ( REGEX( ? shoreClass , "L . CST" , " i " ) ∨ # coast
17 REGEX( ? shoreClass , "T .BCH" , " i " ) ∨ # beach
18 REGEX( ? shoreClass , "T .SHOR" , " i " ) ) ∧ # shore
19 REGEX( ? floridaName , " Florida " , " i " ) )
20
21 }
22 GRAPH : sensors {
23 ? sensor om−owl: hasLocatedNearRel [ om−owl: hasLocation ? shore ] .
24 }
25 WINDOW : win {
26 ? sensor om−owl: generatedObservation ? observation .
27 ? observation om−owl: observedProperty weather: _WindSpeed ;
28 om−owl: r e s u l t [ om−owl: f loatValue ?windSpeed ] .
29 FILTER ( 25 ≤ ?windSpeed ∨ ?windSpeed ≤ 54 ) # milesPerHour
30 }
31 }
32 GROUP BY ?shoreName ? l a t ? long

Listing A15 SRBench query Q13 in RSP-QL.
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1 SELECT DISTINCT ? airportName ? l a t ? long
2 FROM NAMED WINDOW : win ON STREAM <http : //www. cwi . nl /SRBench/ observations > [RANGE PT1H]
3 FROM NAMED GRAPH : sensors <http : //www. cwi . nl /SRBench/ sensors >
4 FROM NAMED GRAPH : geonames <http : //www. cwi . nl /SRBench/geonames>
5 WHERE {
6 GRAPH : geonames {
7 ? ai rport gn: featureClass ? airportClass ;
8 wgs84_pos: l a t ? l a t ;
9 wgs84_pos: long ? long ;

10 gn: name•gn: officialName ? airportName ;
11 gn: parentFeature+ ? c i t y .
12 ? c i t y gn: featureClass ? c i t y C l a s s .
13 FILTER ( REGEX( ? airportClass , "S . AIRP" , " i " ) ∧
14 REGEX( ? cityClass , "P" , " i " ) )
15 }
16 GRAPH : sensors { ? sensor om−owl: hasLocatedNearRel [ om−owl: hasLocation ? c i t y ] . }
17 WINDOW : win {
18 ? sensor om−owl: generatedObservation ? observation .
19 { ? observation om−owl: procedure ? sensor ;
20 a weather: V i s i b i l i t y O b s e r v a t i o n ;
21 om−owl: r e s u l t [om−owl: f loatValue ? value ] .
22 FILTER ( ? value < "10"^^xsd: f l o a t ) # centimeters
23 }
24 UNION
25 { ? observation om−owl: procedure ? sensor ;
26 a weather: RainfallObservation ;
27 om−owl: r e s u l t [om−owl: f loatValue ? value ] .
28 FILTER ( ? value > "30"^^xsd: f l o a t ) # centimeters
29 }
30 UNION
31 { ? observation om−owl: procedure ? sensor ;
32 a weather: SnowfallObservation .
33 }
34 }
35 }

Listing A16 SRBench query Q14 in RSP-QL.

1 SELECT ? l a t ? long ? a l t ( AVG( ? windSpeed ) AS ?avgWindSpeed )
2 FROM NAMED WINDOW : win ON STREAM <http : //www. cwi . nl /SRBench/ observations > [RANGE PT1H]
3 FROM NAMED GRAPH : sensors <http : //www. cwi . nl /SRBench/ sensors >
4 FROM NAMED GRAPH : dbpedia <http : //www. cwi . nl /SRBench/dbpedia>
5 WHERE {
6 WINDOW : win {
7 ? observation a weather: WindspeedObservation ;
8 om−owl: procedure ? sensor ;
9 om−owl: r e s u l t [ om−owl: f loatValue ?windSpeed ] .

10 }
11 GRAPH : sensors {
12 ? sensor om−owl: processLocation ? sensorLocation .
13 ? sensorLocation wgs84_pos: a l t ? a l t ;
14 wgs84_pos: l a t ? l a t ;
15 wgs84_pos: long ? long .
16 }
17 GRAPH : dbpedia {
18 ? hurricane rdf : type / rdfs : subClassOf * yago: Hurricane111467018 ;
19 dbpprop: 1MinWinds ? hurricaneWindSpeed .
20 FILTER ( ? windSpeed > ? hurricaneWindSpeed )
21 }
22 }
23 GROUP BY ? l a t ? long ? a l t

Listing A17 SRBench query Q15 in RSP-QL.
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1 SELECT ? heritage
2 FROM NAMED WINDOW : win ON STREAM <http : //www. cwi . nl /SRBench/ observations > [RANGE PT1H]
3 FROM NAMED GRAPH : sensors <http : //www. cwi . nl /SRBench/ sensors >
4 FROM NAMED GRAPH : dbpedia <http : //www. cwi . nl /SRBench/dbpedia>
5 WHERE {
6 WINDOW : win
7 ? observation a weather: WindspeedObservation ;
8 om−owl: procedure ? sensor ;
9 om−owl: r e s u l t [ om−owl: f loatValue ?windSpeed ] .

10 FILTER ( ?windSpeed ≥ "74"^^xsd: f l o a t ) #milesPerHour
11 }
12 GRAPH : sensors {
13 ? sensor om−owl: hasLocatedNearRel [om−owl: hasLocation ? nearbyLocation ] .
14 }
15 GRAPH : dbpedia {
16 ? heritage owl: sameAs ? nearbyLocation ;
17 dcterms: subject ? category .
18 ? category skos : broader * category : World_Heritage_Sites .
19 }
20 }

Listing A18 SRBench query Q16 in RSP-QL.

1 SELECT ?damage
2 FROM NAMED WINDOW : win ON STREAM <http : //www. cwi . nl /SRBench/ observations > [RANGE PT1H]
3 FROM NAMED GRAPH : geonames <http : //www. cwi . nl /SRBench/geonames>
4 FROM NAMED GRAPH : sensors <http : //www. cwi . nl /SRBench/ sensors >
5 FROM NAMED GRAPH : dbpedia <http : //www. cwi . nl /SRBench/dbpedia>
6 WHERE {
7 WINDOW : win {
8 ? observation a weather: WindspeedObservation ;
9 om−owl: procedure ? sensor ;

10 om−owl: r e s u l t [ om−owl: f loatValue ?windSpeed ] .
11 FILTER ( ?windSpeed ≥ "74"^^xsd: f l o a t ) #milesPerHour
12 }
13 GRAPH : sensors {
14 ? sensor om−owl: hasLocatedNearRel [om−owl: hasLocation ? nearbyLocation ] .
15 }
16 GRAPH : dbpedia {
17 ? hurricane dbpprop: areas [ foaf : name ?areaName ] ;
18 rdf : type / rdfs : subClassOf * yago: Hurricane111467018 ;
19 dbpprop: damages ?damage .
20 }
21 GRAPH : geonames {
22 ? nearbyLocation gn: parentFeature * ? area .
23 ? area gn: name•gn: officialName ?areaName .
24 }
25 }

Listing A19 SRBench query Q17 in RSP-QL.
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A3 Python scripts for SRBench streamer

1 # ! / usr / bin / env python3

2 from r d f l i b import Graph

3 from r d f l i b . term import URIRef , L i t e r a l , BNode

4 import datetime , json , math , multiprocessing as mp, os , sys

5

6 def getSJSON ( s , p , o , t ) :

7 type ( t )

8 r = { " s " : s t r ( s ) , "p" : s t r (p) , " t s " : t }

9 i f isinstance (o , L i t e r a l ) :

10 r [ "o" ] = { " value " : o . value , " type " : " l i t e r a l " , " datatype " : s t r (o . datatype )

}

11 e l i f isinstance (o , URIRef ) :

12 r [ "o" ] = { " value " : s t r (o) , " type " : " uri " }

13 e l i f isinstance (o , BNode) :

14 r [ "o" ] = { " value " : s t r (o . n3 ( ) ) , " type " : "bnode" }

15 return r

16

17 def datetime_converter (o) :

18 i f isinstance (o , datetime . datetime ) :

19 return o . __str__ ( )

20

21 def divide_chunks ( l , number_of_chunks ) :

22 n = math . c e i l ( len ( l ) /number_of_chunks )

23 for i in range ( 0 , len ( l ) , n) :

24 y i e l d l [ i : i + n]

25

26 def batch ( data ) :

27 number_of_chunks = 5

28 for chunk in divide_chunks ( data [ " f i l e s " ] , number_of_chunks ) :

29 g = Graph ( )

30 for f in chunk :

31 g . parse ( os . path . join ( directory , f ) , format=syntax )

32 timestamps = g . query ( data [ "timestamp_query" ] )

33 for t s in timestamps :

34 t = int ( t s [ 0 ] . toPython ( ) . timestamp ( ) )

35 rs = g . query ( data [ " construct_query " ] , initBindings ={ "o" : t s [ 0 ] } )

36 for s , p , o in rs :

37 print ( json .dumps( getSJSON ( s , p , o , t ) , default=datetime_converter ) )

38

39

40 i f __name__ == ’ __main__ ’ :

41 i f len ( sys . argv ) <2:
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42 print ( "Usage : s c r i p t . py directory format construct_query timestamp_query

[ s t a r t end ] " , f i l e =sys . stderr )

43 print ( "e . g . : s c r i p t . py rdf n3 construct_query . sparql

timestamp_query . sparql 0 100" , f i l e =sys . stderr )

44 else :

45 directory , syntax , construct_query , timestamp_query = sys . argv [ 1 : 5 ]

46 d i r e c t o r i e s = sorted ( [ e l for e l in os . l i s t d i r ( directory ) i f

e l . endswith ( syntax ) ] )

47 s t a r t , end = map( int , sys . argv [ 5 : 7 ] ) i f len ( sys . argv ) >=7 else ( 0 ,

len ( d i r e c t o r i e s ) )

48 d i r e c t o r i e s = d i r e c t o r i e s [ s t a r t : end ]

49 construct_query = " " . join (open( construct_query ) . readlines ( ) )

50 timestamp_query = " " . join (open( timestamp_query ) . readlines ( ) )

51 cpus = mp. cpu_count ( )

52 with mp. Pool ( cpus ) as p :

53 p .map( batch , [ { " process " : i , " f i l e s " : f i l e s ,

54 "timestamp_query" : timestamp_query ,

" construct_query " : construct_query }

55 for ( i , f i l e s ) in enumerate ( divide_chunks ( d i r e c t o r i e s , cpus ) ) ] )

Listing A20 Python script of the first component.

1 from confluent_kafka import avro

2 from confluent_kafka . avro import AvroProducer

3 import json , sys , os

4

5 topic = os . getenv ( "TOPIC" , " s o r t e d _ t r i p l e s " )

6 t s = os . getenv ( "TIMESTAMP_KEY" , " t s " )

7 key = os . getenv ( "KEY" , " s " )

8 key_schema_file = os . getenv ( "KEY_SCHEMA_FILE" ,

"Streaming−t r i p l e s −subject−key . avsc " )

9 value_schema_file = os . getenv ( "VALUE_SCHEMA_FILE" , "Streaming−t r i p l e s . avsc " )

10 bootstrap_server = os . getenv ( "BOOTSTAP_SERVER" , ’ localhost :9092 ’ )

11 schema_registry = os . getenv ( "SCHEMA_REGISTRY" , ’ http : / / localhost :8081 ’ )

12

13 i f __name__ == ’ __main__ ’ :

14 with open( key_schema_file ) as kf , open( value_schema_file ) as vf :

15 value_schema = avro . loads ( " " . join ( [ e l . s t r i p ( ) for e l in vf . readlines ( ) ] ) )

16 key_schema = avro . loads ( " " . join ( [ e l . s t r i p ( ) for e l in kf . readlines ( ) ] ) )

17 avroProducer = AvroProducer ( { ’ bootstrap . servers ’ : bootstrap_server ,

’schema . r e g i s t r y . ur l ’ : schema_registry } ,

default_value_schema=value_schema , default_key_schema=key_schema )

18 for l i n e in sys . stdin :

19 t r i p l e = json . loads ( l i n e )
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20 try :

21 avroProducer . produce ( topic=topic , value= t r i p l e , key ={ "key" :

t r i p l e [ " s " ] } , timestamp= t r i p l e [ " t s " ] )

22 avroProducer . f lush ( )

23 except BufferError as e :

24 print ( e , t r i p l e )

25 avroProducer . f lush ( )

Listing A21 Python script of the second component.

A4 Kubernetes Operator and CRDs as µCR Orchestrator

In this Section we will how Kubernetes could be instrumented through a custom Opera-

tor and Custom Resource Definitions (CRDs) to handle Reasoners, Data Infrastructure,

Queries and Streams.

Since Kubernetes 1.7, Custom Controller have been introduced to allow developers to

extend and add new functionalities, replace existing ones and automate administration

tasks as if they were native Kubernetes components. An Operator is a set of application-

specific custom controllers having direct access to Kubernetes APIs, meaning that they

can monitor the cluster and react to any change or perform any needed action to achieve

the desired state. They allow to write applications to fully manage the lifecycle of other

applications.

As said, an operator is able to interact with existing Kubernetes APIs objects, but devel-

opers are also able to define custom resources through the usage of Custome Resource

Definition. Resources defined become Kubernetes first citizens and can have a totally

custom structure to carry all the needed informations.

A real example of Operator from which we took inspiration is the Prometheus Opera-

tor 2. Prometheus is a monitoring system and time series database, with Kubernetes it is

one of the few graduated project in the CNCF Landscape, it allows to store and query met-

rics scraped from application exposing them in a specific format. Rules can be specified

to record aggregate data before storing them and to produce alerts if specific conditions

are met and then send those alert to another provided component, the AlertManager,

which will dispatch them to the desired receivers, e.g. emails, Slack channels. Being

Prometheus a database its state has to be persisted and it has to be configured correctly

with the endpoint it has to scrape and the queries and alerts it has to run. The Prometheus

Operator comes with four different Custom Resource Definitions: Prometheus to define

2https://github.com/coreos/prometheus-operator
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the Prometheus deployment’s characteristics, like version, number of replicas and disks

sizing; ServiceMonitors which declaratively specify how groups of services should be

monitored and are used by the operator to generate Prometheus scrape configurations;

PrometheusRules, defining the desired Prometheus rules then used by the operator to con-

figure alerting and recording rules correctly; Alertmanager, specifying the Alertmanager

deployment and the desired receiver for different kinds of alerts.

Operators are becoming increasingly popular because they allow to operate complex

systems such as Databases or stateful applications in general, abstracting away most of

the complexity behind clear declarative APIs.

In the very same way we could produce a µCR Operator and Custom Resources Defini-

tions for the Data Infrastructure, Reasoners, Streaming Queries and Streams. The Data

Infrastructure would allow to define a Kafka cluster with its associated Schema registry,

while Reasoners would encode also the capabilities of each reasoner and thanks to con-

tainerization every reasoner could be deployed at need by the operator. Streaming Queries

could be split between the available Stream Reasoners capabilities by the µCR operator

and run by the single reasoners interacting through the Data Infrastructure. Streaming

Sources and Sinks could also be defined to allow sending and consuming results to and

from the external world.

Main obstacles to achieve this are the need for the operator to be able to translate a

given input query to multiple queries or plan executable using the provided Reasoners,

therefore the need to produce a standardized communication language to specify what

each agent should do, otherwise it would be impossible to instrument the Operator to

be able to translate each query to a custom language for each one of them. The chosen

language should be flexible enough to allow for different expressiveness powers but also

easy to comprehend for users writing them. In this sense RSP-QL could be a good starting

point, given the flexibility of the graph model and its ability to take advantage of encoded

knowledge in the form of ontologies.
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