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Ho lavorato alla presente tesi all’interno del gruppo di ricerca guidato dal
professor Giacomo Ghiringhelli, presso il dipartimento di fisica del Politec-
nico di Milano, a cavallo tra l’autunno del 2018 e la primavera del 2019.
Il gruppo possiede una lunga e consolidata tradizione nell’ambito della spet-
troscopia realizzata attraverso radiazione di sincrotrone e finalizzata allo stu-
dio delle proprietà magnetiche ed elettroniche della materia. Negli ultimi
venti anni, infatti, l’attività del gruppo è ruotata attorno alla spettroscopia
d’emissione di raggi X, ed in particolare alla tecnica sperimentale che prende
il nome di RIXS - Resonant Inelastic X-rays Scattering. I dati da questa ot-
tenuti, eventualmente integrati con quelli di altre tecniche affini e comple-
mentari (XAS, XLD, XMCD), permettono di studiare, quindi di caratterizzare
in termini di vettor d’onda ed energia, le eccitazioni del materiale - mani-
festazioni dirette ed univoche della struttura atomica ed elettronica. Con-
tribuendo allo sviluppo tecnico tanto quanto a quello teorico del RIXS, l’intenso
lavoro del gruppo ha, a partire dal nuovo millennio, aperto la strada ad una
nuova e più fine comprensione di fenomeni e dinamiche microscopiche della
materia, offrendo a tutti gli effeti un nuovo punto di vista complementare (e
per molti versi peculiare) nel panorama delle tecniche sperimentali fino ad
allora presenti (INS, Inelastic Neutron Scattering, su tutte).
A partire dal 2009, inoltre, la ricerca del gruppo si è concentrata attorno ai
metalli di transizione 3d, con particolare enfasi per quanto riguarda i cuprati,
materiali estremamente singolari caratterizzati da una struttura quasi bidi-
mensionale (relativamente ai piani CuO2 in essi presenti), rimarchevoli per
essere superconduttori ad alta temperatura; più di ogni altra cosa, però, an-
cora enigmatici (la vera natura della superconduttività ad alte temperature
non trova a tutt’oggi una spiegazione convincente) ed adatti ad essere stu-
diati attraverso la RIXS.
In questo ambito si inserisce la mia tesi - incomincerò quindi da una breve
introduzione riguardo i cuprati (approfondendone due in particolare, LCO e
NBCO, e spendendo prima qualche parola sui superconduttori in generale e
sui sistemi fortemente correlati), soffermandomi quindi sull’importanza dei
fononi all’interno del meccanismo che si pensa regoli la superconduttività ad
alte temperature, per poi dedicare un intero capitolo al RIXS, approfonden-
done aspetti teorici e tecnici quanto basta ed aggiungendo considerazioni di
stampo prettamente pratico.
Il terzo capitolo rappresenta il corpo principale del mio lavoro: interamente
dedicato alle dinamiche fononiche caratterizzabili attraverso il RIXS, ne si af-
fronta prima la teoria (seguendo le tracce già date dalla letteratura), passando
poi alla simulazione di quelli che, date le dovute premesse e approsimazioni,
dovrebbero essere gli spettri RIXS associabili alle diverse eccitazioni fonon-
iche presenti nei materiali.
Infine, l’ultimo capitolo è un’analisi dei risultati ottenuti durante l’esperimento
condotto a ESRF sulla beamline ID32. Perticolare enfasi è posta sul metodo
con cui le analisi sono condotte - aspetto preponderante nell’ambito del RIXS
più di quanto lo sia in altre tecniche sperimentali.
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I have worked on this thesis within the group of professor Giacomo Ghir-
inghelli, at the physics department of Politecnico di Milano, between the au-
tumn of 2018 and the spring of 2019.
The group has a long and consolidated tradition in synchrotron based spec-
troscopy, aimed at the study of magnetic and electronic properties of the ma-
terials. In the last twenty years, indeed, the activity of the group has been
focused on X-rays emission spectroscopy, and in particular on the experi-
mental technique denominated RIXS - Resonant Inelastic X-rays Scattering.
The data obtained from it, possibly complemented with the ones obtained
from other techniques (XAS, XLD, XMCD), allow us to study, and thus to
characterize in energy and momentum, the material’s excitations - which are
direct and unequivocal manifestations of the atomic and electronic structure.
Participating in both the technical and theoretical development of RIXS, the
intensive work of the group have, since the beginning of the new millen-
nium, paved the way to a new and more sharp understanding of matter’s
microscopic phenomena and dynamics, providing a new and complemen-
tary point of view (endued with many peculiarities) in the landscape of the
already present experimental techniques (INS, Inelastic Neutron Scattering,
most notably).
Since 2009, more in particular, the group research has been focused on 3d
transition-metal compounds, with greater emphasis on cuprates, exception-
ally unique materials characterized by a quasi bidimensional structure (given
by CuO2 layers), notable for being high temperature superconductors; and
most importantly, puzzling (the true nature of high temperature supercon-
ductivity is nowadays still missing a coherent explanation) and suitable to
be investigated through RIXS.
My thesis can be placed in this contest - I will thus begin from a brief in-
troduction on cuprates (paying particular attention to LCO and NBCO, and
mentioning the most important characteristic of superconductors and strongly
correlated systems), spending some words on the importance of phonons in
the mechanism which is thought to be at the basis of high temperature super-
conductivity, to then dedicate a whole Chapter (the second one) to the RIXS
technique, with a focus on theoretical and technical aspects, and incorporat-
ing some practical consideration.
The third Chapter is the main body of the thesis: it is devoted to the phononic
dynamics which can be characterized through a RIXS investigation. In first
place, the theory is shown (following the tracks already given by the litera-
ture), and then RIXS spectra are simulated, accounting for the premises and
for the assumptions - given the phononic excitations in the sample, those
spectra are what we expect as a result from a RIXS experiment.
Finally, the last chapter is an analysis of the results obtained during the ex-
periment that we carried out at ESRF on the beamline ID32. Particular em-
phasis is given on the analysis method - this is a predominant aspect in RIXS
technique, more than in othes experimental techniques.
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Chapter 1

Cuprates

1.1 Summary

Cuprates superconductors have been discovered in late 1986 [1] (see Figure
1.1 for an historical prospective), when the improvements in samples qual-
ity and the development and refinement of sophisticated experimental tech-
niques made their discovery possible. Their high critical temperature - which
we define as the maximum temperature at which we observe the emergence
of the superconductive state - has immediately raised a great interest in the
scientific community, due to the possible revolutionary technological appli-
cations.
With RIXS, we have the possibility to investigate many interesting properties
of the solids (as we will see more in detail in the next Chapter). In partic-
ular, adopting soft X-rays, we are able to work with the K edge of O and
L2,3 absorption peaks of 3d transition-metal compounds, which are in gen-
eral very interesting materials with many technological applications – and
for what concerns transition metals compounds, among the most interesting
ones we found cuprates. They are in fact endued with an extremely rich
physics which basically relies on their complex electronic structure – and
this structure is still to be completely understood. Given this premises, it
is quite immediate to understand why the research of the group in which
i have worked on this thesis has been focused on cuprates for the last ten
years.
In approaching this brief discussion of the cuprates, I add nothing new to
what has been done, for example, in [2] or [3], following the track here given
in order to achieve a clear presentation.

1.2 High Tc Superconductors

Superconductors are systems which, under a certain critical temperature,
undergo a phase transition to the superconducting state, characterized by
an identically null resistance and a magnetic field repellent condition - al-
though this is true only in first approximation: in principle we should dis-
tinguish type I and type II superconductors, and admit that phenomena like
Abrikosov vortex (magnetic fluxes passing through the material) are possible
for the latter category. Still, in this section we will have only an introductory
discussion; for more details, see [4].
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High Temperature Superconductivity, more specifically, is a definition that
has been coined in 1986, when Bednorz and Muller discovered that a certain
class of material - cuprates, indeed - undergo a superconducting phase tran-
sition at a temperature which was forbidden by the BCS theory (BCS stand
for Barter-Cooper-Schriffer, author of the theory which explain the canonical
superconductivity [4]). The BCS theory, in fact, relies on a well understood
mechanism of phonon-mediated coupling of the electrons, which lead to a
breakdown of the resistance below Tc - but once we try to apply that mecha-
nism to high temperature superconductors, nor the superconductive state or
the unexpected high Tc seems to find a justification.
For example, while in a conventional (always in the sense that can be ex-
plained through the BCS theory) superconductor the superconduncting elec-
trons wavefunctions have the same symmetry of the underlying lattice, in
high temperature superconductors cuprates they have a so called "d-wave"
symmetry, which implies that the wavefunctions changes sign upon rota-
tions of 90◦, arising what is called an "unconventional pairing" [5]. This "un-
conventional pairing" leads to thermodynamic properties which are differ-
ent from those of conventional superconductors (for more details, see [6]).
Even if this is now well understood, the fact that in cuprates, superconduc-
tors endued with unconventional symmetries (which were thought to be ex-
tremely fragile, in the sense that even small concentrations of impurities were
enough to break the superconductive state) the superconductivity is resistant
to many disorder manifestations is a puzzle which has still to be solved.
As one could expect, this generated a great enthusiasm, and many attempts
were made in order to understand the mechanism behind high tempera-
ture superconductivity. After many years, even if many progress have been
made, a final and coherent explanation is still missing. Moreover, in the last
months, made a great impact the discovery of a material which, although at
enormous pressure conditions, exhibit a superconductive state transition at a
nearly room temperature [7] - but the mechanism, in this case, is well under-
stood: it is in fact a conventional BCS superconductor, in which the phonons
are endued with an exceptional energy.
Anyway, cuprates clearly represented a breakthrough in the physics of su-
perconductivity, with a maximum Tc (at atmospheric pressure condition) of
about 138 K.

In order to discover the mechanism behind high temperature supercon-
ductors, eventually, it is also crucial to underline the importance of an un-
derstanding of the unconventional physics characterizing the normal state
from which the superconducting state emerges, where correlations between
spin, orbital and charge degrees of freedom lead to the emergence of ordering
phenomena and exotic phases (see Figure 1.6 and 1.10).
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FIGURE 1.1: Historical development of superconducting mate-
rials. Figure from [3].

1.3 Correlated Electron Systems

Cuprates superconductors are defined as strongly correlated electron systems,
because of the non negligible electron-electron interaction which is found in
the valence state, where usually the single particle description issued from
the Bloch state works well. Cuprates belongs in fact to that class of materials
for which one-electron theories fail to describe the observed properties.
When we write one-electron theories, we are referring to theories in which
we only consider one electron per time - or, more technically, the Hamilto-
nian is considered to be equal for every electron, decoupling in this way the
wave function of each one through the use of a mean-field approach to ac-
count for their mutual interactions. When this approach fails to describe the
experimental properties of the material, is simply because in those materials
the interactions between the electrons are too complex to be accurately de-
scribed through a mean-field approach.
When the single electron approach fails, we have that materials which are
theoretically predicted as endued with a metallic band structure (in the frame-
work of one-electron theories calculations) could behave, for example, as in-
sulators with very large band gaps, at least at room temperature; and this is
the case of ceramic high temperature superconductors, based on CuO2 layers
and exhibiting a poorly conducting antiferromagnetic phase at room temper-
ature and a superconductive phase below a critical temperature Tc.
In principle, many-body calculations are needed. Those approaches are in
general very complicated, and rely on very technical mathematical models
(such as, for example, the DFT - density functional theory, see [8]) .
An option is to develop a model Hamiltonian which assign a certain coupling
between the electrons only for a specific triggers: for example, the Hubbard
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model [9], developed in 1963 and probably the simplest of the many body
calculations, assign a certain Coulomb repulsion U only when two electrons
occupy the same site in the solid. This means to consider a Hamiltonian of
the form (exploiting the second quantization formalism):

H = −t ∑
<i,j>,σ

c+i,σcj,σ + U
N

∑
i=1

ni (1.1)

The term t is here intended to be the overlapping term (in a tight banding
approximation sense) between the wave functions of two electrons localized
over nearby atoms (where we suppose, for non neighbouring atoms, t ' 0).
There is thus a conflict between two opposite tendencies of the electron - the
localization over a single atom and the propagation through the material.
The decisive ratio is here U

t - but again: U is a term which single electron
calculations do not account for.
Still, even if the Hubbard model is an improvement from single-electron
models, it fails in many complex systems descriptions, and more detailed
approaches are needed. For example, we could account for the spin part of
the wave functions - this is what the Mott model does. Even more, we could
refine our picture taking into account also the role of O atoms in our conduc-
tion mechanism - and this is done by the Zaanen-Sawatzky-Allen scheme.
An insulating correlated system can be, depending on the magnitude of those
different contributions to its insulating character, a Mott-Hubbard insulator
or a charge-transfer insulator.
A general discussion of the electronic structure of transition-metal oxides,
evidently correlated electron systems, is found in [10], and is behind the pur-
poses of this thesis.
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FIGURE 1.2: Schematic diagram for the Zaanen, Sawatzky and
Allen theory framework. W is the bandwidth of the occupied
oxygen 2p states, ∆ is the energy difference between the 2p oxy-
gen band and the lowest unoccupied metal orbital and U′ is the
energy difference between the lowest unoccupiedmetal orbital
and the highest occupied metal orbital. Depending on the rela-
tive magnitude of those three parameter, our material will show
different properties (for what concerns the electric conduction).
A great number of perovskite oxide compunds have been ex-

plained on the basis of such a model. Figure from [32].

1.4 Insulating Layered Cuprates

The most evident peculiarity of cuprates is their electronic structure. Differ-
ently from most of the materials composed by transition metals, where the
conduction takes place in bands which are originated (again, in the sense of
a tight-bending calculation approach) from the 3d orbitals, in cuprates the
conduction band has non null contributions from both the 3d orbitals of cop-
per and the 2p orbital of oxygen; and this is a distinctive (and non common)
result arising from the very narrow energy difference between those orbitals.
As we will see later, the CuO2 plane is at the core of this thesis.

In the CuO2 plane the copper is in a Cu2+ ionization state, and thus with
an electronic configuration of 3d9, where nine of the ten 3d orbitals are filled.
Due to the oxygen ligands surrounding the copper, both in plane and out
of plane (where we can have octahedral, pyramidal or squared coordination
polyhedra), the 3d orbitals are non degenerate in energy.

The geometrical coordination of the ligands lower the spherical symme-
try of the ion and lifts degeneracy in energetic levels endued with the same
quantum numbers. In particular, considering an octahedral geometry of the
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FIGURE 1.3: (a) Basic structural unit of cuprates, where a ' 3.8
A. (b) The correspondent reciprocal space. M is the antiferro-
magnetic scattering vector. The periodicity of the spin lattice
is in fact double respect to the one of the non magnetic lattice,
and thus the magnetic Brillouin zone will be half the size of the
canonical one. Moreover, the directions of its basis are rotated
of 45 degrees compared to the basis of the real lattice, and this
is why the point M is found along the diagonal direction. See

Figure 2.5. Figure from [3].

FIGURE 1.4: Some of the possible coordination polyhedra in
cuprates. In (a) we have the CuO2 plane. In (b), (c), (d) we
have different geometrical coordination of the ligands. (b) is the
case of NBCO, while (c) is the effective coordination geometry
of LCO (which are the interesting materials for this thesis, see

next Sections). Figure from [11].

ligands surrounding oxygen atoms, we find, assuming the correspondent
crystal field in a perturbation theory approach, a splitting of the five 3d or-
bitals in two groups, t2g and eg, with respect to their symmetry.

The t2g orbitals are obviously the lowest in energy, since the electron spa-
tial distribution is such to reduce the Coulomb repulsion with ligand’s crystal
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FIGURE 1.5: Cu d orbitals splitting in energy due to the lower
symmetry of the system, using a crystal field approach. As
it is intuitive, electronic configurations which minimize the
Coulomb repulsion between ligands and copper electrons are

preferred. Figure from [3].

field. For a specular reason, eg orbitals hold the highest energy (see Figure
1.5). Moreover, since in cuprates the crystalline field is not cubic, we found
that also the different t2g and eg orbitals are not degenerated in energy with
respect to each other.
A standard one-electron theory would predict a metallic behaviour of the
material, since we have a not completely filled outer shell of the ion. But
this does not happen - layered cuprates are in fact insulators at ambient tem-
perature - and we already knows that it is because cuprates are intrinsically
strong correlated electron systems. The reason is that the addition of another
electron in the t2g orbital require a non negligible amount of extra energy,
which, for example, in the Hubbard model is given by U (1.1), and is not
taken in account in one electron calculations.
Speaking about magnetic properties, we have that the insulating layered
compounds (which are the parent compounds of high Tc superconductors,
in the sense that they become potential superconductors only once doped,
as we will see later) have a spin 1

2 for each Cu2+ in the CuO2 plane. Those
spins follow an antiferromagnetic ordering, with a super-exchange mecha-
nism [12](and thus an exchange interaction mediated by oxygen) that can
be well described by a bi-dimensional Heisenberg model. They are oriented
parallel to the CuO2 plane (see, for example, [11], and Figure 2.5 for a more
general description). The Néel ordering temperature is of about 300 K (which
can be considered high, and implies a strong super-exchange mediated cou-
pling, of the order of 140 meV).
As we have mentioned before, when an insulating parent compound (namely
an insulating layered cuprate) is doped with extra hoels or electron in the
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CuO2 plane (by modification of the chemical composition outside the planes),
we have the emergence of the superconductive state (naturally under the cor-
respondent critical temperature).
This happen only for a certain range of doping, and in this situation we have
that the long-range spin order, namely the antiferromagnetic order, is de-
stroyed (but overall spin fluctuations are still found, see [11]). As we can see
in Figure 1.6, the general phase diagram of cuprates as a function of doping
and temperature is endued with a lot of complexity - in general we have a
lot things going on, depending on the doping: the pseudo-gap phase and
the antiferromagnetic order are just the most prominent phenomena (for a
review of the pseudo-gap state, see [13]). In this thesis we will only briefly
see, as significant cases and between others, charge density waves and spin
density waves (see [14]).

FIGURE 1.6: Phase diagram for cuprates, as a function of dop-
ing and temperature. Notably, antiferromagnetic and super-
conductive phase are shown. As is evident, those systems are
sensitive to the sign (i.e. hole or electrons) of the doping. A
more exhaustive phase diagram can be found in 1.10. Figure

from [15].

In cuprates, we have an intercalation of the CuO2 plane with other lay-
ers, which are called charge reservoir layers. The number of electrons available
to be put in the electronic states of the CuO2 (which is also defined as the
"effective doping") is imposed, through chemistry, by those layers, which
also can isolate or connect each layer with the others. The manipulation of
those charge reservoir layer can be accomplished by partial substitution of
one atom of higher or lower valence (see Figure 1.7) or by adding oxygen.
We define as the optimal doping as the doping which guarantee the emer-
gence of the superconductive state at the highest temperature.
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FIGURE 1.7: Schematic representation of crystal structure and
charge reservoir layers for two cuprates. In this case the inter-
stitial oxygen variation, which also set the overall doping, is

denoted by δ. Figure from [3].

1.4.1 LCO and NBCO

LCO stands for La2CuO4. We investigated its properties - paying particular
attention to his phononic behaviour, as we will see in Chapter 4 - during our
RIXS experiment at the ID32 beam line at ESRF.
It is characterized by an octahedral geometrical organization of the ligands
(see Figure 1.3). The parent compound of this family, undoped La2CuO4, is
a Mott insulator that orders antiferromagnetically, with a Néel temperature
of approximately 325 K. This antiferromagnetic order vanish for a doping of
about x ' 0.02. LCO is part of the so called "214 cuprates" family, which are
characterized by a composition La2−x−y(Sr,Ba)x(Nd,Eu)yCuO4.
NBCO stands for NdBa2Cu3O7. We investigated NBCO through RIXS dur-
ing our experiment at the Diamond Light Source - once again, we focused
mainly on the phononic behaviour.
Differently from LCO, it belongs to the "123 cuprates" family, since its compo-
sition and crystal structure is the one of the RBCO materials (where R stands
for a Rare Earth).

It is worth to spend a few words about the interesting and peculiar order-
ing phenomena that we can find in those families, following the track given
in [16]. A specific phase diagram, more detailed that the one shown in Figure
1.6, that also account for those ordering phenomena, is found in Figure 1.10.
In the 214 cuprates family, we can think of each doping hole as to a mag-
netic impurity in the two dimensional antiferromagnetically ordered lattice.
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FIGURE 1.8: LCO structure, both in and out the CuO2 plane.
Figure from [3].

FIGURE 1.9: Rapresentation of half filled stripes in CuO2 plane,
for the minimum allowed distance between the stripes. The
reciprocal lattice reflection points generated by charge stripes
ordering are indicated, with distinction between the ones asso-
ciated to the spin order (detectable by INS - a technique that, as
we will see in Chapter 2, investigate the Brillouin zone around
the [π, π] point) and the ones associated to charge orders (to

which RIXS is sensible). Figure from [16]
.

Considering both the energy needed to break the antiferromagnetic order be-
tween neighbouring Cu2+ (given by a super-exchange mechanism) and the
Coulomb repulsion between the doping holes, the most energetically conve-
nient configuration for those extra charges is a stripes-like one, as shown in
Figure 1.9 (see [17]). The filling of those stripes (defined as the number of
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added hole per Cu site along each one) is found to minimize the energy for
a value of 0.5 - it means that along the stripes we have half hole per Cu ion.
Moreover, upon increasing doping, it is more convenient for the system to
increase the density of stripes rather than their filling, until the stripes reach
a distance between each other of four lattice parameters. This new order will
imply new elastic reflection points in the Brillouin zone, in addition to the
canonical Bragg ones. Inelastic Neutron Scattering (INS) and Resonant In-
elastic X-Rays Scattering (RIXS) experiments probe different points - INS is
sensitive to the spin reordering with respect to the antiferromagnetic lattice
(see Chapter 2) and instead of finding the typical in plane reflection associ-
ated to antiferromagnetic order at (π, π), we will find incommensurate peaks
at a distance δ from (π, π); while RIXS is sensitive to charge modulations,
and will sense a peak at a wavevector that is twice the one of INS experi-
ments (as it is clearly seen in Figure 1.9). Eventually, we have that δ = 1

2d ,
which also allows us (δ can be thought of as a doping linear dependent pa-
rameter: δ(p) = p) to track down the position of those peaks as a function
of the doping (see [18] for more details) - when peaks are not found in the
expected positions, fluctuating stripes are seen as an explanation.
Still, even if the phenomenology of the stripes in 241 cuprates is well known,
their competition with respect to the high temperature superconductivity
(made evident by the "anomaly" around doping p = 1

8 found in the diagram
phase - see Figure 1.10 - which associates the characteristic d = 4 parameter,
as we have just said) is puzzling.
In 123 cuprates family, instead, working in underdoped conditions (which is
to say, with a smaller doping than the optimal one), we observe a strong en-
hancement of the elastic signal around incommensurate wave vectors ([0.31,0,L],
intended as the total transferred momentum). No elastic peak is found through
INS experiment (as in the case of 214 family), and thus we can deduce that
no magnetic ordering is present - charge stripes are no more an option. Still,
nothing prevent us from admitting a purely charge ordering to which RIXS
in sensible, but INS is not. More in particular, we refer to this charge order
which generates such elastic signal at points in the Brillouin zone which are
incommensurable to the real lattice as to charge density waves (CDW) phe-
nomena (for more details, see [19]).

1.5 Phonons in Cuprates

We will now have a brief introduction about the importance of phonons dy-
namic in cuprates, since phonons themselves will be the main subject of this
thesis.

The main physical phenomenon behind superconductivity is pairing, which
can we define as the process responsible for the creation of Cooper pairs.
Roughly speaking, a Coopers pair is a state of a system composed by two
electron, bounded together at low temperature through the action of a poten-
tial - which will be in general considered and defined as the pairing mecha-
nism. The superconductive state emerges when we have an adequate density
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FIGURE 1.10: Complete phase diagram, in which we can also
see the region characterized by the presence of charge density
waves (CDW) and spin density waves (SPW). FL stands for
Fermi Liquid, d-SC for d-wave superconductivity. The temper-
atures marked as onset fix the temperature at which precursor

orders or fluctuations become apparent. Figure from [6]

of Cooper pairs (the literature here is abundant; see, for example, [20])
The conventional superconductivity is mediated by phonons (for an intuitive
understanding, see Figure 1.11), in the sense that the potential responsible
for the pairing mechanism is intrinsically associated to the lattice dynamic
- the critical temperature itself scales with the strength of electron-phonon
coupling, and in most cases it is possible to find particular modes which are
strongly coupled to electrons. Those modes are identified by the fact that
are experimentally seen (eg, through INS experiments) as broader and softer
than predicted by lattice dynamic models. This is all well explained by the
BCS theory.
But when we start to consider high temperature superconductivity, the situ-
ation is more complex. The already mentioned very nature of the "d-wave"
pairs wavefunctions suggest the existence of a pairing mechanism induced
by a spin-based interaction, and not by phonons as in canonical supercon-
ductivity. Relatively recent accumulations of experimental results (from Ra-
man spectroscopy, INS and penetration depth measurement, see [21]), any-
way, suggest that the electron-phonon interaction still play an important role.
Nowadays, the most plausible hypothesis is that both a spin related interac-
tion and a more canonical electron-phonon interaction contribute to the pair-
ing mechanism - but the the problem is still very open and puzzling.
But if we want to find evidence of strong electron-phonon coupling in the
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high temperature superconductors, we immediately face many problems:
due to the extremely large unitary cell, the cuprates have a large number
of phononic modes. Furthermore the standard theory can not identify the
soft acoustic ones, and their identification must be done by "blind search".
The large single crystal necessary to map the dispersion relations through
INS, moreover, became available only years after the first discovery of high
temperature superconductivity.
In this context we can find the reason of this thesis, and more in general of
the electron-phonon interaction investigation through RIXS (as we will see in
Chapters 2 and 3). Through RIXS we have in fact a way to probe the strength
of the electron-phonon coupling. Of course we will need to adopt more or
less drastic approximations, and for the moment we can just estimate the
overall magnitude of the interaction and its general shape as a function of the
phonons moment (which is already a great result) - but RIXS is theoretically
endued with all the potential to deeply investigate this coupling: its mag-
nitude, its momentum dependence, its peculiarities toward each phononic
mode; but we will deeply investigate this topic along all the thesis.

FIGURE 1.11: A naive picture of the pairing mechanism me-
diated by phonons. The interactions between electrons is pro-
voked by lattice oscillations, and is thus given by phonons’ dy-
namic. It is also remarkable the fact that the electrons involved
in the pairing are endued with opposite momenta and opposite
spin - more technically, they are found in a singlet state. The
Cooper pairs can thus be considered bosons (they have zero
spin), and at sufficiently low temperature (below the critical
temperature) we can found an adequate numbers of them in
the same ground state (since they are bosons, they follow the
Bose-Einstein distribution, not the Fermi one): the macroscopic

effect is the emergence of the superconductive state.
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Chapter 2

Resonant Inelastic X-Rays
Scattering

2.1 A Brief Overview

In first place, it is useful to have a quick recap of RIXS technique: how it
is implemented, which are its features, which are its limitations and which
are the fundamental excitations accessible through it. In this exposure, i will
basically add nothing new to what has been done , for example, in [22], [11]
and [2].
After a first, more qualitative approach, a more quantitative study is needed:
in first place for completeness, and in second place because the results will
be the starting point when we will begin to focus our attention on phonons,
in Chapter 3. In our tractation of the subject, we will follow the track given
by [22].

2.1.1 Summary

RIXS (Resonant inelastic x-rays scattering) is a photon in-photon out, synchrotron-
based technique, which aims to probe elementary excitations inside the mat-
ter.
Basically, we have a photon flux which hits the sample. The light-matter in-
teraction causes the photon to be scattered in an arbitrary direction, with a
certain change in its energy, momentum and polarization state. This implies
that a certain energy, momentum and angular momentum (which is related
to the polarization state of the photon) have been transferred to the sample,
which is thus left in an excited state. Carefully comparing the initial and fi-
nal state of the photons (thus experimentally characterizing their energy, mo-
mentum and polarization), and in particular studying the inelastic features
of the RIXS spectra, one is theoretically able to deduce, as we will show later,
the elementary excitations which are left in the sample as a consequence the
scattering event - this means that we can characterize, by the means of the
conservation laws, their energy and momentum dependency.
If we want to write some preliminary, simple equation, we have:

h̄ωi = h̄ωo + Eexc (2.1)
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h̄ki = h̄ko + h̄qexc (2.2)

Moreover, RIXS is a resonant technique: this means that the energy of
the phonon is tuned to a resonant energy of the system. In the specific case,
an electron from an atomic core level is promoted into an excited (and thus
empty) state in the proximity of the Fermi level. This level can be thought
of as an atomic level (in a single ion approach) or a conduction band state (a
generally more realistic representation - but still the goodness of the single-
ion approximation depends on the excitation that we are dealing with). After
a usually short time (in the order of the fs), the hole left in the core level is
filled by another (or the same) electron. This produces the outgoing photon.
A resonant process, between other advantages that we will see later, enhance
of many order of magnitude the overall cross-section of the process (as every
second order process, RIXS scattering is a relatively unlikely event, and the
technique itself results to be photon-hungry, which means that we need an
high flux of photons in order to achieve a significant statistic for our results).
As suggested in [22], good overviews of RIXS technique are [23] and [24].

FIGURE 2.1: A schematic representation of the direct RIXS scat-
tering process (see section "Theory of Electron Photon Coupling").
An indirect RIXS process would imply a scattering event (in
which an excitation is generated) while the system is found in

the intermediate state. Figure from [11].

2.1.2 RIXS characteristics

The basic idea of RIXS is to measure the energy and momentum given to
the sample by the scattering event through a comparison between the en-
ergy and momentum of the ingoing and outgoing photons. We have many
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features which distinguish RIXS from other widely used experimental tech-
niques, like INS (Inhelastic Neutron Scattering) or ARPES (Angle Resolved
Photo Emission Spectroscopy).
In first place, as we have already said, we are able to measure the energy and
momentum dependence of excitations over a wide portion of the first Bril-
louin zone, allowing us to study the dispersion of those excitations (this is,
obviously, the most important and striking feature - in the field of elemen-
tary excitations, RIXS, togheter with INS, is the main experimental technique
which allow such a systematic investigation).
We can also measure the polarization of the incident and outgoing radiation
[25], which allows us to investigate the angular momentum dependence of
the excitations (the polarization of the radiation, as we will see later, enters
the cross-section calculations in a very "clean" and well understood manner,
see [11]).
We are also aware, once we set the energy of the incident photon and thus
the resonant energy of the system (resonances energies are called "edges"), of
which electronic transition we are exciting (and thus the atom at which the
excited core electron belongs) - and this is often called chemical sensitivity.
Another very important feature is related to the penetration length of the
photon, which is, in general, an universal curve not dependent on the sam-
ple composition but only on the photon energy. In the soft X-ray regime, the
penetration length is of the orders of micrometers. This is enough to reach
and thus study the bulk of the material, and not only the surface.
Eventually, we also have an high flux of photons assured by the synchrotron
sources, and thus we are actually allowed to use smaller sample than, for ex-
ample, in inelastic neutron scattering.

But, of course, adopting RIXS also mean to have limitations. The main two
problems that we have to face in working with RIXS are related to energy
resolution and the time required to have a good measurement.
The first one is intimately related to the difference between the photon en-
ergy and the energy of the excitations in the sample, which force us to work
at a very high resolving power. The state of the art resolution is nowadays of
35 meV, and it is the result of a continuous improvement over the last twenty
years (See Figure 2.2).

The time required to have a good measurement, instead, must be large in
order to have a good count of photon collected - we have always to remember
that inelastic scattering is a second order process, and thus its cross-section,
even at resonance, is intrinsically small.

Considering very briefly other techniques, a very close relative of RIXS is
IXS (inelastic X-rays scattering): the difference is that in IXS we exploit a
non-resonant process - and this means that IXS rquire a generally high time
of acquisition in order to obtain results endued with a sufficient statistic.
XAS (X-ray absorption spectroscopy) can be thought as a part of the RIXS
process: initially, in fact, we have to check that the photon energy is the one
which maximize the ratio of absorbed photons, and thus is the exact resonant
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FIGURE 2.2: Progress in RIXS resolution at the Cu L edge ('931
eV). Figure by G. Ghiringhelli and L. Braicovich, from [22].

energy.
Raman light scattering, with respect to RIXS, is confined at (almost) zero mo-
mentum transfer, due to the low energy of the photons (in fact, Raman scat-
tering only probe the center of the Brillouin zone).
INS (inelastic neutron scattering), that we have already mentioned, is a tech-
nique which relies on the scattering of neutron; RIXS is more efficient in term
of cross-section (it makes no sense to talk about resonances in the INS case),
and more versatile to probe magnetic excitations, since photons carry a uni-
tary spin while neutrons carry a 1

2 spin. Anyway, RIXS and INS can be con-
sidered as complementary techniques - they both probe elementary excita-
tions and they both have advantages and disadvantages respect each other.
For a long time, anyway, INS has been the only experimental technique able
to probe the phonons ad magnons dispersion. Even now, it is the only option
for those material in which X-Rays investigations do not work properly.
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2.1.3 Acessible Excitations

Another very important matter is which excitations we are allowed to inves-
tigate through RIXS.
The first thing to notice is that we will always find an elastic component of
our spectra, which is to say that some photon will be elastically scattered.
From the very well known theory of elastic scattering in X-rays (see, for ex-
ample, [26]) we know that elastic reflection of X-rays is obtained for fixed
angles (set by the lattice parameters and the photon energy); we will refer to
them as to the Bragg reflections. Theoretically, elastic scattering is allowed
only for fixed angles (see section 2.3), but non ideal structures (i.e. defects)
in the materials also allow the existence of an elastic component away from
the exact Bragg reflection conditions. Many times the elastic component of
the RIXS spectra obscures the low energy excitations components - it is one
of the practical problems, still to be resolved (hopefully with a resolution im-
provement), in the studying of low energy excitations (i.e. phonons) through
RIXS (see Chapter 3 and Chapter 4).

Now, the main excitations accessible to RIXS are:

Charge Transfer Excitations. In an insulator, or better in a Mott insulator
(and thus in a strongly correlated system) electrons are very localized, block-
ing each other way. A charge excitation is a transfer of an electron from a
lattice point in which it was localized (i.e. from an atom) to another one -
more in particular, from the oxygen atom to the metallic ion, which is even-
tually found with less charge than in the ground state. The energy required
is the one setted by the Coulomb repulsion between electrons [27], typically
higher than 2 eV.

Orbital Excitations. The excited electron, when it is promoted in first place
an when it decays at the end of the RIXS process in second place, can occupy
different orbitals of the atom. Thus, the orbital configuration can be view as
an effective degree of freedom. This orbital degree of freedom affects many
physical properties of the solid: if the initial and the final orbital of the elec-
tron happen to not be the same, we have that the emitted photon will be less
energetic than the absorbed one, and the difference will be the same amount
of energy of which the two orbitals differs of. Orbital excitations are also
called (at least in cuprates, where the interested orbitals are the d orbitals)
dd excitations. These excitations are found at about 1 eV energy loss. See, for
example, [11].

Magnetic Excitations. The magnetic moments of ions interact with each
other, resulting in a magnetic order (antiferromagnetic, in the case of LCO)
which break the most generic symmetry of the material. In cuprates, the spin
interactions are mainly super-exchange interactions. The result of a mag-
netic order is also the emergence of collective perturbations (magnons and
spinons) - in the case of magnetic order, we can think at its perturbations
as to be endued with a wave-like shape, and thus assume that a connection
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exist between their momentum and their energy. Through RIXS we can in-
vestigate the dispersion relations of this excitations. The magnetic moments
interactions (which are, naturally, associated to each spin) determine the low
temperature magnetic properties. Considering a single-ion model, we can
think of a pure magnetic excitation as provoked by an electron that, once de-
caying from an excited intermediate state, return to his original orbital, but
with its spin flipped. This is the perturbation of the equilibrium which origi-
nate the magnons (see [12]). They are found, in cuprates, at around 0.4 eV. It
is notable that their periodicity is dictated by the magnetic reciprocal space
(see Chapter 1), which differs from the conventional Brillouin zone.

Phonons. Phonons are the main object of this thesis. They are usually found
at very low energies, less than 100 meV. There will be a more detailed discus-
sion in the next chapter.

FIGURE 2.3: RIXS process at the Cu L3 resonant edge. In this
particular case, we have the excitation of a magnon: the final
state is equivalent to the initial one, but with flipped spin. We
are implicitly accepting a single ion approximation - in general
we should suppose the electron to be promoted in an empty

band, and not in a single ion orbital. Figure from [28].
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FIGURE 2.4: Schematic representation of a canonical RIXS spec-
trum for cuprates. Figure from [22].

2.2 For a Theory of RIXS: Electron-Phonon Cou-
pling

2.2.1 Summary

What we are going to do in this chapter is to obtain a quantitative cross-
section for the RIXS event - technically, an excitation of a core electron into a
valence state, which brings the whole system in a excited intermediate state,
and the successive filling of the core hole by a valence electron. We will con-
sider, coherently with our purpose to describe a RIXS process at X-rays en-
ergy (where the lifetime of the intermediate is very short) only direct RIXS
scattering events: which is to say that, while the system is in the intermedi-
ate state, no scattering events occur - we do not expect to have transitions to
and from different intermediate states.
To consider a direct RIXS scattering, in fact, means considering the transition
of the system (usually a solid, in some case the molecule or a single atom)
from an initial state to an intermediate state, and then, from that exact in-
termediate state, a transition to the final state. Technically, the phonon RIXS
is an indirect RIXS process, since the excitation of the phonon happens in
the intermediate state, and this imply that the intermediate state itself will
not be the same before and after the phonon creation. But, as it is noticed
in [22], the phonon process is anyway well described by an elastic process,
since the phonons only slightly modify the electronic intermediate state. In
other words, we consider that the electronic state does not evolve during the
intermediate state despite the creation of one or more electrons.
In the order, we will have a brief look at the basis of electron-photon coupling
(in the low energy expansion of the QED) to obtain a Hamiltonian which we
will later insert in the Fermi golden rule equation for second order transi-
tions, and as result we will have the Kramers-Heisenberg equations. We will
eventually use some approximation to obtain a more compact form.
This section follows strictly the discussion in [22].
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2.2.2 Electron-Photon Coupling

The first order expansion for the QED Hamiltonian is:

H =
1

2m
(p + eA)2 +

eh
2m

σ · B− eφ (2.3)

where φ and A are the electric and vector potential of the electromagnetic
field associated to the photon and σ is a vector whose components are the
Pauli matrices. The second order expansion results to be (of course, the first
order expansion will be included in this):

H =
(p + eA)2

2m
+

eh
2m

σB− eφ+
e2h

(2mc)2 σE×A+
1
2

eh2ρ

(2mc)2ε0
+

eh
(2mc)2 σ · (E×p−p×E)

(2.4)
where term proportional to ρ is called the Darwin term, and the last term

is the relativistic spin-orbit coupling.
We could also exploit the third order expansion, but no new significant term
would appear (for all the details, always rely on [22]).
We have to consider an initial and final state for the scattering process, and
we will assume (decoupling the photon and the material wave functions):

|G〉 = |g, kε〉, |F〉 = | f , k′ε′〉 (2.5)

where k and ε are the wave vector and the polarization vector of the pho-
ton. By splitting the total Hamiltonian in H = Ho + H′, where the whole
electron-photon interaction is contained in H′ (which is a part of (2.4)), |G〉
and |F〉 are eigenstates of Ho (a term affecting only the photon or only the
electron state) with energies Eg + hωk and E f + hωk.
The photons appears in the QED Hamiltonian through the second quantiza-
tion formalism. Expanding A(r), which is found in (2.4):

A(r) = ∑
k,ε

√
h

2Vε0ωk
(εak,εeikr + ε∗a†

k,εeikr) (2.6)

where we used the usual formalism of second quantization, with creation
and annihilation operators.
Now, considering the way in which creation and annihilation operators work
on the photon eigenstates, in order to obtain the transition ratio from the
ground state to a final state, considering the possibility to have a transition
through an intermediate state |n〉, we have to exploit the Fermi golden for
second order transitions ((2.4) can be treated as a perturbation to H0 since
electron-photon interactions are controlled, in terms of intensity, by the fine
structure costant):

w =
2π

h ∑
f
[〈F|H′|G〉+ ∑

n

〈G|H′|n〉〈n|H′|F〉
Eg − En

]2δ(E f − Eg) (2.7)
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|n〉 is the intermediate state with energy En (we will indicate with |n〉 both
the total state and the electron state alone, but it will be clear by the context).
Usually, the first order amplitude dominates the second order one, but when
the energy of the incoming photon is in resonance with a certain transition
(Eg ' En) we have a strong enhancement of the second order amplitude -
this is the key of RIXS, and this is the physical meaning of the resonance.

2.2.3 Kramer-Heisenberg Equation

Since we are considering a RIXS process, we are interested in processes in
which we have a phonon in and a phonon out. We can reach this result in
basically two ways: with a first order process in which the work (in terms of
action on the photon state made by the creator and annihilation operators) is
done by the term A2, or with a second order process (our resonant process,
which is basically a two step process in which a phonon is created and anni-
hilated in two different moments) where the two relevant terms can be linear
with A.
Looking again at our electron-photon interaction terms in (2.4), the first quadratic
terms in A give raise to a non resonant scattering, while the fourth is at the
origin of a magnetic non resonant scattering. The terms linear in A, as we
have said, can give rise to a resonant, second order process. In particular,
considering the terms which contributes to the first order amplitude, the first
one is proportional to the derivative of A (remembering that E = ∂A

∂t ) - that
is σ · ( ∂A

∂t )×A. This term is smaller than A2 of a factor hω
mc2 << 1, and will be

neglected. A2 itself, also, can be neglected, as result from LDA (local density
approximation) calculations, see [29].
The term proportional to σ · ∇φ×A, moreover, turns out to be irrelevant (for
all details, once again rely on [22]).
Considering all of this, the remaining meaningful terms for a RIXS scatter-
ing event are only the ones which contribute to the resonant second order
process:

H′ =
N

∑
i=1

[
e
m

A(ri) · pi +
eh
2m

σi · ∇ ×A(ri)] (2.8)

At this point, we have to consider that the intermediate state is not a sta-
ble state - we account for that assuming En −→ En − iΓn, where, if τ is the
lifetime, Γ ' h

τ .
Now, considering (2.6) and (2.8) (for all the calculations, [30], or again [22]):

〈G|H′|n〉〈n|H′|F〉
EG − En + iΓn

=
e2h

2m2Vε0
√

ωkωk′
∑
n

N

∑
i,j=1

〈 f |e−ik′·ri(ε′∗ · pi − ih
2 σi · k′ × ε′∗)|n〉

Eg + hωk − En + iΓn

·
〈n|e−ik·ri(ε · pi +

ih
2 σi · k× ε)|g〉

Eg + hωk − En + iΓn
(2.9)
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Which is the resonant part of (2.7).
The part of the Hamiltonian (2.8) which held the Pauli matrices is indeed a
magnetic term, accounting for the spin interaction with the field associated
to the phonon (in (2.8) we can notice that it is the reformulation of the classi-
cal and more recognizable term −µB); in (2.9) it is again found as associated
to the Pauli matrices. At 1 keV the exponential e−ik′·ri can be expanded (and
is thus close to unit); this means that the X-ray energy is tuned to a dipole
transition (here written in term of momentum, i.e. ' 〈ψa|p|ψb〉

Ea−Eb
). The magnetic

term can then be neglected, because it generates only very small dipole tran-
sitions.
Defining now:

D =
1

imωk

N

∑
i=1

e−ik′·ri ε · pi (2.10)

The differential cross section can be written by multiplying (2.7) for the
density of photon in the solid angle, and dividing from by the incident pho-
ton flux:

d2σ

dhωdΩ
∝ ∑

f
|Ff g|2δ(eg − E f + hω) (2.11)

Here hω plays the role of the energy given by the photon to the system
and D is defined as (from (2.7), (2.8) and (2.10)):

Ff g(k, k′, ε, ε′, ωk, ωk′) = ∑
n

〈 f |D′†|n〉〈n|D|g〉
Eg + hωk − En + iΓ

(2.12)

Pushing the equations a little bit further, we can take the polarization
vector out of the definition (2.10), obtaining a new operator D such that :

D = ε ·D (2.13)

This operator can be reduced to the known operator that causes electronic
transition (a very nice property in order to expand the equation (2.12)):

〈n|D|g〉 '
N

∑
i=1

e−ik·ri〈n|ri|g〉 (2.14)

Where we have switched the momentum representation of the dipole op-
erator to a position representation, accounting that hωk ' En − Eg.
Using now the second quantization formalism, we call φnν the vth Wannier
function on the site n, and cnν the corresponding creation operator. What we
obtain is:

D =
N

∑
i=1

eik·ri ∑
n,ν,m,µ

c†
nν〈φnν|ri|φmµ〉cmµ (2.15)
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FIGURE 2.5: Typical Cu L2,3 edges of (a) copper metal, (b) CuO2
(Cu1+) and (c) CuO2 (Cu2+). Those spectra are representative
of the possible intermediate state (|n〉) that we can reach dur-
ing a RIXS experiment - more in particular, we notice how the
nature of those states depend on the chemical and structural

configuration of our sample. Figure from [16].

Considering that the core states (which must be the first and final steps of
the double dipole transition) are very much localized, we can consider also
the excited states as localized on the same ion (i.e n = m, this is the single ion
approximation). This reduces the operator D to:

D '∑
ν,µ
〈φν|ri|φµ〉∑

i
eik·Ri c†

iνciµ (2.16)

And eventually we are able to write the Kremers-Heisenberg equation in
its final forms. Always relying on (2.11) for the calculation of the cross section
(which is the real important experimental parameter), we have the amplitude
of the transition from a ground state to a final (possibly excited) state - and
thus the amplitude for a resonant inelastic scattering event - as (from (2.12)
and (2.16)):



26 Chapter 2. Resonant Inelastic X-Rays Scattering

Ff g = ∑
ν′,µ′,ν,µ

Tν′µ′νmu(ε, ε′)∑
i

eiq·Ri ∑
n

〈 f |c†
iµ′ciν′ |n〉〈n|c†

iνciµ|g〉
Eg + hωk − En + iΓ

(2.17)

With a so called polarization factor:

Tµ′ν′µν(ε, ε′) = 〈φµ′ |ε′∗ · r|φν′〉〈φν|ε · r|φµ〉 (2.18)

In a direct RIXS event, ν = ν′; in an elastic one ν = ν′ and µ = µ′.
It is evident why it is called polarization factor: it depends only on the po-
larization of the emitted and absorbed photon. It is, fundamentally, the term
which reveals if the dipole transition (or better, the double dipole transition)
is allowed (and we must remember that we have neglected non-dipole transi-
tions, since their amplitude is in general much smaller than the dipole ones).
Once we have that the second order dipole transition between the initial and
the intermediate state is allowed, we can look at the second term of the equa-
tion (2.18), which contain all the further physic - the resonance and the exci-
tations.
As a matter of fact, in many cases for strongly correlated electron systems,
where electronic wavefunctions relevant for the scattering process are very
much localized on the atom, we can use atomic functions in place of Wannier
functions when running calculations (in a single ion model this is of course
true - for this kind of calculations, see [11]).
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2.3 Experimental Setup

The experimental RIXS setup is in general very complex, and technical de-
tails may vary from a beamline to another. It will not be treated along this
thesis, but the main thing to notice is that, in order to obtain a radiation of
good quality in the energetic range of X-rays (in terms of brilliance - which
is a multi comprehensive and fundamental parameter, since RIXS is a second
order process and thus very photon-hungry), we need a synchrotron radia-
tion. The main problem is then to have enough resolving power: we need
to detect variation of energy in the order of 50 meV for photons around 1000
eV. More details and implementation can be found in, for example, [16], [31],
[2] - many smart and sophisticated technical solutions have been adopted in
order to achieve the present state of art.

FIGURE 2.6: Here we have a representation of the optical ap-
paratus needed (in this case at ID32 beam line at ESRF) to col-
limate the high energy X-rays beam on the sample. Since we
want our photon to have a well defined energy, a monochro-
mating element (in this case it is the grating) is of course

needed. Figure from [31].

For our introductory presentation, it is enough to know that the syn-
chrotron radiation is in first place focused on the sample (see Figure 2.5),
scattered and then direct, through a slit, on a diffraction grating, which will
diffract each photon with an angle dependent on its energy (this passage is
crucial - is here that the extreme resolving power is reached), see Figure 2.6;
eventually, the signal will be collected by a CCD detector - which will need
to be enough sensitive to account for the signal generated by single photons.
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FIGURE 2.7: Here we have a schematic representation of the
experimental setup which allows the scattered photons to be
collected by the CCD detectors. This, in particular, is the lay-
out, again, of ID32. The diffraction grating is the critical and
maybe more complex element, also in the new generation spec-

trometers. Figure from [31].

Naturally, all the radiation propagation must happen in vacuum, more in
particular in ultra high vacuum conditions (' 10−9 mbar).

What is crucial (and way more simple) to understand is the geometry of the
experiment - which is to say how we are able to fix the momentum given to
the sample excitations.
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FIGURE 2.8: Here we have the typical experimental geometry.
It is important to notice that χ is not depicted, and it is assumed
to be identically fixed to zero. (a) also shows a sketch of the first
Brillouin zone, in which we distinguish the two main directions
[1,0] and [1,1] (in r.l.u.; in this thesis those directions will be
indicated as [−π, π] and [0, π]). (c) also shows the coordinates
relative to the spin orientation in the plane, which would be
useful in order to calculate matrix elements for the magnetic
excitations cross section - in this thesis, anyway, we will never

take advantage of them. Figure from [11].

We will suppose to be interested in cuprates, that, as we said in the previ-
ous chapters, are quasi 2D materials. This means that we are only interested
in the transferred momentum along the CuO2 plane. Also, the reciprocal lat-
tice basis of this plane are parallel to the basis of the real lattice - otherwise,
calculations would be less straightforward. Labelling the real lattice basis as
a, b, c, where the vectors a and b identify the CuO2 plane (accordingly to Fig-
ure 2.5, on which we will always rely on from now on), the reciprocal lattice
basis vectors will be oriented accordingly, with modulus 2π

a , 2π
b , 2π

c .
It is now common to define the reciprocal lattice units by setting [2π

a , 2π
b , 2π

c ] =

[1, 1, 1]. However, in this thesis we set [1
a , 1

b , 1
c ] = [1, 1, 1], which means to set

a = 1 (in cuprates the dimension a is equivalent to the dimension b) and thus
to write the total momentum transferred in units of 1

a , where a ' 3.8 A. Our
Brillouin zone will thus be included between π and −π.
kin and kout are the wave vectors belonging to the ingoing and outgoing ra-
diation. The angle 2θ is fixed by the relative orientation of kin and kout, and
the same goes for the scattering plane. As we have already said, the CuO2
plane is identified by the vectors a, b. We can define the linear polarization of
the incoming and outgoing radiation with respect to the scattering plane (if
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it belongs to the scattering plane, it is π. It is σ otherwise), even if along this
thesis we will never use it. The angles θin and θout are defined as the angles
between the wave vectors kin and kout and the CuO2 plane. They are thus
changed by rotations around the axe b. We also define a φ angle, which is
zero when the scattering plane is the one identified by a, c. Finally, we can
also define an angle χ, which is zero when the scattering plane is perpendic-
ular to the plane identified by a, b. Neglecting misalignments (which can be
due, in the case of angles θ, to not perfect alignment betweens the a, b plane
and the holder plane) we can write the following relations:

δ =
θin − θout

2
(2.19)

θout = 2θ − θin (2.20)

And thus

δ = θin −
2θ

2
(2.21)

Once the alignment of the experimental apparatus is done (with respect
to the Bragg reflections, as it will be clear by the end of this Section), we know
θin, φ, χ and 2θ.
Intuitively, if for a moment we ignore the angle χ (and thus we supposed
it to be fixed as identically equal to zero - which is also the case depicted
in Figure 2.5), we can think that to know the momentum transferred into
the CuO2 plane it is enough to know θ, while if we also want to know the
relative orientation of that given momentum into the CuO2 plane we also
need to include in our calculations φ.
Considering λin ' λout (which is of course true, since we are talking of meV
energy variations on the top of an overall energy which is in the order of
hundreds of eV, and λ = hc

E ) it is true that:

|kin − kout| ' 2|k| sin
(

2θ

2

)
= |q| (2.22)

Where q is the total momentum transferred. We define the total momen-
tum transferred as positive if θin > θout, negative otherwise. As we said
before, we can now write:

|kin − kout| ' 2|k| sin
(

2θ

2

)
= |q| (2.23)

q|| = 2|k| sin
(

2θ

2

)
sin(δ) (2.24)

q⊥ = 2|k| sin
(

2θ

2

)
cos(δ) (2.25)

More in particular, as we said before, we can also have the orientation
of the momentum transferred parallel to the plane (and thus in the plane)
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exploiting φ:

qa = 2|k| sin
(

2θ

2

)
cos(δ) cos(φ) (2.26)

qb = 2|k| sin
(

2θ

2

)
cos(δ) sin(φ) (2.27)

FIGURE 2.9: An example of a raw RIXS spectrum. In this partic-
ular case, it is the spectrum of an antiferromagnetic sample of
LCO, at the L3 edge (which imply an energy of ' 931 eV), with
a total transferred momentum q = [0.30,0,1.296] - it is one of the
spectra that we have obtained at ESRF, and that we are going to
study in Chapter 4. We can notice all the features that we have
mentioned in the Chapter (and which are already schematized
in Figure 2.4). Since we are quite away from the Bragg peak, the
elastic peak intensity is comparable to the phonons peaks one.

If we would consider a possible angle χ, thought, the situation would be
more complicated, and in the most general case we have to write:

qa = 2|k| sin
(

2θ

2

)
cos(δ) cos(φ) (2.28)

qb = 2|k| sin
(

2θ

2

)
(cos(δ) sin(φ) cos(χ)− cos(δ) sin(χ)) (2.29)
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qc = 2|k| sin
(

2θ

2

)
(sin(δ) sin(φ) sin(χ) + cos(δ) cos(χ)) (2.30)

k = |k| = (
2π

hc
)E =

2π

λ
(2.31)

The equations (2.28), (2.29), (2.30), and (2.31) are the components of a com-
plete set of equations which always allow us to extract the total transferred
momentum (both in modulus and in direction).

What we can do now in order to test the equations (2.28), (2.29) and (2.30)
is to search for Bragg reflections (see [14]), characterized by a great enhance-
ment of the elastic signal. We expect one of them, namely [0, 0, n] to happen
for δ = 0 and thus θin = θout - in fact, it also called specular reflection. If
we also suppose χ = 0, then qa and qb disappear, leaving with momentum
transferred in only one direction - (2.30):

qc = 2|k| sin
(

2θ

2

)
(2.32)

In order for the Bragg condition to be respected, in r.l.u., this momentum
must be an integer (i.e. it must be equal to a reciprocal lattice vector):

qc = 2|k| sin
(

2θ

2

)
(

c
2π

) = n (2.33)

Exactly the Bragg condition.
Operatively, what we do during the alignment of an experiment session is
to search in first place for a Bragg reflection. Ideally, this should be found
at χ equal to zero and δ equal to zero - but, as we said, this could not be
the case. So, we define offsets for every angle (for the δ angles, it imply that
θin 6= θout), such that the Bragg peak will be found at those offset values - and
the effective angle that we will consider in order to estimate the transferred
momentum will be the "instrumentation" angle corrected by the offset angle.

Also, looking at (2.31), is once again evident why we need photons with en-
ergy in the range of X-rays - their associated wavelength is in the order of
magnitude of the inter atomic distances, and is thus adequate to investigate
the dispersive characteristics of excitations with typical atomic length, which
is another way to say that we are able to probe the Brillouin zone of our ma-
terials - an electromagnetic probe of the microscopic structure of a solid must
fall in the X-rays energetic range.
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Chapter 3

Phonon investigation thorough
RIXS

3.1 Introduction

3.1.1 Phonons

Strictly speaking, a phonon is a quasi particle. It is the quantum of atomic vi-
brations inside solids, and thus of the vibration of the crystal lattice. Phonons
play a crucial role in the heat transport properties of the material, in the BCS
mechanism on which the conventional superconduction rely on and, suppos-
edly, they also play an important role in the high temperatures superconduc-
tors (see Chapter 1).
Approximating the potential between the ions in a crystal lattice as charac-
terized by an harmonic shape (which is a very good approximation for small
displacement of the ions), it is immediate to notice how the displacement
of an ion will provoke a perturbation in the order of the lattice. This per-
turbation will behave like a wave (or at least, solutions of the perturbation
dynamic are found in a wave-like shape), and thus endued with its disper-
sion, which fixes the relation between the wavevectors of the perturbation
and the frequency (which uniquely associate an energy) of the displacement
which it carries.
This means that the phonons are the quanta of waves which in real space are
described as:

ui
λ = Re[εi

λ(k)e
k·R−ωλ(k)t] (3.1)

where ε is the polarization vector, and the index i runs over every atom
of the lattice (supposing a mono atomic lattice), which is located at Ri (the
index is suppressed in the formula).
In general, treating a problem in N dimensions with n atoms per unit cell
implies to find Nn normal modes, or branch - which is to say that Nn disper-
sion relations are allowed for the propagation of the perturbation waves (or,
also, that we have Nn modes, Nn possible phonons with different energies,
for each k) - for the general calculation approach, see [26]. Those branches
can be acoustic, if the energy (directly proportional to the amplitude) of the
wave becomes zero for the wave vector also going to zero (i.e. we do not
have stationary modes), or optical, otherwise.
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Using the second quantization formalism, we can say that phonons are the
quanta of the perturbations, which can always be reduced to a linear combi-
nations of normal modes (the branches which emerges from the calculations).
The allowed wavevectors are ruled out by the Born-Von Karman boundary
condition (in one dimension in the first Brillouin zone we have a number of
allowed wavevectors equal to the number of unitary cells in the solid), and
are another way to see the emergence of the quantization. The wavevectors
of the phonons are limited to the first Brillouin zone.
They are bosons, and they thus obey to the Bose-Einstein distribution (this is
fundamental in order to understand their behaviour in the heat transporta-
tion, as in the Debye model).
A complete discussion - with a very useful analytic derivation - is given in
[26] (here we reported the most elementary and important details).

FIGURE 3.1: An example of INS measurement of phonons’
dispersion relations. In this particular case, they are referred
to La2NiO4. Figure from [32] (in the same article, measured

phonons dispersion relation in LCO are found too).
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3.2 Electron-Phonon Coupling

In this chapter, once again, we will follow the track given by [22], in order to
derive the results with which we will later work.
RIXS couple to phonons, in a very intuitive way, because of the change in
the charge spatial distribution which occurs in the intermediate state. This
influences the lattice, inducing vibrations. Once the phonon is generated, the
energy of the intermediate state is lowered (by the exact amount of energy
given to the phonon), and this energy loss is detected in the transition from
the intermediate to the final state.
Most of the core holes decay very rapidly, and there is not enough time to
fully react to the charge distribution variation; this short duration of the in-
termediate state act as a suppression for the multi-phonon excitations, pro-
portionally to the lifetime broadening Γ.
The Hamiltonian for the electron-phonon coupling is given in [33]:

H = ∑
k
[ωkb†

kbk + ∑
i
(bk + b†

-k)e
ik·Ri ∑

G
mk+Gη(k + G)eiG·Ri ] (3.2)

Where we never write the branch index (which should follow each k), nor
we will do it later, and the excited electron is intended to be localized at Ri. bk
are the creation and annihilation operators for the phonon with wave vector
k and associated momentum hk, and hωk is its energy (which is to say that
ωk is the dispersion relation of the mode at which the phonon belongs). h is
setted equal to the unity. The functions used in (3.2) are:

mk+G = −(k + G) · ξk

√
h

2ρVωk
Vei(k + G) (3.3)

η(k + G) =
∫

dreiG·Ri ∆ρ(r) (3.4)

Where ∆ρ(r) is the change in the spatial charge distribution (and thus the
difference between the square modulus of the ground and of the intermedi-
ate state wave function, multiplied by the elementary charge), and Vei(k) is
the Fourier transform of an ion potential (with respect to the electron) placed
at the origin. ξk is the polarization of the phonon (which is a vector with
the dimensionality of the lattice that we are considering). We will say more
about those terms in next chapters.

With the formalism of second quantization, assuming that the the cell is
chosen to have the core hole a its centre Ri · G = 0 and considering only
direct RIXS events (the dynamic of the intermediate state is forgotten, we
already said it in Chapter 2 and we will return on this concept soon), we
have eik·R = ∑

i
d†

i dieik·Ri (see [22] and [33]), where d†
i (di) is the creation (or

annihilation) operator of a photo-excited electron at site i, and we can rewrite
the Hamiltonian as:
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H = ∑
k
[ωkb†

kbk + Mk ∑
p

d†
pdp−k(bk + b†

−k) (3.5)

This is written in momentum space. We have defined:

Mk = ∑
G

mk+Gη(k + G) (3.6)

Since the phonons modify the electrons wave functions slightly, the po-
larization factor (2.18) is well approximated by the elastic process (at least in
a process in which only phonons are excited), i.e. the initial and final state
states of the electron are the same (we will label it by ψ), and the intermediate
state to be considered is the dx2−y2 one (at least in canonical cuprates at L3 Cu
edge).
We can rewrite the polarization factor as:

Tel(ε
′, ε) = ∑

ψ

Tψ(ε
′, ε) (3.7)

3.2.1 Non Dispersive Phonons

In the Einstein model, we consider a single non-dispersive phonon per site
of frequency ω0.
We do not have branches, and, as we will see later, it does not even make
sense to talk about a Brillouin zone - there is no need, indeed, to label the
wave vector k, since we have no dispersion (like in Raman scattering).
The e-p Hamiltonian reduces to:

H = ∑
i

ω0b†
i bi + Md†

i di(b†
i + bi) (3.8)

i runs over different atoms.
Now, we can diagonalize the Hamiltonian through a canonical transforma-
tion ([34]). Defining:

Si =
M
ω0

(b†
i − bi) (3.9)

S = ∑
i

d†
i diSi (3.10)

We have the transformation as H∗ = eSHe−S. The results is:

H∗ = ∑
i

ω0b†
i bi −

M2

ω0
(3.11)

Now, from (2.17), and defining z = hωk− Eres + iΓ (in this particular case,
ωk = ω0 ):
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Ff g = Tel(ε
′, ε)∑

i
eiq·Ri

∞

∑
ni=0

〈n′i|e−Si |ni〉〈ni|eSi |n0
i 〉

z + M2

ω0
− niω0

(3.12)

Developing calculations (for all details, see appendix of [22]), we obtain,
considering in the initial state zero phonons to be present (the index i run
over all atomic sites, and q is intended to be the transferred momentum,
which for Einstein phonons is identically zero):

Ff g = Tel(ε
′, ε)∑

i
eiq·Ri [

n′i

∑
n=0

Bn′in
(g)Bn0(g)

z + (g− n)ω0
+

∞

∑
n=n′i+1

Bnn′i
(g)Bn0(g)

z + (g− n)ω0
] (3.13)

With

g =
M2

ω2
0

(3.14)

And the Franck-Condon factor is defined as:

Bab(g) =
√

e−ga!b!
b

∑
l=0

(−1)a(−g)l√ga−b

(b− l)!l!(a− b + l)!
(3.15)

Eventually, plugging this result into (2.11) to obtain the cross-section (which,
we empathize, is the significant quantity in an RIXS experiment - I ∝ d2σ

dωdΩ ),
we obtain:

d2σ

dωdΩ
∝ ∑

f
|Ff g|2δ(ω− n′ω0) =

= NT2
∞

∑
n′=0
|

n′

∑
n=0

Bn′n(g)Bn0(g)
z + (g− n)ω0

+
∞

∑
n=n′+1

Bnn′(g)Bn0(g)
z + (g− n)ω0

|2δ(ω− n′ω0)

(3.16)

Here there are a few important things to notice. In first place, a final
state is identified by the number of phonons excited: f → n′. The phonons
could be localized on every atom, according to the Einstein model, and this
is denoted by the factor N which is the result of the sum over i.
The q dependence is lost, according to the localized nature of the Einstein
phonons.

Basically, each final state (identified by the number n′ of phonons excited)
is endued with a certain amplitude, and the total RIXS cross section will be
directly proportional to the sum of those amplitudes (and in fact the sum over
f turns out to be a sum over n′ ). But we must keep in mind that what we
are talking about is an energy spectrum - each final state state will associate
an energy (the term δ(ω − n′ω0), where h = 1) at which its "part of cross
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FIGURE 3.2: Simulations for different parameters choice of for-
mula (3.16). This is a different plotting of the result that we
will later obtain (see Figure 3.5), where different combinations

of parameters are shown. Figure from [22].

section" (directly proportional to its amplitude squared) will be found. In the
particular case of Einstein phonons, those will be multiple of ω0, since all the
phonons have the very same energy.
The RIXS spectrum will be a series of peaks, each one associated to a certain
number of phonons which can be found in the final state, each one with an
intensity directly proportional to the probability of exciting those number
of phonons (according to (3.16), the intensity is directly proportional to the
cross-section), and each one located at the energy loss necessary to excite that
number of phonons.

3.2.2 A Better Approximation: Dispersive Phonons

For the dispersive phonons (which is the real case, where we have interact-
ing atoms and thus dispersive excitations) the things are much more com-
plicated, at least numerically: we will have to consider, in the most general
case, that a Brillouin zone exist, and phonons "live" in it. Each one will be
endued with a certain k and will associate a certain energy in concordance to
its dispersion relation ωk (the branch indexes will always be neglected, but
must in principle be considered).
The final state will be characterized not only by the number of phonons ex-
cited, but also by which phonons have been excited: f → n′k1

, n′k2
, n′k3

, ... (we
have a finite number of wavevectors allowed in the Brillouin zone).
Eventually, a dependence on k also exist for M(k), and thus we have g(k) =
|M(k)

ω(k) |
2.

A canonical transformation (as in the Einstein phonon case) is applied (see
[35]), and with the comment that Franck-Cordon overlap between the ground
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state and the intermediate state follows a Poisson distribution with mean
g(k) = gk (see [22]) we obtain:

Ff g ' T
δq,∑k n′kk

z ∏
k
[

n′k

∑
n=0

Bn′kn(gk)Bn0(gk)

z + (kg− n)ωk
+

∞

∑
n=n′k+1

Bnn′k
(gk)Bn0(gk)

z + (gk − n)ωk
] (3.17)

And, again (h always setted equal to unity):

I(ω) ∝ ∑
f
|Ff g|2δ(ω−∑

k
n′kω(k)) (3.18)

And this is the intensity spectrum that we are going to obtain in a RIXS
experiment.
Again, a few comment. It is very important to notice how, in this case, the
q dependence is not lost. It is in fact in the Dirac delta term: given a certain
transferred momentum q, we can only have a final state ( f → n′k1

, n′k2
, n′k3

, ...)
which satisfy the condition q = ∑k n′kk. All the final states that satisfy this
condition (remember that the transferred momentum is fixed by the geometry of
the experiment) are allowed, and have a weight in the final spectrum through
(3.18). We pay attention to the fact that the peak associated to each final state
(which could be a single, double, triple and so on phonon state) is not, in
the energy spectrum, a Dirac delta - in (3.17) we have a Dirac delta, δ(ω −
∑k n′kω(k)) , but we must account for an energy broadening due to the finite
lifetime of this excited state.
Again, we suppose that in the ground state we do not have any phonon, and
the number of phonons with vector k in the final state is denoted by n′k.

3.3 Approach to Calculations

In first place, we have to briefly discuss Einstein phonons.
Einstein introduced his model for phonons in order to explain the specific
heat behaviour in solids. The two main assumptions that he made were:
each atom is seen as an independent quantum oscillator and all the atoms
are oscillating at the same frequency. The first assumption in particular is
significant in order to accept the fact that in the framework of such a model
it makes no sense to talk about a Brillouin zone: a lattice of non interacting
atoms is a lattice in which a perturbation in one point (i.e. a phonon localized
on one atom) does not affect in any way the behaviour ot the neighbouring
atoms - we do not have a perturbation with a form such as (3.1). This means
that we do not have a dispersion, and thus we have only phonons with k = 0.
This is why, by the way, only q = 0 is allowed. We can also consider that
a lattice with non interacting atoms is a lattice where we have a distance
between atoms which is conceptually a→ ∞ (in the sense that assuming non
interacting atoms is the same as assuming interacting atoms at an infinite
distance), and thus the Brillouin zone is such that (−π

a , π
a )→ 0.

To visualize the Einstein phonons as an approximation of the optical branch
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in which ω is constant all over the first Brillouin zone could be misleading.
In fact, it is not the same thing - even if, for the Einstein purpose, it would
work the same way.
In fact, developing the calculation for the total energy (the specific heat is the
derivative of the total energy with respect to the temperature), in theory we
should have (considering the phonons as bosons, which follows the Einstein-
Bose statistic):

Etot = nPihω0 = n < nk=0 > hω0 =
nhω0

e
hω0
kBT − 1

(3.19)

Where we are considering a total number of phonons which is n (the num-
ber of atoms) times the average number of phonons on a single atom (Pi).
We would obtain the same result considering a branch of phonons with con-
stant dispersion ω(k) = ω0 (see [26]):

Etot = ∑
k

Ek = ∑
k

< nk > hωk =
nhω0

e
hω0
kBT − 1

(3.20)

But in our case the situation is pretty different.
Eventually, the important fact here is that we expect (3.17) to fall into (3.13)
(which is to say that we expect the same spectra) if we consider only phonons
with k = 0 (and thus q = 0) - and this is different from considering a non-
dispersive dispersion relation.
Our approach will consists in the following steps:

• Fix a q‖: This comes directly from the geometry of the experiment (see
Chapter 2.3), and it is equivalent to say that each spectrum will be the
expected one in a given experimental geometry. q‖, for what we have
said in Chapter 2, is the total momentum transferred into the CuO2
plan, and is thus the total momentum that a phonon - in case of single
phonon excitation and coherently with conservation laws - will have to
carry (in the case of Einstein phonons, as already said, the total momen-
tum transferred is identically zero).

• Identify every allowed phonons combinations of the final state: Once
we have the total momentum transferred, we have to identify all the
possible combinations of phonons. In the final state (that is the ex-
cited state of the material) we can have one phonon, two phonons,
three phonons and so on. The allowed state (once again, a state is de-
fined as f → n′k1

, n′k2
, n′k3

, ...) are, as stated in (3.17), those who respect
q = ∑k n′ki

k.
This means that we can have a single phonon with k = q, every couple
of phonons with k1 and k2 such that k1 + k2 = q, and so on for higher
numbers of phonons.
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• Identify the energies of each final state: This is simply done through
the dispersion relation. The energy of the state with a phonon will be
hω(k), if the phonons are two (with k1 and k2), then it is hω(k1) +
hω(k2); and so on.

• Find the amplitude of each state: Which is to say, through (3.17), to
find |Ff g|2, and eventually the RIXS spectrum with the help of (3.18).

3.3.1 Manipulations

As we have already said, in the first Brillouin zone we have a number of
allowed vectors k (Nk) which is equal to the number of unitary cells in the
sample, at the power of the number of dimension that we are considering
(Nd). This is a huge number, both when developing the product in (3.17) and
searching all the possible couples of phonons for a given q (which is in the
order of NNd

k ) - and we should also consider the "triplets" of phonons (which
number goes as N2Nd

k ), and so on.

In first place, we have to overcome the problem of the product, which ob-
viously is impossible to compute, even for a reduced number of Nk.
The units in which the intensity will be expressed are arbitrary: and this is
because of the terms NT2 in (3.17), which we do not compute.
What really matter is the relative intensity of a peak with respect to the others.
When we talk about the intensity of a peak, we are talking about the term
|Ff g|2.
We have f → n′k1

, n′k2
, n′k3

, ... and

IRIXS(E) = ∑
f
|Ff g|2δ(E− E f ) (3.21)

It is convenient to define the element inside the product in (3.17) with
respect to their "phononic occupation number" (n′k). This means, for zero
phonons with k:

A(k) =
B00(gk)B00(gk)

1 + gωk/z
+

∞

∑
n=1

Bn0(gk)Bn0(gk)

1− (n−gk)ωk
z

(3.22)

For one phonons with k:

A∗(k) =
1

∑
n=0

B1n(gk)Bn0(gk)

1− (n−gk)ωk
z

+
∞

∑
n=2

Bn1(gk)Bn0(gk)

1− (n−gk)ωk
z

(3.23)

For two phonons with k:

A∗∗(k) =
2

∑
n=0

B2n(gk)Bn0(gk)

1− (n−gk)ωk
z

+
∞

∑
n=3

Bn2(gk)Bn0(gk)

1− (n−gk)ωk
z

(3.24)
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And so on.

This allows us to rewrite the amplitudes. In the case of a phonon with k3
(from (3.18), (3.22), (3.23), (3.24)):

Ff g =
T
z

A(k1)A(k2)A∗(k3)...A(kN) (3.25)

If we have two phonons with, respectively, k1 and k3:

Ff g =
T
z

A∗(k1)A(k2)A∗(k3)...A(kN) (3.26)

Or for two phonons with k1:

Ff g =
T
z

A∗∗(k1)A(k2)A(k3)...A(kN) (3.27)

As we said, all our intensities will be in arbitrary units (for example [NT2] ≡1).
If we consider two final states, the difference in their final amplitude will be
given only by the terms of the product which are occupied.
We can formalize this concept by expressing the intensity (which is directly
proportional to the modulus squared of the terms (3.25), (3.26), (3.27)) in units
of:

NT2

(∏k A(k))2 ≡ 1 (3.28)

This imply an heavy simplification, since, in this basis, we can write our
amplitude terms as (from (3.21), (3.25), (3.28)), for example in the case of a
phonon with k3:

Ff g =
T
z

A∗(k3)

A(k3)
(3.29)

Or, if we have two phonons with k1 and k3:

Ff g =
T
z

A∗(k3)A∗(k1)

A(k3)A(k1)
(3.30)

In this way we get rid of the product. The price to pay is to set absolutely
awful units, but that is not a big deal, since already at the start we did not
have useful units (NT2 = 1). Moreover, as we said earlier, what we are really
interested in is the relative intensity of a peak respect to each other, which is
a dimensionless quantity.
(3.28) also imposes other limitations, which we will see more in detail in Sec-
tion 3.3.3.

3.3.2 More Comments on Calculations

Another problem that emerges during calculations is that the number of cou-
ples of phonons allowed is proportional to the number of wavevectors - and
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of course we cannot account for all the wavevectors and all the couples which
really exist in the Brillouin zone.
Moreover, if we consider the total amplitude of the peak associated to the two
phonons final states (the sum of the intensities of all the peaks associated to
each single couple of phonons in the final state), this is directly proportional
to the number of couples, and it grows with Nk, eventually resulting incred-
ibly bigger than the single phonon peak intensity (if we consider a realistic
number of wavevectors) - even if the amplitude of a double phonon event by
itself is always smaller than the amplitude of a single phonon one (this is be-
cause we always have A∗

A < 1: an important and promising fact). The same
goes for the three phonon peak (the number of so called "triplets" grows as
N2Nd

k ) with respect to the two phonon peak, and so on. We have a divergent
(and thus non-physical) behaviour of the system.
We account for this by introducing a normalization, as prescribed by the den-
sity of states present in the Fermi Golden rule for second order transitions,
which is the starting point of the Kremers-Heisenberg equations (2.7). The in-
tensity relative to each couple of phonons, |Ff g|2, is divided by the numbers
of wavevectors Nk (which also directly proportional to the number of couples
allowed) before being summed into the total intensity. This can be viewed as
a way to keep into account the fact that the more couples are allowed, the
less is likely to excite a precise one. In one dimension we have:

I = |Fsingle|2 +
1

Nk
∑

couples
|Fcouples|2 +

1
N2

k
∑

triplets
|Ftriplets|2 (3.31)

This provides in both avoiding the explosion of the intensity for high num-
bers of wavevectors allowed (the intensity converge to a finite quantity for
Nk → ∞) and in obtaining an intensity of the two phonons peak smaller
than the intensity of the single phonon peak,at least in most of the cases (see
Figure 3.1).

In (3.21) we have that every possible final state contributes as a Dirac delta
to the RIXS spectrum. That would be true only in the case in which the final
state is a stable state, i.e. it does not decade in a finite time. But since it is an
excited state, it does - and we have to account for an energy broadening of the
peak in the shape of a Lorentzian (the overall intensity will remain the same,
due to the implicit normalization of the Lorentzian curve). Indicatively, we
chose a broadening of about 10 meV - and this associate a lifetime for the
excited state of hundreds of femtoseconds.
Moreover, we will consider only one branch. Theoretically, we should con-
sider all the branches (see (3.1.1)). This would mean to have one single
phonon peak for every branch, and the combinations of two phonons al-
lowed would grow in a factorial proportionality with the branches. Still, to
consider only one or two branches could be a good approximation (for more
details, see Chapter 4) - and in any case, our simulated spectrum should be
considered as the contribution of the single branch to the overall spectrum.
One last detail is that, considering a couple of phonons, we account two times
for its intensity: we have in fact two possible orders in which the phonons
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FIGURE 3.3: Total intensity of the second peak, in U.A., as sim-
ulations were done with an increasing number of wavevectors
in the first Brillouin zone. It is evident how we have a stable
and finite intensity for a number of wave vector greater than,

indicatively, one hundred.

are created (two possible excitation channels, more technically). If the couple
of phonons is instead made by two identical phonons, we count it only once.

3.3.3 Validity of the Results

As we said in the previous chapter, the price to pay to get rid of the product
in (3.17) is to introduce an odd sets of units: (3.28).
We must pay the attention to the dependences of A(k). From (3.22):

A = A(M(k), ω(k), z) (3.32)

with, again, z = (hω− En) + iΓ = ∆Edet + iΓ.
This means that, once the calculations are done, the units of the intensity in
which the result is expressed are themselves functions of those parameters
- once we have taken a decision on which values (M(k), ω(k), z) to use, we
have set our arbitrary units.
It follows that two intensities obtained with different values of M(k), ω(k)
or z are not comparable.
Let’s suppose for example to compare the intensity of the single phonon peak
obtained with different M(k), ω(k) or z - in both cases setting the same units
in energy (but even if the energy units were different that would not be a
problem, we would just need to multiply the result for a scaling factor ω0

ω1
,

where ω0 or ω1 are the energy setted equal to unity in each case), the ratio
will not be dimensionless, but will be in units of:



3.3. Approach to Calculations 45

I11

I12

7−→ NT2

(∏k A(M1(k), ω1(k), z1))2
(∏k A(M2(k), ω2(k), z2))

2

NT2 =

=
(∏k A(M2(k), ω2(k), z2))

2

(∏k A(M1(k), ω1(k), z1))2 (3.33)

Anyway, ratios between one phonon and two phonons peaks are really
non dimensional, since they are calculated with the same M(k), ω(k) and z,
and thus it makes sense to compare ratios calculated with different choice
of parameters. Results obtained with different total momentum transfers are
comparable, too, since a different choice of q does not influence the units in
which the results are expressed (always according to (3.28) - the choice of q
does not enter in the product, see (3.17)).
To recap, it is meaningful to study:

•
I2
I1
(M1, ω1, z1)

I2
I1
(M2, ω2, z2)

⇐⇒ I2

I1
= f (M, ω, z) (3.34)

The evolution of the ratio between single phonon and two phonons
peak with different choices of parameters.

•
I1,2(M, ω, z)|q1

I1,2(M, ω, z)|q2

⇐⇒ Ii(M, ω, z) = f (q) (3.35)

The evolution of a peak at different total momentum transfers.

There are parameters good enough to attempt to have experimental feed-
back.
Moreover, the shape of the peaks is also, in principle, reliable. The units is
impossible to compute (3.28) (since here we have again our product over all
the possible k), but it is, of course, a constant, once M(k), ω(k) and z are
fixed - the shape of the spectra is not modified, only its overall amplitude is.
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3.4 1D

We will use the 1D case as an instructive case, to later apply what we have
learned to the more significant 2D case.
A first point is which to branch to consider. This is immediately non trivial,
since we have defined g(k) = |M(k)

ω(k) |
2 - choosing the acoustic branch would

also mean having a coupling M which goes to zero for k → 0, in order to
avoid divergence. So, we will work with an optic branch, whose maximum
energy (found at k = 0) sets the unity of the energy (typically around 80
meV), which are the ones found on the coordinates in the spectra that we
will have as a result of the calculations. Also from an experimental point of
view, the most energetic phonons are the more interesting, since are the ones
which are better distinguishable from the elastic peak.
We will try different shapes for M(k), to see how the spectrum is affected.
We will specify it each time - more consideration about this coupling factor,
in the more realistic 2D case, are found in Section 3.5.2.
The program implemented in MatLab accepts as input the following param-
eters:

• Γ: the energy broadening of the intermediate state. Usually taken as 5
(remembers that the unity is setted by the dispersion relation, it is as-
sumed to be around 400 meV) - and it means to have a lifetime of the
intermediate state of about ten femtoseconds.

• Γint: the energy broadening of the phonon final state energy; in general
it is set at about 5 meV. This parameter changes the shape of the peaks,
but not their overall intensity, since the Lorentzian is normalized to the
unit. The response of the one phonon peak to a change of Γint, in term
of shape change, is quite different from the two phonons peak one: its
broadening is more striking - but this is normal, since the two peak
phonons is the sum of many Lorentzian, while the one phonon peak is
just a Lorentzian.

• Detuning: together with Γ, defines z. It is the difference between the
energy of the photon and the system resonant energy. It will be a main
parameter in the discussion of the experimental results in Chapter 4.

• Phonons’ combination allowed: This parameter decides if we want to
consider only the single phonon or also the couples, adding or remov-
ing in this way a part of the resulting spectra. In 1D, the program is also
build to find and calculate the amplitudes of triple phonons event.

• Nk: The number of wavevectors to be considered in the first Brillouin
zone. In the 2D case, in the first Brillouin zone there will be N2

k possi-
ble vectors. To understand the importance of this parameter, see 3.3.2.
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In order to have coherent simulation, we want an high number of Nk
(again, see Figure 3.1). A small Nk will provide inaccurate, but still in-
structive results (also, if we want to consider triple phonon events, we
must use a small Nk to overcome computational problems).

• q: The total momentum transferred into the CuO2 plane. It sets the
allowed final states.

The dispersion relation and the coupling are defined inside functions that
are often called by the main program.

FIGURE 3.4: Example spectrum obtained as a result of the cal-
culations. The energy unit is setted by the top of the opti-
cal branch. The parameters used are: Γ = 5, Γint = 0.05,
Detuning= 0, Nk = 10, q = 0. The coupling i discussed in
the text. Calculations were also made for triplets of phonons

(they are visible at energies higher than 2.5).

In Figure 3.4 we have an example of the outcome of the calculations.
For this example, we considered a 1D case with coupling M(k) = 0.6 +

k2

1+0.5k2 and an acoustic branch with the characteristic shape ω(k) = (1 −
α sin(k)).
This spectrum is to be intended as the energy loss of the outgoing photon.
We have used a small number of wavevectors, in order to be able to calcu-
late, at least in this first example, the triplets (as we will call from now on the
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spectra associated to triple phonon events) absorption spectra (which will be
normalized to N2Nd

k , according to Section 3.3.2).
We can think of every peak in the figure as the amplitude relative to a sin-
gle final state. With Nk = 10 (technically there are eleven wavevectors, k=0
is always present) and q = 0 we have five possible pairs. For each couple
we develop the calculations, find an amplitude (and thus an intensity) cen-
tred at an energy dictated by the dispersion relation and then overlap it to
a Lorentzian. The same goes for the single phonon (the only possibility is
q=k), and all the possible combinations of three phonons. Considering the
shape of the coupling, the dispersion relation, and the fact that, besides the
very complex form of (3.17), the greater is gk the greater is the coupling and
thus the intensity, we can get an intuitive confirmation of the relative inten-
sity of the two phonons peak (which are (−π, π), (−π

2 , π
2 ), ...).

In Figure 3.5 we zoom in order to distinguish each triplet (whose intensity is
too small to be distinguishable respect to the single and two phonons peaks).
Each intensity is normalized according to Paragraph 3.3.2. We notice how,
even in a simple case with Nk = 10 we have an high number of possible
triplets which satisfy the momentum conservation.

FIGURE 3.5: Zoom of Figure 3.4. The peaks are associated to
triplets of phonon, the overlying line is their sum (and thus it is
what we call the total intensity of the three phonon peak). The

same goes for Figure 3.4.
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3.4.1 Programming

All the codes for the 1D case can be found in Appendix A. For the 2D case,
the codes are found in Appendix B.
To be more specific, first we find all possible combination of couples of triplets
which satisfy the momentum conservation. Once the couples and the triplets
are returned to the main function, we run the calculation for (3.17). In par-
ticular, we calculate (3.22), (3.23), (3.24) with the corresponding function call
("A, A-star, A-double-star"). The dispersion relation, the coupling and the
Frank-Cordon factor are also calculated though the call of respective func-
tions ("Dispersion, Coupling, B"). We then associate a Lorentzian to each
peak, sum the peaks and plot. In order to obtain the effective RIXS spec-
trum, we should do the convolution between our spectrum and a Gaussian
with full width at half maximum equal to the experimental resolution (in-
dicatively 35 meV).

3.4.2 Results And Comments

From now on, we will not consider the triplets of phonon (which intensity
is always smaller than the single or the two phonons peak). We will use
Nk = 200, and Γint=0.05.
There are many aspects of the RIXS phonons features behaviour that we can
consider, even with our one dimensional calculations. Brief discussion for
each of them will follow.

• Einstein Phonons The first thing that we can try to do is to check that,
as explained in Section 3.3, the dispersive phonons peaks fall into the
Einstein phonons’ ones once we consider only k = 0, and thus a con-
stant dispersion (ω0 = 1) and a constant coupling too (M = 5) - of
course, in order to be coherent, we also need to consider a null total
momentum transfer.

Figure 3.6 and 3.7 show, respectively, the calculated spectrum in the
case of Einstein phonons and in the case of dispersive phonons for a
null total momentum transfer. Now, the ratio between the first and the
second peak in Figure 3.6 and 3.7 is the same. The two figures differs
only for a rescaling factor - but this is due to the normalization that we
are using in the case of dispersive phonons (again, (3.28)). If working
with only k = 0, that rescaling factor (which is implicit in the normal-
ization) is easily computable, and once we account for it we find that
Figure 3.6 and 3.7 coincide (they would be now expressed on the same
basis, NT2 = 1).
Eventually, we have that the dispersive phonon case converge with the
Einstein phonon approximation when considering only phonons with
k = 0 - thus non dispersive phonons with constant coupling and fixed
energy. All this is coherent with the discussion which allowed us to
derive (3.19) and (3.20), and is also striking comparing equations (3.16)
and (3.17).
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FIGURE 3.6: Here we have the spectrum resulting from the Ein-
stein Phonon case, according to formula (3.16). We have that
every peak is centred exactly at a multiple of the single phonon

energy, since we do not have dispersion.

FIGURE 3.7: Here we used formula (3.17), for the dispersive
phonons intensities, together with the assumptions specified in
the text. We only calculated single and double phonon peaks

intensity.

• RIXS spectra for different couplings, detunings and total momentum
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transfer What we can do now is a study of the different shape of the at-
tended RIXS spectrum in terms of the two phonons peak. In fact, con-
sidering different configurations of the energy dispersion and of the
coupling, we will have that different couples of phonons (remember
that the allowed couples will be fixed by the total momentum transfer)
will be endued with different amplitudes.
We will always use, in this section, a dispersion relation ω(k) = (1−
α sin(k)), which is the classical shape for the optical branch. Consider-
ing an acoustic branch, in order to avoid a divergent behaviour of the
parameter M, would force us to also consider a coupling which van-
ishes for k approaching zero (this will anyway be the interesting case -
for more details see chapter 4).
We can immediately notice that, until the total transferred moment is
null, the single phonon peak will always be centred at zero energy, and
its amplitude will be proportional to the coupling at k = 0.
Also, a non null detuning will in general depress the intensities of both
the single and double phonons peak, but there is no a priori reason to
expect them to decrease at the same rate - for further considerations,
again, see chapter 4.
A very important result is that the shape of the two phonon peak (and,
of course, its intensity) is directly dependent on the coupling shape -
even if, at the state of art, it is impossible to actually distinguish it in a
realistic RIXS spectrum (see Figure 2.2 or 2.9).
Way more interesting, in this sense, is the total momentum transfer de-
pendence of the spectra, as well as the detuning one, as we will later
see.
We considered a coupling in the form M(k) = 0.6 + 1.5| sin(k)| since
we want a coupling which is non null for k = 0, (again, we would oth-
erwise lose the single phonon peak for zero total momentum transfers).



52 Chapter 3. Phonon investigation thorough RIXS

FIGURE 3.8: Here we have used a coupling M(k) = 0.6 +
1.5| sin(k)| and q = 0. Since the coupling is stronger for
phonons with higher k, and the phonons with greater k have,
in our assumptions, smaller energies, we will find our two

phonons peak translated to lower energies.

FIGURE 3.9: Here we have used a coupling M(k) = 0.6+ k2

0.2+k2

and q = 0. What we said for Figure 3.8 is also true here, but is
important to notice how the effective shape of the two phonon
peak is changed from the previous case - as consequence of the

different coupling.
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FIGURE 3.10: Here we have used a coupling M(k) = 0.6 +
1.5| sin(k)| and q = π

4 . This is, basically, the same case as Fig-
ure 3.9, but with a non null total momentum transfer. Here is
important to not be mislead by the intensity scale - the single
phonon peak grows of a factor 6 (since the coupling grows for
bigger k), and it is found at smaller energies - while the two
phonon peak still grows, but of a much smaller ratio (about 1.1).
In the case of the two phonon peak, in fact, we must account
both for a bigger coupling and for a smaller number of couples
allowed - the more q approaches the Brillouin zone edge, the

fewer are the allowed couples of phonons.
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FIGURE 3.11: Here we have used a coupling M(k) = 0.6 +
1.5| sin(k)| and q = 0, but we also supposed a detuning of 5 en-
ergy units (which, as always, are fixed by the top of the optical
dispersion relation, and are equivalent to 400 meV). We have
a general depression of the intensities of both the single and
double phonon peak (again, pay attention to the scale, much
smaller than the one in figure to Figure 3.9), but the shape and
the ratio between the intensities are unchanged - and it is rea-
sonable, since what we are doing is to get away from the reso-
nance, and thus we are reducing the overall RIXS cross section.

For more considerations about detuning, see Chapter 4.
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• Characteristic curves We consider the ratio between the intensity of the
single and the double phonon peak (where, from now on, we will in-
tend the intensity of a peak as its area, coherently with the intuitive
notion of an overall cross section for that excitation). We notice that
an universal curve can be deduced - in particular, the ratio I2

I1
plotted

against the parameter (M
Γ )2 results to be a constant for whatever g we

choose (g, again, is defined as (M
ω )2). The physical meaning of this uni-

versality is not striking at all, considering also that g itself is dependent
on M - we are saying that the possibility to excite two phonons is not de-
pendent from the absolute values of the parameters M, ω, Γ, but rather
on their ratios. A big lifetime (with respect to the value of the coupling)
enhance the possibility to generate couples of phonons, and the same
goes for an high ratio (M

ω ) - different triplets of values can associate the
same ratio I2

I1
.

It is also noteworthy that this universality does not depend on the total
momentum transfer, which will instead affect the overall ratio value it-
self, as we can see from Figure 3.13. This is, though, easily understood:
while the single phonon peak intensity is only affected by how the cou-
pling changes along k, the two phonon peak is also affected by the total
number of available couples, which becomes smaller with higher q -
but apart from this, that can be considered as a scaling factor - the de-
pendence from the coupling strength, energy and lifetime ratios is left
unchanged.

FIGURE 3.12: Here we have the ratio I2
I1

for different values of
the parameter g = (M

ω )2. As we have said, it is found to be
universal - here we have plotted four possible values of g. We

have used Nk = 100 and q = 0
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FIGURE 3.13: Here we have the same plotting of Figure 3.12,
but in this case we have used q = π

2 . As it is discussed in the
text, the double phonon peak intensity is smaller than at q = 0.

• Systematic study of the ratio between one phonon and two phonons
peaks intensity One last interesting thing that we can do is to deal with
a systematic study of the ratio I2

I1
(one of the good parameter to study

through our calculations, see (3.3.3)) along different shapes of coupling
and dispersions, and for different choices of the parameter Γ. This can
be thought as a sort of generalization of what we have done in the pre-
vious point.
In particular, before extracting some general result, we can immediately
recognize how those situations in which the two phonon peak is bigger
than the single one are non-physical, in the sense that we always expect
the overall cross-section of a second order event to be smaller than the
one of a first order one; we thus discard the parameters choice which
leads to such a situation.
This study has been very useful in order to understand which coupling
can be considered realistic. More considerations about the effective
coupling will follow in section 3.5.2 - for now it is enough to say that
the difficulties arise from the definition (3.6), which prevent us, due to
its intrinsic complexity, from having a closed and tractable expression
for the electron-phonon coupling.
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FIGURE 3.14: In this simulation, we have supposed a disper-
sion relation in the form ω(k) = 1− 0.2 cos(k) , and a coupling
M(k) = base · e− 2

π |k|. base is a generic name which we gave to
the paramater enhance the whole function. This parameter is
thus responsible for the variation (in an overall strength sense)
of the coupling - the bigger is, the bigger the coupling. Γ, as
we have already said, is the energy broadening due to the short
lifetime of the intermediate state. Here we have supposed a null
total momentum transfer. We can notice how the two phonons
peak is enhanced by a long lifetime of the intermediate state
(Γ = 1) and a strong coupling. We can imagine that every point
of this surface is associated to a spectrum like the one in FIgure

3.8.
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FIGURE 3.15: Here we have supposed a dispersion relation
in the form ω(k) = 1− 0.2 cos(k), as before , and a coupling
M(k) =

√
2| sin(k)|+ base. Again, base has the same meaning

of Figure 3.14, and so will be for the next Figures. We can see
that this choice of parameters greatly enhance the two phonon
peak. Here we supposed, again, a null total momentum trans-

fer.

FIGURE 3.16: In this simulation we used the same parameters
of Figure 3.15, but this time we supposed a total momentum
transfer q = π

2 . Paying attention to the scale, we can immedi-
ately notice that the ratio is smaller, for every combination of
Γ and base. Otherwise, the dependence of the ratio from the

parameters is left substantially unchanged.
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FIGURE 3.17: In this example we have considered the same
dispersion relation of the previous figures, but with a coupling
M(k) = base · sin(k). In order to be have a single phonon peak,
we also needed to consider q = pi

2 , since for k = 0 the cou-
pling is null. What we can see is that a pure sinusoidal coupling
(without any constant component, like in Figure 3.13) drasti-
cally reduces the overall two phonons peak intensity, all over

the parameters range.
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3.5 2D

Now we make a step further, and we proceed in bringing our calculations in
a two dimensional environment. Conceptually, this is not very challenging -
it is just a question of accounting for a bi dimensional Brillouin zone instead
of a mono dimensional one - but still it is much more interesting than the one
dimensional case, mainly because the cuprates, which we are investigating
along this thesis, are "quasi 2D materials" [11] (see Chapter 1). This follows
from the fact that the relevant physics is played in the CuO2 plane, and the
coupling between different planes is, in first approximation, negligible.
We can thus think that also the relevant phonon physic take place in the CuO2
plane, and our two dimensional calculations have some hope to catch some
insight of the real experimental results.
Our main limitations, throughout the whole work, is that we consider only
one branch of phonons, which can be thought of - we will see this in Chap-
ter 4 - as a justifiable assumption, especially if we are not interested in very
low energetic excitations (indicatively phonons mode with energy below 40
meV).
More specifically, we will only consider the breathing mode [36].

3.5.1 Programming

Again, the whole code is found in appendix B. Nothing has really to be added
from the one dimensional case. Now both k and q are vectors, and so we will
have their component along both the axis - our functions will in general need
to accept one more parameter. The complexity arise when we are looking
for the possible couples and triplets (the program, by the time i am writing
this thesis, still misses the part dedicated to the counting of triplets). Their
number will grow quadratically (for the couples, coherently with what we
said in Section 3.3.2) and there will be one dedicated function which will find
them ("Contare"). The number Nk will indicate the number of wavevectors
considered along a direction, which means that the effective number of wave
vectors in the first Brillouin zone will be N2

k .
We will call the two dimensions, intuitively, x and y.
The output of the program will be conceptually the same as shown in Figure
3.4 - the phononic part of a RIXS spectrum.

3.5.2 Theoretic Considerations About Coupling

But at this point we are also interested in a definitive form for our coupling,
touse in our 2D calculations. In the previous sections we have run some
simulations in order to understand how our RIXS spectrum would change
on the basis of different couplings, but the overall dependence is not very
strong and we cannot prefer one coupling to another relying only on those
considerations.
We have basically two different approaches, one from [22], which consider
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a localized electron during the RIXS intermediate state, and one from [37],
where the electron is considered as itinerant.
In the first approach, the excited electron is considered to be bond to the core
hole (which happens to be a very good approximation at Cu L-edge [38]).
This means that the electron-phonon Hamiltonian is localized at Ri, and it
follows the discussion which brought us to (3.6).
The second approach considers the photo-excited electron as promoted into
conduction band, and assumes that the most interesting phonons are cou-
pled to mobile charges - i.e. valence electrons.
We are interested, for the moment, only in the most energetic branch, which
is the breathing mode [34][39]. The breathing mode is an acoustic branch
which embodies the dispersion relation of the in plane oxygen atoms, oscil-
lating in a direction parallel to the their bonding with Cu atoms. In general,
we can say that oxygen modes are more energetic than the modes related to
Cu oscillations, since Cu atoms are much heavier. Another interesting mode,
the second most energetic, is the buckling - again, it is an oxygen mode, but
this time the in plane oxygens oscillations are found in a direction perpen-
dicular to their bounding with Cu atoms.
The first approach, as we said, which is conceptually simpler and also more
adequate in the case of Cu L edge (in particular in case of charge transfer in-
sulators, parents compounds of high Tc materials, where a single ion model is
a suitable model, see [11]), leads to (3.16). Unfortunately, such an expression
is not useful - its intrinsic complexity prevent us from obtaining an adequate
function. The potential appearing in (3.16) is the potential function for the
electrons when the atoms are in their equilibrium positions, which form a
periodic potential in the crystal [33]. It is problematic: the use of a pseudo
potential is smost of the time adopted (always [33]), since a naive bare ion
potential would lead to a divergence behaviour of the coupling in case of
q = 0 for both the optical and the acoustic branches. We preferred not to
follow such a path.
The second approach, instead, offers a simple and clear formula for the cou-
pling of the breathing mode to our intermediate state - we will follow this
approach from now on. The formula for the coupling also happens to be in-
dependent from the electron momentum - or better, it results to be weakly
dependent (remember that this model is relying on itinerant electrons), and
we have a pre factor that can be setted to a constant solely to have an overall
magnitude estimation ([40], relying on calculations made in [37]). Once this
approximation is done, the important thing is the shape of this coupling -
which can also be used in our single ion L Cu picture, at least as a first order
approximation:

Mbr(k) = [
go

br
2

√
sin2(kx) + sin2(ky)]

2 (3.36)

Where go
br=87 meV. The first thing to notice is that the coupling grows in

different ways as we move along different directions of the Brillouin zone.
Thus it will be interesting to study the beahvior of the single phonon and
two phonons peak along the directions [0, π] and [π, π].
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Also, we notice how the coupling is null for k = 0. This means that, for a
null total momentum transfer, we will not have any single phonon peak.
If we had considered also the buckling mode, we would have found a cou-
pling to the electron which goes as cos(k), and thus in an opposite fashion
with respect to the breathing mode coupling: stronger at the center of the
zone and weaker at the edges.
The dispersion that we are going to use is given, for the breathing mode, in
[40]:

ω(k) = Ωbr[1− 0.18

√
sin2(

kx

2
) + sin2(

ky

2
)] (3.37)

Where Ωbr=85 meV. This will also fix the unit of energy in all the Figures
from now on.

FIGURE 3.18: Breathing mode coupling intensity, according
to (3.36), plotted over the first Brillouin zone. As it is easily
seen, the phonon coupling is enhanced as we move towards the
edges of the Brillouin zone, and more in particular is enhanced

moving along the direction [π, π].

3.5.3 Results And Comments

We are now going to study the intensity of the peaks in the directions [0, π]
and [π, π]: all the other high symmetry directions are equivalent, for the high
symmetry of our model (here the symmetry is given by the coupling, but it
is the same of an effective CuO2 plane).
Still, since for small q we have two phonon peak with a greater intensity than
the single phonon peak, we would like to check that this behaviour is not di-
vergent - and thus that the intensity of the three phonons peak is smaller than
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the one of the two phonons peak. We check this in one dimension (the impor-
tant thing is to exclude a pathological behaviour of the coupling), and what
we obtain in Figure 3.19 empathizes the good behaviour of our calculations.

FIGURE 3.19: Here we have the results for a simulation in 1D
where we have used the coupling choosen with (3.36). We used
Γ = 5, Nk = 50 and q = 0.3. The three phonon peak is too
small to be seen, but it is present. This means that, even if the
two phonon peak is bigger than the single phonon peak, the
behaviour of our model is not divergent, and the two phonon
event is really the biggest contribution to the phononic RIXS

cross section.

Moreover, we have to keep in mind that the comparision between the
intensities along [0, π] and [π, π], in order to be interesting, must be done
at the same distance from the centre of the Brillouin zone - which is to say
that we have to consider a factor

√
2 between the components of q projected

along [0, π] and those projected along [π, π].
We are going to focus primarily on the proximity of the centre of the Brillouin
zone (Figure 3.20: we will restrict our investigation to about a quarter of the
first Brillouin zone), and then we will look at the whole zone (Figure 3.21).
This is needed because the two phonon peak intensity, at the edge of the
Brillouin zone, results to be at least one order of magnitude larger than the
the two phonons peak one. Anyway, as said in Chapter 2, the edges of the
first Brillouin zone are not accessible through RIXS investigation.
In Figure 3.22, 3.23 we have a comparison between the intensities of the peaks
along different directions. In Figure 3.24, the ratio between the intensity of
the single phonon peak and the double phonon peak as a function of the total
momentum transferred is plotted for different values of the parameter Γ - the
energy spread of the intermediate state due to its finite lifetime. The result
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that we find is that the bigger is Γ (and thus the smaller is the lifetime of the
intermediate state), the closer to the centre of the zone is the point where the
single phonon and the double phonon peak have the same intensity. This
is another way to say that the possibility to excite two phonons is somehow
related to the lifetime of the intermediate state - and it is reduced for short
lifetimes. But this are concept on which we will return in Chapter 4, and that
we expressed breafly in the previous Chapters.

FIGURE 3.20: Here we have a stack plot with the results of
the simulations made at different total momentum transfer: we
are thus moving in the Brillouin zone, and in particular along
[π, π]. When we set q, we imply kx = |q|√

2
and ky = |q|√

2
. What

we can notice is pretty striking: due to the form of the cou-
pling, the single phonon peak is suppressed near the centre.
Still, here we can found a non null two phonon peak, which

will also show a little dispersion, accordingly to (3.37).
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FIGURE 3.21: This can be thought as a prolongation of Figure
3.18, again along [π, π] and with the same value of q. The mag-
nitude of the single phonon peak near the edge of the zone is
too big to be comparable with the intensities of the peak near

the centre of the zone.

FIGURE 3.22: here we are plotting the intensities of the single
phonon peak (once again intended as its total area), calculated
along different directions. The total momentum transferred
refers to its modulus, as specified in Figure 3.18. The peak along
[π, π] is bigger, because the coupling is here stronger - there is
nothing surprising in this result. Still, what we can notice is that
in the portion of the Brillouin zone interested by the RIXS inves-
tigation (see Chapter 2) the difference in intensity between the

two directions is, at least in a first approximation, negligible.
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FIGURE 3.23: In this case the intensities are comparable all over
the Brillouin zone. The peak along the direction [π, π] is in gen-
eral stronger than the one along [0, π], but we have two pecu-
liarities: the first one is that the general trend of the intensity
to became smaller for higher q is inverted near the edge of the
Brillouin zone along the direction [0, π] (and we can have an
intuitive understanding of this - the fewer number of couples
accessible is compensated by the greater coupling), while the
second one is that for high transferred momentum we also have
that the peak along [0, π] is more intense than the one along

[π, π].

FIGURE 3.24: Here we have plotted the ratio between the inten-
sities of the single and the double phonon peak, along the di-
rection [0, π], for different values of the parameter Γ. The point
at which the intensities of the single and the double phonon
peak are equal ( I1

I2
= 1) is found to be closer to the center of the

Brillouine zone for bigger values of Γ.
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Chapter 4

Experimental Results Analysis

4.1 Experiment Description

As we said, we realized our experiment at beamline ID32 at ESRF [31]. We
had in total 96 hours of beam time.

FIGURE 4.1: In this Figure we can see the sample holder prepa-
ration. From the top to the bottom, we have La2CuO4 with
Tc = 22K, La2CuO4 antiferromagnetic - and thus insulating -
and again La2CuO4, but with a non measurable resistance, thin-
ner than the others and endued with a larger Rocking Curve
(Rocking Curve analysis reveals the broadening of the diffrac-
tion peaks - which is a way to evaluate the quality of the sam-

ple, see Section 2.3).

Once we have prepared the samples, we proceed to the alignment of the
beamline, which is carried out by the local scientists. This operation allows
the reach of optimal resolution and energy calibration (since we are using a
CCD detector, we need to have a meV

pixels ratio conversion in order to read the
results data of our experiments).
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In order to do this, the elastic diffused photons from a carbon taped are used
- its spreading in energy is a measure of the actual resolution. We found a
conversion ratio of 18.182 meV

pixel and a FWHM (full width at half maximum)
of the elastic peak (the broadening due to finite resolution is in a preponder-
antly gaussian shape) of 1.97, which sets our resolution to 35 meV (see Figure
4.2).

FIGURE 4.2: Picture of the beamline logbook, in which the final
resolution and conversion rate are shown.

Eventually, we cool down our sample to 20 K, and we start with the angles
offset measurement (see Section 2.3). Each sample will be characterized by
its position and its offset angles (which are different for each sampels, since
they are dependent on the sample).
We also take a XAS measure, in order to observe the resonance edges and
adjust the photon energy at the exact resonance edge (or, if we want to do
a detuning measurement, to know exactly at which detuning we are operat-
ing). More in general, taking a XAS before any measure is a good practice if
we think that the beamline could not be stable in energy calibration.
Before any measure, moreover, we also collect an image of twenty second of
the specular reflection (a Bragg reflection generated by a plane [0,0,N], where,
adopting r.l.u. units, N is an integer ), in order to have a reference for the en-
ergy resolution, which could have maybe changed since the calibration.
As we said many times along the thesis, a collection of a typical RIXS spec-
trum requires a quite long time, due to its intrinsically small cross section.
The time required is even higher if we are working at detuning, where the
cross section is smaller (see next Section). Of course, the time required will
also depend on the site where the experiment is taking place - and thus on the
brilliance of the synchrotron radiation source - and on the quality of the spec-
trum that we want to obtain. The higher is the acquisition time, the higher



4.2. Theory and Approximations 69

the accumulated counting rate, and thus the better our statistic - in the sense
that the overall real signal will emerge from the statistical noise, which is
naturally always present. More in detail, we can not just collect a long image
(where with image we intend the signal collect by the CCD detector) - for
a technical reason related to the double photons event, we must collect an
adequate number of images with relatively small acquisition time, and sum
them together in a second moment [11].
At resonance, for example, as we move through the Brillouin zone, during
the experiment we choose to obtain a spectrum as the sum of sixty images,
each one realized with a two minute acquisition time. This means that for
every spectrum we need a total acquisition time of two hours - and for detun-
ing they will require even more. We thus chose, when dealing with detuning
spectrum, to accept more noisy results in order to low the needed acquisition
time.
Overall we collected different spectra for the antiferromagnetic samples (the
middle one in figure 4.1) along the direction [π, π] and [π, 0] and the detuned
ones in the point [0.4, 0] (in r.l.u.). We are gonna to study all those spectra in
the Section 4.3.
We can choose the polarization (σ or π, see Section 2.3) of the incoming pho-
tons, but it is not an information that we are going to use during our investi-
gation (it is only relevant for the XAS spectrum analysis).
We also collected spectrum for the underdoped samples, but they are not
going to be studied along this thesis.

4.2 Theory and Approximations

The main idea behind our experiments at the beamline ID32 at ESRF was to
probe the electron phonon coupling. This can be done, theoretically, through
a study of the dependence of the phonon intensity from the detuning. What
we generally expect from a detuning (a situation in which the energy of the
incoming photon will be slightly different from the resonant peak) is a gen-
eral reduction of the intensity of the RIXS spectrum. From the formula (2.12),
and rewriting the denominator as z = hωkin − Eres + iΓ (as we have done in
(3.12), the meaning of each symbol can be found in Chapter 3) we can clearly
see that a detuning different from zero (in which case we would find z = iΓ)
means to increase the denominator of the overall cross section.
But when we are talking about phononic RIXS cross section (3.16), we also
notice a new term in the denominator of the overall cross section - g, which
we already defined as (M

ω )2. This term does not show up in magnons or dd
orbital excitations (see [11]), but it is what allow us to extract the parameter
g from the intensity decay of phonons excitations as a function of detuning
(as we will see in a moment).
We can think of this as a consequence of phononic RIXS being an indirect
event (see Chapter 2). Magnon or dd excitations are products of the final
state of the RIXS process (they are perturbation introduced in the system by
the final state of the electron), while phonons are created in the intermediate
state. Even if, as we have seen in Chapter 2, in a first approximation phonons
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only slightly modify the electron state (and in fact we consider two dipole
transitions as to and from the same intermediate state), we notice that the dy-
namic of the intermediate state somehow (more specifically, by virtue of the
canonical transformation (3.11)) enters the cross section calculation through
the number of phonons generated in it (see (3.12) or (3.16)):

d2σ

dωdΩ
∝ ∑

f
|Ff g|2δ(ω− n′ω0) =

= NT2
∞

∑
n′=0
|

n′

∑
n=0

Bn′n(g)Bn0(g)
z + (g− n)ω0

+
∞

∑
n=n′+1

Bnn′(g)Bn0(g)
z + (g− n)ω0

|2δ(ω− n′ω0)

(4.1)

To consider a non zero detuning means to, in a very naive and intuitive
picture, to consider an shorter lifetime of the intermediate state, and we can
think at the lifetime of the intermediate state as to a factor which enhances the
cross section for a phonon creation - the shorter the lifetime, the smaller the
cross section; and this proportionality passes through the coupling strength,
since, as we have seen in Chapter 3, only the relative magnitude of those pa-
rameters matter, and not their absolute value (this is not true, for example, in
the case of magnons: in that case the overall cross section is only reduced by
the fact that the absorption of the photon itself is less probable).
Rigorously, thought, things are not so easy and intuitive, since to reach an
excited state through a photon which is not exactly tuned to the resonance
energy does not associate a shorter lifetime of the intermediate state - still, it
means to change its property ([35] [41]), and thus to affect the phonon overall
cross section in a more complex way than in magnons or dd orbital excita-
tions case. If everything could be explained through an "effective lifetime",
then we could enclose both the intermediate state (Γ) and the detuning (Ω)
into an unique parameter: the "effective lifetime" would be given by Γ added,
through a certain constant of proportionality, to Ω.
But in Figure 4.3 is evident how this cannot be done - Γ and Ω must be re-
garded as independent factors.

So: in the case of phonons the intensity detuning dependence is dictated
not only from the photon absorption probabilities, but also from the proper-
ties of the intermediate state, which are altered by the detuning. And this de-
pendence, as we see from (3.16) and more clearly in Figure 4.3, pass through
g.
In a very practical way: what we obtain is that the detuning dependence of
the single phonon feature will depend on g - the smaller g, the fastest is the
decay. Once we have obtained experimentally this dependence, we have a
way to determine g.
The last thing that we have to notice is that we are considering the non dis-
persive phonons derivations (i.e. (3.16)), which is immediately reflected in
the fact that we consider g and not g(k). This is simply why, even if Chap-
ter 3 of this thesis is dedicated to the study of the theoretical phononic RIXS
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FIGURE 4.3: Here we have the dependence of the intensity of
the single phonon peak as a function of the detuning (Ω), for
different values of the intermediate state lifetime (Γ - for the
L edge of Cu is in the scale of hundreds of meV) and, most

importantly, of g = (M
ω )2. Figure by Matteo Rossi.

spectra generated by the creation of dispersive phonons, the grasp on the non
dispersive phonons theory is more solid. The main differences are that we do
not have to consider the dependence of the coupling from the transferred mo-
mentum and that, in calculating the intensity of the double phononic peak,
we do not have to account for all the possible couples - we do not have to
search for all possible combinations such that k1 + k2 = q. And of course
those are also the major drawback of that approximation (as I have already
written in Sections (3.2.1) and (3.2.2)): it means that we are considering only
q = 0, and that approximating a spectrum obtained with q 6= 0 is, in prin-
ciple, erroneous. But still, we will be interested only in single phonon peak
intensity fall - the different dynamic of the double phonon peak will not con-
cern us (for example, we do not account for the fact that the closer we are
to the edge of the Brillouin zone, the fewer the couples of phonons available
are, and we do not account for the different amplitude relative to each possi-
ble couple: in non dispersive calculations we are basically considering only
one single couple, the one with k1 = k2 = 0).
We will consider the results obtained with non dispersive phonons calcula-
tions as a first order approximation ([22], again) - from them we can obtain
the order of magnitude of the electron phonon coupling, while its shape can
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be deduced (again, in first approximation) by the single phonon peak be-
haviour when we move along different directions in the Brillouin zone ([π, π]
or [π, 0]).

4.3 Data Analysis

As we said in Section 4.1, we want to study the spectra of the antiferro-
magnetic sample, and in particular the spectra obtained along the directions
[π, π] e [π, 0] and the detuned spectra acquired at the fixed [0.4, 0] position.
For what concerns the spectra obtained along the different directions of the
Brillouin zone, what we are interested in is the behaviour of the coupling -
i.e. is the coupling growing with a bigger transferred momentum? To have
an answer, we just look and the intensities of the phonon peak along those
directions (as we said in Section 4.2, we only look at single phonon peak -
also because the double phonon peak is suppressed by the noise).
From the detuning, instead, we want to obtain an estimate of the absolute
strength of that coupling. Thus what we are really interested in is the ratio at
which the intensity decay happens (again, see Figure 4.3).
All the spectra that are showed in this pages are corrected for self-absorption
(the self absoprtion correction is different in case of crossed or not crossed
polarization) and are normalized to the sample current.
The experimental spectra are showed in Figure 4.4, 4.5, 4.6, 4.7, 4.8.
As we can immediately notice, we have some noisy spectrum in the phonons’
region for detuned spectra, and in particular for the spectra with a detuning
between 0.05 eV and 0.20 eV (see Figure 4.8). As we said, we accepted to have
less statistic on the detuned spectra (a smaller acquisition time), in order to
collect more data and have more informations.

Once we have our spectra, we proceed with the fitting. The main idea
is that we know which features we expect to find in our spectra (2.1.3), and
which shape they should have. What we do not know is their intensities. We
thus fit those features with their expected characteristic shapes, leaving the
intensity as a parameter to be fitted. The best fitting, which is the one which
once subtracted to the experimental spectrum leaves the smaller - and ideally
only noisy - intensity, is the more realistic. The intensities associated to the
best fitting can be considered as the real intensities of the features.
In Figure 4.9 we have an example of a fitted spectra.

The features that we have fitted are:

• Elastic Peak: we assumed a Gaussian shape:

I(E) = A · e−
4 log(2)(E−Eo)2

σ (4.2)

Here σ is the full width half maximum. In the case of the elastic peak,
it is our resolution - and for every measurement we take we also col-
lect the specular reflection, with the purpose to measure it. In all our
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FIGURE 4.4: Stack plot along the direction [π, 0], for the antifer-
romagnetic LCO. On the left we have the full spectra, while on
the right we have a zoom on the low energies scale, where the

magnon dispersion is clearly visible.

FIGURE 4.5: The same data as in figure 4.4, but plotted through
a color map. The magnon dispersion relation is even more evi-
dent. We can also notice how the phonons (approximately iden-
tified by the intensity between 0 and 100 meV) seem to grow

approaching higher values of the transferred momentum.
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FIGURE 4.6: Stack plot along the direction [π, π], again for the
antiferromagnetic LCO. The associate total transferred momen-
tum is q = [h, h]. Here is interesting to notice, among the other
features, the dispersion of the magnon: moving along this di-

rection we cross the magnetic Brillouin zone.

FIGURE 4.7: All the spectra are collected in the point [0.4, 0]
(r.l.u.). The overall effect of the detuning is striking - the in-
tensity of the spectrum drops with greater detuning for all the

features, since the cross-section itself is reduced.

fitting, we use a resolution which is an average (with an insignificant
variance) of the resolution at which the different spectra were acquired.
It is in general worse than the one found during the initial calibration
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FIGURE 4.8: Low Energy scale of Figure 4.7. Here we also plot-
ted the XAS absorption normalized to the resonance value, for

comparison (see Section 4.2).

procedure: it is around 41 meV. The parameter Eo fix the position of the
peak in the spectrum. We expect, of course, to find the elastic peak at 0
meV, but sometimes a small displacement (in the order of units of meV)
is found.
Eventually, A is what really fixes the intensity. Once we fix σ, the area
of the cure only depends on it.

• Phonons: concerning the phononic part of the spectra, we choose to
fit it with two phonons peaks - one at high energy and one at low en-
ergy. The phonon with the higher energy peak, which we systemati-
cally place between 75 meV and 85 meV, can be thought as to be really
associated to the highest phononic mode (and thus the breathing opti-
cal mode, [36]).
But for the low energy phononic peak (which we place between 35 meV
and 45 meV) such a naive picture is not adequate. In fact, we cannot ig-
nore that in this range of energy we have an high density of phononic
modes. We must think at this phononic peak as a peak in which the
overall intensity is the result of the contributions of many phononic
modes of low energy (the energetically lower phononic modes, associ-
ated to the copper modes, cannot be distinguished from the ealstic con-
tribution to the spectrum) - and those are mainly buckling modes. In
principle, moreover, we should account for the fact that every phononic
mode is endued with its particular coupling (in (3.17) we have already
suppressed the branch index, but it is always meant to be present).
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FIGURE 4.9: Example of fitted spectra. In particular, this is the
first spectrum of Figure 4.8. An important track is given by
the residual, especially in the low energy region - if its mean
value is different from zero (as it is supposed to be for the noise)
then we are probably leaving an excitation unfitted. In this case,
as in all the fitting made in this thesis, the non-noisy residual
at around 120 meV can be attributed to the double and triple
phonons events - which, as we said in Section 4.2, we decided

not to consider.

Still, we once again rely on the fact that what we are doing is a rea-
sonable zero order approximation - we are looking for the general be-
haviour of the phononic coupling, and the intensity dependence of this
low energy phononic peak from the total transferred momentum is an
indicator of the average coupling dependence along those middle en-
ergy modes.
In principle the energy broadening of the phononic excitations should
follow a Lorentzian shape, since it is due to the finite lifetime of the
excited state. But this broadening is smaller than the experimental res-
olution, and so we once again use a Gaussian shape (in the exact form
of (4.1)) - we are resolution limited.

• Magnons: In order to fit the single magnon peak, we used a Lorentzian
shape - this time, no more resolution limited. The exact shape that we
used is:

I(E) =
A
π
[

Γ
Γ2 + (E− Eo)2 ] (4.3)



4.3. Data Analysis 77

The intensity is once again fixed by the parameter A, since this expres-
sion for the Lorentzian distribution is normalized to one.
The energy broadening is dictated by the parameter Γ, which is any-
way always included between 0.021 and 0.024. Eo, again, set the energy
position of the peak. In the case of magnons, it will display an evident
dispersion.

• Bimagnons: in the case of bimagnon, we do not perform a proper fit.
In fact, we just take the integral of the residual intensity - the intensity
which is left after we subtract from the experimental spectrum all the
previous fittings - in the region where bimagnons, at least in La2CuO4,
are expected [42]. this means to take the integral between 300 meV and
900 meV energy loss.

• dd excitations: for the dd (or orbital) excitation we follow the same
track given by bimagnons - we integrate the residuals between 1 eV
and 3 eV of energy loss. This is not useful for our purpose, but it is

Once we have fitted every spectrum, we just have to plot all the intensities
as functions of transferred momentum (for the maps along different Brillouin
zone directions) or of the detuning.
In figure 4.10, 4.11, 4.12, 4.13, we have the plots.

FIGURE 4.10: Phonons’ intensities along diagonal direction in
the Brillouin zone - all the data are extracted from the spectra
in Figure 4.6. Both the lower energy phonon and the higher

energy one are shown.

From Figure 4.10 and 4.11, we can immediately notice the trend of our
coupling dependence. What we supposed in the previous Chapter - a cou-
pling dependence which goes as the sin of the total transferred momentum
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FIGURE 4.11: Phonons’ intensities along diagonal direction in
the Brillouin zone. In this case, data are extracted from the spec-

tra in Figure 4.4.

FIGURE 4.12: intensities for different values of detuning en-
ergy. All the intensities are normalized to their value at (sup-
posed) zero detuning, which should be maximized by the great-
est overall cross section (see Section 4.2). Evidently, things are

way more complicated, as it is discussed in the text.

- is plausible: at least, the intensity of the phonons peaks really goes to zero
moving towards the centre of the Brillouin zone and grows as we approach
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FIGURE 4.13: Again, features’ intensity for different values of
the detuning, but this time the intensities are normalized to
their value at 0.05 eV detuning - this imply that the energy that
we supposed to be at resonance is slightly out of it. The red
circle highlight the spectra which are evidently more noisy (see

Figure 4.7 - 4.8)

the borders.
The intensities of the peaks along different directions are rather comparable,
and this is very coherent with Figure 3.20 - accounting for the fact that in
RIXS we are able to investigate about half of the Brillouin zone, and that in
Figure 4.10 and 4.11 (a vector [0.35, 0.35] has a modulus which is ' 0.5) we
arrive only at a q ' 5, which correspond to q = 1.57 in Figure 3.20.
Moreover, we can also notice that the higher energy phonon is always more
intense than the low energy one - where all the precautions about really con-
sidering the low energy one as a single phonon are implicit. Anyway, this
would suggest that the high energy phonons have a stronger coupling to the
electrons than the low energy ones.
In Figure 4.12 and 4.13 we have the intensity dependence from detuning. The
situation is more complicated than expected - and it is evident, at first glance,
from the fact that the intensities of magnons’ features in Figure 4.12 seems to
grow with detuning. This is a non-sense, for what we have said in Section
4.2.
In first place we have to recall that, between 0.05 eV and 0.20 eV we are deal-
ing with quite noisy spectra. The intensity values are plausible, but they are
definitely not incontrovertible.
Considering Figure 4.12, the overall dependence follows the XAS intensity,
as we expected. Still, we have an anomalous intensity from the high energy
phonon and the magnon. If for the phonon we could also accept that our
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simple fitting, in which we use only two phononic peaks, is subject to errors,
for the magnon the error can not be due to errors in fitting and the result will
have to be explained in a different way (see Figure 4.8).
This said, is hard to find a plausible physical explanation for what happens
in the first experimental fitting points of Figure 4.12. More interesting (and
somehow comforting) is what happens in the next points, which also are the
cleanest (in the sense that here we have a remarkably smaller noise). We have
a clear behaviour of the "intermediate state dependant" features (in the sense
of the previous section) which consists in a faster intensity decay for grow-
ing energy detuning. The features which are generated in the final state of
our RIXS process, as it is seen, follow more strictly the XAS detuning depen-
dence, which is the only explicit dependence of their overall cross-section.
This trends should be eventually confronted to the calculations in Figure 4.3,
paying attention to the parameters which enter this simulations - an evi-
dently important factor is the intermediate state lifetime (which associate a
certain energy broadening Γ = h

ωo
). A reasonable choice is a Γ between 0.5 eV

and 0.8 eV (a lifetime of tens of femtoseconds) - which means Γ
ωo

of around 8
for the high energy phonon and of 16 for the low energy one. Ω

ωo
also change

for the two phonons: the higher energy one will be in a range 0-12, while the
low energy one will be in the range 0-25.
Figure 4.13 is another way to consider the anomalies in the small detuning
region, and in particular the magnon intensity which is greater than at res-
onance. In this picture we suppose that the true resonance was where we
supposed to be at 0.05 eV detuning, which is, as we can see from Figure 4.12,
the point in which the magnon fits give the greatest intensity. This could be
explained with the fact that the XAS peak relative to the Cu L3 edge is not
a properly simple peak, but it is associated, inside its Lorentzian shape, to
more than one state - and this can complicate the detuning dependence of
the spectrum collected at such edge.

In the end, a preliminary fitting of our results with the figure 4.3 returns a
coupling strength of 210 meV for the higher energy mode (nominally the
breathing mode) and of 190 meV for the lower energy one. This means, once
we fix a plausible value for Γ (which we already discussed), to identify the
coupling strength which better approximated the experimental intensity loss
at different value of detuning. We are referring to the strength of the cou-
pling as to the parameter M(K) in the equation (3.17). As we have said, since
we are considering non dispersive phonons, the momentum dependence is
clearly lost.
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