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Sommario

Negli ultimi anni, uno dei cambiamenti più importanti a cui si assiste
in ambito industriale e manufatturiero è l’evoluzione verso una robotica
di tipo collaborativo, in cui il robot interagisce con l’umano per assis-
terlo nell’esecuzione di azioni che ne mettono a rischio l’incolumità o che
richiedono elevata accuratezza. Affinché la collaborazione dei due agenti sia
proficua e porti ad un miglioramento dell’efficienza del processo produttivo,
occorre fare in modo che gli agenti coinvolti nel processo di assemblaggio
siano capaci di sincronizzarsi. A tal fine, risulta importante predire le
azioni dell’operatore umano per controllare il robot in maniera sicura e
funzionale. In ambito collaborativo le interazioni tra agenti possono avere
risvolti imprevedibili: il robot potrebbe essere costretto a fermarsi per
evitare situazioni pericolose per l’umano o, ancora, l’umano potrebbe imp-
iegare tempi variabili per completare una specifica azione. Tale incertezza
nella durata delle azioni degli agenti è il principale problema affrontato in
questa tesi. Al fine di controllare le azioni svolte nel tempo dal robot, in
modo da minimizzare il tempo di inattività degli agenti e massimizzare
la produzione, è stato sviluppato un algoritmo di scheduling che, tramite
l’impiego della Fuzzy Theory, è in grado di rappresentare le durate delle
azioni degli agenti tramite distribuzioni possibilistiche. Questo consente
di implementare un approccio diverso dai classici metodi finora proposti.
I risultati sperimentali, ottenuti in uno scenario reale di assemblaggio
collaborativo, indicano che l’algoritmo sviluppato garantisce efficienza
nel comandare il robot, il quale si adatta adeguatamente alle esigenze
del collaboratore umano, assecondando prontamente le sue intenzioni di
collaborazione e minimizzando i suoi tempi di inattività.





Abstract

One of the most important changes in the manufacturing industry is the
evolution towards collaborative industrial robotics, in which robots interact
with a human to carry out actions that might be dangerous for the human’s
safety or that require high accuracy.
To achieve an efficient collaboration as well as an improvement in the
production process, it is necessary to ensure that the involved agents are
able to mutually synchronize.
To this aim, it is important to predict the actions of the human operator
and consequently control the robotic actions in a functional way.
In the collaborative context, interactions between agents can have un-
predictable consequences: the robot could be forced to stop, to avoid
dangerous situations for the human, or again, the human could spend a
variable amount of time to complete a specific action.
This uncertainty in the duration of actions of the agents is the main prob-
lem faced in this thesis. In order to minimize the inactivity time of agents
and maximize the production, a scheduling algorithm has been developed,
based on Fuzzy Theory, which is used to represent the durations of agents’
actions through possibility distributions.
The experimental results, obtained in a real scenario of collaborative as-
sembly, show that the algorithm developed guarantees an efficient control
of the robot, which adequately adapts itself to the needs of the human
collaborator, promptly satisfying his or her intentions and minimizing his
or her inactivity time.





Chapter 1

Introduction

1.1 Human-Robot Collaboration and Indus-
try 4.0

After many years of conventional procedures of production, industrial
manufacturing is evolving toward flexible and intelligent manufacturing,
the so-called Industry 4.0. One of the key elements of such revolution is
the interaction of human and smart machines, which allows to achieve the
greatest flexibility and productivity simultaneously.
A particular attention is oriented to collaborative manufacturing systems,
where a human worker cooperates close to collaborative robots, in produc-
tion scenarios.
This evolution means breaking with the established practice of separated
workspaces between robot and human. These changes are reflected in new
safety standards related to collaborative robotics. Indeed, a wide field of
research focusing on the prevention of human-robot impacts and/or the
minimization of related risks or their consequences arose. Therefore, an
important issue in human robot collaboration is to enhance safety through
the implementation of collision avoidance systems. Several methods for the
estimation of the proximity from a robot to an object and the generation of
alternative trajectories and acceleration/velocity variations before collision
have been developed, used for strategies aimed at preventing undesirable
robot-human impacts when they are working together.
Therefore, since the collaboration must ensure the safety of the human
operator, the robot might be forced to slow down its movements or even
stop during the execution of an action.
These unexpected changes in the robot trajectories lead to a very imprecise
knowledge regarding the duration of its actions. In addition, a big source
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of uncertainty is represented also by the cooperating humans, whose tasks
may have considerably variable durations.
Therefore, the problem of managing temporal flexible events plays an
important role when developing a performing human-robot collaboration.
Indeed, the actual problem is to schedule the cooperative tasks in real
time, managing the complexity arising when having a great number of
cooperating agents, sharing areas and production steps.
Thus, a good dynamic task planning framework is needed to coordinate
tasks of robot and human, accounting for the uncertainty affecting the
knowledge related to these agents.
The main capability of the planning with uncertainty approach is to control
the robot in order to guarantee safety and fluency for the operations of
the human. In other words, the goal is to control the robot in such a way
to dynamically adapt to the actual behavior of the human.

1.2 Thesis contributions
The main objective of this work is to efficiently control the robot, in

order to adapt to the needs of a collaborating human.
The collaboration in this work has been intended as cooperation of the
agents, aimed at assembling products of common use: some actions are
performed by the human and others, for example those for which high
accuracy is required, by the robot.
Most of the actions performed by one agent depend on other actions carried
out by the other agent. For example, the human might have to assemble
two pieces, where one of them is the outcome of a previous assembly
performed by the robot.
This leads to a chain of operations that depend one on the other: if the
tasks are not optimally coordinated, an agent might be in an idle condition
for long time, reducing drastically the overall performance.
The aim of this thesis is to successfully control the robot, scheduling its
actions in order to promptly satisfy the human’s requests, minimizing the
time for which he/she remains in an idle condition and accounting for the
uncertainty of the overall system.
In this work, an algorithm has been developed to optimally decide the
activities that the robot has to perform, taking into account the imprecise
knowledge about the duration of actions of the agents.
The approach used in this thesis to describe the imprecision and uncertain-
ties in the durations of batch processing tasks relates to Fuzzy Set Theory
and Possibility Theory. Such frameworks provid methods to represent the
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available information related to the agents involved in the system, assigning
a degree of “reliability”: thus, the approach quantifies the uncertainty
affecting the considered system, allowing to counteract it. The scheduler
obtained is then capable of handling significantly uncertain environments,
providing good performance and adapting to the human’s needs.
As an additional target of the thesis, the method proposed has been val-
idated experimentally in a realistic collaborative assembly: it has been
proven that a reduction in the waiting time of the agents has been achieved,
as well as an increase in the productivity.

1.3 Organization of the thesis
In the following an overview on the structure of the thesis is given.

Chapter 2 presents the current State of the Art, showing how problems
concerning scheduling have been tackled during the years. In particular,
an introduction on the fuzzy approach for scheduling is provided, as it
constitutes the basis for the algorithm developed in this work.
Chapter 3 presents the method used to model the system considered in
this thesis, adapting Fuzzy Time Petri nets (FTPN), which have been
chosen amongst other options presented in the same Chapter. In particular,
the convenience in choosing such representation of the system is pointed
out: the FTPNs allow to account for uncertainty, including it in the time
distributions that are associated to the transitions of the net.
A Section is dedicated to the computation of the reachability tree of FTPN,
which is a graph illustrating all the possible ways in which the system can
evolve, starting from a particular condition. It is used by the scheduler
to solve the decision-making problem: analyzing the tree, the scheduler
is able to identify the most convenient evolution of the system within a
temporal horizon, in order to guarantee an optimal synchronization of the
agents.
In Chapter 4 the problem of uncertainty is detailed, starting from an
overview on the origins of Possibility Theory. After some theoretical
notions, it is presented how the uncertainty affecting the system is modeled
and propagated through the reachability tree. The proposed method is
compared with the more classical approach based on Probability Theory,
justifying the choices made throughout this work.
Chapter 5 shows how the theory ted in Chapter 4 has been applied to
the problem treated in this thesis. In particular, it is reported how the
durations of actions of the agents are represented using fuzzy numbers.
Regarding the operator’s actions, an external predictive algorithm was

3
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exploited to estimate their durations and is briefly presented in the same
Chapter.
The main goal of Chapter 5 is to explain the working principle of the
scheduling algorithm, starting from the generation of the reachability tree
up to its analysis, performed to identify the best evolution of the system.
Chapter 5 ends with a pseudo-code that summarizes the implemented
scheduling algorithm.
Chapter 6 presents some use cases that has been employed to test the
scheduling algorithm: simulations and experimental tests are reported
to prove that the scheduler is able to adapt to different situations and
conditions, demonstrating that a good performance is provided both in
terms of minimization of waiting times and in terms of computational cost.
Chapter 7 concludes this thesis highlighting the results obtained and
providing hints about possible future developments.

4



Chapter 2

State of the Art

In real world applications, in which the robot performs a human assistance
function, to ensure perfect interaction between the agents it is extremely
important to schedule an action plan for the robot that provides adequate
assistance at the right time, in order to minimize the waiting time between
the two agents.

First of all, an efficient planning of the sequence of actions to be performed
by the robot can be done only if it is assumed that the collaborative system
under consideration is dynamic, i.e. a system whose evolution is deter-
mined not only by the completion of a robotic action, but also from the
fulfilment of an action carried out by a human. In many applications, the
environment is considered to be static and that it only changes when the
robot performs an action, i.e. there are no exogenous variations from the
robot point of view [1]. Nevertheless, in real world applications, changes
are caused not only by robotic actions but also by exogenous events related
to human activities, which then need to be taken into account.
Moreover, the exogenous events from human activities cannot be treated in
a simple way, as by considering a “timetable” of human activities, because
humans act based on their intentions and perceptions; a prediction on
human activities is required to account for them with more accuracy [1].

On the other side, exogenous events from human activities are not perfectly
predictable, because human intentions are not fully observable: thus, such
uncertainty must be considered during a scheduling stage.
Analogously, robotic actions performed in the real world have a certain
degree of uncertainty, because the duration of an activity involved in the
process may be difficult to predict accurately: uncertainty concerning what
or how much work must be performed to complete an activity leads to a
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significant effort in estimating the distribution of activity duration.

To be efficient, scheduling methods need to handle problems where events
are related to uncertain durations [1].
To this aim, many algorithm have been proposed during the years, as
alternatives to the classic scheduling methods: the uncertain factors in
real-world scheduling problems are not easily treated by classical determin-
istic or stochastic solution approaches.

Deterministic scheduling models [2, 3, 4, 5] assume that all project param-
eters can be specified in advance, before scheduling [6], but Janak et al. [7]
demonstrated that even if it is often assumed that all system parameters
are deterministic in nature, even slight variations in system conditions can
make a scheduler unfeasible [9].
Stochastic scheduling models [2, 10, 11] consider the project parameters
as independent random variables with given distributions, determined
according to Probability Theory [6].
So, the uncertainty is viewed as random variable or a stochastic pro-
cess, involving Markov decision processes (MDPs) and their extensions
[12, 13], as well as partially observable Markov decision processes (POMDP)
[14, 15, 16, 17, 18, 19, 20, 21].

Nevertheless, there are applications in which collecting enough data to
obtain a reliable distribution of the random variable is complicated [6].
Moreover, these techniques are based on Markov processes, in which the
future states of a process depend solely on the present state, not on the
sequence of events that precede it.
According to this assumption, the time between any two events is rep-
resented as an exponential distribution, which in general is not able to
provide realistical descriptions, due to its “memoryless ” property.

Semi-Markov versions of MDPs and POMDPs are then used to counteract
such restrictive property: a semi-Markov process is an actual stochastic
process that evolves over time. It is a generalization of Markov models
that allows the time spent in a particular state to be represented by an
arbitrary probability distribution, instead of only by the exponential one,
and allows the state transition probabilities to be dependent on the time
spent in that state. So, in other words, the process is able to “ remember ”
[1, 22] its past.
However, although they are widely used in human activity recognition
[23, 24], semi-Markov MDPs and POMDPs models are usually computa-
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tionally too expensive and theoretically too complex because of the need
to use complicated multiple integration techniques when the uncertainty
is represented by continuous distributions [25]. Therefore, it is difficult
to apply them for solving practical scheduling problems and alternative
treatments of uncertainty have been considered [26].

Several methodologies exist for the explicit consideration of different types
of uncertainty within a scheduling model: two-stage stochastic program-
ming, parametric programming, fuzzy programming, chance constraint
programming and robust optimization techniques represent different frame-
works to take into account parameter uncertainty [9].
In fact, more importance has been given to the uncertainty associated with
the system parameters, that can be characterized in three different ways:

• If there is not enough information to construct an accurate estimation
of the uncertain parameter’s distribution, then such distribution is
often represented as an uncertain parameter that is assumed to take
values within a specified range, defined by an upper and lower bound
[9].

• If there is sufficient information to construct a reliable distribution
for the parameter, then the uncertain parameter can be represented
in a probabilistic way [9], similarly to the work presented by Petkov
and Maranas [27] and Janak et al. [7].

• An alternative to the bounded and known distribution cases is the
use of fuzzy sets [9] as noted by Li and Ierapetritou [29].

According to the specific kind of uncertainty, an appropriate modeling
approach has to be used.
Thompson and Zawack [28] and Ryu and Pistikopoulos [32] developed a
framework to model uncertainty with parametric programming applied to
scheduling problems. Li and Ierapetritou [30, 31] used multiparametric
programming to take into account multiple forms of parameter uncertainty.
Parametric programming handles optimization problems by means of iter-
ative approaches: the required computational time might be a significant
limit, especially for large-scale industrial problems [9].
An alternative is offered by different approaches, such as chance constraint
programming, robust optimization techniques, and fuzzy programming.
The first has been developed by Charnes and Cooper [34, 35, 36], who

7
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removed the constraints on uncertain parameters, to substitute them with
their respective probabilistic forms, which explicitly take into account the
stochastic nature of the uncertain parameters [9]. Chance programming
has been included in scheduling problems by Orcun et al. [37] and Petkov
and Maranas [27].
Robust optimization techniques [7, 8], [38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
have been developed to guarantee robustness with regard to multiple forms
of uncertainty present within the system under investigation. Lin et al. [8]
and Janak et al. [7] developed the robust optimization theory for models
in which distributions are known and bounded.
When no information about the considered distribution is available, Fuzzy
set Theory can be used to model uncertain parameters: fuzzy programming
methods treat these uncertain parameters as fuzzy numbers, while their
constraints are represented by fuzzy sets [9].
These aspects were theoretically treated by Chanas and Kamburowski
[48] and adapted to scheduling problems by Hapke and Slowinski [49] and
Wang [50], who made use of Possibility Theory [65].
Wang in [6] applied fuzzy programming to the problem of scheduling un-
der uncertainty, developing a scheduling methodology based on fuzzy set
theory for uncertain product development projects, and in his method the
imprecise temporal parameters related to the project are represented by
fuzzy sets.

The target of this thesis is the implementation of a scheduling methodology
based on Fuzzy set Theory and on Possibility Theory, to control a robot in
a HRC context, accounting for the uncertainty in the duration of actions.

8



Chapter 3

Human-robot collaborative
context

In a Human-Robot Collaboration (HRC) context, the human and the robot
cooperate to reach a common goal, that could be for instance the assembly
of pieces in a production line.
To this aim, these two agents perform actions that can be independent or
cooperative. However, the action of an agent often depends on the success
of the action of the other one.
For example, if the robot has to put an object in a box, the box has to
first be assembled by the human; otherwise, the robot would be forced to
wait for the human to complete such action.
In a HRC context, planning plays a crucial role. This is particularly evident
for industrial environments, where the aim is to optimize the production
time, in order to maximize the production rate.
An example of optimization could be commanding the robot to perform
intermediate actions, while it waits for the human to assemble the box; in
this way, the robot would avoid to be inactive for too long.
More formally, task planning consists in the choice of actions to command
to the “ controllable ” agents of the system, e.g. robots. Such choice is
based on the prediction of actions to be performed by the “ uncontrollable ”
agents of the system.
In this thesis, the human is assumed to be an external agent and therefore
uncontrollable.

The purpose of this Chapter is to introduce the representation used to
model the system considered for the work of the thesis. A good solution
has been found on Petri nets (PN) (Section 3.1): they allow to illustrate
the structure of the system, as well as its evolution.
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Moreover, it is easy to compute a reachability tree of the system state,
exploiting PNs (Section 3.2). Such tree is a graphical representation of
all the possible ways in which the system can evolve, starting from an
initial state. Every branch of the tree represents a possible trajectory of
the system, in terms of sequence of actions performed by agents in the
process modeled through the PN.
Analyzing each branch of the tree, the features of the related path are
obtained in order to verify whether these features match the specifications
imposed by the user of the application. For example, it is possible to
compute the time for which the human would have been forced to wait for
every path. If the waiting time for a branch is too high with respect to
the user’s specifications, that branch is discarded.

As it will be later shown, the purpose of the thesis is to create a scheduling
algorithm which analyzes the reachability tree in order to find the most
convenient evolution of the system - depending on the specifications re-
quired by the application - to then properly command the controllable
agents.
Considering for instance a HRC context, it could be required to minimize
the time in which the human is inactive. As a consequence, the scheduler
should avoid to let the robot be busy for a long period of time if the human
is forecast to require the help of the robot in short time.
Concerning the decision-making, with the proposed scheduler the user can
specify his/her own criteria for choosing the best plan (i.e. path in the
reachability tree, for more details see Section 5.3.2). Such choice is lately
converted into command to send to the controllable agent.

In Section 3.1 of this Chapter the notion of Petri Net is presented and
justified as choice to represent the system considered in this thesis. Sec-
tion 3.2 presents the notion of reachability tree and the way the latter is
exploited by the scheduling algorithm created in this thesis. In Section 3.3
the system specifications used in the thesis are pointed out.

3.1 System modeled through Petri Nets

3.1.1 Petri Nets: a general overview
Petri Nets (PN), proposed in [52] by Carl Adam Petri, are a tool for

modeling communication and interaction between parallel processes.
In the description of processes it is often needed to represent sub-processes

10
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or activities that can be performed simultaneously, in parallel with each
other, and that can depend one on the other. Indeed, it could happen that
a certain phase of the process cannot occur until other phases or activities
are completed or until certain conditions are satisfied.

PN allow to represent and describe a process globally, and also allow
to follow its evolution, permitting to see the state in which the network is
located in a certain instant. A Petri net is a graph consisting of “ places ”
and “ transitions ”, connected through “ arcs ”.
More precisely, a Petri Net is an oriented bipartite graph, defined by the
following 4-pla:

N = (P, T, Pre, Post )

where:
P : is the set of m places (represented by circles)
T : is the set of n transitions (represented by bars)
Pre: P × T 7→ N is the pre-incidence function
Post: P × T 7→ N is the post-incidence function

The “ state ” of the Petri Net indicates the configuration of the process at
a given moment and is represented by a “marking ”, which describes the
location of tokens in the places of the net.
The tokens indicate the progress of the operations described in the process
steps: when the system evolves towards other states, tokens evolve towards
places.
Places and transitions are connected through arcs, which can in turn have
a weight assigned. Transitions represent the activities that can be carried
out: the conditions to be able to perform the considered activity are repre-
sented by the number of tokens in the places that are “input places” for
the transition, i.e. places connected to the transition through arcs going
from the places to the transition.
If the number of tokens is greater or at least equal to the weight associated
to the related arc, then the operation related to the transition can be
performed, which in turn means that the transition can “fire”.
After a firing, the tokens redistribute in the Petri Net, going into the
“output” places of the transition, i.e. places connected to the transition
through arcs going from the transition to the places; in short, transitions
are responsible for the flow of tokens throughout the net.
PN can be used as a “ graphical tool ” to represent and simulate the
dynamics and the competing activities present in the system [53].

11
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3.1.2 Time Petri net
When dealing with scheduling processes, it becomes necessary to wedge

in many events or actions that would happen subsequently.
This introduces the need of modelling the sequence of actions with a certain
degree of precision.
To this aim, duration of the involved actions must be considered and
therefore PNs that account for time must be used: the evolution of events
must be coherent with the evolution of the real system during time.
Many timed extensions have been proposed for PN, which can be roughly
divided into two main categories [54]:

• Timed PN: they include a “ duration ” associated with each transi-
tion. It is assumed that the duration related to events is perfectly
known and so correspond to sharp numbers.

• Time PN: they consider an entire “ time interval ” associated to the
relative firing time of each transition. They are used for systems that
may evolve in a non-deterministic way.
Therefore, to every transition a time interval [ tmin, tmax ] is assigned,
where tmin is the minimal time taken to fire, from the enabling time,
while tmax is the maximum time required to fire from the enabling
time.

• Stochastic PN: they are Time PN in which every transition is
characterized by a firing delay, which is a stochastic variable with
exponential distribution. Hence, the Stochastic PN (SPN) represents
a Markovian stochastic process, where the memoryless property is
assumed to hold [55]. As a consequence, the transitions that remain
enabled after a change in the marking don’t modify their firing times,
which is independent from the time elapsed since the enabling instant.
Assuming that a real system satisfies the memoryless property would
be a too strict assumption: SPNs are therefore discarded.

Time PN are the more general model, suitable to depict real time
stochastic systems. In fact, in real systems it might be necessary to model
transitions from one state to another not happening in a precise time
instant. It is possible to assign a time interval accounting for the uncertain
evolution of the system.

In HRC contexts, a robot that is performing an action might be forced to
interrupt it, if a possible collision with another agent is detected.
Or, again, if a robot is performing an action that depends on the success

12
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of the action of another agent, it might have to remain idled if the other
agent is not done yet.
Since it is not possible to know precisely how long the other agent would
take to complete the action [56], it is not possible to precisely predict the
robot waiting time either and so the duration of the robot action (see
Section 6.2.1 for further details).
This unknown aspect of time goes under the name of “ uncertainty ”.

Hence, it is necessary to include the uncertainty in the firing time of
transitions of the Time PN representing the system. In this way, the
evolution of the system over time would be modeled in a more realistic
way.
A more precise model of the collaborative process would certainly lead
to a more optimal scheduling: it would ease the scheduler to find the
best sequence of actions to command to the robot, satisfying the system
specifications and accounting for the above-mentioned uncertainty.

For this reason, the work developed in the thesis finds its basis in Time
PN (from now on TPN). Moreover, the modeling procedure proposed in
this Chapter will be extended - as shown in the following Chapters - in
such a way that the uncertainty won’t be represented simply as an interval
or through an exponential distribution. Indeed, considering an interval
for which every time value is equiprobable would be reductive. Instead,
the purpose is to treat the uncertainty with a proper distribution over time.

A Time Petri net is a six-tuple [54]

N = (P, T,A,w,M0, I)

where:

• P is the finite set of places, P = p1, p2, . . . , pn

• T is the finite set of transitions, T = t1, t2, . . . , tm

• A ⊆ (P × T ) ∪ (T × P ) is the set of arcs from (input) places to
transitions and from transitions to (output) places

• w : A → {1, 2, 3, . . . } is the weight function of the arcs and every
weight is a positive integer greater than 0

• M0 is a marking, defined as a mapping M : P → N+, representing
the initial state of the net. It is a row vector with |P | elements

13



Chapter 3. Human-robot collaborative context

• I : T → {R+,R+}∪{∞} associates with each transition t an interval
[tmin, tmax]

A transition is said to be “ enabled ” when the number of tokens in all of
its input places is greater or equal to the weight of the associated arc.

When a TPN is used to model a system, the transitions are associated to
actions of the agents (e.g. “ the robot works a piece ”) or to evolution of
the system from one state to another (e.g. from “ the robot is busy ” to
“ the robot is free ”). The places of the net are associated to states of the
system or to its resources (e.g. the robot or its arms, the human, buffers,
etc.).
Suppose for instance to model a system in which a human and a robot
cooperate to assembly a product. The two agents perform individual
actions, but a particular action of the human is subsequent to a specific
action of the robot, i.e. the human can perform that action only when the
robot has completed the other one.
The sequence of actions to assembly the product is:

1. Action A: the robot takes a piece from the buffer and machines it

2. The robot gives the finished piece to the human

3. Action C: the human works the piece

4. Action B: robot takes the piece worked by the human and puts it on
an output pallet

The aforementioned assembly can be modelled by the TPN depicted in
Figure 3.1.

Being the main goal of the thesis to account for uncertainty in duration
of actions, a method to account for such imprecise information is needed.
TPNs are a good basis to such problem, because are able to represent the
duration of actions through the time associated to their transitions.
A further addition to this, is to associate the uncertainty to such durations:
to do so, the time of transitions is not represented as a sharp number but
as a distribution. In this way, the duration of an action is represented as
a set of possible values, each of which is characterized by a membership
degree (see Chapter 4).
The distributions used go under the name of “fuzzy numbers”: from here
on, this kind of TPN will be referred to as Fuzzy Time Petri net (FTPN).
Further details on Fuzzy Theory and fuzzy numbers are given in Chapter
4.
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FTPN

Figure 3.1: TPN: example of human-robot collaboration

3.2 Decision-making as analysis of the reach-
ability tree of a FTPN

The scheduling algorithm presented in this thesis, actuates a choice
about the actions to send to robots. Such actions should be the outcome
of a compromise to minimize the waiting time of all the agents involved in
the cooperation.
This compromise is found by analyzing the reachability tree of the mod-
elling FTPN, which is computed starting from the current state of the
system and developed until a fixed temporal horizon.

The reachability tree of a FTPN is a graphical arrival representation
of all the possible reachable markings, with admissible time, starting from
an initial marking that describes the starting configuration of the FTPN.

• The nodes of the tree are linked to the reachable markings of the
FTPN

• The arcs of the tree are associated to the transitions that bring from
a marking of the FTPN to another

An example of reachability tree is shown in Figure 3.2, related to the FTPN
of Figure 3.1. Once the reachability tree has been computed, the scheduler
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Figure 3.2: Reachability tree of the FTPN of Figure 3.1

analyzes every branch, assigning a “weight ” quantifying the goodness of
a path, that depends on some tunable specifications assigned by the user
(see Section 5.3.2).
Once the best branch (path) has been chosen, only the first controllable
actions in the optimal path are sent to the robot. Then, the algorithm is
invoked again and a new tree is computed, to choose the next action to be
performed by the robot.
The approach of generating a tree up to a certain temporal horizon to then
send to the robot only the first action of the chosen sequence, reflects an
MPC approach (see Section 5.3.1).
As it will be proved throughout the thesis, the FTPN combined with
the inclusion of the uncertainty (modeled with the method presented in
Chapter 4), leads to obtain a reachability tree considerably reduced in
size. Indeed, the way the uncertainty is modeled allows to detect the
unfeasibility of some branches and therefore their consequent removal from
the tree.
The approach anticipated up to now will be thoroughly presented in
Chapter 5.

3.3 Scheduling preferences
In the HRC context considered in this thesis, the agents considered are

humans and robots performing individual or cooperative actions.
Therefore, it is necessary to classify the different classes of actions that
will be modeled. They are distinguished according to the agent executing
the action and the role having that action, i.e. if it is necessary for other
agents to then perform subsequent actions.
Hence, the actions can be categorized as follows [73]:
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• Robot action: is an action executed autonomously by the robot,
which is not directly necessary to satisfy a human’s need.

• Robot to Human action: is an action performed exclusively by the
robot but its outcome influences an action that has to be performed
by the human immediately after. Therefore, since the target is to
minimize the waiting time of the agents, it is important to give
precedence to this kind of actions, in order to avoid idle conditions
of the human.

• Human action: is executed by the human alone. Since the human
is an external agent, and therefore considered “ uncontrollable ”, this
action cannot be controlled: it can only be predicted by a predictive
algorithm (developed in [51], which is out of the scope of this thesis)
that allows to approximately know the duration of such action.

• Human to Robot action: is an action performed by the human
only - so still uncontrollable - but followed by a robot action.

The TPN is built accordingly to the presented activity classification, using
different types of places and transitions.
In particular, the places will be distinguished in:

• Action in progress: the time spent by a token in this place identifies
the duration of the corresponding action, i.e. the action started when
the transition in input to this place fired.

• Resource: a token in this place represents the availability of the
resource associated to it. The resource can be the robot (or one of
its arms, since the arms work independently and are considerable as
different agents), the human or a buffer.

• Biding place: it is always subsequent to a “Resource place ”(related
to the availability of human or robot): a token in this place means
that the agent (human or robot) is available but not ready to perform
an action (due to lack of resources; e.g. in an assembly process, the
agent that is ready misses the piece that is supposed to be machined)
and, therefore, is in a waiting condition.

Concerning transitions, the following distinction is made:

• Controllable: is associated to the command to give to the robot,
in order to let it start the intended action. A controllable transition
is the outcome of a decision taken by the scheduler and so there is
no delay to be considered. In other words, it fires instantaneously.
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• Uncontrollable: is related to an action and so is characterized by
a duration. The latter depends on the time required to perform the
action and is represented in such a way to account for the uncertainty
on its duration (representation showed in Chapter 4)

When modeling the system as a FTPN, every action performed by robots
is modelled as a controllable transition followed by an uncontrollable one.
This choice arose with the need of maintaining the control on the succession
of actions, each one with its own uncertain duration.
Consider for example a system in which the robot can perform two actions
R1 and R2; suppose that the system is in a condition for which both actions
can be executed. Translating the situation in a FTPN representation, it
means that both the uncontrollable transitions associated to R1 and R2
(namely, tU1 and tU2 respectively) are enabled and can fire.
Scheduling has the aim of choosing which one to fire: the choice depends
on the system specifications. For instance, if the goal is to have the mini-
mum execution time, it might be more convenient to choose tU1 over tU2 .
Nevertheless, since tU1 and tU2 are uncontrollable transitions, there is no
power of choice: the system evolves uncontrollably and, likely, without
satisfying the criteria of preference.
To avoid this problem, controllable transitions are introduced: tU1 is pre-
ceded by tC1 and tU2 by tC2 . Hence, it is possible to choose to fire tC1 over
tC2 : in this way, the system is brought into a configuration for which it is
straightforward that tU1 would be the next transition to fire (supposing
that there are no other transitions in the system and the firing of tC1

disables tC2).
An example of controllable and uncontrollable transitions alternating is
presented in Figure 3.1.

Considering a generic system of collaborating agents, it is possible to
reach a condition for which more actions can be executed. In such cases,
the scheduler has to choose the most appropriate action, by choosing the
controllable transition that would lead to the most convenient uncontrol-
lable future evolution.
In other words, controllable transitions allow to bring the system in a
situation in which only a group of certain uncontrollable transitions can
fire and, so, only a group of certain future scenarios are possible.
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Chapter 4

Uncertainty: Possibility and
Fuzzy Theory

In this Chapter all the main notions of Possibility and Fuzzy Theory
are provided, together with the reasons that led to tackle the problems
considered in this thesis with a fuzzy approach.
Section 4.1 describes in detail the problem concerning the duration of
actions in a HRC context. In Section 4.2 a brief historical excursus is
presented on the development of Fuzzy Theory and the diffusion of the
Possibility Theory to treat problems in real systems. Section 4.3 introduces
the problem of epistemic uncertainty and the reasons that led to the choice
of this thesis to use a method to model uncertainty, that is an alternative to
the traditional ones. In Section 4.4 the basic concepts of Fuzzy Theory are
illustrated and in Section 4.5 concepts of Possibility Theory are presented.
Section 4.6 deals with the problem of uncertainty propagation, solved with
a possibilistic approach. In Section 4.7 the relations between possibilistic
and probabilistic approach are illustrated.

4.1 Managing actions with uncertain dura-
tion

As already stated in Chapter 3, the uncertainty that characterizes the
duration of the actions of agents is a relevant issue. Indeed, the scheduling
algorithm that chooses the actions to be sent to the robot has to take into
account the uncertainty on the duration of each of such actions.
In fact, if the decision making is performed neglecting the uncertainty that
affects the system, an apparently optimal plan might become unfeasible
or at least considerably different from the real evolution of the system.
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Moreover, the expected times at which the operations are actually per-
formed would turn out to be far from the real ones and so the overall
performance would then be distant from the forecast one, leading to an
ineffective scheduling.
According to what has been stated above, the work here presented is
aimed at properly choosing the best plan, interpreting the uncertainty as
a powerful source of “ information ”. Hence, the purpose is to compute a
reachability tree in which the uncertainty is embedded in the firing times
of the transitions. This would reflect the uncertainty on the duration of
actions and would allow the propagation of such uncertainty from one
action to the following one. By doing so, the overall uncertainty affecting
the whole system can be properly modelled.
In the classes of Petri nets considered by this work, every transition is
linked to a physical action whose uncertain duration must be modelled. To
this aim, the actions assigned to the agents are managed in different ways:

• Human action: the external algorithm - presented in [51] is adopted
for predicting the start time of such actions, i.e. provides a prediction
of the human intention.

• Robot action: the duration of the actions of the robot is computed
basing on data collected from past executions of the algorithm. The
collected data is used as a prediction of the future duration.

The scope of the thesis is to model the “measurement imprecision ” - in
terms of “ how much is not known about the measure ” - to guarantee the
efficiency of the scheduler of robotic actions.
Once the uncertainty on every single action is modelled, it is important
to study how it is propagated through all the sequential actions, i.e.
throughout the reachability tree.
Consider as an example a system, where an agent (e.g. a robot) has to
perform 3 actions on a working piece:

1. take a piece from the buffer

2. work the piece

3. place the piece on a pallet

Each of these actions has a duration that is approximately known because it
is impossible to have a precise knowledge of this quantity. To predict when
the robot would complete the whole action, i.e. when the piece would be on
the pallet, the total uncertainty must be considered. Such total uncertainty
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is supposed to consider and combine all the single uncertainties, assuming
in addition that each of them propagates, influencing the successive ones.
In the following, a computation for the example is reported to show two
different scenarios and in particular what happens when the uncertainty is
not propagated through sequential actions:

• First scenario: the first two actions are “ perfectly known ” - and
so their duration is a sharp value - whilst only the last one is not
completely known (duration defined over a temporal interval). Sup-
pose that “ place the piece on a pallet ” requires between 4 and 5 s;
“ take a piece from the buffer ” takes 5 s and “work the piece ” 90 s.
Consequentially, the total action is completed within 99-100 s, i.e.
result of (90+5+“number comprehended between 4 and 5 ”).

• Second scenario: the duration of every action accounts for imprecise
information and so is defined over a temporal interval. Assume that:

1. “ take a piece from the buffer ” takes from 5 s to 8 s

2. “work the piece ” from 85 s to 95 s

3. “ place the piece on a pallet ” 4 s to 5 s. Then, the time required
to perform the whole action would be encapsulated in a range,
with lower bound computed as “ best case ” (5+85+4 = 94 s)
and upper bound as “worst case ” (8+95+5 = 108 s). The total
action has a duration comprehended in the interval [94, 108].

Notice that the magnitudes of the ranges obtained in the two cases are
rather different: where propagation of the uncertainty is considered, the
resulting interval is much wider.
As a consequence, not considering such uncertainty would lead to a very
approximated and reductive result. Therefore, it is essential to account
for the imprecision, as it occupies a leading role in the evaluation of an
optimal plan.

In the work developed in this thesis, Fuzzy Theory will be used to model
and propagate the uncertainty. Thus, in the following a brief background
and notions of such theory will be given.
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4.2 From “Theory of Communication ” to
“ Fuzzy Information Theory ”

In [58], Shannon published a milestone regarding information theory:
the intention was to define a general theory on communication, able to
account for the noise on transmission channels and to preserve the nature
of the original transmitted message as much as possible.
The communication model considered by Shannon [61] consisted of:

• Source of information that produces the messages to be sent to a
receiver, through a communication channel

• Transmitter to transform the messages, in order to produce signals
to be sent across the channel (e.g. in telephony, acoustic pressure is
converted into an electric current)

• A channel as means for transmission (e.g. wires, light beams, etc.)

• A receiver that performs the opposite operation of the transmitter:
reconstructs the original message from the signal received

• Destination, i.e. person or entity entitled to receive the message

According to this model, Shannon aimed at transmitting a message the
least possible affected by errors with respect to the original message: he
claimed that the cause of concern in communication was to reliably repro-
duce “ either exactly or approximately ” at one point a message selected
at another point [58].

However, he was not concerned about controlling that the transmitted
message was meaningful. Indeed, as later on stated the mathematician and
physicist Warren Weaver, even a message without transmission errors could
lack of real information, if the content is non-sense: when two messages
are received, they can be interpreted as equivalent even though one is “
heavily loaded with meaning and the other is pure nonsense ” [59].

In July 1949, Weaver published “The Mathematics of Communication ”:
in the introduction, he explained the reasons for Shannon’s mathematical
theory was not enough to describe the imprecision of the information
transmitted. According to him, such theory considered the “ correctness ”
only in technical terms, whilst also “ semantic ” and “ influential ” problems
of communication should have been a matter of concern.
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He believed that - when some noise is introduced - the received message
contains some distortions and errors, i.e. unknown and exogenous material.
Then, to remove the spurious part of the message it is first needed to
determine the amount of “ ambiguity ” brought by the noise itself. Such
quantity is called by Weaver “ equivocation ”. [60]
Weaver soon realized that communication had to be improved trying to
solve not only technical problems, related to accuracy of transmission from
one transmitter to a receiver, but also those related to the interpretation
of the meaning attributed to the received message.
He defined the problems concerned with interpretation [61], dividing them
into:

• Semantic problems: about how the receiver interprets the meaning
of the received message; then such interpretation has to be compared
with the intended meaning of the sender

• Influence (or effectiveness) problems, concerned with the success
with which the meaning conveyed to the receiver leads to the desired
conduct on his part

Figure 4.1: Shannon’s communication model, [61]

According to Weaver, the Theory of Communication could be enlarged
adding to Shannon’s model (Figure 4.1) two more elements, that would
have accounted for semantic problems (Figure 4.2).
The first of these blocks, in Figure 4.2 illustrated as “ Semantic Noise ”, was
inserted between the source of information and the transmitter. This block
had to codify the distortions introduced by the source, that are different
from the noise introduced by the transmission channel.
The errors introduced in this phase of communication and transmitted
together with the message were then eliminated by the specular block
“ Semantic Receiver ”, inserted between the receiver and the destination.
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Figure 4.2: Weaver’s communication model: an extension of Shannon’s model,
[61]

This block actuated a procedure of decoding, to get rid of the semantic
errors. The process of recovery was executed basing on the public of
receivers, to which the message was addressed.

This established the basic concepts for the lately developed theory, founded
on the ambiguity of language (vagueness) and on the importance of the
meaning of the transmitted information, i.e. the Fuzzy Theory.

In [63], Zadeh started dealing with recovery process of transmitted signals.
At first, influenced by Shannon’s theory, he studied a technique to accu-
rately reconstruct the transmitted messages, introducing the concept of
“ distance ”. Given a finite set of possible signals to send to the receiver:

X = {xk(t) } k = 1, 2, . . . , n

calling y the signal that reaches the receiver, y would be the signal used
to reconstruct the original message. To do so, the receiver compares y
with all the possible xk, using its new concept of distance function, d(x, y).
Eventually, the receiver selects the signal xk that is closer to y, i.e. the
one with the smallest distance function. Overall, the received signal is
assumed to be the xk for which it holds that:

d(xk, y) < d(xi, y) i 6= k, ∀k, i

After a while, Zadeh himself realized that it could often turn out to be
inconvenient or even impossible to determine a quantitative measure, to
compare two signals.
What mostly characterizes the ambiguous predicates is that their structure
and the information that they carry is extremely complex and so not easily
reducible to purely “ extensional logic ” notions. This idea provides the
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foundations for the lately developed “Theory of Fuzzy sets ”, [63], that was
introduced as a consequence of the need to represent a vague predicate: it
enriches the purely extensional concepts with membership degrees.
After developing such extension of classical sets, also arithmetic, logic and
measures were extended in this direction, by implementing techniques able
to represent concepts in a way analogous to how humans would represent
such concepts.

The problem of interpretation of the meaning, posed by Weaver, could be
seen as a fuzzy process too: the encoding executed by the “ Semantic Noise ”
stands for a fuzzification process (i.e. process that translates the available
information in a representation - namely, fuzzy set - that accounts for
the uncertainty affecting such information), whereas the block “ Semantic
Receiver ” could be seen as a defuzzification process. The fuzzy set obtained
before was now converted into an output variable, that therefore resulted
in the same form of the input one. Such process was aimed at obtaining
an output information the most possible similar to the one that the sender
aimed at transmitting.

Nowadays, fuzzy models are used for control applications and for all
those fields in which it is required to define robust models starting from
qualitative information or imprecise and ill-known data.
As it will be later shown, this thesis considers the information available
as imprecise. Thus, such information is “ fuzzified ”, i.e. represented in
terms of fuzzy sets. After few computations, the algorithm outputs are
still fuzzified; therefore, it is required to extract the information to be sent
to the intended receiver in a proper way. Depending on what the receiver
is (in this case the final user of the extracted information is the robot),
the data have to be “ defuzzified ” accordingly. In fact, the information
eventually obtained is suitable to be sent as a command to the robot.
In the following Section, a general insight on the problem of the uncertainty
is given, presenting what it consists of and the available approaches to
counteract it.

4.3 Modeling uncertainty
Considering a generic system (Figure 4.3) with input parameters af-

fected by uncertainty, it is important to know and propagate such uncer-
tainty in order to obtain an output “known” as much as possible, i.e. that
can be described as much precisely as possible.
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Figure 4.3: System with uncertain input parameters

First of all, it is necessary to understand the causes of the uncertainty.
Depending on the factors that brought to an imprecisely known system, it
is possible to classify the uncertainty in two main kinds:

• Aleatory uncertainty: it is due to natural variability of the physi-
cal world, so it is a direct consequence of the inherent randomness in
nature. It exists regardless of human’s knowledge.
For example, when flipping a coin, it comes up heads or tails randomly.
Even after performing many experiments and having computed the
probability of coming up heads, it is still not possible to predict the
exact outcome of the next experiment.
This kind of uncertainty cannot be eliminated nor reduced by retriev-
ing more knowledge or information. For this reason, it is treated
with Probability Theory. Aleatory uncertainty is often also referred
to as “ randomness ”.

• Epistemic uncertainty: it origins from human’s lack of knowledge
of the physical world and from the inability of precisely measuring and
modeling the real world. Unlike aleatory uncertainty, by acquiring
more knowledge on the problem the epistemic uncertainty can be
considerably reduced. For example, the distance between Milan and
Rome can be estimated more precisely if the distance from Milan to
Bologna is known. Epistemic uncertainty is also called “ fuzziness ”
[62].

The quantities involved in the HRC scheduler developed in this thesis
are assumed to be part of the category of epistemic uncertainty. For
this reason, the following Sections will show how to model and propagate
uncertainty, assuming it to be epistemic.

4.3.1 Epistemic uncertainty
As briefly shown in Figure 4.4, there are two main techniques to

treat epistemic uncertainty: if there are sufficient statistical data, their
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Figure 4.4: Types of uncertainty and possible representations

uncertainty can be represented using Probability Theory. If the information
available is scarce and/or is of qualitative nature, rather than quantitative,
an alternative approach is recommended. As it will be shown later, an
approach that leads to satisfactory results makes use of Possibility Theory.
An overlook on the two methods is given in the following:

1. Sufficient informative data: use probabilistic approach
Consider the generic SISO system of Figure 4.5, where y is a random
variable described by the probability distribution f(y). To build
f(y), it is necessary to observe y performing many experiments and
so collecting enough data.
Suppose to repeat the experiment N times: the information collected
is (y1, y2, . . . , yN). From this, the probability distribution function

Figure 4.5: Generic SISO system

and the cumulative distribution function are built (Figure 4.6). These
probability distributions give a representation of the uncertainty re-
lated to the random variable y. For instance, the uncertainty on
“ does y belong to [y1, y2]? ” is expressed by the value of the area
under the probability distribution function, between those boundaries
(shaded area in Figure 4.6):
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P{ y ∈ [ y1, y2 ] } =
∫ y2

y1
f(y) dy (4.1)

The uncertainty about “ does Y precede y2? ” is expressed by (4.2),

Figure 4.6: Probability distribution and cumulative distribution of a generic
random variable y [64]

that turns out to be an integral over an open shape, hence not always
easy to solve in an analytical way.

F (y2) = P (Y < y2 ) =
∫ y2

−∞
f(y) dy (4.2)

2. Scarce information of the parameters and/or information of qualita-
tive nature: use possibilistic approach
To prove that in such a scenario it is not convenient to use a proba-
bilistic approach, two examples are provided.

Example 1: consider a limit case in which no information is given
about a parameter y, except that its value is located somewhere
between ymin and ymax.
With a probabilistic approach, the lack of knowledge leads to “ every
value is plausible ” and therefore equiprobable: the probability of
every value comprehended in [ymin, ymax] is 1

ymax−ymin (Figure 4.7).
As a consequence, y would be taken as the mean value of all these
probable values:

ym = ymax − ymin
2

This implies:

P ( y ∈ [ ymin, ym ] ) = P ( y ∈ [ ym, ymax ] )

which is a paradox, since there is no information available and hence
no relation between P (y ∈ [ymin, ym]) and P (y ∈ [ym, ymax]) should
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Figure 4.7: Probabilistic approach: not available information approximated
to uniform distribution [64]

be deduced.

Example 2: consider a source that provides non-quantitative infor-
mation, e.g. an expert that says “ the value y is between 9 and 11,
with a preference for 10 ”. Trying to catch such information in terms
of probability distribution is hard (Figure 4.8).

Figure 4.8: No way to represent qualitative information as a probability dis-
tribution [64]

Here appears the necessity to develop a theory that allows to rep-
resent this type of information. Zadeh introduced in [63] a solution
to this problem, by means of Possibility Theory, that was based
on the meaning of the information rather than on the measure of
the information. He himself declared that whenever the aim is to
tackle the meaning of information, rather than its measure, then the
analysis is “ possibilistic rather than probabilistic in nature ”.

The mathematical approach that forces the human lucubration to a bi-
nary reasoning, i.e. what brought to the leading theories up to then (e.g.
Shannon’s theory, Section 4.2), doesn’t reflect the human’s capability of
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thinking articulately. The Possibility Theory instead gives the means to
“ translate ” - in mathematical terms - the mental elaborations of human be-
ings, catching the fuzziness, interpreted as concept of “ blurred information ”
or “ vagueness ”, intrinsic in such elaborations.

4.4 Fuzzy Theory
In the following paragraphs, basic concepts of Fuzzy Theory will be

illustrated.
The concepts provided in this Section explain the logic and operations
adopted by this thesis: in particular, they will be necessary to properly
show the reasoning developed in the thesis and later explained in Chapter 5.

A fuzzy set is a set whose elements are characterized by a member-
ship degree, that takes any value between 0 and 1. A fuzzy set A is
therefore defined by a membership function:

µA : X → [ 0, 1 ]

where X is the universe in which A is defined. The universe X is a conven-
tional set, alternatively said “ crisp ” set: every element either belongs to X
or does not, i.e. every element has a crisp membership degree that is 0 or 1.

Figure 4.9: Height, core and support of a fuzzy set [64]

The height of a fuzzy set A, hgt (A), is defined as:

hgt (A) = sup
x∈X

µA(x)
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and fuzzy sets with a height equal to 1 are said “ normal ”, whilst sets with
height less than 1 are called “ subnormal ”.
The core of a fuzzy set, also referred to as kernel, is a crisp subset of X:

core(A) = {x ∈ X|µA(x) = 1 }

The support of a fuzzy set is a crisp subset of X:

supp(A) = {x ∈ X|µA(x) > 0 }

These parameters are represented in Figure 4.9.
A fuzzy singleton is a fuzzy set whose support is a single point. It might be
useful to gather in a unique set all the values characterized by a membership
degree greater or equal to a specific threshold. Such idea is expressed by a
particular set, called alpha-cut:

Aα = I = 1{ y : π(y) ≥ α } (4.3)

in which α ∈ [0, 1] represents the desired threshold.
For instance, A0,30 = [ y1, y2 ] is the interval containing all the elements y

Figure 4.10: Alpha-cut containing all the elements with membership degree
at least equal to 0.30 [64]

with membership degree at least equal to 0.30 (Figure 4.10).
A fuzzy set defined in R is said to be convex if all its α − cuts, with
α ∈ [ 0, 1 ] are canonical convex sets (Figure 4.11).

Description of a fuzzy set
Be A a subset of a universe of discourse X:

• Discrete universe X = x1, x2, . . .

A =
{
µA(x1)
x1

+ µA(x2)
x2

+ . . .

}
=

{∑
i

µA(xi)
xi

}
(4.4)
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Figure 4.11: Convex and non-convex fuzzy sets [75]

Eq. (4.4) shows that a generic xi belongs to A with membership
degree µA(x1); note that the symbol “/” doesn’t represent a division
but a comparison term, with the meaning of “at point xi corresponds
a membership degree µA(xi) ”.

• Continuous universe X

A =
{∫ µA(x)

x

}
(4.5)

Operations on fuzzy sets
Be A and B two arbitrary fuzzy subsets of a universe U , then, the following
operations can be performed [75]:

Figure 4.12: Union and intersection of fuzzy sets [75]

• Union of fuzzy sets (Figure 4.12):

µA∪B(x) = max (µA(x), µB(x) ) (4.6)

• Intersection of fuzzy sets (Figure 4.12):

µA∩B(x) = min (µA(x), µB(x) ) (4.7)
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• Complementary of a fuzzy set (Figure 4.13)

Ā(x) = 1− A(x) (4.8)

Figure 4.13: Fuzzy set and its complement [75]

Whilst the operations on canonical sets, including De Morgan laws, hold
for fuzzy sets, the laws of “ tertium non datur ” and “ non contradiction
principle ” are not valid in Fuzzy Theory (4.4). In fact, be A a fuzzy
subset of the universe X and be Ā the complement of A. When joining
A and its complement the set obtained is not the universe X. Similarly,
when intersecting A and its complement, the result is not the empty set
(Figure 4.14):

A ∪ Ā 6= X

A ∩ Ā 6= ∅

Figure 4.14: Union and intersection between a fuzzy set and its complement
[75]

Fuzzy relations
The concept of “ relation ” plays a key role in mathematics and also for
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fuzzy logic. In the following, the main fuzzy relations are shown.

Cartesian product of fuzzy sets
Be A and B two fuzzy subsets of the non-fuzzy universes X and Y respec-
tively. The Cartesian product A× B is a fuzzy subset of X × Y , whose
elements are characterized by a membership degree defined as:

µX×Y = min (A(x), B(y) ) (4.9)

The membership degree µX×Y (x, y) can be interpreted as an esteem of the
value that expresses the strength of the relationship between X and Y .
Such relationship is expressed by a fuzzy relation R, that expresses the
link between the two non-fuzzy universes X and Y .
The relation R is computed as a Cartesian product, turning out to be a
fuzzy subset of X × Y :

R = {µR(x, y)/ (y, x) }, ∀(x, y) ∈ X × Y

Composition of fuzzy relations
Be R a fuzzy relation on X×Y , S a fuzzy relation on Y ×Z, andW = R◦S
a “ composed ” fuzzy relation on X × Z, then the membership degree of
µW (x, z) is computed as:

µW (X,Z) = max
y∈Y

min (µR(x, y), µs(y, z) ) (4.10)

4.5 Possibility Theory
To explain what a possibility distribution is, it is convenient to first

introduce the concept of “ fuzzy restriction ”, with which the possibility
distribution is strictly related.
Consider a universe of discourse U and its generic element u. Taking a
variable X with values in U, the assignment:

X = u

implies that X takes the value u, u ∈ U .
Be F a fuzzy subset of U (Section 4.4), it is possible to assign to every
element u ∈ U a degree that expresses the compatibility of u with respect
to the relation F , i.e. degree of truth that X belongs to F . Such degree
goes by the name of “membership degree ” and is represented as a function
µF (u).
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Stating that F acts as an elastic constraint on the values u that can be
assigned to X, i.e.:

X = u : µf (u) (4.11)
means that the assignment “X = u ” is characterized by a degree of truth
(or membership). This implies that F restricts the set of values that X
can assume.
A clarifying example is given in the following.

Example: take as universe of discourse the set N of natural numbers
and consider a fuzzy subset of N. F is a set of small numbers, where
“ small ” is a qualitative parameter, and can be defined as a fuzzy parame-
ter.
Every element u ∈ N can potentially belong to F , since the definition of
“ small ” is ambiguous: each of them can be considered small with a certain
degree of truth.
Suppose, for instance, that F imposes the following constraints:

1. u is small =⇒ u ∈ {0, 1, 2, 3, 4}

2. u = 0 and u = 1 are the points with maximum membership degree

3. u ∈ [ 1, 4 ] have a decreasing membership degree

Figure 4.15: Determine membership degree of every element of the universe
of discourse

Assigning numerical values: µF (0) = 1, µF (1) = 1, µF (2) = 0.8,
µF (3) = 0.5, µF (4) = 0.2, µF (u) = 0 ∀u > 4. Such values are represented
in Figure 4.15 and then interpolated to obtain the possibility distribution
of Figure 4.16.
Since µF is a fuzzy distribution, is also a closed set (see Section 4.4),
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Figure 4.16: Create the fuzzy distribution

limiting the values that X can effectively assume in U . Therefore, F is
said to be a restriction on X.
Moreover, Eq. (4.11) implies that to be able to assign X = u, i.e. to
guarantee that exists a minimum compatibility of u with the relation F -
or, in other words, to guarantee that it is at least minimally true that u
belongs to F - u must have a membership degree at least equal or greater
than 1−max(µF (u) ). Membership degrees lower than such value indicate
that there is no compatibility between u and F . The above-mentioned
expresses the concept of “ necessity ”.

Be R(x) the fuzzy restriction associated to X, the relation:

R(x) = F (4.12)

shows that F is a fuzzy restriction on X, and therefore represents the
assignment of a fuzzy set - meant as distribution of a membership degree
µF - to the restriction associated to X, i.e. R(X).

In the following, the previously presented example is resumed, to better
explain the concept that links a fuzzy restriction to a possibility distribu-
tion.
Consider the set of natural numbers N and a fuzzy subset of N, F =
{ set of small numbers }. Then, every element u ∈ N satisfies the condi-
tion “X is F ” - namely, “X = u is small ” - with a certain degree of truth,
µF (u).
Here the point is to investigate how to compute the possibility that X
assumes a particular value u, for instance X = 2.
Since for the reported example µF (2) = 0.8, i.e. the degree of compatibility
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between 2 and the concept of “ small ” is 0.8.
The statement “X is small ” converts the meaning of 0.8 from degree of
compatibility between “ 2 ” and “ small ”, to degree of possibility that X is
effectively 2, since “ 2 is small ”.
In short, the compatibility of a value u with small is converted into possi-
bility that X is equal to u, since “u is small ”.
It follows that the possibility distribution function associated with X is
denoted by πX and is defined to be numerically equal to the membership
function of F :

πX
∆= µf (4.13)

Thus, πX(u) is the possibility that X = u and is postulated to be equal to
µF (u).
Hence, assigning a possibility degree to the variable X, corresponds to
restrict X itself to the only values that are compatible with the restriction:

Πx = R(x) (4.14)

X is therefore associated with a possibility distribution Πx, and according
to Eq. (4.12), it is possible to state that:

Πx = F (4.15)

i.e. the possibility distribution is equal to the fuzzy set of interest.

Important remarks:

1. Eq. (4.14) implies that the possibility distribution ΠX can be consid-
ered as an interpretation of the concept of fuzzy restriction. There-
fore, the theory of fuzzy sets provides the basis for a mathematical
treatment of possibility distributions.

2. The association between possibility distribution and fuzzy restriction
is an intuitive consequence of the above-treated reasoning. Such
association allows to treat complex concepts of Possibility Theory
with much easier operations, taken from Fuzzy Theory. For instance,
the concepts of conjunction and disjunction of propositions in the
form “X is F ”, that are difficult to treat because of the language
ambiguity, can be “ translated ” in basic operations on fuzzy sets, like
union and intersection respectively (Section 4.4).

3. The definition of πX(u), in Eq. (4.13), highlights that the degree of
possibility can be any of the values in [ 0, 1 ], rather than only 0 or 1.
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Indeed, fuzzy sets fully express the concept of “ blurred ”, in contrast
with the one of “ crisp ” represented by the canonical sets.
In the latter, considering a set A defined in a universe U , where U
has elements x, it is possible to distinguish whether x belongs to A
or doesn’t. Thus, the membership degree, µA(x), of x related to A is
a Boolean number:

µA(x) =

1 iff x ∈ A
0 iff x /∈ A

(4.16)

If A is instead a fuzzy set, it wouldn’t be appropriate to state that
x either belongs or does not belong to A. Indeed, in applications
where it is not clear if x belongs or not to the above-mentioned set,
it is more correct to state that x belongs to A with a certain degree
of truth (membership degree).

4.5.1 Possibility measures
A further distinction between probability and possibility can be given

through a parallelism between the concept of possibility measure and its
analogous regarding probability.

• Consider A to be a non-fuzzy subset of a universe of discourse U
and be ΠX the possibility distribution associated to the variable X
defined in U . Then, the possibility measure of A, π(A), stands for
the possibility that X belongs to A, and it’s a real number defined
in [0, 1], expressed in the following form:

Poss{X ∈ A } ∆= π(A)
∆= sup

u∈A
πx(u) (4.17)

where πX(u) is the possibility distribution function of ΠX .

• Consider A as fuzzy subset of U e and be ΠX the possibility distri-
bution associated to a variable X with values in U . In this case, it is
not possible to firmly state that X belongs or does not belong to A:
such proposition is rather characterized by a degree of truth.
Thus, the possibility that X belongs to A, i.e. the possibility measure
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of A, is:

Poss{X is A } ∆= π(A)
∆= sup

u∈U
µA(u) ∧ πx(u) (4.18)

where “X is A ” replaces “X ∈ A ” that was used in Eq. (4.17);
µA is the membership function of A and ∧ is the symbol for min.

According to the definitions given, the possibility measure of union or
intersection of two fuzzy sets can be given.

Be A and B two arbitrary fuzzy subsets of U, then the possibility of
the union of two sets is:

π(A ∪B) = π(A) ∨ π(B) (4.19)
The probability measure of the union would instead be:

P (A ∪B) ≤ P (A) + P (B) (4.20)
provided that A ∪B exists.
In addition, if A and B are disjoint (i.e. µA(u) · µB(u) ≡ 0), it holds:

P (A ∪B) = P (A) + P (B) (4.21)
Eq. (4.21) represents the “ additivity property ” of probability measure. On
the contrary, the additivity property doesn’t hold for possibility measures.
Nevertheless, the property of possibility measure in (4.19) can be seen
as the equivalent of (4.21), where the sign “+” is replaced by the max
operator( “∨ ”).
Similarly, the possibility measure of the intersection between A and B
reflects the following property:

π(A ∩B) ≤ π(A) ∧ π(B) (4.22)
Whenever A and B are non-interactive (i.e. µA(u) · µB(u) ≡ 0) - in other
words, when their possibilities don’t affect each other - the inequality
becomes an equality [67]:

π(A ∩B) = π(A) ∧ π(B) (4.23)
On the other side, the probability measure of such intersection would be:

P (A ∩B) ≤ P (A) ∧ P (B) (4.24)
and, if A and B are independent and non-fuzzy:

P (A ∩B) = P (A) · P (B) (4.25)
As for the union, it is noticeable that (4.23) is equivalent to (4.25), where
the multiplication sign is replaced by the min operator( “∧ ”).
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4.5.2 Fuzzy numbers
A fuzzy number is a specific kind of fuzzy set. It is possible to state

that a fuzzy set F is also a fuzzy number if the following conditions are
met [75]:

• F is convex

• F is a normal fuzzy set, i.e. hgt (F ) = 1

• the membership function of the fuzzy set is piece-wise continuous

Thus, a fuzzy number must have an increasing curve that goes from a
value of possibility equal to 0, up to possibility 1, and then a decreasing
part that ends in a value with possibility 0.
Examples of fuzzy numbers are triangles and trapezoids.
In Figure 4.17, on the left an example of fuzzy number, which is normally
denoted as A = (a1, aM , a2); on the right, a distribution not satisfying the
criteria of fuzzy numbers.

Figure 4.17: Triangular fuzzy number

The membership function for a triangular fuzzy set takes the analytic
form of (4.26).

A(x) =


x− a1
aM − a1

for a1 ≤ x ≤ aM
x− a2
aM − a2

for aM ≤ x ≤ a2

0 otherwise
(4.26)

Where a1 and a2 identify the least possible values and aM the most likely
value.

Another popular notation to identify a fuzzy number is: A = (a, a),
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where a is the lower limit of the number and a the upper one. In the
particular case of triangles, a identifies the line connecting (a1, 0) and
(aM , 1); a represents the line connecting (aM , 1) and (a2, 0).

In the following, it will be shown which basic operations it is possible
to perform on fuzzy numbers. Prior to introduce an algebra for fuzzy
numbers, it is needed to “extend” operations for functions defined in R to
functions defined in the space of membership functions. Such procedure is
executed by means of the extension principle [74], that gives the framework
to calculate the membership degree of elements of a fuzzy set and functions
of fuzzy sets, which are the result of operations.
Indeed, the extension principle, introduced in [68], is one of the main
concepts of Fuzzy Theory. As Dubois and Prade affirmed in [65], “ it
provides a general method for extending non-fuzzy mathematical concepts
in order to deal with fuzzy quantities” .

The extension procedure consists of the following steps [76]:

• let A and B be two fuzzy sets, defined in universes of discourse X
and Y

• let f be a non-fuzzy transformation function between universes X
and Y , such that f : X → Y

• then the crisp function f is fuzzified when it is intended to act on
fuzzy sets defined on X and Y .
The fuzzy function f : X → Y indicates how the image of a fuzzy
subset A of X should be computed when the function f is applied. It
is expected that this image will be a fuzzy subset of Y.

From the definition given in (4.4), A can be expressed as:

A = µA(x1)
x1

+ µA(x2)
x2

+ . . .
µA(xn)
xn

The extension principle states that the image of A under the mapping f(·)
can be expressed as another fuzzy set B:

B = f(A) = µA(x1)
y1

+ µA(x2)
y2

+ . . .
µA(xn)
yn

(4.27)

where yi = f(xi).
In general, if f(·) is a many-to-one mapping, so there exist x1, x2 ∈ X,
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x1 6= x2, such that f(x1) = f(x2) = y∗, y∗ ∈ Y , then the membership
degree at y = y∗ is the maximum of the membership degrees at x1 and x2.
The procedure is shown in Figure 4.18 and the membership function of
the extended set B is:

µB(y) = max
x=f−1(y)

µA(x) (4.28)

Examining at the axes on the top right of Figure 4.18, it can be noted

Figure 4.18: Extension principle: procedure [64]

that a and b lead to the same value m on Y (f(a) = m and f(b) = m).
Similarly, c and d lead to the same output value n (f(c) = n and f(d) = n).
To create the possibility distribution of the output function, the membership
degree ofm and nmust be assigned. Then, the procedure has to be repeated
for every x.
Each of the values m and n will have its own membership degree, that
would coincide with the maximum within the input values from which m
and n derive (a or b for m, c or d for n).
A formalization of this concept is now provided.
The extension principle applied to a function f(x1, . . . , xn) is defined as:

µB(y) = sup
x1, . . . , xn

y = f(x1, . . . , xn)

µA(x1, . . . , xn)

= sup
x1, . . . , xn

y = f(x1, . . . , xn)

min (µA1(x1), . . . , µAn(xn) ) (4.29)

where B is a fuzzy subset of the universe Y , such that B = f(A1, . . . , An),
with A1, . . . , An fuzzy subsets of X1, . . . , Xn respectively. Note that A
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identifies the multi-dimensional set, obtained from the Cartesian product
A1 × · · · × An, and so the second equality of Eq. (4.29) is a consequence
of Eq. (4.9).

Operations on fuzzy numbers
The addition and scalar multiplication are defined according to Eq. (4.29).
Assume to have two arbitrary fuzzy numbers defined as: u = (u, ū),
v = (v, v̄) and k > 0;

• Addition (u+ v) is defined as:

(u+ v) = (u+ v)(r), (u+ v)(r) (4.30)

with:
(u+ v)(r) = u(r) + v(r)

(u+ v)(r) = u(r) + v(r)
(4.31)

• Multiplication by a scalar quantity is defined as:

ku = ( (ku)(r), (ku)(r) )

with:
(ku)(r) = ku(r)

(ku)(r) = ku(r)
(4.32)

Another important operation performed on fuzzy numbers is the com-
parison between a fuzzy number and a crisp (or scalar) number: it will
assume an important role in Chapter 5 and therefore it is here introduced.

• Ranking functions
M. Adabitabar Firozja et al. [70] proposed a “ ranking function ” that
is able to evaluate the possibility that a fuzzy number is greater (or
smaller) than a crisp number.
Be A a fuzzy number and L the ranking function defined as:

L(A, ·) : R→ [ 0, 1 ]

The ranking function is used to extend the natural ordering relation
≤ on real numbers to the ordering of fuzzy numbers with respect to
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real numbers.
The possibility that the fuzzy number A is less or equal to a crisp
number x is:

L(A, x) =

∫ x

−∞
µA(t) dt∫ +∞

−∞
µA(t) dt

(4.33)

The ranking function L(A, ·) is an increasing function (graph on the
left of Figure 4.19): in fact, when x is very small - say completely
out of the number, on its left - the possibility that A ≤ x is null.
Dually, the possibility that A ≤ x when x is completely out of A,

Figure 4.19: On the left: ranking function for ordering with respect to “≤ ”;
on the right: raking function for ordering with respect to “≥ ”

on its right, is 1.
Similarly, another ranking function G(A, ·) can be defined to compute
the possibility that a fuzzy number A is greater or equal to a crisp
number x:

G(A, x) =

∫ +∞

x
µA(t) dt∫ +∞

−∞
µA(t) dt

(4.34)

The ranking function G(A, ·) is decreasing (graph on the right of
Figure 4.19) for the dual reasons presented above.

Operations of subtraction between fuzzy numbers and multiplication/-
division within fuzzy numbers are not generically defined, because they
are not invertible operations. There are many theories and techniques to
perform such operations, providing many additional assumptions on the
fuzzy numbers involved. However, multiplication/division between fuzzy
numbers won’t be used by this work and therefore the explanation of such
theories would be out of the scope of the thesis.
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Concerning subtraction, many methods have been proposed in literature
to compute it as distance between two fuzzy numbers.
The most relevant one is reported in the following.

Hukuara-difference
The Hukuara-difference has been defined [71] to overcome the situation
in which, computing arithmetically the subtraction between two fuzzy
numbers, the difference is not always invertible. Indeed, taking two fuzzy
numbers a and b, it may happen:

(a+ b)− a 6= a

If a fuzzy number c exists such that:

c+ b = a

where “+” identifies a fuzzy summation, then c is the Hukuara-difference
of a and b.
The condition to ensure that c exists is that some translate of b is a fuzzy
subset of a. Taking for instance a = (1, 3, 5) and b = (1, 2, 3), then:

(1, 3, 5) = (0, 1, 2) + (1, 2, 3)

where c = (0, 1, 2) is called H-difference of a and b.
Since it is not generally possible to guarantee the existance of c, in Section
5.2.2 an alternative method is proposed to counteract the restrictions
imposed by such method.

4.6 Uncertainty propagation
The aim of this Section is to show the differences between a probability

propagation process and a possibility one.
Consider a system for which the input parameters y1, y2, . . . , yN are ill-
known: only their probability distribution functions f(y1), f(y2), . . . , f(yN )
and their possibility distribution functions π(y1), π(y2), . . . , π(yN ) are given
(Figure 4.20).
In the following, it will be shown how to propagate the uncertainty of the
input parameters to the output of the system, both when considering a
possibility and a probability framework.
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Figure 4.20: Propagation of the uncertainty through a multi-input system [64]

• Probabilistic approach: be y1 and y2 the not-precisely-known
input parameters of the system, described by the probability distri-
bution functions f(y1) and f(y2). Assume that:

g = u(y1, y2)
Y1 ≈ fY1(y1)
Y2 ≈ fY2(y2)

The uncertainty from y1 and y2 to the output of the system u,
is propagated by making use of the canonical probability axioms,
leading to:

FU(u) = P{U ≤ u } = P{ g(Y1, Y2) ≤ u } =

=
∫

(y1,y2) : g(y1,y2)≤u)
fY1(y1) · fY2(y2) dy1dy2 =

=
∫ +∞

−∞

∫ +∞

−∞
Ig(y1, y2) · fY1(y1) · fY2(y2) dy1dy2

(4.35)

with:

Ig(y1, y2) =


1 iff f(y1, y2) ≤ u

0 otherwise
(4.36)

Since Eq. (4.35) involves infinite integrals, an exact solution might
be difficult to find and therefore an approximated solution is often
provided by means of alternative methods, such as the Monte Carlo
method (MC). MC performs many simulations, to then come up with

46



4.6. Uncertainty propagation

an estimate of the output of the system. Figure 4.21 [66] reports the
basic mechanism of Monte Carlo approaches.

Figure 4.21: Probabilistic propagation of the uncertainty, using Monte Carlo
method [64]

First, the MC method generates N realizations (samples) of the
random parameters of the system, according to their joint distribution.
Each of these realizations defines a deterministic problem that is
solved using a deterministic technique, generating a certain amount
of data. Such data is lately combined through statistic, to estimate
the response of the random system. Hence, the steps are:

– sample (yi1, yi2) from fY1(y1), fY2(y2)
– corresponding award: Ig(yi1, yi2)

ConsiderN trials { (y1
1, y

1
2), (y2

1, y
2
2), . . . , (yN1 , yN2 ) }; then, the response

u of the system is characterized by:

FU(u) =

∑
i=1,...,N

Ig(yi1, yi2)

N

For great values of N , the MC method can provide satisfactory
results, describing well the statistical behaviour of the system [64].
However, the rate of convergence is quite slow, as it is proportional
to the inverse of the square root of the number of samples collected,
i.e. ∼ 1/

√
N . Therefore, if the processing time of a single sample is

large, the slow rate of convergence makes MC a very time-consuming
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method. For this reason, it might be unfeasible to perform simulations
of complex models.
In particular, when objective information on the uncertainties is
limited, the high computational cost of probabilistic analysis makes
MC method not worthy, especially considering the fact that only
approximated results (estimates) can be provided. For a practical
example of this approach refer to Appendix.

• Possibilistic approach: consider first the SISO system with:

– input parameter Y , that has values in R and its uncertainty is
described by the possibility distribution πY (y)

– output quantity U = g(Y ), with values in R, whose uncertainty
is represented by πU(u). It is determined using the formula of
Eq.(4.28), which is derived from Zadeh’s extension principle
[63], (Eq. (4.29)).

πU(u) = sup
y, g(y)=u

( πY (y) ) (4.37)

The extension principle is used to “ extend ” the transfer function of
the system, g, from the R domain to the domain of the possibility
distributions. The aim is to extend g in order to work on it as if
it is a possibility distribution. In this way the uncertainty (that is
indeed represented as a possibility distribution) can be propagated
to the output of the system. Overall, the main procedure consists of
extending g:

– from a function from R to R
– to a function from and to the class of all the possibility distri-

butions defined on R

The extension procedure passes through the following steps (Fig-
ure 4.22):

1. Select the set of y values such that g(y) = u

2. Compute the corresponding set of πY (y)
3. Assign to πU(u) the maximum among the values of πY (y) that

were selected at point 2.

The outcome of point 3, πU(u), is the possibility distribution of the
output of the system and, so, the representation of its uncertainty.

Consider now a multi-input system with:
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Figure 4.22: Propagation of the uncertainty with extension principle [64]

– input parameters Y1, Y2, . . . , YN belonging to R, whose un-
certainty is described by the possibility distributions πY1(y1),
πY2(y2), . . . , πYN (yN)

– output quantity U = g(Y1, Y2, . . . , YN), whose uncertainty is
given by πU(u). It is obtained from the extension principle,
applying the formula in Eq. (4.28)

πU(u) = sup
y1,y2,...,yn,g(y1,y2,...,yn)=u

πY1,Y2,...,Yn(y1, y2, . . . , yn) (4.38)

where:

πY1,Y2,...,Yn(y1, y2, . . . , yn) = min { πY1(y1), πY2(y2), . . . , πYn(yn) }
(4.39)

the above equation is obtained applying Eq. (4.10), related to
the Composition of fuzzy relations.

As can be noticed, the propagation of uncertainty required by possibility
distributions involves much easier computations.
In fact, Possibility Theory requires to apply simple equations (Eq. (4.38)
and Eq. (4.39)), that do not involve integrals. In addition, it does not
require to perform numerical approximations as MC methods. The essence
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of the possibilistic approach is to start from approximated shapes (dis-
tributions) to then come up with a result that is yet approximated but
outcome of a computationally reduced process.

In view of the given introduction about the approaches to deal with
uncertainty, it is concluded that decision making - having the goal to
account for the influence of uncertainty on choices - has raised the need
of quantitative methods to deal with the above-mentioned types of uncer-
tainty.
Probabilistic approaches quantify uncertainty by probabilities and «are
recommended when background knowledge is strong enough to allow un-
certainty be given in terms of likelihoods or degrees of belief» [69]. When
uncertainty expresses the lack of knowledge, and so the background knowl-
edge is poor, it is better to give uncertainty a non-probabilistic treatment.
For instance, uncertainty quantified as fuzzy numbers (4.5.2), i.e. possibil-
ity distributions, is a non-probabilistic and quantitative approach.
Note that by “ handled ” it is intended quantification, based on given
background knowledge, and its propagation in the considered model.
In conclusion, both theories can be suitable to manage an uncertainty
propagation problem. One approach doesn’t exclude the other (as can be
seen in the example below). Nevertheless, if the available information is
scarce, it is better to use Possibility Theory. This thesis will assume such
worst case scenario, proving that good results are still obtained.

Example: coexistence of possibility and probability
To illustrate the difference between probability and possibility, a simple
scenario is given: consider the statement “The robot machines X pieces
in a day ”, where X takes values in a space of values U = u.
The possibility distribution can be associated with X by interpreting πX(u)
as the degree of ease with which the robot can machine X pieces in a
day. In addition, a probability distribution can be associated with X by
interpreting PX(u) as the probability that the robot machines u pieces in
a day.
The values of πX(u) are determined basing on some implicit/explicit crite-
ria, that assess the degree of ease with which the robot machines pieces.
As an example, suppose that for a specific application the time taken to
machine a single piece is very high, and so it is known that no more than
Q pieces can be machined in a day. This source of knowledge acts as a
constraint and therefore is a criteria that imposes physical limits on the
possibility distribution.
Concerning probability, the values of PX(u) are determined studying the
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past data statistically: knowing how many pieces the robot had machined
in the past, considering N experiments, a value of “ probability that the
robot will machine X ” can be computed in a stochastic way.
The values of πX(u) and PX(u) might be as shown in table (4.1).

u 1 2 3 4 5 6 7 8
πX(u) 1 1 1 1 0.8 0.6 0.4 0.2
PX(u) 0.1 0.8 0.1 0 0 0 0 0

Table 4.1: Probability and possibility distributions associated with X

It can be observed that, whereas the possibility that the robot machines
3 pieces in a day is 1, the probability of the same event is quite small: 0.1.
This behaviour reflects the “ consistency principle ” of Zadeh, for which «a
high degree of possibility does not imply a high degree of probability, nor
does a low degree of probability imply a low degree of possibility. However,
if an even is impossible, it is bound to be improbable» (refer to [63]).
Therefore, possibility and probability are not bound to be proportional:
they can be very different and not strictly related.

4.7 Relations between probability and pos-
sibility measures

Let’s consider a fuzzy set A having a possibility distribution π(y).
The possibility that a particular element y of U belongs to A can be
evaluated.
For instance, consider y to be comprehended in the finite interval I =
[ y1, y2 ], (Figure 4.23).

Figure 4.23: Possibility measure of a finite interval [64]
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Then:

- the possibility measure of the set I, Π(I), can be computed as in Eq.
(4.40): it takes the values of the possibility distribution of A, for
every y belonging to I.

∀I ⊆ X, Π(I) = max
y∈I

π(y) (4.40)

where π(y) = Π( { y } ).

- The necessity measure N(I) is related to the possibility measure Π(I)
by (4.41):

∀I ⊆ X, N(I) = 1− Π(Ī) = 1−max
y/∈I

π(y) (4.41)

where Ī = U − I.

Eq. (4.41) is a numerical expression for a duality relationship: an event is
necessary when its contrary is impossible [65]. From what stated above,
the following definition (4.42) is derived:

1−max
y/∈I
{ π(y) } ≤ Poss{ y ∈ I } ≤ max

y∈I
{ π(y) } (4.42)

In other words, the possibility that an ill-known variable y belongs to
an interval I is comprehended between the necessity measure and the
possibility measure.
In addition, the necessity measure corresponds to the “ lower limiting
probability value ” and the possibility measure to the “ upper limiting
probability value ” [64]:

Lower limiting
probability value ≤ P{ y ∈ I } ≤ Upper limiting

probability value (4.43)

In fact, a high degree of possibility does not imply a high degree of
probability, nor does a low degree of probability imply a low degree of
possibility.
This concept was formalized by Zadeh through the “ consistency principle ”
[63], which allows to define the degree of consistency between a probability
distribution and a possibility distribution:
Suppose that a variable X can take values u1, u2, . . . , uN , with probability
P = (p1, . . . , pn) and possibility Π = (π1, . . . , πn) respectively; then, the
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degree of consistency between the probability and possibility distributions
is:

Cz =
n∑
i=1

πi · pi (4.44)

Zadeh made clear that the probability-possibility consistency is not a
precise law or a relationship that is intrinsic in the concept of possibility
and probability distributions. It is instead an approximate formalization
of the fact that decreasing the possibility of an event leads to reduce also
its probability, but not vice-versa [63].
Considering the consistency principle (4.44) and the definitions of possibil-
ity and necessity measure (4.41), it can be stated that:

Necessity measure
N(I)

Possibility measure
Π(I)

↓ ↓

Lower limiting
probability value ≤ P{ y ∈ I } ≤ Upper limiting

probability value (4.45)

Note that, even when an infinite set I = [−∞, u ] is considered, the
possibility that y is smaller than a generic u of the universe of discourse
U (Poss{ y ≤ u }) is still comprehended between two limiting cumulative
distributions (Figure 4.24).

Figure 4.24: Possibility distribution comprehended between lower and upper
cumulative distributions [64]

These cumulative functions are computed using the same formulas of the
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case in which I was a finite set (4.42), with the only difference that instead
of evaluating Poss{y ∈ I}, Poss{y ≤ u} is considered:

1−max
y/∈I
{ π(y) } ≤ P{ y ≤ u } ≤ max

y∈I
{ π(y) } (4.46)

Therefore,
1−max

y/∈I
{ π(y) } ≤ F (u) ≤ max

y∈I
{ π(y) } (4.47)

The green line in Figure 4.24 represents the lower limiting probability; the
red line represents the upper limiting probability. As a consequence of Eq.
(4.47), the area comprehended between the green and red lines is the region
in which all the plausible probability distributions can lay (Figure 4.25).

Figure 4.25: Family of probability distributions between lower and upper
cumulative distributions [64]
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Chapter 5

Scheduling of robotic
activities with Fuzzy Theory

In this Chapter it will be shown how the theory presented in Chapter 4
has been adapted and used in this thesis; in particular, it will be illustrated
how Fuzzy Theory is used to obtain a scheduling algorithm capable of
accounting for the uncertainty embedded in the duration of tasks.
To account for such uncertainty, the scheduler generates reachability trees,
created with a method explained in this Chapter, and the uncertainty is
taken into consideration by associating it to temporal transitions, which
are represented as possibility distributions.

In Section 5.1 it is explained how the information about duration of
tasks is represented. In particular, the method used to create possibil-
ity distributions starting from collected samples is introduced, giving a
practical explanation on triangular fuzzy numbers that are created and
associated to duration of tasks.
Then, an overview on the predictive algorithm is given; it is used in this
thesis to acquire information related to the human operator. Section 5.2
shows the procedure to generate the reachability tree, presenting in detail
how the possibility is assigned to each of its nodes.
In Section 5.3 the way to find the optimal plan, which brings to the best
performance for the system, is pointed out. To this end, the MPC approach
and the concept of cost function are presented. Eventually, the pseudo-code
of the developed scheduling algorithm is reported to summarize the whole
process.
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5.1 Duration of actions: triangular fuzzy
numbers

In recent decades the use of Fuzzy Theory in engineering has increased
significantly. Fuzzy science is able to construct models which can process
qualitative information almost like a human.
In fact, in this thesis, the information available is assumed to be of quali-
tative type: the data describing duration of human and robot actions is
affected by an uncertainty that cannot be associated to any particular
probabilistic distribution.
The action of a robot arm can be interrupted or slowed down to avoid
collision with a human or with the other robot arm: at every execution
of the algorithm, the duration of such action might vary and the way it
varies is not predictable.
Moreover, if the aim would have been to use probabilistic representation,
first the shape of the distribution must have been assumed. Then, N
experiments must would have been performed, collecting at every trial
X samples: the greater the N , the more accurate is the probabilistic
distribution associated to the considered duration.

To avoid performing a big amount of preliminary experiments, an al-
ternative method is used in this thesis: a unique set of samples is collected
and converted into possibility distribution.
Then, such set of samples is updated at every iteration of the algorithm,
according to new information retrieved from the real system.

As anticipated, the decision-making problem handled in this thesis finds
its basis on fuzzy numbers.
Recalling the definitions of Chapter 4, a fuzzy number is a particular
case of a fuzzy set: it must be a convex and normal set, with membership
function varying between 0 and 1.
The function itself can be an arbitrary curve whose shape is chosen accord-
ing to requirements of simplicity and efficiency.
In this thesis, the time associated to any human or robot action is described
as a fuzzy number (or at most as a fuzzy singleton if its value is crisp)
instead of as a fuzzy set.
Such constraint is due to the need of performing mathematical operations,
that would otherwise be impossible to perform if the shapes were not
convex. In fact, as will be explained, to propagate the uncertainty along
the reachability tree, it is required to execute algebraic operations, as
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5.1. Duration of actions: triangular fuzzy numbers

summation between fuzzy numbers.

To perform a fuzzy analysis, it is first needed to create fuzzy numbers
through a process called “fuzzification”: it converts an uncertain quantity
into a fuzzy value, using membership functions.

In the following it will be shown how fuzzy numbers are created starting
from samples.
First of all, two different ways are used to collect samples. For robot actions,
at the first invocation of the algorithm, their duration is measured exper-
imentally, to create a first rough representation of such duration. Then,
iteration by iteration, these distributions are overwritten by a mechanism
that learns the behaviour of the robot, substituting the above mentioned
time distributions with more accurate ones.
The distributions that represent the duration of human actions are built
using samples that are provided by a predictive algorithm, which is out of
the scope of this thesis but is shortly presented in the following.

5.1.1 Predictive algorithm
The human, interacting with a robot in a collaborative context, is an

agent whose actions are uncontrollable and can only be predicted.
The predictive algorithm developed in [51] is exploited in this work. It is
able to give the robot the knowledge about the human with which it is
co-operating, to better adapt to his/her needs.
In fact, such prediction is used by the scheduling algorithm that controls
the robot, in order to better assist the human operator and, at the same
time, be productive.

The algorithm [51] predicts the possible starting time instant of the Human
Actions or Human to Robot Actions, starting from a current time instant,
within a certain temporal horizon.

Figure 5.1: Predictive algorithm [73]
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The algorithm provides possible samples corresponding to the time
instants in which the human operator is expected to start an action. These
samples are considered as qualitative information, an estimate coming from
an expert, and so they are tackled with possibility theory, representing
them as fuzzy triangles.

5.1.2 Creation of possibility distributions
The samples related to the robot and human actions are updated at

each iteration of the algorithm and manipulated by a method that trans-
forms them into possibility distributions.
As anticipated, the possibility distributions used in this thesis have trian-
gular shape, because such shapes are able to describe in a good way the
possibility associated to events.
Recalling the notation of triangles presented in Chapter 4, a triangular
number is denoted as (a, b, c), where a and c have zero possibility, b has
unitary possibility and the values between a and c have membership grade
∈ (0, 1).

Given a set of samples, many methods exist to assign the correspond-
ing membership degree, which basically consists of finding the vertices a, b
and c of the triangle that better represents such samples.
Many methods have been proposed in literature to choose the appropriate
membership generation technique. There is no objective way to evaluate
the goodness or correctness of such methods and, mostly, the choice of the
method depends on the kind of problem to handle and on the type of data
that are available.

The only necessary condition that has to be satisfied to guarantee that the
method is “correct” is to satisfy Zadeh’s consistency principle: given a set
of data and deriving probability and possibility distributions from it, they
must provide a sufficiently positive consistency degree (see Section 4.7).
This is to ensure that a lessening of the possibility of an event tends to
lessen its probability (Eq. (4.44)).

In the following, two different methods for building the possibility distri-
butions will be compared, considering some sets of samples obtained from
random variables distributed as Gaussian Mixture.
Notice that here the aim is to compare the consistency of methods, assum-
ing the samples to be generated from probability distributions.
The latter assumption is not anyway necessary considering a generic set of
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samples.

Two methods have been tested on Matlab, to verify which one would
provide the most realistic triangular distribution, to choose such method
as a general one to use in this thesis.
The two methods that have been compared are:

• Method 1: symmetric method
The first method consists of constructing a triangle that has most
possible value b coincident with the mean value M of the normal
distribution of data, whose vertices a and c are computed as (M −σ)
and (M + σ) respectively, where σ is the standard deviation [72].
Nevertheless, this method builds only triangles that are symmetri-
cally distributed around the mean point M , and so does not truly
model the duration of tasks because, in a real situation, the data are
not generally homogeneously distributed around a unique point.
It would be rather accurate to use a method that creates scalene
triangles instead, adapting to the variability of samples and so pro-
viding different triangular shapes according to the case of interest.

Figure 5.2: Symmetric method [72]

• Method 2: asymmetric method
The method proposed by Amin Amini and Navid Nikraz [72] suggests
a procedure that, starting from statistical data and frequency charts,
constructs non-isosceles triangular fuzzy numbers. This method asso-
ciates membership degree 1 to the mean value of frequency chart, and
determines the membership degree of the other points distributing
the standard deviation around the mean value.
The final triangle will be formed through the following steps:
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– Computing the average value M of frequency chart data and
standard deviation of data, σ;

– Finding the continuous function f(x) that better describes the
frequency chart, in which X is the axis of scale degrees and Y
is the axis indicating the frequency data;

– Introducing and computing the following parameters, assuming
that the X-axis is graded from 0 to K, where K is the value of
the highest sample and σL, σR are the re-distributed standard
deviations:

LM =
∫ M

0
f(x) dx

RM =
∫ K

M
f(x) dx

S = LM
RM

σL(M) = σ · S
( 1 + S )

σR(M) = σ

( 1 + S )
(5.1)

– Finding lower limit (LL) and upper limit (UL) as:

LL = M − σL(M)

UL = M + σR(M)

– Scaling the data in the form of fuzzy number membership
function, assigning membership degree 1 to the mean value and
membership degree 0 to UL and LL.

Referring to Eq. (5.1), LM is the area under the frequency graph for the
left side of M and RM is the area under this diagram on the right side of
the mean point.
The values σL(M) and σR(M) are obtained distributing the standard de-
viation with respect to the ratio S, using a direct proportion.
By doing so, the region with bigger area due to more scattered responses
leads to a bigger boundary around the average value, which represents
higher uncertainty, whilst the area in which the samples are more concen-
trated leads to smaller boundary and so less uncertainty.

Figure 5.3 reports the results obtained by the two aforementioned meth-
ods. The blue lines identify the initial probability distribution generating
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Figure 5.3: Triangular distributions: symmetric and asymmetric method with
sets of samples generated by different distributions

the samples (mixture of Gaussian distributions), the red ones are the
triangular fuzzy numbers obtained from the symmetric method and the
yellow ones are obtained with the asymmetric method.
It can be noticed that, even though the points of Figure 5.3a are more
concentrated between 40 and 80, the symmetric method built a triangle
such that also the points that are quite far (close to 20 and around 100-120)
are incorporated.
The same scenario holds for Figure 5.3b and Figure 5.3c, where the sym-
metric method provides triangles that try to include as many samples as
possible, even though they might be very far from the most dense area.
On the other side, the asymmetric method builds triangles that are mostly
concentrated on the region where the samples are more concentrated, ex-
cluding the few ones that deviate from it.
Using both methods the consistency coefficient is high (Table 5.1) which
proves that they can both be used. It is important to remark that the
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Test a) b) c)
Cconsistency_symmetric 40.9893 138.7745 87.1718
Cconsistency_asymmetric 28.3794 117.4175 60.2389

Table 5.1: Consistency coefficients with symmetric and asymmetric method,
considering Examples of Figure 5.3

aim is not to choose the method that provides the highest coefficient, but
a method that satisfies the consistency principle and, at the same time,
adapts to the variability of situations.
Hence, the major task of this thesis is to account for big amounts of
uncertainty, i.e. considerable variations in duration of tasks: the samples
describing the duration of actions are expected to be very scattered, as in
Figure 5.3b.
Thus, a method that provides triangles capable to adapt to different sets
of samples, and not only samples concentrated around a mean point, is
needed: the asymmetric one has been judged to be the most suitable and
general method and, therefore, is the one used throughout this thesis.

5.2 Computation of the fuzzy reachability
tree

The aim of this Section is to show how the reachability tree is generated
by the scheduling algorithm, pointing out its structure and how possibility
is associated to it.

5.2.1 Reachability tree: set of nodes
Once the FTPN that models the system has been defined (see Section
3.2), it is possible to generate the reachability tree. First of all, a temporal
horizon is established, i.e. a time limit over which it is not of interest to
know how the system evolves. Then, all the possible ways in which the
system can evolve, from the actual state within the scheduling horizon, are
computed.

The reachability tree is a set of nodes, where each node is a tuple repre-
senting a specific state of the system. In general, a node is described by
the following elements:
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• Reached_Marking : represents the state reached by the system (see
Section 3.1.1). It allows to know if agents or resources are available
in that specifc state, or if and which actions are being executed in
that particular state.
The initial state of the FTPN is represented by the root node, which
is the first node of the reachability tree.

• Father_Node : every node has a “ father node ” from which is gen-
erated, i.e. the node that precedes it in the reachability tree. This
parameter contains the marking of the father node.

• Enabled_Transitions : keeps track of the transitions that are en-
abled in the considered state of the system (see Section 3.1.1),
allowing to predict the possible evolution of the system, starting
from that specific state.

• Children_List : is the set of nodes that are generated by the tran-
sitions that are enabled in the considered node and that are truly
reachable. Only the reachable nodes are added to the reachability
tree (as it will be later explained, not all the nodes that can be gen-
erated by the enabled transitions can effectively be reached, because
some of these nodes would have an arrival time incompatible with
the system evolution and so their transition wouldn’t be allowed to
fire). The nodes contained in this set will be from here on called
children nodes.

• Generator_Transition : is the transition that generates the con-
sidered node, i.e. the transition that links the father node to the
current node.

• Arrival_Time : represents the predicted time needed to reach the
considered node. For the root node, it is 0; for a generic node, it is
represented by a triangular fuzzy number (for its computation refer
to Section 5.2.3).

• Possibility_To_Reach_The_Node : it is the possibility to reach
the current node. Every node of the reachability tree has its own
possibility to be reached, depending on the amount of uncertainty
characterizing the duration of actions on the specific branch; in
Section 5.2.4, it will be explained the method to compute such
parameter. In general, it is a real value comprehended between 0
and 1 and is computed considering the Possibility to reach the node
of the predecessor nodes on the same branch of the tree.

63



Chapter 5. Scheduling of robotic activities with Fuzzy Theory

• Robot_Waiting_Coefficient : it is a coefficient expressing the
amount of time for which the robot has remained inactive. This
coefficient is used in the computation of the cost function, to select
the best branch of the reachability tree (see Section 5.3.2).
In general, it coincides with the number of times for which the tran-
sition of type “Robot waits ” occurred: such transition corresponds
to commanding the robot to wait.
One might wonder why should a transition of type “Robot waits ”
be used in a FTPN. Although it seems that it adds waiting time,
and so that it increases the robot waiting coefficient, reducing the
performances, it might instead be used to favour the human, saving
in terms of human waiting time.
In fact, it might happen that the robot is inactive and its enabled
transitions, that the scheduler can choose, are:

– Start a Robot Action, with duration of 10 seconds
– Wait for 1 second

At the same time, the predictive algorithm informs that the human
will finish his/her current action in 2 seconds and that then might
want to perform a Human Action for which he/she will need a piece
machined by the robot, so a piece coming from a Robot to Human
Action.
Therefore, if the scheduling algorithm chooses to let the robot perform
the Robot Action, then the human would have to wait for at least

(10− 2)s+ duration of Robot to Human Action

before starting the intended Human Action.
On the other side, if the scheduling algorithm chooses to let the robot
wait for 1 second, it gives the robot the opportunity to start the
Robot to Human Action after 1 second, instead of after 10 seconds.
In this way, the robot waiting time is slightly increased but the
human waiting time is significantly reduced.

• Human_Waiting_Coefficient : it is a coefficient proportional to
the time for which the human has been waiting until such node was
reached. As the previous coefficient, it is used in the cost function.

• J_coefficient : is the parameter used to choose the best branch of
the tree, and so the best commands for the robot (see Section 5.3.3).
It considers the waiting time of agents in order to optimize it and
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also takes into account the possibility to cover the chosen branch.
In fact, the reachability tree is composed of many branches that
represent all the possible developments of the system: each of these
paths is affected by uncertainty and therefore described by possibility.
Paths that are very uncertain would have a very low possibility to
be chased.
Thus, a branch that guarantees very convenient waiting times but
that has low possibility to be chased would be excluded from the set
of branches that can be chosen as best ones.

A detailed presentation on how the above parameters are used and com-
puted is provided in the following.

5.2.2 Generation of the reachability tree
Starting from the current state of the system, i.e. the root node of the

reachability tree, the algorithm generates the list of all the states that can
be reached within the scheduling horizon. Every node of the reachability
tree is reached by firing a transition enabled in the state corresponding
to the father of that node. In other words, starting from the root node,
the algorithm generates all its children nodes, i.e. all the nodes that can
be reached by the current state and that represent the ways in which the
system can evolve.
The root node is inserted in a list of Unexplored nodes, that contains the
nodes that have been generated and have still not been analyzed.
The algorithm follows an iterative procedure: it analyzes one by one the
unexplored nodes, to check if, starting from each one of them, the system
can evolve to some other states.
If this holds, those states are said to be reachable and the respective nodes
are added to the tree, to the list of unexplored nodes and to the children
list of the correspondent father node.
The expansion of a branch is interrupted whenever the arrival time in a
node is over the temporal horizon or if the analyzed node is generated by a
Human Action or Human to Robot Action (see Section 3.3). Indeed, if the
human operator performs an action, the token of the place of the FTPN
related to the availability of the human is removed. Since the human is
considered to be an external agent not controlled by the FTPN, the token
related to its availability is never brought back by the natural evolution of
the FTPN.
Such token is re-inserted in the place only when an external sensor (camera)
outputs the information that the human has finished his/her action.
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For this reason, it would be useless to keep on expanding the branch along
which the transition Human action or Human to Robot action has fired:
enlarging the branch would simulate a situation in which the place related
to the human availability would never be filled with a token again, and so
the human would not be working, increasing the costs related to his/her
waiting time.
The nodes that do not generate any other children nodes are called “leaf
nodes”. When a leaf node is reached, the Human waiting coefficient is
computed as follows: it is proportional to the time for which the human
operator has been inactive, from the initial to the current state. It is
computed as the temporal distance between the time in which the transition
that enables the human to wait fired and the time in which the Human
Action was executed. Since the time related to the Human Action is
represented as possibility distribution, the above mentioned procedure
corresponds to calculating the difference between two fuzzy numbers.
Nevertheless, the “ distance operation ” is not generally mathematically
defined for fuzzy numbers, as anticipated in 4, and therefore an alternative
method will be presented.

Alternative method to evaluate fuzzy distance

Consider, for example, two fuzzy numbers: a = [ 1, 4, 6 ], b = [ 5, 7, 12 ],
as represented in Figure 5.4.

Figure 5.4: Evaluation of distance between two fuzzy numbers

The distance of b from a is the fuzzy number c such that:

b = a+ c

Therefore,
c = [ 3, 4, 3 ]
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which is not a unimodal number and so cannot be accepted as a fuzzy
number. This simple example shows that the subtraction, or Hukuare-
difference (see Section 4.5.2), is not always defined.
In this case, in fact, the subtraction is not an invertible operation:

(a+ b)− a 6= a

From this, the need to find a generic method that can always be applied,
irrespective of the specific dimensions of the triangles being compared.

Recalling that the exploration of the reachability tree stops whenever
a Human Action or Human to Robot Action starts, assume that the sys-
tem reaches a state identified by node Pi and that such node was generated
by a Human Action: the tree is not developed anymore on this branch and
the Human waiting coefficient is computed.
Before starting a Human Action, the human expresses the intention to
perform the related action: the time elapsed between the intention and the
actual start is referred to as human waiting time. To evaluate the human
waiting time, the nodes preceding Pi on the same branch must be searched:
one of those, Pk, is the one created by the transition that enabled the
human to wait.
The mathematical value of the human waiting time is normally expressed
by the “ distance ” between the arrival time in Pk ( a = [ a1, a2, a3 ] ) and
the arrival time in Pi ( b = [ b1, b2, b3 ] ).
The method that alternatively expresses such distance provides a coeffi-
cient that is proportional to the human waiting time and that allows to
coherently evaluate the Human waiting coefficient of all the nodes of the
reachability tree, allowing to compare them.

Kwh = ϕ1 · ϕ2 · ϕ3 · ϕ4 (5.2)
In the following, the interpretation of the above equation is given.
A simple method would measure the distance between two triangles consid-
ering either a worst case scenario – and so measuring the distance between
the least-right possible value of B (b3) and the least-left possible value
of A (a1) – or it would consider the highest-possible case scenario, i.e.
measuring the distance between the two most possible values, a2 and b2.
Nevertheless, it is easily noticeable that these measures are not precise
enough.
In fact, looking at Figure 5.5, where the peaks are the same in both cases,
in one case the two triangles have an intersected area whilst in the second
case they are not intersected. In the latter, the possibility to reach Pi in
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Figure 5.5: ϕ1 in human waiting coefficient: case 1 (top) and case 2 (bottom)

a time instant ∈ [ b1, b3 ] very close to [ a1, a3 ] is less than it would be in
the first case: in the second case, Pi can be reached at most at a3, which
precedes b1, whilst in the first case a3 is after b1 and so Pi can be reached
in a time instant possibly closer or inside the support of B. Therefore, the
possibility to reach Pk in a time instant close to the instant in which Pi
is reached is higher in case 1, which then is the case in which the waiting
time is smaller.
Thus, the need for a term that reduces the waiting coefficient as the
intersected area increases:

ϕ1 = 1− ψ

where ψ ∈ [ 0, 1 ] indicates the result of the normalization of the intersected
area, performed to make it range between 0 and 1. To do so, the intersected
area has been divided by the maximum possible intersected area, which
is a triangle of height 1 (all the triangles that are fuzzy numbers, i.e. the
ones considered in this thesis, have height 1) and support equal to the
temporal horizon considered for the scheduling.
In this way the triangles representing the arrival times of all the nodes of
the reachability tree are comparable.
If the intersected area is null, ϕ1 is maximum and so will “maximize ” the
human waiting time (not maximize in absolute terms, because other terms
of Eq. (5.2) might reduce Kwh).
If the intersected area is maximum, the two triangles are overlaid and
therefore the coefficient of human wait is zero. As the area increases, Kwh

decreases.
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The intersected area cannot be the only parameter to be considered. As
represented in Figure 5.6, two triangles with same support but different
peaks should influence in a different way Kwh.

Figure 5.6: ϕ2 in human waiting coefficient: case 1 (top) and case 2 (bottom)

In fact, in case 1 peaks are much closer than in case 2, meaning that
the most possible value of distance between A and B, i.e. b2−a2, is smaller
in case 1. The same holds if the two triangles are intersected. From here,
the need to include ϕ2 in the formula of Eq. (5.2):

ϕ2 = 1 + γ

where γ indicates the normalization of the distance b2 − a2 over the
maximum distance possible, which is the temporal horizon.

• if b2−a2 > 0, B has its peak after the one of A; the more b2 is on the
right side of a2, the more plausible is that the waiting time increases.
In fact, in this case γ ∈ ( 0, 1 ] and so ϕ2 ∈ [ 1, 2 ), which makes Kwh

increase.

• if b2− a2 < 0, B has its peak before the one of A: it is more possible
that Pi is reached at a time instant ∈ [ b1, b3 ] very close to the time
instant ∈ [ a1, a3 ] in which Pk is reached. This translates in a lowered
waiting time and, in fact, γ ∈ [−1, 0 ) which leads to ϕ2 ∈ [ 0, 1 ) and
so to a reduction in Kwh.
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Figure 5.7: ϕ3 in human waiting coefficient: case 1 (top) and case 2 (bottom)

Moreover, consider the case of Figure 5.7, where peaks and intersected
areas do not vary and the left vertex of A does. It can be noted that the
possible values of A with which Pk can be reached are more developed on
the left side in case 2: this means that the possibility to reach Pk in an
instant ∈ [ a1, a3 ] that is further from [ b1, b3 ] is higher in 2 rather than in
1.
In other words, the region in which only A has values greater than zero
(region with support b1 − a1) is wider in case 2 and so the possible human
wait is higher in case 2.
Thus, a proportional term is needed to consider how long is the support
b1 − a1: if it increases, the coefficient proportional to the waiting time
should increase as well:

ϕ3 = 1 + η

where η indicates the normalization of the distance b1 − a1 over the maxi-
mum distance possible.
Note that, since A is the arrival time of Pk, which is an ancestor of Pi, and
because of how time is treated in this thesis (see Section 5.2.3, “Phase 1”),
η ∈ [ 0, 1 ] and can never be negative.

The dual case is represented in Figure 5.8, where intersected area, peaks
and left vertices do not vary: by varying the right vertices in can be noticed
that B can assume values much more scattered and further from A (case
2). In this case, the possible waiting time is greater than in case 1, so
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Figure 5.8: ϕ4 in human waiting coefficient: case 1 (top) and case 2 (bottom)

Kwh should also consider the length of the support in which B has values
completely out of the distribution A. The wider it is, the most plausible
is that node Pi would be reached much later causing an increase in the
waiting time.
Thus, the proportional coefficient should increase together with the support
(b3 − a3):

ϕ4 = 1 + δ

where δ indicates the distance ( b3 − a3 ) normalized over the maximum
distance possible.

• If b3 > a3, then the δ ∈ ( 0, 1 ] and so ϕ4 ∈ [ 1, 2 ] leading to an
increase in human waiting time

• If b3 < a3, then δ ∈ [−1, 0 ) and so ϕ4 ∈ [ 0, 1 ] leading to a decrease
in human waiting time

Overall, the formula of Eq. (5.2) provides a coefficient that quantifies the
human waiting time in a specific node, allowing to compare many nodes
when necessary: the ones with higher coefficient would be targeted as
less convenient from a human-wait point of view and would heavily influ-
ence the optimization of the cost function (as later shown in Section 5.3.2).

Resuming the parameters of nodes, Arrival Time is the time taken to
reach the specific node of the reachability tree. If the node is generated by

71



Chapter 5. Scheduling of robotic activities with Fuzzy Theory

a controllable transition, it has instantaneous firing time and so inherits
the arrival time of the father node. If, instead, the node is generated by
an uncontrollable transition, its arrival time is computed by the algorithm
in two distinct phases, presented in the following.

5.2.3 Computation of arrival time
Phase 1:

When exploring the reachability tree, node by node the algorithm finds
the enabled transitions of such nodes and creates their children. If the
transitions generating such children are uncontrollable, the algorithm
follows a specific procedure to set their arrival time.
Be:

• Pi−1: node being explored, with uncontrollable transitions enabled

• Pi: one of the children nodes of Pi−1, generated by uncontrollable
transition ti

The way the arrival time of Pi is set depends on two possible cases:

1. transition ti got enabled in node Pi−1, i.e. got enabled in the state of
the system that is currently being explored. Then, the arrival time
in Pi is:

tArrivalPi = tArrivalPi−1
+ tFiringti (5.3)

2. transition ti got enabled in an ancestor node, which is before the node
Pi−1. In this case, it must be taken into consideration the time elapsed
between the time instant in which the transition got enabled and the
the one in which the transition ti fired. In this way, it is possible to
evaluate if node Pi is really reachable: with this procedure it might be
found out that the time related to Pi is incompatible with the system.

For the sake of clarity, an example is given to explain the second point.
In the FTPN that models the system, every uncontrollable transition is
represented as a fuzzy number, which is its firing time. As a consequence,
this holds also for the reachability tree: every transition is associated to a
possibility distribution that models the firing time through a fuzzy number.

Assume that a triangular fuzzy number [ a, b, c ] is associated to the transi-
tion ti and that such transition got enabled in a node, whose marking is
Mi.
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Thus, the transition ti will remain enabled for the next nodes (with marking
Mi+1, . . . ,Mi+k) if the following rules are fulfilled:

• a ( 0s ≤ a ) is the minimal time that transition ti must remain
continuously enabled, until it can fire.

• c ( c ≤ ∞ ) is the maximum time that transition ti can remain
continuously enabled without firing.

If transition ti got enabled at time τ and remains continuously enabled at
τ + a, then it can fire.
After time τ + a, transition ti can remain continuously enabled without
firing until τ + c, in which it must be fired or after that time it can no
longer fire.
According to the above stated, three scenarios can be pointed out:

1. actual node Pi−1 has enabled transitions that potentially bring to
nodes with arrival times that are not intersected and that are com-
patible

Suppose that transition ti, with firing time [ 16s, 17s, 20s ], got en-
abled in a state having marking Mi and null arrival time. The fact
that ti is enabled does not guarantee that it is effectively going to fire:
suppose that another transition tj is enabled too and got enabled at
state Mi as well, with firing time [ 12s, 13s, 15s ].
Since tj must fire within 15 s, it is sure that tj fires before ti (note that
the firing times are fuzzy - so not deterministic - but the evolution
of the system is deterministic, i.e. only one transition at a time can
fire).
When tj fires, if it does not disable ti (if it does not remove the tokens
that ti needs to fire) the system is brought into a new state, in which
ti might still be able to fire, if the time taken to reach such state
does not exceed the maximum enabling time of ti. In other words, ti
can still fire if the arrival time of Mi+1 is not greater than 20 s.
Supposing that the firing of tj does not disable ti, marking Mi+1 is
reached at least at time 12 s, which is the minimal time for which
tj has remained enabled before firing. At the same time, marking
Mi+1 has been reached at most at time 15 s: hence, when transition
ti fires, a new marking Mi+2 is reached, at least at time 16 s and at
most at 20 s:

tArrivalMi+2
= tArrivalMi ( = 0s ) + tFiringti (≥ 16s, ≤ 20s )
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2. actual node Pi−1 has enabled transitions that potentially bring to
nodes with intersected arrival times and that are compatible with the
evolution of the system

Suppose to have a transition ti with firing time [ 10s, 11s, 20s ] en-
abled since marking Mi, that is the marking of a node with null
arrival time.
Suppose that another transition tj, enabled since marking Mi too,
has firing time [ 12s, 13s, 22s ] and that it fires instead of ti, leading
the system to a state with marking Mi+1. Moreover, suppose again
that tj does not disable ti: in marking Mi+1, ti is still enabled.
For the previous reasoning, the system reaches Mi+1 at least at 12 s
and at most at 22 s; suppose that it is reached at 14 s < t < 15 s.
Then, ti is still enabled but its firing time is not comprehended
between 10 s and 20 s anymore, but between 14 s and 20 s: its
remaining firing time is less than its initial firing time.
In fact, ti got enabled in Mi with firing time [ 10s, 11s, 20s ] but since
the system reached Mi+1 at least at 14 s, then the time interval
[ 10s, 14s ] is no more a possible firing time for ti.
This implies that Mi+2 is reached, through ti, in a time modelled by
a fuzzy number comprehended between 14 s and 20 s.
Such resulting distribution is derived through a method later pre-
sented in “phase 2”, that “cuts” the part of arrival time that is not
compatible with the evolution of the system.

3. actual node Pi−1 has enabled transitions that potentially bring to
nodes with intersected arrival times and that are not compatible with
the evolution of the system

Considering the system of case 2, suppose now that the system
reaches Mi+1 at 21s < t < 22s and that the firing of tj does not take
away the resources of ti. Then, it seems that ti can still fire but,
analyzing the time,Mi+1 is reached at a time instant that exceeds the
last possible value of the firing time ti: transition ti cannot fire, so
the node that could have potentially been generated by it, is in reality
not reachable. Such node is in fact not added to the reachability
tree.

During phase 1, the algorithm has to distinguish between the above men-
tioned scenarios to then assign the arrival time to the interested node,
accordingly.
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To do so, for each node Pi that it analyzes, it goes through its ancestors
to find the one that enabled the transition that generated such node.
When the “enabling node” of Pi is found, it is compared with the “father
node” of Pi:

i. If father node and enabling node coincide, the arrival time of node
Pi is set as in Eq. (5.3)

ii. If father node and enabling node do not coincide, it is required to
check whether the considered node is reachable. If it is, its time can
be set and the node can be added to the tree.
Be A = [ a1, a2, a3 ] the possibility distribution of the arrival time of
Pi and B = [ b1, b2, b3 ] the one of its father Pi−1; it can be stated
that for Pi to be reachable, its arrival time must be greater or at
least has to be intersected with the arrival time of its father Pi−1.
In other words, it must hold:

a1 ≥ b1

In fact, allowing a1 to precede b1 would mean that it is possible
to reach the node Pi before reaching its father node Pi−1, which is
unreasonable. If this happens, Pi is an unreachable node.

So, considering case ii, first of all the time A that the system would
take to reach node Pi has to be computed with Eq. (5.3).
Then:

• If the distribution A is not intersected with the distribution of
its father, B, and its completely after it on the time axis, then
Pi is a reachable node and its firing time is not modified.

• If A is not intersected with B and is completely before it on
the time axis, then the system would reach the child before the
father: Pi is not reachable.

• If A is intersected with B, the algorithm computes which is the
possibility to effectively reach Pi at time A without getting into
not plausible situations, since father Pi−1 was reached at time B.

The possibility that the arrival time of Pi is A, is the result of
the intersection of two events:
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– Arrival time of Pi is A
– Pi−1 is reached before Pi, i.e. B is less than A

Expressing such concept in a formula:

Poss(B < A ) ∩ Poss(A )
max {Poss(B < A ), Poss(A ) } = tArrivalPi (5.4)

where the operation of intersection is performed with the op-
erator “min” (see Chapter 4); the denominator of Eq. (5.4)
is a normalizing term, so that the resulting distribution has
maximum value in 1.

The possibility to reach Pi−1 before Pi, is expressed as:

Poss(B < A ) =

∫ x

−∞
µA(t) dt∫ +∞

−∞
µA(t) dt

(5.5)

where x ∈ R.
The result of Eq. (5.5) is a polynomial curve of the second
order, which has to be intersected with the arrival time of Pi,
A.
The result of Eq. (5.4) is a mixture of first and second order
curves, with maximum value 1: from this composition of curves,
an approximated triangle is derived.
Such triangle would be the possibility distribution of the arrival
time of node Pi, which is therefore overwritten on its initial
distribution, A.

The concepts explained up to now are related to phase 1 of the evaluation
of arrival times.
In reality, when evaluating the arrival time at one node it must be checked
if the node can be added to the reachability tree not only in terms of
plausible time, but also depending on the type of transition that generated
it.
In fact, if a node has enabled transitions that are both controllable and
uncontrollable, since the controllable ones are prioritized over the uncon-
trollables, only the children generated by controllable transitions are really
added to the reachability tree.
Therefore, the first pruning of the tree consists of excluding the uncontrol-
lable transitions whenever also controllable ones are enabled.
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Then, if there are no controllable transitions and there are uncontrollable
transitions enabled, the associated nodes must be considered and their
time must be computed as in phase 1.

If the nodes generated by uncontrollable transitions are more than 1,
there might be conflicts to establish who is going to fire first. For this
evaluation, another method is considered and is referred to as “phase 2”:
it will eventually overwrite some arrival times or it will lead to declaring
some nodes as unreachable.

Example:
Suppose that in marking M1 two uncontrollable transitions are enabled: ti
generates node Pi and tj generates Pj.
To analyze the possibility to reach Pi instead of Pj, and vice versa, first
the arrival time of these two nodes has to be calculated as in phase 1.
Denoting the arrival time of Pi as A and the one of Pj as B, the possible
situations are:

1. A completely precedes B on the temporal axis: the conflict is won
by the transition leading to Pi and so the arrival time of Pi does not
vary, whilst node Pj loses and so is not added to the reachability
tree. The possibility to win the conflict for ti is unitary.

2. Dual case: A completely after B, i.e. A loses whilst B is added to the
tree with the same time computed in phase 1 and unitary possibility
to win the conflict.

3. A and B are intersected: both ti and tj have a chance to win the
conflict, each of them with a possibility less than 1 and with different
arrival time, calculated as presented in the following.

Phase 2:
Given n nodes involved in a conflict, the first step of phase 2 is to compute
the arrival time of each node as if it was the winner of the conflict.
At every iteration, the transition ti generating node Pi, i = 1, . . . , n, is
assumed to be the winner: the arrival time is computed “given that the
considered node won the conflict”.
Expressing it in other words, Pi can be the winner of the conflict only if
the arrival time of Pj, ∀j = 1, . . . , n and j 6= i, is greater than the arrival
time of Pi.
Therefore, evaluating the arrival time of Pi consists of evaluating how pos-
sible is that the arrival time of the other nodes is greater than the one of Pi.
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Suppose, for example, to have 3 nodes involved in a conflict; be A the
distribution of the arrival time of Pi, B and C the ones of nodes Pj and
Pk.
Therefore, the possibility distribution of Pi is given by the intersection of
three events:

• Node Pi is reached at a time modelled by A

• The other nodes, Pj and Pk, are reached at times greater than A

Overall, the time distribution of Pi is computed as:

Poss(C > A ) ∩ Poss(B > A ) ∩ Poss(A ) = tArrivalPi (5.6)

where:

Poss(B > A ) =

∫ +∞

x
µB(t) dt∫ +∞

−∞
µB(t) dt

Poss(C > A ) =

∫ +∞

x
µC(t) dt∫ +∞

−∞
µC(t) dt

(5.7)

The curves resulting from Eq. (5.7) are of the second order and are inter-
sected with the triangle A, as shown in Eq. (5.6).
The obtained result is then normalized, dividing by the maximum value
of the intersection. In this way, it is a distribution with values ranging
between 0 and 1; it will be then approximated to a triangle which will
eventually be overwritten on the arrival time of Pi.

In Appendix it is presented how to solve a conflict with a probabilis-
tic approach, in order to show that the computation required in that case
is heavier than the one for possibilistic approach.

Note that, whenever there is a conflict between nodes with intersected
arrival times, not only the arrival time must be overwritten, but is also
necessary to compute the possibility of winning the conflict.

5.2.4 Computation of the arrival possibility
Every node that is added to the reachability tree is characterized by

an attribute identifying the possibility to reach the node itself, since some
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uncontrollable conflicts are present in the path leading from the root to
that node.
Such a possibility is a positive real number, ranging from 0 to 1.
First of all, the possibility to reach a state Mi depends on the possibility
to reach its father node Mi−1; then, if Mi is involved in an uncontrollable
conflict, its possibility depends also on the possibility S to win the conflict.

In general, the possibility to reach Mi when it is involved in an uncontrol-
lable conflict is:

Poss (Mi ) = S · Poss (Mi−1 ) (5.8)

where the possibility to win the conflict S expresses how the arrival time
of the considered node changed after winning the conflict. In practice, is
the ratio between the area under the curve found with Eq. (5.6), before
normalizing and approximating it to a triangle, and the area under the
curve representing the arrival time distribution determined in phase 1.

S = χ

ρ
(5.9)

where χ indicates the area under the curve of Eq. (5.6) and ρ indicates
the area under the original arrival time distribution.
The formula of Eq. (5.8) can be generally applied to every node: if a node
is not involved in an uncontrollable conflict, its “possibility to win the
conflict”, S, is 1 and so it simply inherits the possibility of its father node
to reach the state.

5.3 The scheduling algorithm
This Section is going to present how the decision-making problem is

handled by the scheduling algorithm implemented.
The cost function is defined and therefore the mechanism of choice of the
best actions to command to the robot is shown.
All the steps that follow are subsequent to the generation of the reachability
tree (see Section 5.2): indeed, the scheduler chooses the best actions by
selecting the best branch of the reachability tree, in terms of cost function.

5.3.1 MPC approach
Once identified the criterion for the algorithm to take a decision, i.e.

once that the cost function to be optimized has been determined, the

79



Chapter 5. Scheduling of robotic activities with Fuzzy Theory

algorithm is able to recognize which is the evolution of the system that
allows the most convenient performance.
The algorithm finds the sequence of transitions that bring to the optimal
performance, with the aim of sending to the robot commands that will let
it chase the optimal plan.

Since the chosen sequence is made of controllable and uncontrollable
transitions, it accounts for uncontrollable events which lead to a not fully
predictable evolution of the system.
In fact, uncontrollable events like robot actions with ill-known duration or
human actions, can be predicted but, in practice, bring the system to a
state that cannot be known a-priori.
After commanding the robot and when it has finished the commanded
action, it would be meaningless to let it perform the next action that has
been previously scheduled because it might not be suitable for the current
configuration of the system.

Instead, it would be better to send only the first command of the best
sequence, to then re-schedule starting from the new configuration.
This procedure reflects the MPC approach and allows to have a scheduling
based on fresh new data.

In practice, when the algorithm returns the sequence of transitions that
lead to the best performance, only the first controllable transitions are
extracted and converted into commands for the robot.
The output of the algorithm is made of at most 2 commands, that is
the case in which both robot arms are free and can perform an action
simultaneously.
In the background, there is a thread linking the algorithm to the robot,
which sends information on the state of the agents: only when at least
one agent is free, the algorithm is invoked to schedule new commands
(Figure 5.9).

5.3.2 Cost function
Once the reachability tree has been generated, the scheduling algorithm

has to choose the branch of the tree that satisfies the most the assigned
specifications.
For sure, a priority of the algorithm is to minimize the waiting time of the
agents. Every leaf node of the tree has a parameter (J_Coefficient) that
accounts for Robot waiting coefficient and Human waiting coefficient, that
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Figure 5.9: PC-robot communication

therefore identifies how convenient would be to choose the related branch,
from the waiting time point of view.

When evaluating the waiting time of each node, it must be taken into
account that every node has its own possibility to be reached: what might
seem to be very convenient from a waiting time point of view, might not
be very likely to be reached (uncontrollable evolution of the system).

Referring to Figure 5.10, the algorithm might have to choose whether it
is more convenient to output tc1 or tc2 , assuming that one disables the other.

Choosing tc1 , the robot will end up in one of the places generated by
tu1 , tu2 or tu3 , that are 4, 5 or 6. Each of them is characterized by their
possibility to be reached: for example, if tc1 is commanded, node 4 is
reached with a possibility of 0.8 and, if this happens, the waiting coefficient
would be 0.5 (exemplifying value, that is small if the waiting time is small).

It can be noticed that choosing tc2 , the waiting time might be much
smaller (nodes 8 and 9) with respect to the waiting time resulting from tc1 .
On the other side, the nodes that seem to optimize the cost function,
are characterized by a very low Possibility to reach the node: therefore,
choosing tc2 there is a possibility to reach nodes with very low waiting time,
but it is also (highly) possible to reach a node, 7, with not so convenient
waiting time.
Eventually, tc2 might guarantee good performances but the possibility to
effectively obtain them is low, i.e. the risk is high.
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Figure 5.10: Evaluation of best branch depending on user’s approach to risk

If instead the choice is tc1 , the nodes then reached (4,5,6) have not very
low waiting times but higher possibilities and so it is more likely that the
system evolves as predicted. Having higher possibilities means to include
less risk in the choice.

Overall, every user has different criteria to choose, according to his/her
needs. For this reason, the cost function is thought in ordered to be “tuned”
by the user, that can weigh his/her priorities: the tunable parameter is the
risk coefficient, which is inversely proportional to the possibility to reach
the node.

The risk coefficient is denoted as α and is a real number ranging from 0 to
1.
A low value of α selects a less risky solution of the scheduler, even though
it might sacrifice the minimization of waiting times. The higher the value
of α, the more the choice minimizes the waiting time of the agents.

5.3.3 Choice of the best branch
To decide which is the best branch, it is required to determine a pa-

rameter that allows to compare all the branches.
Whilst the reachability tree is generated with a breadth-first approach,
so starting from the root node towards the leaf nodes, the choice of the
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best branch is handled with the opposite procedure: starting from leaf
nodes, they acquire a coefficient that expresses the amount of waiting time
accumulated up to that node (J_Coefficient) and which is propagated
upwards until the root node is met.
Considering Figure 5.10, after assigning J_Coefficient (in the following
it will be explained how) to all the leaf nodes, they are propagated to
their father nodes 2 and 3, that will have a J_Coefficient based on the
J_Coefficients and possibilities of their children (because 2 and 3 generate
an uncontrollable conflict) and the risk coefficient α.
Going to the next level, to the father of 2 and 3, it acquires another
J_Coefficient: in this case the node generates a controllable conflict, so
the propagation of J_Coefficient does not depend on the possibility of its
children but its the outcome of a choice: node 1 “inherits” the coefficient
that maximizes the performances. The transition leading to the node
with maximum J_Coefficient is the output of the algorithm, and so the
command to be sent to the robot.

The same procedure applies for a more complex and general case, with a
larger tree, as represented in Figure 5.11, where the red arrows identify
controllable conflicts, whilst the black ones identify uncontrollable conflicts.

Figure 5.11: Working principle of scheduling algorithm

• At level 0, the J_Coefficient for all the leaves is determined:

J = 1
WH · TH +WR · TR

(5.10)

where TH and TR are Robot_waiting_coefficient and Human_waiting_
coefficient respectively and WH , WR are tunable parameters used to
weigh desirably the waiting time of the agents.
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• Moving to level 1, the nodes are fathers of uncontrollable conflicts
and so their coefficient is determined considering J_Coefficient and
possibility of their children:

JPi = α ·max ( Jk ) + (1− α) ·
n∑
k=0

Jk · pk (5.11)

where JPi is the J_Coefficient of a generic node at level 1 or at
any other level in which the nodes have outgoing uncontrollable
transitions. The node with coefficient JPi has n children, that have
coefficients Jk and possibilities pk, with k = 0, . . . , n.
The coefficient α stands for the risk desired by the user: if α = 1,
the risk is maximum and therefore the user prefers to consider only
the best case of the evolution of the system, without considering
the related possibilities. If α = 0 the user prefers to find a compro-
mise between optimization of waiting time and significant values of
possibility.

• At level 2, the nodes generate controllable transitions, so they have
to choose the best performing coefficient:

JPi = max ( Jk ) (5.12)

where JPi is the coefficient of the generic node at level 2 (or at any
other level in which nodes generate controllable transitions); Jk is
the J_Coefficient of the k − th child of JPi , k = 0, . . . , n.

Referring to Figure 5.11, the leaf nodes with coefficient J0 and J1 have
the same father, with coefficient JP0 and are involved in an uncontrollable
conflict.
Therefore, assuming that:

• J0 has Human_Waiting_Coefficient = 0.3,
Robot_Waiting_Coefficient = 0.1,
Possibility_to_reach_the_node = 0.4

• J1 has Human_Waiting_Coefficient = 0.2,
Robot_Waiting_Coefficient = 0.1,
Possibility_to_reach_the_node = 0.8

the respective coefficients are:
J0 = 1

0.3 + 0.1 = 2.5 J1 = 1
0.2 + 0.1 = 3.33
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If α = 0, JP0 = ∑n
k=0 Jk · pk = J0 · p0 + J1 · p1 = 3.33 · 0.8 + 2.5 · 0.4 = 3.64.

If α = 1, JP0 = max ( Jk ) = 3.33.
If α = 0.6, JP0 = 0.6 · max ( Jk ) + (1 − 0.6) · ( J0 · p0 + J1 · p1 ) =
0.6 · 3.33 + 0.4 · 3.64 = 1.998 + 1.456 = 3.454.

Assume to perform the same computation to obtain JP1 and JP2 , with
α = 0.6, and to obtain JP1 = 3.27 and JP2 = 2.98. Then, the coefficient of
the father node at level 2 is the maximum between JP0 , JP1 and JP2 and
so JP0 .

The pseudo-code reported in Algorithm 1 and Algorithm 2 summarizes
the steps involved in the computation of a new scheduled plan.
The notation adopted for presenting the pseudo-code is described in the
following:

Root_Node: node that represents the initial state of the system, with
marking M0
PRE and POST: incidence matrices of the FTPN
DATA: information coming from predictive algorithm and from the com-
munication thread (see Section 5.3.1) with the robot
Unprocessed_nodes: set of nodes that have been generated and still
have to be analyzed
This_Node: node that the algorithm is currently analyzing
Children_list: set of children nodes of the considered one
Horizon: temporal scheduling horizon over which the tree ceases to ex-
pand
set_time_phase1 (): method to set arrival time to the considered node,
according to Eq (5.4)
set_time_phase2 (): method to set arrival time to the considered node,
according to Eq (5.6)
set_possibility_after_conflict (): method to set the possibility to
reach the considered node, basing on Eq. (5.8)
Choose_Best_Path (): method that computes the best path (5.3.3)
Update_data (): method that updates the data related to the FTPN,
computing the new marking reached by the system - according to the
above-mentioned data received - and overwriting the firing time of transi-
tions that express the duration of actions. In fact, whenever an action is
performed, its duration is measured and stored, in order to have a more
precise estimate of its duration
Create_Net (): method that creates the FTPN
Get_Optimal_Plan (): method that creates the reachability tree from
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the created FTPN
List_Of_New_Samples: information updated at each iteration of the
algorithm
Find_Best_Branch (): method that selects the most performing branch
of the tree
List_Best_Sequence: list of best controllable transitions taken from
the output of Find_Best_Branch (); they correspond to the commands to
send to the robot
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Algorithm 1: Get_Optimal_Plan ()
1 create Root_Node;
2 add Root_Node to Unprocessed_nodes;
3 while Unprocessed_nodes has elements do
4 This_node = first element of Unprocessed_nodes;
5 if This_node is not generated by Human Action transition then
6 if This_node.Arrival_time < Horizon then
7 if This_node has enabled transitions then
8 if enabled transitions are uncontrollable then
9 for every enabled transition do

10 create node generated by the transition;
11 add node to Children_list of This_Node;
12 end

13 if This_node has children then
14 for every child do
15 child.Arrival_time = set_time_phase1 ();
16 if time computed at phase 1 is plausible then
17 if child is involved in an uncontrollable conflict then
18 child.Arrival_time = set_time_phase2 ();
19 child.Possibility_to_reach_the_node =

set_possibility_after_conflict ();
20 else
21 child.Possibility_to_reach_the_node = inherit

possibility from father;
22 end
23 else
24 delete child;
25 end
26 end
27 end
28 else

// enabled transitions are controllable
29 for every controllable transition do
30 create node generated by the transition;
31 add node to Children_list of This_Node;
32 node.Possibility_to_reach_the_node = inherit possibility from father;
33 end
34 end

35 if This_node does not have children then
36 delete This_node;
37 else
38 for every child do
39 if This_node can not generate then
40 Compute_Robot_waiting_coefficient ();
41 Compute_Human_waiting_coefficient ();
42 end
43 add child to Unprocessed_nodes;
44 end
45 end
46 else
47 delete This_node from Unprocessed_nodes;
48 end
49 else
50 delete This_node from Unprocessed_nodes;
51 end
52 else
53 delete This_node from Unprocessed_nodes;
54 end
55 end
56 List_Best_Sequence = Choose_Best_Path ();
57 return List_Best_Sequence;
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Algorithm 2: Choose_Best_Path ()
1 Compute the list of leaf nodes;
2 for every leaf node do
3 assign J_Coefficient = 1

WTH + WTR
;

4 end
5 for every leaf node do
6 initialize current_node to leaf node;
7 while current_node != Root_Node do
8 if current_node is generated by a controllable transition then
9 father = select father of current_node;

// set J_ Coefficient as in Eq.5.12
10 father.J_Coefficient = best_J;
11 else

// set J_Coefficient as in Eq.5.11
12 father.J_Coefficient = (α ) · best_J + (1 − α) · Sum;
13 end

// Iterative procedure
14 current_node = father;
15 end
16 end
17 Best_Node = child of Root_Node with maximum J_Coefficient;
18 Best_Sequence = Best_Node.Find_Best_Branch ();
19 return Best_Sequence;

88



Chapter 6

Experimental results

This Chapter is aimed at reporting the results obtained by testing the
developed scheduling algorithm.
In Section 6.1 the goal of the experiments is presented; Section 6.2 describes
the experimental setup, introducing in detail the working areas and the
objects used, together with an explanation of the operations that form
the assembly processes. Moreover, the FTPN used to model the system is
illustrated and described.
Section 6.3 specifies the conditions under which the experiments have been
performed and the related outcomes.
In particular, the performance of the proposed scheduling algorithm is
compared with the ones obtained using a less accurate scheduler, which is
presented in the same Section.
In Section 6.4, other results obtained from simulation tests are provided,
showing the efficiency of the proposed algorithm in terms of computational
costs; moreover, it is aimed at proving its efficiency also in adapting to
different conditions of the system and different tuning of parameters.

6.1 Goal of the experiments
In order to test the effectiveness of the scheduler, in this Chapter a re-
alistic use case of human-robot collaborative assembly process has been
considered.
An industrial robot co-operates with a human operator in an assembly
line, to produce objects of common use: some of the actions required to
obtain the final products are performed by the human and the others by
the robot.
Since the actions of an agent depend on the success of the actions of the
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other agent, the overall process is intended as a collaboration.

For the considered experiments, the products selected are of different
kind and made of many components, in order to simulate and test a com-
plex and uncertain process; indeed, the assembly operations are copious
and subject to unpredictable variations in their duration, due to the col-
laborative context.
As a consequence, the aforementioned test case has a great amount of
uncertainty, which allows to verify the efficiency of the proposed algorithm,
that has to control the robot guaranteeing an optimal synchronization of
the actions of all agents involved in the cooperation.
In particular, the robot has to promptly satisfy the requests made by the
human operator, carrying out the tasks that allow him/her to fluently
work without wasteful waits.

The products chosen for the assembly line are torches and clocks, shown in
Figure 6.1 and whose components are listed in Table 6.1; in the following,
details about the assembly processes will be shown.

(a) (b)

Figure 6.1: Assembled products
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6.2 Use case description

6.2.1 Experimental setup
The collaborative robot used in the experiments is the dual-arm ABB

YuMi: it is equipped with a suction tool and a parallel gripper, that are
used to pick and place the components of the objects to be assembled.
The two arms of YuMi are considered as two independent entities, which
can work simultaneously: the only constraint to impose about the motion
of YuMi, is the non-collision of the arms. Therefore, if a collision is pre-
dicted to happen, one of the two arms stops to allow the other to continue
its action.
For this reason, a specific area called “Assembling Shared Area” has been
defined: it is a region that can be accessed by both arms (Figure 6.7). The
arm that intends to enter the region, first has to require its availability; if
the region is occupied by the other arm, the one sending the request has
to wait until it becomes free. As a consequence, if an arm is performing an
action and at some point requests to enter the Assembling Shared Area,
which is instead occupied, then the time required to complete the current
action increases considerably, according to the time for which the other
arm occupies the area.
In turn, the presence of the shared area leads to an increase in the uncer-
tainty affecting the duration of robot actions.
A practical example of the Assembling Shared Area being occupied by an
arm is given in Figure 6.17, for the right arm, and Figure 6.2, for the left
arm.

(a) (b)

Figure 6.2: Action L3 ( part 1 )

Figure 6.2: continued on next page.
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Figure 6.2: continued from previous page.

(c) (d)

(e) (f)

(g)

Figure 6.2: Action L3 ( part 2 )

Figure 6.2: continued on next page.
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Figure 6.2: continued from previous page.

(h) (i)

Figure 6.2: Action L3 ( part 3 )

The end effectors of YuMi are embedded with two cameras, used to
detect specific objects in the working areas.
This is used in pick-and-place operations, to know where the object that
has to be picked is located, or to find a free spot to place an object.

A Microsoft Kinect depth camera is used to acquire the positions of
the human’s hands, to capture the moment in which he/she is starting or
performing an action. Such information is sent to the scheduler, which
updates the state of the underlying FTPN.
At the same time, this information is required to know if the human is
entering some areas that are common regions, used by both human and
robot. In fact, when a human deposits a piece or takes one from an area
that can be used by the robot too, the latter slows down its speed to avoid
collision with the operator and - at the same time - to allow him/her to
serenely conduct his/her tasks, without fearing the closeness of robot arms.

In the physical setup of the test case, the common regions, i.e. areas
in which the robot is entitled to slow down, are:

• Central Common Area, Common Left Area: they are intermediate
stations in which the human places the pieces that he/she assembled,
and that will be picked by the robot to continue the assembly process.
These regions can be entered by both agents and therefore are part
of those regions in which the camera has to recognize if the human
is inside them, so that the robot is commanded to slow down its
motion.

• Ramp Area, Common Right Area: they are common areas, in which
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the robot deposits the pieces that has assembled and that have to
be picked by the human operator. As the above areas, these are
programmed to be controlled by the camera, to let the robot slow
down in case of simultaneous operations inside them.

Other components of the setup are:

• BF_complete_torch: buffer containing assembled torches.

• BF_complete_clock: buffer containing assembled clocks.

• Robot Working Station (RWS): station in which the robot temporarily
deposits a piece to perform an assembly operation on it. In the
following, the stations RWSR1 , . . . , RWSRN will identify the working
stations used by the robot when performing actions R1, . . . , RN

respectively, and RWSL1 , . . . , RWSLN will correspond to actions
L1, . . . , LN .

• Buffer (BF): to perform any action, pieces are needed and therefore
they are all collected in buffers, one for every specific component. As
an example of notation, BF1R1

, . . . , BFNR1
will denote the N buffers

used by the robot to perform action R1; BF1H1
, . . . , BFNH1

will be
the buffers for the human action H1, etc.

6.2.2 Assembly operations
In this Section, a detailed description of the operations carried out by

the agents of the system will be given, showing the procedure that each of
them follows.
The considered use case satisfies the hypotheses made in Chapter 3: it
comprehends Robot Actions, Human Actions, Robot to Human Actions
and Human to Robot Actions.
The actions performed by the right arm are reported as “Action R”, those
of the left arm are “Action L”; the actions of the human are denoted as
“Action H”.
The logical order of the actions to assembly a torch and a clock is explained
in the following and represented at the end of the Chapter:

1. Action R1 (Robot to Human Action ): the right arm of the robot
takes a ring from BF1R1

with the gripper and deposits it on the
working station RWSR1 . Then, picks a glass from BF2R1

with the
vacuum tool and puts it inside the ring. With the gripper again picks
a light from BF3R1

and puts it in the piece assembled up to now, to
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then push it towards the human operator, letting it slide on a ramp
that has been built specifically for this purpose, which is the Ramp
Area.
The piece assembled at this stage is identified as “piece 1”.
The sequence of operations is represented in Figure 6.17.

2. Action H1 (Human to Robot Action ): the human takes “piece 1”
from the Ramp Area, then takes the body of the torch from BF1H1
and assembles them, forming “piece 2”, which will be placed in
Common Left Area (see Figure 6.18).

3. Action H2 (Human to Robot Action ): the human picks three batter-
ies from BF1H2

and the cage from BF2H2
, to insert the first ones in

the latter. The assembled piece (“piece 3”) is put in Central Common
Area (see Figure 6.19).

4. Action L1 ( Robot Action ): the robot takes “piece 2” from Common
Left Area and places it in RWSL1 (see Figure 6.20).

5. Action R2 (Robot to Human Action ): takes “piece 3” from the
Central Common Area and puts it inside “piece 2”, that now is in
RWSL1 . The completed product (“piece 4”) is moved and placed in
Common Right Area (see Figure 6.21).

6. Action H3 (Human Action ): the human takes “piece 4” from
Common Right Area, the top of the torch from BF1H3

and as-
sembles them, forming the final product, which is therefore put
in BF_complete_torch (see Figure 6.22).

7. Action R3 (Robot to Human Action ): the robot takes the clock
face from BF1R3

to place it on the working station RWSR3 ; then,
takes the engine of the clock from BF2R3

and mounts it on the clock
face, forming “piece 5” and depositing it in Common Right Area (see
Figure 6.23).

8. Action H4 (Human to Robot Action ): the human picks “piece 5”
from Common Right Area and screws it. Then, takes the needles
from BF1H4

and attaches them to “piece 5”, forming “piece 6”, which
is placed in Common Left Area (see Figure 6.24).

9. Action L2 ( Robot Action ): the robot clamps the frame of the clock
from BF1L2

and places it in RWSL2 . Then, uses the vacuum to pick
the glass from BF2L2

and assembles everything, forming “piece 7”
(see Figure 6.25).
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10. Action L3 ( Robot Action ): the robot grabs “piece 6” from Common
Left Area and wedges it in “piece 7”, forming “piece 8”; then it uses
the vacuum to pick the back of the clock in BF1L3

and to place it on
top of previous piece, forming “piece 9” (see Figure 6.2).

11. Action R4 ( Robot to Human Action ): the robot grabs “piece 9” and
places it in Common Right Area (see Figure 6.26).

12. Action H5 (Human Action ): the human takes “piece 9” and screws it,
to then put it in the final buffer BF_complete_clock (see Figure 6.27).

All the components needed to assemble the above mentioned pieces are
shown in Table 6.1. In all the actions in which the robot accesses Common
Right Area or Common Left Area, the first operation performed by the
robot is to take a picture of the common area from above, in order to read
the QR code placed inside it. This operation allows the robot to know if
there is at least one piece in the common area or if there is a free place to
deposit a piece.
As it is shown in Figure 6.7, the Common Right Area is divided into three
areas, defined as A, B and C, each of which is used to contain “piece 4”,
the “piece 5” and “piece 9”, respectively. Similarly, the Common Left Area
is divided into two areas, A and B, to contain “piece 2” and “piece 6”,
respectively.
The experiment performed on the real assembly plant is characterized
by a specific sequence of operations. The human performs cyclically the
same sequence of actions, without varying the order, so that the predictive
algorithm can reach a steady state condition: in this way, the information
about the duration of human actions transferred to the scheduling algo-
rithm is more reliable.
Indeed, if the human changes instead the order of actions at each iteration,
the predictive algorithm would constantly be in a training phase and would
return predictions that are far from reality, i.e. not consistent.

6.2.3 Use case modeling
The chosen assembly process is modeled through a FTPN. Referring

to the notions exposed in Chapter 3, the physical system and its working
principle can be represented as in the FTPN reported at the end of this
Chapter in Figure 6.28 and Figure 6.29, whose places and transitions are
summarized in Tables 6.3, 6.4 and 6.5.
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All the actions are represented in the FTPN as “Action in progress” places
(Chapter 3), having an input arc coming from a controllable transition, e.g.
StartR1 , that identifies the start of an action, and having an output arc,
going towards an uncontrollable and timed transition that represents the
duration of such action, modeled as a possibility distribution, e.g. EndR1

(see Figure 6.3).
In addition, a human action can only start if the human has first expressed
the intention to start executing the action; in fact, when the human mani-
fests an intention (e.g. start to assemble the torch), the robot performs
those actions that are necessary to provide him/her with the pieces needed
to start the intended action.

In summary, a human action can be split in three stages:

• IntentionHX : is an intention expressed by the human operator,
when his/her aim is to start a specific action. The intention can be
manifested even though the pieces necessary to perform the intended
action are yet not available;

• StartHX : is the actual start of the intended action. It can happen
only if all the resources that have to be used in such action are
available for the human operator and only if the place that has to
host the final product is free;

• EndHX : identifies the fulfillment of the action, carrying the infor-
mation about the duration of such action, represented as a fuzzy
number;

where X = 1, . . . , 5.

In Figure 6.3 a representation of actions of the robot and actions of
the human is given, to highlight the difference in their structure. Note
that Robot Actions and Robot to Human Actions have the same structure;
the same holds for Human Actions and Human to Robot Actions.

Referring to Figure 6.3, the “availability of resources” required to
satisfy a human intention stands for the availability of pieces in buffers
(BF1HX , . . . , BFNHX ) or of pieces provided by Robot to Human Actions.
Each human action has different requirements, which are shown in Fig-
ure 6.4 and Figure 6.5.

The scheduler is invoked every time that at least one of the two arms
is free and returns the best sequence of actions to be sent to the robot.
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Figure 6.3: Structure of human and robot actions

In Figure 6.6, the layout of the experimental setup is shown, specifying all
the components and areas mentioned above.

Notice that Common Right Area and Common Left Area, represented
in Figure 6.6, are further divided into regions as mentioned in Section
6.2.2: their structure is represented in Figure 6.7.

6.3 Presentation of the experimental results
The efficiency of the algorithm developed for this thesis has been proved

comparing it with a simpler scheduler, which accounts for uncertainty in a
less precise way.
The simpler scheduler considered goes under the name of “uniform sched-
uler”: it represents the duration of actions as intervals, i.e. uniform
distributions rather than fuzzy, and does not consider how possible is to
effectively reach a node of the generated reachability tree.
Indeed, neglecting the possibility and representing roughly the duration
of tasks, the uniform scheduler is expected to be less performing than the
fuzzy one.
For the experiments two different assembly processes have been considered
and they are identified by the following patterns:

• Pattern A: both torches and clocks are assembled. The human
operator performs an action to assemble a torch, alternated with
another action to assemble a clock; thus, the related intentions are
shown by the human operator in the following order:
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Figure 6.4: Resources needed to perform human actions in assembling torches
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Figure 6.5: Resources needed to perform human actions in assembling clocks
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Figure 6.6: Layout of the experimental setup

Figure 6.7: Regions of the working area
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– IntentionH1

– IntentionH4

– IntentionH2

– IntentionH5

– IntentionH3

• Pattern B: only torches are assembled, hence the order of intentions
shown is:

– IntentionH1

– IntentionH2

– IntentionH3

For every pattern, it has been evaluated the total amount of time for which
the human operator has been waiting during the production of a single
piece, both in fuzzy and uniform approaches.
The time required to produce one piece is computed as the time elapsed
between two consequent completed products (production cycle). The
human waiting time computed from the experiment performed with pattern
A is represented in Figure 6.8, together with the robot waiting time;
analogously, the waiting times obtained from the experiment with pattern
B are represented in Figure 6.9.
On each box plot reported, the red line indicates the median value; the
bottom and the top edges of the box identify the 25th and 75th percentiles,
respectively; the ’+’ symbols represent extreme data points, which are
outliers.

From above results, it can be noticed that both agents have, in average,
reduced waiting time when a fuzzy scheduler is used, rather than a uniform
one:

• Pattern A: waiting time decreased of 22.55%

• Pattern B: waiting time decreased of 26.28%

Figure 6.10 shows how the time required to produce one torch and one
clock is distributed, both with fuzzy and uniform approach (Figure 6.10).

Considering the same set of operators working when testing both fuzzy
and uniform schedulers, the production time of objects in the assembly
line is lower when the scheduling algorithm is fuzzy.

By testing, it has been noticed that:

102



6.3. Presentation of the experimental results

0

50

100

150
Fuzzy Scheduler

0

50

100

150
Uniform Scheduler

Figure 6.8: Waiting time of agents in pattern A: fuzzy and uniform approaches
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Figure 6.9: Waiting time of agents in pattern B: fuzzy and uniform approaches
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Figure 6.10: Production time for one torch and one clock: fuzzy and uniform
approaches

• Production time for one torch reduced by 36.12%

• Production time one clock reduced by 30.14%

This shows that the developed algorithm is able to better adapt to the
human’s needs, having positive consequences on the overall performance.
Indeed, since the fuzzy scheduler handles the possibilities (α = 0), it avoids
to command actions that would ideally lead to a state with minimum
waiting time but that, at the same time, would have a very low possibility
to be reached.
Thus, cutting out from the choices those branches of the reachability tree
that are not reliable (very low possibility), the fuzzy scheduler is less
likely to “get wrong”; the uniform scheduler, instead, might command an
action believing that it would bring the system in a state with minimum
waiting time, without considering that the evolution to such state is almost
unfeasible.
As a consequence, it may happen that - with a uniform scheduler - the
system evolves to a state different from the expected one, leading to an
increase in the waiting time and therefore in the overall production time.

In the following another experimental result is reported, to justify the
choice of a fuzzy scheduler.
The duration of the robot actions have been timed during experiments
on patterns A and B: in Figure 6.11 and Figure 6.12 the plots on the left
show how the samples of the duration of robot actions are distributed.
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It can be noticed that the samples are very scattered, proving that the
duration of actions is effectively uncertain and unpredictable: from here,
the choice not to represent such duration as a uniform distribution, i.e.
avoiding to assume that the samples are homogeneously distributed in a
time interval.
For every box plot representing the duration of an action, the respective
triangular fuzzy number has been represented (according to the method
presented in Section 5.1), as illustrated in Figure 6.11 and Figure 6.12, on
the right.

105



Chapter 6. Experimental results

6.4 Offline results
Offline experiments have been performed in order to test the adaptabil-

ity of the scheduling algorithm to different conditions: tests were made
varying both initial conditions of the system and risk coefficient α.

Case 1: varying the initial conditions

The test reported in the following proves that varying the initial con-
ditions of the system, the algorithm returns the expected command for the
robot, i.e. the command that satisfies the preconditions required by the
expressed human intention.
Given the initial configuration:

• Common_Right_Area, Common_Left_Area, Central_Common_Area,
Ramp_Area empty

• RWSs all empty

• Risk coefficient α = 0

• Scheduling horizon = 60 s

• Human expresses IntentionH1

in this scenario the human operator expresses the intention to perform
ActionH1 and he/she can do it only if “piece 1” (see Section 6.2.2) is avail-
able. Since “piece 1” is the outcome of ActionR1, the expected command
for the robot provided by the algorithm should be StartR1.
As a result, the algorithm returns commands StartR1 and StartL2, satis-
fying the request made by the human; to show how such choice is taken
by the scheduler, part of the analyzed reachability tree is reported in
Figure 6.13. It shows the J_Coefficients and possibilities of each node: the
nodes of the selected sequence are the ones with the highest performance
coefficients (J_Coefficients).

The same intention has been tested providing a different configuration
of the system: it has been assumed that the human operator has assembled
“piece 3” (see Section 6.2.2) which therefore is in Central Common Area;
then, there is a “piece 2” in RWSL1 .
In summary, the initial configuration is:

• Common_Right_Area, Common_Left_Area, Ramp_Area are empty

• Central_Common_Area is occupied by “piece 3”
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• RWSL1 is occupied by “piece 2”, while other RWSs are empty

• Risk coefficient α = 0

• Scheduling horizon = 60 s

• Human expresses IntentionH1

In this scenario the right arm of the robot can perform more actions:
as a consequence, the reachability tree developed from the root node and
shown in Figure 6.14 has more branches than in the previous case. In this
configuration, the right robot arm is entitled to perform StartR1, StartR2
and StartR3.

In other words, in this case the scheduler has to choose between more
alternatives, i.e. the algorithm has to analyze a much wider reachability
tree, making it more complicated to identify the branch that effectively
maximizes the performances.
It has been instead proven that, even in this case, the scheduler is efficient:
when the operator shows the will to start ActionH1, the scheduler keeps
the focus on his/her intention and satisfies the request.
Indeed, the output of the algorithm is still StartR1 and StartL2, as high-
lighted in Figure 6.14.

Case 2: varying risk coefficient

The test reported in the following concerns tuning the risk coefficient
α, which can be set by the user: it is proven that different branches are
selected by the fuzzy scheduler, according to α.
For very low values of α the user favours a less risky and more conservative
approach: then, the scheduler outputs commands that find a trade-off
between low waiting times and sufficiently high possibilities that the system
evolves as predicted (see Section 5.3.3).
For high values of α, the scheduler opts for a different plan, that aims
at an evolution of the system towards states characterized by minimum
waiting time, irrespective of the possibility to effectively reach those states.
In conclusion, as the coefficient varies, the algorithm outputs commands
that change from case to case, proving that it is able to adapt to every
case and preference.

Given the following configuration of the system:
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• Central_Common_Area, Common_Right_Area, Common_Left_Area
empty

• RWSs all empty

• BFs full

• Scheduling horizon = 60 s

• Human expresses intention to start ActionH1

first it has been assumed α = 0.
In Figure 6.15 part of the reachability tree is represented; in particular, the
branch following the best sequence is shown. The output of the algorithm
consists of commands StartR1 and StartL2, which in turn satisfies the
request made by the human.

Considering a more risky approach, the coefficient has been set as α = 1.
The output of the algorithm is still StartR1 and StartL2: in Figure 6.16,
it is shown that coefficients propagated through the reachability tree up to
this choice are different with respect to those of Figure 6.15.
This is due to the fact that the risky approach does not consider the
influence of possibilities in computing the J_Coefficients.

For instance, in Figure 6.16 it can be noticed that the J_Coefficient of
NodeK is 0.455 which is obtained by choosing the maximum between the
J_Coefficients of its children nodes NodeK1 and NodeK2:

JK = max ( JK1 , JK2 )

where,
JK1 = 0.402, JK2 = 0.455

In Figure 6.15, the J_Coefficient of NodeK is 0.405 which is obtained
as weighted sum of the J_Coefficients of its children nodes NodeK1 and
NodeK2:

JK = JK1 · PossK1 + JK2 · PossK2

where,
JK1 = 0.402, PossK1 = 1

JK2 = 0.027, PossK2 = 0.098
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In Table 6.2 the scheduling time of the proposed algorithm is illustrated,
varying the temporal scheduling horizon.

Scheduling time
Mean Variance

Horizon = 100 s 1.8000375 0.01446521
Horizon = 80 s 0.8902685 0.003487785
Horizon = 60 s 0.3231295 3.8111385e-04
Horizon = 50 s 0.20840675 3.4786611e-04
Horizon = 40 s 0.11516825 1.7121111e-04
Horizon = 30 s 0.046589375 5.8740619e-04
Horizon = 20 s 0.036883825 2.1913742e-04

Table 6.2: Scheduling time of the proposed algorithm

As it can be noticed, the scheduling time is very low, leading to a fast
algorithm.
Indeed, the fuzzy scheduler is capable of creating a thinner reachability tree:
whenever finds branches in which the leaf nodes have too low possibility to
be reached, the scheduler prunes the tree. In this way, the least possible
branches are removed, leading to a faster generation and analysis of the
tree, guaranteeing a lower computational cost.
A uniform scheduler can be interpreted as a specific case of the fuzzy one,
when the most risky approach is considered (α = 1): it minimizes the
waiting coefficients, irrespective of possibilities, turning out to be more
imprecise and therefore less efficient.

According to the experiments reported, the results prove that the al-
gorithm implemented in this thesis is able to adapt to many situations and
conditions.
Overall, it reveals to be a compelling alternative to traditional scheduling
methods, since it provides fast results and good performances.
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Resource Meaning Biding place Meaning
P0 Human P50 Human Wait H3
P1 Left Arm P48 Human Wait H2
P2 Right Arm P46 Human Wait H4

P3
Common Right Area

(A) P49 Human Wait H5

P4 BF1L2 P47 Human Wait H1

P5
Common Left Area

(A)

P6
Common Left Area

(B)

P7
Common Right Area

(C)

P8
Common Right Area

(B)
P9 BF2L2

P10 BF1L3

P11 BF1R3

P12 BF2R3

P13 RWSL1
P15 RWSR3
P16 BF1R1

P17 BF2R1

P18 BF3R1

P19 RWSR1
P20 Central Common Area
P33 RWSL2

Table 6.3: Meaning of places of FTPN of Figure 6.28 and Figure 6.29
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Action in progress Meaning Other places Meaning

P23 Action L1 P21
Piece 3 in

Central Common Area

P25 Action R2 P22
Piece 2 in

Common Left Area (A)
P27 Action R3 P24 Piece 2 in RWSL1

P30 Action L3 P26
Piece 4 in

Common Right Area (A)

P32 Action L2 P28
Piece 5 in

Common Right Area (B)

P35 Action R4 P29
Piece 6 in

Common Left Area (B)
P38 Action R1 P31 Piece 7 in RWSL2
P39 Action H1 P34 Piece 9 in RWSL2

P40 Action H2 P36
Piece 9 in

Common Right Area (C)
P41 Action H4 P37 Piece 1 in Ramp Area
P42 Action H5
P43 Action H3
P44 WaitRightArm
P45 WaitLeftArm

Table 6.4: Meaning of places of FTPN of Figure 6.28 and Figure 6.29
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Controllable Meaning Controllable Meaning
t1 Start L1 τ0 Start H1
t3 Start R2 τ2 End L1
t8 Start R3 τ4 Start H2
t10 Start L3 τ5 End R2
t12 Start L2 τ6 Start H3
t14 Start R4 τ7 Start H4
t18 Start R1 τ9 End R3

t25
Start Wait
Right Arm τ11 End L2

t26
Start Wait
Left Arm τ12 End L3

τ15 End R4
τ16 Start H5
τ17 End R1
τ19 End H1
τ20 End H2
τ21 End H4
τ22 End H5
τ23 End H3

τ24
End Wait
Right Arm

τ27
End Wait
Left Arm

τ28 Intention H4
τ29 Intention H1
τ30 Intention H2
τ31 Intention H5
τ32 Intention H3

Table 6.5: Meaning of transitions of FTPN of Figure 6.28 and Figure 6.29
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Torch Components Clock Components
Ring Needles

Glass Clock Face

Light Clock Glass

Batteries Clock Frame

pile Cage Back

Torch body Engine

Top Screws

Table 6.1: Components of torches and clocks
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Figure 6.11: Duration of left arm actions: scattered samples and fuzzy repre-
sentation ( part 1 )

Figure 6.11: continued on next page.

114



Figure 6.11: continued from previous page.
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Figure 6.11: Duration of left arm actions: scattered samples and fuzzy repre-
sentation ( part 2 )
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Figure 6.12: Duration of right arm actions: scattered samples and fuzzy
representation ( part 1 )

Figure 6.12: continued on next page.
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Figure 6.12: continued from previous page.
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Figure 6.12: Duration of right arm actions: scattered samples and fuzzy
representation ( part 2 )
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Figure 6.13: Branch following the best sequence: initial configuration

Figure 6.14: Branch following the best sequence: alternative configuration

118



Figure 6.15: Branch following the best sequence (alpha = 0)

Figure 6.16: Branch following the best sequence ( alpha = 1 )
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(a) (b)

(c) (d)

Figure 6.17: Action R1 ( part 1 )

Figure 6.17: continued on next page.
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Figure 6.17: continued from previous page.
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Figure 6.17: Action R1 ( part 2 )
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(a)

(b)
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Figure 6.18: Action H1
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Figure 6.19: Action H2
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Figure 6.20: Action L1
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Figure 6.21: Action R2
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(a) (b)

(c)

Figure 6.22: Action H3

125



Chapter 6. Experimental results

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 6.23: Action R3
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(a) (b)

(c)

Figure 6.24: Action H4 ( part 1 )

Figure 6.24: continued on next page.
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Figure 6.24: continued from previous page.

(d)

Figure 6.24: Action H4 ( part 2 )
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Figure 6.25: Action L2
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(a) (b)

(c)

Figure 6.26: Action R4
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(a)

(b) (c)

Figure 6.27: Action H5
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Figure 6.28: Fuzzy Time Petri Net part 1 (continued on Figure 6.29)
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Chapter 7

Conclusions

The aim of this thesis was to develop a scheduling algorithm able to effi-
ciently control a robot involved in a collaboration with a human operator,
in an assembly process. In particular, the robot assists the human by
providing him or her assembled pieces needed to accomplish his/her tasks.

In this work it has been assumed that the knowledge about the dura-
tion of agents’ actions was very poor, therefore an approach based on
Fuzzy Theory has been adopted to properly model such uncertainty. The
system has been represented by a FTPN, in which the robot and the
available resources are modeled. In addition, the human collaborator and
his/her operations have been included in the FTPN, allowing to obtain
a more realistic representation of the overall system. In this way, when
generating the reachability tree corresponding to the net, it is possible to
represent not only the evolution of the system interpreted as sequence of
robot actions, but also to evaluate the incidence of human intentions on
such evolution.

To have a robot that promptly satisfies the human’s requests, a con-
stantly updated information about the human is necessary: a predictive
algorithm that forecasts human’s activities is used. Combining the knowl-
edge provided by an MPC approach, the scheduler is able to evaluate
all the possible future evolutions of the system, to then choose the most
convenient one.
The scheduler acquires information about how the human collaborator
behaves, so it learns when he/she is likely to start performing a task. The
robotic actions are scheduled accordingly, so that the robot can provide
the human with the assembled pieces that he/she will need to continue
the process.



Chapter 7. Conclusions

Having tested the algorithm on a real use case, where a human and
a robot cooperate in an assembly line, the results obtained prove that the
scheduler is efficient in terms of computational costs. Moreover, comparing
the implemented algorithm with one that does not accurately account for
uncertainty, a decrease in the waiting time of agents is obtained, together
with a growth in the production rate.

In conclusion, considering all the results, the scheduling algorithm that
has been developed in this thesis can be considered a relevant contribution
to assembly processes in HRC context.

A possible hint for future studies is the use of different representations
of durations of tasks: the approach used in this theory adopts triangular
distributions; it is possible to extend it to more complex shapes, such as
pentagonal fuzzy numbers, to check if it can further improve the accuracy
in describing the knowledge about the agent’s tasks.
Moreover, in the scheduling algorithm developed in this thesis, some pa-
rameters were set in such a way to be tunable by the user. It would
be of interest to introduce more parameters, to be tuned by the human
collaborator himself/herself, to obtain a customizable algorithm that better
adapts to the specific human operator.
The work developed in this thesis has been applied to a collaboration
involving a human and a robot: further studies could deal with a much
wider number of agents, i.e. letting more robots and humans cooperate
and synchronize with each other, to check how the complexity scales as
the dimension of the controlled system increases.
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Appendix

In Section 4.20, the problem of propagating uncertainty was treated
and an overview on probabilistic and possibilistic approaches was given.
In Chapter 5, the possibilistic approach has been shown in detail, highlight-
ing how possibility distributions propagate throughout a reachability tree
and, in particular, Section 5.2.3 treated the method to handle “conflicts”.

In the following, a numerical example to show the propagation of un-
certainty with probabilistic approach: it will be seen that a probabilistic
conflict involves much more complex computation, supporting the reasons
that led to the choice of using possibilistic approach, as stated in Chapter 4.

Consider three Gaussian distributions having probability density func-
tions (pdf ) as shown on the top of Figure 7.1, having respectively:

µA = 5 σA = 0.5
µB = 11 σB = 1
µC = 6 σC = 0.3

(7.1)

where µA, µB, µC are the mean values and σA, σB, σC are the standard
deviations of the related distributions.

Assuming that they are involved in a conflict, the aim is to compute
the probability that each of them “wins” against the others.
For instance, the probability that distribution B wins is given by the
probability that B takes a specific value b̄ that is, at the same time, smaller
than A and C.

Hence, the probability that B wins is the intersection of three events:

1. B = b

2. b < A

3. b < C
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Figure 7.1: Top: initial Gaussian distributions; bottom: modified Gaussian
distribution, after conflict

∀b̄ ∈ B.
Thus, the probability that B is equal to a specific value and the others
distributions are greater than such value, is a conditional probability:

Prob_cond (B ) = Prob ( (B = b ) ∩ ( b < A ) ∩ ( b < C ) )
max (Prob(B = b ), P rob( b < A ), P rob ( b < C ) )

where:

Prob ( (B = b ) ∩ ( b < A ) ∩ ( b < C ) ) =

= Prob (B = b ) · Prob ( b < A ) · Prob ( b < C ) =

= Prob (B = b ) · ( 1−
∫ b

−∞
fA(x) dx ) · ( 1−

∫ b

−∞
fC(x) dx )

where fA(x) and fC(x) are the cumulative functions (cdf ) of distributions
A and C respectively.
After assuming that B wins the conflict with respect to a single value b̄
and after the due computations, the shape of B is conditioned by the other
distributions involved in the conflict. As it can be noticed in the bottom
of Figure 7.1, the distribution of B is no longer the same the distribution
of B in the top of Figure 7.1.

The above computation gave information on the probability that the
distributions involved in the conflict are greater than the value tha is
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assumed by B.
To compute the overall probability that B wins the conflict, the same
procedure should be repeated ∀b̄ ∈ B; being the support of B infinite, such
computation might not always be solvable in a closed-form.
If this holds, alternative methods and approximations would be needed
to solve the integrals, requiring a considerable computational effort (see
Section 4.6).
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Figure 7.2: Left: cumulative function of distribution A; right: cumulative
function of distribution C
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