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ABSTRACT 1 

ABSTRACT 

Suspended bridges represent the most advantageous solution to afford the 

necessity for covering very long spans. Due to their flexibility and their high length-to-

width ratio, they are highly susceptible to wind induced actions. The latter can produce 

both static effects, e.g. torsional divergence, and dynamic ones, e.g. vortex induced 

vibrations, buffeting, torsional and classical flutter. 

Recent studies assert that internal parametric resonance phenomena are a possible 

contributing cause for the occurrence of critical instability conditions in long-span 

suspension bridges. Such structures are strongly characterized by an intrinsic geometric 

non-linear behaviour, due to the stiffening cables contribution, which causes a soft 

coupling between the flexural and the torsional responses. Beyond a certain critical value 

of vertical amplitude of oscillations, a continuous exchange of energy is established in 

between the modes in resonance with the parametric action which, in low-damped systems, 

can lead to the structural failure. 

The present work is intended to demonstrate that, in particular conditions, the intrinsic 

structural non-linear coupling is able to erode the aerodynamic performances of the 

structure itself, reaching critical conditions of instability for values of wind speeds lower 

than those for the onset of flutter. To do this, the perturbed bridge equations of motion are 

condensed into a single Mathieu’s equation for the torsional vibration mode, allowing for 

the evaluation of instability through the well-known Ince-Strutt diagrams. 
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SOMMARIO 3 

SOMMARIO 

I ponti sospesi rappresentano la soluzione più vantaggiosa per sopperire alla 

necessità di coprire grandi luci. Data la loro flessibilità ed il loro elevato rapporto tra 

lunghezza e larghezza, essi sono fortemente suscettibili alle azioni provocate dal vento. 

Queste ultime possono provocare sia effetti di natura statica, e.g. la divergenza torsionale, 

sia di natura dinamica, quali le azioni indotte da distacco dei vortici, buffeting, flutter 

torsionale e flutter classico. 

Recenti studi affermano che i fenomeni di risonanza parametrica sono una possibile 

concausa di condizioni critiche di instabilità nei ponti sospesi. Tali strutture sono 

fortemente caratterizzate da un’intrinseca non-linearità geometrica dovuta al 

comportamento dei cavi, che provoca un leggero accoppiamento tra la risposta flessionale 

e torsionale. Oltre un certo valore limite di ampiezza delle oscillazioni flessionali si 

instaura un continuo scambio di energia tra i modi posti in risonanza dall’azione 

parametrica che, in sistemi debolmente smorzati, può portare al collasso della struttura. 

Con il presente lavoro si intende dimostrare che, in particolari condizioni, l’accoppiamento 

non-lineare intrinseco della struttura è in grado di erodere le performance aerodinamiche 

della stessa, raggiungendo condizioni critiche di instabilità per valori di velocità del vento 

inferiori rispetto a quelli di flutter. Per fare ciò, le equazioni perturbate del moto della 

sezione del ponte vengono condensate in un’unica equazione di Mathieu per il modo di 

vibrare torsionale, consentendo di valutare l’instaurarsi di instabilità attraverso ben noti 

diagrammi di Ince-Strutt. 
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INTRODUCTION 7 

INTRODUCTION 

The dramatic collapse of the Tacoma Narrows bridge, occurred on November 7, 

1940, paved the way for new studies in the field of wind induced effects on long-span 

suspension bridges. The concepts of vortex shedding, buffeting and Aeroelastic effects on 

such structures were introduced in structural engineering only after the Tacoma bridge 

failure, even though they were already known from six years in the aeronautical field.  

Up to that time, only static problems were considered in long-span suspension bridges 

design and several theories were developed during the years, from the Navier’s theory of 

the unstiffened suspension bridge to the well-known deflection theory, passing from the 

Rankine and the elastic theories of stiffened suspension bridges. It was Steinman in 1929 

to take into account for the stiffening effect of the main cables by enforcing the 

equilibrium in the deformed configuration. The effect of cables stiffness allowed for the 

design of slender unstiffened bridges, bringing out the wind induced motion as a critical 

design issue. 

The fluid-structure interaction started to assume a considerable importance in bridge’s 

design procedures. Modern analyses include the investigation of various Aeroelastic 

phenomena, e.g. flutter of the bridge deck and vortex shedding. The modern approach is 

based on the works of Scanlan [52] who introduced an unified linear formulation to take 

into account for the self-excited forces due to wind based on the so-called flutter 

derivatives. Aeroelastic effects make the structural linear system of equations coupled and 

no more self-adjoint, allowing dynamic instability to occur. Critical conditions can be 

easily detected by solving the Eigenvalue problem deriving from the Aeroelastic equations 

of motion. 

Recent works by Luco and Turmo [37] showed that linear vertical vibrations of the classic 

continuum model of a suspension bridge are governed only by two non-dimensional 

parameters, namely the classical Irvine parameter and the Steinman’s stiffness factor. 

Abdel-Ghaffar [1] extended the classical continuum formulation based on the deflection 

theory including the effect of the torsional DoF and the coupling between vertical and 

torsional vibrations. 

The structural coupling between two orthogonal modes of vibration highlighted the 

possibility for long-span suspension bridges to manifest the internal parametric resonance 

phenomenon. Indeed, it is well known that a non-linear weakly coupled oscillator can 

exhibit energy transfer from one mode of vibration to another, as far as the energetic level 
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reaches well-established critical thresholds. Cevik and Pakdemirli [17] demonstrated this 

possibility solving the system of equations governing the bridge’s sectional model by 

means of an approximate perturbation method, namely the multiple scales. Recent studies 

by Arioli and Gazzola [7] showed that, also in isolated systems, vertical oscillations may 

switch to torsional ones for particular torsional-to-flexural frequency ratios. 

However, these works do not take into account for the Aeroelastic effects and for the 

possible interaction between two apparently very different instability phenomena, i.e. 

flutter and internal parametric resonance. Indeed, the former is characterized by the sudden 

appearance of exponentially increasing oscillations due to the negative damping of the 

Aeroelastic system, whilst the latter is characterized by a gradual exchange of energy 

between the vertical and the torsional vibrating modes. 

In reality, in a different field and with different objectives, an interaction between the two 

aforementioned instability phenomena was already guessed by Herrmann et al. [31] more 

than 40 years ago. In dealing with the effects of flutter in a 2 DoFs system subjected to a 

non-conservative follower force [30], they realized the possibility to capture all the three 

families of instability already predicted by Bolotin [13], i.e. static divergence, flutter and 

parametric resonance, introducing a linear spring able to catch the axial extensibility of one 

beam. This problem seems strictly related to the bridge model, at least to the extent that 

both are able to exhibit the same instability phenomena. 

However, it is demonstrated in this work that the bridge sectional model subjected to wind 

self-excited forces and the model proposed by Hermann subjected to a follower force are 

different in some aspects. The bridge’s model is capable to exhibit all the instability 

phenomena also if it is described by 2 DoFs only, whilst the Herrmann’s model needs 3 

DoFs to capture the same phenomena. This is mainly due to the fact that the coupling term 

is intrinsic in the bridge model system and it directly correlates the two DoFs, whereas in 

the Herrmann’s model the coupling is artificially introduced by means of a 3rd DoF. 

Despite the differences between the two models, the approach used by Herrmann to find 

the instability regions can be used to find out the stability diagrams for the bridge’s 

sectional model. Thus, the linear variational equations governing the bridge behaviour are 

found considering, as a first step, null torsional oscillations and finite flexural ones. By 

means of this hypothesis one can define the steady state solution of the flexural equation of 

motion forced by the vortex shedding action. Then, small perturbations around the 

equilibrium configuration are introduced, leading to the so-called perturbed system of 

equations. Neglecting the coupling flutter derivatives, the latter is governed only by the 

torsional equation of motion subjected to a small but non vanishing flexural perturbation. 

This is due to the presence of a second order coupling stiffness term dependent 

simultaneously and linearly on both motions. By means of simple coordinate 

transformations, the torsional perturbed equation of motion can be re-written in the well-
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known Mathieu’s format and its stability can be detected by means of the Ince-Strutt 

diagram. 

The boundary lines of instability on the Ince-Strutt diagram are found by solving the 

Mathieu’s equation with the multiple scales technique. The most critical condition for the 

onset of instability is in correspondence of torsional-to-frequency ratio equal to 0.5, i.e. the 

so-called subharmonic 2:1 parametric resonance. The analytical approach adopted allows 

for the determination of an expression in which the 𝐴2
∗  flutter derivative, responsible for the 

erosion of the net torsional damping (if positive), is lowered proportionally to the 

magnitude of the non-linear structural stiffness term and to the modal amplitude of flexural 

oscillations. The theoretical result obtained indicates that, when the net torsional structural 

damping is eroded by Aeroelastic effects, the structure becomes more susceptible to 

parametric resonance and instability can occur for values of wind speed lower than the 

flutter ones. 

The mathematical model is then applied to two different cases, the Tacoma Narrows bridge 

and a twin box section bridge designed with the non-flutter principle. The former is a bluff 

deck section very sensitive to vortex shedding and to an erosion of the net torsional 

damping due to self-excited forces. In this scenario, for torsional-to-frequency ratios 

around 0.5, the critical instability conditions are reached for wind velocities lower than the 

once needed for the onset of flutter. On the contrary, the second is a streamlined cross 

section properly designed to counteract wind-induced effects. Critical conditions for the 

onset of instability due to parametric resonance are found to be not feasible with the wind 

induced oscillations due to vortex shedding. 

Chapter 1 is intended to provide an historical background of suspension bridges. 

Chapter 2 deals with the extended 2 DoFs deflection theory. The non-linear equations of 

motion governing the problem are found and the possibility for hangers to slack is 

detected. Moreover, with regards to a linearized formulation the structural Eigen-properties 

are identified by means of a modal superposition analysis. 

Wind effects on bridges are described in chapter 3. The different kind of instabilities, i.e. 

torsional divergence, galloping and flutter, are detected with the aid of simplified 

formulations. 

Chapter 4 provides a theoretical background of the parametric resonance phenomenon and 

of its interaction with the Aeroelastic effects. An expression demonstrating the interaction 

between torsional flutter and subharmonic resonance is found. 

The Tacoma Narrows bridge case is discussed in chapter 5. Firstly all the possible causes 

of the failure are presented, secondly stability maps are plotted and numerical results are 

compared with physical observations. 
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Chapter 6 deals with a numerical application to a twin-box streamlined cross section 

designed with the non-flutter principle. The results shows that the main issue in the design 

of this kind of bridges are wind static effects. 
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1 HISTORICAL OVERVIEW 

The first appearances of suspension bridges was due to the ancient civilizations in 

South East Asia, Equatorial Africa and South America. Incas built a great number of 

pedestrian suspension bridges to connect all the empire. These bridges were generally 

constituted by three or more vine cables used as a footway and two additional cables used 

as handrail. Figure 1.1 shows one of the most famous bridges built during the Inca’s 

empire, the Q’eswachaka bridge spanning over the Akpurimac river. It is one of the last 

bridges survived and maintained for more than 500 years. 
 

 

Figure 1.1: Q’eswachaka bridge on the Akpurimac river, Perù 

The invention of the modern suspension bridges may be attributed to Fausto Veranzio 

(1551-1617), who represented two sketches in his most popular work “Machinae Novae”. 
 

 

Figure 1.2: The first drawing of a modern suspension bridge by Fausto Veranzio 



Effects of Internal Parametric Resonance on the Aerodynamic Behaviour of Long-span Suspension Bridges 

 

12 HISTORICAL OVERVIEW 

The first metal suspension bridges are believed to be constructed in China, when the ropes 

were replaced by iron chains. 

However, the first studies on the theory of suspension bridges started in England with 

Claude Navier, who was sent there to study the early suspension bridges, such as the Union 

Bridge over the Tweed river (completed in 1820, designed by Samuel Brown), the Chain 

Pier bridge at Brighton (1823, Samuel Brown) and the Menai Strait bridge (1826, 

designed by Telford, Figure 1.3). The latter was the longest span bridge at that time, 580 ft, 

with suspension chains and a slender deck characterized by a little vertical bending 

stiffness. Due to its slenderness this bridge suffered of wind induced vibrations both in 

1826 and in 1836. On January 6, 1839 the Menai bridge was damaged again by vertical 

and torsional motions, requiring the reconstruction of the deck and the replacement of 

suspenders.  
 

 

Figure 1.3: Telford's Menai Straits Bridge, Wales 

 

 

 

Figure 1.4: Original section of the Menai 

Strait Bridge 

All the British bridges of that time were designed as unstiffened cables without any 

stiffening truss (Figure 1.4). Thus, most of this early bridges had undergone to several 

damages in windstorms. Faced with such induced motions, some structural engineers 

advocated for the use of a stiffening truss, whereas some others, having doubt on the 

economy of the stiffened spans, developed other structural systems, e.g. the suspension 

chains for the Britannia tubular bridge, which were abandoned in favour of the stiff 

tubular girder alone. 

In the second half of 19th century, the centre of long span suspension bridges construction 

moved to United States, with the works of Charles Ellet and John Roebling. The first, in 

1847 designed the record-breaking 1010 ft spans of the Wheeling Bridge over the Ohio 

river. Ellet did not provide any vertical stiffening to the deck, which was thought to be 

provided by a shallow catenary. On May 17, 1854 the Wheeling Bridge failed in a 

windstorm showing similar oscillations to that happened to the Menai Bridge. 
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By this time, it was nearing to complete the first railway suspension bridge, namely the 

Roebling’s Niagara bridge, depicted in Figure 1.5. It spanned 822 ft and it consisted on an 

upper deck carrying the railroad track and a lower deck for horse drawn vehicles forming a 

box stiffening truss. Roebling used also cable stays radiating from the tops of the towers 

and cable guys attached to the underside of the lower deck and anchored to the ground 

below, in order to provide additional flexural stiffness to the deck. 

 

 

Figure 1.5: Niagara Bridge, the 1st railway suspension bridge 

Following this successful design, Roebling built the 1057 ft span Cincinnati Bridge in 

1866 and he designed the 1596 ft span Brooklyn Bridge, which was completed in 1883 by 

his son. Roebling’s genius laid in his ability to successfully combine several stiffening 

systems, so as to ensure that his bridges would remain in the structural static field, which at 

that time was the most known field both from theoretical and experimental point of view. 

 

 

Figure 1.6: Brooklyn Bridge main cables and stays 

 

Figure 1.7: Brooklyn Bridge, New York 
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The adoption of the elastic theory led to a new conception of bridge’s design in which the 

effects of the stiffening truss in the structural behaviour were accounted for. Thanks to this 

theory the engineers around the turn of the 19th century believed that the wind induced 

vibrations of long span suspension bridges had been solved with the adoption of a well 

designed stiffening truss. 

The main example of the application of the elastic theory in its simpler form is the 

Williamsburg bridge (Figure 1.8), inaugurated in 1903, spanning over the East river in 

New York. Its central span has a length of 1600 ft, only 5 ft longer with respect to the 

Roebling’s Brooklyn Bridge. However the Williamsburg stiffening truss is more than twice 

as deep as that of the Brooklyn, contributing in large part to its bulkier appearance. The 

design could not be different because the two hinged stiffening truss is the only stiffening 

element of the girder, which is also characterized by unsuspended side spans. 

 

 

Figure 1.8: Williamsburg Bridge, New York 

Upon the completion of the Williamsburg bridge, only two wind incidents are known, the 

Niagara-Lewiston bridge failed in 1864 and the Niagara-Clifton failed in 1889. Both of 

them were light pedestrian bridge. 

The elastic theory appeared to allow a reasonable design of the stiffening truss, which 

alone could sustain both the live loads and the wind effects on the girder. Hence, in 

absence of any theories of aerodynamic lift, vertical wind forces were no longer a major 

design issue. 

However, this theory did not take into account for the correct interaction between the truss 

and the supporting cable, leading to oversized stiffening truss girders. The advection of the 

well-known deflection theory changed the way of designing bridges. 
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The use of the deflection theory allowed for the design of longer and slender span bridges, 

e.g. the Bear Mountain Bridge, completed in 1924, spanning 1623 ft, the Delaware river 

bridge at Philadelphia, inaugurated in 1926, spanning 1750 ft and the Ambassador bridge 

in Detroit, completed in 1928, spanning 1850 ft. 

However, it was not until O. Amman’s design of the George Washington Bridge, depicted 

in Figure 1.9, that the importance of weight as a stiffness factor was fully released. In 1931 

it was inaugurated with only the upper deck in place, thus at that time it was essentially an 

unstiffened span having length 3500 ft. No stays are present as additional stiffening 

element. In this case, for the enormous length of the bridge, the adoption of the elastic 

theory would have led to an unbuildable stiffening truss because of its dimensions. 

 

 

Figure 1.9: George Washington Bridge 

The introduction of the deflection theory not only led to an economy in the materials, but 

also to an essential structural diversity, stiffened versus unstiffened girders. Following the 

example of the George Washington bridge, structural engineers of the first years of 20th 

century were encouraged to design longer and slender spans. 

The most important examples are: the world record-breaking span (4200 ft) Golden Gate 

bridge (Figure 1.10), designed by J.B. Strauss, opened in 1937, the Bronx-Whitestone 

bridge (Figure 1.11), designed by O. Amman, spanning 2300 ft and opened in 1939, the 

Deer Isle Bridge (Figure 1.12), designed by Steinman, completed in 1939 spanning 1080 ft 

and the Thousand Islands bridge (Figure 1.13), designed by Steinman and Robinson, 

inaugurated in 1938, spanning 800 ft.  
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Figure 1.10: Golden Gate Bridge, San Francisco 

 

Figure 1.11: Bronx-Whitestone Bridge, New York 

 

Figure 1.12: Deer Isle Bridge 

 

Figure 1.13: Thousand Island Bridge 

All these bridges experienced oscillations due to wind effects because of their low value of 

span-to-depth ratio. The most famous bridge experiencing wind induced vibrations was the 

Tacoma Narrows bridge (Figure 1.16), designed by L. Moiseiff, which collapsed on 

November 7, 1940. It was designed for low traffic volume, indeed the stiffening girder was 

only 39 ft wide with two steel plate 8 ft deep (Figure 1.15). The design resulted in a deck 

characterized by low torsional rigidity. It was this the main difference with respect to the 

George Washington Bridge, which immense scale makes it an atypical case. In fact, the 

dead load per foot of the Tacoma Bridge was more than five times less with respect to that 

of the George Washington bridge. Thus, the resulting dead load tension may have provided 

effective cable stiffness only against static loads, but not sufficient stiffness against the 

dynamic wind loads. 

Vertical oscillations of the Tacoma Narrows Bridge had been observed since the floor 

system was completed. Due to these movements the bridge, nicknamed “The Galloping 

Gertie”, became popular and lots of driver used to cross the bridge just to experience these 

oscillations. Undamped torsional vibrations, never observed before, suddenly appear at 10 

am on November 7, 1940 (Figure 1.17), leading to the failure around one hour later (Figure 

1.19).  
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Figure 1.14: Elevation of the Tacoma Narrows Bridge, original drawing 

 

Figure 1.15: Cross section of the Tacoma Narrows Bridge, original drawing 

 

Figure 1.16: Original Tacoma Narrows Bridge 
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Figure 1.17: Tacoma Narrows Bridge, 

torsional oscillations 

 

Figure 1.18: Tacoma Narrows bridge, street view of the 

torsional oscillations 

 

Figure 1.19: Failure of the Tacoma Narrows Bridge 

The possibility of eliminating the deck stiffness in both the horizontal and vertical 

direction allowed for the design of the slender bridges of the 1930s, which ultimately 

reintroduced wind-induced motion as a critical design issue. The collapse of the Tacoma 

Narrows bridge has attracted several engineers in studying dynamic vibrations induced by 

wind. The concept of aerodynamics in the girders design was introduced. 

The Tacoma Narrows bridge was rebuilt in 1950. After this, a series of bridges were built, 

in which aerodynamic stability was again achieved through the use of torsionally rigid 

stiffness truss, e.g. the Mackinac bridge, designed by Steinman with main span of 1158 m, 

the Verrazzano Narrows bridge, designed by O. Amman with a span of 1298 m and the 

Tagus river bridge, designed by Steinman, Boynton, Gronquist and London with a 1013 m 

main span. 
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The first European long-span suspension bridge was the Forth road Bridge, opened in 

1964. The designer Sir Gilbert Roberts made use of a stiffening truss to build the main 

span of length 1001 m. However, it was with the advent of wind tunnel testing that it was 

understood that closed box section could provide aerodynamic stability. Indeed they 

combine a considerable torsional stiffness to a satisfactory aerodynamic behaviour. 

The first suspension bridge built with a concrete closed box section was the Severn bridge 

(Figure 1.20), designed by G. Roberts in 1966.  
 

 

Figure 1.20: Severn Bridge 

 

 
 

 

Figure 1.21: Severn Bridge cross section 

 

The closed box girder section becomes the standard solution adopted, because of the 

lightweight and of the fabrication advantages with respect to the traditional stiffening truss. 

Thus, a large number of box girder suspension bridges were designed, including the 

LilleBaelt bridge (Denmark), opened in 1970 with a 600 m central span, the bridge over 

the Bosphorus, opened in 1973 with a 1074 m main span, the Humber bridge, opened in 

1981 with a 1410 central span and the Great Belt Bridge (Figure 1.22), completed in 1999 

with a central span of 1624 m. 
 

 

Figure 1.22: The Great Belt Bridge 
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In this scenario the exception is the Akashi-Kaikyo bridge (Figure 1.23), which is actually 

the longest suspension span in the world, 1991 m. The bridge, connecting the city of Kobe 

(Japan) with Iwaya, was designed with a two hinged deep stiffening girder system able to 

provide enough stiffness to counteract wind induced oscillations. 

 

 

Figure 1.23: Akaishi-Kaikyo bridge 

 

Figure 1.24: Akaishi-Kaikyo stiffening truss 

Nowadays, in the design of suspension bridges a comprehensive set of wind related 

responses are taken into consideration, such as static divergence, vortex-shedding, 

buffeting and flutter. Hence, the risk of developing Aeroelastic instabilities is always the 

matter while designing any lightweight long-span structures, characterized by high 

flexibility due to a low bending/torsional stiffness and a high width-to-depth ratio. 

It is the deep knowledge acquired during several years of studies that led to the design of 

the Messina Straits Bridge, having the longest central span in the world (3300 m). The 

three-box girder aerodynamic cross section (Figure 1.25) allows both to reduce the static 

wind forces acting on the bridge and the self-induced forces due to Aeroelastic effects, 

which results in a flutter speed much higher with respect to the design wind speed.  

 

 

Figure 1.25: Rendering of the Messina Strait Bridge 
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The efficiency of this cross section is proven by wind tunnel tests in which it is possible to 

compare the static longitudinal deflection of the Akashi-Kaikyo with the Messina bridge 

(Figure 1.26). Under the effect of a 60 m/s wind speed, the former shows a maximum 

horizontal deflection of 30 m, whilst the latter only 10 m. 

 

  

Figure 1.26: Comparison of Akaishi-Kaikyo (left) and Messina (right) horizontal deflection due to 

wind in the wind tunnel.  

The next challenge of structural and wind engineering is to build the so called “flutter free” 

bridges, i.e. bridges characterized by airfoil type cross sections and by very low torsional 

stiffness. In this way the occurrence of torsional flutter is prevented by the streamlined 

shape of the cross section whilst, since the frequency of the torsional mode of vibration is 

expressly lower than the correspondent flexural one, classical flutter is prevented. 

 

 

 

 

 

 

 



Effects of Internal Parametric Resonance on the Aerodynamic Behaviour of Long-span Suspension Bridges 

 

22 HISTORICAL OVERVIEW 
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2 STRUCTURAL SCHEME 

The theory of suspension bridges has evolved a lot over the years, starting from the 

Navier’s theory of the unstiffened suspension bridge arriving to the well-known deflection 

theory, passing from the Rankine and the elastic theories of stiffened suspension bridges. 

In 1823, Claude Navier published “Mémoire sur les ponts suspendus”, the first book on 

the history and the theory of suspension bridges. Up to that time the bridges design was 

based on the experience and the intuition of the designer. 

In 1858, William Rankine in his “Manual of Applied Mechanics”, presented the first 

theoretical treatment of the stiffened suspension bridge. He based its theory upon the 

existing parabolic cable theory by assuming that the total dead load of the bridge was 

uniformly distributed on the cable. The introduction of the interaction between the cables 

system and the stiffening girder was such that the latter can be considered as a simple beam 

subjected to a downward live load and an uniform upward suspender load. Comparing the 

maximum positive bending moment at the midspan of an unsuspended simple beam, the 

suspended girder carries only one-fourth of the moment. In reality the benefit on the deck 

is far higher, so this theory leads to a huge overestimation of the loads acting on the 

stiffening structure. 

In 1888, Melan’s second edition of his “Handbuch der Ingenieurwissenschaften” included 

a section on the elastic theory of suspension bridges. In 1913, Steinman published a 

complete translation of Melan’s theory, from which he developed his “Practical Treatise 

on Suspension Bridges” of 1922. Differently from the Rankine theory, the elastic one 

relates the uniform suspender force to the live load in function of the bending stiffness of 

the truss and the axial stiffness of the cable. A lower girder bending stiffness with respect 

to the Rankine’s theory is assumed, hence more live load can be transferred to the cable 

through the hangers, reducing the state of stress of the deck. 

In 1888, Melan laid the foundation for the deflection theory in his “Theorie der eisernen 

Bogenbrucken und der Hangenbruken” by accounting for the change in shape of the cable 

under the live loads. In 1929, Steinman included the deflection theory in the second edition 

of his “Practical Treatise”. The effect of cable stiffness is reintroduced in this theory, 

showing that it can play a larger role in resisting deformation than the girder stiffness. Due 

to this beneficial effect, the loads acting on the deck are reduced in a great amount. The 

deflection theory leads the 20th century bridge’s engineers to design slender bridges, 

reintroducing the wind induced motion as a critical design issue. 
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2.1 DEFLECTION THEORY 

2.1.1 General Assumptions 

In order to define the equations of motion governing the problem, the following 

assumptions has to be made: 

 

1. The self-weight of the deck is uniformly distributed along its length and it is much 

greater than the weight of the cables. Hence, the cables can be considered as 

subjected to the deck’s permanent distributed loads only. The main cables assume 

therefore a parabolic shape; 

 

2. The stiffening deck is suspended to the cables through closely spaced vertical 

hangers (curtain behaviour), which are considered to be inextensible; 

 

3. The parabolic shape of the cables is the funicular line of the permanent loads acting 

on the deck. The deck is therefore supported by a distributed force equal and 

opposite to its weight, with the consequence that no flexural effects are present in 

the deck; 

 

4. Cables are inextensible just in the initial condition, when they carry permanent 

loads only. Moreover their flexural stiffness is negligible; 

 

5. The pylons are stiff enough to guarantee perfect constraints. 

 

The equilibrium equations of the two cables will be written considering just the central 

span of a suspension bridge (Figure 2.1). Being the pylons very stiff, a perfect clamp 

constraint is guaranteed at the end of the main cables. But, since they have negligible 

flexural stiffness, the clamps constraints behave like hinges. Therefore cables are able to 

resist external vertical loads just thanks to their axial internal tension.  

 

 

Figure 2.1: Single span suspension bridge model 
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2.1.2 Initial Configuration 

As already mentioned, in the initial configuration the main cables assume the shape of a 

parabola, because subjected to uniformly distributed loads acting along the horizontal 

projection of their length. Equilibrium conditions in the horizontal and vertical directions 

are enforced on an infinitesimal piece of cable (Figure 2.2).  
 

 

Figure 2.2: Infinitesimal element of the cable 

𝑑

𝑑𝑠
(𝑇

𝑑𝑥

𝑑𝑠
) 𝑑𝑠 = 0     ⇒      𝑇

𝑑𝑥

𝑑𝑠
= 𝐻 = 𝑐𝑜𝑠𝑡. 

(2.1) 

−
𝑑

𝑑𝑠
(𝑇

𝑑𝑦

𝑑𝑠
)𝑑𝑠 −

𝑔

2
𝑑𝑥 = 0     ⇒      

𝑑

𝑑𝑠
(𝑇

𝑑𝑦

𝑑𝑥

𝑑𝑥

𝑑𝑠
)𝑑𝑠 = −

𝑔

2
𝑑𝑥 

 

Substituting the first equation into the second, one obtain the classical Parabola equation 

(2.2), which holds for taut cables, i.e. for cables in which the tension T is very large. 

 

𝐻
𝑑2𝑦

𝑑𝑥2
= −

𝑔

2
 (2.2)  

 

This equation is obtained because of the hypothesis of negligible self-weight of the cable, 

otherwise the catenary equation would be obtained. Due to the shape of the main cables the 

initial configuration of the deck results to be unstressed. The general solution of the 

parabola equation (2.2) can be expressed as: 

 

𝑦(𝑥) = 𝐴𝑥2 + 𝐵𝑥 + 𝐶 (2.3)  

 

where proper geometrical boundary conditions have to be enforced to find the constants of 

integration. The perfect hinge at the cable’s end, the sag f and the null slope at midspan are 

used to find 𝐴, 𝐵 and C coefficients.  
 

𝑦(0) = 0     ⇒      𝐶 = 0  

(2.4) 𝑦 (
𝑙

2
) = 𝑓     ⇒      𝑓 =

𝐴𝑙2

4
+

𝐵𝑙

2
     ⇒      𝐵 =

4𝑓

𝑙
  

𝑑𝑦

𝑑𝑥
(

𝑙

2
) = 0     ⇒      𝐴 = −

𝐵

𝑙
     ⇒      𝐴 = −

4𝑓

𝑙2
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Substituting the constants of integration found in (2.4) into (2.3), one obtains the 

expression for the variation of the height of the cable along the length of the bridge. 

 

𝑦(𝑥) = 4
𝑓

𝑙
𝑥 (1 −

𝑥

𝑙
) (2.5)  

2.1.3 Final Configuration 

The external variable loads are added to the permanent ones. The main cables lose their 

parabolic shape and the hangers exert an interaction force 𝑟 = 𝑟(𝑥), which increases the 

force on the cables and contributes in supporting the deck. 

The vertical equilibrium configuration of the main cables is the same, but the following 

quantities have to be substituted in expression (2.1). 

 

𝑔 ⇒ 𝑔 + 𝑟 , 𝐻 ⇒ 𝐻 + ℎ , 𝑦 ⇒ 𝑦 + 𝑣 

 

Hence the parabola equation (2.2) becomes: 

 

(𝐻 + ℎ)
𝑑2(𝑦 + 𝑣)

𝑑𝑥2
= −

𝑔 + 𝑟

2
   ⇒    𝐻

𝑑2𝑦

𝑑𝑥2
+ ℎ

𝑑2𝑦

𝑑𝑥2
+ (𝐻 + ℎ)

𝑑2𝑣

𝑑𝑥2
= −

𝑔

2
+

𝑟

2
 (2.6)  

 

Deleting the terms related to the initial equilibrium condition: 

 

𝑟 = −2(𝐻 + ℎ)
𝑑2𝑣

𝑑𝑥2
− 2ℎ

𝑑2𝑦

𝑑𝑥2
 (2.7)  

 

The deck sustains a partial amount of the total external load equal to q(x)-r(x), so it is 

subjected to a deflection that involves its flexural stiffness. The vertical equilibrium 

equation of the infinitesimal piece of bridge’s deck comes from the classical format of the 

Euler-Bernoulli beam theory. Moreover due to the hypothesis of inextensible hangers the 

deflection of the deck must be the same of the deflection of the main cables 𝑣. 

 

𝐸𝐼
𝑑4𝑣

𝑑𝑥4
= 𝑞 − 𝑟   ⇒    𝐸𝐼

𝑑4𝑣

𝑑𝑥4
− 2(𝐻 + ℎ)

𝑑2𝑣

𝑑𝑥2
− 2ℎ

𝑑2𝑦

𝑑𝑥2
= 𝑞 (2.8)  

 

This equilibrium equation links the cable and the deck response coupling the horizontal 

component of the cable’s tension with the vertical displacement of the deck. Since both 

these quantities are unknowns, a compatibility equation is necessary to solve the problem 

in closed form. The compatibility condition is such that the total change in the projected 

horizontal length of the cable must be null, due to the very high stiffness of the pylons 

which cannot get closer. The mathematical format of this statement is: 

 

𝛥𝑢 = ∫
𝑑𝑢

𝑑𝑥
𝑑𝑥 = 0

𝑙

0

 (2.9)  
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The initial and the final configuration of the cable are respectively: 

 

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 
 

(𝑑𝑠 + 𝑑𝐿)2 = (𝑑𝑥 + 𝑑𝑢)2 + (𝑑𝑦 + 𝑑𝑣)2 

 

Developing the squares and deleting the terms related to the initial length: 

 

𝑑𝑠2 + 𝑑𝐿2 + 2𝑑𝑠𝑑𝐿 = 𝑑𝑥2 + 𝑑𝑢2 + 2𝑑𝑥𝑑𝑢 + 𝑑𝑦2 + 𝑑𝑣2 + 2𝑑𝑦𝑑𝑣 (2.10)  

 

Deriving two times with respect to x and collecting the horizontal strain component: 

 

𝑑2𝐿

𝑑𝑥2
+ 2

𝑑𝑠𝑑𝐿

𝑑𝑥2
=

𝑑2𝑢

𝑑𝑥2
+ 2

𝑑𝑢

𝑑𝑥
+

𝑑2𝑣

𝑑𝑥2
+ 2

𝑑𝑦𝑑𝑣

𝑑𝑥2
 

 
𝑑𝑢

𝑑𝑥
=

𝑑𝑠

𝑑𝑥

𝑑𝐿

𝑑𝑥
−

𝑑𝑦

𝑑𝑥

𝑑𝑣

𝑑𝑥
+

1

2

𝑑2𝐿

𝑑𝑥2
−

1

2

𝑑2𝑢

𝑑𝑥2
−

1

2

𝑑2𝑣

𝑑𝑥2
 

 

where 

 

𝑑𝐿

𝑑𝑥
=

𝑑𝐿

𝑑𝑠

𝑑𝑠

𝑑𝑥
=

𝑡(𝑥)

𝐸𝐴(𝑥)

1

cos(𝜗)
=

ℎ

𝐸𝐴(𝑥)

1

𝑐𝑜𝑠2(𝜗)
   

 

The infinitesimal change in the projected horizontal length of the cable can be expressed 

as: 

 

𝑑𝑢

𝑑𝑥
=

ℎ

𝐸𝐴(𝑥)

1

𝑐𝑜𝑠3(𝜗)
−

𝑑𝑦

𝑑𝑥

𝑑𝑣

𝑑𝑥
−

1

2

𝑑2𝑣

𝑑𝑥2
+

1

2

𝑑2𝐿

𝑑𝑥2
−

1

2

𝑑2𝑢

𝑑𝑥2
 (2.11)  

 

where the last two contributions are in general negligible in the hypothesis of small 

displacements. Integrating the equation (2.11) along the horizontal length of the cable, the 

compatibility condition (2.9) becomes: 

 

𝛥𝑢 = ∫
𝑑𝑢

𝑑𝑥
𝑑𝑥 = ℎ∫

𝑑𝑥

𝐸𝑐𝐴(𝑥)𝑐𝑜𝑠3(𝜗)

𝑙

0

𝑙

0
− ∫ 𝑦′𝑣′𝑑𝑥 −

1

2
∫ 𝑣′2𝑑𝑥 =

ℎ

𝐸𝑐𝐴𝑐
𝐿𝑐 + ∫ 𝑦′′𝑣𝑑𝑥 +

𝑙

0

𝑙

0

𝑙

0

+
1

2
∫ 𝑣′2𝑑𝑥 = 0

𝑙

0
  

(2.12)  

 

being 
𝐿𝑐

𝐴𝑐
= ∫

𝑑𝑥

𝐴(𝑥)𝑐𝑜𝑠3(𝜗)

𝑙

0
 the ratio between the equivalent cable’s length and its area. 

Equation (2.12) allows to find an approximate value for the increment of tension in the 

cable and to solve the problem in closed form. 

 

ℎ = (
1

2
∫ 𝑣′2𝑑𝑥 − ∫ 𝑦′′𝑣 𝑑𝑥  

𝑙

0

𝑙

0

)
𝐸𝑐𝐴𝑐

𝐿𝑐
=

𝐸𝑐𝐴𝑐

𝐿𝑐
∙ 𝛥𝐿 (2.13)  
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It is worth nothing that the previous expression for the cable’s elongation is an 

approximation, because the complete expression would lead to a contribution of the slope 

of the cable at the denominator, which is neglected as usual in small perturbations 

approaches. Anyway it can be demonstrated that this handy expression is on the safe side. 

2.2 EXTENSION TO A 2 DOFS MODEL 

The classical deflection theory does not take into account the possibility of a torsional 

rotation of the deck, which instead can happen in the real bridge’s behaviour. The Total 

Potential Energy (TPE) formulation is an useful tool to extend the classical deflection 

theory to a 2 DoFs format.  

It is worth noting that a more accurate model can be built considering 4 DoFs, where the 

axial extensibility of the hangers is included. Anyway Luco and Turmo [38] found that the 

effects of hanger flexibility on the response of a suspension bridge to localized impulsive 

loads are very small. This justifies the traditional assumption of inextensible hangers and 

the choice of a model with 2 DoFs. 

2.2.1 TPE Formulation for the SDoF flexural model 

With reference to equation (2.10), it is possible to introduce some useful fundamental 

quantities, such as the cable’s axial strain, its associated tension and the horizontal 

component of the cable’s tension. 

 

𝜀(𝑠) =
𝑑𝐿

𝑑𝑠
=

𝑑𝑥𝑑𝑢

𝑑𝑠2
+

𝑑𝑦𝑑𝑣

𝑑𝑠2
+

𝑑𝑣2

2𝑑𝑠2
=

𝑢′ + 𝑦′𝑣′ +
1
2

𝑣′2

𝑠′2
=

𝜀̃

𝑠′2
 

(2.14) 𝜏(𝑠) = 𝐸𝑐𝐴𝑐𝜀(𝑠) =
𝐸𝑐𝐴𝑐𝜀̃

𝑠′2
 

ℎ(𝑥) = 𝜏(𝑠) ∙ cos(𝜗) =
𝜏(𝑠)

𝑠′
=

𝐸𝑐𝐴𝑐𝜀̃

𝑠′3
 

 

The Total Potential Energy variation of the bridge’s model starting from the initial 

equilibrium configuration up to the final perturbed configuration, can be written as: 

 

𝛥𝑉(𝑢, 𝑣, 𝑞) = 𝑉(𝑢, 𝑦 + 𝑣, 𝑔 + 𝑞) − 𝑉(0, 𝑦, 𝑔) = 𝐸𝑑𝑒𝑐𝑘 + 2𝐸𝑐𝑎𝑏𝑙𝑒 − 𝐿𝑒𝑥𝑡 (2.15)  

 

where: 

 

1. 𝐸𝑑𝑒𝑐𝑘 is the elastic flexural energy stored by the deck; 
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2. 𝐸𝑐𝑎𝑏𝑙𝑒 is the elastic energy stored by the cable. It is the sum of two different 

contributions, one associated to the initial constant tension needed to sustain the 

self-weight of the deck and one associated to the nonlinear stiffening response of 

the cable when subjected also to the variable loads; 

 

3. 𝐿𝑒𝑥𝑡 is the external work done by both permanent and variable loads. 

 

The mathematical definition of these three terms is: 

 

𝐸𝑑𝑒𝑐𝑘 =
1

2
∫ 𝑀(𝑥)𝜒(𝑥)𝑑𝑥

𝑙

0

=
1

2
∫ 𝐸𝑑𝐼𝑑 (

𝑑2𝑣

𝑑𝑥2)

2

𝑑𝑥
𝑙

0

 

(2.16) 𝐸𝑐𝑎𝑏𝑙𝑒 = ∫ 𝑇(𝑥)𝜀(𝑥)𝑑𝑠
𝑙𝑐

0

+
1

2
∫ 𝜏(𝑥)𝜀(𝑥)𝑑𝑠

𝑙𝑐

0

= 𝐻 ∫ 𝜀̃(𝑥)𝑑𝑥
𝑙

0

+
1

2
∫

𝐸𝑐𝐴𝑐𝜀̃
2(𝑥)

𝑠′3
𝑑𝑥

𝑙

0

 

𝐿𝑒𝑥𝑡 = ∫ (𝑔 + 𝑞) ∙ 𝑤𝑑𝑥
𝑙

0

 

 

The Total Potential Energy (2.15) is: 

 

𝛥𝑉(𝑢,𝑤, 𝑔, 𝑞) =
1

2
∫ 𝐸𝑑𝐼𝑑𝑤′′2𝑑𝑥

𝑙

0
+ 2𝐻 ∫ (𝑢′ + 𝑦′𝑤′ +

1

2
𝑤′2)𝑑𝑥

𝑙

0
+ ∫

𝐸𝑐𝐴𝑐

𝑠′3
(𝑢′ + 𝑦′𝑤′ +

𝑙

0

+
1

2
𝑤′2)

2
𝑑𝑥 − ∫ (𝑔 + 𝑞) ∙ 𝑣𝑑𝑥

𝑙

0
  

 

Integrating by parts and enforcing boundary conditions it is possible to extract from the 

TPE the initial equilibrium configuration of equation (2.2) and to eliminate some terms. 

 

𝐻 ∫ 𝑦′𝑤′𝑑𝑥
𝑙

0

− ∫ 𝑔 ∙ 𝑤𝑑𝑥
𝑙

0

= 𝐻[𝑦′𝑣]0
𝑙 − 𝐻 ∫ 𝑦′′𝑤𝑑𝑥

𝑙

0

− ∫ 𝑔 ∙ 𝑤𝑑𝑥
𝑙

0

= −∫ (𝐻𝑦′′ + 𝑔)𝑤𝑑𝑥
𝑙

0

= 0 

 

Hence the TPE (2.15) can be simplified as follows: 

 

𝛥𝑉(𝑢,𝑤, 𝑞) =
1

2
∫ 𝐸𝑑𝐼𝑑𝑤′′2𝑑𝑥

𝑙

0
+ 2𝐻 ∫ (𝑢′ +

1

2
𝑤′2)𝑑𝑥

𝑙

0
+ ∫

𝐸𝑐𝐴𝑐

𝑠′3
(𝑢′ + 𝑦′𝑤′ +

𝑙

0

+
1

2
𝑤′2)

2
𝑑𝑥 − ∫ 𝑞 ∙ 𝑤𝑑𝑥

𝑙

0
  

(2.17)  

 

In order to find the equilibrium position, the stationarity of the variation of the TPE must 

be enforced with suitable boundary conditions.  
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Concerning the longitudinal equilibrium equation, the fixed rigid pylons guarantee null 

horizontal displacements at the top of the tower. 

 

𝑢(0) = 𝑢(𝑙) = 0     ⇒      𝑑𝑢(0) = 𝑑𝑢(𝑙) = 0  

 
𝐻 = 𝑐𝑜𝑛𝑠𝑡.     ⇒      𝐻′ = 0  

 

𝛿𝑢𝑉 = 2𝐻 ∫ 𝑑𝑢′𝑑𝑥
𝑙

0
+ ∫ 2

𝐸𝑐𝐴𝑐

𝑠′3
(𝑢′ + 𝑦′𝑤′ +

1

2
𝑤′2) 𝑑𝑢′𝑑𝑥

𝑙

0
= 2∫ (𝐻 + ℎ)𝑑𝑢′𝑑𝑥

𝑙

0
=

2[(𝐻 + ℎ)𝑑𝑢]0
𝑙 − 2∫ (𝐻 + ℎ)′𝑑𝑢𝑑𝑥

𝑙

0
= −2∫ ℎ′𝑑𝑢𝑑𝑥

𝑙

0
= 0  

(2.18)  

 

Hence: 

 

ℎ′(𝑥) = 0   ⇒    ℎ(𝑥) = 𝑐𝑜𝑛𝑠𝑡. (2.19)  

 

According to this result, being the horizontal increment of tension in the cable constant, the 

global (or non local) increment of the cable’s tension can be defined. It is the integral 

along the length of the cable of ℎ(𝑥) and it is not dependent on the coordinate of the 

position along the cable.  

 

ℎ(𝑤) = ∫ ℎ(𝑥)𝑑𝑥
𝑙

0

= ∫
𝐸𝑐𝐴𝑐

𝑠′3
(𝑢′ + 𝑦′𝑤′ +

1

2
𝑤′2)

𝑙

0

𝑑𝑥 =
𝐸𝑐𝐴𝑐
̅̅ ̅̅ ̅̅

𝐿𝑐
∫ (𝑦′𝑤′ +

1

2
𝑤′2)

𝑙

0

𝑑𝑥 (2.20)  

 

being 𝐿𝑐 the equivalent cable’s length defined in treating with the equation (2.12). 

The non local increment of the cable’s tension is characteristic of the 2 DoFs model 

because the hangers are considered perfectly rigid both in tension and in compression, so 

the cable’s stiffening effect has a global distributed effect on all the structure. In a 4 DoFs 

model, where the axial extensibility of the hangers is considered, the increment of tension 

in the cable is local and it is dependent on the x coordinate. 

With regards to vertical equilibrium equations, boundary conditions associated to a simply 

supported beam are enough to solve the problem. 

 

𝑤(0) = 𝑤(𝑙) = 0     ⇒      𝑑𝑤(0) = 𝑑𝑤(𝑙) = 0  

 𝑤′′(0) = 𝑤′′(𝑙) = 0  

𝐻, ℎ(𝑤) = 𝑐𝑜𝑛𝑠𝑡.  

 

𝛿𝑤𝑉 = ∫ 𝐸𝑑𝐼𝑑𝑤′′𝑑𝑤′′𝑑𝑥
𝑙

0
+ 2𝐻 ∫ 𝑤′𝑑𝑤′𝑑𝑥

𝑙

0
+ ∫

𝐸𝑐𝐴𝑐

𝑠′3
2 (𝑢′ + 𝑦′𝑤′ +

1

2
𝑤′2) (𝑦′ +

𝑙

0

+𝑤′)𝑑𝑤′𝑑𝑥 − ∫ 𝑞 ∙ 𝑑𝑤𝑑𝑥
𝑙

0
  

(2.21)  
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The integration by parts of equation (2.21) and the substitution of the boundary conditions, 

leads to: 

 

𝛿𝑤𝑉 = ∫ 𝐸𝑑𝐼𝑑𝑤′′𝑑𝑤′′𝑑𝑥
𝑙

0
+ 2𝐻 ∫ 𝑤′𝑑𝑤′𝑑𝑥

𝑙

0
+ 2ℎ(𝑤)∫ (𝑦′ + 𝑤′)𝑑𝑤′𝑑𝑥 − ∫ 𝑞𝑑𝑤𝑑𝑥

𝑙

0

𝑙

0
=

[𝐸𝑑𝐼𝑑𝑤′′𝑑𝑤′]0
𝑙 − ∫ (𝐸𝑑𝐼𝑑𝑤′′)′𝑑𝑤′𝑑𝑥

𝑙

0
+ 2𝐻[𝑤′𝑑𝑤]0

𝑙 − 2𝐻 ∫ 𝑤′′𝑑𝑤𝑑𝑥
𝑙

0
+ 2ℎ(𝑤)[(𝑦′ +

𝑤′)𝑑𝑤]0
𝑙 − 2ℎ(𝑤)∫ (𝑦′ + 𝑤′)′𝑑𝑤𝑑𝑥 − ∫ 𝑞 ∙ 𝑑𝑤𝑑𝑥

𝑙

0

𝑙

0
= [(𝐸𝑑𝐼𝑑𝑤′′)′𝑑𝑤]0

𝑙 + ∫ (𝐸𝑑𝐼𝑑𝑤′′)′′𝑑𝑤𝑑𝑥
𝑙

0
+

−2𝐻 ∫ 𝑤′′𝑑𝑤𝑑𝑥
𝑙

0
− 2ℎ(𝑤)∫ (𝑦′′ + 𝑤′′)𝑑𝑤𝑑𝑥 − ∫ 𝑞 ∙ 𝑑𝑤𝑑𝑥

𝑙

0

𝑙

0
= ∫ [

𝑙

0
(𝐸𝑑𝐼𝑑𝑤′′)′′ − 2(𝐻 + ℎ) 𝑤′′ +

−2ℎ𝑦′′ − 𝑞] 𝑑𝑤𝑑𝑥 = 0  

 

Enforcing the stationarity of the TPE, the equilibrium equation in the perturbed 

configuration is: 

 

 

For the following treatment it is useful to take just the perturbed vertical displacements in 

the TPE formulation (2.17) and then to extend it to a 2 DoFs model.  

 

 

In this SDoF model it is evident that each of the two main cables introduces the same 

elastic energy in the system. Instead in the 2 DoFs model each cable introduces a different 

amount of elastic energy because of the difference in the kinematics of the two elements. 

2.2.2 Generalization to 2 DoFs 

A new coordinate taking into account for the rotation of the section of the bridge around its 

axis is introduced (Figure 2.3) with the aim of extending the classical deflection theory.  

 

 

Figure 2.3: 2 dofs kinematic of the deck 

(𝐸𝑑𝐼𝑑𝑤′′)′′ − 2(𝐻 + ℎ) 𝑤′′ − 2ℎ𝑦′′ = 𝑞 (2.22)  

𝛥𝑉(𝑤, 𝑞) =
1

2
∫ 𝐸𝑑𝐼𝑑𝑤′′2𝑑𝑥

𝑙

0
+ 2𝐻 ∫

1

2
𝑤′2𝑑𝑥

𝑙

0
+ 2 [

1

2
∫

𝐸𝑐𝐴𝑐

𝑠′3
(𝑦′𝑤′ +

1

2
𝑤′2)

2
𝑑𝑥

𝑙

0
] +

−∫ 𝑞 ∙ 𝑤𝑑𝑥
𝑙

0
= ∫ [

1

2
𝐸𝑑𝐼𝑑𝑤′′2 +

1

2
2𝐻𝑤′2 + ∫ 2ℎ(𝑤)(𝑦′+𝑤′)𝑑𝑤′𝑤′

0
− 𝑞𝑤]𝑑𝑥

𝑙

0
  

(2.23)  
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Assuming the positive flexural motion when directed downward and the positive torsional 

rotation when clockwise, the displacements at the two extreme sides can be expressed as: 

 

𝑤𝑅 = 𝑤𝑑 + 𝜃𝑑 ∙ 𝑏 
(2.24) 

𝑤𝐿 = 𝑤𝑑 − 𝜃𝑑 ∙ 𝑏 

 

The introduction of a new Degree of Freedom introduces additional elastic energy in the 

system, since this model is more deformable than the previous one. Hence, The TPE (2.15) 

has one more term related to the torsion of the deck: 

 

 

where the first term is related to the primary torsion typical of the De Saint Venant theory 

and the second is related to the warping deformation typical of the Wagner-Vlasov theory. 

Modern bridges usually have closed box sections which allows to have high torsional 

rigidity and to neglect the secondary torsional effects. Hence, the warping deformation can 

be very important in those bridge characterized by very thin decks with I shaped 

longitudinal beams. 

Moreover, the presence of the additional Degree of Freedom allows for the introduction of 

the associated external action in the external work. 

The TPE variation assumes the following mathematical format: 

 

 

where the product between the cable’s tension and the square derivative of the 

displacement can be simplified as: 

 

𝐻(𝑤𝑟
′2 + 𝑤𝐿

′2) = 𝐻[(𝑤𝑑
′ + 𝜃𝑑

′ 𝑏)2 + (𝑤𝑑
′ − 𝜃𝑑

′ 𝑏)2] = 𝐻[𝑤𝑑
′2 + 𝜃𝑑

′2𝑏2 + 2𝑤𝑑
′ 𝜃𝑑

′ 𝑏 + 𝑤𝑑
′2 +

+𝜃𝑑
′2𝑏2 − 2𝑤𝑑

′ 𝜃𝑑
′ 𝑏] = 2𝐻(𝑤𝑑

′2 + 𝜃𝑑
′2𝑏2)  

 

The substitution of this last equation into (2.26) and the zeroing of the first differential of 

the TPE, leads to: 

 

𝛿𝑉 = ∫ [𝐸𝑑𝐼𝑑𝑤𝑑
′′𝑑𝑤𝑑

′′ + 𝐸𝑑Γ𝑑𝜃𝑑
′′𝑑𝜃𝑑

′′ + 𝐺𝑑𝐽𝑑𝜃𝑑
′ 𝑑𝜃𝑑

′ + 2𝐻(𝑤𝑑
′ 𝑑𝑤𝑑

′ + 𝑏2𝜃𝑑
′ 𝑑𝜃𝑑

′ ) + ℎ(𝑤𝑅)(𝑦′ +
𝑙

0

+𝑤𝑑′ + 𝜃𝑑′𝑏)𝑑(𝑤𝑑
′ + 𝜃𝑑

′ 𝑏) + ℎ(𝑤𝐿)(𝑦
′ + 𝑤𝑑

′ − 𝜃𝑑′ ∙ 𝑏)𝑑(𝑤𝑑
′ − 𝜃𝑑

′ 𝑏) − 𝑞𝑑𝑤𝑑 − 𝑚𝑑𝜃𝑑]𝑑𝑥 = 0  

 

𝐸𝑑𝑒𝑐𝑘,𝜃𝑑
=

1

2
∫ 𝐺𝑑𝐽𝑑𝜃𝑑

′ 2
𝑑𝑥

𝑙

0

+
1

2
∫ 𝐸𝑑Γ𝑑𝜃𝑑

′′2𝑑𝑥
𝑙

0

 (2.25)  

𝛥𝑉(𝑤𝑑 , 𝜃𝑑 , 𝑞,𝑚) = ∫ [
1

2
𝐸𝑑𝐼𝑑𝑤′′2 +

1

2
𝐸𝑑Γ𝑑𝜃𝑑

′′2 +
1

2
𝐺𝑑𝐽𝑑𝜃𝑑

′ 2
+

1

2
𝐻(𝑤𝑟

′2 + 𝑤𝐿
′2) +

𝑙

0

+∫ ℎ(𝑤𝑅)(𝑦′ + 𝑤𝑅
′ )𝑑𝑤𝑅

′𝑤𝑅
′

0
+ ∫ ℎ(𝑤𝐿)(𝑦

′ + 𝑤𝐿
′)𝑑𝑤𝐿

′𝑤𝐿
′

0
− 𝑞𝑤𝑑 − 𝑚𝜃𝑑] 𝑑𝑥  

(2.26)  
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Integrating by parts and substituting the proper boundary conditions, some terms can be 

deleted and the first differential of the TPE reads: 

 

𝛿𝑉 = ∫ [(𝐸𝑑𝐼𝑑𝑤𝑑
′′)′′𝑑𝑤𝑑 + (𝐸𝑑Γ𝑑𝜃𝑑

′′)′′𝑑𝜃𝑑
′′ − (𝐺𝑑𝐽𝑑𝜃𝑑

′ )′𝑑𝜃𝑑 − 2𝐻(𝑤𝑑
′′𝑑𝑤𝑑 + 𝑏2𝜃𝑑

′′𝑑𝜃𝑑) +
𝑙

0

−ℎ(𝑤𝑅)(𝑦′′ + 𝑤𝑑
′′ + 𝜃𝑑

′′𝑏)𝑑(𝑤𝑑 + 𝜃𝑑𝑏) − ℎ(𝑤𝐿)(𝑦
′′ + 𝑤𝑑

′′ − 𝜃𝑑
′′𝑏)𝑑(𝑤𝑑 − 𝜃𝑑𝑏) − 𝑞𝑑𝑤𝑑 +

−𝑚𝑑𝜃𝑑]𝑑𝑥 = 0  

 

where according to equation (2.20), the global increment of cable’s tension can be written 

as: 

 

ℎ(𝑤𝑑 ± 𝜃𝑑𝑏) =
𝐸𝑐𝐴𝑐̅̅ ̅̅ ̅̅ ̅

𝐿𝑐
∫ (𝑦′(𝑤𝑑

′ ± 𝜃𝑑
′ 𝑏) +

1

2
(𝑤𝑑

′ ± 𝜃𝑑
′ 𝑏)2)

𝑙

0
𝑑𝑥 =

𝐸𝑐𝐴𝑐̅̅ ̅̅ ̅̅ ̅

𝐿𝑐
∫ [(𝑦′𝑤𝑑

′ +
𝑤𝑑

′2

2
) +

𝑙

0

−(𝑦′𝜃𝑑
′ 𝑏 + 𝑤𝑑

′ 𝜃𝑑
′ 𝑏) + (

𝜃𝑑
′2

2
𝑏2)] 𝑑𝑥  

 

so: 

 

 

having defined the following parameters: 

 

ℎ𝑤 =
𝐸𝑐𝐴𝑐
̅̅ ̅̅ ̅̅

𝐿𝑐
∫ (−𝑦′′𝑤𝑑 +

𝑤𝑑
′2

2
)

𝑙

0

𝑑𝑥 

(2.28) ℎ𝑤𝜃 =
𝐸𝑐𝐴𝑐
̅̅ ̅̅ ̅̅

𝐿𝑐
∫ (−𝑦′′𝜃𝑑𝑏 + 𝑤𝑑

′ 𝜃𝑑
′ 𝑏)

𝑙

0

𝑑𝑥 

ℎ𝜃 =
𝐸𝑐𝐴𝑐
̅̅ ̅̅ ̅̅

𝐿𝑐
∫ (

𝜃𝑑
′2

2
𝑏2)

𝑙

0

𝑑𝑥 

 

Some terms inside the equation for the variation of the TPE can be rewritten in a more 

compact form as: 

 

ℎ(𝑤𝑑 + 𝜃𝑑𝑏)(𝑦′′ + 𝑤𝑑
′′ + 𝜃𝑑

′′𝑏)𝑑(𝑤𝑑 + 𝜃𝑑𝑏) + ℎ(𝑤𝑑 − 𝜃𝑑𝑏)(𝑦′′ + 𝑤𝑑
′′ − 𝜃𝑑

′′𝑏)𝑑(𝑤𝑑 − 𝜃𝑑𝑏) =

2{[(ℎ𝑤 + ℎ𝜃)(𝑦′′ + 𝑤𝑑
′′) + ℎ𝑤𝜃𝑏𝜃𝑑

′′]𝑑𝑤𝑑 + [(ℎ𝑤 + ℎ𝜃)𝑏2𝜃𝑑
′′ + ℎ𝑤𝜃𝑏(𝑦′′ + 𝑤𝑑

′′)]𝑑𝜃𝑑}  

 

The substitution of this last expression into the first differential of the TPE leads to: 

 

 

ℎ(𝑤𝑑 ± 𝜃𝑑𝑏) = ℎ𝑤 ± ℎ𝑤𝜃 + ℎ𝜃 (2.27)  

𝛿𝑉 = ∫ {[(𝐸𝑑𝐼𝑑𝑤𝑑
′′)′′ − 2𝐻𝑤𝑑

′′ − 2(ℎ𝑤 + ℎ𝜃)(𝑦′′ + 𝑤𝑑
′′) − 2ℎ𝑤𝜃𝑏𝜃𝑑

′′ − 𝑞]𝑑𝑤𝑑 +
𝑙

0

+[(𝐸𝑑Γ𝑑𝜃𝑑
′′)′′ − (𝐺𝑑𝐽𝑑𝜃𝑑

′ )′ − 2𝐻𝑏2𝜃𝑑
′′ − 2(ℎ𝑤 + ℎ𝜃)𝑏2𝜃𝑑

′′ − 2ℎ𝑤𝜃𝑏(𝑦′′ + 𝑤𝑑
′′) +

−𝑚]}𝑑𝑥 = 0  

(2.29)  
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To satisfy the condition of null TPE variation (2.29) each of the two terms inside the 

brackets must be equal to zero. This leads to a self-adjoint system representing the static 

equilibrium of the structural system.  

 

 

 

In order to extend the equations of motion to the dynamic field it is simply necessary to 

add the inertial terms. Moreover, for the sake of simplicity it is assumed to consider 

constant values for the section properties of both the cables and the deck. 

 

 

 

The two equations of motion obtained are nonlinear due to the presence of the global 

increment of the cable’s tension (2.27). 

Furthermore, the two equations are coupled, always due to the presence of the non local 

cable’s stiffening term. It is usual in nonlinear mechanics to have coupled system of 

equations. 

It is important to separate the terms with different order of magnitude in order to find the 

degree of nonlinearity and to have an estimate of the degree of coupling of the system. To 

do this and to estimate the parameters affecting the problem, the equations of motion can 

be written in non-dimensional format. 

2.3 NON-DIMENSIONAL FORMAT 

The first passage to do is to introduce some fundamental non-dimensional quantities. 

 

𝜉 =
𝑥

𝑙
 Non-dimensional space parameter 

(2.34) 𝑤̃𝑑(𝜉, 𝜏) =
𝑤𝑑(𝑥, 𝑡)

𝑓
 Non-dimensional flexural DoF 

𝜃̃𝑑(𝜉, 𝜏) =
𝜃𝑑(𝑥, 𝑡) ∙ 𝑏

𝑓
 Non-dimensional torsional DoF 

(𝐸𝑑𝐼𝑑𝑤𝑑
′′)′′ − 2𝐻𝑤𝑑

′′ − 2(ℎ𝑤 + ℎ𝜃)(𝑦′′ + 𝑤𝑑
′′) − 2ℎ𝑤𝜃𝑏𝜃𝑑

′′ = 𝑞 (2.30)  

(𝐸𝑑Γ𝑑𝜃𝑑
′′)′′ − (𝐺𝑑𝐽𝑑𝜃𝑑

′ )′ − 2𝐻𝑏2𝜃𝑑
′′ − 2(ℎ𝑤 + ℎ𝜃)𝑏2𝜃𝑑

′′ − 2ℎ𝑤𝜃𝑏(𝑦′′ + 𝑤𝑑
′′) = 𝑚 (2.31)  

(𝑚𝑑 + 2𝑚𝑐)𝑤̈𝑑(𝑥, 𝑡) + 𝐸𝑑𝐼𝑑𝑤𝑑
′𝑣(𝑥, 𝑡) − 2𝐻𝑤𝑑

′′(𝑥, 𝑡) − 2(ℎ𝑤 + ℎ𝜃)(𝑦′′ + 𝑤𝑑
′′(𝑥, 𝑡)) +

−2ℎ𝑤𝜃𝑏𝜃𝑑
′′(𝑥, 𝑡) = 𝑞(𝑥, 𝑡)  

(2.32)  

(𝐽𝑡 + 2𝑚𝑐𝑏
2)𝜃̈𝑑(𝑥, 𝑡) + 𝐸𝑑Γ𝑑𝜃𝑑

′𝑣(𝑥, 𝑡) − 𝐺𝑑𝐽𝑑𝜃𝑑
′′(𝑥, 𝑡) − 2𝐻𝑏2𝜃𝑑

′′(𝑥, 𝑡) − 2(ℎ𝑤 +

+ℎ𝜃)𝑏2𝜃𝑑
′′(𝑥, 𝑡) − 2ℎ𝑤𝜃𝑏(𝑦′′ + 𝑤𝑑

′′(𝑥, 𝑡)) = 𝑚(𝑥, 𝑡)  
(2.33)  
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where the non-dimensional time parameter 𝜏 will be defined in the following. Let us 

expand some terms before considering the complete equations of motion. 

 

(ℎ𝑤 + ℎ𝜃)(𝑦′′ + 𝑤𝑑
′′) = ℎ𝑤𝑦′′ + ℎ𝑤𝑤𝑑

′′ + ℎ𝜃𝑦′′ + ℎ𝜃𝑤𝑑
′′ =

𝐸𝑐𝐴𝑐

𝐿𝑐
[𝑦′′ ∫ (−𝑦′′𝑤𝑑 +

𝑤𝑑
′2

2
)

𝑙

0
𝑑𝑥 +

𝑤𝑑
′′ ∫ (−𝑦′′𝑤𝑑 +

𝑤𝑑
′2

2
)

𝑙

0
𝑑𝑥 + 𝑦′′ ∫ (

𝜃𝑑
′2

2
𝑏2)

𝑙

0
𝑑𝑥 + 𝑤𝑑

′′ ∫ (
𝜃𝑑

′2

2
𝑏2)

𝑙

0
𝑑𝑥] =

𝐸𝑐𝐴𝑐

𝐿𝑐
[−𝑦′′2𝑓𝑙 ∫ 𝑤̃𝑑

1

0
𝑑𝜉 +

1

2
𝑦′′ 𝑓2

𝑙
∫ 𝑤̃𝑑

′21

0
𝑑𝜉 − 𝑦′′𝑤̃𝑑

′′ 𝑓2

𝑙
∫ 𝑤̃𝑑

1

0
𝑑𝜉 +

1

2
𝑤̃𝑑

′′ 𝑓3

𝑙3
∫ 𝑤̃𝑑

′21

0
𝑑𝜉 +

1

2
𝑦′′ 𝑓2

𝑙
∫ 𝜃̃𝑑

′21

0
𝑑𝜉 +

1

2
𝑤̃𝑑

′′ 𝑓3

𝑙3
∫ 𝜃̃𝑑

′21

0
𝑑𝜉]  

 

ℎ𝑤𝜃𝑏𝜃𝑑
′′ =

𝐸𝑐𝐴𝑐

𝐿𝑐
𝑏𝜃𝑑

′′ ∫ (−𝑦′′𝜃𝑑𝑏 + 𝑤𝑑
′ 𝜃𝑑

′ 𝑏)
𝑙

0
𝑑𝑥 =

𝐸𝑐𝐴𝑐

𝐿𝑐
[−𝜃̃𝑑

′′𝑦′′ 𝑓2

𝑙
∫ 𝜃̃𝑑

1

0
𝑑𝜉 + 𝜃̃𝑑

′′ 𝑓3

𝑙3
∫ 𝑤̃𝑑

′1

0
𝜃̃𝑑

′ 𝑑𝜉]  

 

(ℎ𝑤 + ℎ𝜃)𝑏2𝜃𝑑
′′ =

𝐸𝑐𝐴𝑐

𝐿𝑐
[𝑏2𝜃𝑑

′′ ∫ (−𝑦′′𝑤𝑑 +
𝑤𝑑

′2

2
)

𝑙

0
𝑑𝑥 + 𝑏2𝜃𝑑

′′ ∫ (
𝜃𝑑

′2

2
𝑏2)

𝑙

0
𝑑𝑥] =

𝐸𝑐𝐴𝑐

𝐿𝑐
[−𝜃̃𝑑

′′𝑦′′ 𝑓

𝑙
𝑏 ∫ 𝑤̃𝑑

1

0
𝑑𝜉 +

1

2
𝜃̃𝑑

′′ 𝑓3

𝑙3
𝑏 ∫ 𝑤̃𝑑

′21

0
𝑑𝜉 +

1

2
𝜃̃𝑑

′′ 𝑓3

𝑙3
𝑏 ∫ 𝜃̃𝑑

′21

0
𝑑𝜉]  

 

ℎ𝑤𝜃𝑏(𝑦′′ + 𝑤𝑑
′′) =

𝐸𝑐𝐴𝑐

𝐿𝑐
[𝑦′′𝑏 ∫ (−𝑦′′𝜃𝑑𝑏 + 𝑤𝑑

′ 𝜃𝑑
′ 𝑏)

𝑙

0
𝑑𝑥 + 𝑏𝑤𝑑

′′ ∫ (−𝑦′′𝜃𝑑𝑏 + 𝑤𝑑
′ 𝜃𝑑

′ 𝑏)
𝑙

0
𝑑𝑥] =

𝐸𝑐𝐴𝑐

𝐿𝑐
[−𝑦′′2𝑓𝑏𝑙 ∫ 𝜃̃𝑑

1

0
𝑑𝜉 + 𝑦′′ 𝑓2

𝑙
𝑏 ∫ 𝑤̃𝑑

′1

0
𝜃̃𝑑

′ 𝑑𝜉 − 𝑦′′𝑤̃𝑑
′′ 𝑓

𝑙
𝑏 ∫ 𝜃̃𝑑

1

0
𝑑𝜉 + 𝑤̃𝑑

′′ 𝑓3

𝑙3
𝑏 ∫ 𝑤̃𝑑

′1

0
𝜃̃𝑑

′ 𝑑𝜉]  

2.3.1 Flexural equation of motion 

Substituting the previous expressions into the flexural equation of motion (2.32): 

 

(𝑚𝑑 + 2𝑚𝑐)𝑓
𝑑2𝑤̃𝑑

𝑑𝑡2  + 𝐸𝑑𝐼𝑑𝑤̃𝑑
′𝑣 𝑓

𝑙4
− 2𝐻

𝑓

𝑙2
𝑤̃𝑑

′′ − 2
𝐸𝑐𝐴𝑐

𝐿𝑐
(−𝑦′′2𝑓𝑙 ∫ 𝑤̃𝑑

1

0
𝑑𝜉 +

1

2
𝑦′′ 𝑓2

𝑙
∫ 𝑤̃𝑑

′21

0
𝑑𝜉 +

−𝑦′′𝑤̃𝑑
′′ 𝑓2

𝑙
∫ 𝑤̃𝑑

1

0
𝑑𝜉 +

1

2
𝑤̃𝑑

′′ 𝑓3

𝑙3
∫ 𝑤̃𝑑

′21

0
𝑑𝜉 +

1

2
𝑦′′ 𝑓2

𝑙
∫ 𝜃̃𝑑

′21

0
𝑑𝜉 +

1

2
𝑤̃𝑑

′′ 𝑓3

𝑙3
∫ 𝜃̃𝑑

′21

0
𝑑𝜉 +

−𝜃̃𝑑
′′𝑦′′ 𝑓2

𝑙
∫ 𝜃̃𝑑

1

0
𝑑𝜉 + 𝜃̃𝑑

′′ 𝑓3

𝑙3
∫ 𝑤̃𝑑

′1

0
𝜃̃𝑑

′ 𝑑𝜉 = 𝑞  

 

where the prime indicates the derivative with respect to 𝜉. 

Collecting the terms associated to the initial tension in the cable 2𝐻
𝑓

𝑙2
: 

 

(𝑚𝑑 + 2𝑚𝑐)
𝑙2

2𝐻

𝑑2𝑤̃𝑑

𝑑𝑡2  +
𝐸𝑑𝐼𝑑

2𝐻𝑙2
𝑤̃𝑑

′𝑣 − 𝑤̃𝑑
′′ +

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(𝑦′′𝑙)2 ∫ 𝑤̃𝑑

1

0
𝑑𝜉 −

1

2

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
𝑦′′𝑓 ∫ 𝑤̃𝑑

′21

0
𝑑𝜉 +

+
𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
𝑦′′𝑓𝑤̃𝑑

′′ ∫ 𝑤̃𝑑
1

0
𝑑𝜉 −

1

2

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2
𝑤̃𝑑

′′ ∫ 𝑤̃𝑑
′21

0
𝑑𝜉 −

1

2

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
𝑦′′𝑓 ∫ 𝜃̃𝑑

′21

0
𝑑𝜉 +

−
1

2

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2
𝑤̃𝑑

′′ ∫ 𝜃̃𝑑
′21

0
𝑑𝜉 +

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
𝑦′′𝑓𝜃̃𝑑

′′ ∫ 𝜃̃𝑑
1

0
𝑑𝜉 −

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2
𝜃̃𝑑

′′ ∫ 𝑤̃𝑑
′1

0
𝜃̃𝑑

′ 𝑑𝜉 =
𝑙2

2𝐻𝑓
𝑞  

 

Others non-dimensional parameters can be introduced in this last expression. 
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𝜏 =
𝑡

𝑙
√

2𝐻

𝑚𝑑 + 2𝑚𝑐
 Non-dimensional time parameter 

(2.35) 

𝑞̃(𝜉, 𝜏) =
𝑙2

2𝐻𝑓
𝑞(𝑥, 𝑡) Non-dimensional equivalent flexural external forcing 

𝜇2 =
𝐸𝑑𝐼𝑑
2𝐻𝑙2

 Steinman’s stiffness factor 

𝜆1
2 =

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐

(𝑦′′𝑙)2 First order Irvine’s parameter 

𝜆2
2 = −

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
𝑦′′𝑓 Second order Irvine’s parameter 

𝜆3
2 =

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2

 Third order Irvine’s parameter 

 

The Steinman’s stiffness factor is the ratio between the deck and the cables flexural 

stiffness. It reflects the weight of each contribution in the whole flexural stiffness of the 

bridge. 

The Irvine’s parameters measure the extensibility of the cables compared to the initial 

tension needed to sustain the self-weight of the suspended deck. Each one of them multiply 

respectively the linear, the quadratic and the cubic terms of the deck configuration. 

Thanks to the hypothesis of initial parabolic shape of the cable, it is possible to estimate 

the influence of the nonlinear terms, indeed being 𝑦′′ = −
8𝑓

𝑙2
, then: 

 

𝜆1
2 = 64

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2

 

 𝜆2
2 = 8

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2

 

𝜆3
2 =

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2

 

 

From the previous statement it is evident that 𝜆1
2 = 8𝜆2

2 = 64𝜆3
2
. Hence higher order 

terms are order of magnitude less than the linear ones. It is possible to state that the model 

assumed for the suspension bridge is characterised by soft nonlinearities. The reason of 

this is hidden in the assumption of inextensible hangers. In fact, considering a 4 DoFs 

model, with the axial extensibility of the hangers and taking into account the possibility for 

them to slack, stronger nonlinearities would arise because of the different behaviour in 

tension and in compression of the hangers themselves. 
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Introducing also: 
 

ℎ̃𝑤 = ∫ 𝑤̃𝑑

1

0

𝑑𝜉 

(2.36) 

ℎ̃𝜃 = ∫ 𝜃̃𝑑

1

0

𝑑𝜉 

ℎ̃𝑤′𝑤′ = ∫ 𝑤̃𝑑
′2

1

0

𝑑𝜉 

ℎ̃𝜃′𝜃′ = ∫ 𝜃̃𝑑
′2

1

0

𝑑𝜉 

ℎ̃𝑤′𝜃′ = ∫ 𝑤̃𝑑
′

1

0

𝜃̃𝑑
′ 𝑑𝜉 

 

The flexural equation of motion (2.32) can be rewritten in non-dimensional format as: 

 

2.3.2 Torsional equation of motion 

The same passages can be done also for the torsional equation of motion (2.33) in which, 

firstly the non-dimensional quantities introduced in (2.34) are substituted into it and 

secondly the terms related to the initial tension in the cable 2𝐻
𝑓𝑏

𝑙2
 are collected.  

 

(𝐽𝑡 + 2𝑚𝑐𝑏
2)

𝑓

𝑏

𝑑2𝜃̃𝑑

𝑑𝑡2 +
𝐸𝑑Γ𝑑

2𝐻𝑏2𝑙2
𝜃̃𝑑

′𝑣 −
𝐺𝑑𝐽𝑑

2𝐻𝑏2 𝜃̃𝑑
′′ − 𝜃̃𝑑

′′ +
𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
𝑦′′𝑓𝜃̃𝑑

′′ ∫ 𝑤̃𝑑
1

0
𝑑𝜉 +

−
1

2

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2
𝜃̃𝑑

′′ ∫ 𝑤̃𝑑
′21

0
𝑑𝜉 −

1

2

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2
𝜃̃𝑑

′′ ∫ 𝜃̃𝑑
′21

0
𝑑𝜉 +

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(𝑦′′𝑙)2 ∫ 𝜃̃𝑑

1

0
𝑑𝜉 +

−
𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
𝑦′′𝑓 ∫ 𝑤̃𝑑

′1

0
𝜃̃𝑑

′ 𝑑𝜉 +
𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
𝑦′′𝑓𝑤̃𝑑

′′ ∫ 𝜃̃𝑑
1

0
𝑑𝜉 −

𝐸𝑐𝐴𝑐

𝐻

𝑙

𝐿𝑐
(
𝑓

𝑙
)
2
𝑤̃𝑑

′′ ∫ 𝑤̃𝑑
′1

0
𝜃̃𝑑

′ 𝑑𝜉 =
𝑙2

2𝐻𝑓𝑏
𝑚  

 

Other few non-dimensional terms must be defined: 

 

𝐽𝑡 =
(𝐽𝑡 + 2𝑚𝑐𝑏

2)

(𝑚𝑑 + 2𝑚𝑐)𝑏
2

= (
𝜌𝑑

𝑏
)
2

 Non-dimensional torsional inertia 

(2.38) 

𝑚̃ =
𝑙2

2𝐻𝑓𝑏
𝑚 Non-dimensional external torsional moment 

𝛽2 =
𝐺𝑑𝐽𝑑
2𝐻𝑏2

 
Ratio between the primary torsional stiffness and 

the torsional stiffness given by the two cables  

𝛾2 =
𝐸𝑑Γ𝑑

2𝐻𝑏2𝑙2
=

𝛽2

𝜒2
 

Ratio between the warping torsional stiffness and 

the torsional stiffness given by the two cables  

𝜒2 =
𝐺𝑑𝐽𝑑𝑙2

𝐸𝑑Γ𝑑
 Warping coefficient 

𝑑2𝑤̃𝑑

𝑑𝜏2  + 𝜇2 ∙ 𝑤̃𝑑
′𝑣 − 𝑤̃𝑑

′′ + 𝜆1
2 ∙ ℎ̃𝑤 − 𝜆2

2 ∙ [ℎ̃𝑤 ∙ 𝑤̃𝑑
′′ + ℎ̃𝜃 ∙ 𝜃̃𝑑

′′ −
1

2
(ℎ̃𝑤′𝑤′ + ℎ̃𝜃′𝜃′)] +

−𝜆3
2 [

1

2
(ℎ̃𝑤′𝑤′ + ℎ̃𝜃′𝜃′) ∙ 𝑤̃𝑑

′′ + ℎ̃𝑤′𝜃′ ∙ 𝜃̃𝑑
′′] = 𝑞̃  

(2.37)  
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The torsional equation of motion (2.33) can be rewritten in non-dimensional format as: 

 

 

It is evident from (2.37) and (2.39) that the equations of motion are nonlinear up to the 

third order. Moreover only the higher order terms couple the flexural with the torsional 

equation and vice-versa. This is an important feature of the structural system which 

becomes completely uncoupled when linearized. Being the linearized structural system 

uncoupled, the principle of superposition of the effects is valid and a modal analysis can be 

performed separately on the two equations, so as to find the structural frequencies and 

modes of vibration. 

2.3.3 Structural Damping 

The previous flexural and torsional equations of motion (2.37) and (2.39) have been 

written without taking into account for the effect of the structural damping which in reality 

is present in every structure. A linear viscous damping component can be introduced in the 

equations of motion: 

 

 

 

where the new parameters introduced 𝑐̃𝑤 and 𝑐̃𝜃 are the non-dimensional damping 

parameters which can be defined, starting from the dimensional linear damping, as: 

 

𝑐𝑤

𝑑𝑤𝑑

𝑑𝑡
= 𝑐𝑤

𝑓

𝑙
√

2𝐻

𝑚𝑑 + 2𝑚𝑐

𝑙2

2𝐻𝑓

𝑑𝑤̃𝑑

𝑑𝜏
= 𝑐𝑤

𝑙

√2𝐻(𝑚𝑑 + 2𝑚𝑐)

𝑑𝑤̃𝑑

𝑑𝜏
= 𝑐̃𝑤

𝑑𝑤̃𝑑

𝑑𝜏
 

(2.42) 

𝑐𝜃

𝑑𝜃𝑑

𝑑𝑡
= 𝑐𝜃

𝑓

𝑏𝑙
√

2𝐻

𝑚𝑑 + 2𝑚𝑐

𝑙2

2𝐻𝑓𝑏

𝑑𝜃̃𝑑

𝑑𝜏
= 𝑐𝜃

𝑙

𝑏2√2𝐻(𝑚𝑑 + 2𝑚𝑐)

𝑑𝜃̃𝑑

𝑑𝜏
= 𝑐̃𝜃

𝑑𝜃̃𝑑

𝑑𝜏
 

𝐽𝑡 ∙
𝑑2𝜃̃𝑑

𝑑𝜏2 +
𝛽2

𝜒2 ∙ 𝜃̃𝑑
′𝑣 − (1 + 𝛽2) ∙ 𝜃̃𝑑

′′ + 𝜆1
2 ∙ ℎ̃𝜃 − 𝜆2

2 ∙ [ℎ̃𝜃 ∙ 𝑤̃𝑑
′′ + ℎ̃𝑤 ∙ 𝜃̃𝑑

′′ − ℎ̃𝑤′𝜃′] +

−𝜆3
2 [ℎ̃𝑤′𝜃′ ∙ 𝑤̃𝑑

′′ +
1

2
(ℎ̃𝑤′𝑤′ + ℎ̃𝜃′𝜃′) ∙ 𝜃̃𝑑

′′] = 𝑚̃  
(2.39)  

𝑑2𝑤̃𝑑

𝑑𝜏2  + 𝑐̃𝑤
𝑑𝑤̃𝑑

𝑑𝜏
+ 𝜇2𝑤̃𝑑

′𝑣 − 𝑤̃𝑑
′′ + 𝜆1

2ℎ̃𝑤 − 𝜆2
2 [ℎ̃𝑤𝑤̃𝑑

′′ + ℎ̃𝜃𝜃̃𝑑
′′ −

1

2
(ℎ̃𝑤′𝑤′ + ℎ̃𝜃′𝜃′)] +

−𝜆3
2 [

1

2
(ℎ̃𝑤′𝑤′ + ℎ̃𝜃′𝜃′)𝑤̃𝑑

′′ + ℎ̃𝑤′𝜃′𝜃̃𝑑
′′] = 𝑞̃  

(2.40)  

𝐽𝑡
𝑑2𝜃̃𝑑

𝑑𝜏2 + 𝑐̃𝜃
𝑑𝜃̃𝑑

𝑑𝜏
+

𝛽2

𝜒2 𝜃̃𝑑
′𝑣 − (1 + 𝛽2)𝜃̃𝑑

′′ + 𝜆1
2ℎ̃𝜃 − 𝜆2

2[ℎ̃𝜃𝑤̃𝑑
′′ + ℎ̃𝑤𝜃̃𝑑

′′ − ℎ̃𝑤′𝜃′] +

−𝜆3
2 [ℎ̃𝑤′𝜃′𝑤̃𝑑

′′ +
1

2
(ℎ̃𝑤′𝑤′ + ℎ̃𝜃′𝜃′)𝜃̃𝑑

′′] = 𝑚̃  
(2.41)  
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2.4 MODAL SUPERPOSITION ANALYSIS 

Modal analysis is a simple separation of variable process which allows to study the 

problem in two different spaces, permitting to pass from partial differential equations to 

ordinary ones. Being based on the superposition principle, the modal analysis can be 

applied only to linear equations of motion. Hence, only the linear components are held in 

the equations of motion, leading to an uncoupled system. The flexural and torsional 

structural behaviour of the structure can be therefore studied separately. Moreover since 

the objective of this study is to define the structural properties, the external forcing terms 

do not affect the modal response of the structure and they have not to be considered. 

2.4.1 Flexural Modes of Vibration 

For the flexural modes the decomposition can be written as: 

 

 

where 𝑊𝑛(𝜉) is the flexural modal shape and the time function varies exponentially 

according to the Euler formula: 

 

 

The complex conjugate 𝑍𝑛
∗  is a necessary quantity in order to obtain a real value of the time 

varying function, which otherwise would be a complex quantity, in fact: 

 

𝑧𝑛(𝜏) = (𝑍𝑛
𝑅 + 𝑖𝑍𝑛

𝐼 )[cos(𝛺̃𝑤,𝑛 ∙ 𝜏) + 𝑖 ∙ sin(𝛺̃𝑤,𝑛 ∙ 𝜏)] + (𝑍𝑛
𝑅 − 𝑖𝑍𝑛

𝐼 )[cos(𝛺̃𝑤,𝑛 ∙ 𝜏) − 𝑖 ∙

sin(𝛺̃𝑤,𝑛 ∙ 𝜏)] = 2[𝑍𝑛
𝑅 cos(𝛺̃𝑤,𝑛 ∙ 𝜏) − 𝑍𝑛

𝐼 sin(𝛺̃𝑤,𝑛 ∙ 𝜏)] = 𝑍̅𝑛 cos(𝛺̃𝑤,𝑛 ∙ 𝜏 + 𝜑𝑤,𝑛)  

 

being: 

 

𝑍̅𝑛 = 2√(𝑍𝑛
𝑅)2 + (𝑍𝑛

𝐼 )2 

(2.45) tan (𝜑𝑤,𝑛) =
𝑍𝑛

𝐼

𝑍𝑛
𝑅  

𝛺̃𝑤,𝑛 = 𝛺𝑤,𝑛𝑙√
𝑚𝑑 + 2𝑚𝑐

2𝐻
 

 

𝑤̃𝑑(𝜉, 𝜏) = ∑ 𝑊𝑛(𝜉) ∙ 𝑧𝑛(𝜏)

+∞

𝑛=1

 (2.43)  

𝑧𝑛(𝜏) = 𝑍𝑛 exp(𝑖 ∙ 𝛺̃𝑤,𝑛 ∙ 𝜏) + 𝑍𝑛
∗ exp(−𝑖 ∙ 𝛺̃𝑤,𝑛 ∙ 𝜏) (2.44)  



Effects of Internal Parametric Resonance on the Aerodynamic Behaviour of Long-span Suspension Bridges 

 

40 STRUCTURAL SCHEME 

The amplitude of oscillations becomes a real quantity when the imaginary terms are 

considered, that is the same to introduce a phase lag. Considering this the response of the 

structure can change when superimposing the different flexural and torsional motions. 

Moreover the time function contains a non-dimensional term related to the circular Eigen-

frequency of each specific mode. 

The introduction of the modal decomposition of equation (2.43) in the linearized 

undamped flexural equation of motion of the free vibrating system leads to: 
 

 

In order to satisfy the dynamic equilibrium at each instant of time, the spatial-dependent 

term inside the bracket must be null. The resulting equation is a fourth order differential 

equation which can be solved in order to find the two unknowns of the problem, namely 

the modal shapes and the associated circular Eigen-frequencies. Of course, the solvability 

of the spatial 4th order ODE is grant only if four proper boundary conditions are applied at 

the extremes of the interval. The model considered is the one of a simply supported beam 

and therefore, null vertical displacements and null moments are imposed at the extremes of 

the bridge. 

The analytical procedure allows to find particular conditions that a numerical approach can 

neglect. First of all a distinction between symmetric and skew-symmetric modes has to be 

made. 
 

Skew-Symmetric modes 
 

In correspondence of even wave numbers the linear contribution to cable’s elongation 

vanishes, therefore the stiffening term ℎ̃𝑊,𝑛 is null and the 4th order spatial ODE to be 

solved is: 
 

 

This is the classical equation of motion of a simply supported Euler-Bernoulli beam, which 

solution is represented by a sinusoidal motion with even number of half waves. 
 

 

A posteriori it is easy to demonstrate that the stiffening term is effectively null for each 

choice of half wave number, in fact: 
 

∑(−𝛺̃𝑤,𝑛
2 𝑊𝑛(𝜉) + 𝜇2𝑊𝑛

′𝑣(𝜉) − 𝑊𝑛
′′(𝜉) + 𝜆1

2ℎ̃𝑊,𝑛) ∙ 𝑧𝑛(𝜏)

+∞

𝑛=1

= 0 (2.46)  

−𝛺̃𝑤,𝑛
2 𝑊𝑛(𝜉) + 𝜇2𝑊𝑛

′𝑣(𝜉) − 𝑊𝑛
′′(𝜉) = 0 (2.47)  

𝑊𝑛(𝜉) = 𝑠𝑖𝑛(𝑛 ∙ 𝜋 ∙ 𝜉)     (𝑛 = 2,4,6,… ) (2.48)  

ℎ̃𝑊,𝑛 = ∫ 𝑊𝑛(𝜉)𝑑𝜉 =
1

0

−
1

2𝜋
(𝑐𝑜𝑠(𝜋 ∙ 𝑛) − 1) = 0     (∀𝑛 = 2,4,6,… ) (2.49)  
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Once that the modal shapes have been determined, the remaining unknowns are the 

circular Eigen-frequencies, which can be found substituting the modal shapes (2.48) inside 

the ODE to be solved (2.47).  

 

 

Hence, the modal Eigen-frequencies are: 

 

 

Symmetric Modes 
 

In the case of symmetric modes, the cable’s stiffening term does not vanish and it affects 

the bridge’s flexural response. The equation to be solved is a complete ode in the spatial 

variable, which solution can be expressed as a combination of an homogeneous and a 

particular integral. 

 

 

Being the stiffening term constant, also the particular solution must be a constant because 

it has to solve by itself the complete ODE without any need for boundary conditions. 

 

 

This is an implicit solution, because the stiffening term is dependent on the complete 

solution for the modal shape. 

To find the homogeneous solution of an ODE with constant coefficients, the Euler method 

is used. It consists in writing the solution as a superposition of four exponential terms, 

multiplied by constant coefficients which have to be found enforcing the boundary 

conditions. 
 

 

The substitution of the assumed solution (2.54) in the homogeneous ODE with constant 

coefficient (2.52) leads to: 

 

(−𝛺̃𝑤,𝑛
2 + 𝜇2 ∙ (𝑛𝜋)4 + (𝑛𝜋)2) ∙ sin(𝑛 ∙ 𝜋 ∙ 𝜉) = 0 (2.50)  

𝛺̃𝑤,𝑛 = 𝑛𝜋√1 + 𝜇2(𝑛𝜋)2     (𝑛 = 2,4,6,… ) (2.51)  

−𝛺̃𝑤,𝑛
2 𝑊𝑛(𝜉) + 𝜇2𝑊𝑛

′𝑣(𝜉) − 𝑊𝑛
′′(𝜉) + 𝜆1

2ℎ̃𝑊,𝑛 = 0 (2.52)  

𝑊𝑛,𝑝(𝜉) = 𝐶𝑛 =
𝜆1

2ℎ̃𝑊,𝑛

𝛺̃𝑤,𝑛
2

 (2.53)  

𝑊𝑛,0(𝜉) = ∑ 𝐶𝑛,𝑖 ∙ exp(𝛼𝑛,𝑖 ∙ 𝜉)

4

𝑛=1

 (2.54)  

∑ 𝐶𝑛,𝑖 ∙ (𝜇2 ∙ 𝛼𝑛,𝑖
4 − 𝛼𝑛,𝑖

2 − 𝛺̃𝑤,𝑛
2 ) ∙ exp(𝛼𝑛,𝑖 ∙ 𝜉)

4

𝑛=1

= 0 (2.55)  
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The solution of equation (2.55), independent on 𝑖 and 𝑛, is: 

 

 

For the sake of simplicity it is useful to express the solution by means of the two 

coefficients defined below. 

 

𝜂𝑤,𝑛
2 =

1

2𝜇2 (√1 + 4𝜇2𝛺̃𝑤,𝑛
2 − 1) 

(2.57) 

Ψ𝑤,𝑛
2 =

1

2𝜇2 (√1 + 4𝜇2𝛺̃𝑤,𝑛
2 + 1) = 𝜂𝑤,𝑛

2 +
1

𝜇2
 

 

The modal shape is the superposition of the homogeneous and the particular solution. 

 

 

It is clear that the modal shapes are real, being formed by a complex combination of sine 

and cosine spatial functions which together are a complex conjugate number. 

Enforcing the boundary conditions to find the coefficients appearing in equation (2.58) and 

exploiting some trigonometric relationships, the solution for the modal shapes is: 

 

 

All the passages to arrive to this solution are described in Appendix A. 

The actual expression is again implicit because of the presence of the cable’s stiffening 

term that depends itself on the modal shape. But since the Eigen-modes have to be 

normalised with respect to the maximum value of the deflection, it is not important to 

consider the cable’s stiffening contribution. However, the problem is that the modal shape 

remains unknown because the parameters inside the bracket are function of the unknown 

circular Eigen-frequency. In order to solve this problem it is important to recall the 

definition of the stiffening term due to cable’s elongation, from which it is possible to 

compute the circular Eigen-frequencies associated to the symmetrical flexural modal 

shapes. 

 

𝛼𝑛,𝑖
2 =

1

2𝜇2 (1 ± √1 + 4𝜇2𝛺̃𝑤,𝑛
2 ) (2.56)  

𝑊𝑛(𝜉) = 𝑊𝑛,0(𝜉) + 𝑊𝑛,𝑝(𝜉) = (
𝜆1

2ℎ̃𝑊,𝑛

𝛺̃𝑤,𝑛
2 + 𝐶𝑛,1 ∙ exp(Ψw,n𝜉) +𝐶𝑛,2 ∙

exp(−Ψw,n𝜉) +𝐶𝑛,3 ∙ exp(𝑖 ∙ ηw,n𝜉) +𝐶𝑛,4 ∙ exp(−𝑖 ∙ ηw,n𝜉))  
(2.58)  

𝑊𝑛(𝜉) =
𝜆1

2ℎ̃𝑊,𝑛

𝛺̃𝑤,𝑛
2 [1 −

1

Ψ𝑤,𝑛
2 +𝜂𝑤,𝑛

2 (𝜂𝑤,𝑛
2 ∙

cosh(Ψw,n(𝜉−
1

2
))

cosh(
Ψw,n

2
)

+ Ψ𝑤,𝑛
2 ∙

cos(ηw,n(𝜉−
1

2
))

cos(
ηw,n

2
)

)]  (2.59)  
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The stiffening term can be cancelled out from the equation to find the general Eigen-

function of the problem 

 

 

This expression is again implicit, but it can be solved numerically by means of simple 

methods to find the zeros of a non-linear function, e.g. the bisection method. It’s important 

to underline the fact that this Eigen-function is able to capture all the symmetrical flexural 

modes since it has an infinite number of zeros. However, the complexity of the root finding 

grows with the order of the mode because the continuous branch of the solution tends to 

move the zero nearer and nearer to the discontinuity points. Since each Eigen-frequency is 

in between two asymptotes, it is not difficult to find the correct solution. As an example, 

the Eigen-function for the first five symmetric modes of the Tacoma Narrows Bridge is 

depicted in Figure 2.4. 

 

 

Figure 2.4: Eigen-function for the first five symmetric modes of the Tacoma Narrows Bridge 

 

ℎ̃𝑊,𝑛 = ∫ 𝑊𝑛(𝜉)𝑑𝜉 =
1

0

𝜆1
2ℎ̃𝑊,𝑛

𝛺̃𝑤,𝑛
2 ∙ ∫ [1 −

1

Ψ𝑤,𝑛
2 +𝜂𝑤,𝑛

2 ∙ (𝜂𝑤,𝑛
2 ∙

cosh(Ψw,n(𝜉−
1

2
))

cosh(
Ψw,n

2
)

+ Ψ𝑤,𝑛
2 ∙

1

0

cos(ηw,n(𝜉−
1

2
))

cos(
ηw,n

2
)

)]𝑑𝜉  

(2.60)  

𝛺̃𝑤,𝑛
2

𝜆1
2 − 1 +

1

Ψ𝑤,𝑛
2 +𝜂𝑤,𝑛

2 (𝜂𝑤,𝑛
2 ∙

tanh(
Ψw,n

2
)

Ψw,n
2

+ Ψ𝑤,𝑛
2 ∙

tan(
ηw,n

2
)

ηw,n
2

) = 0  (2.61)  



Effects of Internal Parametric Resonance on the Aerodynamic Behaviour of Long-span Suspension Bridges 

 

44 STRUCTURAL SCHEME 

2.4.2 Torsional Modes of Vibration 

The treatment for determining the torsional oscillations modes is completely analogous to 

the passages already done for the flexural counterpart. So the first passage to do is to 

introduce the modal decomposition for the torsional non-dimensional rotation: 

 

 

with the time varying function defined as: 

 

 

where: 

 

𝛤̅𝑚 = 2√(𝛤𝑚
𝑅)2 + (𝛤𝑚

𝐼 )2 

(2.64) tan (𝜑𝜃,𝑚) =
𝛤𝑚

𝐼

𝛤𝑚
𝑟 

𝛺̃𝜃,𝑚 = 𝛺𝜃,𝑚𝑙√
𝑚𝑑 + 2𝑚𝑐

2𝐻
 

 

The substitution of the modal decomposition (2.62) in the linearized undamped torsional 

equation of motion of the free vibrating system leads to its modal format. Enforcing the 

dynamic equilibrium at each instant of time the following 4th order spatial ODE with 

Eigen-modes and circular Eigen-frequencies unknowns is obtained. 

 

 

Skew-Symmetric modes 

 

Also in this case, the vanishing of the cable’s stiffening term allows the definition of the 

modal shapes and the corresponding circular Eigen-frequencies without any difficulties. 

 

 

𝜃̃𝑑(𝜉, 𝜏) = ∑ 𝛩𝑚(𝜉) ∙ 𝛾𝑚(𝜏)

+∞

𝑚=1

 (2.62)  

𝛾𝑚(𝜏) = 𝛤𝑚 exp(𝑖 ∙ 𝛺̃𝜃.𝑚 ∙ 𝜏) + 𝛤𝑚
∗ exp(−𝑖 ∙ 𝛺̃𝜃,𝑚 ∙ 𝜏) = 𝛤̅𝑚 cos(𝛺̃𝜃,𝑚 ∙ 𝜏 + 𝜑𝜃,𝑚) (2.63)  

−𝐽𝑡𝛺̃𝜃,𝑚
2 𝛩𝑚(𝜉) +

𝛽2

𝜒2
𝛩𝑚

′𝑣(𝜉) − (1 + 𝛽2)𝛩𝑚
′′(𝜉) + 𝜆1

2ℎ̃𝛩,𝑚 = 0 (2.65)  

𝛩𝑚(𝜉) = 𝑠𝑖𝑛(𝑚 ∙ 𝜋 ∙ 𝜉)     (𝑚 = 2,4,6,… ) (2.66)  

𝛺̃𝜃,𝑚 =
1

√𝐽𝑡
𝑚𝜋√1 + 𝛽2 +

𝛽2

𝜒2
(𝑚𝜋)2     (𝑚 = 2,4,6,… ) (2.67)  
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Symmetric Modes 

 

In complete accordance to the flexural case, the solution of the complete ODE with 

constant coefficients is a superposition of the homogeneous and the particular solution, 

which can be expressed as: 

 

 

where 

 

𝜂𝜃,𝑚
2 =

𝜒2

2𝛽2 (√1 + 𝛽2 + 4
𝛽2

𝜒2
𝐽𝑡𝛺̃𝜃,𝑚

2 − (1 + 𝛽2)) 

(2.69) 

Ψ𝜃,𝑚
2 =

𝜒2

2𝛽2 (√1 + 𝛽2 + 4
𝛽2

𝜒2
𝐽𝑡𝛺̃𝜃,𝑚

2 + (1 + 𝛽2)) = 𝜂𝜃,𝑚
2 +

𝜒2

𝛽2
(1 + 𝛽2) 

 

Hence enforcing proper boundary conditions for the fork support and exploiting some 

trigonometric relationships, the solution for the modal shape is: 

 

 

Moreover, exploiting the definition of the stiffening term due to elongation of the cables, 

the Eigen-function for the circular non-dimensional torsional frequencies can be found. 

 

 

 

This expression again can be solved numerically with the well-known bisection method. 

𝛩𝑚(𝜉) = 𝛩𝑚,0(𝜉) + 𝛩𝑚,𝑝(𝜉) = (
𝜆1

2ℎ̃𝛩,𝑚

𝐽𝑡𝛺̃𝜃,𝑚
2 + 𝐶𝑚,1 ∙ exp(Ψ𝜃,𝑚𝜉) +𝐶𝑚,2 ∙

exp(−Ψ𝜃,𝑚𝜉) +𝐶𝑚,3 ∙ exp(𝑖 ∙ η𝜃,𝑚𝜉) +𝐶𝑚,4 ∙ exp(−𝑖 ∙ η𝜃,𝑚𝜉))  
(2.68)  

𝛩𝑚(𝜉) =
𝜆1

2ℎ̃𝛩,𝑚

𝐽𝑡𝛺̃𝜃,𝑚
2 [1 −

1

Ψ𝜃,𝑚
2 +𝜂𝜃,𝑚

2 (𝜂𝜃,𝑚
2 ∙

cosh(Ψ𝜃,𝑚(𝜉−
1

2
))

cosh(
Ψ𝜃,𝑚

2
)

+ Ψ𝜃,𝑚
2 ∙

cos(η𝜃,𝑚(𝜉−
1

2
))

cos(
η𝜃,𝑚

2
)

)]  (2.70)  

ℎ̃𝛩,𝑚 = ∫ 𝛩𝑚(𝜉)𝑑𝜉 =
1

0

𝜆1
2ℎ̃𝛩,𝑚

𝐽𝑡𝛺̃𝜃,𝑚
2 ∫ [1 −

1

Ψ𝜃,𝑚
2 +𝜂𝜃,𝑚

2 (𝜂𝜃,𝑚
2 ∙

cosh(Ψ𝜃,𝑚(𝜉−
1

2
))

cosh(
Ψ𝜃,𝑚

2
)

+ Ψ𝜃,𝑚
2 ∙

1

0

cos(η𝜃,𝑚(𝜉−
1

2
))

cos(
η𝜃,𝑚

2
)

)]𝑑𝜉  

(2.71)  

𝐽𝑡𝛺̃𝜃,𝑚
2

𝜆1
2 − 1 +

1

Ψ𝜃,𝑚
2 +𝜂𝜃,𝑚

2 (𝜂𝜃,𝑚
2 ∙

tanh(
Ψ𝜃,𝑚

2
)

Ψ𝜃,𝑚
2

+ Ψ𝜃,𝑚
2 ∙

tan(
η𝜃,𝑚

2
)

η𝜃,𝑚
2

) = 0  (2.72)  
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2.5 PROJECTION IN THE MODAL SPACE 

In order to obtain spatial independent equations of motion their modal projection in the 

Galerkin plane is performed, so as to discretize the problem. Thanks to the modal 

decomposition already defined in equations (2.43) and (2.62) it is possible to split the 

spatial and the time dependence of variables and to perform a modal superposition analysis 

to find the structural Eigen-modes and associated circular Eigen-frequencies. Then the 

projection in the modal plane is performed multiplying each equation of motion, i.e. eq. 

(2.40) and (2.41), by the respective modals shape and then integrating over the spatial 

domain. 

The flexural projected equations of motion is: 

 

∫ 𝑊𝑛
2(𝜉)𝑑𝜉

1

0

𝑑2𝑧𝑛

𝑑𝜏2  + ∫ 𝑊𝑛
2(𝜉)𝑑𝜉

1

0
𝑐̃𝑤

𝑑𝑧𝑛

𝑑𝜏
+ [∫ 𝑊𝑛(𝜉)

1

0
(𝜇2𝑊𝑛

𝑖𝑣(𝜉) − 𝑊𝑛
′′(𝜉)) 𝑑𝜉 + 𝜆1

2ℎ̃𝑊𝑛

2 ] 𝑧𝑛(𝜏) +

−𝜆2
2ℎ̃𝑊𝑛

[∫ 𝑊𝑛(𝜉)
1

0
𝑊𝑛

′′(𝜉)𝑑𝜉 −
1

2
ℎ̃

𝑊𝑛
′2] 𝑧𝑛

2(𝜏) + −𝜆2
2 [ℎ̃𝛩𝑚

∫ 𝑊𝑛(𝜉)
1

0
𝛩𝑚

′′(𝜉)𝑑𝜉 −

1

2
ℎ̃𝑊𝑛

ℎ̃
𝛩𝑚

′2] 𝛾𝑚
2 (𝜏) −

1

2
𝜆3

2 [ℎ̃
𝑊𝑛

′2 ∫ 𝑊𝑛(𝜉)
1

0
𝑊𝑛

′′(𝜉)𝑑𝜉] 𝑧𝑛
3(𝜏) + −𝜆3

2 [
1

2
ℎ̃

𝛩𝑚
′2 ∫ 𝑊𝑛(𝜉)

1

0
𝑊𝑛

′′(𝜉)𝑑𝜉 +

ℎ̃𝑊𝑛
′𝛩𝑚

′ ∫ 𝑊𝑛(𝜉)
1

0
𝛩𝑚

′′(𝜉)𝑑𝜉] 𝑧𝑛(𝜏)𝛾𝑚
2 (𝜏) = ∫ 𝑊𝑛(𝜉)

1

0
𝑞̃(𝜉, 𝑡)𝑑𝜉  

 

The torsional projected equation of motion is: 

 

𝐽𝑡 ∫ 𝛩𝑚
2 (𝜉)𝑑𝜉

1

0

𝑑2𝛾𝑚

𝑑𝜏2 + ∫ 𝛩𝑚
2 (𝜉)𝑑𝜉

1

0
𝑐̃𝜃

𝑑𝛾𝑚

𝑑𝜏
+ [∫ 𝛩𝑚(𝜉) (

𝛽2

𝜒2 𝛩𝑚
𝑖𝑣(𝜉) − (1 + 𝛽2)𝛩𝑚

′′(𝜉)) 𝑑𝜉 +
1

0

+𝜆1
2ℎ̃𝛩𝑚

2 ] 𝛾𝑚(𝜏) + −𝜆2
2 [ℎ̃𝛩𝑚

∫ 𝛩𝑚(𝜉)𝑊𝑛
′′(𝜉)𝑑𝜉

1

0
+ ℎ̃𝑊𝑛

∫ 𝛩𝑚(𝜉)𝛩𝑚
′′(𝜉)𝑑𝜉

1

0
−

ℎ̃𝑊𝑛
′𝛩𝑚

′ ℎ̃𝛩𝑚
] 𝑧𝑛(𝜏)𝛾𝑚(𝜏) + −𝜆3

2 [ℎ̃𝑊𝑛
′𝛩𝑚

′ ∫ 𝛩𝑚(𝜉)𝑊𝑛
′′(𝜉)𝑑𝜉

1

0
+

1

2
ℎ̃

𝑊𝑛
′2 ∫ 𝛩𝑚(𝜉)𝛩𝑚

′′(𝜉)𝑑𝜉
1

0
] 𝑧𝑛

2(𝜏)𝛾𝑚(𝜏) + −
1

2
𝜆3

2 [ℎ̃
𝛩𝑚

′2 ∫ 𝛩𝑚(𝜉)𝛩𝑚
′′(𝜉)𝑑𝜉

1

0
] 𝛾𝑚

3 (𝜏) =

∫ 𝛩𝑚(𝜉)
1

0
𝑚̃(𝜉, 𝑡)𝑑𝜉  

 

Defining masses, damping and stiffness parameters of different orders, the 

abovementioned equations can be written in the classical format as: 

 

 

 

where the definitions of all the parameters are listed in the following page. 

 

 

 

𝑀𝑤,𝑛 𝑧̈𝑛  + 𝐷𝑤,𝑛𝑧̇𝑛 + 𝐾𝑤,𝑛
(𝐿)

𝑧𝑛 + 𝐾𝑤,𝑛
(𝑄)

𝑧𝑛
2 + 𝐾𝑤𝜃,𝑛𝑚

(𝑄)
𝛾𝑚

2 + 𝐾𝑤,𝑛
(𝐶)

𝑧𝑛
3 + 𝐾𝑤𝜃,𝑛𝑚

(𝐶)
𝑧𝑛𝛾𝑚

2 = 𝛤𝑤,𝑛    (2.73)  

𝐽𝜃,𝑚 𝛾̈𝑚  + 𝐷𝜃,𝑚𝛾̇𝑚 + 𝐾𝜃,𝑚
(𝐿)

𝛾𝑚 + 𝐾𝜃𝑤,𝑚𝑛
(𝑄)

𝛾𝑚𝑧𝑛 + 𝐾𝜃,𝑚
(𝐶)

𝛾𝑚
3 + 𝐾𝜃𝑤,𝑚𝑛

(𝐶)
𝛾𝑚𝑧𝑛

2 = 𝛤𝜃,𝑚   (2.74)  
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𝑀𝑤,𝑛 = ∫ 𝑊𝑛
2(𝜉)𝑑𝜉

1

0

 

(2.75) 

𝐽𝜃,𝑚 = 𝐽𝑡𝑀𝜃,𝑚 = 𝐽𝑡 ∫ 𝛩𝑚
2 (𝜉)𝑑𝜉

1

0

 

𝐷𝑤,𝑛 = 𝑐̃𝑤𝑀𝑤,𝑛 = 2𝛥𝑤,𝑛𝛺̃𝑤,𝑛𝑀𝑤,𝑛  

𝐷𝜃,𝑚 = 𝑐̃𝜃𝑀𝜃,𝑚 = 2𝛥𝜃,𝑚𝛺̃𝜃,𝑚𝐽𝑡𝑀𝜃,𝑚  

𝐾𝑤,𝑛
(𝐿)

= ∫ 𝑊𝑛(𝜉)
1

0

(𝜇2𝑊𝑛
𝑖𝑣(𝜉) − 𝑊𝑛

′′(𝜉))𝑑𝜉 + 𝜆1
2ℎ̃𝑊𝑛

2 = 𝛺̃𝑤,𝑛
2 𝑀𝑤,𝑛  

𝐾𝜃,𝑚
(𝐿)

= ∫ 𝛩𝑚(𝜉) (
𝛽2

𝜒2
𝛩𝑚

𝑖𝑣(𝜉) − (1 + 𝛽2)𝛩𝑚
′′(𝜉)) 𝑑𝜉 + 𝜆1

2ℎ̃𝛩𝑚

2
1

0

= 𝛺̃𝜃,𝑚
2 𝐽𝜃,𝑚  

𝐾𝑤,𝑛
(𝑄)

= −𝜆2
2ℎ̃𝑊𝑛

[∫ 𝑊𝑛(𝜉)
1

0

𝑊𝑛
′′(𝜉)𝑑𝜉 −

1

2
ℎ̃

𝑊𝑛
′2] =

3

2
𝜆2

2ℎ̃𝑊𝑛
ℎ̃

𝑊𝑛
′2 

𝐾𝑤𝜃,𝑛𝑚
(𝑄)

= −𝜆2
2 [ℎ̃𝛩𝑚

∫ 𝑊𝑛(𝜉)
1

0

𝛩𝑚
′′(𝜉)𝑑𝜉 −

1

2
ℎ̃𝑊𝑛

ℎ̃
𝛩𝑚

′2] = 𝜆2
2 [ℎ̃𝛩𝑚

ℎ̃𝑊𝑛
′𝛩𝑚

′ +
1

2
ℎ̃𝑊𝑛

ℎ̃
𝛩𝑚

′2] 

𝐾𝜃𝑤,𝑚𝑛
(𝑄)

= 𝜆2
2 [2ℎ̃𝛩𝑚

ℎ̃𝑊𝑛
′𝛩𝑚

′ + ℎ̃𝑊𝑛
ℎ̃

𝛩𝑚
′2] 

𝐾𝑤,𝑛
(𝐶)

= −
1

2
𝜆3

2 [ℎ̃
𝑊𝑛

′2 ∫ 𝑊𝑛(𝜉)
1

0

𝑊𝑛
′′(𝜉)𝑑𝜉] =

1

2
𝜆3

2 (ℎ̃
𝑊𝑛

′2)
2
 

𝐾𝑤𝜃,𝑛𝑚
(𝐶)

= 𝜆3
2 [

1

2
ℎ̃

𝛩𝑚
′2 ℎ̃𝑊𝑛

′2 + (ℎ̃𝑊𝑛
′𝛩𝑚

′ )
2
] 

𝐾𝜃,𝑚
(𝐶)

= −
1

2
𝜆3

2 [ℎ̃
𝛩𝑚

′2 ∫ 𝛩𝑚(𝜉)𝛩𝑚
′′(𝜉)𝑑𝜉

1

0

] =
1

2
𝜆3

2 (ℎ̃
𝛩𝑚

′2)
2
 

𝐾𝜃𝑤,𝑚𝑛
(𝐶)

= 𝜆3
2 [(ℎ̃𝑊𝑛

′𝛩𝑚
′ )

2
+

1

2
ℎ̃

𝑊𝑛
′2ℎ̃𝛩𝑚

′2] 

𝛤𝑤,𝑛 = ∫ 𝑊𝑛(𝜉)
1

0
𝑞̃(𝜉, 𝑡)𝑑𝜉  

𝛤𝜃,𝑚 = ∫ 𝛩𝑚(𝜉)
1

0
𝑚̃(𝜉, 𝑡)𝑑𝜉  

 

The equations (2.73) and (2.74) just obtained represent a 2 DoFs non-linear system and the 

linear terms do not couple the equations, which instead are coupled with the quadratic and 

cubic terms. 
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Moreover it is very important to notice that the modal torsional equation of motion does 

not have a torsional second order term independent from the flexural component. This 

feature is due to the fact that a rotation of the deck induces an asymmetric response in the 

two main cables, which is strongly dependent on the flexural amplitude of vibration that 

affect the stiffness of the cables system. The stability of the system will be conditioned by 

the coupling quadratic term 𝐾𝜃𝑤,𝑚𝑛
(𝑄)

, which in particular conditions can provoke the passage 

of energy from flexural to torsional oscillations and vice versa. This well-known 

phenomenon is recognized as internal parametric resonance. 

2.6 SLACKENING OF HANGERS 

The proposed model is a continuous 2 DoFs representation of a generic suspension bridge 

where many restrictive hypothesis have been assumed, e.g. the possibility of hangers not to 

undergo slackening. In reality this contribution has an important effect on the structural 

response during large oscillations, because of the variation of the actual stiffness of the 

structural system. In order to model accurately the real behaviour of hangers it would be 

necessary to increase the number of DoFs from two to four. In fact in doing this it is 

possible to introduce an appropriate constitutive model able to capture the linear elastic 

response of hangers in tension and their slackening in compression. Anyhow, introducing 

further simplification in the hangers behaviour it can be possible to remain to a 2 DoFs 

formulation. 

Up to now the hangers have been considered perfectly rigid both in tension and in 

compression so as to avoid all problems related to their slackening. The further 

improvement of the model is to consider the hangers as perfectly rigid in tension and 

perfectly flexible in compression. This is a good representation of both the tension 

response of real bridges during serviceability conditions, where the hangers remain in the 

linear branch also for large displacements, and of the compression response, once that the 

displacements are enough large to provoke slackening. The curtain assumption allows us to 

consider hangers as uniformly smeared along the bridge’s span losing the local effect due 

to their effective location. Hence the local contribution given by slackening of hangers is 

approximate also in term of the actual position in which hangers could effectively undergo 

to slackening. 

The aim of this paragraph is to find a proper limit condition for the initiation of slackening. 

As long as hangers remain taut they are able to transfer the loads acting on the stiffening 

girder to the main cable, while on those regions where the vertical displacement is so high 

that slackening occurs, the load acting on the deck cannot be transferred to the main cable. 

Hence a flow of forces occurs from the more flexible towards the stiffer elements. 
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2.6.1 Modified Equations of Motion 

In order to find a proper threshold for slackening initiation it is necessary to reformulate 

the equations of motion starting from the definition of the Total Potential Energy variation. 

 

 

where it is not possible to collect the terms under the same sign of integration since each of 

them has a different domain in which it is able to make work. In order to integrate the 

contribution of the stiffening effect of the cable along a piecewise continuous domain the 

integral along the length of the cable can be defined as the sum of an infinite number of 

integral in which the work is positive. The stiffening effect on the different cables are 

defined as in (2.27). 

Integrating by parts the variation of the TPE and equating it to zero: 

 

𝛿𝑉 = ∫ [(𝐸𝑑𝐼𝑑𝑤𝑑
𝑖𝑣 − 𝑞)𝑑𝑤𝑑 + (𝐸𝑑Γ𝑑𝜃𝑑

𝑖𝑣 − 𝐺𝑑𝐽𝑑𝜃𝑑
′′ − 𝑚)𝑑𝜃𝑑]𝑑𝑥 − ∫ [𝐻(𝑤𝑑

′′ + 𝑏𝜃𝑑
′′)𝑑𝑤𝑑 +

𝑙𝑅
+

0

𝑙

0

+𝐻(𝑤𝑑
′′ + 𝑏𝜃𝑑

′′)𝑏𝑑𝜃𝑑 + (ℎ𝑤𝑅
+ + ℎ(𝑤𝜃)𝑅

+ + ℎ𝜃𝑅

+ )(𝑦′′ + 𝑤𝑑
′′ + 𝑏𝜃𝑑

′′)𝑑𝑤𝑑 + (ℎ𝑤𝑅
+ + ℎ(𝑤𝜃)𝑅

+ +

ℎ𝜃𝑅

+ )(𝑦′′ + 𝑤𝑑
′′ + 𝑏𝜃𝑑

′′)𝑏𝑑𝜃𝑑]𝑑𝑥 − ∫ [𝐻(𝑤𝑑
′′ − 𝑏𝜃𝑑

′′)𝑑𝑤𝑑 + 𝐻(𝑏𝜃𝑑
′′ − 𝑤𝑑

′′)𝑏𝑑𝜃𝑑 + (ℎ𝑤𝐿
+ +

𝑙𝐿
+

0

−ℎ(𝑤𝜃)𝐿
+ + ℎ𝜃𝐿

+ )(𝑦′′ + 𝑤𝑑
′′ − 𝑏𝜃𝑑

′′)𝑑𝑤𝑑 − (ℎ𝑤𝐿
+ − ℎ(𝑤𝜃)𝐿

+ + ℎ𝜃𝐿

+ )(𝑦′′ + 𝑤𝑑
′′ − 𝑏𝜃𝑑

′′)𝑏𝑑𝜃𝑑]𝑑𝑥 = 0  

 

So the flexural and the torsional equilibrium equations are: 

 

 

 

For the sake of simplicity, just the linear components of the equations are considered. 

Moreover, the inertial terms are added, but the structural damping terms not. 

 

∫ (𝑚𝑑𝑤̈𝑑 + 𝐸𝑑𝐼𝑑𝑤𝑑
𝑖𝑣 − 𝑞)𝑑𝑥 − ∫ [−𝑚𝑐(𝑤̈𝑑 + 𝑏𝜃̈𝑑) + 𝐻(𝑤𝑑

′′ + 𝑏𝜃𝑑
′′) − ∫

𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2(𝑤𝑑 +

𝑙𝑅
+

0

𝑙𝑅
+

0

𝑙

0

+𝑏𝜃𝑑)𝑑𝑥]𝑑𝑥 − ∫ [−𝑚𝑐(𝑤̈𝑑 − 𝑏𝜃̈𝑑) + 𝐻(𝑤𝑑
′′ − 𝑏𝜃𝑑

′′) − ∫
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2(𝑤𝑑 − 𝑏𝜃𝑑)𝑑𝑥

𝑙𝐿
+

0
] 𝑑𝑥

𝑙𝐿
+

0
= 0  

𝛥𝑉(𝑤𝑑 , 𝜃𝑑 , 𝑞,𝑚) = ∫ (
1

2
𝐸𝑑𝐼𝑑𝑤𝑑

′′2 +
1

2
𝐸𝑑Γ𝑑𝜃𝑑

′′2 +
1

2
𝐺𝑑𝐽𝑑𝜃𝑑

′ 2
)𝑑𝑥 + ∫ (

1

2
𝐻𝑤𝑅

′2 +
𝑙𝑅
+

0

𝑙

0

+∫ ℎ+(𝑤𝑅)(𝑦′ + 𝑤𝑅
′ )𝑑𝑤𝑅

′𝑤𝑅
′

0
) 𝑑𝑥 + ∫ (

1

2
𝐻𝑤𝐿

′2 + ∫ ℎ+(𝑤𝐿)(𝑦
′ + 𝑤𝐿

′)𝑑𝑤𝐿
′𝑤𝐿

′

0
)𝑑𝑥

𝑙𝐿
+

0
+

+∫ (−𝑞𝑤𝑑 − 𝑚𝜃𝑑)𝑑𝑥
𝑙

0
  

(2.76)  

∫ (𝐸𝑑𝐼𝑑𝑤𝑑
𝑖𝑣 − 𝑞)𝑑𝑥 − ∫ [𝐻(𝑤𝑑

′′ + 𝑏𝜃𝑑
′′) + (ℎ𝑤𝑅

+ + ℎ(𝑤𝜃)𝑅
+ + ℎ𝜃𝑅

+ )(𝑦′′ + 𝑤𝑑
′′ +

𝑙𝑅
+

0

𝑙

0

+𝑏𝜃𝑑
′′)]𝑑𝑥 − ∫ [𝐻(𝑤𝑑

′′ − 𝑏𝜃𝑑
′′) + (ℎ𝑤𝐿

+ − ℎ(𝑤𝜃)𝐿
+ + ℎ𝜃𝐿

+ )(𝑦′′ + 𝑤𝑑
′′ − 𝑏𝜃𝑑

′′)]𝑑𝑥
𝑙𝐿
+

0
= 0  

(2.77)  

∫ (𝐸𝑑Γ𝑑𝜃𝑑
𝑖𝑣 − 𝐺𝑑𝐽𝑑𝜃𝑑

′′ − 𝑚)𝑑𝑥 − ∫ [𝐻(𝑤𝑑
′′ + 𝑏𝜃𝑑

′′) + (ℎ𝑤𝑅
+ + ℎ(𝑤𝜃)𝑅

+ + +ℎ𝜃𝑅

+ )(𝑦′′ +
𝑙𝑅
+

0

𝑙

0

+𝑤𝑑
′′ + 𝑏𝜃𝑑

′′)]𝑏𝑑𝑥 − ∫ [𝐻(𝑏𝜃𝑑
′′ − 𝑤𝑑

′′) − (ℎ𝑤𝐿
+ − ℎ(𝑤𝜃)𝐿

+ + ℎ𝜃𝐿

+ )(𝑦′′ + 𝑤𝑑
′′ +

𝑙𝐿
+

0

−𝑏𝜃𝑑
′′)]𝑏𝑑𝑥 = 0  

(2.78)  



Effects of Internal Parametric Resonance on the Aerodynamic Behaviour of Long-span Suspension Bridges 

 

50 STRUCTURAL SCHEME 

∫ (𝐽𝑡𝜃̈𝑑 + 𝐸𝑑Γ𝑑𝜃𝑑
𝑖𝑣 − 𝐺𝑑𝐽𝑑𝜃𝑑

′′ − 𝑚)𝑑𝑥 − 𝑏 ∫ [−𝑚𝑐(𝑤̈𝑑 + 𝑏𝜃̈𝑑) + 𝐻(𝑤𝑑
′′ + 𝑏𝜃𝑑

′′) −
𝑙𝑅
+

0

𝑙

0

∫
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2(𝑤𝑑 + 𝑏𝜃𝑑)𝑑𝑥

𝑙𝑅
+

0
] 𝑑𝑥 − 𝑏 ∫ [−𝑚𝑐(𝑏𝜃̈𝑑 − 𝑤̈𝑑) + 𝐻(𝑏𝜃𝑑

′′ − 𝑤𝑑
′′) − ∫

𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2(𝑏𝜃𝑑 +

𝑙𝐿
+

0

𝑙𝐿
+

0

−𝑤𝑑)𝑑𝑥] 𝑑𝑥 = 0  

 

Let us write the forces and couples transmitted by the deck to the main cables from the 

initial to the perturbed configuration. Having considered a symmetric section of the deck, 

in the initial condition, it is able to transfer to the cable’s system its weight only. 

 

 

 

The substitution into these last two equations of the previous linearized equilibrium 

equations leads to: 

 

 

 

Notice that, even if only the linear terms have been considered, the equations of motion are 

coupled due to the asymmetric response of the two main cables. 

Introducing the non-dimensional quantities already seen in (2.34), the terms under the 

integral are all similar and they become:  

 

𝐹𝑐

𝑖
(𝑥, 𝑡) = −𝑚𝑐𝑓 (

𝑑2𝑤̃𝑑

𝑑𝑡2
±

𝑑2𝜃̃𝑑

𝑑𝑡2
) +

𝐻𝑓

𝑙2
(𝑤̃𝑑

′′ ± 𝜃̃𝑑
′′) −

𝐸𝑐𝐴𝑐

𝐿𝑐

𝑦′′2𝑓𝑙𝛼ℎ
𝑖 ∫ (𝑤̃𝑑 ± 𝜃̃𝑑)𝑑𝜉

1

0
 

 

where 𝛼ℎ
𝑖  represents the ratio between the contributions of the part of the span in which the 

deck can transfer forces to the main cables and the ideal condition without slackening in 

which all the deck transfer forces and couples to the cable’s system. In general these 

parameter would be different for each side of the deck section. 

 

 

𝐹𝑑(𝑡) = ∫ 𝐹𝑑(𝑥, 𝑡)𝑑𝑥 =
𝑙

0 ∫ (𝑚𝑑𝑔 + 𝑞 − 𝑚𝑑𝑤̈𝑑 − 𝐸𝑑𝐼𝑑𝑤𝑑
𝑖𝑣)𝑑𝑥

𝑙

0
  (2.79)  

𝐶𝑑(𝑡) = ∫ 𝐶𝑑(𝑥, 𝑡)𝑑𝑥 =
𝑙

0 ∫ (𝑚 − 𝐽𝑡𝜃̈𝑑 − 𝐸𝑑Γ𝑑𝜃𝑑
𝑖𝑣 + 𝐺𝑑𝐽𝑑𝜃𝑑

′′)𝑑𝑥
𝑙

0
  (2.80)  

𝐹𝑑(𝑡) = ∫ 𝑚𝑑𝑔𝑑𝑥 −
𝑙

0 ∫ [−𝑚𝑐(𝑤̈𝑑 + 𝑏𝜃̈𝑑) + 𝐻(𝑤𝑑
′′ + 𝑏𝜃𝑑

′′) − ∫
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2(𝑤𝑑 +

𝑙𝑅
+

0

𝑙𝑅
+

0

+𝑏𝜃𝑑)𝑑𝑥]𝑑𝑥 − ∫ [−𝑚𝑐(𝑤̈𝑑 − 𝑏𝜃̈𝑑) + 𝐻(𝑤𝑑
′′ − 𝑏𝜃𝑑

′′) − ∫
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2(𝑤𝑑 +

𝑙𝐿
+

0

𝑙𝐿
+

0

−𝑏𝜃𝑑)𝑑𝑥]𝑑𝑥  

(2.81)  

𝐶𝑑(𝑡) = −𝑏 ∫ [−𝑚𝑐(𝑤̈𝑑 + 𝑏𝜃̈𝑑) + 𝐻(𝑤𝑑
′′ + 𝑏𝜃𝑑

′′) − ∫
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2(𝑤𝑑 + 𝑏𝜃𝑑)𝑑𝑥

𝑙𝑅
+

0
] 𝑑𝑥 +

𝑙𝑅
+

0

−𝑏 ∫ [−𝑚𝑐(𝑏𝜃̈𝑑 − 𝑤̈𝑑) + 𝐻(𝑏𝜃𝑑
′′ − 𝑤𝑑

′′) − ∫
𝐸𝑐𝐴𝑐

𝐿𝑐
𝑦′′2(𝑏𝜃𝑑 − 𝑤𝑑)𝑑𝑥

𝑙𝐿
+

0
] 𝑑𝑥

𝑙𝐿
+

0
  

(2.82)  
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𝛼ℎ
𝑅 =

∫ (𝑤𝑑 ± 𝜃𝑑)
𝑙𝑅
+

0
𝑑𝑥

∫ (𝑤𝑑 ± 𝜃𝑑)
𝑙

0
𝑑𝑥

 

(2.83) 

𝛼ℎ
𝐿 =

∫ (𝑤𝑑 ± 𝜃𝑑)
𝑙𝐿
+

0
𝑑𝑥

∫ (𝑤𝑑 ± 𝜃𝑑)
𝑙

0
𝑑𝑥

 

 

In order to obtain simpler expressions, other similar parameters can be defined so as to 

collect all terms under the same integral sign. 

 

𝛼𝑐
𝑅 =

∫ 𝐹𝑐
𝑅(𝑥, 𝑡)

𝑙𝑅
+

0
𝑑𝑥

∫ 𝐹𝑐
𝑅(𝑥, 𝑡)

𝑙

0
𝑑𝑥

 

(2.84) 

𝛼𝑐
𝐿 =

∫ 𝐹𝑐
𝐿(𝑥, 𝑡)

𝑙𝐿
+

0
𝑑𝑥

∫ 𝐹𝑐
𝐿(𝑥, 𝑡)

𝑙

0
𝑑𝑥

 

 

(2.83) and (2.84) are called General Slackening Parameters. 

To arrive to the local format of the previous equations of motion it is necessary to 

introduce the non-dimensional time parameter, the first order Irvine parameter (2.35) and 

the non-dimensional mass, which can be obtained from the initial equilibrium condition of 

the cables under the self-weight of the deck. 

 

−2𝐻𝑦′′ = (𝑚𝑑 + 2𝑚𝑐)𝑔   ⇒    
𝐻𝑓

𝑙2𝑔
=

(𝑚𝑑 + 2𝑚𝑐)

16
 

(2.85) 

𝑚̃𝑑 =
𝑚𝑑

𝑚𝑑 + 2𝑚𝑐
= 1 −

2𝑚𝑐

𝑚𝑑 + 2𝑚𝑐
= 1 − 2𝑚̃𝑐 

 

So the non-dimensional equations for the forces and couples transmitted to the cables, 

become: 

 

 

 

Notice that this formulation is slightly different with respect to the one found by Guerrieri 

[29]. In fact there is a different sign in the terms of the couple transmitted to the left cable 

𝐹̃𝑑(𝜉, 𝑡) =
𝐹𝑑(𝑥,𝑡)𝑙2

𝐻𝑓
= 16𝑚̃𝑑 − 𝛼𝑐

𝑅 [(𝑚̃𝑑 − 1) (
𝑑2𝑤̃𝑑

𝑑𝜏2
+

𝑑2𝜃̃𝑑

𝑑𝜏2
) + (𝑤̃𝑑

′′
+ 𝜃̃𝑑

′′
) − 𝛼ℎ

𝑅𝜆1
2 ∫ (𝑤̃𝑑 +

1

0

+𝜃̃𝑑)𝑑𝜉] − 𝛼𝑐
𝐿 [(𝑚̃𝑑 − 1) (

𝑑2𝑤̃𝑑

𝑑𝜏2
−

𝑑2𝜃̃𝑑

𝑑𝜏2
) + (𝑤̃𝑑

′′
− 𝜃̃𝑑

′′
) − 𝛼ℎ

𝐿𝜆1
2 ∫ (𝑤̃𝑑 − 𝜃̃𝑑)𝑑𝜉

1

0
]  

(2.86)  

𝐶̃𝑑(𝜉, 𝑡) =
𝐶𝑑(𝑥,𝑡)𝑙2

𝐻𝑓𝑏
= −𝛼𝑐

𝑅 [(𝑚̃𝑑 − 1) (
𝑑2𝑤̃𝑑

𝑑𝜏2
+

𝑑2𝜃̃𝑑

𝑑𝜏2
) + (𝑤̃𝑑

′′
+ 𝜃̃𝑑

′′
) − 𝛼ℎ

𝑅𝜆1
2 ∫ (𝑤̃𝑑 +

1

0

+𝜃̃𝑑)𝑑𝜉] − 𝛼𝑐
𝐿 [(1 − 𝑚̃𝑑) (

𝑑2𝑤̃𝑑

𝑑𝜏2
−

𝑑2𝜃̃𝑑

𝑑𝜏2
) − (𝑤̃𝑑

′′
− 𝜃̃𝑑

′′
) + 𝛼ℎ

𝐿𝜆1
2 ∫ (𝑤̃𝑑 − 𝜃̃𝑑)𝑑𝜉

1

0
]  

(2.87)  
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𝐶̃𝑑(𝜉, 𝑡). Due to this fact, it is impossible to arrive to the same format proposed in [29] 

because the force 𝐹̃𝑑(𝜉, 𝑡) cannot be written in function of the couple transmitted to the 

cables system 𝐶̃𝑑(𝜉, 𝑡). 

The hangers are subjected to slackening when they are no more able to transfer the external 

actions from the deck to the main cables. Therefore the critical condition for slackening 

corresponds to those amplitude which induces negative forces and null couple in the cable 

system. 

 

𝐹̃𝑑(𝜉, 𝑡) ≤ 0 
 

𝐶̃𝑑(𝜉, 𝑡) = 0 

 

The two conditions cannot be satisfied at the same time which means that, even if locally 

the hangers do not transmit any force, they can transfer couples and vice versa.   

2.6.2 Slackening initiation 

Up to the slackening initiation all the hangers are still taut, so the General Slackening 

Parameters are contemporary equal to unity, since the cable system contribution is 

integrated along the whole length of the bridge’s span.  

 

𝛼ℎ
𝑅 = 𝛼ℎ

𝐿 = 1 
(2.88) 

𝛼𝑐
𝑅 = 𝛼𝑐

𝐿 = 1 

 

The critical conditions for the initiation of slackening correspond to that amplitude that 

induces null actions in the cables system. In fact, when an hanger slacks there is no 

transmission of forces or couples from the deck to the main cables. The critical conditions 

for slackening can be found without the definition of any slackening parameter since the 

definitions (2.88) are substituted into equations (2.86) and (2.87). The threshold conditions 

read as: 

 

 

 

It is noticeable that this definition is in complete agreement with the one proposed by 

Guerrieri [29] because there is no dependence on the General Slackening Parameters. 

These critical conditions are completely uncoupled because they take trace only of the 

motion of the deck axis and not of the actual position of the cables. Then there are two 

𝐹̃𝑑(𝜉, 𝑡) = 8𝑚̃𝑑 + (1 − 𝑚̃𝑑)
𝑑2𝑤̃𝑑(𝜉,𝑡)

𝑑𝜏2
− 𝑤̃𝑑

′′(𝜉, 𝑡) + 𝜆1
2ℎ̃𝑤 = 0  (2.89)  

𝐶̃𝑑(𝜉, 𝑡) = (1 − 𝑚̃𝑑)
𝑑2𝜃̃𝑑(𝜉, 𝑡)

𝑑𝜏2
− 𝜃̃𝑑

′′
(𝜉, 𝑡) + 𝜆1

2ℎ̃𝜃 = 0 (2.90)  
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different critical conditions for slackening initiation, one associated to pure vertical 

oscillations and one associated to pure torsional oscillations. 

The modal expansion of the structural response already introduced in (2.43) and (2.62) is 

exploited and substituted into the threshold condition for slackening: 

 

𝐹̃𝑑,𝑛 = 8𝑚̃𝑑 − [(1 − 𝑚̃𝑑)𝑊𝑛(𝜉)𝛺̃𝑤,𝑛
2 + 𝑊𝑛

′′(𝜉) − 𝜆1
2ℎ̃𝑊,𝑛][𝑍𝑛 exp(𝑖𝛺̃𝑤,𝑛𝜏) + 𝑍𝑛

∗ exp(−𝑖𝛺̃𝑤,𝑛𝜏)] = 0 

 

𝐶̃𝑑,𝑚 = −[(1 − 𝑚̃𝑑)𝛩𝑚(𝜉)𝛺̃𝜃,𝑚
2 + 𝛩𝑚

′′ (𝜉) − 𝜆1
2ℎ̃𝛩,𝑚][𝛤𝑚 exp(𝑖𝛺̃𝜃,𝑚𝜏) + 𝛤𝑚

∗ exp(−𝑖𝛺̃𝜃,𝑚𝜏)] = 0 

 

Remembering that the summation between a complex number multiplied by the 

exponential time variation and its complex conjugate gives rise to a cosine variation of 

time, shifted of a phase lag, then: 

 

 

 

Now it is possible to find out the critical flexural and torsional amplitude able to induce the 

slackening of the hangers. The trigonometric time dependent terms can be neglected, since 

the objective is to find a critical condition valid for any time. The critical amplitude 

condition can be found from the previous equations (2.91) and (2.92) and it is: 

 

 

 

The expressions found are in complete agreement with the ones found by Luco and Turmo 

[37]. It is noticeable that only for the flexural oscillation component a critical amplitude 

can be defined, indeed the hangers are pre-tensioned by a symmetric force given by the 

deck self-weight which does not introduce an asymmetry in the initial configuration. For 

what concern the torsional limit it is possible to state that the cable system cannot sustain 

any torque in all the points where the deck reaches a critical warping independently on the 

actual maximum rotation. 

 

 

 

 

 

 

𝐹̃𝑑,𝑛 = 8𝑚̃𝑑 − [(1 − 𝑚̃𝑑)𝑊𝑛(𝜉)𝛺̃𝑤,𝑛
2 + 𝑊𝑛

′′(𝜉) − 𝜆1
2ℎ̃𝑊,𝑛][𝑍̅𝑛 cos(𝛺̃𝑤,𝑛𝜏 + 𝜑

𝑤,𝑛
)] = 0  (2.91)  

𝐶̃𝑑,𝑚 = −[(1 − 𝑚̃𝑑)𝛩𝑚(𝜉)𝛺̃𝜃,𝑚
2 + 𝛩𝑚

′′ (𝜉) − 𝜆1
2ℎ̃𝛩,𝑚][𝛤̅𝑚 cos(𝛺̃𝜃,𝑚𝜏 + 𝜑

𝜃,𝑚
)] = 0 (2.92)  

𝑍𝑛,𝑠𝑙𝑎𝑐𝑘 = 8𝑚̃𝑑 ∙ 𝑚𝑖𝑛|(1 − 𝑚̃𝑑)𝑊𝑛(𝜉)𝛺̃𝑤,𝑛
2 + 𝑊𝑛

′′(𝜉) − 𝜆1
2ℎ̃𝑊,𝑛|

−1
 (2.93)  

𝛩𝑚
′′(𝜉) = 𝜆1

2
ℎ̃𝛩,𝑚 − (1 − 𝑚̃𝑑)𝛩𝑚(𝜉)𝛺̃𝜃,𝑚

2
 (2.94)  
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3 WIND EFFECTS 

For short bridges wind actions generally do not produce any particular problem. 

Increasing the span length and according to the typology, the bridge becomes very flexible, 

with decreasing values of the natural frequencies. The bridge motion due to wind action 

becomes more and more important and it affects the variation of the aerodynamic forces 

that may lead to instability conditions. 

In the following chapter, a brief description of the wind characteristic is presented and the 

properties of the flow over immersed bodies are discussed, including vortex shedding and 

buffeting. Then Aeroelastic effects are introduced into the bridge model and simplified 

formulations for capturing the phenomenon of torsional divergence and flutter are 

obtained. 

Particular attention is given to flutter, which for long-span suspension bridges can be of 

different kinds, depending on the aerodynamic properties of the deck section. Inter alia 

there is the possibility to have galloping, Single Degree of Freedom torsional flutter and 

classical 2 Degrees of Freedom flutter. 

It seems that, due to his nature, flutter involves nonlinear aerodynamics, but the problem 

can be successfully treated by linear approaches. The main reason for this is that the 

starting condition that separates the stable from the unstable regimes, i.e. the onset of 

flutter, may be treated as having small amplitude. The flutter analysis can be therefore 

based on the standard stability considerations of linear elastic systems. 

3.1 THE ATMOSPHERIC BOUNDARY LAYER 

As the wind approaches the Earth’s surface, frictional forces caused by the terrain exert on 

the moving air an horizontal drag force, whose effect is to retard the flow. Wind becomes a 

turbulent flow varying randomly both in space and in time. The height where the surface 

friction effects are zero is called Gradient Height and it is dependent upon the wind 

intensity, the roughness of the terrain and the angle of latitude. The part of the atmosphere 

below the gradient height is called Atmospheric Boundary Layer (ABL), depicted in Figure 

3.1, where the wind speed increases with elevation reaching the so called Gradient Speed 

at the top of the boundary layer. In the free atmosphere, outside the boundary layer, the 

wind flows with the gradient speed along the isobars. The study of all the aspects of the 

boundary layer is an interesting topic, since it affects the structural design. 
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Figure 3.1: Atmospheric Boundary Layer (ABL) 

It is possible to define the wind mean velocity as the sum of the average wind velocity, 

which is not time dependent, and the turbulence velocity. 

 

 

The mean wind velocity profile depends on the aerodynamic roughness length parameter 

𝑧0(𝑚), which characterize the surface roughness, and it can be expressed trough a 

logarithmic profile. Up to 200 m in fact this is a good approximation, based on the 

Buckingham Pi Theory. 

 

 

where: 

 

1. 𝑘 is the Von Karman constant, which is not a function of the flow nor of the 

surface. It assumes a value around 𝑘 = 0.4; 

 

2. 𝑢∗ = √
𝜏0

𝜌𝑎
 is the friction velocity, which is an abstraction to express the shear stress 

of the terrain. 

 

The wind in the atmospheric boundary layer is characterized by turbulence, a random 

process which cannot be described in a deterministic way, but with a stochastic approach. 

Therefore basing on the eddy model of turbulence it is possible to introduce the power 

spectrum that describes the distribution of the turbulence with frequency (Figure 3.2). 

𝑈(𝑧, 𝑡) = 𝑈(𝑧) + 𝑢(𝑧, 𝑡) (3.1)  

𝑈(𝑧) =
𝑢∗

𝑘
ln (

𝑧

𝑧0
) (3.2)  
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Figure 3.2: Turbulence power spectrum 

Obviously the variance of the turbulence is represented by the area under the curve 

depicted in Figure 3.2, which can be divided in three different ranges: 

 

1. A production range in which the turbulence is generated as large eddies; 

 

2. An inertial range characterized by the energy cascade phenomenon, that is the large 

eddies break up transferring their energy to smaller scales; 

 

3. A dissipation range where eddies become very small and the energy is dissipated 

by heat. In this range viscosity assumes an important role. 

 

It is useful to introduce a non-dimensional parameter called Turbulence Intensity, defined 

as the ratio between the standard deviation, which can be considered almost constant up to 

200 m, and the mean wind velocity. For the along wind turbulence component u, it is: 

 

 

Notice that the turbulence intensity is proportional to the roughness and it is inversely 

proportional to the height above the ground. 

Another important parameter to be defined is the Integral Length Scale, which is a measure 

of the sizes of the vortices in the wind. The integral length scale for the turbulence 

component u measured in the longitudinal direction x is formally defined trough the cross-

correlation function between two different points separated longitudinally. 

 

𝐼𝑢(𝑧) =
𝜎𝑢(𝑧)

𝑈(𝑧)
≅

1

ln (
𝑧
𝑧0

)
 (3.3)  

𝐿𝑢
𝑥 (𝑧) = ∫ 𝑅𝑢(𝑟𝑥)𝑑𝑟𝑥

+∞

0

 (3.4)  
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The integral length scale can be measured in a simpler way, assuming valid the Taylor’s 

hypothesis. Taylor suggested to consider the turbulence as “frozen” and translated by the 

mean wind speed, i.e. the spatial variations of the wind velocity field can be based on 

temporal variations and vice versa. According to this it is possible to calculate the 

longitudinal scale of turbulence basing on the measurement performed in one point, so: 

 

 

where 𝑇𝑢(𝑧) = ∫ 𝑅𝑢(𝑧, 𝜏)𝑑𝜏
+∞

0
 is the time scale.  

Also the integral length scale is a function of the height from the ground and the terrain 

roughness. 

Thanks to the definition of these quantities it is possible to define the wind power 

spectrum, which in the literature assumes different formulations. One of the most reliable 

spectrum is provided by the works of Von Karman: 

 

 

Although wind effects are usually treated with a stochastic approach, due to the nature of 

the wind turbulence, a fully deterministic approach will be used in the following treatment. 

This assumption is justified by the fact that the wind turbulence effects mainly affect the 

buffeting phenomenon, which can be considered not relevant in a 2 DoFs sectional model.  

3.2 FLOW OVER IMMERSED BODIES 

The presence of a body in the fluid flow alters the flow according to its geometrical shape 

and to the flow characteristics. The modification of the fluid flow induced by the body 

determines a distribution of velocities and pressure in the fluid around the body that 

produce a global force on the body, called Aerodynamic Force. In the case of motion of the 

body, the motion itself influences the aerodynamic forces, which in turn influence the body 

motion. This phenomenon is called Fluid-Structure Interaction (FSI). The possible tools 

for the investigations of the wind forces on the structures are: 

 

1. Full scale measurements, which usually are not available during the design process. 

Moreover they are very difficult because it is impossible to have the control on the 

environmental conditions; 

𝐿𝑢
𝑥 (𝑧) = 𝑇𝑢(𝑧)𝑈(𝑧) (3.5)  

𝑓𝑆𝑢(𝑓)

𝜎𝑢
2 =

4 (
𝑓𝐿𝑢

𝑥

𝑈 )

(1 + 70.8 (
𝑓𝐿𝑢

𝑥

𝑈 )
2

)

5 6⁄
 (3.6)  
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2. Wind tunnel experiments, which are a very useful tool, despite the fact that a 

possible limitation is the scaled reproduction; 

 

3. Computational Fluid Dynamics (CFD), which consists in the numerical solution of 

the Navier-Stokes equations. This tool is very demanding by the computational 

point of view; 

 

4. Analytical formulations, which are defined only for some specific and simple 

problems. 

 

Aerodynamic forces are generated when there is a relative velocity between the air and the 

structure, the higher is the relative velocity and the higher are the aerodynamic forces. 

Moreover they are also influenced by the geometry of the body, in fact it is possible to 

make a distinction between streamlined bodies, which produce low perturbations in the 

flow, and bluff bodies, which produce high perturbations in the flow, increasing the value 

of aerodynamic forces they are subjected to. 

Two regions with different characteristics may be defined in the flow around a body: 

 

1. The Boundary Layer, the region very close to the body , in which the fluid particles 

are influenced by the presence of the body with a variation both in the path and in 

the speed; 

 

2. The Potential Flow Region, where the fluid particles are not influenced by the 

presence of the body. 

 

The region close to the body surface is characterized by large gradients of velocity, since 

the no-slip condition guarantees that the particles close to the wall have the same velocity 

of the body surface. In this region viscous effects become more important than inertial 

ones, due to the relative speed slowing down. The ratio between inertial and viscous forces 

acting on the fluid is called Reynolds number: 

 

 

where U is the fluid speed, L a reference length, 𝜌 the fluid density, 𝜇 the fluid dynamic 

viscosity and 𝜈 the fluid kinematic viscosity equal to 1.5 ∙ 10−5𝑚2/𝑠 for air at 20°C. 

It is common practice to assume that the threshold of separation between the Boundary 

Layer region, dominated by viscosity, and the Potential Flow region, where the fluid can 

be considered inviscid, is located at a distance from the body surface where the flow 

velocity has reached the 99% of the undisturbed flow speed. 

𝑅𝑒 =
𝑈𝐿𝜌

𝜇
=

𝑈𝐿

𝜈
 (3.7)  
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In the Potential Flow region, for inviscid and incompressible fluids the Bernoulli equation 

holds for a fluid particle: 

 

 

where the three terms at the LHS are the static pressure, the kinetic energy and the 

gravitational force per unit mass, respectively. The latter, in common structural 

engineering problems can usually be neglected. According to this equation, when a particle 

is moving towards a lower pressure zone, it increases its velocity. 

Instead, in the Boundary layer region the Bernoulli equation is no more valid and Navier-

Stokes equations have to be solved if one is interested to the velocity field. 

 

 

Figure 3.3: Pressure and shear stresses distribution on a thin airfoil 

3.2.1 Aerodynamic Coefficients 

Aerodynamic forces can be computed integrating the pressures and shear stresses (Figure 

3.3) over the whole body surface. 

 

 

Figure 3.4: Aerodynamic forces acting on a bridge deck section 

𝑃

ρ
+

U2

2
+ gy = Const. (3.8)  
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However, in wind engineering, it is common practice to define aerodynamic forces by 

means of the so called Aerodynamic Coefficients. In Figure 3.4 the three different 

components of aerodynamic forces, are depicted for a generic bridge’s deck section. Thus, 

three Aerodynamic coefficients can be defined, namely the drag, lift and moment 

coefficient.  

 

𝐶𝐷 =
𝐷

1
2

𝜌𝑈2𝐵
 

(3.9) 𝐶𝐿 =
𝐿

1
2

𝜌𝑈2𝐵
 

𝐶𝑀 =
𝑀

1
2

𝜌𝑈2𝐵2
 

 

where 𝜌 is the air density, 𝑈 is the mean wind speed and 𝐵 is a reference dimension of the 

body, which in the case of a bridge’s deck is its width. Aerodynamic forces and 

coefficients are dependent on the following quantities: 

 

1. The shape of the body, bluff or streamlined; 

 

2. The wind angle of attack; 

 

3. The Reynolds number 𝑅𝑒, which determines if the flow is in laminar or turbulent 

conditions. It affects the thickness of the boundary layer zone indeed, for a circular 

cylinder, in the range of 2 ∙ 105 ≤ 𝑅𝑒 ≤ 5 ∙ 105 there is a transition from laminar to 

turbulent flow inside the boundary layer region. Separation of the boundary layer 

occurs much farther back in the surface of the cylinder and the wake narrows, 

reducing the value of the aerodynamic drag coefficient; 

 

4. The Mach number 𝑀∞, which indicates how much compressible effects are 

important. In typical structural engineering problems the wind velocity is always 

such that 𝑀𝑎 < 0.3, i.e. incompressible flow regime; 

 

5. The free stream turbulence intensity 𝐼𝑢, which determines the point of detachment 

or reattachment of the flow, if it happens;  

 

6. The surface roughness ratio 
𝜀

𝑙
, which is able to influence the transition from laminar 

to turbulent flow in the boundary layer region. For large surface roughness ratio the 

transition is anticipated, thus making the value of the aerodynamic drag coefficient 

increases. 
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3.2.2 Separation of the Boundary Layer 

Boundary layer separation is a phenomenon that can happen if fluid particles are 

sufficiently decelerated by inertial forces that the flow near the surfaces becomes reversed. 

These deceleration effects occur as a result of the presence in the flow of adverse pressure 

gradients, which can be produced for example by the flow over a sharp corner of a body. 

Let us consider the case of a circular shape immersed in a fluid. Solving the Navier-Stokes 

equations with simplified assumptions the results depicted in Figure 3.5is obtained. 

 

 

Figure 3.5: Potential flow prediction around a circular cylinder 

This solution leads to a symmetric pressure distribution  around the cylinder which 

coincides with a null drag force. It is the so called “D’alembert paradox”, because it is 

impossible to obtain a null drag force. In fact, the real flow forms the boundary layer only 

in the front part of the cylinder, while in the rear part of the body it is detached forming a 

wake region. The pressure distribution is therefore asymmetric producing a global drag 

force (Figure 3.6). 

 

 

Figure 3.6: Boundary layer around a circular cylinder at Re=105 

The boundary layer separation occurs on any curved surface characterized by low 

curvature radius because the centrifugal inertial component along the streamline is no more 

withstandable. On bodies with sharp corners or discontinuities in the surface slope the 

separation occurs at the corner. 
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The width of the wake region and the detachment point of the boundary layer are strictly 

dependent on the Reynolds number, the surface roughness ratio and the turbulence 

intensity. The wake is also affected by the streamwise length and the general form of the 

body, as well as by its bluff face. 

In the wake region there is the possibility to have the formation of vortices, which induces 

in the body a periodic variation of the aerodynamic forces. 

3.2.3 Vortex Shedding 

Vortex shedding is due to an alternate separation of the boundary layer from opposite parts 

of the body that generate a fluctuating force due to the subsequently alternation of regions 

of positive and negative pressure distribution. The frequency at which the vortex are shed 

is proportional to the wind speed and to the Strouhal number and inversely proportional to 

a reference dimension of the body. 

 

 

The Strouhal number 𝑆𝑡 depends upon the Reynolds number and the body geometry. For a 

circular cylinder the Strouhal number is equal to 0.18 whilst for bluff deck sections it 

assumes different values depending on the shape of the deck (Figure 3.7). 

 

 

Figure 3.7: Strouhal number for different deck sections 

𝑓𝑠 = 𝑆𝑡 ∙
𝑈

𝐷
 (3.10)  
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Let us consider a cylindrical body subjected to vortex shedding. The response of the body 

is different if it is able to vibrate or not. 

In the case of a fixed circular cylinder three quarter of the cylinder surface is subjected to a 

negative pressure with the peak moving from one side to the other as the vortices are 

formed. Due to the alternating vortex wake, named “Karman street”, the oscillations of the 

lift force occur at the vortex shedding frequency and the oscillations of the drag force 

occur at twice the vortex shedding frequency. Anyway the process is not fully periodic, but 

it is of random nature and it does not occur simultaneously along the cylinder axis. The lift 

force value therefore is very small. 

In the case of a vibrating circular cylinder, when the vortex shedding frequency is equal to 

one frequency of the body, this starts to oscillate. The vibration amplitude increases and 

reaches a steady state value. It is experimentally observed that the body mechanical 

frequency controls the vortex shedding phenomenon even when variations in flow velocity 

displace the nominal Strouhal frequency away from the natural mechanical frequency by a 

few percent. This control of the phenomenon is commonly known as lock-in. Figure 3.8 

shows how this phenomenon works: when the vortex shedding frequency is in the lock-in 

region, it remains constant rather than being a linear function of wind velocity. 

 

 

Figure 3.8: Lock-in phenomenon on a vibrating cylinder 

Another important feature of this phenomenon is that the lift force, that was observed to 

have a random nature in case of fixed cylinder, in all the synchronization range becomes 

fully periodic and can be expressed in an approximate way by a sine function. 

 

 

Vortex induced vibrations have not to be considered a forced motion, but a self-excited 

mechanism. Moreover it is also a self-contained phenomenon, which guarantees that the 

𝐿 =
1

2
𝜌𝑈22𝑏𝐶𝐿 ∙ 𝑠𝑖𝑛(𝜔𝑉𝑆𝑡) (3.11)  
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amplitude of oscillations are limited because there is a drag damping effect that drives the 

phase of the lift force close to zero when the amplitudes are increasing. 

The maximum amplitude of vibrations due to vortex shedding depends upon the Scruton 

number, a non-dimensional parameter function of the damping. 

 

 

being 𝜉 the non-dimensional damping coefficient, 𝑚 the body mass per unit length, 𝐷 the 

body reference dimension and 𝜌 the fluid density.  

 

  

Figure 3.9: Maximum vibration amplitude and synchronization range as a function of Sc 

Figure 3.9 represents the maximum vibration amplitude and the width of the 

synchronization range for increasing values of the Scruton number. The higher is the 

damping of the system, the higher is the Scruton number and the lower is the amplitude of 

vibrations. As well as the oscillations amplitude, also the synchronization range decreases 

its width for increasing values of the Scruton number. For very low values of damping the 

synchronization range is comprised between 0.8 ≤ 𝑈/𝑈𝑠 ≤ 1.5.  

Another important parameter affecting the vortex shedding phenomenon is the Reynolds 

number. In fact both the boundary layer separation and the boundary layer transition from 

laminar to turbulent depend on 𝑅𝑒. The effect of Reynolds number is much more important 

for a body characterized by a curved shape because it directly affects the detachment point 

of the flow from the body, while for body with sharp edges the boundary layer detaches at 

the corners. 

The circular section is fully affected by 𝑅𝑒 and a lot of wind tunnel tests have been done on 

it. The drag coefficient as a function of 𝑅𝑒 and the transition from many different fluid 

regimes, in laminar flow conditions and for smooth surface of the body, are reported in 

Figure 3.10 and Figure 3.11. 

𝑆𝑐 =
2𝜋𝜉𝑚

𝜌𝐷2
 (3.12)  
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Figure 3.10: Drag coefficient as a function of Re 

 

𝑅𝑒 < 5 Non-separated Flow 

 

5 < 𝑅𝑒 < 40 Fixed pair of vortices in wake 

 

40 < 𝑅𝑒 < 150 Laminar vortex street 

 
150 < 𝑅𝑒 < 300 Transition to turbulent 

vortex street 

 

300 < 𝑅𝑒 < 3 ∙ 105 Fully turbulent vortex 

street 

 

3 ∙ 105 < 𝑅𝑒 < 3.5 ∙ 106 Disorganized 

turbulent wake 

 

𝑅𝑒 > 3.5 ∙ 106 Re-establishment of 

turbulent vortex street 

Figure 3.11: Vortex shedding from a circular cylinder 

Vortex shedding occurs for very low 𝑅𝑒, up to 𝑅𝑒 = 3 ∙ 105, where the drag force is more 

or less constant. Increasing 𝑅𝑒 the drag force starts to decrease because the boundary layer 

becomes turbulent and the separation point moves downstream. In this critical region 

vortex shedding disappears. For 𝑅𝑒 > 106 (post-critical range), even in presence of a 
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turbulent boundary layer, the Karman vortex street reappears and vortex induced vibrations 

excitation occurs with features that are similar to those of the sub-critical range. 

In addition, the 𝑅𝑒 value for which each transition occurs is also function of the cylinder 

roughness and of the incoming flow turbulence. In particular the increase of roughness as 

well as the increase of turbulence shift the transition from sub-critical to critical regime 

towards lower Reynolds number. 

3.2.4 Buffeting 

Buffeting is, with vortex shedding, the other fluctuating part of the aerodynamic 

coefficients. It is induced by the presence of turbulent fluctuations in the incoming flow. 

The buffeting aerodynamic force depends on the body shape and on the turbulence 

characteristics. For many structures in which the wind induced resonant vibrations are 

negligible, the fluctuating wind responses can be computed using procedures applicable for 

static loads, such as the quasi-steady approach. Fluctuations of wind due to turbulence 

usually excite the low frequency turbulence, therefore a very long-span bridge can be very 

excited. The vibration amplitudes can be controlled by increasing the aerodynamic 

damping or equivalently by increasing the stability of the bridge. 

The usual practice to measure buffeting forces in long-span suspension bridges is to 

measure the coefficients of the admittance matrix trough well defined wind tunnel tests. 

3.3 AEROELASTIC MODEL OF A LONG-SPAN SUSPENSION 

BRIDGE 

Suspended-span bridges must be designed to withstand both static and dynamic problems 

due to wind effects.  

Static problems are related to the effect of the mean wind speed on the response of the 

structure. The static loads are functions both of the aerodynamic coefficients and of the 

angle of attack. In order to reduce the load transferred at the top of the supporting towers, 

the drag coefficient of the deck must be as small as possible. Static instability can occur for 

torsionally weak cross sections when a certain wind velocity is reached. 

Dynamic problems are due to Aeroelastic effects, which include vortex induced vibrations, 

flutter, galloping and buffeting in the presence of self-excited forces. 

Among the different approaches the Quasi Steady Theory (QST) is the most suitable to 

better understand the physics of the dynamic problems. 
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3.3.1 Quasi Steady Theory 

The quasi steady theory well reproduces the aerodynamic forces on a deck if the reduced 

velocity 𝑈∗ =
𝑈

𝑓𝐵
 is greater than 10-15. 

The reduced velocity represent the ratio between the period associated to the deck 

oscillation 𝑇 =
1

𝑓
 and the time 

𝐵

𝑈
 needed by the fluid particle to move through the deck 

width. Thus, high reduced velocity means that the aerodynamic forces are not influenced 

by the motion frequency because the time needed by a fluid particle to cross the deck is 

very small compared to the period of oscillation of the deck itself. Instead, looking at 𝑓 as 

the frequency of fluctuation of the turbulence spectrum, high reduced velocity means that 

the turbulence frequency must be small compared to the frequency associated to the fluid 

particle velocity 
𝑈

𝐵
.  

Let us consider a generic section of the bridge free to move in horizontal and vertical 

direction and to rotate in plane subjected to the mean wind speed, buffeting and self-

excited motion of the deck, like the one depicted in Figure 3.12.  

 

 

Figure 3.12: Deck aerodynamic forces and wind components 

Aerodynamic forces are expressed in function of the aerodynamic coefficients, which are 

computed in the wind tunnel for different angles of attack, as a function of the relative 

velocity of the fluid with respect to the body 𝑈𝑟. 

 

𝐷 =
1

2
𝜌𝑈𝑟

2𝐵𝐿𝐶𝐷(𝛼) 

(3.13) 𝐿 =
1

2
𝜌𝑈𝑟

2𝐵𝐿𝐶𝐿(𝛼) 

𝑀 =
1

2
𝜌𝑈𝑟

2𝐵2𝐿𝐶𝑀(𝛼) 
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where 𝛼 = 𝛹 + 𝜃 is the angle of attack between the relative velocity and the bridge deck 

section. 

The relative velocity 𝑈𝑟 and the relative angle of attack 𝛹 are defined as: 

 

𝑈𝑟
2 = (𝑈 + 𝑢(𝑡) − 𝑝̇)2 + (𝑣(𝑡) − 𝑤̇ − 𝐵1𝜃̇)

2
 

(3.14) 

𝛹 = 𝑎𝑟𝑐𝑡𝑔 (
𝑣(𝑡) − 𝑤̇ − 𝐵1𝜃̇

𝑈 + 𝑢(𝑡) − 𝑝̇
) 

 

where 𝐵1 indicates the position of a specific point upwind the deck centre G, essential to 

define the effect of a rotation in the vertical direction. This coefficient is different for each 

component of the aerodynamic forces and it can be computed trough wind tunnel tests.  

With this simplified model the linear equation of motion of the deck reads as: 

 

 

 

 

where it is clear that aerodynamic forces are dependent upon the motion of the deck, the 

wind turbulence component and the mean wind velocity. 

A linear formulation of the aerodynamic forces may be considered in the hypothesis of 

small oscillations and small variations of the buffeting components. Thus, the linearized 

Aeroelastic forces, without considering the static wind components, can be written as: 

 

𝐹𝑝 =
1

2
𝜌𝐵𝐿𝑈2 [𝐾𝐷 (𝜃̅ +

𝑣 − 𝑤̇ − 𝐵1𝑦𝜃̇

𝑈
) − 𝐶𝐿0 (

𝑣 − 𝑤̇ − 𝐵1𝑦𝜃̇

𝑈
)] + 𝜌𝐵𝐿𝑈𝐶𝐷0(𝑢 − 𝑝̇) 

(3.18) 𝐹𝑤 =
1

2
𝜌𝐵𝐿𝑈2 [𝐾𝐿 (𝜃̅ +

𝑣 − 𝑤̇ − 𝐵1𝑧𝜃̇

𝑈
) − 𝐶𝐿0 (

𝑣 − 𝑤̇ − 𝐵1𝑧𝜃̇

𝑈
)] + 𝜌𝐵𝐿𝑈𝐶𝐿0(𝑢 − 𝑝̇) 

𝐹𝜃 =
1

2
𝜌𝐵2𝐿𝑈2 [𝐾𝑀 (𝜃̅ +

𝑣 − 𝑤̇ − 𝑏1𝜃𝜃̇

𝑈
)] + 𝜌𝐵2𝐿𝑈𝐶𝑀0(𝑢 − 𝑝̇) 

𝑚𝑝𝑝̈ + 𝑐𝑝𝑝̇ + 𝑘𝑝𝑝 =
1

2
𝜌𝐵𝐿 [(𝑈 + 𝑢(𝑡) − 𝑝̇)2 + (𝑣(𝑡) − 𝑤̇ − 𝐵1𝜃̇)

2
] [𝐶𝐷(𝛼) cos(𝛹) +

−𝐶𝐿 sin(𝛹)] = 𝐹𝑝  
(3.15)  

𝑚𝑤𝑤̈ + 𝑐𝑤𝑤̇ + 𝑘𝑤𝑤 =
1

2
𝜌𝐵𝐿 [(𝑈 + 𝑢(𝑡) − 𝑝̇)2 + (𝑣(𝑡) − 𝑤̇ − 𝐵1𝜃̇)

2
] [𝐶𝐷(𝛼) sin(𝛹) +

+𝐶𝐿 cos(𝛹)] = 𝐹𝑤  
(3.16)  

𝐽𝜃𝜃̈ + 𝑐𝜃𝜃̇ + 𝑘𝜃𝜃 =
1

2
𝜌𝐵2𝐿 [(𝑈 + 𝑢(𝑡) − 𝑝̇)2 + (𝑣(𝑡) − 𝑤̇ − 𝐵1𝜃̇)

2
] 𝐶𝑀(𝛼) = 𝐹𝜃  (3.17)  
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having linearized the aerodynamic coefficients around the equilibrium configuration as: 

 

𝐶𝐷(𝛼) = 𝐶𝐷0 + (
𝜕𝐶𝐷

𝜕𝛼
)
0
𝛼 = 𝐶𝐷0 + 𝐾𝐷 ∙ 𝛼  

(3.19) 𝐶𝐿(𝛼) = 𝐶𝐿0 + (
𝜕𝐶𝐿

𝜕𝛼
)
0
𝛼 = 𝐶𝐿0 + 𝐾𝐿 ∙ 𝛼  

𝐶𝑀(𝛼) = 𝐶𝑀0 + (
𝜕𝐶𝑀

𝜕𝛼
)

0
𝛼 = 𝐶𝑀0 + 𝐾𝑀 ∙ 𝛼 

 

The entire system can be written in matrix form. 

 

 

where: 

 

𝑋 = [𝑝  𝑤  𝜃]𝑡 
Vector of displacements and 

rotation 

(3.21) 

𝑀𝑠, 𝑅𝑠, 𝐾𝑠 
Structural mass, damping 

and stiffness matrices 

𝐾𝑎 =
1

2
𝜌𝐵𝐿𝑈2 [

0 0 𝐾𝐷

0 0 𝐾𝐿

0 0 𝐵𝐾𝑀

] 
Aerodynamic stiffness 

matrix 

𝑅𝑎 = −
1

2
𝜌𝐵𝐿𝑈 [

2𝐶𝐷0 𝐾𝐷 − 𝐶𝐿0 𝐵1𝑦(𝐾𝐷 − 𝐶𝐿0)

2𝐶𝐿0 𝐾𝐿 + 𝐶𝐷0 𝐵1𝑧(𝐾𝐿 + 𝐶𝐷0)
2𝐶𝑀0𝐵 𝐵𝐾𝑀 𝐵1𝜃𝐵𝐾𝑀

] 
Aerodynamic damping 

matrix 

𝐴𝑚 =
1

2
𝜌𝐵𝐿𝑈 [

2𝐶𝐷0 𝐾𝐷 − 𝐶𝐿0

2𝐶𝐿0 𝐾𝐿 + 𝐶𝐷0

2𝐶𝑀0𝐵 𝐵𝐾𝑀

] 
Aerodynamic admittance 

matrix 

 

The Aeroelastic effects change the structural damping and stiffness matrices in function of 

the wind velocity. The higher is the wind velocity, the higher the self-excited terms 

become important. Moreover the system is no more symmetric and self-adjoint, thus it can 

be subjected to different kind of dynamic instabilities. 

𝑀𝑠𝑋̈ + (𝑅𝑠 − 𝑅𝑎) 𝑋̇ + (𝐾𝑠 − 𝐾𝑎)𝑋 = 𝐴𝑚𝑏 (3.20)  
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3.3.2 Flutter Derivatives 

The Quasi Steady Theory uses aerodynamic coefficients computed thanks to static wind 

tunnel tests and it is valid only for high reduced velocity, which is a too restrictive 

hypothesis.  

In order to define the aerodynamic forces as a function of the deck motion and the 

incoming turbulence, dynamic wind tunnel tests have to be done. In particular two 

different methods are available, the “Free motion method” and the “Forced motion 

method”. The latter is more expensive, but it is much more reliable. It consists in forcing a 

deck sectional model to vibrate harmonically in the horizontal, vertical or torsional 

direction and to measure the drag, lift and moment forces in function of the reduced 

velocity. Obviously, for high reduced velocity, the aerodynamic coefficients must be the 

same of the ones computed with the Quasi Steady Theory. The problem is non linear, 

because the input is an harmonic motion and the output is not harmonic, so with the aim of 

simplifying it, aerodynamic coefficients are linearized by considering a fixed angle of 

attack. Several tests at different angles of attack are generally done. To find the stiffness 

and the damping Aeroelastic matrices, it is necessary to compute the transfer functions 

between the input and the output at the given reduced velocity. The real part of the transfer 

function indentifies the terms of the stiffness matrix, being in phase with the 

displacements, while the imaginary part identifies the damping matrix, since it is out of 

phase with the displacements and in phase with the velocities. 

Aerodynamic transfer functions are usually presented trough Flutter Derivatives. The most 

used formulation is the one proposed by Simiu and Scanlan [52]. 

 

𝐷 =
1

2
𝜌𝑈2𝐵 [𝐾𝑃1

∗
𝑝̇

𝑈
+ 𝐾𝑃2

∗
𝐵𝜃̇

𝑈
+ 𝐾2𝑃3

∗𝜃 + 𝐾2𝑃4
∗
𝑝

𝐵
] 

(3.22) 𝐿 =
1

2
𝜌𝑈2𝐵 [𝐾𝐻1

∗
𝑤̇

𝑈
+ 𝐾𝐻2

∗
𝐵𝜃̇

𝑈
+ 𝐾2𝐻3

∗𝜃 + 𝐾2𝐻4
∗
𝑤

𝐵
] 

𝑀 =
1

2
𝜌𝑈2𝐵2 [𝐾𝐴1

∗
𝑤̇

𝑈
+ 𝐾𝐴2

∗
𝐵𝜃̇

𝑈
+ 𝐾2𝐴3

∗𝜃 + 𝐾2𝐴4
∗
𝑤

𝐵
] 

 

where: 

 

1. 𝐾 =
𝐵𝜔

𝑈
 is the reduced frequency, defined as the inverse of the reduced velocity; 

 

2. 𝑃𝑖
∗, 𝐻𝑖

∗ and 𝐴𝑖
∗ are the flutter derivatives, function of the reduced frequency, 

correspondent to the drag, lift and moment forces, respectively. 
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Theoretically, equations (3.22) must contain also some terms related to the acceleration 𝑦̈, 

𝑧̈ and 𝜃̈. These terms are omitted as being of negligible importance in common structural 

engineering problems. In fact they give rise to an aerodynamic mass matrix, which is much 

lower with respect to the structural mass matrix. 

Moreover it is important to notice that the terms inside the brackets are non-dimensional 

and can be viewed as following the classical pattern of the expressions for aerodynamic 

coefficients. 

Chen and Kareem [20] studied the influence of the drag aerodynamic coefficients on the 

bridge’s flutter stability. The contribution of the drag force is not significant in the case of 

hard type flutter, where the aerodynamic damping generated by lift and pitching moment 

rapidly develops as wind velocity increases. The drag aerodynamic coefficients become 

important for truss deck sections, e.g. the Akashi Kaikyo Bridge. For this kind of sections, 

the drag force induced by torsional motion has a large contribution and its negative 

damping effect affects the flutter performances of the bridge. However, for bridges 

characterized by low static drag force and large self-excited lift and pitching moment, the 

contribution of self-excited drag force is negligible. In this context it is possible to consider 

a 2 DoFs model, without taking into considerations for the drag self-excited forces. 

The modal expansion already exploited in (2.43) and (2.62) is now recalled with the aim of 

projecting the Aeroelastic forces in the modal space. 

 

𝑤(𝑥, 𝑡) = ∑ 𝑊𝑛(𝑥) ∙ 𝑧𝑛(𝑡)

+∞

𝑛=1

 

(3.23) 

𝜃(𝑥, 𝑡) = ∑ 𝛩𝑚(𝑥) ∙ 𝛾𝑚(𝑡)

+∞

𝑚=1

 

 

Substituting the modal expansion (3.23) into the expressions of the aerodynamic lift and 

moment forces (3.22) and projecting them into the Galerkin plane: 

 

𝐿 =
1

2
𝜌𝑈22𝑏 [

𝐾𝐻1
∗

𝑈
∫ 𝑊𝑛

2(𝑥)
𝑙

0
𝑑𝑥 ∙ 𝑧̇𝑛(𝑡) +

𝐾𝐻2
∗2𝑏

𝑈
∫ 𝑊𝑛(𝑥)

𝑙

0
𝛩𝑚(𝑥)𝑑𝑥 ∙ 𝛾̇𝑚(𝑡) +

+𝐾2𝐻3
∗ ∫ 𝑊𝑛(𝑥)

𝑙

0
𝛩𝑚(𝑥)𝑑𝑥 ∙ 𝛾𝑚(𝑡) +

𝐾2𝐻4
∗

2𝑏
∫ 𝑊𝑛

2(𝑥)
𝑙

0
𝑑𝑥 ∙ 𝑧𝑛(𝑡)]  

(3.24) 

𝑀 =
1

2
𝜌𝑈2(2𝑏)2 [

𝐾𝐴1
∗

𝑈
∫ 𝑊𝑛(𝑥)

𝑙

0
𝛩𝑚(𝑥)𝑑𝑥 ∙ 𝑧̇𝑛(𝑡) +

𝐾𝐴2
∗2𝑏

𝑈
∫ 𝛩𝑚

2 (𝑥)𝑑𝑥
𝑙

0
∙ 𝛾̇𝑚(𝑡) +

+𝐾2𝐴3
∗ ∫ 𝛩𝑚

2 (𝑥)𝑑𝑥
𝑙

0
∙ 𝛾𝑚(𝑡) +

𝐾2𝐴4
∗

2𝑏
∫ 𝑊𝑛(𝑥)

𝑙

0
𝛩𝑚(𝑥)𝑑𝑥 ∙ 𝑧𝑛(𝑡)]  
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It is possible to introduce some coefficients indicating the integration of the shape 

functions over the whole span: 

 

𝐺𝑊𝑛𝑊𝑛
= ∫ 𝑊𝑛

2(𝑥)
𝑙

0

𝑑𝑥 

(3.25) 𝐺𝑊𝑛𝛩𝑚
= ∫ 𝑊𝑛(𝑥)

𝑙

0

𝛩𝑚(𝑥) 

𝐺𝛩𝑚𝛩𝑚
= ∫ 𝛩𝑚

2 (𝑥)
𝑙

0

𝑑𝑥 

 

Thus, the aerodynamic stiffness and damping matrix 𝐾𝑎 and 𝑅𝑎 can be written as: 

 

 

 

Without considering the buffeting forces the system corresponds to:  

 

 

where 𝑞 = [𝑧𝑛  𝛾𝑚]𝑡 is the vector of modal displacements and rotations. The structural mass, 

damping and stiffness matrices are diagonal. 

 

 

 

 

 

 

𝐾𝑎 =
1

2
𝜌𝑈2𝐾2 [

𝐺𝑊𝑛𝑊𝑛
∙ 𝐻4

∗ 2𝑏𝐺𝑊𝑛𝛩𝑚
∙ 𝐻3

∗

2𝑏𝐺𝑊𝑛𝛩𝑚
∙ 𝐴4

∗ (2𝑏)2𝐺𝛩𝑚𝛩𝑚
∙ 𝐴3

∗ ] (3.26)  

𝑅𝑎 = 𝜌𝑈2
𝑏𝐾

𝑈
[

𝐺𝑊𝑛𝑊𝑛
∙ 𝐻1

∗ 2𝑏𝐺𝑊𝑛𝛩𝑚
∙ 𝐻2

∗

2𝑏𝐺𝑊𝑛𝛩𝑚
∙ 𝐴1

∗ (2𝑏)2𝐺𝛩𝑚𝛩𝑚
∙ 𝐴2

∗ ] (3.27)  

𝑀𝑠𝑞̈ + (𝑅𝑠 − 𝑅𝑎) 𝑞̇ + (𝐾𝑠 − 𝐾𝑎)𝑞 = 0 (3.28)  

𝑀𝑠 =

[
 
 
 
 𝑚𝑤 ∫ 𝑊𝑛

2(𝑥)
𝑙

0

𝑑𝑥 0

0 𝐽𝜃 ∫ 𝛩𝑚
2 (𝑥)

𝑙

0

𝑑𝑥
]
 
 
 
 

= [
𝑚𝑤,𝑛 0

0 𝐽𝜃,𝑚
] (3.29)  

𝑅𝑠 = [
2𝑚𝑤,𝑛𝛥𝑤,𝑛𝛺𝑤,𝑛 0

0 2𝐽𝜃,𝑚𝛥𝜃,𝑚𝛺𝜃,𝑚 
] (3.30)  

𝐾𝑠 = [
𝑚𝑤,𝑛𝛺𝑤,𝑛

2 0

0 𝐽𝜃,𝑚𝛺𝜃,𝑚 
2 ] (3.31)  



Effects of Internal Parametric Resonance on the Aerodynamic Behaviour of Long-span Suspension Bridges 

 

74 WIND EFFECTS 

The modal frequencies and damping ratios affected by the self-excited forces can be 

computed by seeking a solution in the form of: 

 

 

leading to the following Eigenvalue problem: 

 

 

where 𝜆 = −𝜉𝜔 + 𝑖𝜔√1 − 𝜉2 is the Eigenvalue, being 𝜉 and 𝜔 the circular frequency and 

damping ratio of the complex modal branch of interest, respectively. 

Notice the difference between the groups [𝛺, 𝛥] and [𝜔, 𝜉] which indicate the circular 

frequency and the modal damping ratio coming from the structural model and the complete 

Aeroelastic one, respectively. 

The term inside the brackets is a matrix called impedance matrix, or state matrix 𝐻(𝜆). 

 

 

The stability limits of the problem are determined by the condition: 

 

 

Different kinds of instability can occur: 

 

1. Static torsional divergence; 

 

2. Galloping (or 1 DoF flexural instability); 

 

3. 1 DoF torsional flutter; 

 

4. Classical 2 DoFs flutter. 

3.3.3 Torsional Divergence 

The phenomenon of torsional divergence is of static nature and it is due to a loss of 

torsional stiffness. More specifically, the structure under the effect of wind is subjected to a 

drag, a lift and a twisting moment force. In particular, as the wind velocity increases, the 

twisting moment and the torsional rotation of the structure increases too. The relative angle 

of attack of the wind changes leading to an increase in the twisting moment, which then 

𝑞 = 𝑞0𝑒
𝜆𝑡 (3.32)  

[𝜆2𝑀𝑠 + 𝜆 (𝑅𝑠 − 𝑅𝑎) + (𝐾𝑠 − 𝐾𝑎)] 𝑞0𝑒
𝜆𝑡 = 0 (3.33)  

𝐻(𝜆)𝑞0𝑒
𝜆𝑡 = 0 (3.34)  

det [𝐻(𝜆)] = |𝐻(𝜆)| = 0 (3.35)  
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demands additional reactive moment from the structure. At a given wind velocity, namely 

the divergence speed, the magnitude of the wind-induced moment cannot be counteracted 

by the torsional deck stiffness, leading the structure to an unstable condition. This problem 

is similar to the structural stability of a column subjected to a buckling load, with the 

difference that torsional divergence occurs at some critical divergence velocity of the wind 

and it is not associated to a critical load. 

To analyze the torsional divergence phenomenon, let us consider the section of the deck 

free to rotate around its centroid. Considering a linearization of the moment coefficient 

around the equilibrium position correspondent to 𝜃 = 0, the static equation of motion of 

this system is: 

 

 

The two-dimensional description of the divergence problem is well represented by 

equation (3.36), which has the following solution. 

 

 

The solution (3.37) diverges for: 

 

 

From equation (3.38) it is possible to find the critical divergence velocity: 

 

 

The phenomenon depends upon the structural torsional stiffness of the deck and upon the 

slope of the moment coefficient 𝐾𝑀. Some kind of structures can be immune to torsional 

divergence, depending on their relation between aerodynamic moment and angle of attack. 

Anyhow in most case of practical interest in civil engineering the critical divergence 

velocity is extremely high, well beyond the range of velocities normally considered in 

design. Only torsionally weak bridges deck incur the actual danger of torsional divergence 

at wind speed attainable in practice.  

It should be noted that if the slope of the moment coefficient is negative, the deck creates a 

negative angle of attack with the incoming wind. Such decks are not highly susceptible to 

𝑘𝜃𝜃 =
1

2
𝜌𝑈2(2𝑏)2(𝐶𝑀0 + 𝐾𝑀 ∙ 𝜃) (3.36)  

𝜃 =
2𝜌𝑈2𝑏2𝐶𝑀0

𝑘𝜃 − 2𝜌𝑈2𝑏2𝐾𝑀
 (3.37)  

𝑘𝜃 − 2𝜌𝑈2𝑏2𝐾𝑀 = 0 (3.38)  

𝑈𝐷 = √
𝑘𝜃

2𝜌𝑏2𝐾𝑀
 (3.39)  
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torsional divergence at wind speeds in the usual range, whereas if the slope of the moment 

coefficient is positive a theoretical torsional divergence is still possible. 

In the case studied the torsional stiffness can be expressed in non-dimensional form as: 

 

 

Thus, the critical divergence velocity (3.39) becomes: 

 

 

The slope of the moment coefficient can be determined from wind tunnel tests on rigid 

models for different angles of attack. For simple sectional shapes of the wing, it is possible 

to get analytical expressions for the aerodynamic coefficients. In particular, for the case of 

thin plate in steady motion, Bisplinghoff et al. [12] found that: 

 

 

being 𝑎 the distance between the elastic centre of the section and the Aeroelastic one. 

Considering the Aeroelastic centre perfectly coincident with the elastic one (𝑎 = 0), the 

derivative of the moment coefficient with respect to the angle of attack is 𝐾𝑀 =
𝜋

2
. 

The divergence velocity can be expressed in a very simple way as: 

 

 

The value of the critical divergence velocity is important to provide an upper limit to the 

admissible wind speed which must be taken into account for a flutter analysis. In fact, as it 

usually happens, the static unstable limit requires higher extreme conditions with respect to 

its dynamic counterpart. Hence, the divergence critical speed is the threshold beyond 

which is no more interesting to investigate further the dynamic instability problem since 

the system undergoes to a static unstable condition. 

𝑘𝜃 = 𝛺𝜃,𝑚
2 𝐽𝜃,𝑚 = 𝛺̃𝜃,𝑚

2 2𝐻

𝑙2(𝑚𝑑 + 2𝑚𝑐)
𝐽̃𝑡(𝑚𝑑 + 2𝑚𝑐)𝑏

2
 (3.40)  

𝑈𝐷 = √𝐽̃𝑡𝛺̃𝜃,𝑚√
2𝐻

2𝜌𝑙2𝐾𝑀
 (3.41)  

𝐶𝑀 = 𝜋𝛼 (𝑎 +
1

2
) (3.42)  

𝑈𝐷 = √𝐽̃𝑡𝛺̃𝜃,𝑚√
2𝐻

𝜌𝜋𝑙2
 (3.43)  
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3.3.4 1 DoF Flexural Instability 

Galloping, or 1 DoF flexural instability, is a single mode instability phenomenon 

characterized by an oscillating motion perpendicular to the wind direction. It is worth 

mentioning that the term galloping in this case is not related to vortex shedding, as usual in 

cable aerodynamics. The occurrence of this phenomenon is due to the negative 

aerodynamic net flexural damping, which can bring the system to have null damping in the 

flexural motion. 

The total net flexural damping is given by the difference between the first diagonal terms 

of equations (3.30) and (3.27). The condition for galloping initiation is when this damping 

is null: 

 

 

Therefore, the onset for the initiation of 1 DoF flexural instability is when:  

 

 

with 𝐻1
∗ > 0. 

It is worth nothing that 𝐻1
∗ is strictly related with the slope of the lift coefficient, indeed 

comparing the damping matrices in (3.21) and (3.27), it results that 𝐻1
∗ coincides with −𝐾𝐿. 

Hence, galloping can happen only for negative slope of the lift coefficient, which is 

unusual in airfoil deck types. 

The expression (3.45) can be extended to our model simply substituting the proper 

expression for the mass 𝑚𝑤,𝑛 = (𝑚𝑑 + 2𝑚𝑐)𝐺𝑊𝑛𝑊𝑛
: 

 

 

Thanks to the definition given by Theodorsen [53] of non-dimensional Aerodynamic mass: 

 

 

the condition on the flutter derivative 𝐻1
∗ for galloping initiation becomes: 

 

2𝑚𝑤,𝑛𝛥𝑤,𝑛𝛺𝑤,𝑛 −
1

2
𝜌𝑈2

2𝑏𝐾

𝑈
𝐻1

∗𝐺𝑊𝑛𝑊𝑛
= 0 (3.44)  

𝐻1
∗𝐺𝑊𝑛𝑊𝑛

≥
𝑚𝑤,𝑛𝛥𝑤,𝑛

𝜌𝑏2
 (3.45)  

𝐻1
∗ ≥

(𝑚𝑑 + 2𝑚𝑐)𝛥𝑤,𝑛

𝜌𝑏2
 (3.46)  

𝑚̃𝑎 =
𝜌𝜋𝑏2

𝑚𝑑 + 2𝑚𝑐
 (3.47)  

𝐻1
∗ ≥

𝜋

𝑚̃𝑎
𝛥𝑤,𝑛 (3.48)  
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3.3.5 1 DoF Torsional Flutter 

Mono-dimensional flutter, or 1 DoF torsional instability, is a single mode instability 

phenomenon caused by negative aerodynamic net torsional damping. Usually it happens 

for the lowest torsional degree of freedom, which in modern contemporary bridges is 

expected to be the first symmetric torsional mode. 

The condition for the zeroing of the net torsional damping reads as: 

 

 

Simplyfing equation (3.49), the following formula for the onset of 1 DoF torsional flutter is 

found. 

 

 

with 𝐴2
∗ > 0. 

It has to be noted that 𝐴2
∗  represents the slope of the moment coefficient, because it is 

strictly related to −𝐾𝑀. Therefore 1 DoF torsional instability can happen only in the case of 

negative slope of the moment coefficient. 

In general for flat plates and for streamlined bridge deck sections 𝐴2
∗  is negative, which 

means that they cannot suffer of this kind of instability phenomenon. Instead this flutter 

derivative can be positive for bluff deck section. The most important example in bridge 

engineering of positive value of 𝐴2
∗  is the Tacoma Narrows bridge. 

The closed formula given by equation (3.50) is the same of the one found by Simiu and 

Scanlan [52], with the simplified assumption of negligible aerodynamic stiffness effect due 

to 𝐴3
∗ .  

The straightforward extension of the expression (3.50) to our model, considering the deck 

inertia 𝐽𝜃,𝑚 = 𝐽𝑡(𝑚𝑑 + 2𝑚𝑐)𝑏
2𝐺𝛩𝑚𝛩𝑚

 and the definition of Aerodynamic mass 𝑚̃𝑎 provided 

by equation (3.47), is: 

 

 

This simple formulation allows us to find the critical flutter velocity simply knowing the 

main structural parameters and the variation of 𝐴2
∗  with the reduced velocity, easily found 

by wind tunnel tests. 

2𝐽𝜃,𝑚𝛥𝜃,𝑚𝛺𝜃,𝑚 −
1

2
𝜌𝑈2

2𝑏𝐾

𝑈
𝐴2

∗ (2𝑏)2𝐺𝛩𝑚𝛩𝑚
= 0 (3.49)  

𝐴2
∗𝐺𝛩𝑚𝛩𝑚

≥
𝐽𝜃,𝑚𝛥𝜃,𝑚

4𝜌𝑏4
 (3.50)  

𝐴2
∗ ≥

𝜋

4

𝐽𝑡
𝑚̃𝑎

𝛥𝜃,𝑚 (3.51)  
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It is important to stress the fact that the formulas provided for the occurrence of 1 DoF 

flexural or torsional instability (eq. (3.48) and (3.51)) have been found considering a single 

mode approximation to the total response. This kind of assumption is justifiable from 

observation of the fact that typically just one prominent mode becomes unstable and 

dominate the structural response. However, the complex Eigenvalue analysis approach 

postulated in (3.33) is computationally effective and it gives the exact wind velocity 

causing instability, whatever the kind of unstable motion is. 

3.3.6 Classical Flutter 

Classical flutter, or 2 DoFs flutter, implies an Aeroelastic phenomenon in which two 

Degrees of Freedom of the structure, namely the rotation and the vertical translation, 

couple together in a flow-driven unstable oscillation. Coupling of the two DoFs has come 

to be the identifying sign for classical flutter. 

The method to find the flutter critical conditions is to solve the Eigenvalue problem (3.33) 

by setting the determinant of the state matrix equal to zero. This complex Eigenvalue 

analysis approach is very effective from the computational point of view  and it provides 

the exact critical flutter speed, both in the case of 1 DoF flutter and classical flutter. The 

solution of the equations of motion of Aeroelastic bridge systems provides information on 

how the self-excited forces influence modal frequencies, damping ratios and intermodal 

coupling as the wind velocity increases.  

However, in order to better understand the main paramethers affecting flutter and to 

understand the significance of structural and aerodynamic characteristics, a bimodal 

coupled flutter analysis is an accurate and useful tool. In fact experimental evidence have 

shown that bridge flutter is often dominated by the fundamental vertical bending and 

torsional modes with only secondary contributions from other modes. In particular, Chen 

and Kareem [19] presented a framework with closed-form solutions to estimate the modal 

frequencies, damping ratios and coupled motions of both vertical and torsional modal 

branches at varying wind velocities. 

With the aim of doing a bimodal coupled flutter analysis, only two vibrating modes are 

considered in the system of equation (3.33), 𝑧1(𝑡) and 𝛾2(𝑡). 

 

 

 

 

 

 

 

[𝜆2𝑀𝑠 + 𝜆𝑅𝑠 + 𝐾𝑠] 𝑞0𝑒
𝜆𝑡 = [𝑅𝑎𝜆 + 𝐾𝑎] 𝑞0𝑒

𝜆𝑡 (3.52)  
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where the different structural and aerodynamic matrices are defined as: 

 

𝑀𝑠 = [
𝑚𝑤,1 0

0 𝐽𝜃,2
] 

(3.53) 

𝑅𝑠 = [
2𝑚𝑤,1𝛥𝑤,1𝛺𝑤,1 0

0 2𝐽𝜃,2𝛥𝜃,2𝛺𝜃,2 
] 

𝐾𝑠 = [
𝑚𝑤,1𝛺𝑤,1

2 0

0 𝐽𝜃,2𝛺𝜃,2 
2 ] 

𝐾𝑎 =
1

2
𝜌𝑈2𝐾2 [

𝐻4
∗𝐺𝑊1𝑊1

𝐻3
∗𝐵𝐺𝑊1𝛩2

𝐴4
∗𝐵𝐺𝑊1𝛩2

𝐴3
∗𝐵2𝐺𝛩2𝛩2

] 

𝑅𝑎 =
1

2
𝜌𝑈2

𝐵𝐾

𝑈
[
𝐻1

∗𝐺𝑊1𝑊1
𝐻2

∗𝐵𝐺𝑊1𝛩2

𝐴1
∗𝐵𝐺𝑊1𝛩2

𝐴2
∗𝐵2𝐺𝛩2𝛩2

] 

 

The critical flutter velocity is determined when one of the modal damping ratios becomes 

zero. The problem can be solved in closed form only assuming a low level of damping, 

which means: 

 

𝜆2 ≅ −𝜔2 − 2𝑖𝜔2𝜉 
(3.54) 

𝜆 ≅ 𝑖𝜔 

 

Due to this hypothesis, the flutter derivatives are function of the reduced frequency only 

and not of the damping. This approximation is by no means restrictive. 

Bringing the uncoupled terms on the left-hand side and leaving the coupled ones on the 

right-hand side, the equations of motion become: 

 

 

 

 

 

 

[−𝜔2 − 2𝑖𝜔2𝜉 + 2𝑖𝛥𝑤,1𝛺𝑤,1 𝜔 −
1

2

𝜌(2𝑏)2

𝑚𝑤,1
 𝐺𝑊1𝑊1

𝑖𝜔2𝐻1
∗ + 𝛺𝑤,1 

2 −
1

2

𝜌(2𝑏)2

𝑚𝑤,1
 𝐺𝑊1𝑊1

𝜔2𝐻4
∗] ∙

𝑧10𝑒
𝜆𝑡 = 2𝑏 ∙ [

1

2

𝜌(2𝑏)2

𝑚𝑤,1
 𝐺𝑊1𝑊1

𝜔2(𝐻3
∗ + 𝑖𝐻2

∗)
𝐺𝑊1𝛩2

√𝐺𝑊1𝑊1𝐺𝛩2𝛩2
√

𝐺𝛩2𝛩2

𝐺𝑊1𝑊1

] ∙  𝛾20𝑒
𝜆𝑡  

(3.55)  

[−𝜔2 − 2𝑖𝜔2𝜉 + 2𝑖𝛥𝜃,2𝛺𝜃,2 𝜔 −
1

2

𝜌(2𝑏)4

𝐽𝜃,2
 𝐺𝛩2𝛩2

𝑖𝜔2𝐴2
∗ + 𝛺𝜃,2 

2 −
1

2

𝜌(2𝑏)4

𝐽𝜃,2
 𝐺𝛩2𝛩2

𝜔2𝐴3
∗ ] ∙

𝛾20𝑒
𝜆𝑡 =

1

2𝑏
∙ [

1

2

𝜌(2𝑏)4

𝐽𝜃,2
 𝐺𝛩2𝛩2

𝜔2(𝐴4
∗ + 𝑖𝐴1

∗)
𝐺𝑊1𝛩2

√𝐺𝑊1𝑊1𝐺𝛩2𝛩2
√

𝐺𝑊1𝑊1

𝐺𝛩2𝛩2

]  ∙ 𝑧10𝑒
𝜆𝑡  

(3.56)  
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Some non-dimensional quantities can be defined in order to write the equations in a 

simpler form: 

 

𝜇 =
1

2

𝜌𝐵2

𝑚𝑤,1
 𝐺𝑊1𝑊1

= 2
𝜌𝑏2

𝑚𝑤,1
 𝐺𝑊1𝑊1

 

 

(3.57) 

𝜈 =
1

2

𝜌𝐵4

𝐽𝜃,2
 𝐺𝛩2𝛩2

= 8
𝜌𝑏4

𝐽𝜃,2
 𝐺𝛩2𝛩2

 

𝜔̅1 = 𝛺𝑤,1 [1 − 𝜇 (
𝜔

𝛺𝑤,1
)

2

𝐻4
∗]

1
2

 

𝜉1̅ = 𝛥𝑤,1

𝛺𝑤,1

𝜔̅1
− 𝜉

𝜔

𝜔̅1
−

1

2
𝜇

𝜔

𝜔̅1
𝐻1

∗ 

𝜔̅2 = 𝛺𝜃,2 [1 − 𝜈 (
𝜔

𝛺𝜃,2
)

2

𝐴3
∗ ]

1
2

 

𝜉2̅ = 𝛥𝜃,2

𝛺𝜃,2

𝜔̅2
− 𝜉

𝜔

𝜔̅2
−

1

2
𝜈

𝜔

𝜔̅2
𝐴2

∗  

𝐷 =
𝐺𝑊1𝛩2

√𝐺𝑊1𝑊1
𝐺𝛩2𝛩2

 

where: 

 

1. 𝜔̅𝑗 and 𝜉𝑗̅ (𝑗 = 1,2) are the frequencies and damping ratios influenced only by the 

uncoupled self-excitation forces associated with 𝐻1
∗, 𝐻4

∗, 𝐴2
∗  and 𝐴3

∗ ; 

 

2. 𝐷 is the similarity factor in modal shapes of the fundamental vertical and torsional 

modes, i.e., 𝐷 = 0 and 𝐷 = 1 indicate that two mode shapes are orthogonal and 

identical, respectively. 

 

Thus: 

 

 

 

Chen and Kareem [19] solved equations (3.58) and (3.59) in closed form. 

In the case of uncoupled system, i.e. when 𝐻2
∗, 𝐻3

∗, 𝐴1
∗  and 𝐴4

∗  are contemporary null for a 

given reduced frequency, the modal frequencies and damping ratios are provided by 

Scanlan [50]:  

[−𝜔2 + 2𝑖𝜔𝜔̅1𝜉1̅ + 𝜔̅1
2]𝑧10𝑒

𝜆𝑡 = 𝜇𝐷𝜔2(𝐻3
∗ + 𝑖𝐻2

∗)√
𝐺𝛩2𝛩2

𝐺𝑊1𝑊1

2𝑏𝛾20𝑒
𝜆𝑡  (3.58)  

[−𝜔2 + 2𝑖𝜔𝜔̅2𝜉2̅ + 𝜔̅2
2]2𝑏𝛾20𝑒

𝜆𝑡 = 𝜈𝐷𝜔2(𝐴4
∗ + 𝑖𝐴1

∗)√
𝐺𝑊1𝑊1

𝐺𝛩2𝛩2

 𝑧10𝑒
𝜆𝑡  (3.59)  
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𝜔10 = 𝛺𝑤,1(1 + 𝜇𝐻4
∗)−

1
2 

 

(3.60) 

𝜉10 = 𝛥𝑤,1

𝛺𝑤,1

𝜔̅1
−

1

2
𝜇𝐻1

∗ 

𝜔20 = 𝛺𝜃,2(1 + 𝜈𝐴3
∗ )−

1
2 

𝜉20 = 𝛥𝜃,2

𝛺𝜃,2

𝜔̅2
−

1

2
𝜈𝐴2

∗  

 

In this particular case 𝜔10 = 𝜔̅1, 𝜔20 = 𝜔̅2, 𝜉1̅ = 0 and 𝜉2̅ = 0. 

However, being the flutter derivatives function of the reduced frequency, for the bimodal 

coupled system in general 𝜔10 ≠ 𝜔̅1 and 𝜔20 ≠ 𝜔̅2. But Chen [18] states that: “The modal 

frequencies of the coupled system are generally very close to those of the corresponding 

uncoupled system at the same wind velocity. In addition, the influence of the uncoupled 

self-excited forces on modal frequencies is not sensitive to the change in reduced 

frequency.” 

Hence: 

 

𝜔̅1 = 𝛺𝑤,1 [1 − 𝜇 (
𝜔

𝛺𝑤,1
)
2

𝐻4
∗]

1

2

≈ 𝜔10  

(3.61) 

𝜔̅2 = 𝛺𝜃,2 [1 − 𝜈 (
𝜔

𝛺𝜃,2
)
2

𝐴3
∗ ]

1

2

≈ 𝜔20  

 

The solution of the coupled system of equations (3.58) and (3.59) is found considering the 

solution of the vertical mode branch 𝜔 = 𝜔1 closer to 𝜔̅1 than 𝜔̅2 and the damping ratio 𝜉 =

𝜉1. The associated amplitude ratio Ф and phase difference between the vertical motion and 

torsion 𝜙, as defined by 𝐵𝛾20/𝑧10 = Ф𝑒𝑖𝜙 are: 

 

 

 

 

𝜔1 = 𝛺𝑤,1(1 + 𝜇𝐻4
∗ + 𝜇𝜈𝐷2Ф′ cos𝜙′)−

1
2 (3.62)  

𝜉1 = 𝛥𝑤,1

𝛺𝑤,1

𝜔̅1
−

1

2
𝜇𝐻1

∗ −
1

2
𝜇𝜈𝐷2Ф′ sin𝜙′ (3.63)  

Ф = 𝜈𝐷𝑅𝑑1 {[(𝐴4
∗ )2 + (𝐴1

∗)2]
𝐺𝑊1𝑊1

𝐺𝛩2𝛩2

}

1
2

 (3.64)  

𝜙 = tan−1
𝐴1

∗

𝐴4
∗ − tan−1

2𝜉2̅
𝜔1
𝜔̅2

1 − (
𝜔1
𝜔̅2

)
2 (3.65)  
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where: 

 

𝑅𝑑1 = (
𝜔1

𝜔̅2
)
2

{[1 − (
𝜔1

𝜔̅2
)
2

]

2

+ [2𝜉2̅

𝜔1

𝜔̅2
]
2

}

−
1
2

 

(3.66) 
Ф′ = 𝑅𝑑1{[(𝐻3

∗)2 + (𝐻2
∗)2][(𝐴4

∗ )2 + (𝐴1
∗)2]}

1
2 

𝜙′ = tan−1
𝐻2

∗

𝐻3
∗ + 𝜙 

 

Notice that a positive value of the phase difference indicates that the vertical motion lags 

the torsional one. 

In a complete similar way, for the torsional modal branch, considering 𝜔 = 𝜔2 closer to 𝜔̅2 

than 𝜔̅1 and the damping ratio 𝜉 = 𝜉2, the solution, expressed trough the amplitude ratio 𝛹 

and phase difference between the vertical motion and torsion 𝜓, as defined by 𝑧10/𝐵𝛾20 =

𝛹𝑒𝑖𝜓 are expressed as: 

 

 

 

 

 

where: 

 

𝑅𝑑2 = (
𝜔2

𝜔̅1
)
2

{[1 − (
𝜔2

𝜔̅1
)
2

]

2

+ [2𝜉1̅

𝜔2

𝜔̅1
]
2

}

−
1
2

 

(3.71) 
𝛹′ = 𝑅𝑑2{[(𝐻3

∗)2 + (𝐻2
∗)2][(𝐴4

∗ )2 + (𝐴1
∗)2]}

1
2 

𝜓′ = tan−1
𝐴1

∗

𝐴4
∗ + 𝜙 

 

𝜔2 = 𝛺𝜃,2(1 + 𝜈𝐴3
∗ + 𝜇𝜈𝐷2𝛹′ cos𝜓′)−

1
2 (3.67)  

𝜉2 = 𝛥𝜃,2

𝛺𝜃,2

𝜔̅2
−

1

2
𝜈𝐴2

∗ −
1

2
𝜇𝜈𝐷2𝛹′ sin𝜓′ (3.68)  

𝛹 = 𝜈𝐷𝑅𝑑2 {[(𝐻3
∗)2 + (𝐻2

∗)2]
𝐺𝛩2𝛩2

𝐺𝑊1𝑊1

}

1
2

 (3.69)  

𝜓 = tan−1
𝐻2

∗

𝐻3
∗ − tan−1

2𝜉1̅
𝜔2
𝜔̅1

1 − (
𝜔2
𝜔̅1

)
2 (3.70)  
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Now a positive value of the phase difference indicates that the torsional motion lags the 

vertical one. 

It is clear from the previous solutions that uncoupled aerodynamic stiffness and damping 

forces enter directly in the equation for the frequency and damping, while the coupled 

terms are represented by the amplitude ratio and the phase difference. The influence of the 

coupled aerodynamic contribution on the variation of frequencies is relatively small, but 

they change in a significant way the torsional and flexural damping. 

Also with this closed form solution, the quantification of the modal frequencies and 

damping ratios of the coupled system requires an iterative process, since the right-hand 

side terms involve unknown frequencies and damping. This iterative process converge 

rapidly and, if one uses the values of frequencies and damping ratios computed at the 

previous wind velocity, it is possible to eliminate the iterative calculations. 

Equations (3.63) and (3.68) highlights the fact that galloping or single torsional mode 

flutter may arise only when 𝐻1
∗ > 0 or 𝐴2

∗ > 0, respectively, in complete agreement with 

§3.3.4 and §3.3.5. 

For bridges with slender deck sections, usually 𝐻1
∗ < 0 and 𝐴2

∗ < 0, which means that the 

uncoupled self-excited forces introduce positive aerodynamic damping in the system. In 

this case, instability is produced by the coupled self-excited terms which introduce a phase 

lag between the modes of vibration. In particular the coupled motion allows the coupled 

self-excited forces to produce a positive damping to the vertical modal branch, being 

sin𝜙′ < 0 in equation (3.63), and a negative damping to the torsional modal branch, being 

sin𝜓′ > 0 in equation (3.68). Therefore the bimodal coupled flutter is likely to be initiated 

from the zeroing of the damping in the torsional branch. 

The proposed framework offers intuitive insight into the significance of both structural and 

aerodynamic characteristics to classical flutter instability. In particular Chen and Kareem 

[19] state that: “The uncoupled self-excited forces due to displacements, i.e., terms related 

to 𝐻4
∗ and 𝐴3

∗ , reduce the modal frequencies and thus have unfavourable influences on 

flutter. The uncoupled self-excited forces due to bridge deck velocities, i.e., terms related 

to 𝐻1
∗ and 𝐴2

∗ , increase the modal damping and thus these are beneficial to flutter. The 

negative damping generated by the coupled forces, i.e., terms related to 𝐻2
∗, 𝐴4

∗ , 𝐻3
∗ and 𝐴1

∗ , 

is the main contributing source that drives the bridge to coupled flutter instability.” 

The flutter derivatives 𝐻3
∗, 𝐴1

∗ , 𝐴2
∗  and 𝐴3

∗  are the most influential to coupled flutter. 
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3.3.7 Simplified closed-Form solutions and Critical Flutter Velocity 

Having said that the modal frequencies of the coupled system are generally very close to 

those of the corresponding uncoupled one, it is possible to simplify equations (3.62) and 

(3.67) without taking into account for the coupling terms: 

 

 

 

When the modal frequencies of the uncoupled system are well separated one from each 

other, 𝑅𝑑1 and 𝑅𝑑2 are not influenced by the values of 𝜉2̅ and 𝜉1̅ respectively, thus they may be 

approximated as: 

 

𝑅𝑑1 ≈ |1 − (
𝜔20

𝜔10
)
2

| 

(3.74) 

𝑅𝑑2 ≈ |1 − (
𝜔10

𝜔20
)
2

| 

 

Moreover, since the most influential flutter derivatives to coupled flutter are 𝐻3
∗, 𝐴1

∗ , 𝐴2
∗  and 

𝐴3
∗  it is possible to accept that 𝐻3

∗𝐴1
∗ + 𝐻2

∗𝐴4
∗ ≈ 𝐻3

∗𝐴1
∗ . Due to this approximation, the 

solutions for the modal damping ratios given by equations (3.63) and (3.68) can be 

simplified as: 

 

 

 

Neglecting the flutter derivative 𝐻4
∗ in equation (3.72) and considering the flutter derivative 

𝐴3
∗  still important in the equation of torsional circular frequency (3.73), the critical flutter 

velocity is determined at the condition of zero modal damping. 

 

 

 

𝜔1 ≈ 𝜔̅1 = 𝛺𝑤,1 [1 − 𝜇 (
𝜔

𝛺𝑤,1
)

2

𝐻4
∗]

1
2

= 𝜔10 = 𝛺𝑤,1(1 + 𝜇𝐻4
∗)−

1
2 (3.72)  

𝜔2 ≈ 𝜔̅2 = 𝛺𝜃,2 [1 − 𝜈 (
𝜔

𝛺𝜃,2
)

2

𝐴3
∗ ]

1
2

= 𝜔20 = 𝛺𝜃,2(1 + 𝜈𝐴3
∗ )−

1
2 (3.73)  

𝜉1 = 𝛥𝑤,1

𝛺𝑤,1

𝜔10
−

1

2
𝜇𝐻1

∗ +
1

2
𝜇𝜈𝐷2

𝐻3
∗𝐴1

∗

1 − (
𝜔20
𝜔10

)
2 

(3.75)  

𝜉2 = 𝛥𝜃,2

𝛺𝜃,2

𝜔20
−

1

2
𝜈𝐴2

∗ −
1

2
𝜇𝜈𝐷2

𝐻3
∗𝐴1

∗

1 − (
𝜔10
𝜔20

)
2 

(3.76)  
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When 𝜉2 = 0, equation (3.76) becomes: 

 

 

where: 

 

1. 𝐾𝑐𝑟 =
𝜔22𝑏

𝑈𝑐𝑟
 is the critical reduced frequency associated to the torsional modal 

branch; 

 

2. 𝜂 =
𝛺𝑤,1

𝛺𝜃,2
 is the frequency ratio. 

 

Realizing that 𝐾0,𝑐𝑟
2 = 𝐾𝑐𝑟

2 (1 + 𝜈𝐴3
∗ ), with 𝐾0,𝑐𝑟 =

𝛺𝜃,2𝑏

𝑈𝑐𝑟
, equation (3.77) can be simplified: 

 

 

According to Chen and Kareem [20], equation (3.78) leads to the critical flutter velocity, 

which can be expressed trough the following closed-form formula: 

 

 

with: 

 

𝛾 =
1

√𝐹1 + 𝐹2

 

(3.80) 

𝐹1 =
𝑟

2𝑏

𝐷2(−𝐾𝑐𝑟
2 𝐻3

∗)(𝐾𝑐𝑟𝐴1
∗)

[(−𝐾𝑐𝑟𝐴2
∗ + 2𝐾𝑐𝑟𝜉𝜃,2(1 + 𝜈𝐴3

∗ )
1
2]

 

𝐹2 =
2𝑏

𝑟
𝐾𝑐𝑟

2 𝐴3
∗  

𝑟 = √
𝐽

𝑚
= √

𝐽𝜃,2

𝑚𝑤,1

𝐺𝑊1𝑊1

𝐺𝛩2𝛩2

= 2𝑏√
𝜇

𝜈
 

 

𝐾𝑐𝑟
2 − 𝜂2𝐾𝑐𝑟

2 (1 + 𝜈𝐴3
∗ ) −

𝜇𝜈𝐷2(−𝐾𝑐𝑟
2 𝐻3

∗)(𝐾𝑐𝑟𝐴1
∗)

[(−𝐾𝑐𝑟𝐴2
∗ + 2𝐾𝑐𝑟𝜉𝜃,2(1 + 𝜈𝐴3

∗ )
1
2]

= 0 (3.77)  

𝐾0,𝑐𝑟
2 (1 − 𝜂2) = 𝜈𝐾𝑐𝑟

2 𝐴3
∗ +

𝜇𝜈𝐷2(−𝑘𝑐𝑟
2 𝐻3

∗)(𝑘𝑐𝑟𝐴1
∗)

[(−𝑘𝑐𝑟𝐴2
∗ + 2𝑘𝑐𝑟𝛥𝜃,2(1 + 𝜈𝐴3

∗ )
1
2]

 (3.78)  

𝑈𝑐𝑟 = 𝛾𝛺𝜃,22𝑏√(1 − 𝜂2) (
𝑚𝑟

8𝜌𝑏3
) (3.79)  
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The parameter 𝛾 depends only on the most important flutter derivatives 𝐻3
∗, 𝐴1

∗ , 𝐴2
∗  and 𝐴3

∗ . 

Obviously the importance of additional flutter derivatives on bridge flutter depends on 

their values and associated mode shape integrals.  

The equation for the evaluation of the flutter critical velocity (3.79) is very similar to the 

well-known empirical Selberg’s formula, proposed in his work published in 1961 [51]. 

Nevertheless there is a slight difference between the two formulas, indeed in the one found 

by Chen and Kareem [20] the parameter 𝛾 depends on the reduced flutter velocity, while in 

the Selberg’s formula, it is taken as a constant assuming the value of 0.416. Moreover 

since Selberg found its empirical formulation based on the numerical prediction of critical 

flutter velocities of flat plate section bridges, the simplified formulation written in (3.79) 

can be considered as its extension for bridges with generic cross section. 

Another important aspect is that the parameter 𝛾 is insensitive to the value of the reduced 

velocity when it becomes very high, 𝑈∗ =
𝑈

𝑓𝐵
> 10 ÷ 15, in accordance with the Quasi 

steady theory (§3.3.1). Hence, it allows for an expeditious assessment of flutter 

performance of a given deck section, without implementing a flutter analysis. 

3.4 NON-DIMENSIONAL AEROELASTIC EQ. OF MOTION 

Up to now all the considerations about Aeroelastic effects have been done considering 

generic dimensional deck equations of motion. It is necessary to write the Aeroelastic 

components in non-dimensional format, so as to adapt this theory to the structural model 

considered. It is possible to do that starting from equations (2.32) and (2.33) considering 

only the linear components and the Aeroelastic effects.  

 

 

 

Repeating the same passages of §2.3 and introducing the same non-dimensional quantities 

the equations of motion become: 

 

(𝑚𝑑 + 2𝑚𝑐) ∙ 𝑤̈𝑑 + 𝐸𝑑𝐼𝑑 ∙ 𝑤𝑑
′𝑣 − 2𝐻 ∙ 𝑤𝑑

′′ − 2𝑦′′ ∙ ℎ𝑤 = 𝐿 =
1

2
𝜌𝑈22𝑏 ∙ [𝐾𝑤𝐻1

∗ 𝑤̇𝑑

𝑈
+

+𝐾𝜃𝐻2
∗ 2𝑏𝜃̇𝑑

𝑈
+ 𝐾𝜃

2𝐻3
∗𝜃𝑑 + 𝐾𝑤

2𝐻4
∗ 𝑤𝑑

2𝑏
]  

(3.81)  

(𝐽𝑡 + 2𝑚𝑐𝑏
2) ∙ 𝜃̈𝑑 + 𝐸𝑑Γ𝑑 ∙ 𝜃𝑑

′𝑣 − 𝐺𝑑𝐽𝑑 ∙ 𝜃𝑑
′′ − 2𝐻𝑏2 ∙ 𝜃𝑑

′′ − 2ℎ𝜃𝑏2 ∙ 𝜃𝑑
′′ = 𝑀 =

1

2
𝜌𝑈2(2𝑏)2 ∙ [𝐾𝑤𝐴1

∗ 𝑤̇𝑑

𝑈
+ 𝐾𝜃𝐴2

∗ 2𝑏𝜃̇𝑑

𝑈
+ 𝐾𝜃

2𝐴3
∗𝜃𝑑 + 𝐾𝑤

2𝐴4
∗ 𝑤𝑑

2𝑏
]  

(3.82)  

𝑤̈̃𝑑 + 𝑐̃𝑤 ∙ 𝑤̇̃𝑑 + 𝜇2 ∙ 𝑤̃𝑑
′𝑣 − 𝑤̃𝑑

′′ + 𝜆1
2 ∙ ℎ̃𝑤 = 𝜌𝑈𝑏𝐾𝑤𝐻1

∗ 𝑙

√2𝐻(𝑚𝑑+2𝑚𝑐)
∙ 𝑤̇̃𝑑 +

+𝜌𝑈2𝑏𝐾𝜃𝐻2
∗ 𝑙

√2𝐻(𝑚𝑑+2𝑚𝑐)
∙ 𝜃̇̃𝑑 + 𝜌𝑈2𝐾𝜃

2𝐻3
∗ 𝑙2

2𝐻
∙ 𝜃̃𝑑 + +

1

2
𝜌𝑈2𝐾𝑤

2𝐻4
∗ ∙ 𝑤̃𝑑  

(3.83)  
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Introducing the definition of the torsional divergence (eq. (3.43)) and recalling the 

definition of aerodynamic mass (eq. (3.47)), the two equations of motion can be rewritten 

in non-dimensional form: 

 

 

 

where 𝑢̃ =
𝑈

𝑈𝐷
 represents the mean wind speed normalized with respect to the critical 

torsional divergence velocity.  

The reduced frequency must be converted in non-dimensional form by changing the 

dimensional circular frequency with the non-dimensional one: 

 

 

The imaginary part of the frequency comes out from the generalization of the time varying 

terms in the modal projection (2.43) and (2.62). In fact, in order to take into account for the 

damping effect, they have to be slightly modified as: 

 

 

 

being 𝜆̃(∙) = −𝜉(∙)𝜔̃(∙) + 𝑖𝜔̃(∙)√1 − 𝜉(∙)
2 = −𝜉𝜔̃(∙) + 𝑖𝜔̃𝐷,(∙) . 

The non-dimensional equations of motion can be then projected in the modal space 

following the same procedure adopted in §2.4. 

𝐽𝑡 ∙ 𝜃̈̃𝑑 + 𝑐̃𝜃 𝜃̇̃𝑑 +
𝛽2

𝜒2 ∙ 𝜃̃𝑑
′𝑣 − (1 + 𝛽2) ∙ 𝜃̃𝑑

′′ + 𝜆1
2ℎ̃𝜃 =

1

2
𝜌𝑈4𝑏𝐾𝑤𝐴1

∗ 𝑙

√2𝐻(𝑚𝑑+2𝑚𝑐)
∙ 𝑤̇̃𝑑 +

𝜌𝑈4𝑏𝐾𝜃𝐴2
∗ 𝑙

√2𝐻(𝑚𝑑+2𝑚𝑐)
∙ 𝜃̇̃𝑑 + 2𝜌𝑈2𝐾𝜃

2𝐴3
∗ 𝑙2

2𝐻
∙ 𝜃̃𝑑 + 𝜌𝑈2𝐾𝑤

2𝐴4
∗ ∙ 𝑤̃𝑑  

(3.84) 

𝑤̈̃𝑑 + 𝑐̃𝑤 ∙ 𝑤̇̃𝑑 + 𝜇2 ∙ 𝑤̃𝑑
′𝑣 − 𝑤̃𝑑

′′ + 𝜆1
2 ∙ ℎ̃𝑤 =

1

𝜋
𝑢̃√𝐽𝑡√𝑚̃𝑎𝐾𝑤𝐻1

∗𝛺̃𝜃,𝑚 ∙ 𝑤̇̃𝑑 +

2

𝜋
𝑢̃√𝐽𝑡√𝑚̃𝑎𝐾𝜃𝐻2

∗𝛺̃𝜃,𝑚 ∙ 𝜃̇̃𝑑 +
1

𝜋
𝑢̃2𝐽𝑡𝐾𝜃

2𝐻3
∗𝛺̃𝜃,𝑚

2 ∙ 𝜃̃𝑑 + +
1

2𝜋
𝑢̃2𝐽𝑡𝐾𝑤

2𝛺̃𝜃,𝑚
2 𝐻4

∗ ∙ 𝑤̃𝑑  
(3.85)  

𝐽𝑡 ∙ 𝜃̈̃𝑑 + 𝑐̃𝜃 ∙ 𝜃̇̃𝑑 +
𝛽2

𝜒2 ∙ 𝜃̃𝑑
′𝑣 − (1 + 𝛽2) ∙ 𝜃̃𝑑

′′ + 𝜆1
2 ∙ ℎ̃𝜃 =

2

𝜋
𝑢̃√𝐽𝑡√𝑚̃𝑎𝐾𝑤𝐴1

∗𝛺̃𝜃,𝑚 ∙ 𝑤̇̃𝑑 +

+
4

𝜋
𝑢̃√𝐽𝑡√𝑚̃𝑎𝐾𝜃𝐴2

∗ 𝛺̃𝜃,𝑚 ∙ 𝜃̇̃𝑑 +
2

𝜋
𝑢̃2𝐽𝑡𝐾𝜃

2𝐴3
∗ 𝛺̃𝜃,𝑚

2 ∙ 𝜃̃𝑑 + +
1

𝜋
𝑢̃2𝐽𝑡𝐾𝑤

2𝛺̃𝜃,𝑚
2 𝐴4

∗ ∙ 𝑤̃𝑑  
(3.86)  

𝐾(∙) =
2𝑏

𝑈
(𝜔𝐷,(∙) + 𝑖𝜉(∙)𝜔(∙)) =  

2𝑏

𝑈
√

2𝐻

𝑙2
1

√(𝑚𝑑 + 2𝑚𝑐)
(𝜔̃𝐷,(∙) + 𝑖𝜉(∙)𝜔̃(∙))

=
2√𝑚̃𝑎

√𝐽𝑡𝛺̃𝜃,𝑚𝑢̃
(𝜔̃𝐷,(∙) + 𝑖𝜉(∙)𝜔̃(∙)) 

(3.87)  

𝑧𝑛(𝜏) = 𝑍𝑛 exp(𝜆̃𝑤,𝑛 ∙ 𝜏) + 𝑍𝑛
∗ exp(−𝜆̃𝑤,𝑛 ∙ 𝜏) (3.88)  

𝛾𝑚(𝜏) = 𝛤𝑚 exp(𝜆̃𝜃,𝑚 ∙ 𝜏) + 𝛤𝑚
∗ exp(−𝜆̃𝜃,𝑚 ∙ 𝜏) (3.89)  
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The quadratic stiffness coupling term in the second equation is retained in view of its 

importance on the stability analysis and the forcing terms 𝛤𝑤,𝑛  and 𝛤𝜃,𝑚  can be associated 

to buffeting, vortex shedding or other external actions acting on the bridge deck section. 

All the structural and aerodynamic terms governing the Aeroelastic system of equations of 

motion are listed below. 

 

𝑀𝑤,𝑛 = ∫ 𝑊𝑛
2(𝜉)𝑑𝜉

1

0

 

(3.92) 

𝐽𝜃,𝑚 = 𝐽𝑡𝑀𝜃,𝑚 = 𝐽𝑡 ∫ 𝛩𝑚
2 (𝜉)𝑑𝜉

1

0

 

𝐷𝑤,𝑛 = 2𝛥𝑤,𝑛𝛺̃𝑤,𝑛𝑀𝑤,𝑛  

𝐷𝜃,𝑚 = 2𝛥𝜃,𝑚𝛺̃𝜃,𝑚𝐽𝑡𝑀𝜃,𝑚  

𝐷𝑤,𝑛
𝐴𝑒𝑟𝑜 =

1

𝜋
𝑢̃√𝐽𝑡√𝑚̃𝑎𝐾𝑤𝐻1

∗𝛺̃𝜃,𝑚𝑀𝑤,𝑛  

𝐷𝑤𝜃,𝑛𝑚
𝐴𝑒𝑟𝑜 =

2

𝜋
𝑢̃√𝐽𝑡√𝑚̃𝑎𝐾𝜃𝐻2

∗𝛺̃𝜃,𝑚ℎ̃𝑊𝑛𝛩𝑚
 

𝐷𝜃,𝑚
𝐴𝑒𝑟𝑜 =

4

𝜋
𝑢̃√𝐽𝑡√𝑚̃𝑎𝐾𝜃𝐴2

∗ 𝛺̃𝜃,𝑚𝑀𝜃,𝑚  

𝐷𝜃𝑤,𝑚𝑛
𝐴𝑒𝑟𝑜 =

2

𝜋
𝑢̃√𝐽𝑡√𝑚̃𝑎𝐾𝑤𝐴1

∗𝛺̃𝜃,𝑚ℎ̃𝑊𝑛𝛩𝑚
 

𝐾𝑤,𝑛
(𝐿)

= 𝛺̃𝑤,𝑛
2 𝑀𝑤,𝑛  

𝐾𝜃,𝑚
(𝐿)

= 𝛺̃𝜃,𝑚
2 𝐽𝑡𝑀𝜃,𝑚  

𝑀𝑤,𝑛 ∙ 𝑧̈𝑛  + (𝐷𝑤,𝑛 − 𝐷𝑤,𝑛
𝐴𝑒𝑟𝑜) ∙ 𝑧̇𝑛 + 𝐷𝑤𝜃,𝑛𝑚

𝐴𝑒𝑟𝑜 ∙ 𝛾̇𝑚 + (𝐾𝑤,𝑛
(𝐿)

− 𝐾𝑤,𝑛
(𝐿),𝐴𝑒𝑟𝑜

) ∙ 𝑧𝑛 +

+𝐾𝑤𝜃,𝑛𝑚
(𝐿),𝐴𝑒𝑟𝑜

𝛾𝑚 = 𝛤𝑤,𝑛    
(3.90)  

𝐽𝜃,𝑚 ∙ 𝛾̈𝑚  + (𝐷𝜃,𝑚 − 𝐷𝜃,𝑚
𝐴𝑒𝑟𝑜) ∙ 𝛾̇𝑚 + 𝐷𝜃𝑤,𝑚𝑛

𝐴𝑒𝑟𝑜 ∙ 𝑧̇𝑛 + (𝐾𝜃,𝑚
(𝐿)

− 𝐾𝜃,𝑚
(𝐿),𝐴𝑒𝑟𝑜) ∙ 𝛾𝑚 +

+𝐾𝜃𝑤,𝑚𝑛
(𝐿),𝐴𝑒𝑟𝑜

𝑧𝑛 + 𝐾𝜃𝑤,𝑚𝑛
(𝑄)

∙ 𝛾𝑚𝑧𝑛 = 𝛤𝜃,𝑚   
(3.91)  



Effects of Internal Parametric Resonance on the Aerodynamic Behaviour of Long-span Suspension Bridges 

 

90 WIND EFFECTS 

𝐾𝜃𝑤,𝑚𝑛
(𝑄)

= 𝜆2
2 [2ℎ̃𝛩𝑚

ℎ̃𝑊𝑛
′𝛩𝑚

′ + ℎ̃𝑊𝑛
ℎ̃

𝛩𝑚
′2] 

𝐾𝑤,𝑛
(𝐿),𝐴𝑒𝑟𝑜

=
1

2𝜋
𝑢̃2𝐽𝑡𝐾𝑤

2𝛺̃𝜃,𝑚
2 𝐻4

∗𝑀𝑤,𝑛  

𝐾𝑤𝜃,𝑛𝑚
(𝐿),𝐴𝑒𝑟𝑜 =

1

𝜋
𝑢̃2𝐽𝑡𝐾𝜃

2𝐻3
∗𝛺̃𝜃,𝑚

2 ℎ̃𝑊𝑛𝛩𝑚
 

𝐾𝜃,𝑚
(𝐿),𝐴𝑒𝑟𝑜

=
2

𝜋
𝑢̃2𝐽𝑡𝐾𝜃

2𝐴3
∗ 𝛺̃𝜃,𝑚

2 𝑀𝜃,𝑚  

𝐾𝜃𝑤,𝑚𝑛
(𝐿),𝐴𝑒𝑟𝑜

=
1

𝜋
𝑢̃2𝐽𝑡𝐾𝑤

2𝛺̃𝜃,𝑚
2 𝐴4

∗ ℎ̃𝑊𝑛𝛩𝑚
 

 

In the present case, the unsteady forcing terms appearing in the right hand-side of the 

modal equations of motion of the complete Aeroelastic model (3.90) and (3.91) are related 

to vortex shedding only. Assuming that the periodic resultant force due to vortex shedding 

is applied in the centre of stiffness of the deck section, no external forcing moments are 

generated by the vortex shedding effect (𝛤𝜃,𝑚 = 0). The lift force acting on the deck 

sectional model is periodic and in the lock-in range it can be expressed trough a sinusoidal 

function, as in equation (3.11). 

In order to model the self-limiting behaviour of vortex induced vibrations, the simple 

formula proposed in equation (3.11) has to be slightly modified. To do this, a damping 

term dependent on the vibration itself can be introduced, e.g. a Van der Pol oscillator.  

Scanlan [49] proposed a linearized form for the vortex induced oscillations modelling that 

brings it into conformity with the flutter derivative expressions. The principal difficulties 

of doing this was that, while flutter derivatives methods remain linear, at least for small 

amplitudes, vortex excitation is recognized as a distinctly nonlinear phenomenon. Anyway, 

in the lock-in range the author proposed the following formula for the lift force due to 

vortex shedding: 

 

 

Since the proposed Aeroelastic model already takes into account for the complete set of 

flutter derivatives, in order not to consider the contribution due to 𝐻1
∗ twice, only the 

sinusoidal term is retained in the lift force expression (3.93). Thus expression (3.11) for the 

lift force is still valid. 

In order to introduce this external sinusoidal forcing term due to vortex shedding in the 

presented model, it is necessary to make it non-dimensional and to project it in the modal 

𝐿 =
1

2
𝜌𝑈22𝑏 ∙ (𝐾𝐻1

∗ 𝑤̇

𝑈
+ 𝐶𝐿 ∙ 𝑠𝑖𝑛(𝜔𝑉𝑆𝑡))  (3.93)  



Effects of Internal Parametric Resonance on the Aerodynamic Behaviour of Long-span Suspension Bridges 

 

 

WIND EFFECTS 91 

space. Therefore, starting from equation (3.11) it is possible to write the non-dimensional 

projected external forcing term 𝛤𝑤,𝑛  as: 

 

 

where: 

 

1. 𝑏̃ =
𝑏

𝑓
 is the half deck-width adimensionalized with respect to the sag of the cables; 

 

2. 𝑐̃𝐿 =
𝐶𝐿

2𝜋
 is the lift coefficient adimensionalized with respect to the flat plate 

condition; 

 

3. 𝑢̃ =
𝑈

𝑈𝐷
 is the mean wind speed normalized with respect to the critical torsional 

divergence velocity. 

 

In a more compact form: 

 

 

being 

 

 

The vortex shedding frequency in non-dimensional format is: 

 

 

The introduction of a new non-dimensional parameter, namely the deck sectional aspect 

ratio 𝛼̃ =
2𝑏

𝐷
, leads to the following expression for the shedding frequency: 

 

From literature the deck sectional aspect ratio ranges from a value of 𝛼̃ = 3 to a value of 

𝛼̃ = 12. The smaller is 𝛼̃, the bluffer is the body. 

𝛤𝑤,𝑛 =
1

2
𝜌𝑈22𝑏𝐶𝐿 ∙

𝑙2

2𝐻𝑓
∙ 𝑠𝑖𝑛 (𝜔𝑉𝑆 ∙ 𝑙√

𝑚𝑑+2𝑚𝑐

2𝐻
∙ 𝜏) ∙ ∫ 𝑊𝑛(𝜉)𝑑

1

0
𝜉 = 2 ∙

𝑏

𝑓
∙
𝑈2

𝑈𝐷
2 ∙

𝐶𝐿

2𝜋
∙

𝛺̃𝜃,𝑚
2 𝐽𝑡 ∙ 𝑠𝑖𝑛(𝜔̃𝑉𝑆 ∙ 𝜏) ∙ ℎ̃𝑊𝑛

= 2𝑏̃𝑐̃𝐿𝛺̃𝜃,𝑚
2 𝐽𝑡 ∙ 𝑢̃2 ∙ ℎ̃𝑊𝑛

∙ 𝑠𝑖𝑛(𝜔̃𝑉𝑆 ∙ 𝜏)  

(3.94)  

𝛤𝑤,𝑛 = 𝛤0 ∙ ℎ̃𝑊𝑛
∙ 𝑠𝑖𝑛(𝜔̃𝑉𝑆 ∙ 𝜏) (3.95)  

𝛤0 = 2𝑏̃𝑐̃𝐿𝛺̃𝜃,𝑚
2 𝐽𝑡 ∙ 𝑢̃2 (3.96)  

𝜔̃𝑉𝑆 = 𝜔𝑉𝑆 ∙ 𝑙√
𝑚𝑑 + 2𝑚𝑐

2𝐻
= 2𝜋𝑆𝑡 ∙

𝑈

𝐷
√

𝑙2(𝑚𝑑 + 2𝑚𝑐)

2𝐻
=

2𝑏

𝐷
𝜋𝑆𝑡

𝑈

𝑈𝐷

√
𝐽𝑡
𝑚̃𝑎

𝛺̃𝜃,𝑚 (3.97)  

𝜔̃𝑉𝑆 = 𝜋𝑆𝑡𝛼̃√
𝐽𝑡
𝑚̃𝑎

𝛺̃𝜃,𝑚 ∙ 𝑢̃ (3.98)  
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The vortex shedding phenomenon is characterized by a lock-in range in which the 

frequency of vibration of the structure drives the frequency of shedding of the vortices. It 

happens in a range of velocity that, for systems characterized by low structural damping, is 

in between 0.8 ≤ 𝑢̃𝑙𝑜𝑐𝑘−𝑖𝑛 ≤ 1.5. It is possible to find the lock-in velocity by setting 𝜔̃𝑉𝑆 =

𝛺̃𝑤,𝑛 in equation (3.98): 

 

 

 

 

 

𝑢̃𝑙𝑜𝑐𝑘−𝑖𝑛 =
𝛺̃𝑤,𝑛

𝛺̃𝜃,𝑚

∙ √
𝑚̃𝑎

𝐽𝑡
∙

1

𝜋𝑆𝑡𝛼̃
 (3.99)  
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4 INTERRELATION BETWEEN DIVERGENCE, 

FLUTTER AND PARAMETRIC RESONANCE 

A recent work by Arioli and Gazzola [7] showed that suspension bridges can suffer 

of instability due to internal parametric resonance. They suggested a mathematical model 

for the study of the bridge’s dynamical behaviour, able to explain that the appearance of 

torsional oscillation is due to internal parametric resonance. This phenomenon is 

characterized by a continuous exchange of energy between the flexural and the torsional 

mode of vibrations and it can happen for particular torsional to flexural frequency ratio. 

The simplest model able to exhibit the parametric resonance instability phenomenon is the 

elastic pendulum, a simple pendulum with a spring incorporated in its string. Several 

studies were carried out by different authors about the elastic pendulum. Anicin et al. [5] 

studied the linear theory of the elastic pendulum, while Arinstein and Davidovic [6] 

developed a non-linear analysis on the inverted spring pendulum highlighting the principal 

differences with the linear analysis. Cross [23] made different experimental tests for two 

different pendulums, explaining the conditions for the appearance of parametric resonance 

instability and the continuous transfer of energy between two vibrating modes. 

A long-span suspension bridge is prone to suffer of static divergence and flutter. The 

simplest structural model able to represent these two phenomena is the inverted 2 DoFs 

pendulum subjected to a non-conservative follower force. Herrmann and Bungay [30] 

found different regions of instability due to static divergence and flutter, in function of 

only one parameter describing the inclination of the force with respect to the beam. 

Few years later this work, Herrmann and Hauger [31] extended the previous model with 

the addition of a 3rd Degree of Freedom, a linear spring able to catch the axial extensibility 

of one beam. By doing this, the inverted pendulum subjected to a follower force is capable 

to exhibit all the three instability phenomena possible also on a suspension bridge, i.e. 

static divergence, flutter and internal parametric resonance. Different regions of instability 

can be determined as a function of the parameter describing the inclination of the force 

with respect to the beam, demonstrating that these three different kind of instability are 

strictly related. 

Inspired by the work of Hermann and Hauger [31] the equations of motion of the deck 

sectional model can be extended in order to find a possible interrelation between the 

aforementioned instability phenomena. 
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4.1 THE ELASTIC PENDULUM 

The extensible, or elastic, pendulum is a simple pendulum with a spring incorporated in its 

string (Figure 4.1). 

 

 

Figure 4.1: The elastic pendulum 

The linear equations of motion can be written by means of the Lagrange equations: 

 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑦̇
) −

𝜕𝐿

𝜕𝑦
= 0 

(4.1) 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝜃̇
) −

𝜕𝐿

𝜕𝜃
= 0 

 

being 𝐿 = 𝑇 − 𝑉 =
1

2
𝑀(𝑦̇2 + 𝐿2𝜃̇2) −

1

2
𝑘𝑦2 − 𝑀𝑔(𝐿0 − 𝐿 ∙ 𝑐𝑜𝑠𝜃) the Lagrange function, 

defined as the difference between the kinetic and the potential energy. 

The substitution of this expression into (4.1) leads to the two governing equations of the 

elastic pendulum: 

 

𝑦̈ + 𝜔2
2𝑦 − 𝑔 ∙ 𝑐𝑜𝑠𝜃 − 𝐿𝜃̇2 = 0 

(4.2) 

𝜃̈ +
2 ∙ 𝑦̇ ∙ 𝜃̇ + 𝑔 ∙ 𝑠𝑖𝑛𝜃

𝐿
= 0 

 

having defined 𝜔2
2 =

𝑘

𝑀
 and 𝜔1

2 =
𝑔

𝐿0
 the circular frequencies of the spring motion and of the 

pendulum motion respectively. 
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The mass attached at the end of the spring can oscillate vertically, horizontally or both at 

the same time. Experimental investigations show a particular behaviour when the 

combination of pendulum length, spring stiffness and mass are such that the frequency of 

the vertical harmonic oscillations is exactly or nearly twice the pendulum frequency. In 

fact under those circumstances the vertical oscillations become parametrically unstable and 

any small perturbation of the mass from the vertical equilibrium configuration results in an 

exponentially increasing horizontal (or pendulum) oscillation. The growth of the latter 

stops when most of the energy of the original vertical oscillation is converted into energy 

of pendulum motion. The process is now reversed as the centrifugal force, with two cycles 

of oscillation in the pendulum period, acts as an excitation term to the vertical harmonic 

oscillations, which build up until the initial state is restored, only to start a new cycle of the 

recurrence process.  

Thus, energy is constantly flowing from the vertical motion into the horizontal and vice 

versa. This result is easily observed in Figure 4.2, taken by [23], where the time history of 

oscillations of an elastic pendulum having double vertical frequency with respect to the 

pendulum frequency is plotted. 

 

 

Figure 4.2: x and y coordinates versus time for a mass released from the vertical equilibrium position 

The vertical equilibrium position of the mass attached to the spring is perturbed at the 

beginning of the experiment. After few seconds an horizontal oscillation develops and 

grows in amplitude with time because of the horizontal restoring force on the mass, which 

is a nonlinear function of the horizontal displacement. As a result, the oscillation frequency 

in the vertical direction decreases, the vertical and horizontal oscillations drift into phase 

and the horizontal amplitude stops increasing. The phase between x and y continues to 

drift, causing the horizontal amplitude to decrease until the oscillation is almost purely 

vertical. This process then repeats several times if the pendulum is lightly damped. 
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4.2 THE INVERTED 2 DOFS PENDULUM SUBJECTED TO A 

FOLLOWER FORCE 

Free motions of a linear elastic non-dissipative two Degree of Freedom system, subjected 

to a static non-conservative force (Figure 4.3), are analyzed by Hermann and Bungay [30] 

with the aim of studying the connection between two different instability mechanisms, 

namely the static divergence and flutter. 
 

 

Figure 4.3: Inverted 2 DoFs pendulum subjected to a static non-conservative force 

By means of simple equilibrium considerations it is possible to write the non-linear 

equations governing the system: 

 

(𝑚1 + 𝑚2)𝑙
2𝜑̈1 + 𝑚2𝑙

2𝜑̈2 𝑐𝑜𝑠(𝜑2 − 𝜑1) − 𝑚2𝑙
2𝜑̇2

2 𝑠𝑖𝑛(𝜑2 − 𝜑1) + 𝑐(2𝜑1 − 𝜑2) +

+𝑄𝑙𝑠𝑖𝑛 (𝛼𝜑2 − 𝜑1) = 0  
(4.3) 

𝑚2𝑙
2𝜑̈1 𝑐𝑜𝑠(𝜑2 − 𝜑1) + 𝑚2𝑙

2𝜑̈2 + 𝑚2𝑙
2𝜑̇1

2 𝑠𝑖𝑛(𝜑2 − 𝜑1) − 𝑐𝜑1 + 𝑐𝜑2 +

+𝑄𝑙𝑠𝑖𝑛 ((𝛼 − 1)𝜑2) = 0  

 

The stability analysis can be restricted to a linearized formulation: 

 

(𝑚1 + 𝑚2)𝑙
2𝜑̈1 + 𝑚2𝑙

2𝜑̈2 + 𝑐(2𝜑1 − 𝜑2) = 𝑄𝑙𝜑1 − 𝑄𝑙𝛼𝜑2 

(4.4) 

𝑚2𝑙
2𝜑̈1 + 𝑚2𝑙

2𝜑̈2 − 𝑐𝜑1 + 𝑐𝜑2 = −(𝛼 − 1)𝜑2𝑄𝑙  

 

This is a system of Ordinary Differential Equations which can be solved by seeking a 

solution in the form 𝜑𝑘 = 𝐴𝑘𝑒𝑖𝜔𝑡. 
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The analysis consists in the determination of the two natural frequencies of free vibration 

as a function of the loading. They can be determined by substituting the solution into the 

system of equations (4.4) and by setting the determinant of the resulting system equal to 

zero. From the latter condition the following equation is obtained: 
 

(𝑚1𝑚2)𝑙
4𝜔4 + (𝑐𝑚1 + 5𝑐𝑚2 − 2𝑚2𝑄𝑙 − (1 − 𝛼)𝑄𝑙𝑚1)𝑙

2𝜔2 + (𝑐2 + (1 − 𝛼)𝑄2𝑙2 +

−3𝑐𝑄𝑙(1 − 𝛼)) = 0  
(4.5) 

 

This results in four characteristic roots occurring in pairs, the positive and negative roots of 

𝜔2. Depending on the values of the natural frequencies, different possibilities can occur: 
 

1. For a negative value of 𝜔2, one root describes an exponential divergent motion, 

indicating the condition for static buckling; 
 

2. 𝜔2 = 0 corresponds to the neutral equilibrium in the adjacent configuration; 
 

3. For a complex value of 𝜔2, having passed a common real value at the critical 

loading, the roots describe an oscillatory motion with a definite period but with an 

exponentially increasing amplitude. This is the condition for flutter. 
 

Therefore the system is stable if and only if both 𝜔2 are real and positive. With the aid of 

the parameter 𝛼 the authors have been able to show a connection between instability 

phenomena of divergence and flutter, as shown in Figure 4.4. 
 

 

Figure 4.4: Critical loads vs. α 

Obviously 𝛼 = 0 represents a conservative system, whereas 𝛼 = 1 represents the case of a 

follower force. The phenomenon of flutter is limited only to a range of positive values of 

𝛼, which means that the corresponding critical load are compressive. 
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4.3 THE INVERTED 2 DOFS ELASTIC PENDULUM SUBJECTED 

TO A FOLLOWER FORCE 

The idea had from Herrmann and Hauger was to modify the 2 DoFs pendulum model, 

taking into account also for the effect of compressibility. To do this, one of the rigid bars 

was replaced by a linear elastic spring, assumed to be always straight regardless of its 

length. The model obtained is the 3 DoFs model depicted in Figure 4.5. 

 

 

Figure 4.5: Inverted 2 DoFs elastic pendulum subjected to a follower force 

It is important to highlight the fact that this model is able to capture all the instability 

phenomena of interest, namely static divergence, flutter and parametric resonance. In fact: 

 

1. The suppression of the DoF associated to the linear spring leads to the same model 

already analyzed in §4.2, able to exhibit both flutter and static divergence; 

 

2. The suppression of one of the two rotational DoFs leads to the inverted elastic 

pendulum described in §4.1, able to exhibit the parametric resonance phenomenon. 

 

Therefore, through this model, it is possible to study the interaction between divergence 

and flutter on one hand and auto-parametric excitation on the other. 

The equations of motion of the system depicted in Figure 4.5 are written considering the 

dimensionless generalized coordinates 𝑞1 = φ1, q2 = φ2 and 𝑞3 =
𝑥

𝑙0
.  
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From simple equilibrium considerations: 

 

(𝑚1 + 𝑚2)𝑙0
2𝑞̈1𝑞3

2 + 𝑚2𝑙0
2𝑞̈2𝑞3 𝑐𝑜𝑠(𝑞2 − 𝑞1) + 2(𝑚1 + 𝑚2)𝑙0

2𝑞̇1𝑞̇3𝑞3 +

−𝑚2𝑙0
2𝑞̇2

2𝑞3 𝑠𝑖𝑛(𝑞2 − 𝑞1) + 2𝑐𝑞1 − 𝑐𝑞2 = −𝑞3𝑄𝑙0𝑠𝑖𝑛 (𝛼𝑞2 − 𝑞1)  

(4.6) 
𝑚2𝑙0

2[𝑞̈1𝑞3 𝑐𝑜𝑠(𝑞2 − 𝑞1) + 𝑞̈2 − 𝑞̈3 𝑠𝑖𝑛(𝑞2 − 𝑞1) + 2𝑞̇1𝑞̇3 cos(𝑞2 − 𝑞1) + 𝑞̇1
2𝑞3 𝑠𝑖𝑛(𝑞2 +

−𝑞1)] − 𝑐𝑞1 + 𝑐𝑞2 = −𝑄𝑙0𝑠𝑖𝑛 ((𝛼 − 1)𝑞2)  

(𝑚1 + 𝑚2)𝑙0
2𝑞̈3 − 𝑚2𝑙0

2𝑞̈2 sin(𝑞2 − 𝑞1) − (𝑚1 + 𝑚2)𝑙0
2𝑞̇1

2𝑞3 − 𝑚2𝑙0
2𝑞̇2

2 cos(𝑞2 − 𝑞1) +

𝐾𝑙0
2𝑞3 − 𝐾𝑙0

2 = −𝑄𝑙0𝑐𝑜𝑠 (𝛼𝑞2 − 𝑞1)  

 

where: 

 

1. 𝑙0 is the unloaded length of the two bars; 

 

2. 𝐾 is the stiffness of the spring; 

 

3. 𝑄 is the intensity of the load applied at an angle 𝛼𝜑2 with respect to the vertical. 

 

The abovementioned system is a non-linear system of Differential Equations for which it is 

not possible to give a general solution. However, a particular solution can be expressed as: 

 

𝑞1
𝑓

≡ 0 
(4.7) 

𝑞2
𝑓

≡ 0  

 

which, substituted in the equations of motions, yields to: 

 

(𝑚1 + 𝑚2)𝑞̈3
𝑓

+ 𝐾𝑞3
𝑓

= 𝐾 −
𝑄

𝑙0
 (4.8) 

 

This is the classical equation of a 1 DoF oscillator, which has general solution: 

 

𝑞3
𝑓

= 1 −
𝑄

𝐾𝑙0
+ 𝜉 cos(𝜔𝑡 + 𝜖) (4.9) 

 

where: 

 

1. 𝜔2 =
𝐾

𝑚1+𝑚2
 is the circular frequency of oscillation; 

 

2. 𝜉 and 𝜖 are the amplitude and the phase lag of the response, respectively. 
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The aim of the analysis is to obtain information regarding the stability of the particular 

solution (4.9).  

The approach used is the one proposed by Bolotin [13], which consists in the introduction 

of a small, but non vanishing perturbation of the motion in order to find the so called linear 

Variational equations.  

 

𝑞𝑗 = 𝑞𝑗
𝑓

+ 𝑞𝑗
𝑝

 (4.10) 

 

The substitution of the perturbed motion (4.10) into equations (4.6) leads to a set of non-

linear equations: 

 

(𝑚1 + 𝑚2)𝑙0
2𝑞̈1𝑞3

2 + (𝑚1 + 𝑚2)𝑙0
2𝑞̈1𝑞3

𝑓2
+ 𝑚2𝑙0

2𝑞̈2𝑞3 𝑐𝑜𝑠(𝑞2 − 𝑞1) +

+𝑚2𝑙0
2𝑞̈2𝑞3

𝑓
𝑐𝑜𝑠(𝑞2 − 𝑞1) + 2(𝑚1 + 𝑚2)𝑙0

2𝑞̇1𝑞̇3𝑞3 + 2(𝑚1 + 𝑚2)𝑙0
2𝑞̇1𝑞̇3

𝑓
𝑞3

𝑓
+

−𝑚2𝑙0
2𝑞̇2

2𝑞3 𝑠𝑖𝑛(𝑞2 − 𝑞1) − 𝑚2𝑙0
2𝑞̇2

2𝑞3
𝑓
𝑠𝑖𝑛(𝑞2 − 𝑞1) + 2𝑐𝑞1 − 𝑐𝑞2 + 𝑞3𝑄𝑙0𝑠𝑖𝑛 (𝛼𝑞2 +

−𝑞1) + 𝑞3
𝑓
𝑄𝑙0𝑠𝑖𝑛 (𝛼𝑞2 − 𝑞1) = 0  

(4.11) 

𝑚2𝑙0
2[𝑞̈1𝑞3 𝑐𝑜𝑠(𝑞2 − 𝑞1) + 𝑞̈1𝑞3

𝑓
𝑐𝑜𝑠(𝑞2 − 𝑞1) + 𝑞̈2 − 𝑞̈3 𝑠𝑖𝑛(𝑞2 − 𝑞1) − 𝑞̈3

𝑓
𝑠𝑖𝑛(𝑞2 +

−𝑞1) + 2𝑞̇1𝑞̇3 cos(𝑞2 − 𝑞1) + 2𝑞̇1𝑞̇3
𝑓
cos(𝑞2 − 𝑞1) + 𝑞̇1

2𝑞3 𝑠𝑖𝑛(𝑞2 − 𝑞1) +

+𝑞̇1
2𝑞3

𝑓
𝑠𝑖𝑛(𝑞2 − 𝑞1)] − 𝑐𝑞1 + 𝑐𝑞2 + 𝑄𝑙0𝑠𝑖𝑛 ((𝛼 − 1)𝑞2) = 0  

(𝑚1 + 𝑚2)𝑙0
2(𝑞̈3 + 𝑞̈3

𝑓
) − 𝑚2𝑙0

2𝑞̈2 sin(𝑞2 − 𝑞1) − (𝑚1 + 𝑚2)𝑙0
2𝑞̇1

2(𝑞3 + 𝑞3
𝑓
) +

−𝑚2𝑙0
2𝑞̇2

2 cos(𝑞2 − 𝑞1) + 𝐾𝑙0
2(𝑞3 + 𝑞3

𝑓
) − 𝐾𝑙0

2 + 𝑄𝑙0𝑐𝑜𝑠 (𝛼𝑞2 − 𝑞1) = 0  

 

Notice that the superscript 𝑝 is omitted from here on. Considering only small perturbations, 

the system of non-linear equation (4.11) can be linearized. Moreover the substitution of the 

particular solution (4.9) inside (4.11) leads to the so called system of variational equation.  

 

(𝑚1 + 𝑚2)𝑙0
2𝑞̈1 [1 −

𝑄

𝐾𝑙0
+ 𝜉 cos(𝜔𝑡 + 𝜖)]

2
+ 𝑚2𝑙0

2𝑞̈2 [1 −
𝑄

𝐾𝑙0
+ 𝜉 cos(𝜔𝑡 + 𝜖)] +

+2(𝑚1 + 𝑚2)𝑙0
2𝑞̇1 [1 −

𝑄

𝐾𝑙0
+ 𝜉 cos(𝜔𝑡 + 𝜖)] [−𝜉𝜔 sin(𝜔𝑡 + 𝜖)] + 2𝑐𝑞1 − 𝑐𝑞2 +

+[1 −
𝑄

𝐾𝑙0
+ 𝜉 cos(𝜔𝑡 + 𝜖)]𝑄𝑙0 (𝛼𝑞2 − 𝑞1) = 0  

(4.12) 𝑚2𝑙0
2 {𝑞̈1 [1 −

𝑄

𝐾𝑙0
+ 𝜉 cos(𝜔𝑡 + 𝜖)] + 𝑞̈2 + [𝜉𝜔2 cos(𝜔𝑡 + 𝜖)](𝑞2 − 𝑞1) +

−2𝑞̇1[𝜉𝜔 sin(𝜔𝑡 + 𝜖)]} − 𝑐𝑞1 + 𝑐𝑞2 + 𝑄𝑙0𝑞2(𝛼 − 1) = 0  

(𝑚1 + 𝑚2)𝑙0
2[−𝜉𝜔2 cos(𝜔𝑡 + 𝜖)] + (𝑚1 + 𝑚2)𝑙0

2𝑞̈3 + 𝐾𝑙0
2 [1 −

𝑄

𝐾𝑙0
+ 𝜉 cos(𝜔𝑡 + 𝜖)] +

+𝐾𝑙0
2𝑞3 − 𝐾𝑙0

2 + 𝑄𝑙0 = 0  
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The system of differential equations (4.12) for the perturbations 𝑞𝑗
𝑝
 has the periodic 

coefficients 𝑞3
𝑓
. In judging the stability around the configuration of unperturbed motion 𝑞3

𝑓
, 

the variational equations have decisive importance. In fact according to Lyapunov: “If all 

of the roots of the characteristic equation are smaller in absolute value than unity, then the 

unperturbed motion is asymptotically stable, regardless of the terms of higher order in the 

equations of perturbed motion. But if the characteristic equation has roots larger in 

absolute value than unity, then the unperturbed motion is unstable. If the characteristic 

equation has no roots larger in absolute value than unity, but it has roots equal in absolute 

value to unity, then the stability remains uncertain. In this critical case the first 

approximation does not solve the problem of the stability of motion. For the solution of 

this problem, it is necessary to consider higher order terms in the differential equations of 

perturbed motion; the stability of motion will depend on the magnitudes of these terms.” 

Some terms can be deleted from the 3rd equation of system (4.12) due to the introduction of 

the general solution 𝑞3
𝑓
. The general solution for this last equation is: 

 

𝑞3 = 𝜉∗ cos(𝜔𝑡 + 𝜖∗) (4.13) 

 

being 𝜉∗ and 𝜖∗ the amplitude and the phase lag of the perturbation of the Degree of 

Freedom correspondent to the elongation of the spring. 

The solution (4.13) corresponds to a root of the characteristic equation which has modulus 

equal to 1 in the Liapunov’s line of reasoning. Therefore, according to Liapunov’s 

theorem, it is not possible to assure the stability of the particular solution by means of a 

linear analysis, regardless of the behaviour of the first two variational equations. However, 

it is possible to obtain conditions for the critical situation from the behaviour of the first 

two equation of (4.12). To this end, it is useful to introduce some non-dimensional terms in 

order to write the system of equations (4.12) in a more convenient way. 

 

𝜏 = 𝜔 ∙ 𝑡 + 𝜖 

(4.14) 

𝜆 = 1 −
𝑄

𝐾𝑙0
 

𝑚𝑖 = 𝑝𝑖 ∙ 𝑚  

𝑟 =
𝑐

𝑚 ∙ 𝑙0
2 ∙ 𝜔2

 

𝑠 =
𝑄 ∙ 𝑙0

𝑚 ∙ 𝑙0
2 ∙ 𝜔2
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Considering only small amplitude of longitudinal vibrations (𝜉 << 1), the variational 

system of equation (4.12) reads as: 

 

(𝑝1 + 𝑝2)(𝜆
2 + 2𝜆𝜉 cos(𝜏)) ∙ 𝑞̈1 + 𝑝2(𝜆 + 𝜉 cos(𝜏)) ∙ 𝑞̈2 − 2(𝑝1 + 𝑝2)(𝜆𝜉 sin(𝜏)) ∙ 𝑞̇1 +

+(2𝑟 − 𝜆𝑠 − 𝑠𝜉 cos(𝜏)) ∙ 𝑞1 − (𝑟 − 𝜆𝛼𝑠 − 𝛼𝑠𝜉 cos(𝜏)) ∙ 𝑞2 = 0  

(4.15) 
𝑝2(𝜆 + 𝜉 cos(𝜏)) ∙ 𝑞̈1 + 𝑝2 ∙ 𝑞̈2 − 2𝑝2𝜉 sin(𝜏) ∙ 𝑞̇1 − (𝑟 + 𝑝2𝜉 cos(𝜏)) ∙ 𝑞1 +

+[𝑟 − (1 − 𝛼)𝑠 + 𝑝2𝜉 cos(𝜏)] ∙ 𝑞2 = 0  

 

This is a system of linear homogeneous differential equations with periodic coefficients.  

Two different kind of instabilities are possible, namely the subharmonic and combinational 

resonance. 

4.3.1 Subharmonic Resonances 

According to Bolotin [13], the boundaries of instability of first kind can be found by 

constructing periodic solutions with period T and 2T, being T the period of the exciting 

longitudinal oscillation. In this particular case, the periods used to build the periodic 

solutions are 𝑇1 = 4𝜋 and 𝑇2 = 2𝜋. 

Solutions with period 𝑇1 = 4𝜋 can be represented by the following Fourier series: 

 

𝑞𝑗(𝜏) = ∑ (𝑎𝑗𝑘 sin (
𝑘𝜏

2
) + 𝑏𝑗𝑘 cos (

𝑘𝜏

2
))

+∞

𝑘=1,3,5,…

,     (𝑗 = 1,2) (4.16) 

 

The substitution of this solution into the system of equations (4.15) and the zeroing of the 

coefficients of sin (
𝑘𝜏

2
) and cos (

𝑘𝜏

2
) yields to two infinite systems of linear homogeneous 

equations for the Fourier coefficients 𝑎𝑗𝑘 and 𝑏𝑗𝑘 (4.17) and (4.18). 

 

[−(𝑝1 + 𝑝2)
𝜆2𝑘2

4
+ 2𝑟 − 𝜆𝑠] ∙ 𝑎1𝑘 + [−(𝑝1 + 𝑝2)𝜉

𝜆(𝑘−2)2

4
+ (𝑝1 + 𝑝2)𝜉

𝜆(𝑘−2)

2
−

𝑠𝜉

2
] ∙

𝑎1(𝑘−2) − [(𝑝1 + 𝑝2)𝜉
𝜆(𝑘+2)2

4
+ (𝑝1 + 𝑝2)𝜉

𝜆(𝑘+2)

2
+

𝑠𝜉

2
] ∙ 𝑎1(𝑘+2) − [𝑝2

𝜆𝑘2

4
+ 𝑟 +

−𝜆𝛼𝑠] ∙ 𝑎2𝑘 + [−𝑝2𝜉
(𝑘−2)2

8
+

𝛼𝑠𝜉

2
] ∙ 𝑎2(𝑘−2) + [−𝑝2𝜉

(𝑘+2)2

8
+

𝛼𝑠𝜉

2
] ∙ 𝑎2(𝑘+2) = 0  

(4.17) 

[−𝑝2
𝜆𝑘2

4
− 𝑟] ∙ 𝑎1𝑘 + [−𝑝2𝜉

(𝑘−2)2

8
+ 𝑝2𝜉

(𝑘−2)

2
−

𝑝2𝜉

2
] ∙ 𝑎1(𝑘−2) − [−𝑝2𝜉

(𝑘+2)2

8
+

+𝑝2𝜉
(𝑘+2)

2
+

𝑝2𝜉

2
] ∙ 𝑎1(𝑘+2) + [−𝑝2

𝑘2

4
+ 𝑟 − (1 − 𝛼)𝑠] ∙ 𝑎2𝑘 + [

𝑝2𝜉

2
] ∙ 𝑎2(𝑘−2) + [

𝑝2𝜉

2
] ∙

𝑎2(𝑘+2) = 0  
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[−(𝑝1 + 𝑝2)
𝜆2𝑘2

4
+ 2𝑟 − 𝜆𝑠] ∙ 𝑏1𝑘 − [(𝑝1 + 𝑝2)𝜉

𝜆(𝑘−2)2

4
+ (𝑝1 + 𝑝2)𝜉

𝜆(𝑘−2)

2
+

𝑠𝜉

2
] ∙

𝑏1(𝑘−2) − [(𝑝1 + 𝑝2)𝜉
𝜆(𝑘+2)2

4
− (𝑝1 + 𝑝2)𝜉

𝜆(𝑘+2)

2
+

𝑠𝜉

2
] ∙ 𝑏1(𝑘+2) − [𝑝2

𝜆𝑘2

4
+ 𝑟 +

−𝜆𝛼𝑠] ∙ 𝑏2𝑘 + [−𝑝2𝜉
(𝑘−2)2

8
+

𝛼𝑠𝜉

2
] ∙ 𝑏2(𝑘−2) + [−𝑝2𝜉

(𝑘+2)2

8
+

𝛼𝑠𝜉

2
] ∙ 𝑏2(𝑘+2) = 0  

(4.18) 

[−𝑝2
𝜆𝑘2

4
− 𝑟] ∙ 𝑏1𝑘 − [𝑝2𝜉

(𝑘−2)2

8
+ 𝑝2𝜉

(𝑘−2)

2
+

𝑝2𝜉

2
] ∙ 𝑏1(𝑘−2) − [𝑝2𝜉

(𝑘+2)2

8
+

−𝑝2𝜉
(𝑘+2)

2
+

𝑝2𝜉

2
] ∙ 𝑏1(𝑘+2) + [−𝑝2

𝑘2

4
+ 𝑟 − (1 − 𝛼)𝑠] ∙ 𝑏2𝑘 + [

𝑝2𝜉

2
] ∙ 𝑏2(𝑘−2) + [

𝑝2𝜉

2
] ∙

𝑏2(𝑘+2) = 0  

 

All the passages to derive these two systems of infinite equations are described in 

Appendix B.  

For the special case of vanishing amplitude 𝜉 there is only one system equal for both the 

𝑎𝑗𝑘 and 𝑏𝑗𝑘 coefficients. The latter has nontrivial solutions if the following determinant is 

null. 

 

||
−(𝑝1 + 𝑝2)𝜆

2
𝑘2

4
+ 2𝑟 − 𝜆𝑠 −𝑝2𝜆

𝑘2

4
− 𝑟 + 𝜆𝛼𝑠

−𝑝2𝜆
𝑘2

4
− 𝑟 −𝑝2

𝑘2

4
+ 𝑟 − (1 − 𝛼)𝑠

|| = 0 (4.19) 

 

Equation (4.19) represents a family of curves, i.e. the boundaries of the regions of 

instability, in the 𝛼 − 𝜂 plane. Notice that, the coefficient 𝜂 is defined as 𝜂 =
𝑠

𝑟
=

𝑄𝑙0

𝑐
, which 

is a sort of equivalent critical load. 

Solutions with period 𝑇2 = 2𝜋 can be represented by the Fourier series: 

 

𝑞𝑗(𝜏) = ∑ (𝑎𝑗𝑘 sin (
𝑘𝜏

2
) + 𝑏𝑗𝑘 cos (

𝑘𝜏

2
))

+∞

𝑘=0,2,4,…

,     (𝑗 = 1,2) (4.20) 

 

Again, the substitution of this solution into the system of equations (4.15) yields to two 

infinite systems of linear homogeneous equations for the Fourier coefficients 𝑎𝑗𝑘 and 𝑏𝑗𝑘. 

As before, instability curves in the 𝛼 − 𝜂 plane can be obtained for vanishing amplitude 𝜉.  

It can be shown [13] that, for 𝜉 = 0, the subharmonic resonances are characterized by 

 

𝛺𝑣

𝜔
=

𝑘

2
,     (𝑘 = 0,1,2,3,… ) (4.21) 
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Therefore each value of 𝑘 indicates the frequency ratio which assure the occurrence of 

subharmonic resonance. In particular, it is possible to distinguish different regions of 

instability, i.e. the first (characterized by 𝑘 = 1), the second (𝑘 = 2), the third etc. The 

principal region of instability is the widest one and it corresponds to subharmonic 

resonance 2:1. It occurs when the exciting frequency is the double of the free vibration 

frequency. Thus parametric resonance can excite vibrations with frequencies smaller than 

the frequency of the principal resonance.  

The condition 𝑘 = 0 corresponds to divergent motion, which emerges to be a special case 

of subharmonic resonances. 

Furthermore, a small value of amplitude 𝜉 can lead the system to be unstable. For non 

vanishing amplitude of vibration, only a finite number of term is taken into account in the 

infinite system of equations (4.15) to determine the regions of instability. The more are the 

term retained, the more are the unstable regions obtained. 

4.3.2 Combination Resonances 

The boundaries for the combination resonances, also called instability of the second kind, 

are not so easy to be found, indeed there exists no comparably simple procedure as the case 

of subharmonic resonances, in which boundaries can be obtained by constructing periodic 

solutions. Thus, for the special case of vanishing amplitudes one can find the solution of 

the system of equations (4.15) as: 

 

𝑞𝑗(𝜏) = 𝑎𝑗𝑒
𝑖𝛺𝑡,     (𝑗 = 1,2) (4.22) 

 

Similarly to the solution for the subharmonic resonances (4.21), for the combination 

resonances: 

 

𝛺𝜇

𝜔
±

𝛺𝑣

𝜔
=

𝑘∗

2
,     (𝑘∗ = 0,1,2,3,… ) (4.23) 

 

being 𝛺𝜇 and 𝛺𝑣 the natural frequencies of the transverse and longitudinal motion. 

The condition for the flutter onset is when 𝛺𝜇 = 𝛺𝑣, which corresponds to the case 𝑘∗ = 0. 

Hence flutter emerges to be a special case of the instability of the second kind, namely the 

combinational resonances. Equation (4.23) yields a family of curves in the 𝛼 − 𝜂 plane, 

analogous to the curves obtained for the subharmonic resonances. All the curves are 

plotted by Herrmann both in the 𝛼 − 𝜂 plane , for the case of vanishing longitudinal 

amplitude (Figure 4.7), and in the 𝜂 – 𝜉 plane, for a defined value of 𝛼 (Figure 4.6). 
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Figure 4.6: Instability region in the 𝛈 – 𝛏 plane 

 

Figure 4.7: Instability region in the 𝛂 − 𝛈 plane 

Notice that the value chosen by Herrmann to evaluate the stability in the 𝜂 – 𝜉 plane is 𝛼 =

−2. From Figure 4.7 it is clear that this value chosen can make the system unstable only for 

the cases of subharmonic resonances, combination resonances and divergence. In fact, the 

region of flutter is limited to some specific values of the coefficient 𝛼 only. 
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4.4 COMPARISONS BETWEEN THE HERRMANN’S MODELS AND 

THE BRIDGE DECK SECTIONAL MODEL 

It is evident that the bridge deck sectional model characterized by 2 DoFs subjected to 

aerodynamic forces is comparable to the 3 DoFs elastic inverted pendulum subjected to a 

follower force. At least these two problems are combined to the extent which these 

different schemes are able to capture the same instability phenomena, i.e. static divergence, 

flutter and internal parametric resonance. The aim of this paragraph is to find a strict link 

between the two different models and to explain the main common features and the main 

differences. 

The model proposed by Herrmann and Hauger [31] seems to be the model with less DoFs 

able to capture all the instability phenomena. In fact, on one hand, the elastic pendulum is 

able to describe only the internal parametric resonance phenomenon, because the linear 

spring couples the two different modes of vibrations, i.e. the spring and the pendulum 

motion. On the other hand this model is not able to manifest flutter instability because it 

does not have enough rotational DoFs to sustain a follower force. Nevertheless the 2 DoFs 

inverted pendulum is able to sustain a follower force and it can become unstable either for 

static divergence or flutter, but two modes of vibrations are not coupled and internal 

parametric resonance cannot happen. 

The question arising from this discussion is: “How is it possible that the bridge deck 

sectional model, characterized by only 2 DoFs, is able to exhibit all the aforementioned 

instability phenomena?” 

The first thing to notice is the different nature of the forces characterizing the two 

problems. Both of them are non-conservative forces, but the Aeroelastic wind action is 

dependent on the bridge displacements and velocities. On the other hand the follower force 

introduced in the elastic pendulum model is dependent only on the displacements of the 

structure. Therefore, the latter is “poorer” with respect to the former.  

However the main difference lies in the way the equations are coupled one to each other. 

For the sake of clarity, let us consider the 2 DoFs pendulum proposed by Herrmann and 

Bungay [30], which behaviour is described by equations (4.4), and the bridge model 

subjected to wind Aeroelastic effects, which behaviour is described by equations (3.90) 

and (3.91). In absence of damping these two models are completely equivalent, except for 

the quadratic stiffness coupling term present in the bridge’s behaviour 𝐾𝜃𝑤,𝑚𝑛
(𝑄)

. This term is 

due to the cable’s stiffness increment, which in principle is a Degree of Freedom of the 

system that in the present model has been parameterized and connected to the flexural and 

torsional DoFs thanks to the sectional compatibility. Indeed, the cables can be schematized 

by two non-linear springs which have different behaviour in tension and in compression. 

Their constitutive law is of hardening kind when subjected to tensile forces and of 
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softening king when subjected to compressive forces [8]. Therefore, when the deck cross 

section is subjected to a rigid rotation, the cables produce two different reactions, which 

provoke an asymmetric behaviour and a medium vertical displacement. On the other hand, 

in order to obtain coupled equations of motion for the 2 DoFs elastic pendulum, a linear 

elastic spring is introduced by Herrmann in this model. In conclusion, the 3rd Degree of 

Freedom must be added in the inverted pendulum model, just to take into account for a 

coupling between the other two DoFs. This is not necessary in the bridge deck sectional 

model, for which the coupling term is intrinsic in the system and it is given by the cable’s 

increment of stiffness. 

Moreover, it is noticeable that the Degree of Freedom 𝑞3 associated to the spring’s 

elongation in the elastic pendulum is an artificial tool to couple indirectly the other two 

DoFs. In fact there is not a direct coupling between 𝑞1 and 𝑞2, but the coupling is always 

between 𝑞1 − 𝑞3 and 𝑞2 − 𝑞3. Instead in the bridge’s sectional model the quadratic coupling 

stiffness term 𝐾𝜃𝑤,𝑚𝑛
(𝑄)

 directly correlates the flexural and the torsional modes of vibrations. 

Because of these differences, it is impossible to find a static scheme able to simulate the 

nonlinear coupling present in the bridge.  

The model proposed by Herrmann was studied by means of a parametric analysis governed 

by the parameter 𝛼. In a certain sense, this parameter is strictly related to the complete set 

of flutter derivatives, because it quantifies the effect of the applied force in terms of the 

projection in the direction of the system. Anyhow, the problem of the bridge’s sectional 

model, comsidering the complete set of flutter derivatives is not mono-parametric. Thus it 

is not simple to handle with a parametric analysis. 

The interesting thing is that the way of dynamic bifurcation of the bridge’s model, or its 

loss of stability in general sense, depends upon the type of the flutter derivatives 

coefficients. In other words, without considering the quadratic coupling stiffness term, 

these terms would affect only the static divergence and the flutter velocity. Nonetheless, in 

the case that the quadratic coupling stiffness term becomes significant, other scenarios can 

be possible. In fact, the values of the flutter derivative coefficients are able to guarantee 

other instability limits in which the internal parametric resonance can be predominant. 

4.5 VARIATIONAL EQUATIONS FOR THE BRIDGE’S DECK 

SECTIONAL MODEL 

The perturbation approach used by Herrmann and Hauger [31] can be adopted for studying 

the stability of the suspension bridge vibrations as long as dominant flexural motion 

occurs.  
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4.5.1 Perturbed System of Equations 

Firstly, a reference solution for equations (3.90) and (3.91) has to be assumed. The 

hypothesis consists in seeking a solution with small flexural vibrations and negligible 

torsional ones, so as to neglect non-linear flexural contributions and to assume a lift 

coefficient in correspondence of a null torsional angle. Hence: 

 

𝑧𝑛(𝜏) < 𝜖     ⇒      𝑧𝑛
2(𝜏) ≅ 0, 𝑧𝑛

3(𝜏) ≅ 0 

(4.24) 
𝛾𝑚(𝜏) ≅ 0     ⇒      𝑐̃𝐿 =

𝐶𝐿(𝜃𝑑=0)

2𝜋
  

 

Due to this assumption, the flexural equation of motion (3.90) becomes completely 

analogous to the linear equation of motion of a SDoF damped and periodically forced 

oscillator: 

 

 

The solution of this equation is characterized by the superposition of an homogeneous-

transient and a particular steady-state integral. 

The transient conditions are not of interest with regards to a stability analysis, because they 

are always damped in time. This is not true for a negative value of damping, which grant 

self-sustained oscillations. This case is possible only if the wind velocity is enough high to 

reach the flutter onset, but this condition is a priori an unstable solution. Thus, we are 

allowed to neglect the homogeneous solutions in the stability analysis. 

In order to find the particular integral for equation (4.25) it is necessary to introduce the 

equation that rules the displacement 𝑠𝑛(𝜏) of the same system subjected to an out of phase 

periodic force with respect to the one appearing in (4.25), i.e. 𝛤𝑤,𝑛 = 𝛤0 ∙ ℎ̃𝑊𝑛
∙ 𝑐𝑜𝑠(𝜔̃𝑉𝑆 ∙ 𝜏).  

 

 

Now let us introduce the complex variable: 

 

 

The sum of equation (4.26) with equation (4.25) multiplied by the imaginary part, leads to: 

 

 

𝑀𝑤,𝑛 ∙ 𝑧̈𝑛  + (𝐷𝑤,𝑛 − 𝐷𝑤,𝑛
𝐴𝑒𝑟𝑜) ∙ 𝑧̇𝑛 + (𝐾𝑤,𝑛

(𝐿)
− 𝐾𝑤,𝑛

(𝐿),𝐴𝑒𝑟𝑜
) ∙ 𝑧𝑛 = 𝛤𝑤,𝑛  (4.25)  

𝑀𝑤,𝑛 ∙ 𝑠̈𝑛  + (𝐷𝑤,𝑛 − 𝐷𝑤,𝑛
𝐴𝑒𝑟𝑜) ∙ 𝑠̇𝑛 + (𝐾𝑤,𝑛

(𝐿)
− 𝐾𝑤,𝑛

(𝐿),𝐴𝑒𝑟𝑜) ∙ 𝑠𝑛 = 𝛤0 ∙ ℎ̃𝑊𝑛
∙ 𝑐𝑜𝑠(𝜔̃𝑉𝑆 ∙ 𝜏) (4.26)  

𝑦𝑛(𝜏) = 𝑠𝑛(𝜏) + 𝑖 ∙ 𝑧𝑛(𝜏) (4.27)  

𝑦̈𝑛  +
𝐷𝑤,𝑛

𝑇𝑂𝑇

𝑀𝑤,𝑛
∙ 𝑦̇𝑛 +

𝐾𝑤,𝑛
𝑇𝑂𝑇

𝑀𝑤,𝑛
∙ 𝑦𝑛 =

𝛤0 ∙ ℎ̃𝑊𝑛

𝑀𝑤,𝑛
∙ 𝑒𝑥𝑝(𝑖 ∙ 𝜔̃𝑉𝑆 ∙ 𝜏) (4.28)  
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where: 

 

𝐷𝑤,𝑛
𝑇𝑂𝑇

𝑀𝑤,𝑛
=

𝐷𝑤,𝑛 − 𝐷𝑤,𝑛
𝐴𝑒𝑟𝑜

𝑀𝑤,𝑛
= 2𝛥𝑤,𝑛𝛺̃𝑤,𝑛 −

1

𝜋
√𝐽𝑡√𝑚̃𝑎𝛺̃𝜃,𝑚 ∙ 𝑢̃𝐾𝑤𝐻1

∗ 

(4.29) 

𝐾𝑤,𝑛
𝑇𝑂𝑇

𝑀𝑤,𝑛
=

𝐾𝑤,𝑛
(𝐿)

− 𝐾𝑤,𝑛
(𝐿),𝐴𝑒𝑟𝑜

𝑀𝑤,𝑛
= 𝛺̃𝑤,𝑛

2 −
1

2𝜋
𝐽𝑡𝛺̃𝜃,𝑚

2 ∙ 𝑢̃2𝐾𝑤
2𝐻4

∗ 

 

The solution for the equation (4.28) can be found more easily with respect to the equation 

(4.25). Then the particular integral for equation (4.25) can be found extracting the 

imaginary part of the solution 𝑦𝑛(𝜏). 

To this purpose let us seek for a particular integral of the type: 

 

 

The substitution of the assumed solution (4.30) in the governing equation (4.28), allows to 

get the amplification factor 𝐻̃(𝜔𝑉𝑆). Thanks to the introduction of a coefficient 𝛽 =
𝜔̃𝑉𝑆

𝛺̃𝑤,𝑛
 

representing the ratio between the vortex shedding circular frequency and the structural 

flexural one, 𝐻̃ can be expressed, in function of 𝛽 itself, as: 

 

 

The solution can also be expressed by splitting 𝐻̃(𝛽) with its modulus and a phase lag: 

 

 

being 
 

𝑁(𝛽) = [√(
𝐾𝑤,𝑛

𝑇𝑂𝑇

𝑀𝑤,𝑛𝛺̃𝑤,𝑛
2

− 𝛽2 − 𝐼𝑚 (
𝐷𝑤,𝑛

𝑇𝑂𝑇

𝑀𝑤,𝑛𝛺̃𝑤,𝑛

) ∙ 𝛽)

2

+ (𝑅𝑒(
𝐷𝑤,𝑛

𝑇𝑂𝑇

𝑀𝑤,𝑛𝛺̃𝑤,𝑛

) ∙ 𝛽)

2

]

−1

 

(4.33) 

𝜑(𝛽) = 𝑎𝑟𝑐𝑡𝑔

(

 
 

𝑅𝑒 (
𝐷𝑤,𝑛

𝑇𝑂𝑇

𝑀𝑤,𝑛𝛺̃𝑤,𝑛
) ∙ 𝛽

𝐾𝑤,𝑛
𝑇𝑂𝑇

𝑀𝑤,𝑛𝛺̃𝑤,𝑛
2 − 𝛽2 − 𝐼𝑚 (

𝐷𝑤,𝑛
𝑇𝑂𝑇

𝑀𝑤,𝑛𝛺̃𝑤,𝑛
) ∙ 𝛽

)

 
 

 

𝑦𝑛(𝜏) = 𝛤0 ∙ ℎ̃𝑊𝑛
∙ 𝐻̃(𝜔𝑉𝑆) ∙ 𝑒𝑥𝑝(𝑖 ∙ 𝜔̃𝑉𝑆 ∙ 𝜏) (4.30)  

𝐻̃(𝛽) =
1

𝐾𝑤,𝑛
(𝐿)

∙
1

−𝛽2 +
𝐷𝑤,𝑛

𝑇𝑂𝑇

𝑀𝑤,𝑛𝛺̃𝑤,𝑛
∙ 𝑖 ∙ 𝛽 +

𝐾𝑤,𝑛
𝑇𝑂𝑇

𝑀𝑤,𝑛𝛺̃𝑤,𝑛
2

 
(4.31)  

𝐻̃(𝛽) =
1

𝐾𝑤,𝑛
(𝐿)

∙ 𝑁(𝛽) ∙ 𝑒𝑥𝑝(−𝑖 ∙ 𝜑(𝛽)) (4.32)  
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Notice that the damping term must be divided in its real and imaginary part because, with 

regards to the Aeroelastic problem, the reduced frequency 𝐾𝑤 is a complex function. 

The solution for equation (4.28) can be therefore expressed as: 

 

 

where both 𝛤0 and 𝛽 are function of the wind non-dimensional velocity 𝑢̃. 

In order to find the solution for equation (4.25) only the imaginary part of 𝑦𝑛(𝜏) must be 

retained. Hence, by exploiting the well-known Euler formula: 

 

 

where 𝑧𝑛,0 is the modal flexural amplitude normalized with respect to the initial cable sag. 

With the aim of defining the so called variational equations, a small but non vanishing 

perturbation of both the flexural and the torsional modes of vibrations must be introduced. 

 

𝑧𝑛(𝜏) = 𝑧𝑛,𝑆𝑆(𝜏) + 𝑧𝑛
𝑃(𝜏)     𝑤𝑖𝑡ℎ 𝑧𝑛

𝑃(𝜏) < 𝜖 

(4.36) 
𝛾𝑚(𝜏) = 𝛾𝑚

𝑃(𝜏)     𝑤𝑖𝑡ℎ 𝛾𝑚
𝑃(𝜏) < 𝜖 

 

By substituting the above definitions in the complete modal Aeroelastic system of 

equations (3.90) and (3.91) and by a suitable linearization, one gets the so called Perturbed 

System. 

 

 

 

The second order coupling stiffness term 𝐾𝜃𝑤,𝑚𝑛
(𝑄)

 is dependent simultaneously and linearly 

on both motions, thus it survives in the linearization of the perturbed equations of motion. 

This makes possible that a small but non vanishing vertical perturbation influences the 

torsional response due to a periodically varying structural parameter, even in a linearized 

𝑦𝑛(𝜏) =
𝛤0 ∙ ℎ̃𝑊𝑛

𝐾𝑤,𝑛
(𝐿)

∙ 𝑁(𝛽) ∙ 𝑒𝑥𝑝(𝑖 ∙ 𝜔̃𝑉𝑆 ∙ 𝜏 − 𝑖 ∙ 𝜑(𝛽)) (4.34)  

𝑧𝑛,𝑆𝑆(𝜏) =
𝛤0 ∙ ℎ̃𝑊𝑛

𝐾𝑤,𝑛
(𝐿)

∙ 𝑁(𝛽) ∙ 𝑠𝑖𝑛(𝜔̃𝑉𝑆 ∙ 𝜏 − 𝜑(𝛽)) = 𝑧𝑛,0 ∙ 𝑠𝑖𝑛(𝜔̃𝑉𝑆 ∙ 𝜏 − 𝜑(𝛽)) (4.35)  

𝑀𝑤,𝑛 ∙ 𝑧̈𝑛
𝑃  + (𝐷𝑤,𝑛 − 𝐷𝑤,𝑛

𝐴𝑒𝑟𝑜) ∙ 𝑧̇𝑛
𝑃 + 𝐷𝑤𝜃,𝑛𝑚

𝐴𝑒𝑟𝑜 ∙ 𝛾̇𝑚
𝑃 + (𝐾𝑤,𝑛

(𝐿)
− 𝐾𝑤,𝑛

(𝐿),𝐴𝑒𝑟𝑜) ∙ 𝑧𝑛
𝑃 +

+𝐾𝑤𝜃,𝑛𝑚
(𝐿),𝐴𝑒𝑟𝑜𝛾𝑚

𝑃 = 0   
(4.37)  

𝐽𝜃,𝑚 ∙ 𝛾̈𝑚
𝑃  + (𝐷𝜃,𝑚 − 𝐷𝜃,𝑚

𝐴𝑒𝑟𝑜) ∙ 𝛾̇𝑚
𝑃 + 𝐷𝜃𝑤,𝑚𝑛

𝐴𝑒𝑟𝑜 ∙ 𝑧̇𝑛
𝑃 + 𝐾𝜃𝑤,𝑚𝑛

(𝐿),𝐴𝑒𝑟𝑜
∙ 𝑧𝑛

𝑃 + (𝐾𝜃,𝑚
(𝐿)

− 𝐾𝜃,𝑚
(𝐿),𝐴𝑒𝑟𝑜

+

+𝐾𝜃𝑤,𝑚𝑛
(𝑄)

𝑧𝑛,0 ∙ 𝑠𝑖𝑛(𝜔̃𝑉𝑆 ∙ 𝜏 − 𝜑)) ∙ 𝛾𝑚
𝑃 = 0  

(4.38)  
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formulation. This kind of phenomenon can be classified as a parametric excitation 

problem. 

The fact that the vertical perturbation depends on the vortex shedding excitation is hidden 

inside the terms 𝑧𝑛,0 and 𝜑, that are implicitly dependent on the non-dimensional wind 

speed and on the lift coefficient since they are obtained as the solution of equation (4.25). 

Moreover it is important to remark that vortex shedding is a self-limiting phenomenon, 

which can induce just small flexural perturbations. However, because the effects due to 

these flexural perturbations on torsional vibrations is amplified by the quadratic coupled 

modal stiffness 𝐾𝜃𝑤,𝑚𝑛
(𝑄)

, it is of basic importance to understand its influence on the system 

response. 

4.5.2 Mathieu’s Equation for the Torsional Perturbed Motion 

Let us consider the system of perturbed equations (4.37) and (4.38) decoupled because of 

the assumption that the coupling flutter derivatives 𝐴1
∗  and 𝐴4

∗  are of less importance in 

mono-dimensional flutter with respect to 𝐴2
∗  and 𝐴3

∗ . The decoupled system of perturbed 

equations reads as: 

 

 

 

As usual for commons bridge’s deck sections it can be assumed that 𝐻1
∗ < 0 for each wind 

speed. In this way the damping term in equation (4.39) is always positive, avoiding the 

possibility to have 1 DoF flexural instability. Thus 𝑧𝑛
𝑃 will not diverge in time for any wind 

velocity considered.  

This result allows us to study only the behaviour of the torsional equation (4.40). The 

objective is to reduce the damped torsional equation to the well-known Mathieu’s format, 

so as to focus the attention on the internal parametric resonance phenomenon. 

First of all, a proper choice of the reference initial time allows us to shift the flexural 

perturbation acting on the torsional motion from a periodic sine function to a cosine one. 

 

 

 

𝑀𝑤,𝑛 ∙ 𝑧̈𝑛
𝑃  + (𝐷𝑤,𝑛 − 𝐷𝑤,𝑛

𝐴𝑒𝑟𝑜) ∙ 𝑧̇𝑛
𝑃 + (𝐾𝑤,𝑛

(𝐿)
− 𝐾𝑤,𝑛

(𝐿),𝐴𝑒𝑟𝑜) ∙ 𝑧𝑛
𝑃 = 0   (4.39)  

𝐽𝜃,𝑚 ∙ 𝛾̈𝑚
𝑃  + (𝐷𝜃,𝑚 − 𝐷𝜃,𝑚

𝐴𝑒𝑟𝑜) ∙ 𝛾̇𝑚
𝑃 + (𝐾𝜃,𝑚

(𝐿)
− 𝐾𝜃,𝑚

(𝐿),𝐴𝑒𝑟𝑜 + 𝐾𝜃𝑤,𝑚𝑛
(𝑄)

𝑧𝑛,0 ∙ 𝑠𝑖𝑛(𝜔̃𝑉𝑆 ∙ 𝜏 − 𝜑)) ∙

𝛾𝑚
𝑃 = 0  

(4.40)  

𝐽𝜃,𝑚 ∙ 𝛾̈𝑚
𝑃  + (𝐷𝜃,𝑚 − 𝐷𝜃,𝑚

𝐴𝑒𝑟𝑜) ∙ 𝛾̇𝑚
𝑃 + (𝐾𝜃,𝑚

(𝐿)
− 𝐾𝜃,𝑚

(𝐿),𝐴𝑒𝑟𝑜 + 𝐾𝜃𝑤,𝑚𝑛
(𝑄)

𝑧𝑛,0 ∙ 𝑐𝑜𝑠(𝜔̃𝑉𝑆 ∙ 𝜏)) ∙

𝛾𝑚
𝑃 = 0  

(4.41)  
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Then some non-dimensional parameters, defined as the ratio between the Aeroelastic 

components and the structural ones, are introduced. 

 

𝛼 =
𝐷𝜃,𝑚

𝐴𝑒𝑟𝑜

𝐷𝜃,𝑚
=

2𝑢̃√𝑚̃𝑎𝐾𝜃𝐴2
∗

𝜋𝛥𝜃,𝑚√𝐽𝑡
 

(4.42) 

𝛽 =
𝐾𝜃,𝑚

(𝐿),𝐴𝑒𝑟𝑜

𝐾𝜃,𝑚
(𝐿)

=
2𝑢̃2𝐾𝜃

2𝐴3
∗

𝜋
 

 

Hence the torsional equation (4.41) is transformed into: 

 

 

In order to pass to the Mathieu’s format, it is necessary to define a new time variable. 

 

 

Notice that this time variable transformation does not lead to the classical Mathieu’s 

format of the equation, but to a more convenient one. The substitution of the new time 

variable and its derivatives (4.44) into the torsional equation (4.43) is such that: 

 

 

The last step is to define the following quantities: 
 

𝛿′ =
𝛺̃𝜃,𝑚

2

𝜔̃𝑉𝑆
2  

(4.46) 

𝑐′ = 2𝛥𝜃,𝑚

𝛺̃𝜃,𝑚

𝜔̃𝑉𝑆
= 2𝛥𝜃,𝑚√𝛿′ 

𝛿 = 𝛿′(1 − 𝛽) =
𝛺̃𝜃,𝑚

2

𝜔̃𝑉𝑆
2 (1 −

𝐾𝜃,𝑚
(𝐿),𝐴𝑒𝑟𝑜

𝐾𝜃,𝑚
(𝐿)

) 

𝑐 = 𝑐′(1 − 𝛼) = 2𝛥𝜃,𝑚

𝛺̃𝜃,𝑚

𝜔̃𝑉𝑆
(1 −

𝐷𝜃,𝑚
𝐴𝑒𝑟𝑜

𝐷𝜃,𝑚
) 

𝜀 =
𝛺̃𝜃,𝑚

2

𝜔̃𝑉𝑆
2

𝐾𝜃𝑤,𝑚𝑛
(𝑄)

𝐾𝜃,𝑚
(𝐿)

𝑧𝑛,0 = 𝛿′
𝐾𝜃𝑤,𝑚𝑛

(𝑄)

𝐾𝜃,𝑚
(𝐿)

𝑧𝑛,0 

𝛾̈𝑚
𝑃  + 2𝛥𝜃,𝑚𝛺̃𝜃,𝑚(1 − 𝛼) ∙ 𝛾̇𝑚

𝑃 + 𝛺̃𝜃,𝑚
2 ((1 − 𝛽) +

𝐾𝜃𝑤,𝑚𝑛
(𝑄)

𝐾𝜃,𝑚
(𝐿)

𝑧𝑛,0 ∙ 𝑐𝑜𝑠(𝜔̃𝑉𝑆 ∙ 𝜏)) ∙ 𝛾𝑚
𝑃 = 0 (4.43)  

𝜏̅ = 𝜔̃𝑉𝑆 ∙ 𝜏     ⇒      𝑑𝜏 =
𝑑𝜏̅

𝜔̃𝑉𝑆
,𝑑𝜏2 =

𝑑𝜏̅2

𝜔̃𝑉𝑆
2  (4.44)  

𝑑2𝛾𝑚
𝑃

𝑑𝜏̅2
+ 2𝛥𝜃,𝑚

𝛺̃𝜃,𝑚

𝜔̃𝑉𝑆

(1 − 𝛼) ∙
𝑑𝛾𝑚

𝑃

𝑑𝜏̅
+

𝛺̃𝜃,𝑚
2

𝜔̃𝑉𝑆
2 ((1 − 𝛽) +

𝐾𝜃𝑤,𝑚𝑛
(𝑄)

𝐾𝜃,𝑚
(𝐿)

𝑧𝑛,0 ∙ 𝑐𝑜𝑠(𝜏̅)) ∙ 𝛾𝑚
𝑃 = 0 (4.45)  
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Finally: 

 

 

Equation (4.47) represents the Mathieu’s format of the torsional equation of motion for the 

bridge’s deck section, perturbed by a dynamic periodic flexural vibration. 

Mathieu-Hill’s equations are encountered in various areas of physics and engineering, from 

the problem of the propagation of electromagnetic waves in a medium with a periodic 

structure to the problem of the motion of electrons in a crystal lattice, from the 

investigations of the stability of the oscillatory process in nonlinear systems to certain 

problems of celestial mechanics, such as the theory of the motion of the moon.  

One of the most interesting characteristics of this equation is that, for certain relations 

between its coefficients, it has unbounded solutions. The values of the coefficients cover 

certain regions in the plane of the two parameter 𝛿 and 𝜀, i.e. the regions of dynamic 

instability. Figure 4.8 shows the distribution of the regions of instability in the 𝛿 − 𝜀 plane 

for the Mathieu’s equation (4.47). Figure 4.8 represents the so-called Ince-Strutt diagram, 

where the regions in which the solutions are bounded in time are crosshatched.  

 

 

Figure 4.8: Ince-Strutt Diagram 

It should be remarked that, although this diagram usually refers to truly parametric system 

where the excitation is provided by an external source, it also applies to the internal 

resonance case, which provides an auto-parametric phenomenon. According to the Ince-

𝑑2𝛾𝑚
𝑃

𝑑𝜏̅2
+ 𝑐 ∙

𝑑𝛾𝑚
𝑃

𝑑𝜏̅
+ (𝛿 + 𝜀 ∙ 𝑐𝑜𝑠(𝜏̅)) ∙ 𝛾𝑚

𝑃 = 0 (4.47)  
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Strutt diagram and with regards to what already found in §4.3.1, the system shows critical 

conditions in correspondence of particular frequency ratios, i.e. 𝛿 = 𝑛2 4⁄ . 

The widest region of instability is characterized by 𝑛 = 1 and it represent the 2:1 internal 

resonance condition, that is the frequency of the flexural perturbation is twice the torsional 

one. The effect of an increase of damping in the structure affects in a large amount the 

Ince-Strutt diagram, reducing the extension of the regions of dynamic instability. In fact 

for a given value of damping 𝑐 there is a minimum value of the flexural perturbation 𝜀 

which is required for instability to occur.  

4.5.3 Derivation of the Boundary Frequency Excitation 

Different methods are available to solve the Mathieu’s equation (4.47), or fully analytical 

or approximate. Bolotin [13] argued that the determination of the boundaries of the regions 

of instability consists in the resolution of the conditions under which the given differential 

equation has periodic solutions with periods T and 2T. Indeed it can be demonstrated that 

the regions of unboundedly increasing solutions are separated from the regions of stability 

by the periodic solutions with periods T and 2T. This method is clearly the same as the one 

adopted by Herrmann and Hauger [31] to solve the equations for the inverted elastic 

pendulum in §4.3.1. It leads to two converging systems of infinite equations which can be 

solved numerically, e.g. with the method of successive approximations.  

The solution for the Mathieu’s equation can also be obtained through any approximate 

perturbation method [43], e.g. the multiple scales technique. This method consists in 

exploiting the solution as a straightforward asymptotic expansion for small values of 𝜖.  

 

 

The substitution of the solution (4.48) into the equation (4.47) leads to a system of 

equations as large as the number of terms retained in the asymptotic expansion. The 

solution of this system of equations requires the zeroing of the secular terms which 

provides additional conditions to find the constants of integration. 

In order to facilitate the perturbation method let us assume that the value of damping is 

very small and can be scaled as 𝑐 = 𝜖 ∙ 𝜇. This assumption is not restrictive in the problem 

considered, because the values of damping characterizing the bridge’s behaviour are 

generally very small. Adopting this method the transition curves correspondent to the 2:1 

subharmonic internal resonance can be expressed as: 

 

 

𝛾𝑚
𝑃 = 𝛾𝑚,0

𝑃 + 𝜖 ∙ 𝛾𝑚,1
𝑃 + 𝜖2 ∙ 𝛾𝑚,2

𝑃 + ⋯ (4.48)  

𝛿 =
1

4
±

√𝜀2 − 𝑐2

2
+ 𝑂(𝜖2) (4.49)  
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The solution for the boundary frequency excitation (4.49) approximates in a good way the 

solution of the Mathieu’s equation around the value of 𝛿 =
1

4
. Moreover, for a given value 

of the damping coefficient there is a minimum value of 𝜀 required for instability to occur. 

This value can be easily found starting from equation (4.49): 

 

 

Figure 4.9 represents the Ince-Strutt diagram in which the regions of instability for the 2:1 

resonance phenomenon are plotted considering both the cases of null damping and of 

damping coefficient 𝛥𝜃,𝑚 = 0.5%. Notice how the effect of damping is relevant only in the 

zone around the value of 𝛿 =
1

4
, whereas for the other values of 𝛿 the two lines depicted are 

practically coincident.  

 

 

Figure 4.9: Boundaries of the regions of instability in the Ince-Strutt diagram for the subharmonic 2:1 

Internal resonance 

𝜀 > √𝑐2 + 4 ∙ (𝛿 −
1

4
)
2

 (4.50)  
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4.5.4 Interaction Between Flutter 1-D and Subharmonic 2:1 Resonance 

The advantage to represent the boundaries of instability lines in the Ince-Strutt diagram 

trough an approximate solution is that it makes possible to find a closed form equation able 

to explain the interaction between flutter and internal parametric resonance. It is important 

to remark the fact that, with the hypothesis assumed, we are studying the interaction 

between 1 DoF torsional flutter and parametric resonance. In fact, the problem is governed 

by the torsional equation only, which can be excited parametrically by the flexural 

perturbation due to the vortex shedding phenomenon. 

In order to show the possibility of internal parametric resonance to deteriorate the flutter 

performance of a bridge, let us write the equation (4.50) as: 

 

 

The substitution into this equation of the definition of the total damping 𝑐 given by both the 

structural and Aeroelastic component (4.46), leads to: 

 

 

This is a second order equation with the 𝛼 parameter to be determined: 

 

 

characterized by the two solutions: 

 

 

Hence the equation (4.53) is valid for values of 𝛼: 

 

 

 

 

 

𝑐2 < 𝜀2 − 4 ∙ (𝛿 −
1

4
)
2

 (4.51)  

(1 − 𝛼)2 <
𝜀2

𝑐′2
−

4

𝑐′2
∙ (𝛿 −

1

4
)
2

 (4.52)  

𝛼2 − 2 ∙ 𝛼 + (1 −
𝜀2

𝑐′2
+

4

𝑐′2
∙ (𝛿 −

1

4
)
2

) < 0 (4.53)  

𝛼1,2 = 1 ±
𝜀

𝑐′
√1 −

4

𝜀2
∙ (𝛿 −

1

4
)
2

 (4.54)  

𝛼 > 1 −
𝜀

𝑐′
√1 −

4

𝜀2
∙ (𝛿 −

1

4
)
2

 (4.55)  
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Considering the effect of 𝐴3
∗  negligible in the determination of the natural frequencies of 

vibrations, the reduced frequency can be expressed as: 

 

 

Thus, the definition of 𝛼 introduced in the equation (4.42) can be re-written: 

 

 

being 𝐴2,𝐹
∗ =

𝜋

4

𝐽𝑡

𝑚̃𝑎
𝛥𝜃,𝑚 the value of the 𝐴2

∗  flutter derivative correspondent to the condition 

of the onset of flutter, as already found in §3.3.5 by equation (3.51). 

Thanks to this definition equation (4.55) can be rewritten as: 

 

 

This equation extends the calculation for the 𝐴2
∗  flutter derivative correspondent to the 

onset of flutter provided in equation (3.51), by taking in consideration also the effects due 

to a vertical perturbation in the initial configuration of the bridge, which can lead to 

torsional oscillation. The importance of this equation is that it shows in a direct way that 

the internal parametric resonance phenomenon is able to deteriorate the torsional flutter 

performances of the bridge.  

However, equation (4.58) is not a closed-form equation, because both the terms at the LHS 

and at the RHS are dependent on the actual wind velocity. Therefore its applicability is 

very limited. In the present study equation (4.58) will be used in its inverse form, indeed a 

wind speed very near to the onset of flutter will be assumed, so as to be able to calculate 

the parameter 𝛼. Starting from this, the modal displacement, necessary to activate the 

instability phenomenon will be computed and it will be compared to the modal 

displacement provided by vortex shedding.  

As clearly shown in Figure 4.9, the most critical situation for the occurrence of the 

subharmonic 2:1 parametric resonance is when 𝛿 =
1

4
. In fact in this situation the modal 

amplitudes of oscillation needed to activate the instability phenomenon are as lower as 

lower is the damping coefficient. Hence the substitution of the most critical condition 𝛿 =
1

4
 

into equation (4.58) leads to: 

𝐾𝜃 =
2√𝑚̃𝑎

√𝐽𝑡𝛺̃𝜃,𝑚𝑢̃
𝛺̃𝜃,𝑚 =

2√𝑚̃𝑎

√𝐽𝑡 ∙ 𝑢̃
 (4.56)  

𝛼 =
𝐷𝜃,𝑚

𝐴𝑒𝑟𝑜

𝐷𝜃,𝑚
=

2𝑢̃√𝑚̃𝑎𝐾𝜃𝐴2
∗

𝜋𝛥𝜃,𝑚√𝐽𝑡
=

4

𝜋
∙
𝑚̃𝑎

𝐽𝑡
∙

𝐴2
∗

𝛥𝜃,𝑚
=

𝐴2
∗

𝜋
4 ∙

𝐽𝑡
𝑚̃𝑎

∙ 𝛥𝜃,𝑚

=
𝐴2

∗

𝐴2,𝐹
∗  (4.57)  

𝐴2
∗ > 𝐴2,𝐹

∗ ∙ (1 −
𝜀

𝑐′
√1 −

4

𝜀2
∙ (𝛿 −

1

4
)
2

) (4.58)  
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From this last equation, it is even clearer that 1 DoF flutter velocity is deteriorated 

proportionally to: 

 

1. The magnitude of the non-linear coupling stiffness term 𝐾𝜃𝑤,𝑚𝑛
(𝑄)

; 

 

2. The amplitude of the vertical modal amplitude due to vortex shedding 𝑧𝑛,0.  

 

 

𝐴2
∗ > 𝐴2,𝐹

∗ ∙ (1 −
𝜀

𝑐′
) = 𝐴2,𝐹

∗ ∙ (1 −
𝛿′

𝑐′
∙
𝐾𝜃𝑤,𝑚𝑛

(𝑄)

𝐾𝜃,𝑚
(𝐿)

∙ 𝑧𝑛,0) (4.59)  
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5 THE ORIGINAL TACOMA NARROWS 

BRIDGE 

The dramatic collapse of the Original Tacoma Narrows Bridge, occurred on 

November 7, 1940, is certainly the most celebrated structural failure of all times, both 

because of the impressive video recorded [57] and because of the huge number of studies 

that it has generated. It has inspired a large amount of thought both among engineers 

interested in structures and among those interested in aerodynamics and vibrations. 

Clark Eldridge, a bridge engineer for the Washington State Toll Bridge Authority, 

proposed a design in 1938. The central span was 853.4 m (2800 ft) long and 11.9 m (39 ft) 

wide, with two lanes. A truss below the roadway was 7.6 m (25 ft) deep to stiffen the deck 

against vertical, lateral, and torsional displacements. The estimated cost was $11 million. 

The Public Works Authority (PWA) wanted to lower the cost, and a well-known 

consultant, Leon Moisseiff of New York, was hired. He replaced the truss in Eldridge’s 

design with two vertical stiffening silicon-steel plate girders along the sides, extending 

1.22 m (4 ft) above and below the roadway. The new estimated cost was $6.4 million.  

Oscillations of considerable amplitudes , caused by wind were apparent during the erection 

of the Tacoma Narrows Bridge. In spite of certain remedial devices that were installed, 

these undulations continued after the completion of the structure and its opening to 

vehicular traffic on July 1, 1940, indeed amplitudes of 0.42 m (1.4 ft) were often recorded. 

The vertical undulations were regarded as an attraction by the local public and earned the 

bridge the nickname “Galloping Gertie”. However, the same motions were of great 

concern to the structural engineers, who monitored the vibration pattern of the bridge 

closely. 

On November 7, 1940, a wind speed of 19 m/s (42 mph) was measured at the eastern end 

of the bridge. The wind was southerly and hit the bridge obliquely. The motion of the deck 

before 10 a.m. was vertical with an amplitude not more than 0.5 m (1.6 ft) and it had eight 

or more nodes in the central span. The frequency of the motion was 36 - 38 cycles per 

minute (0.60 - 0.63 Hz), which was significantly higher than previously reported 

frequencies. Around 10 a.m., the motion violently switched into a torsional mode with a 

node at midspan. The initial frequency was 14 cycles per minute (0.23 Hz), but after a 

short time it decreased to 12 cycles per minute (0.2 Hz), perhaps due to some damage 

within the deck. After examining the films, Farquharson concluded that the maximum twist 

angle was about 35°, corresponding to a maximum vertical amplitude of approximately 
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4.3m (14 ft) along the edge of the deck. The central span collapsed around 11 a.m. and fell 

into the Tacoma Narrows. Torsional oscillations had not been observed on the bridge prior 

to its last hour. 

5.1 TENTATIVE EXPLANATIONS OF THE FAULT 

There have been many attempts to explain the amazing Tacoma Narrows Bridge failure, 

but none is universally accepted. It is however well established that the main culprit was 

the unexpected appearance of torsional oscillations. 

First attempts for the explanations of the bridge collapse, made by the investigators, 

concerned with the classical resonance phenomenon between the vortex shedding 

frequency and one of the bridge’s natural frequencies. 

Some years later, Scanlan et al. [11] denied this theory and they attributed the failure to the 

aerodynamic forces generated by the wind-structure interaction. These forces may generate 

self-excitation and negative damping effects, which for the particular Aerodynamic 

properties of the bridge led torsional flutter instability. Nowadays, the dominant 

explanation of the Tacoma collapse relies with this theory. 

Further explanations involve vortices, due both to the particular shape of the bridge and to 

the angle of attack of the wind. Matsumoto et al. [40] studied the aerodynamic 

interferences between vortex induced heaving vibrations and torsional vibrations which 

can provoke stabilizing effects, suppressing the torsional flutter. Larsen et al. [36] 

developed a model for the numerical simulations of two-dimensional viscous 

incompressible flow past bridge girder cross sections using finite difference and discrete 

vortex methods. The results of their studies highlighted aerodynamic interferences for bluff 

cross sections due to the vortex shedding phenomenon. 

Arioli and Gazzola [7] suggested that the spark for torsional oscillations was an internal 

resonance which creates a bifurcation of the Poincaré map and occurs when a certain 

amount of energy is present into the structure. They emphasized a structural instability 

considering an ideal isolated bridge in vacuum, in which a certain amount of energy is 

inserted in the structure. The wind and vortex shedding are usually responsible for 

introducing energy within the structure. 

These theories differ as to what caused the torsional oscillation of the bridge, but they all 

agree that the extreme flexibility, slenderness, and lightness of the Tacoma Narrows Bridge 

allowed these oscillations to grow until they destroyed it. 
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5.2 DATA FOR THE TACOMA NARROWS BRIDGE 

The report to the honorable John M. Carmody Administrator for the Federal works Agency 

Washington, written by Amman et al. [2] contains all the information about the Tacoma 

Narrows Bridge. Other data necessary for the analysis, such as the elastic modulus, are 

provided by Malik [39]. All the bridge’s data are listed in Table 5.1.  

 

𝑏 = 5.94 𝑚 (19.5 𝑓𝑡) Half-width of the deck cross section 

𝑙 = 853.44 𝑚 (2800 𝑓𝑡) Central span length 

𝐿𝑐 = 868.7 𝑚 Cable’s length under deck’s self weight only 

𝐷 = 2.44 𝑚 (8 𝑓𝑡) Depth of the deck cross section 

𝑓 = 70.7 𝑚 (232 𝑓𝑡) Cable’s sag 

𝐴𝑐 = 0.123 𝑚2 (190 𝑠𝑞. 𝑖𝑛𝑠) Cable’s area 

𝑚𝑑 = 6354𝑘𝑔 𝑚⁄ (4270 𝑙𝑏 𝑝. 𝑓𝑡) deck mass per unit length 

𝑚𝑐 = 1064 𝑘𝑔 𝑚⁄ (715 𝑙𝑏 𝑝. 𝑓𝑡) cable mass per unit length 

𝑚𝑡𝑜𝑡 = 8482 𝑘𝑔 𝑚⁄ (5700 𝑙𝑏 𝑝. 𝑓𝑡) Total mass per unit length 

𝐼𝑑 = 0.1544 𝑚4 (2567 𝑠𝑞. 𝑖𝑛𝑠 𝑠𝑞. 𝑓𝑡) Deck moment of inertia 

𝐽𝑑 = 6.07 ∙ 10−6 𝑚4 Torsional constant of the deck 

𝛤𝑑 = 5.44 𝑚6 Warping constant of the deck  

𝐽𝑡 = 58097 𝑘𝑔 ∙ 𝑚2/𝑚 Linear density of the deck’s moment of inertia 

𝜌𝑑 = 3.96 𝑚 (13 𝑓𝑡) Inertial gyration radius of the deck 

𝐸𝑑 = 2 ∙ 1011 𝑁/𝑚2 Effective elastic modulus of the deck 

𝐺𝑑 = 8 ∙ 1010 𝑁/𝑚2 Shear modulus of the deck 

𝐸𝑐 = 1.85 ∙ 1011 𝑁/𝑚2 Effective elastic modulus of the cables 

Table 5.1: Tacoma Narrows Bridge Data 
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From these available information it is possible to define the fundamental dimensionless 

parameters entering in the governing equation of motion, listed in Table 5.2. 

 

𝐻 = 5.35 ∙ 107 𝑁 Horizontal projection of the cables tension force 

𝜇2 = 3.96 ∙ 10−4 Steinmann’s stiffness factor 

𝜆1
2 = 183.29 1st order Irvine’s parameter 

𝜆2
2 = 22.91 2nd order Irvine’s parameter  

𝜆3
2 = 2.86 3rd order Irvine’s parameter 

𝛽2 = 1.28 ∙ 10−4 
Ratio between the primary torsional stiffness and the cables 

one 

𝜒2 = 0.325 Warping coefficient  

𝛾2 = 3.95 ∙ 10−4  
Ratio between the warping torsional stiffness and the cables 

one 

𝐽𝑡 = 0.445 Non-dimensional torsional inertia 

𝑚̃𝑑 = 0.749 Non-dimensional mass 

𝑚̃𝑎 = 0.0160 Aerodynamic mass (𝜌𝑎 = 1.223 𝑘𝑔/𝑚3) 

𝑏̃ = 0.084 Non-dimensional width of the section  

𝛼̃ = 4.869 Aspect ratio 

Table 5.2: Non-dimensional parameters for the Tacoma Bridge 

Thanks to the values listed in Table 5.1 and Table 5.2 it is possible to completely define 

the Eigen-properties of the bridge by means of the modal superposition analysis (§2.4). 
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5.3 MODAL ANALYSIS 

The analytical formulas already exploited in §2.4 are used for the calculation of the Eigen-

properties of the Tacoma Narrows Bridge. The obtained results are compared with the 

modes of oscillations observed by Professor Farquharson [2]. 

The first five skew-symmetric Eigen-modes and Eigen-frequencies are computed 

according to equations (2.48) and (2.51), respectively. The modes of vibrations, 

characterized by a sinusoidal trend are depicted in Figure 5.1, whilst the Eigen-frequencies 

are listed in Table 5.3.  
 

 

Figure 5.1: First 5 flexural Skew-Symmetric modes of vibration 

 Flexural Skew-Symmetric Eigen-frequencies Farquharson 

Mode No. 𝛺̃𝑤 𝛺𝑤  [𝑟𝑎𝑑/𝑠] 𝑓𝑤  [𝐻𝑧] 𝑓𝑤  [𝐻𝑧] Error [%] 

1 6.3321 0.8339 0.1327 0.1450 8.48 

2 12.9530 1.7059 0.2715 0.2750 1.27 

3 20.1309 2.6512 0.4220 0.4000 5.50 

4 28.0982 3.7005 0.5890 0.5667 3.94 

5 37.0453 4.8788 0.7765 - - 

Table 5.3: First 5 Flexural Skew-Symmetric Eigen-frequencies 
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The calculation for the first five symmetric Eigen-modes and Eigen-frequencies is more 

cumbersome. The modes of vibrations can be computed trough equation (2.59), only once 

that the Eigen-frequencies are known. The latter are calculated by means of the well 

known bisection method enforcing the zeroing of the Eigen-function (2.61). Figure 5.2 and 

Table 5.4 show the flexural symmetric Eigen-modes and Eigen-frequencies, respectively. 

 

 

Figure 5.2: First 5 flexural Symmetric modes of vibration 

 

 Flexural Symmetric Eigen-frequencies Farquharson 

Mode No. 𝛺̃𝑤 𝛺𝑤 [𝑟𝑎𝑑/𝑠] 𝑓𝑤  [𝐻𝑧] 𝑓𝑤  [𝐻𝑧] Error [%] 

1 8.8112 1.1604 0.1847 0.2000 7.65 

2 13.3439 1.7574 0.2797 - - 

3 16.9120 2.2273 0.3545 0.3500 1.29 

4 24.0940 3.1731 0.5050 0.4500 12.22 

5 32.4705 4.2763 0.6806 0.6333 7.47 

Table 5.4: First 5 Flexural Symmetric Eigen-frequencies 
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In long-span suspension bridges usually the torsional modes of vibration are characterized 

by higher frequencies with respect to the corresponding flexural modes. It is for this reason 

that only the first three skew-symmetric Eigen-modes and Eigen-frequencies are 

calculated. Equations (2.66) and (2.67) are used to obtain the sinusoidal trend of the modes 

of vibrations (Figure 5.3) and the correspondent Eigen-frequencies (Table 5.5). Notice that 

the comparison is done for the first skew-symmetric mode of vibration only, which was the 

observed torsional mode before the collapse. 

 

 

Figure 5.3: First 3 torsional Skew-Symmetric modes of vibration 

 

 Torsional Skew-Symmetric Eigen-frequencies Farquharson 

Mode No. 𝛺̃𝜃 𝛺𝜃 [𝑟𝑎𝑑/𝑠] 𝑓𝜃 [𝐻𝑧] 𝑓𝜃 [𝐻𝑧] Error [%] 

1 9.4928 1.2502 0.1990 0.2000 0.50 

2 19.4181 2.5573 0.4070 - - 

3 30.1771 3.9743 0.6325 - - 

Table 5.5: First 3 torsional Skew-Symmetric Eigen-frequencies 
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As in the case of the flexural symmetric Eigen-properties, the torsional symmetric modes 

of vibrations can be computed trough equation (2.74), once that the correspondent Eigen-

frequencies are known. Enforcing the zeroing of the Eigen-function (2.72), the circular 

frequencies can be calculated and Figure 5.4 and Table 5.6, representing the torsional 

symmetric Eigen-modes and Eigen-frequencies, are obtained. 

 

 

Figure 5.4: First 3 torsional Symmetric modes of vibration 

 

 Torsional Symmetric Eigen-frequencies Farquharson 

Mode No. 𝛺̃𝜃 𝛺𝜃 [𝑟𝑎𝑑/𝑠] 𝑓𝜃 [𝐻𝑧] 𝑓𝜃 [𝐻𝑧] Error [%] 

1 13.2092 1.7396 0.2769 - - 

2 20.0038 2.6345 0.4193 - - 

3 25.3543 3.3391 0.5314 - - 

Table 5.6: First 3 torsional Symmetric Eigen-frequencies 
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The agreement of the theoretical results with the observations of frequencies and modes on 

both prototype and model is quite good. 

The lower order flexural frequencies just computed underestimates the observed values, 

whilst the higher order frequencies overestimates the prototype values. The reason is 

hidden behind some assumptions made for the model. On one hand, the model neglects the 

deformability coming from the motion of pylons and the one coming from the hangers, for 

which a tenso-rigid constitutive model applies, making the response of the higher flexural 

modes stiffer. On the other hand, the assumption of perfectly hinged ends gets rid of the 

flexural stiffening contribution coming from cable’s section and from side span, making 

the response of the lower flexural modes softer. 

It seems that the torsional frequency just computed gives an accurate result with respect to 

the observed value by Farquharson. However on the day of collapse the bridge initially 

experienced torsional oscillations according to the 1st skew-symmetrical torsional mode 

with a frequency of 0.23 Hz. Then, perhaps due to some damage within the deck, the 

torsional frequency of oscillations decreased to 0.2 Hz. It is clear that the theoretical result 

provided by the model slightly underestimates the initial torsional frequency observed, i.e. 

0.23 Hz. The reason of this is that the stiffening effect due to the presence of the pylons 

and the side spans (not considered in the model) affects in a larger amount the torsional 

frequencies with respect to the flexural ones (Rannie W.D. [2]), leading to softer results.  

According to the report written by Amman et al. [2], before the sudden appearance of 

torsional oscillations the bridge was oscillating with the 5th symmetric flexural mode. 

Thus, the modes of interest for our purpose are the 5th symmetric flexural mode, having 

frequency equal to 𝑓𝑤,5 = 0.6806 𝐻𝑧, and the 1st skew-symmetrical torsional mode, having 

frequency equal to 𝑓𝜃,1 = 0.199 𝐻𝑧.  

Once the Eigen-properties of the structure are obtained, equation (2.75) allows to compute 

the modal structural mass, damping and stiffness properties related to the modes of 

interest. As usual in long-span suspension bridges, a damping coefficient equal to 0.5% for 

both the flexural and the torsional modes of vibration is assumed, i.e. 𝛥𝑤,5 = 0.5% and 

𝛥𝜃,1 = 0.5%. 

 

𝑀𝑤,5 = ∫ 𝑊5
2(𝜉)𝑑𝜉

1

0

= 0.4882 

(5.1) 𝐽𝜃,1 = 𝐽𝑡𝑀𝜃,1 = 𝐽𝑡 ∫ 𝛩1
2(𝜉)𝑑𝜉

1

0

= 0.2225 

𝐷𝑤,5 = 2𝛥𝑤,5𝛺̃𝑤,5𝑀𝑤,5 = 0.1585 
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𝐷𝜃,1 = 2𝛥𝜃,1𝛺̃𝜃,1𝐽𝜃,1 = 0.0211 

𝐾𝑤,5
(𝐿)

= 𝛺̃𝑤,5
2 𝑀𝑤,5 = 514.72 

𝐾𝜃,1
(𝐿)

= 𝛺̃𝜃,1
2 𝐽𝜃,1 = 20.0496 

𝐾𝜃𝑤,15
(𝑄)

= 𝜆2
2 [2ℎ̃𝛩1

ℎ̃𝑊5
′𝛩1

′ + ℎ̃𝑊5
ℎ̃

𝛩1
′2] = 37.6016 

 

Thanks to the modal Eigen-properties, by means of equation (2.93) it is also possible to 

find the critical flexural amplitude able to induce the slackening of hangers. For the 5th 

symmetric flexural mode the onset for slackening is reached for: 

 

 

This value is in agreement with the measurements done just before the collapse [57]. In 

fact, before the sudden occurrence of torsional oscillations, the Tacoma Bridge was 

oscillating with an amplitude of vibration of 0.46 m, without experiencing slackening of 

hangers. 

Moreover it is worth remembering that a critical torsional amplitude for torsional 

oscillations cannot be defined, because of the hypothesis that the deck, with its weight, 

does not introduce any asymmetry in the initial configuration of the hangers.   

5.4 DIVERGENCE AND FLUTTER WIND SPEED 

5.4.1 Divergence Velocity 

The wind velocity for the occurrence of static torsional divergence is dependent only on 

the structural properties of the bridge and it can be calculated trough equation (3.43). For 

the Tacoma Narrows Bridge, with the parameters listed in Table 5.1 and Table 5.2, and 

considering the 1st skew-symmetrical torsional non-dimensional circular Eigen-frequency, 

the divergence wind speed is: 

 

 

𝑍𝑛,𝑠𝑙𝑎𝑐𝑘 = 0.83 𝑚 (5.2)  

𝑈𝐷 = √𝐽̃𝑡𝛺̃𝜃,1√
2𝐻

𝜌𝜋𝑙2
= 39.2 

𝑚

𝑠
 (5.3)  
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As expected, this wind speed is much higher with respect to the velocity measured on the 

day of collapse. In fact, the dynamic limit for the occurrence of instability is always lower 

with respect to the static one. Therefore, for this deck’s section geometry, it is not 

admissible to reach the torsional divergence limit within feasible wind speed. 

5.4.2 Flutter Velocity 

In order to compute the flutter wind speed it would be necessary to consider the complete 

Aeroelastic system of equations. The flutter analysis consists in solving the Eigenvalue 

problem (3.33) for the determination of the Aeroelastic Eigen-frequencies and Eigen-

modes with varying of the wind speed. The instability condition is reached when the 

determinant of the impedance matrix is null (3.35).  

Thus, to accomplish a flutter analysis, wind tunnel tests on a sectional model of the bridge 

are necessary to find all the Aeroelastic properties of the deck, namely the flutter 

derivatives. From literature, it is possible to find the trend of some of the most important 

flutter derivatives for the Tacoma Narrows Bridge. Billah and Scanlan [11], provided the 

trend of 𝐴2
∗  for varying reduced wind speed. This information is very useful, because it 

allows to obtain the approximate wind velocity for the onset of torsional flutter, by means 

of equation (3.51). 

The curve given by Billah and Scanlan [11] can be parameterized by means of two 

coefficients only, because it has approximately a parabolic shape. This is an useful tool to 

obtain a numerical expression for the variation point by point of the curve, to be applied on 

the mathematical model. The differences between the original curve of 𝐴2
∗  and the 

parameterized one are shown in Figure 5.5.  

 

 
 

Figure 5.5: Trend of A2* for the Tacoma Narrows Bridge 
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The parameterized curve for 𝐴2
∗  can be found by seeking for a parabolic trend passing 

through the origin: 

 

 

The two constants can be obtained by enforcing two geometrical conditions, which choice 

is very important to obtain a good approximation. Since the objective is to find the 

conditions for the flutter onset, which are guaranteed when 𝐴2
∗ > 0, the proper choice for 

the boundary conditions are (
𝑈

2𝑓𝜃𝑏
≅ 2, 𝐴2

∗ = 0) and (
𝑈

2𝑓𝜃𝑏
≅ 5,𝐴2

∗ = 0.2). In this way the 

constants introduced for the parameterization of the curve are 𝑎 = −2.67 ∙ 10−2 and 𝑏 =

1.33 ∙ 10−2. The curve obtained fits very well with the curve proposed by Billah and 

Scanlan [11] for positive values of 𝐴2
∗ , whereas it does not approximate it in a good way for 

negative values of 𝐴2
∗ .  

The critical value for the onset of flutter can be found from equation (3.51). However, 

since Billah and Scanlan [11] provided the curve of 𝐴2
∗  with a different notation for the 

introduction of the flutter derivatives in the Aeroelastic system of equations, equation 

(3.51) slightly changes. Hence, the condition for flutter reads as: 

 

 

This result is slightly lower than the value for the critical aerodynamic derivative in 

correspondence of flutter found by Billah and Scanlan [11], i.e. 𝐴2,𝐹
∗ = 14.48 ∙ 𝛥𝜃,1. 

Considering a value for the damping coefficient equal to 𝛥𝜃,1 = 0.5%, in accordance with 

the value estimated by Farquarhson for the logarithmic decrement for that mode of 

vibration, the critical value for 𝐴2
∗  is: 

 

 

Figure 5.6 represents the trend of 𝐴2
∗  in function of the dimensional velocity (not in 

function of the reduced velocity). From this curve it is possible to extract the value for the 

wind speed correspondent to the flutter onset, which is: 

 

 

This value compares reasonably to the critical speed predicted by Billah and Scanlan [11], 

who found 𝑈𝐹 = 8.36 
𝑚

𝑠
= 18.6 𝑚𝑝ℎ. 

𝐴2
∗ = 𝑎 ∙

𝑈

2𝑓𝜃𝑏
+ 𝑏 ∙

𝑈2

(2𝑓𝜃𝑏)
2
 (5.4)  

𝐴2
∗ ≥

𝜋

8
∙

𝐽𝑡
𝑚̃𝑎

∙ 𝛥𝜃,1 = 10.934 ∙ 𝛥𝜃,1 (5.5)  

𝐴2,𝐹
∗ = 0.0547 (5.6)  

𝑈𝐹 = 7.70
𝑚

𝑠
= 17.36 𝑚𝑝ℎ (5.7)  
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Figure 5.6: Value of the flutter velocity from the A2* curve 

 

Moreover it is possible to compare the flutter speed obtained in equation (5.7) with the 

results of wind tunnel tests made by Farquharson [28]. These tests provide measurements 

of the response of the Tacoma Narrows Bridge under smooth flow of an highly accurate 

3D dynamic full-bridge model in 1:50 scale. Figure 5.7 was reproduced from that study.  

 

 

Figure 5.7: Wind-induced amplitude response of various modes of Original Tacoma Narrows full-

bridge dynamic model [28] 
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Flutter, in the mode designated as 1-NT in Figure 5.7, was incipient for a model wind 

speed of 𝑈𝐹,𝑚𝑜𝑑𝑒𝑙 = 3.3 𝑓𝑡/𝑠. This value corresponds to a prototype flutter speed of: 

 

 

Again, this result is in agreement to what found trough the simplified equation (5.7).  

The flutter wind speed (5.7) can also be compared with some experiments made by Von 

Kàrmàn and Dunn [2] on an oscillating model simulating the sections of the bridge. The 

results of the test are shown in Figure 5.8.  

 

 

Figure 5.8: Damping of angular oscillations on the Original Tacoma Narrows Bridge model 

𝑈𝐹 = 𝑈𝐹,𝑚𝑜𝑑𝑒𝑙 ∙ √50 = 7.1
𝑚

𝑠
= 15.9 𝑚𝑝ℎ (5.8)  
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Figure 5.8 indicates that the total damping is null somewhere in the range 3.4 <
𝑈

𝑓𝜃𝐵
< 5.1, 

i.e. for a velocity of the prototype bridge in between 8 𝑚/𝑠 < 𝑈 < 12 𝑚/𝑠 (18 𝑚𝑝ℎ < 𝑈 <

27 𝑚𝑝ℎ). Also these experimental tests validate the result obtained (5.7). 

The increase of the response with the wind speed, beyond the incipient stage, toward 

higher amplitude flutter, which is influenced by structure-induced turbulence and hence 

progressively changing values of 𝐴2
∗ , was witnessed in the full model in Figure 5.7. Therein 

the response curve designated as 1-NT (2nd) is the divergent flutter response, in fact the 

model frequency 1.44 Hz corresponds to the destructive prototype frequency observed 

𝑓𝜃,1 = 0.2 𝐻𝑧. The ever-increasing response of mode 1-NT approaches “divergent” 

amplitudes of vibration at a model velocity of around 𝑈𝑚𝑜𝑑𝑒𝑙 = 5 𝑓𝑡/𝑠, which corresponds 

to a full-scale speed of about 𝑈 = 15.6
𝑚

𝑠
= 35 𝑚𝑝ℎ.  

The wind speed for the onset of flutter predicted by wind tunnel tests by Farquharson 

(Figure 5.7) is never actually ascertained, because the bridge withstood winds well above 

the value of 7.1 m/s for a long time before collapsing.  

5.4.3 Possible Explanations for the low value  of the Wind Flutter Speed 

Still nowadays the mystery of the low velocity for the onset of torsional flutter on the 

Tacoma Narrows Bridge has not been solved. 

Farquharson [28] tried to explain this fact by centre diagonal stays, which might be 

possible to stabilize the torsional flutter of the bridge. However, this explanation has not 

been proven yet. 

The hypothesis assumed by Matsumoto et al. [40] was that the vortex-induced heaving 

vibration might stabilize the torsional flutter phenomenon. In other words the effect of 

some aerodynamic interferences between heaving and torsional vibrations might be present 

on the original Tacoma Narrows bridge. The same Farquharson [28] mentioned a possible 

effect of interferences between vortex-induced vibrations and torsional flutter. 

Matsumoto et al. [40] made some free vibration tests in the wind tunnel under smooth flow 

conditions, analysing an H-shaped section of bluffness ratio 𝐵/𝐷 = 5 (similar to the 

Tacoma Narrows Bridge), in order to give an explanation to this phenomenon. They 

discovered that there are two kinds of torsional flutter in the reduced wind velocity region 

analysed, one is a low-speed torsional flutter and the other is an high speed torsional 

flutter. The former is generated by vortex convections on the side surface of the body 

whilst the latter is due to local separation bubbles around the leading edge. Analysing the 

results of 2 DoFs responses of their experiments one can deduce that the vortex-induced 

heaving vibrations can suppress the low-speed torsional flutter, whereas the high-speed 

torsional flutter can suppress the vortex-induced heaving vibration. Hence, Matsumoto et 

al. tried to explain the mystery of low torsional flutter wind speed stating that the 5th 
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symmetric mode of vibration due to vortex shedding suppressed the low-speed torsional 

flutter. Due to this fact they measured the critical onset velocity as 𝑈𝐹 ≅ 17 
𝑚

𝑠
= 38 𝑚𝑝ℎ. 

This velocity does not agree with the one measured by Farquharson the day of the collapse, 

i.e. 19 m/s, but due to some uncertainties on this measurement and due to uncertainties on 

the wind direction at the moment of the accident, the result found by Matsumoto et al. [40] 

seems very reasonable. 

Kubo et al. [32] observed a particular structure of the wake around a bridge’s H-shaped 

cross section and around a rectangular cross section. In both cases a regular pattern of 

vortices appeared on both the upper and the lower sides of the bridge deck. They 

speculated that the spacing between consecutive vortices was the likely cause of different 

vertical and torsional modes of vibration observed during the brief lifetime of the original 

Tacoma Narrows bridge. 

It was Larsen [36] the first to produce a physical model of the bridge collapse based on the 

hypothesis made by Kubo et al. [32]. In particular, he developed a code able to reproduce 

the effect of the discrete vortices on the bridge aerodynamic problems, including steady 

state load coefficients, flutter stability and vortex shedding excitation. By means of this 

code, he postulated that the key to the torsion instability mechanism was the formation and 

drift of large-scale vortices from the upwind edge of the bridge girder cross section. 

The model proposed by Larsen [34] was based on the calculation of the work generated by 

vortices as they drift over the bridge. He considered three different cases based on the 

vortex dimensions, see Figure 5.9. Since a vortex is a low pressure region, a force in the 

direction of the vortex itself is produced on the bridge. Thus, if the spacing between two 

consecutive vortices drifting on opposite sides of the section is exactly half of the deck 

width, they do not produce work over one cycle of oscillation (1st case Figure 5.9). This is 

the condition to find the critical wind speed, indeed for wind speeds lower than the critical 

one (3rd case Figure 5.9), the vortices do not cross the entire bridge in one period and 

produce net torques that dampen the oscillation, whilst for wind speeds higher than the 

critical one (2nd case Figure 5.9), the vortex crosses the entire bridge in less than one period 

making work on the bridge. 

For a generic H-shaped cross section Larsen found that the critical reduced velocity for the 

onset of flutter was 
𝑈

𝑓𝜃𝐵
≅ 4, which means 𝑈𝐹 ≅ 9.5 

𝑚

𝑠
= 21.3 𝑚𝑝ℎ with the data of the 

Tacoma bridge. Also this result is in excess with respect to what measured on the day of 

the collapse. 
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Figure 5.9: Vortex drift pattern and associated fluid work (W) over one circle of torsion oscillation   

(1st: vortex spacing = b , 2nd: vortex spacing > b , 3rd: vortex spacing < b) 

 

Moreover, Larsen simulated the response of the Tacoma Narrows Bridge at the condition 

of the destructive wind speed of 19 m/s. Obviously he found divergent torsional 

oscillations, indicating instability, but accompanied by vertical oscillations of fairly 

constant amplitude around 1 m, indicating a 2 DoFs classical flutter phenomenon. 
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5.5 EFFECT OF INTERNAL PARAMETRIC RESONANCE ON THE 

FLUTTER VELOCITY 

In this paragraph the formulas obtained in §4.5.4 are used to demonstrate the erosion of the 

flutter velocity due to the effect of 2:1 subharmonic resonance. To do this, let us assume to 

be in the condition of wind speed very near to the flutter onset: 

 

 

In this particular condition the total net torsional damping is lowered by the effect of the 

aerodynamic forces. For the value of 𝐴2
∗  correspondent to the velocity considered in 

expression (5.9), it is possible to calculate the parameter 𝛼 (eq. (4.57)), which is a measure 

of the erosion of the net torsional damping due to Aeroelastic effects. 

 

 

It is obvious from (5.10) that the Aeroelastic effects produces a reduction of nearly the 

70% on the structural torsional damping. Hence the system becomes susceptible to internal 

2:1 parametric resonance because the “tongue” of instability in the Ince-Strutt diagram 

goes down, as shown in the subplot of Figure 5.10. 
 

 

Figure 5.10: Influence of Aeroelastic effects in the stability region of the Ince-Strutt diagram 

𝑈 = 0.9 ∙ 𝑈𝐹 ≅ 7 
𝑚

𝑠
 (5.9)  

𝛼 =
𝐷𝜃,𝑚

𝐴𝑒𝑟𝑜

𝐷𝜃,𝑚
=

𝐴2
∗

𝐴2,𝐹
∗ = 0.667 (5.10)  
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The erosion of the damping of the system is proportional to the velocity chosen for the 

assessment of the stability (5.9). In fact the more the velocity is near to the flutter one, the 

more the net torsional damping is eroded by the effect of the flutter derivative 𝐴2
∗ . This 

happens until the condition for the onset of flutter is reached, which correspond to an 

exponentially increasing response of the structure due to null torsional damping. Thus, the 

assessment for the stability analysis is strictly dependent on the value of the wind speed 

assumed, but our objective is to demonstrate that a parametric resonance phenomenon is 

possible with the values observed. 

Having fixed a value for the velocity, the problem does not depend anymore on it. In this 

scenario it is interesting to compute the flexural modal amplitude of displacement 

necessary to reach instability caused by parametric resonance. To this purpose, let us 

assume to be in the condition where the vortex shedding lock-in with the 2:1 subharmonic 

resonance (𝛿 = 1/4). Then, the amplitude of the perturbation 𝑧5,0, defined as the modal 

amplitude of the 5th symmetric flexural mode normalized with respect to the initial cable 

sag, can be found from the Ince-Strutt diagram, because it corresponds to a specific value 

of 𝜀. The subplot of Figure 5.11 has two different scales on the y axis, one indicates the 

values of 𝜀 and one the values of the correspondent dimensional flexural modal amplitude 

𝑍5,0. 

 

 

Figure 5.11: Critical values for the 5th symmetric modal amplitudes of vibration 
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Fixed the value of velocity, i.e. the 90% of the flutter one, the value of flexural modal 

displacement necessary to activate the resonance phenomenon in correspondence of perfect 

2:1 condition is: 

 

 

Being impossible to reach a perfect 2:1 lock-in condition between the vortex shedding 

frequency and the torsional structural frequency, it can be useful to take into account for a 

tolerance around the value of 𝛿 =
1

4
, namely 0.247 < 𝛿 < 0.253. In this range of frequency 

ratios, the flexural modal amplitude of vibration can assume values in between: 

 

 

The choice of the range around the 2:1 frequency ratios condition is completely arbitrarily, 

but it is justifiable from the values of 𝑍5,0 found, which are of the same order of magnitude 

of the flexural oscillations due to vortex shedding measured by Farquharson the day of the 

Tacoma Narrows bridge disaster. 

It is necessary now to find what is the amplitude of oscillation produced by the vortex 

shedding phenomenon and to compare them with the critical modal amplitude found in 

(5.12).  

5.6 VORTEX SHEDDING RESPONSE 

The first step to compute the vortex induced response is to find the lock-in wind velocity. 

Considering a Strouhal number equal to 𝑆𝑡 = 0.115, as obtained by wind tunnel tests by 

Larsen [36], the vortex shedding frequency locks-in with the 5th symmetrical flexural mode 

of vibration when: 

 

 

Thus, the lock-in range of wind velocities, for small Scruton number (small values of 

damping) can be assumed in between 0.8 ∙ 𝑈𝑙𝑜𝑐𝑘−𝑖𝑛 < 𝑈 < 1.5 ∙ 𝑈𝑙𝑜𝑐𝑘−𝑖𝑛, which means: 

 

 

𝑍5,0 = 0.206 𝑚 (5.11)  

0.20 𝑚 < 𝑍5,0 < 0.64 𝑚 (5.12)  

𝑈𝑙𝑜𝑐𝑘−𝑖𝑛 = 𝑈𝐷 ∙ (
𝛺̃𝑤,5

𝛺̃𝜃,1

∙ √
𝑚̃𝑎

𝐽𝑡
∙

1

𝜋 ∙ 𝑆𝑡 ∙ 𝛼̃
) = 14.44 

𝑚

𝑠
 (5.13)  

11.55 
𝑚

𝑠
< 𝑈 < 21.66 

𝑚

𝑠
 (5.14)  
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This range of wind velocities is in accordance with the measured velocities on the day of 

the Tacoma Narrows bridge’s failure. However, it does not agree with the wind speed for 

the onset of flutter (5.6). This wind speed, as justified by different authors §5.4.3, is not to 

be considered as the “real” speed for the onset of flutter. In fact, for this particular cross 

section, the flutter phenomenon is driven by the shedding of the vortices from the upwind 

edge. Thus, it seems reasonable to assume that the “real” flutter speed is of the same order 

of magnitude of the lock-in velocity, may be slightly higher, because it is what emerges 

from various studies ([32], [34] and [39]). 

Without any loss of generality, it is possible to assume a wind speed for the onset of flutter 

higher with respect to the lock-in velocity. The effect of parametric resonance instability 

§5.5 still makes sense, because regardless of what the “real” flutter speed is, we considered 

a velocity slightly lower this limit (e.g. 𝑈 = 0.9 ∙ 𝑈𝐹). In this context, it is reasonable to 

think that the effect of the aerodynamic damping produces always a reduction of nearly the 

70% on the structural torsional damping, leading to the same result for 𝑍5,0 found (5.11). 

The second step for the calculation of the steady state flexural amplitude is the calculation 

of the dynamic amplification factor and the phase lag of the response of a 1 DoF oscillator 

(4.33). It is important to notice that the total flexural damping of the 5th symmetrical 

flexural mode is provided by both a structural and an Aeroelastic component, dependent on 

the flutter derivative 𝐻1
∗. In fact:  

 

 

Let us assume the contribution of 𝐻1
∗ to the flexural stiffness as negligible: Thus, the 

reduced frequency can be simplified as follows. 

 

 

The substitution of the equation (5.16) into the equation (5.15) leads to: 

 

 

where the equivalent Aeroelastic damping coefficient is given by: 

 

 

𝐷𝑤,𝑛
𝑇𝑂𝑇 = 𝐷𝑤,𝑛 − 𝐷𝑤,𝑛

𝐴𝑒𝑟𝑜 = (2𝛥𝑤,𝑛𝛺̃𝑤,𝑛 −
1

𝜋
𝑢̃√𝐽𝑡√𝑚̃𝑎𝐾𝑤𝐻1

∗𝛺̃𝜃,𝑚)𝑀𝑤,𝑛  (5.15)  

𝐾𝑤 =
2

𝑢̃
∙
√𝑚̃𝑎

√𝐽𝑡
∙
𝛺̃𝑤,𝑛

𝛺̃𝜃,𝑚

  (5.16)  

𝐷𝑤,𝑛
𝑇𝑂𝑇 = 2 ∙ (𝛥𝑤,𝑛 −

1

𝜋
∙ 𝑚̃𝑎𝐻1

∗) ∙ 𝛺̃𝑤,𝑛 ∙ 𝑀𝑤,𝑛 = 2 ∙ 𝜉𝑤,𝑛 ∙ 𝛺̃𝑤,𝑛 ∙ 𝑀𝑤,𝑛  (5.17)  

𝜉𝑤,𝑛 = 𝛥𝑤,𝑛 −
1

𝜋
∙ 𝑚̃𝑎𝐻1

∗ (5.18)  
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For the case of the Tacoma Narrows bridge, Scanlan [49] provides a value for the flutter 

derivative 𝐻1
∗ = −1.844. The latter has been found by the author by means of wind tunnel 

tests and by averaging the value of 𝐻1
∗ for different reduced frequencies, i.e. averaging it 

for different wind velocities. Thus, it is possible to assume this value invariant with the 

wind speed and to substitute it in the calculation of the equivalent Aeroelastic damping 

coefficient (5.18).  
 

 

It is obvious that the aerodynamic effect increases the net flexural damping of the bridge 

and subsequently it decreases the modal displacement produced by vortex induced 

vibration. The value found for the damping coefficient is in complete agreement with the 

value estimated by Scanlan [49], which calculated that 0.0147 < 𝜉𝑤,𝑛 < 0.0182.  

Considering the increment of damping due to 𝐻1
∗ and neglecting the decrement/increment 

of the flexural stiffness due to 𝐻4
∗ (depending on its sign), it is possible to compute the 

dynamic amplification factor and the phase lag for the wind induced response. Figure 5.12 

represents the variation of the dynamic amplification factor and the phase lag with the 

frequency ratio 𝛽 =
𝜔̃𝑉𝑆

𝛺̃𝑤,𝑛
, both in the case of considering only the structural damping (red 

lines), and considering the total Aeroelastic damping (blue lines). 

 

  

Figure 5.12: Dynamic amplification factor and phase lag both considering the effect due to H1
* and not 

Aerodynamic effects are capable to reduce the dynamic amplification factor from the pick 

value of 𝑁(1) =
1

2𝛥𝑤,𝑛
= 100 to the pick value 𝑁(1) =

1

2𝜉𝑤,𝑛
≅ 35. 

 

𝜉𝑤,𝑛 = 0.0144 = 1.44 % (5.19)  
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Hence, the value of the 5th symmetric modal amplitude of vibration, considering the value 

calculated by Scanlan [49] for the lift coefficient of the Tacoma Narrows Bridge, i.e. 𝑐̃𝐿 =

0.566, is equal to: 
 

 

The agreement of the theoretical result with the measurements of modal amplitudes made 

by Farquharson on the day of collapse (i.e. 0.5 m) is remarkably good. 

Equation (5.20) justifies the fact that 2:1 subharmonic resonance can erode the wind 

velocity for the flutter onset (whatever the “real” one it is), because 𝑍5,0
𝑉𝑆 is of the same 

order of magnitude of the modal amplitude of vibration needed to activate the internal 

parametric instability phenomenon 𝑍5,0, calculated for a wind velocity equal to the 90 % 

with respect to the flutter one. 

5.7 POSSIBLE REASON OF THE COLLAPSE 

In the foregoing the internal parametric resonance has been proven to be the instability 

phenomenon driving the Tacoma Narrows bridge to the collapse in a condition incipient to 

flutter. However, the main hypothesis for the occurrence of subharmonic resonance is to 

have a torsional-to-vertical frequency ratio around the value of 0.5. This condition is not 

satisfied if one consider the 5th symmetrical flexural and the 1st skew-symmetrical torsional 

modes of vibration. 

In reality, during the day of collapse, before the sudden switch to torsional oscillations (at 

10 a.m.) it was noted a slippage of some hangers along the main cable. The diagonal ties 

attached to the midspan cable band were alternatively becoming slack and taut [46]. 

It is reasonable to think that this damage introduced some imperfections in the system 

which led to a sudden reduction of the flexural stiffness. Being the structure slightly 

damped, an abrupt change in the vertical stiffness led the energy to be transferred from the 

5th symmetrical mode of vibration to a configuration characterized by a softer response, 

e.g. the 4th symmetrical mode. However it is very difficult to quantify the effect of the 

slippage of some hangers in the contribution to the reduction of stiffness of the system. 

The possible modal contribution of the 4th symmetric mode led the system to be 

susceptible to internal parametric resonance instability, in fact the flexural-to-torsional 

frequency ratio is around 0.51 (considering the values observed by Farquharson, i.e. 𝑓𝑤,4 =

0.45 𝐻𝑧 and 𝑓𝜃,1 = 0.23 𝐻𝑧). 

𝑍5,0
𝑉𝑆 = 𝑓 ∙ (

𝛤0 ∙ ℎ̃𝑊𝑛

𝐾𝑤,𝑛
(𝐿)

∙ 𝑁(1)) = 0.462 𝑚 (5.20)  
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It looks like as a flux of energy, initially from the 5th to the 4th symmetric flexural modes of 

oscillation, perhaps due to a damage in the cables system which reduced the flexural 

stiffness, and then from the 4th symmetric flexural mode to the 1st skew-symmetric 

torsional one because of the effect of parametric 2:1 resonance. 

The possible cause of the failure can be therefore summarized as follows: 

 

1. The wind was blowing at a wind speed never observed before (i.e. 19 m/s) 

producing wind induced oscillations according to the 5th symmetric mode with 

frequency around 0.6 Hz – 0.63 Hz and modal amplitude of 0.5 m; 

 

2. The vortex-induced phenomenon suppressed the low torsional flutter, leading to 

higher critical wind speed than the one computed by Farquharson. Thus, the critical 

flutter condition moved trough velocities slightly higher than the velocities in the 

lock-in range; 

 

3. A slippage of some hangers with respect to the main cable caused a sudden 

reduction of the system flexural stiffness leading to a flow of energy from the 5th to 

the 4th symmetric mode of vibration; 

 

4. The energy is then transferred to the 1st skew-symmetrical torsional mode (0.23 Hz) 

because of internal parametric resonance instability. Indeed the self-excited forces 

due to wind effects lowered the structural torsional damping of the system whilst 

the torsional-to-flexural frequency ratio was around 0.5; 

 

5. The driving mechanism for the occurrence of subharmonic resonance was the 

flexural modal amplitude of oscillations, measured around 0.5 m; 

 

6. Before the collapse the torsional frequency of oscillation lowered to 0.2 Hz perhaps 

due to some damage within the deck. 
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6 NON-FLUTTER DESIGN FOR BRIDGES 

The new challenge in bridge’s design is to reduce the costs of very long-span 

suspension bridges by adopting the so called non-flutter design principle that is, to design 

an aerodynamically stable cross section with the torsional frequency lower than the 

correspondent flexural one. In fact, it is well known in flat plate aerodynamics that 

classical flutter cannot occur for torsional-to-flexural frequency ratio below one. 

An increase in the length of the span of the bridge leads to an increase in the cables 

contribution to stiffness compared to the bridge deck, which implies a lowering of the 

torsional-to-vertical frequency ratio. Moreover, the aerodynamic stiffness tends to decrease 

the torsional frequency as the wind velocity increases and the aerodynamic coupling 

between vertical and torsional modes is unavoidable. However, if the torsional still air 

frequency is below the vertical one, the modes will be decoupled with increasing frequency 

separation at higher wind speeds.  

The first to introduce the concept of non-flutter design principle for long span suspension 

bridges was Richardson [47]. He indicated that twin-box deck configurations are the most 

favourable for long-span suspension bridges and he proposed a twin bridge with four main 

cables and with torsional-to-vertical frequency ratio lower than one as an economical and 

aerodynamically stable alternative to the single box girder suspension bridges. 

Bartoli et al. [9] tested a twin-box suspension bridges, having the same elevation properties 

of the Messina Strait bridge, but different cross section, in the CRIACIV wind tunnel in 

Prato, Italy. Classical flutter was not observed in the reported section model tests and 

torsional divergence did not occur in the range of design wind velocities. 

Further Studies have been done by Andersen et al., [3] and [4], which used a multimodal 

approach to investigate the possibility of flutter of a suspension bridge spanning 3.7 km 

with a torsional-to-vertical frequency ratio equal to 0.89. It has been proved that classical 

flutter between similar modes is always prevented with this kind of design. 

Despite the fact that the non-flutter design principle is able to prevent the occurrence of 

any aerodynamic self-induced phenomenon (indeed also torsional flutter cannot occur for 

an airfoil type cross section) these kind of bridges can be susceptible to internal parametric 

resonance instability when the frequency ratio becomes equal to 0.5 due to aerodynamic 

effects. This possibility is investigated in this chapter with the aid of an example.  
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6.1 TWIN-BOX SECTIONAL MODEL 

The analysis for the investigation of internal parametric resonance instability phenomenon 

is performed on the model analysed by Andersen et al. [3]. It is a twin-box suspension 

bridge (Figure 6.1) with central span of 3.7 km and sag-to-span ratio equal to 1/10. The 

two boxes are divided by a length of 20 m and, to obtain a lower torsional stiffness, the 

cables are placed at the internal side of the deck. The total mass of the twin bridge cross 

section is 𝑚𝑡𝑜𝑡 = 14570 𝑘𝑔/𝑚 whit an important contribution of the main cables, i.e. 𝑚𝑐 =

6582 𝑘𝑔/𝑚. All the properties of the sectional model are listed in Table 6.1.  
 

 

Figure 6.1: Twin-box deck sectional model 

𝐵 = 60 𝑚 Width of the deck cross section 

𝑙 = 3700 𝑚 Central span length 

𝑒𝑘 = 10 𝑚 Cable’s eccentricity 

𝑒𝑚 = 20 𝑚 Mass eccentricity 

𝐿𝑐 = 3798 𝑚 Cable’s length under deck’s self weight only 

𝐷 = 3 𝑚 Depth of the deck cross section 

𝑓 = 370 𝑚 Cable’s sag 

𝐴𝑐 = 1.54 𝑚2 Cable’s area 

𝑚𝑑 = 930 𝑘𝑔/𝑚  deck mass per unit length 

𝑚𝑐 = 6582 𝑘𝑔/𝑚 cable mass per unit length 

𝐽𝑡 = 7002000 𝑘𝑔 ∙ 𝑚2/𝑚 Linear density of the deck’s moment of inertia 

𝐸𝑑 = 2.1 ∙ 1011 𝑁/𝑚2 Effective elastic modulus of the deck 

𝐺𝑑 = 8.1 ∙ 1010 𝑁/𝑚2 Shear modulus of the deck 

𝐸𝑐 = 2.05 ∙ 1011 𝑁/𝑚2 Effective elastic modulus of the cables 

Table 6.1: Properties of the twin-box sectional model 
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Andersen et al. [3] made a modal analysis of the model, providing the first five flexural 

and torsional modes of vibration. They are listed in Table 6.2 in ascending order with the 

terminology: S:symmetryc, A:Anti-symmetric, F:Flexural, T:Torsional.  

 

Vertical mode shapes Torsional mode shapes 

Type 𝑧𝑛 𝛺𝑤,𝑛 Type 𝛾𝑚 𝛺𝜃,𝑚 

1AF 𝑧2 0.369 1AT 𝛾2 0.328 

1SF 𝑧1 0.484 1ST 𝛾1 0.412 

2SF 𝑧3 0.647 2ST 𝛾3 0.542 

2AF 𝑧4 0.724 2AT 𝛾4 0.651 

3SF 𝑧5 0.919 3ST 𝛾5 0.819 

Table 6.2: First five flexural and torsional modes of vibration for the twin-box deck sectional model 

The torsional-to-vertical frequency ratios are listed in Table 6.3.  

 

Torsional-to-vertical frequency ratios 𝛾𝑤 =
𝛺𝜃,𝑚

𝛺𝑤,𝑛
 

 𝛺𝑤,2 𝛺𝑤,1 𝛺𝑤,3 𝛺𝑤,4 𝛺𝑤,5 

𝛺𝜃,2 0.88 0.68 0.51 0.45 0.36 

𝛺𝜃,1 1.11 0.9 0.64 0.57 0.45 

𝛺𝜃,3 1.47 1.12 0.89 0.75 0.59 

𝛺𝜃,4 1.76 1.34 1.01 0.85 0.71 

𝛺𝜃,5 2.22 1.69 1.27 1.13 0.84 

Table 6.3: Torsional-to-vertical frequency ratios 

Classical flutter can occur only between torsional and vertical modes of similar shape, 

hence it is not likely to happen in this model because all the frequency ratios in the “main 

diagonal” of Table 6.3 are lower than one. However, the ratio between the first skew-

symmetric torsional mode, namely 𝛺𝜃,2, and the second symmetric flexural mode, namely 

𝛺𝑤,3, is near to 1/2, thus being susceptible to subharmonic parametric resonance also for 

low wind velocities. In fact a small reduction of the torsional Eigen-frequency, due to the 

self-induced forces acting on the deck, is enough to lock-in the phenomenon to the perfect 

2:1 condition for the subharmonic resonance.  

In order to be able to consider the Aeroelastic effects acting on the bridge, the theory of the 

self-excited forces acting on a thin flat plate provided by Theodorsen [53] is adapted to the 

flutter derivatives theory introduced by Scanlan [52]. Dyrbie and Hansen [25] provide the 

expressions for the flat plate flutter derivatives. 
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6.2 FLAT PLATE AERODYNAMIC DERIVATIVES 

For Theodeorsen’s airfoil the following expressions for the flutter derivative are valid: 

 

𝐻1
∗(𝑘) = −𝜋 ∙

𝐹(𝑘)

𝑘
 𝐴1

∗(𝑘) = −𝜋 ∙
𝐹(𝑘)

4𝑘
 

(6.1) 

𝐻2
∗(𝑘) = −

𝜋

4𝑘
∙ (1 + 𝐹(𝑘) + 2

𝐺(𝑘)

𝑘
) 𝐴2

∗ (𝑘) = −
𝜋

16𝑘
∙ (1 − 𝐹(𝑘) − 2

𝐺(𝑘)

𝑘
) 

𝐻3
∗(𝑘) =

𝜋

2𝑘2
∙ (𝐹(𝑘) −

𝑘𝐺(𝑘)

2
) 𝐴3

∗ (𝑘) =
𝜋

8𝑘2
∙ (𝐹(𝑘) −

𝑘𝐺(𝑘)

2
) 

𝐻4
∗(𝑘) =

𝜋

2
∙ (1 +

2𝐺(𝑘)

𝑘
) 𝐴4

∗ (𝑘) =
𝜋

4
∙
𝐺(𝑘)

𝑘
 

 

where 𝐹 and 𝐺 are the real and imaginary parts of the Theodorsen circulatory function 

(Figure 6.2) and 𝑘 is the reduced frequency based on the half-width of the deck section, i.e. 

𝑘 =
𝐾

2
. 𝐹 and 𝐺 are given by: 

 

 

being 𝐽𝑖 and 𝑌𝑖 the Bessels functions of the first and second kind, respectively, of order 𝑖. 

 

 

Figure 6.2: Real F(k) and imaginary G(k) parts of the Theodorsen circulatory function 

𝐹(𝑘) =
𝐽1(𝐽1 + 𝑌0) + 𝑌1(𝑌1 − 𝐽0)

(𝐽1 + 𝑌0)
2 + (𝑌1 − 𝐽0)

2
 

(6.2)  

𝐺(𝑘) = −
𝐽1𝐽0 + 𝑌1𝑌0

(𝐽1 + 𝑌0)
2 + (𝑌1 − 𝐽0)

2
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Remembering that the reduced frequency is the inverse of the reduced velocity, it is 

possible to plot all the flutter derivatives in function of the reduced velocity 𝑈∗ =
𝑈

𝑓𝐵
. 

 

  

  

  

  

Figure 6.3: Flutter derivatives for a flat plate 
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6.3 EFFECT OF INTERNAL PARAMETRIC RESONANCE 

Thanks to the flat plate flutter derivatives just introduced, for each torsional-to-vertical 

frequency ratio (Table 6.3) it is possible to compute the wind velocity which leads the 

frequencies to be in the exact 2:1 parametric resonance condition, i.e. the vertical 

frequency is exactly the double of the torsional frequency. 

The 𝐴3
∗  flutter derivative is positive for each wind velocity, which means that the self-

excited forces produce a reduction of the net torsional stiffness and, as a consequence, a 

reduction of the torsional Eigen-frequency. Hence, the most critical situation is related to 

the ratio between the first skew-symmetric torsional mode 𝛺𝜃,2 and the second symmetric 

flexural mode 𝛺𝑤,3. 

Considering that the vertical oscillations are due to vortex shedding and making the 

hypothesis to be in the lock-in range of velocity (𝛺𝑤,3 = 𝜔𝑉𝑆), the value of 𝐴3
∗  needed  for 

the 2:1 subharmonic condition can be calculated from the expression (4.46) of the 

frequency ratio 𝛿 in the Mathieu’s equation: 

 

 

So: 

 

 

The wind speed correspondent to the value of 𝐴3
∗  expressed in equation (6.4) can be easily 

found from the plot of this flutter derivative with respect to the velocity (Figure 6.3): 

 

 

Given this wind velocity, it is possible to compute the contribution given by the flutter 

derivative 𝐴2
∗  to damping. 

 

 

Self-excited forces introduce additional net torsional damping to the system because of the 

negative sign of 𝐴2
∗ . Due to this beneficial effect, the “tongue” in the Ince-Strutt diagram 

goes up, reducing the instability regions. Figure 6.4 shows the effect of an increase in the 

torsional net damping due to Aeroelastic effects when the wind speed is equal to 3.55 m/s.  

𝛿 = 0.25 = 𝛿′(1 − 𝛽) =
𝛺̃𝜃,2

2

𝜔̃𝑉𝑆
2 (1 −

8

𝜋
∙
𝑚̃𝑎

𝐽𝑡
𝐴3

∗) (6.3)  

𝐴3
∗ = 1 −

𝜋

8
∙

𝐽𝑡
𝑚̃𝑎

∙
𝛿

𝛿′
= 0.0286 (6.4)  

𝑈 ≅ 3.55
𝑚

𝑠
 (6.5)  

𝐴2
∗ = −0.0372 (6.6)  
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Figure 6.4: Ince-Strutt diagram for the twin-box section model (U=3.55 m/s) 

Because of the assumed flat plate flutter derivatives, Aeroelastic forces produce an 

increment of the net torsional damping which leads the modal amplitude of vibration 

necessary to activate the 2:1 internal parametric resonance instability to pass from a value 

of 𝑍3,0 ≅ 0.25 𝑚 to a value of 𝑍3,0 ≅ 1.1 𝑚. 

In general, for streamlined cross-sections the value of 𝐴2
∗  is negative for any reduced 

velocity, with increasing absolute values as the wind speed increases (Same trend as the 

flat plate flutter derivative). Hence, the flexural modal amplitude of vibrations values 

leading to parametric instability conditions becomes higher and higher with the increase of 

the wind velocity. The torsional-to-vertical frequency ratio chosen for the instability 

analysis is the one leading to 2:1 subharmonic conditions for the lowest value of wind 

speed, thus being the most critical case among all the frequency ratios in Table 6.3. 

Moreover, experimental investigations [3] evidenced the fact that the values of 𝐴2
∗  and 𝐴3

∗  

are lower for a twin-box cross section with respect to the flat plate condition, meaning that 

the aerodynamic contribution to the torsional stiffness is smaller, whilst the one to the 

torsional damping is larger. For this reason, the assumption of the flat plate flutter 

derivatives leads to smaller values of critical flexural displacements with respect to the 

adoption of the flutter derivatives characterizing the twin-box section model. Thus, the 

analysis implies a lower value of 𝑍3,0 with respect to the real situation, leading to results on 

the safe side. 
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Now it is necessary to compute the modal flexural displacement due to vortex shedding 

and to compare this value with the displacement necessary for the onset of instability, 

namely 𝑍3,0 = 1.1 𝑚.  

Some assumptions have to be made to compute the vortex shedding of the twin-box model: 

 

1. The Strouhal number considered is the one correspondent to a flat plate with 

fairings at the outermost windward and leeward edges, i.e. 𝑆𝑡 = 0.17 from Figure 

3.7; 

 

2. The lift coefficient for a twin box section is strongly different with respect to a 

bluff deck section such as the one of Tacoma Narrows Bridge. 𝑐̃𝐿 = 0.1 can be a 

reasonable value for the considered section; 

 

3. Both 𝐻1
∗ and 𝐻4

∗ flutter derivatives are considered for the calculation of the dynamic 

amplification factor and for the phase lag. 𝐻1
∗ is negative for all the wind velocities, 

so it produces an increase of the net flexural damping, whilst 𝐻4
∗ changes sign (from 

positive to negative) when 𝑈∗ ≅ 8.1, decreasing the net flexural stiffness for values 

of reduced velocities below this limit. 

 

The wind velocity which locks-in with the second symmetric flexural mode 𝛺𝑤,3 is: 

 

 

The dynamic amplification factor and the phase lag of the wind induced response are 

depicted in Figure 6.5, where there is a comparison between the structural and the 

Aeroelastic response. 

 

  

Figure 6.5: Dynamic amplification factor and phase lag for the twin-box cross section 

𝑈𝑙𝑜𝑐𝑘−𝑖𝑛 = 𝑈𝐷 ∙ (
𝛺̃𝑤,3

𝛺̃𝜃,2

∙ √
𝑚̃𝑎

𝐽𝑡
∙

1

𝜋 ∙ 𝑆𝑡 ∙ 𝛼̃
) = 2.35 

𝑚

𝑠
 (6.7)  
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It is noticeable that the change in the net flexural stiffness due to Aeroelastic effects is such 

that the pick of the dynamic amplification factor is not in correspondence of the value 𝛽 =

1, but slightly shifted because of the change of the flexural frequency of vibration. 

Thence, the value of the flexural modal amplitude induced by vortex shedding is: 
 

 

This value is strongly lower with respect to the value of modal displacement needed to 

activate the internal parametric resonance instability phenomenon, i.e. 𝑍3,0 ≅ 1.1 𝑚. It 

seems that the twin-box girder section cannot manifest instability phenomena due to 

subharmonic 2:1 resonance. 

However, the range of wind velocities in which the vortex shedding frequency locks-in 

with the flexural frequency of vibration, i.e. 1.89 𝑚/𝑠 < 𝑈 < 3.06 𝑚/𝑠 does not correspond 

to the velocity used for the calculation of the “tongue” of instability in the Ince-Strutt 

diagram, i.e. 𝑈 = 3.55 𝑚/𝑠. Since the torsional-to vertical frequency ratio considered for 

the analysis is very near to the condition for the occurrence of 2:1 resonance condition, it 

seems reasonable to find the critical amplitude of vibration correspondent to the lower 

value of the lock-in range velocity. i.e. 𝑈 = 1.89  𝑚/𝑠. 

For this wind speed the values of 𝐴2
∗  and 𝐴3

∗  are: 
 

 

The region of instability in the Ince-Strutt diagram is depicted in Figure 6.6. 
 

 

Figure 6.6: Ince-Strutt diagram for the twin-box section model (U=1.89 m/s) 

𝑍3,0
𝑉𝑆 = 𝑓 ∙ (

𝛤0 ∙ ℎ̃𝑊𝑛

𝐾𝑤,𝑛
(𝐿)

∙ 𝑁) ≅ 0.14 𝑚 (6.8)  

𝐴2
∗ = −0.0191 

(6.9)  
𝐴3

∗ = 0.0080 
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It is noticeable that in this situation the value of 𝐴3
∗  is not so high to bring the frequency 

ratio 𝛿 to perfect 2:1 resonant conditions however, being the value 𝐴2
∗  smaller in absolute 

value than the one in equation (6.6), the region of instability is wider. Hence, the modal 

amplitude of vibration for the occurrence of instability is: 

 

 

This value is in any case around eight time larger than the flexural amplitude of vibrations 

produced by the vortex induced response. Hence, it is obvious that internal parametric 

resonance instability cannot occur for twin-box cross sections designed with the non-flutter 

principle. 

The reason of this is mainly due to two important aerodynamic properties: 

 

1. 𝐴2
∗  does not change sign for any value of the reduced wind speed, remaining always 

negative and contributing to increase the net torsional damping with the increase of 

the wind speed. 

 

2. The vortex shedding phenomenon is not able to generate high flexural oscillations 

of the girder, also if the span of the bridge is considerably long. 

 

Both properties are valid for streamlined airfoil type deck cross sections, properly designed 

to reduce self-excited forces due to the wind action. 

𝑍3,0 = 0.83 𝑚 (6.10)  
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7 CONCLUSIONS 

Due to their high flexibility long-span suspension bridges are susceptible to wind-

induced effects. Aerodynamic studies on girder cross sections started after the dramatic 

failure of the Tacoma Narrows bridge, occurred on November 7, 1940. Nowadays, it is 

well known that Aeroelastic effects introduce in the structural system a coupling between 

the modes of vibration and an asymmetry in the damping and stiffness matrices. For this 

reason, different kinds of dynamic instabilities can occur, namely 1 DoF flexural 

instability, torsional flutter and classical 2 DoFs flutter. 

Recent studies assert that internal parametric resonance phenomena are a possible 

contributing cause for the occurrence of critical instability conditions in long-span 

suspension bridges. Such structures are strongly characterized by an intrinsic geometric 

non-linear behaviour which causes a soft coupling between the flexural and the torsional 

responses. Arioli and Gazzola [7] found out that, also in isolated systems, vertical 

oscillations may switch to torsional ones when a critical value of energy threshold is 

reached. 

Inspired by the pioneering work of Herrmann and Hauger [31] the perturbed equations of 

motion of the bridge sectional model have been obtained with the aim of demonstrating a 

possible interaction between parametric resonance and flutter. The problem has been 

strongly simplified by assuming negligible coupling flutter derivatives. Thus, the two 

equations of motion are coupled only by the quadratic stiffness term, which survives also 

in a linearized formulation because of the linear dependence on both the flexural and 

torsional DoFs. As a result we obtain the torsional equation of motion governing the 

problem dependent on some paramethers only, namely the two flutter derivatives 𝐴2
∗  and 

𝐴3
∗ , the modal amplitude of oscillations 𝑧𝑛,0 and the quadratic coupling stiffness term 

𝐾𝜃𝑤,𝑚𝑛
(𝑄)

.  

The torsional equation of motion can be rewritten in the well-known Mathieu’s format and 

the stability of the system can be detected by Ince-Strutt diagrams. The solution for the 

boundaries of instability of first kind, i.e. the 2:1 subharmonic resonance, is found by 

means of the multiple scales technique. The analytical approach allows for the 

determination of an interaction formula between the flutter performances of the bridge and 

the non-linear coupling term responsible for parametric resonance instability. 
 

𝐴2
∗ > 𝐴2,𝐹

∗ ∙ (1 −
𝛿′

𝑐′
∙
𝐾𝜃𝑤,𝑚𝑛

(𝑄)

𝐾𝜃,𝑚
(𝐿)

∙ 𝑧𝑛,0) 
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The aforementioned formula clearly highlights the fact that the 𝐴2
∗  flutter derivative is 

eroded proportionally to the magnitude of the non-linear structural stiffness term and to the 

modal amplitude of flexural oscillations. Hence in the case of positive values of 𝐴2
∗  

(necessary condition for reaching the onset of torsional flutter), the critical instability 

threshold can be reached for lower values of wind velocities with respect to the flutter 

ones. 

In the assumed scenario, in which classical flutter is not likely to happen because of the 

absence of the coupling flutter derivatives, theoretical results showed that the interaction 

between internal parametric resonance and torsional flutter is possible and it is governed 

mainly by these parameters: 

 

1. The trend of 𝐴2
∗ , responsible for the decrement or increment of net torsional 

damping; 

 

2. The value of flexural modal amplitude of oscillation due to vortex shedding 𝑧𝑛,0; 

 

3. The magnitude of the quadratic stiffness coupling term 𝐾𝜃𝑤,𝑚𝑛
(𝑄)

; 

 

4. The torsional-to-vertical frequency ratio 𝛿′. 

 

Numerical results confirmed what found with the theoretical approach. Two different deck 

sectional model have been analyzed, the Tacoma narrows bridge and a twin-box section 

designed with the non-flutter principle. 

The Tacoma Narrows bridge had a bluff section susceptible to vortex induced vibrations 

and to torsional flutter. The latter phenomenon was considered by many authors as the one 

causing the collapse. However, the flutter velocity calculated by Farquharson trough wind 

tunnel tests was never ascertained because too low with respect to the observed one on the 

day of collapse. Regardless of the “real” value of the flutter velocity, we considered for the 

analysis a velocity of 90% with respect to the flutter one. In this scenario the system is 

highly susceptible to parametric resonance because the “tongue” of instability in the Ince-

Strutt diagram lowers down due to the negative effect of 𝐴2
∗ . In perfect 2:1 subharmonic 

conditions the critical amplitude of oscillations calculated are 𝑍5,0 = 0.20 𝑚 whilst the 

amplitude of oscillations’ provided by vortex shedding in the lock-in range are 𝑍5,0
𝑉𝑆 =

0.46 𝑚. Thus parametric instability is likely to happen in a range of torsional-to-vertical 

frequency ratios, e.g. 0.247 < 𝛿 < 0.253.  

On the contrary the twin-box bridge is characterized by a streamlined section not 

susceptible neither to torsional nor to classical 2 DoFs flutter. However the low torsional-

to-frequency ratio are near to the perfect 2:1 subharmonic condition, making us think to the 

possible occurrence of parametric instability. Instead, numerical results showed that in the 
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lock-in range of velocity the amplitude of oscillations provided by vortex shedding are 

𝑍3,0
𝑉𝑆 = 0.14 𝑚, whilst the amplitude needed for instability to occur are 𝑍3,0 = 0.83 𝑚. Thus, 

critical conditions due to internal parametric resonance are unlikely to be reached because 

of the shape of modern cross sections. First and foremost a streamlined girder is less 

susceptible to vortex induced vibrations which is the driver for the occurrence of 

subharmonic resonance. Besides the airfoil type cross section is characterized by negative 

values of 𝐴2
∗  which provide an increase of the net torsional damping and a consequent 

reduction of the region of instability with increasing wind speed. 
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APPENDIX A 

This appendix deals with the determination of the analytical formulas for the modal 

superposition analysis in the case of symmetric modes of vibrations (§2.4). 

The solution for the flexural mode of vibration can be expressed by the superposition of an 

homogeneous and a particular solution.  
 

 

where: 
 

𝜂𝑤,𝑛
2 =

1

2𝜇2 (√1 + 4𝜇2𝛺̃𝑤,𝑛
2 − 1) 

(A.2) 

Ψ𝑤,𝑛
2 =

1

2𝜇2 (√1 + 4𝜇2𝛺̃𝑤,𝑛
2 + 1) = 𝜂𝑤,𝑛

2 +
1

𝜇2
 

 

To find the constants of integrations present in the solution (A.1) the boundary conditions 

of a simply supported beam must be enforced: 
 

𝑊𝑛(0) = 𝑊𝑛(1) = 0  

(A.3) 

𝑊𝑛
′′(0) = 𝑊𝑛

′′(1) = 0   

 

Thus: 
 

𝑊𝑛(0) = 0     ⇒      (
𝜆1

2ℎ̃𝑊,𝑛

𝛺̃𝑤,𝑛
2 + 𝐶𝑛,1 + 𝐶𝑛,2 + 𝐶𝑛,3 + 𝐶𝑛,4) = 0  

(A.4) 

𝑊𝑛
′′(0) = 0     ⇒      (𝐶𝑛,1 + 𝐶𝑛,2) ∙ Ψw,n

2 − (𝐶𝑛,3 + 𝐶𝑛,4) ∙ 𝜂𝑤,𝑛
2 = 0   

𝑊𝑛(1) = 0     ⇒      (
𝜆1

2ℎ̃𝑊,𝑛

𝛺̃𝑤,𝑛
2 + 𝐶𝑛,1 exp(Ψw,n) + 𝐶𝑛,2 exp(−Ψw,n) + 𝐶𝑛,3 exp(𝑖 ∙ ηw,n) +

+𝐶𝑛,4 exp(−𝑖 ∙ ηw,n)) = 0  

𝑊𝑛
′′(1) = 0     ⇒      (𝐶𝑛,1 exp(Ψw,n) + 𝐶𝑛,2 exp(−Ψw,n)) ∙ Ψw,n

2 − (𝐶𝑛,3 exp(𝑖 ∙ ηw,n) +

𝐶𝑛,4 exp(−𝑖 ∙ ηw,n)) ∙ 𝜂𝑤,𝑛
2 = 0    

The constants of integration assume the following expression: 

𝑊𝑛(𝜉) = 𝑊𝑛,0(𝜉) + 𝑊𝑛,𝑝(𝜉) = (
𝜆1

2ℎ̃𝑊,𝑛

𝛺̃𝑤,𝑛
2 + 𝐶𝑛,1 ∙ exp(Ψw,n𝜉) +𝐶𝑛,2 ∙

exp(−Ψw,n𝜉) +𝐶𝑛,3 ∙ exp(𝑖 ∙ ηw,n𝜉) +𝐶𝑛,4 ∙ exp(−𝑖 ∙ ηw,n𝜉))  
(A.1)  
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𝐶𝑛,1 = −
𝜆1

2ℎ̃𝑊,𝑛

𝛺̃𝑤,𝑛
2

∙
𝜂𝑤,𝑛

2

Ψw,n
2 + 𝜂𝑤,𝑛

2 ∙
1 − exp(−Ψw,n)

exp(Ψw,n) − exp(−Ψw,n)
 

(A.5) 

𝐶𝑛,2 =
𝜆1

2ℎ̃𝑊,𝑛

𝛺̃𝑤,𝑛
2

∙
𝜂𝑤,𝑛

2

Ψw,n
2 + 𝜂𝑤,𝑛

2 ∙
1 − exp(Ψw,n)

exp(Ψw,n) − exp(−Ψw,n)
 

𝐶𝑛,3 = −
𝜆1

2ℎ̃𝑊,𝑛

𝛺̃𝑤,𝑛
2

∙
Ψw,n

2

Ψw,n
2 + 𝜂𝑤,𝑛

2 ∙
1 − exp(−𝑖 ∙ ηw,n)

exp(𝑖 ∙ ηw,n) − exp(−𝑖 ∙ ηw,n)
 

𝐶𝑛,4 =
𝜆1

2ℎ̃𝑊,𝑛

𝛺̃𝑤,𝑛
2

∙
Ψw,n

2

Ψw,n
2 + 𝜂𝑤,𝑛

2 ∙
1 − exp(𝑖 ∙ ηw,n)

exp(𝑖 ∙ ηw,n) − exp(−𝑖 ∙ ηw,n)
 

 

The substitution of the four constants (A.5) into the general solution (A.1) leads to: 

 

 

Exploiting the well-known Euler formulas the solution can b e expressed as: 

 

 

Now remembering that: 

 

sinh(𝛼) ± sinh(𝛽) = 2 ∙ sinh (
𝛼±𝛽

2
) ∙ cosh (

𝛼∓𝛽

2
)  

(A.8) 

sin(𝛼) ± sin(𝛽) = 2 ∙ sin (
𝛼±𝛽

2
) ∙ cos (

𝛼∓𝛽

2
)   

 

then: 
 

𝑊𝑛(𝜉) = 𝑊𝑛,0(𝜉) + 𝑊𝑛,𝑝(𝜉) =
𝜆1

2ℎ̃𝑊,𝑛

𝛺̃𝑤,𝑛
2 [1 −

1

Ψw,n
2 +𝜂𝑤,𝑛

2 ∙ (𝜂𝑤,𝑛
2 ∙

exp(Ψw,n∙ξ)−exp(Ψw,n∙(ξ−1))+exp(−Ψw,n∙ξ)−exp(−Ψw,n∙(ξ−1))

exp(Ψw,n)−exp(−Ψw,n)
+ +Ψw,n

2 ∙

exp(𝑖∙ηw,n∙ξ)−exp(𝑖∙ηw,n∙(ξ−1))+exp(−𝑖∙ηw,n∙ξ)−exp(−𝑖∙ηw,n∙(ξ−1))

exp(𝑖∙ηw,n)−exp(−𝑖∙ηw,n)
)]  

(A.6)  

𝑊𝑛(𝜉) =
𝜆1

2ℎ̃𝑊,𝑛

𝛺̃𝑤,𝑛
2 [1 −

1

Ψw,n
2 +𝜂𝑤,𝑛

2 ∙ (𝜂𝑤,𝑛
2 ∙

sinh(Ψw,n∙ξ)−sinh(Ψw,n∙(ξ−1))

sinh(Ψw,n)
+ Ψw,n

2 ∙

sin(ηw,n∙ξ)−sin(ηw,n∙(ξ−1))

sin(ηw,n)
)]  

(A.7)  

sinh(Ψw,n ∙ ξ) − sinh (Ψw,n ∙ (ξ − 1)) = 2 ∙ sinh (
Ψw,n

2
) ∙ cosh(Ψw,n ∙ (ξ −

1

2
))  

(A.9)  

sin(ηw,n ∙ ξ) − sin (ηw,n ∙ (ξ − 1)) = 2 ∙ sin (
ηw,n

2
) ∙ cos (ηw,n ∙ (ξ −

1

2
)) 
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Moreover by exploiting also the multiple angle formulae: 

 

sinh(2𝛼) = 2 ∙ sinh(𝛼) ∙ cosh(𝛼)  

(A.10) 

sin(2𝛼) = 2 ∙ sin(𝛼) ∙ cos(𝛼)   

 

it is possible to write the ratios between trigonometric functions as: 

 

 

After all this trigonometric relations has been exploited the solution for the flexural mode 

shape can be expressed as in equation (2.59). 

 

 

For the torsional modes of vibration the passages to be done are exactly the same, leading 

to the expression (2.70). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sinh(Ψw,n)

sinh(
Ψw,n

2
)
= 2 ∙ cosh (

Ψw,n

2
)  

(A.11)  
sin(ηw,n ∙ ξ)

sin (
ηw,n

2
)

= 2 ∙ cos (
ηw,n

2
) 

𝑊𝑛(𝜉) =
𝜆1

2ℎ̃𝑊,𝑛

𝛺̃𝑤,𝑛
2 [1 −

1

Ψ𝑤,𝑛
2 +𝜂𝑤,𝑛

2 (𝜂𝑤,𝑛
2 ∙

cosh(Ψw,n(𝜉−
1

2
))

cosh(
Ψw,n

2
)

+ Ψ𝑤,𝑛
2 ∙

cos(ηw,n(𝜉−
1

2
))

cos(
ηw,n

2
)

)]  (A.12)  

𝛩𝑚(𝜉) =
𝜆1

2ℎ̃𝛩,𝑚

𝐽𝑡𝛺̃𝜃,𝑚
2 [1 −

1

Ψ𝜃,𝑚
2 +𝜂𝜃,𝑚

2 (𝜂𝜃,𝑚
2 ∙

cosh(Ψ𝜃,𝑚(𝜉−
1

2
))

cosh(
Ψ𝜃,𝑚

2
)

+ Ψ𝜃,𝑚
2 ∙

cos(η𝜃,𝑚(𝜉−
1

2
))

cos(
η𝜃,𝑚

2
)

)]  (A.13)  



Effects of Internal Parametric Resonance on the Aerodynamic Behaviour of Long-span Suspension Bridges 

 

160 APPENDIX A 

 

 

 

 

 

 

 



Effects of Internal Parametric Resonance on the Aerodynamic Behaviour of Long-span Suspension Bridges 

 

 

APPENDIX B 161 

APPENDIX B 

This appendix deals with the determination of the boundaries of instability of the 

first kind, i.e. the subharmonic resonance, for the 3 DoFs inverted pendulum proposed by 

Herrmann and Hauger [31] (§4.3.1). 

The assumed solution 𝑞𝑗(𝜏) having period 𝑇1 = 4𝜋, 

 

𝑞𝑗(𝜏) = ∑ (𝑎𝑗𝑘 sin (
𝑘𝜏

2
) + 𝑏𝑗𝑘 cos (

𝑘𝜏

2
))

+∞

𝑘=1,3,5,…

,     (𝑗 = 1,2) (B.1) 

 

must be substituted into the dimensionless system of variational equations: 

 

(𝑝1 + 𝑝2)(𝜆
2 + 2𝜆𝜉 cos(𝜏)) ∙ 𝑞̈1 + 𝑝2(𝜆 + 𝜉 cos(𝜏)) ∙ 𝑞̈2 − 2(𝑝1 + 𝑝2)(𝜆𝜉 sin(𝜏)) ∙ 𝑞̇1 +

+(2𝑟 − 𝜆𝑠 − 𝑠𝜉 cos(𝜏)) ∙ 𝑞1 − (𝑟 − 𝜆𝛼𝑠 − 𝛼𝑠𝜉 cos(𝜏)) ∙ 𝑞2 = 0  

(B.2) 

𝑝2(𝜆 + 𝜉 cos(𝜏)) ∙ 𝑞̈1 + 𝑝2 ∙ 𝑞̈2 − 2𝑝2𝜉 sin(𝜏) ∙ 𝑞̇1 − (𝑟 + 𝑝2𝜉 cos(𝜏)) ∙ 𝑞1 +

+[𝑟 − (1 − 𝛼)𝑠 + 𝑝2𝜉 cos(𝜏)] ∙ 𝑞2 = 0  

 

This leads to: 

 

∑ {(𝑝1 + 𝑝2)(𝜆
2 + 2𝜆𝜉 cos(𝜏))

𝑘2

4
(−𝑎1𝑘 sin (

𝑘𝜏

2
) − 𝑏1𝑘 cos (

𝑘𝜏

2
)) ++∞

𝑘=1,3,5,…

+𝑝2(𝜆 + 𝜉 cos(𝜏))
𝑘2

4
(−𝑎2𝑘 sin (

𝑘𝜏

2
) − 𝑏2𝑘 cos (

𝑘𝜏

2
)) + −2(𝑝1 +

𝑝2)(𝜆𝜉 sin(𝜏))
𝑘

2
(𝑎1𝑘 cos (

𝑘𝜏

2
) − 𝑏1𝑘 sin (

𝑘𝜏

2
)) + +(2𝑟 − 𝜆𝑠 −

𝑠𝜉 cos(𝜏)) (𝑎1𝑘 sin (
𝑘𝜏

2
) + 𝑏1𝑘 cos (

𝑘𝜏

2
)) + −(𝑟 − 𝜆𝛼𝑠 − 𝛼𝑠𝜉 cos(𝜏)) (𝑎2𝑘 sin (

𝑘𝜏

2
) +

𝑏2𝑘 cos (
𝑘𝜏

2
))} = 0  

(B.3) 

∑ {𝑝2(𝜆 + 𝜉 cos(𝜏))
𝑘2

4
(−𝑎1𝑘 sin (

𝑘𝜏

2
) − 𝑏1𝑘 cos (

𝑘𝜏

2
)) ++∞

𝑘=1,3,5,…

+𝑝2
𝑘2

4
(−𝑎2𝑘 sin (

𝑘𝜏

2
) − 𝑏2𝑘 cos (

𝑘𝜏

2
)) − 2𝑝2𝜉 sin(𝜏)

𝑘

2
(𝑎1𝑘 cos (

𝑘𝜏

2
) − 𝑏1𝑘 sin (

𝑘𝜏

2
)) +

−(𝑟 + 𝑝2𝜉 cos(𝜏)) (𝑎1𝑘 sin (
𝑘𝜏

2
) + 𝑏1𝑘 cos (

𝑘𝜏

2
)) + +[𝑟 − (1 − 𝛼)𝑠 +

𝑝2𝜉 cos(𝜏)] (𝑎2𝑘 sin (
𝑘𝜏

2
) + 𝑏2𝑘 cos (

𝑘𝜏

2
))} = 0  
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Developing all the multiplications inside the system of equation (B.3) and exploiting the 

well-known Werner formulas: 

 

∑ {(𝑝1 + 𝑝2)
𝜆2𝑘2

4
𝑎1𝑘 sin (

𝑘𝜏

2
) − (𝑝1 + 𝑝2)

𝜆𝑘2

4
𝜉𝑎1𝑘 [sin (

𝑘𝜏

2
− 𝜏) ++∞

𝑘=1,3,5,…

sin (
𝑘𝜏

2
+ 𝜏)] − 𝑝2

𝜆𝑘2

4
𝑎2𝑘 sin (

𝑘𝜏

2
) − 𝑝2𝜉

𝑘2

8
𝑎2𝑘 [sin (

𝑘𝜏

2
− 𝜏) + sin (

𝑘𝜏

2
+ 𝜏)] +

−(𝑝1 + 𝑝2)𝜆𝜉
𝑘

2
𝑎1𝑘 [− sin (

𝑘𝜏

2
− 𝜏) + sin (

𝑘𝜏

2
+ 𝜏)] + (2𝑟 − 𝜆𝑠)𝑎1𝑘 sin (

𝑘𝜏

2
) +

−
𝑠𝜉

2
𝑎1𝑘 [sin (

𝑘𝜏

2
− 𝜏) + sin (

𝑘𝜏

2
+ 𝜏)] − (𝑟 − 𝜆𝛼𝑠)𝑎2𝑘 sin (

𝑘𝜏

2
) +

𝛼𝑠𝜉

2
𝑎2𝑘 [sin (

𝑘𝜏

2
− 𝜏) +

+sin (
𝑘𝜏

2
+ 𝜏)] − (𝑝1 + 𝑝2)

𝜆2𝑘2

4
𝑏1𝑘 cos (

𝑘𝜏

2
) − (𝑝1 + 𝑝2)

𝜆𝑘2

4
𝜉𝑏1𝑘 [cos (

𝑘𝜏

2
− 𝜏) +

cos (
𝑘𝜏

2
+ 𝜏)] − 𝑝2

𝜆𝑘2

4
𝑏2𝑘 cos (

𝑘𝜏

2
) − 𝑝2𝜉

𝑘2

8
𝑏2𝑘 [cos (

𝑘𝜏

2
− 𝜏) + cos (

𝑘𝜏

2
+ 𝜏)] +

−(𝑝1 + 𝑝2)𝜆𝜉
𝑘

2
𝑏1𝑘 [cos (

𝑘𝜏

2
− 𝜏) + cos (

𝑘𝜏

2
+ 𝜏)] + (2𝑟 − 𝜆𝑠)𝑏1𝑘 cos (

𝑘𝜏

2
) +

−
𝑠𝜉

2
𝑏1𝑘 [cos (

𝑘𝜏

2
− 𝜏) + cos (

𝑘𝜏

2
+ 𝜏)] − (𝑟 − 𝜆𝛼𝑠)𝑏2𝑘 cos (

𝑘𝜏

2
) +

𝛼𝑠𝜉

2
𝑏2𝑘 [cos (

𝑘𝜏

2
−

𝜏) + cos (
𝑘𝜏

2
+ 𝜏)]} = 0  

(B.4) 

∑ {−𝑝2
𝜆𝑘2

4
𝑎1𝑘 sin (

𝑘𝜏

2
) − 𝑝2𝜉

𝑘2

8
𝑎1𝑘 [sin (

𝑘𝜏

2
− 𝜏) + sin (

𝑘𝜏

2
+ 𝜏)] ++∞

𝑘=1,3,5,…

−𝑝2
𝑘2

4
𝑎2𝑘 sin (

𝑘𝜏

2
) − 𝑝2𝜉

𝑘

2
𝑎1𝑘 [− sin (

𝑘𝜏

2
− 𝜏) + sin (

𝑘𝜏

2
+ 𝜏)] − 𝑟𝑎1𝑘 sin (

𝑘𝜏

2
) +

−𝑝2
𝜉

2
𝑎1𝑘 [sin (

𝑘𝜏

2
− 𝜏) + sin (

𝑘𝜏

2
+ 𝜏)] + [𝑟 − (1 − 𝛼)𝑠]𝑎2𝑘 sin (

𝑘𝜏

2
) +

𝑝2
𝜉

2
𝑎2𝑘 [sin (

𝑘𝜏

2
− 𝜏) + sin (

𝑘𝜏

2
+ 𝜏)] − 𝑝2

𝜆𝑘2

4
𝑏1𝑘 cos (

𝑘𝜏

2
) − 𝑝2𝜉

𝑘2

8
𝑎1𝑘 [cos (

𝑘𝜏

2
− 𝜏) +

cos (
𝑘𝜏

2
+ 𝜏)] − 𝑝2

𝜆𝑘2

4
𝑏2𝑘 cos (

𝑘𝜏

2
) − 𝑝2𝜉

𝑘

2
𝑏1𝑘 [cos (

𝑘𝜏

2
− 𝜏) − cos (

𝑘𝜏

2
+ 𝜏)] −

𝑟𝑏1𝑘 cos (
𝑘𝜏

2
) − 𝑝2

𝜉

2
𝑏1𝑘 [cos (

𝑘𝜏

2
− 𝜏) + cos (

𝑘𝜏

2
+ 𝜏)] + [𝑟 − (1 − 𝛼)𝑠]𝑏2𝑘 cos (

𝑘𝜏

2
) +

𝑝2
𝜉

2
𝑏2𝑘 [cos (

𝑘𝜏

2
− 𝜏) + cos (

𝑘𝜏

2
+ 𝜏)]} = 0   

 

Equation (B.4) is characterized by some sinusoidal terms shifted of a phase lag equal to 𝜏. 

These terms correspond to take coefficients 𝑎𝑗𝑘 and 𝑏𝑗𝑘 with (𝑘 − 2) or (𝑘 + 2), depending 

on the sign of the phase lag. Dividing the terms multiplied by the sine and the cosine 

functions and equating them to zero, two system of equations for the coefficient 𝑎𝑗𝑘 and 𝑏𝑗𝑘 

are found: 

 

[−(𝑝1 + 𝑝2)
𝜆2𝑘2

4
+ 2𝑟 − 𝜆𝑠] ∙ 𝑎1𝑘 + [−(𝑝1 + 𝑝2)𝜉

𝜆(𝑘−2)2

4
+ (𝑝1 + 𝑝2)𝜉

𝜆(𝑘−2)

2
−

𝑠𝜉

2
] ∙

𝑎1(𝑘−2) − [(𝑝1 + 𝑝2)𝜉
𝜆(𝑘+2)2

4
+ (𝑝1 + 𝑝2)𝜉

𝜆(𝑘+2)

2
+

𝑠𝜉

2
] ∙ 𝑎1(𝑘+2) − [𝑝2

𝜆𝑘2

4
+ 𝑟 +

−𝜆𝛼𝑠] ∙ 𝑎2𝑘 + [−𝑝2𝜉
(𝑘−2)2

8
+

𝛼𝑠𝜉

2
] ∙ 𝑎2(𝑘−2) + [−𝑝2𝜉

(𝑘+2)2

8
+

𝛼𝑠𝜉

2
] ∙ 𝑎2(𝑘+2) = 0  

(B.5) 
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[−𝑝2
𝜆𝑘2

4
− 𝑟] ∙ 𝑎1𝑘 + [−𝑝2𝜉

(𝑘−2)2

8
+ 𝑝2𝜉

(𝑘−2)

2
−

𝑝2𝜉

2
] ∙ 𝑎1(𝑘−2) − [−𝑝2𝜉

(𝑘+2)2

8
+

+𝑝2𝜉
(𝑘+2)

2
+

𝑝2𝜉

2
] ∙ 𝑎1(𝑘+2) + [−𝑝2

𝑘2

4
+ 𝑟 − (1 − 𝛼)𝑠] ∙ 𝑎2𝑘 + [

𝑝2𝜉

2
] ∙ 𝑎2(𝑘−2) + [

𝑝2𝜉

2
] ∙

𝑎2(𝑘+2) = 0  

 

[−(𝑝1 + 𝑝2)
𝜆2𝑘2

4
+ 2𝑟 − 𝜆𝑠] ∙ 𝑏1𝑘 − [(𝑝1 + 𝑝2)𝜉

𝜆(𝑘−2)2

4
+ (𝑝1 + 𝑝2)𝜉

𝜆(𝑘−2)

2
+

𝑠𝜉

2
] ∙

𝑏1(𝑘−2) − [(𝑝1 + 𝑝2)𝜉
𝜆(𝑘+2)2

4
− (𝑝1 + 𝑝2)𝜉

𝜆(𝑘+2)

2
+

𝑠𝜉

2
] ∙ 𝑏1(𝑘+2) − [𝑝2

𝜆𝑘2

4
+ 𝑟 +

−𝜆𝛼𝑠] ∙ 𝑏2𝑘 + [−𝑝2𝜉
(𝑘−2)2

8
+

𝛼𝑠𝜉

2
] ∙ 𝑏2(𝑘−2) + [−𝑝2𝜉

(𝑘+2)2

8
+

𝛼𝑠𝜉

2
] ∙ 𝑏2(𝑘+2) = 0  

(B.6) 

[−𝑝2
𝜆𝑘2

4
− 𝑟] ∙ 𝑏1𝑘 − [𝑝2𝜉

(𝑘−2)2

8
+ 𝑝2𝜉

(𝑘−2)

2
+

𝑝2𝜉

2
] ∙ 𝑏1(𝑘−2) − [𝑝2𝜉

(𝑘+2)2

8
+

−𝑝2𝜉
(𝑘+2)

2
+

𝑝2𝜉

2
] ∙ 𝑏1(𝑘+2) + [−𝑝2

𝑘2

4
+ 𝑟 − (1 − 𝛼)𝑠] ∙ 𝑏2𝑘 + [

𝑝2𝜉

2
] ∙ 𝑏2(𝑘−2) + [

𝑝2𝜉

2
] ∙

𝑏2(𝑘+2) = 0  

 

The two system of equations (B.5) and (B.6) are analogous to (4.17) and (4.18). By 

seeking a solution with period 𝑇2 = 2𝜋 and by substituting it into the system of variational 

equations (B.2), with the same passages proposed in this appendix, it is possible to obtain 

the same systems (B.5) and (B.6).  
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