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Abstract

The accurate estimation of the hip joint centre is a basic requirement in clinical

gait analysis as well as in preoperative planning of total hip arthroplasty and total knee

arthroplasty. Clinical gait analysis is widely used to support clinical decision-making

in case of gait dysfunction [1]. Gait deviations from the typical pattern are often

characteristic of specific neurological or musculoskeletal pathologies. The importance of

accurate HJC is due to the fact that its position influences both kinematics and kinetics.

In surgical context, instead, the position of HJC is exploited for the correct placement

of total hip and total knee prosthetic devices [2][3].

The most accurate hip joint centre localization is made using image-based

methods. A 3D image of the patient is acquired using Computed Tomography (CT),

Magnetic Resonance Imaging (MRI), Roentgen sterophotogrammetric analysis or other

imaging techniques. Then the position of HJC is identified on medical images through

manual localization or by calculating the centre of the best fitting sphere built on the

segmented surface of the femoral head. These methods are expensive and, in case of

usage of ionizing radiation, also invasive.

Image-less estimation of hip joint centre can be done according to different ap-

proaches: predictive methods and functional methods. When using functional methods,

the HJC localization is computed with a kinematic approach that analyses the relative

movement between femur and pelvis in a predefined reference system. Therefore, the

subject is asked to perform a movement protocol, while an optical localization system

measures the pose of the lower limb.
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In predictive methods the position of the HJC is computed performing regres-

sion on specific anatomical quantities of the subject under analysis. These quantities

are measured as tridimensional distances between accessible anatomical landmarks. The

landmarks are identified through palpation. In this case the subject doesn’t have to per-

form movements as in functional ones. Among predictive methods, the one proposed

by Harrington et al. in [4], is considered the best performing [5], [6], therefore we used

it as the gold standard.

The novel method for HJC prediction that we have developed in this the-

sis project is based on artificial neural networks (ANN). ANN is a machine learning

technique that, after proper training, has intrinsic capability to model non-linear data

and to find relationships between input and output parameters. Moreover, we wanted

to include gender among input parameters and this was not possible while using a

regression-based approach. Since HJC localization is a data-fitting problem, feedfor-

ward ANN with supervised training proved to be the best option.

The anthropometric measurements used for HJC estimation are clinical leg

length (LL), pelvis width (PW) and pelvis depth (PD). To this parameters we added

also age and gender. For network training and testing we used data from a dataset we

found in literature [7]. Two more datasets, also found in literature, have been used for

network performance analysis [4][8].

To obtain the best performing estimation algorithm we developed many net-

works, changing all the parameters that define network topology: number of nodes,

number of hidden layers, number of inputs and number of outputs. Seven different

networks have been developed and evaluated.

Algorithm 1. One network with full input parameters (PW, PD, LL, age, gender) and

three outputs: HJCx, HJCy, HJCz (the coordinates x,y,z of HJC).

Algorithm 2. Three distinct networks, with full input parameters, each of which esti-

mates one direction of hip joint centre (HJCx, HJCy, HJCz).

Algorithm 3. Three different networks. The first with full input parameter estimates
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HJCy. The output of the first network (HJCy) is then used as input parameter, (to-

gether with LL, PW, PD, age and gender) for two other networks. This final two neural

networks are used for HJCx and HJCz estimation.

Algorithm 4. Three networks are trained in the same way as in Algorithm 3 but without

including gender among input parameters.

Algorithm 5. Three networks are trained in the same way as in Algorithm 3 but without

including age among input parameters.

Algorithm 6 and Algorithm 7. For each algorithm, three networks are trained in the

same way as in Algorithm 3 with the addition of weight among input parameters.

The Algorithms 1 to 5 have been implemented on imaging data and therefore

in this case HJC estimation was carried out without considering fat and skin artefact.

In the final part of Chapter 3 we simulated the presence of noise due to skin and fat

layers between the anatomical landmarks located on the bones and the corresponding

point identified through palpation. Two different noise simulations have been made.

The first with random white noise, while the second with a random component plus a

body mass index (BMI) dependent component. After noise addition, Algorithm 6 and

Algorithm 7 have been implemented for HJC localization.

After algorithms implementation, the statistical analysis have been performed.

We evaluated the squared HJCx,y,z errors and the distance between real and estimated

HJC. In this analysis we validate the performance of our algorithms through the com-

parison with Harrington’s algorithm. The most notable differences between the ANN

algorithm and Harrington’s can be spotted in the comparison of the 3D distance be-

tween real and estimated HJC. Considering the distance over two sets of data we had

statistical evidence that our method increased the accuracy of HJC localization of 21-

17% which correspond to average distance values of 5.9mm-9.3 mm, depending on used

dataset. Harrington’s average distance value were 7.5mm-11.2mm, depending on used

dataset. The validation of the best performing method was carried out also on data

with simulated noise. In this case, we proved an increase of approximately 19% in HJC
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localization accuracy with mean value of 6.1mm.

Finally, we performed statistical analysis to evaluate the importance of in-

cluding gender as input parameter. Although our data proved a certain relationship

between the improvement in HJC localization and the use of gender as input parame-

ter, our analysis on was not conclusive.
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Sommario

La stima accurata del centro dell’articolazione dell’anca (Hip Jont Centre,

HJC) è un requisito fondamentale nell’analisi clinica del cammino e nella pianificazione

preoperatoria all’artroplastica totale di anca e di ginocchio. L’analisi del cammino è

largamente utilizzata come supporto per il medico nel processo decisionale clinico in

caso di disfunzioni nella deambulazione [1]. Le deviazioni dal modello tipico del cam-

mino, infatti, sono spesso caratteristiche di patologie neurologiche o muscoloscheletriche

specifiche. L’importanza della corretta localizzazione dell’HJC risiede nel fatto che la

sua posizione influenza sia l’analisi cinematica che cinetica. Nel contesto chirurgico,

invece, la posizione di HJC viene sfruttata per il corretto posizionamento delle protesi

d’anca e di ginocchio [2], [3].

I metodi basati su immagini sono i più accurati nel lovalizzare il centro dell’articolazione

dell’anca. Viene acquisita una immagine 3D del paziente utilizzando la tomografia

computerizzata (CT), la risonanza magnetica (MRI), l’RX stereofotogrammetrico o al-

tre tecniche di imaging. La posizione dell’HJC viene identificata sull’immagine da un

operatore o è calcolata come il centro della sfera che meglio approssima la superficie

segmentata della testa del femore.

La stima image-less del’HJC può essere effettuata secondo due diverse modalità:

ultilizzando metodi predittivi o funzionali. Quando si utilizzano metodi funzionali, la

posizione dell’HJC viene calcolata con un approccio cinematico che analizza il movi-

mento relativo tra femore e la pelvi in un sistema di riferimento predefinito. Pertanto

al soggetto viene chiesto di eseguire un protocollo di movimento, mentre un sistema di
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localizzazione ottico misura la posa dei vari segmenti dell’arto inferiore.

Nei metodi predittivi la posizione dell’HJC viene calcolata eseguendo una re-

gressione su specifiche misure anatomiche del paziente. Queste misure sono le distanze,

in 3D, tra punti di riferimento anatomici accessibili, cioè che possono essere identificati

attraverso la palpazione. Utilizzando i modelli predittivi il soggetto analizzato non deve

eseguire movimenti come nel caso dei modelli funzionali. Tra i metodi predittivi, il

metodo di Harrington, sviluppato in [4], è considerato il migliore [5], [6], quindi è stato

utilizzato come gold standard.

Il nuovo metodo per la stima dell’HJC che abbiamo sviluppato in questo pro-

getto di tesi è basato su reti neurali artificiali (ANN). Le reti neurali sono una tecnica

di machine learning che ha la capacità intrinseca di stimare modelli per set di dati con

relazioni non lineari, e quindi di trovare relazioni tra i parametri di input e output, dopo

un una adeguata fase di training. La scelta di utilizzare le ANN è stata condizionata

anche dalla decisione di includere il genere del soggetto tra i parametri di input. Questo

non era possibile con l’utilizzo della regressione. Poiché la stima dell’HJC è un prob-

lema di fitting dei dati, l’utilizzo di reti neurali artificiali in configurazione feedforward

e addestrate con training supervisionato si è dimostrata la scelta migliore.

Le misure antropometriche che sono sate utilizzate per la stima HJC sono la

lunghezza della gamba (LL), la larghezza della pelvi (PW) e la profondità della pelvi

(PD). A questi parametri abbiamo aggiunto anche età e genere. Per l’addestramento e il

test della rete abbiamo utilizzato i dati appartenenti a un dataset presente in letteratura

[7]. Sono stati utilizzati altri due set di dati, anch’essi toravati in letteratura, per l’analisi

delle prestazioni delle reti neurali [4], [8].

Per ottenere l’algoritmo di stima più efficiente abbiamo sviluppato molte reti,

modificando tutti i parametri che definiscono la topologia della rete: numero di nodi,

numero di hidden layers, numero di ingressi e numero di uscite. Se si considera il numero

di ingressi e uscite, sono state sviluppate cinque diverse reti neurali.
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Algoritmo 1. È stata sviluppata una singola rete con in input LL, PW, PD, genere ed

età, e tre output: HJCx, HJCy, HJCz (le coordinate x, y, z di HJC).

Algoritmo 2. Sono state sviluppate tre reti distinte, ciascuna con in input LL, PW,

PD, genere e età. Ognuna delle tre reti stima una direzione del centro dell’articolazione

dell’anca (HJCx, HJCy, HJCz).

Algoritmo 3. Sono state sviluppate tre diverse reti. La prima con tutti i parametri

descritti sopra in input, che viene usata per la stima HJCy. L’output della prima rete

(HJCy) viene quindi utilizzato come parametro di input (insieme a LL, PW, PD, età e

genere) per addestrare altre due reti. Queste ultime due reti vengono utilizzate per la

stima HJCx e HJCz.

Algoritmo 4. Sono state sviluppate tre diverse reti. Le reti sono state addestrate allo

stesso modo dell’Algoritmo 3, ma senza includere il genere tra i parametri di input.

Algoritmo 5. Sono state sviluppate tre diverse reti. Le reti sono state addestrate allo

stesso modo dell’Algoritmo 3, ma senza includere l’età tra i parametri di input.

Algoritmo 6 e Algoritmo 7. Per ciascuno dei due, sono state addestrate tre reti allo

stesso modo dell’Algoritmo 3, ma con l’aggiunta del peso del soggetto analizzato tra i

parametri di input.

Gli Algoritmi da 1 a 5 sono stati implementati utilizzando i dati di imaging

e quindi in questo caso la stima HJC è stata effettuata senza considerare gli artefatti

dovuti alla presenza di tessuto adiposo e pelle. Nella parte finale del capitolo 3 è stata

simulata la comoponente di rumore dovuta alla presenza di strati di pelle e tessuto

adiposo tra i punti di riferimento anatomici situati sulle ossa e il punto corrispondente

identificato attraverso la palpazione. Sono state effettuate due diverse simulazione del

rumore. La prima con rumore bianco casuale, la seconda con un componente casuale

e un componente dipendente dall’indice di massa corporea (BMI). Dopo la simulazione

del rumore, sono stati implementati l’Algoritmo 6 e l’Algoritmo 7.

Dopo l’implementazione degli algoritmi, sono state eseguite le analisi statis-

tiche. Abbiamo valutato l’errore quadratico di HJCx,y,z e la distanza. Grazie a questa
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analisi sono state valutate le prestazioni dei nostri algoritmi, confrontandoli con l’algoritmo

di Harrington, che è considerato il gold standard per i modelli predittivi. Le differenze

più evidenti tra gli algoritmi ANN e il modello di Harrington possono essere individuate

nel confronto della distanza 3D tra HJC reale e stimato. Infatti, con riferimento a tale

parametro, è stata riscontrata evidenza statistica che l’algoritmo basato su reti neurali

ha aumentato l’accuratezza della localizzazione dell’HJC del 21-17% che corrisponde a

un valore medio della distanza di 5,9 mm - 9,3 mm, a seconda del set di dati utilizzato. Il

valore medio della distanza utilizzando il modello di Harrington era di 7,5mm-11,2mm, a

seconda del set di dati utilizzato. È poi stata effettuata una valutazione sull’accuratezza

della stima dell’HJC sui dati con simulazione degli artefatti dovuti alla pelle e allo strato

adiposo. In questo caso è stata riscontrata evidenza statistica di un aumento del 19%

circa nell’accuratezza della localizzazione dell’HJC con un valore medio di distanza, tra

HJC reale e stimato, di 6,3mm.

Infine, è stata effettuata una analisi statistica per valutare l’importanza di

includere il genere tra i parametri in input alle reti neurali. Non è stata riscontrata

evidenza statistica di una correlazione tra il miglioramento della localizzazione HJC e

l’uso del genere come parametro di input, tuttavia è stata trovata una relazione che

riteniamo meriti ulteriori indagini.
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1
Introduction

1.1 Introduction

The main target of this thesis is the development of a novel predictive method for the

estimation of hip joint centre (HJC) position. An accurate localization of the centre of

rotation of the joint is of primary importance for gait analysis and, in surgical context,

for total hip and total knee arthroplasty. There are two approaches to compute the

HJC: predictive methods and functional methods [6]. The first approach uses anatomical

quantities as input parameters for the algorithm that estimates the HJC. The functional

approach, instead, localize HJC exploiting kinematic relationships of relative movements

of femur an pelvis. We decided to develop a predictive algorithm because it is more

appropriate to apply predictive method in case the subject under study has neural

disease, muscle-skeletal disability, or that underwent a surgical operation in the lower

limb [1], due to the reduced range of hip joint motion. Functional methods, indeed,

require the patient to perform wide movements with the lower limbs in order to be able to

estimate the HJC, which is not necessary when using predictive method. HJC estimation

is also widely used in gait analysis, which means that, in case of functional method, it

demands the subject to perform the aforementioned movements before the analysis, and

only after that the acquisition of gait patterns is performed. This increases the overall
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CHAPTER 1. INTRODUCTION

acquisition time for the patient compared to predictive methods. Of course a higher time

performing task may cause muscle soreness and so the gait pattern acquired may not be

the same as without fatigue. Among the predictive methods the one that is considered

to perform better, according to many study [5], [6], is Harringthon’s algorithm [4]. The

algorithm proposed by Harrington uses three anatomical measurements as parameters

for HJC estimation: pelvis width, pelvis depth and clinical leg length.

1.2 Thesis Contribution and Organization

We propose an HJC estimation method based on artificial neural networks. This ap-

proach permits the modelling of complex data as well the inclusion of binary information

among the parameters used for HJC estimation. We exploited this additional degree of

freedom provided by ANN by including the gender (male/female) of the patients. We

also added the age of the subject under analysis to the parameters used for estimation.

In the last part of Chapter 3 we will also perform a simulation of fat and skin artefact,

and therefore, we will included also weight among the parameter for the estimation of

HJC. In the final part of Chapter 4 we will investigate the importance of including age

and gender among input parameters. The main contribution of this thesis is that we

will significantly improve the accuracy of Harrington’s method in terms of estimation

error. We will also perform an analysis with soft tissue artefact that will also prove

better performance compare to other predictive methods.

The thesis is organized as follows. In Chapter 2 we provide a basic background

on HJC estimation and its importance in the fields of computer aided surgery and in gait

analysis. We then give the description of existing functional and predictive methods,

as well as we introduce some useful theory and notation regarding artificial neural

networks. The core of the thesis is in Chapter 3, were our mathematical model for HJC

estimation is developed and tested. In Chapter 4, we perform a statistical analysis to

compare the performance of our algorithm with Harrington’s data. Finally, conclusions
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1.2. THESIS CONTRIBUTION AND ORGANIZATION

are drawn in Chapter 5.

The first part of this thesis project was carried out at the Laboratorio de

Instrumentação para Biomecânica (Biomechanical Instumentation Laboratory) of Uni-

versidad Estadual de Campinas under the monitoring of Prof. Ricardo M.L. de Barros.

The second part of the thesis was developed at the NEARLab of Politecnico di Milano

under the supervision of Prof. Giancarlo Ferrigno and Prof. Elena De Momi.
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2
Background

This chapter is devoted to the necessary background material for the rest of

the thesis. In Section 2.1 we introduce the importance of HJC localization and how a

mislocation of it’s position can lead to wrong deduction in human motion analysis and

in computer assisted orthopaedic systems (CAOS). Then, in Section 2.2 and 2.3 we will

give a short description of the already existing predictive and functional methods for

HJC estimation. Finally, in section 2.4 a brief description of the mathematical model

of the neural network is given.

2.1 Application of HJC localization

The accurate estimation of the hip joint centre is a basic requirement in lower limb move-

ment analysis and in computer assisted orthopaedic procedures for total hip arthroplasty

(THA) and total knee arthroplasty (TKA).

In gait analysis, precise location of the HJC is important as it influences both kinematics

and kinetics [9]. The most used technique for gait analysis consists in the placement of

markers, that may be active or passive, on the subject under analysis. The markers are

acquired by a stereophotogrammetric system which provides 3D position of the mark-

ers in time, while the subject is performing movements. Often, force plates are used
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2.1. APPLICATION OF HJC LOCALIZATION

to measure external forces. An example of a stereophotogrammetric system for gait

analysis is shown in Fig. 2.1. The markers are usually placed on relevant anatomical

Figure 2.1: The human movement analysis laboratory. Basic measurement instru-

ments are depicted together with their systems of axes (p: photogrammetry; d: dy-

namometry) [10].

landmarks and, if they can be palpated, the reliability of marker placement depends

mainly on the operator experience and on the dimension of the bony prominence itself.

When performing a complete gait analysis, the positions of some non-palpable anatomic

landmark are of strong interest and therefore, these anatomic landmarks are usually es-

timated using indirect methods [11]. Among internal anatomic landmarks the HJC (i.e.

the centre of femur head) is of high importance because it is the point with respect to

which hip and knee joint momentum are calculated. There are two main categories of

algorithms for HJC estimation: functional and predictive methods. The first one show
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CHAPTER 2. BACKGROUND

the smallest error, but they are not always applicable due to and inadequate range of

hip joint motion in several patient populations [5], [11]. Clinical gait analysis consists in

acquiring and interpreting biomechanical measurements of walking in order to support

clinical decision-making in case of gait dysfunction [12]. Gait deviations from typical

pattern are often characteristic of specific neurological or musculoskeletal pathologies.

Baker [1] identified four potential reasons for performing a clinical gait analysis: di-

agnosis, evaluation, monitoring and prediction. It must be said that it is quite rare

that a diagnosis is based only on gait analysis, and so at present day most common

use is for evaluation of patients with a known condition prior to planning treatment for

monitoring progress. Although the prediction of the outcome of patient-specific surgical

operation would be extremely useful the development of such an algorithm is complex

due to subject variability and this makes prediction difficult to use in practice.

Figure 2.2: (Left) The individual components of a total hip replacement. (Center)

The components merged into an implant. (Right) The implant as it fits into the hip

[13].

In CAOS applications, the estimation of the HJC is a fundamental planning

phase for surgical procedures that operate both directly on the hip joint (total hip

arthroplasty), and on the knee joint (total knee replacement or total knee arthroplasty).
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2.1. APPLICATION OF HJC LOCALIZATION

It has been demonstrated [14] that improper HJC location can affect hip loading, an-

gles, momentum and powers calculation acting at the hip joint leading to inaccurate

evaluation on prosthetic device placement. The components of a total hip prosthetic

device are femoral steam (metallic), femoral head (metallic), plastic liner (polyethylene)

and acetabular component (metallic) The imprecise implantation of the acetabular com-

ponent, i.e. placement out of the Lewinnek et al. [15] safe zone, combined with the

unpredictability of uncemented stem anteversion may be the reason for dislocation after

total hip arthroplasty [2], which is one of the most common complication after total hip

arthroplasty.

Figure 2.3: (Left) The individual components of a total knee replacement. (Center)

The components merged into an implant. (Right) The implant as it fits into the knee.

In total knee arthroplasty, the surgeon completely replace the damaged joint

with a total prosthesis formed by the following components: femoral component (metal-

lic), tibial component (metallic) and tibial insert (in polyethylene). Visual representa-

tion of the device in Fig.2.3. The reference for the correct alignment of the prosthetic

components is the mechanical axis of the lower limb, which identifies the direction of

transmission of the load forces through the knee joint [3]. The mechanical axis is defined

as the line joining hip joint centre with the centre of the tibiotalar joint. The mechani-

cal axes of the femur is defined as the line that joins HJC and knee centre while tibia’s
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CHAPTER 2. BACKGROUND

mechanical axis is defined as the line that joins knee centre and ankle joint centre. In

healthy subjects, in upright position, the mechanical axis passes from a point 5-10mm

from the centre of the knee.

2.2 Image based methods

The hip joint centre (HJC) is defined by processing patient-specific images obtained by

Computed Tomography (CT), Magnetic Resonance Imaging (MRI), sterephotogram-

metric RX or other imaging techniques. The position of HJC is identified on the image

data through manual localization or by calculating the center of the best fitting sphere

built on the segmented surface of the femoral head. In the case of non-automatic HJC

localization (i.e. position identified by the operator Fig. 2.4), an estimation of the

accuracy of the method was made by Reiko et al. [7] who concluded that the accuracy,

compared to sphere fitting, was 1.1mm (SD: 0.3mm). The repeatability intra-assessor

was ± 1.4, ± 1.5 and ± 1.8 mm for the posterior-anterior, medial-lateral, and inferior-

superior directions respectively. Image based methods are expensive and, in case of use

of X-ray images, have a non-negligible level of invasiveness due to the patient’s exposure

to radiation.

Figure 2.4: Example of manual localization of HJC on MRI images. Picture from [4].
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2.2. IMAGE BASED METHODS

Computer-assisted orthopaedic surgery (CAOS) has been developed for more

accurate positioning of implants during the THA. In the context of total hip arthro-

plasty, the accurate positioning of implants is fundamental to achieve a good clinical

outcome. To help surgeons in implant placement diverse CAOS systems have been

developed. There are three main categories: passive, semi-active, and active systems.

Among passive system, navigation systems are the most widely used and they basi-

cally provide the surgeon with necessary informations during surgery. Navigation can

be made with different imaging techniques, like CT-scan, or, in order to reduce the

radiation dose for the patient, with imageless systems [2]. Active and semi-active sys-

tems instead are robot-assisted system developed to help the surgeons both, providing

informations and supporting prosthetic device implantation. Active systems perform

partial or complete prothesis placement as programmed preoperatively. In semi-active

system, the robotic arm is moved by the surgeon’s hand by holding surgical tools, but

it is kept constrained in preoperatively set boundaries. Among semiactive systems the

MAKOplasty R©system is one of the best performing for CAOS. To perform THA with

MAKOplasty R©first a pre-surgical CT-scan must be acquired. In the operative phase

two pins should be fixed one on the bony surface, one of the greater trochanter and the

other above the rim of the acetabular component on the bony pelvic. To assure correct

superimposition of preoperative images and operation reference frame, femur and pelvis

registration is done. Femur registration is made by touching with special tool on thir-

tytwo required points on the proximal femoral head. Pelvis registration is also made

by touching, using special tool, the bone surface of the acetabulum on the thirty-two

points identified by the software. Finally the surgeon can ream the acetabulum until he

match the final socket size, however, the reamer remains constrained to the preopera-

tive plan and avoids going “out of bounds” in the superior, medial or anterior-posterior

directions.

At NEARLab we performed a simulation of the registration phase, of both pelivis and

femur, using Polaris VICRA R©sytem on a phantom. The phantom is made in rigid foam

and is composed of two bony segments representing the pelvis and the femur.
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CHAPTER 2. BACKGROUND

Figure 2.5: On the left, femur with DRFf rigidly linked plus pointer tool. On the

right, pelvis with DRFp rigidly linked plus pointer tool

Figure 2.6: Data acquired, with VICRA R©system, using the pointer tool on the ac-

etabulum and femoral head surface.

VICRA R©acquisition system tracks the 3D position and orientation of active or passive

markers attached to surgical tools. The latter are rigid body with four passive markers

each; the markers are placed so that it is possible to identify univocally position and ori-

entation of the tool in space, therefore they are also called datum reference frame (DRF).

10



2.2. IMAGE BASED METHODS

We used three different tools: two of them were rigidly linked one to the phantom pelvis

(DRFp) and the other to the femur (DRFf), the third is a pointer tool that was used to

collect point on the surface of femur head and acetabulum Fig. 2.5. All data are col-

Figure 2.7: Camera of VICRA R©Polaris acquisition system on the left and and image

of VICRA R©working space on the right.

lected in the camera reference frame, then data of femur head surface are rototranslated

into femur’s DRFf and data of acetabulum surface into pelvis DRFp. A static image of

pelvis and femur with the femur head properly place in the acetabulum is also acquired.

This last acquisition was made to be able to express femur head data in pelvic DRFp,

in order to make a comparison of the hip joint centres obtained by the two set of data.

The HJC computed from femur head data was in position -80.0mm -13.4mm -89.0mm

(x,y,z direction respectively), while it was in position -81.0mm -12.8mm -87.0mm (x,y,z

direction respectively) when computed from acetabulum data, all the data expressed in

DRFp. This corresponds to a distance between the two HJC of 2.3mm consistent with

what found in literature [7]. We consider the real HJC position as the mean position of

the two: -80.5mm -13.1mm -88.0mm (x,y,z direction respectively).

11
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2.3 Predictive methods for HJC localization

In predictive methods the position of the HJC is calculated with a regression-based ap-

proach on specific anatomical patient quantities, estimated from anthropometric data

collections. To measure the specific anatomical quantities of the subject, some accessi-

ble anatomical landmark are identified through palpation and in correspondence of each

of them a skin marker, for motion analysis applications, is placed. These HJC localiza-

tion methodologies are less expensive and reduce the total analysis time with respect

to image-based anatomical methods and functional methods. Furthermore, they are

less invasive than methods based on CT images or X-Rays because the usage ionizing

radiation is avoided.

In literature different regression methods have been developed, that are based on diverse

anthropometric measurements. The most populare are Bell et al. [16], Harrington et al.

[4] and Seidel et al [17]. Bell et al. estimate the position of HJC as a constant percentage

of the pelvic width (i.e. the distance between the position of the two anterior-superior

iliac crests). Instead, Siedel et al. demonstrated that HJC position is a function not

only of pelvic width but also of pelvic depth (distance between mid point of ASIS and

mid point of PSIS)and pelvic height (distance between pubic symphysis and inter ASIS

line). The anthropometric measurements used are pelvic width (PW), pelvc depth (PD)

and clinical leg length (LL). Harrington et al. regression equation are written below

(equation in mm):

x̂ = −0.24PD − 9.9

ŷ = −16PW − 0.04LL− 7.1

ẑ = 0.28PD + 0.16PW + 7.9

Harrington et al. method is the one that proved to perform the best within predictive

methods according to [5]. The error the anterior-posterior direction (x) has a maximum

value of 11.5mm and RMS is 5.88mm. For up-down direction (y) the maximum is

6.96mm with RMS of 3.65mm. Finally for medial-lateral direction (z) the maximum

12



2.4. FUNCTIONAL METHODS FOR HJC LOCALIZATION

value is 12 and RMS is 4.32mm. Harrington tested its algorithm on healthy adult and

children as well as on children with spastic diplegic cerebral palsy, and it proved to

provide an accurate HJC localization also in pathologic subjects.

2.4 Functional methods for HJC localization

Functional methods define the HJC from the relative movement between the femur and

pelvis in a predefined reference system; HJC position is computed through a kinematic

approach. Differently from predictive methods, the subject is asked to perform stan-

Figure 2.8: One possible relative movement of pelvis and femur.

dard movements, while an optical acquisition system measures the pose of the lower

limb in the sensor reference frame. Each functional method has a standard acquisition

13
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protocol for markers placement and motion pattern the subject is asked to perform.

The data acquired are then processed in order to obtain a reliable estimation of HJC

and each functional algorithm is characterized by it’s own data processing strategy. The

instrumentation used for the acquisition of the poses of the limb changes according to

the application area. In motion analysis field, the pose is obtained by applying a cluster

of markers on the limb surface. This procedure is completely non-invasive.

In CAOS techniques, instead, the markers are rigidly constrained to the un-

derlying bones using proper instrumentation for orthopaedic surgical navigation proce-

dures. The surgical tool are similar to that in Fig. 2.5) and each of them identifies a

DRF. The set up for gait analysis produces results with lower accuracy than in CAOS.

This is due to the fact that the first experimental set up is affected by a te presence

of movement artifacts due to the presence of soft tissues and muscle at the interface

between marker and bone surface.

Figure 2.9: On the left example of marker placement for surgery, on the right example

of marker placement for gait analysis

Functional methods for HJC localization can be divided into two main cat-

egories transformation techniques and sphere fitting techniques. In sphere fitting ap-

proach, through the elaboration of a dataset of femoral poses and under the hypothesis

of an ideal stationary spherical joint, the centre of rotation (HJC) or the axis of rotation

14
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of the articular joint is estimated. This algorithms have been implemented for motion

analysis applications and therefore the data used are usually from skin markers. Several

iterative techniques with least squares approach are presented in the literature. Some

methods impose geometric constraints on the marker configuration [18], while other

methods assume that each marker moves independently on a sphere centered in HJC.

Transformation techniques are characterized by the identification of local ref-

erence frame (RF) on each body segment of interest (femur and pelvis) and by transfor-

mations between RFs report the poses acquired in a common SDR. In 2015 Kainz et al.

[6] made a wide review evaluating the performance of five sphere fitting methods (al-

gebraic sphere fit ASF method, bias compensated bcASF, geometric sphere fit method

GSF, and incomplete algebraic sphere fit method iAFS) and seven transformation tech-

niques (centre transformation technique CTT, Holzreiter approach HR, helical pivot

technique HPT, minimal amplitude point MAP, Monte Carlo pivoting MCP, revised

functional method RFM, symmetric centre of rotation estimation SCoRE and Schwartz

transformation technique STT). They concluded that, according to in vivo studies, the

GSF method is the most accurate approach with an average error of 11 to 21 mm.

At NEARLab we performed a simulation of HJC localization by mean of sphere

fitting on a phantom. We used Polaris VICRA R©sytem for the acquisition procedure.

The phantom used is composed by two bony segments made of rigid foam that represent

the pelvis and the femur. The two segment are joined together with an elastic component

that permit relative movements of pelvis and femur. In the preparatory phase we rigidly

linked one surgical tool for pose acquisition on the pelvis (which identifies DRFp)and

another one on the distal femur (DRFf). In the acquisition phase two passive maneuvers

were performed on the femur segment. The acquired data are, expressed in DRFp, are

shown in Fig.2.10. The real HJC have been computed in Section 2.2 and resulted in

position -80.5mm -13.1mm -88.0mm (x,y,z direction respectively). We applied least

square sphere fitting algorithm on the data from femur DRFf we obtained the following

position for HJC position for the two maneuver. Maneuver 1: -81.01mm, -12.79mm,
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Figure 2.10: Plot of the acquired data from two different passive maneuver

-86.96mm (x,y,z direction respectively). Maneuver 2: -79.95mm, -13.45mm, -88.97mm

(x,y,z direction respectively). The mean value of the two maneuvers is: -80.48 -13.12

-87.96 which corresponds to an error lower than 1mm for all the directions. The error is

very low compared to the one in literature mentioned above. This is mainly due to the

absence of movements artifacts which are estimated to be the main error source when

computing HJC by means of functional methods [5].

2.5 Background on artificial neural networks

The artificial neural network (ANN), is a machine learning technique evolved from the

idea of simulating biological neural network [19]. If our aim is to model a complex nonlin-

ear system traditional regression methods may not be able to find relationships between

input and outputs. Instead, due to their structure, ANN are intrinsically capable to
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model nonlinear data, moreover binary input can be used together with continuous one.

We exploited this capabilities of ANN to include gender among input parameters. Three

critical elements define a neural network: node characteristics, network topologies and

learning rule. The biological structure corresponding to the nodes are the neurons. The

node, which basic model is shown in 2.11, receives n weighted input and sum them. The

summation results of the inputs to one node is processed with the so called activation

function that usually is a step function or a sigmoid. The output of the node is then

given as input to the following hidden layer or to the output layer. Generally more

w1x1

w2x2

w3x3

wnxn

f

Node

y

Input layer

...

....
.

Figure 2.11: Model of one node of an artificial neural network.

nodes are aggregated into layers which are interconnected. The number of layer, the

number of nodes in each layer and the way nodes are interconnected define the topology

of a network.

Nodes can be connected in two ways one is forward connection with no loop back. In

connection with loop back instead the output of the nodes can be the input to previous

or same level nodes [19]. On this basis we can distinguish between feedforward networks

and recurrent networks. In feedforward networks the signal goes one from input to out-

put without going back and for this reason to each input corresponds a single output.

On the contrary recurrent networks is dynamic; that is for one input the ANN produces
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a series of outputs depending on the previous inputs and outputs values.

Learning algorithms determine how the weights are initialized and adjusted

[19]. There are two main categories of learning rules: supervised learning and unsuper-

vised learning. In supervised learning the weights are modified in order to minimize the

error between the ANN output and the correct output. Of course a set of input with the

corresponding output must be used for the train since the true output must be known.

When the network produces the desired outputs for a series of inputs, the weights are

fixed and the network can be put in operation. On the contrary, unsupervised learning

is used when true output values are unknown. In this case network tries to find a trend

in the input data on its own.
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3
Dataset and model construction

In this chapter, we present material and methods used for the implementation

of the neural network model for functional HJC estimation. In Section 3.1 the charac-

teristics of the used datasets are shown. Then, in Section 3.3 we provide a description of

the methods used for estimating HJC position with full input parameters. The effects of

age and gender on the HJC localization are investigated in Sections 3.5 and 3.6. Finally,

in Section 3.8, the effect of fat and skin artefacts is simulated and the performance of

the estimation algorithm is analysed.

All the implementations and tests described in this chapter have been developed within

MATLAB R©environment.

3.1 Available dataset

The experimental data used to develop this thesis project came from three datasets

collected from three different research group. Before getting into the details of the

mentioned datasets, we want to introduce the anthropometric measurements we are

going to use for HJC estimation. Please refer to Fig. 3.1 for a visual interpretation of

the following parameters.
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• Leg Length (LL). Clinical leg length, measured from ASIS to medial epicondyle

(ME) of the knee, then to medial malleolus (MM)

• Pelvis Depth (PD). Distance between the left and right ASIS

• Pelvis Width (PW). Distance between the ASIS midpoint and the PSIS midpoint

Figure 3.1: introduced by Hara et al. in [7] and utilized in this thesis.

The strong relationship between PD, PW and the position of HJC in a pelvis embedded

coordinate system had already been observed by Seidel et al.[17], but they used pelvis

height (i.e. perpendicular from pubic symphysis to inter ASIS line) to predict HJCz

coordinate. In this work, as well as in [4], pelvis height is not included in the parameters

because the palpation of pubic symphysis is not practical in routine clinical procedures.

LL, PD and PW can be measured after locating 6 anatomical landmarks: left and

right anterior superior iliac spine (ASIS), left and right posterior superior iliac spine

(PSIS), right medial epicondyle of femur (ME) and right medial malleolus (MM). To

evaluate the effectiveness of the HJC estimation, real hip joint centre was also identified.

Differently from Harrington’s work, together with the anthropometric measurements we

introduced also gender and age as input parameters.

Dataset1 is the biggest one and data were acquired by R. Hara et al. in [7].

20



3.1. AVAILABLE DATASET

Due to its dimension, it is the one on which the neural networks are going to be trained.

R. Hara et al. obtained tridimensional images of the bodies of 157 deceased individuals

using computed tomography. Exactly 120 out of the 157 bodies correspond to adult

individuals. They can be divided into 60 males and 60 females, each group presenting

almost the same average age. The remaining 33 data belong to young individuals, more

precisely to 24 male and 13 females, with the female group showing a higher average

age. As expected, for the adult group, women tends to be shorter and lighter than men.

In the children group, instead, the age difference leads to taller females. Informations on

ethnic descent is not included in the dataset, but the authors state that all the subjects

were Australian citizens. Data are resumed in Tab. 3.1. Hara et al. identified the

anatomical landmarks by visual inspection of the 3D models obtained using CT scan,

so their data are not affected by the presence of fat or skin artefacts. CT images were

taken every 1.0 mm with a slice thickness of 1.5 mm in all planes. The coordinates of

HJC are expressed in a pelvis embedded reference system. Pelvis’ origin is set to the

mid-point between the left and right ASIS with the y-axes pointing to right ASIS. The

x-axes is set to be the transverse plane of the pelvis that contains both ASIS and the

mid point of the two PSIS. See Fig.3.2

Figure 3.2: Pelvis embedded coordinates system for Dataset1 and the one used for

the thesis project
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• X is antero-posterior position of the hip joint centre

• Y is lateral-medial position of the hip joint centre

• Z is up-down position of the hip joint centre

Dataset2 is from Harrington et al. [4], it contains data from 32 subjects: 8 adults,

14 healthy children, and 10 children with spastic diplegic cerebral palsy. MRI scans

of the pelvis were acquired using a 2.5mm slice width T1-weighted, three-dimensional

sequence to optimise bone and muscle definition, with a gradient echo (TE/TR 20/ 15

ms) to maximise the speed of acquisition. A two-dimensional volume spin-echo sequence

was also collected to aid orientation within the former images. The leg lengths of each

subject were measured manually. All the patients were English citizens. In this case

the pelvis embedded coordinate system for HJC position is the one shown in Fig. 3.3.

Figure 3.3: Pelvis embedded coordinates system for Dataset2 and Dataset3.

• X is antero-posterior position of the hip joint centre

• Y is up-down position of the hip joint centre

• Z is lateral-medial position of the hip joint centre
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Dataset3 is from Leardini et al. [8], it contains data from 11 male adult subjects. The

real position of the HJC was obtained using Roentgen stereophotogrammetric analysis

(RSA). Four spherical 0.8 mm diameter tantalum balls were placed on the skin to obtain

ASIS and PSIS anatomical landmarks. Some uncertainty affects LL measurements. In

fact, LL is defined as the distance between ASIS and homolateral MM, but it is not

mentioned whether the measurement is done by passing from ME or not. Also in this

case the coordinate reference system is the one shown in 3.3. In the Tab. 3.1 the mean

value of the used parameters are listed for each dataset and divided according to gender

and adult/children differences.

Male adults

Number of

sample
Age Weigth PW LL PD HJCx HJCy HJCz

Dataset1 60 24.62 76.47 225.51 901.76 143.09 -44.79 84.48 -80.00

Dataset2 5 30.20 76.80 257.16 964 156.28 -45.32 92.54 -88.32

Dataset3 11 29.27 76.45 234.55 928.18 168.18 -51.37 88.19 -89.90

Mean 25.66 76.49 228.90 909.68 147.59 -45.78 85.55 -81.98

Female adults

Number of

sample
Age Weigth PW LL PD HJCx HJCy HJCz

Dataset1 60 25.12 66.73 217.51 844.76 142.15 -45.22 84.55 -76.71

Dataset2 3 27.00 59.67 225.13 865.00 144.63 -44.03 88.77 -82.90

Mean 25.21 66.40 217.87 845.72 142.26 -45.16 84.75 -77.00

Table 3.1: Mean value for the categories age, weight, PW, LL PD, HJCx, HJCy and

HJCz for adult’s data of all the dataset used in this thesis.
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Male children

Number of

sample
Age Weigth PW LL PD HJCx HJCy HJCz

Dataset1 24 6.75 30.00 166.52 605.32 87.23 -25.37 58.84 -56.24

Dataset2

healthy
7 8.29 29.09 184.10 690.43 99.51 -32.44 64.23 -64.70

Dataset2

with cerebral palsy
5 9.8 30 170.44 675 99.74 -35.7 64.24 -61.58

Mean 8.28 29.48 173.69 656.92 95.49 -31.17 62.44 -60.84

Female children

Number of

seample
Age Weigth PW LL PD HJCx HJCy HJCz

Dataset1 13 8.85 37.77 177.45 680.64 97.25 -32.12 62.38 -60.68

Dataset2

healthy
7 8.43 29.36 178.16 711.21 106.60 -35.34 63.84 -68.04

Dataset2

with cerebral palsy
5 9.2 27.9 173.36 687 97.72 -35.46 65.78 -63.46

Mean 8.83 31.68 176.32 692.95 100.52 -34.31 64.00 -64.06

Table 3.2: Mean value for the categories age, weight, PW, LL, PD, HJCx, HJCy and

HJCz for children’s data of all the dataset used in this thesis.

3.2 Partitioning of data for ANN implementation and test-

ing

The data used for the neural networks training and validation are a subset of the data

in Dataset1. The 157 data in Dataset1 were randomly sorted and then divided so to

have 100 data for training, 25 validation and 32 for testing, as showed in Fig. 3.4.

The reason why we selected such a division is twofold; firstly, it is known that neural

networks require a considerable amount of samples to be properly trained; secondly,

we would like to obtain a dataset with the same cardinality as Harrington’s. This

will turn out to be convenient for our subsequent statistical test analysis, because it

helps to avoid misclassification due to different sample size, as reported in [20]. Once
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Full dataset1

157 Samples

Training data

100 Samples

Validation data

25 Samples

Testing data

32 Samples

TRAINING

TESTING

Figure 3.4: Scheme of dataset partition.

each network was trained we used two set of sample to test its behaviour and compare

the localization error with the one obtained using Harrington’s algorithm. To make

an accurate comparison we evaluate the performance of the two method on the same

dataset with which they have been developed and then on another dataset obtained

merging the remaining datasets. The first test is made to evaluate the accuracy of the

developed model compared to Harrington’s and is made with 32 sample datasets; we

will refer to this testing phase as accuracy test. The latter, instead is made to evaluate

the accuracy of the algorithm when generalizing to other datasets, the used datasets

had 43 samples coming form two different datasets that have been merged. We will refer

to this testing phase as generalization test. For Harrington’s algorithm the data came

from the 32 samples of Dataset1 used for testing ANN performance and Dataset3. For

our model the data came from Dataset2 and Daaset3. In Fig 3.5 the testing procedure

is schematized.
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Figure 3.5: In red, test to compare accuracy of the two methods; in blue, test to

compare accuracy of the network while generalizing to other datasets.

3.3 Models with full input parameters

As explained in section 2.5 there are three critical elements to define a neural network:

number of nodes, network topologies and learning rule. In the following part of the

chapter, we are going to explain in detail how we defined such elements to build the

neural network.

Our goal is to find the coordinates of HJC from a pool of input parameter. Therefore,

while different input parameter, number of output, hidden layer and nodes were used

to train the ANN the purpose of the network remains the same: fitting the data. For
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this reason the topology of the neural network must be feedforward to assure one single

output for each set of inputs.

3.3.1 Estimation of HJCx HJCy and HJCz

The first network we implemented is the one that takes gender, age, PD, PW and LL

as inputs, and returns the coordinates hip joint center, HJCx, HJCy and HJCz. This

5-inputs and 3-outputs network is represented in Fig.3.6. The activation function f

Age

Gender

PW

PD

LL

f

f

f

f

g HJCx

g HJCy

g HJCz
.
.
.
.

Hidden layerInput layer Output layer

Figure 3.6: 5-input 3-output network

in the hidden layer is the sigmoid function, instead g is a linear function. Plenty of

networks were implemented with different number of nodes (1 to 200) in the hidden

layer and also with one to five hidden layers.We proceed by comparing the HJC esti-

mation errors provided by these neural networks with different configurations among

them. The outcome of this comparative process, which results are resumed in Tab. 3.3,

suggested that the best performance is reached by networks with a number of nodes

higher than 10 and with a single hidden layer. The presence of more than one hidden

layer lead to an error that is three times the error with only one hidden layer. One

hidden layer networks have very good performance also with only 2 nodes in the hidden

layer and kept increasing their accuracy until 10 nodes in the hidden layer. For higher
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number of nodes the neural networks kept performing good but with training time that

was exponentially increasing. For this reasons, we selected for our analysis a 10-nodes

one-hidden-layer network. The next step would be to select a suitable learning rule,

as well as define the weight and bias initialization to train our network. Weights and

bias were initialized with random values between -1 and 1. To assure best performances

of the ANN we tried a few supervised learning algorithms: Levenberg-Marquardt, re-

silient backpropagation and Bayesian regularization algorithm. All the afore mentioned

learning rules were tested on all the network trained and in all cases the best perfor-

mance were assured by Bayesian regularization algorithm. Bayesian regularization is

a mathematical process that converts a nonlinear regression into a “well-posed” sta-

tistical problem in the manner of a ridge regression [21]. The main drawback of this

method is the increased training time which is almost three times higher than resilient

backpropagation and twice Levenberg-Marquardt. This was not a problem in our case

since the maximum obtained was about 3h (one hidden layer with 500 nodes), and this

is a reasonable time for training. Moreover once the network is trained it takes a few

ms to get the estimation of HJC position given the input parameters. In tab 3.3 are

reported the results of some of the implemented networks tested on the testing subset of

Dataset1. All ANN in Tab. 3.3 were used also to estimate HJC of sample from Datase2

and Dataset3. In the Tab.3.4 the results are summarized. In the following chapter we

will refer to this algorithm with the name Algorithm 1.

3.3.2 Estimation of HJCx HJCy and HJCz independently

As we have seen in the results of the networks implemented in Section 3.3 there isn’t

the same accuracy in the estimation of all three coordinates of the HJC, so we decided

to develop three distinguished networks each able to deduce one of the coordinates of

the joint centre (HJCx, HJCy and HJCz). For all the networks the input were the

same as shown in Fig.3.7. Again different network were implemented but the best

performance were assured with 1-hidden layer 10-nodes network with and as training
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Hidden layer and nodes HJCx HJCy HJCz Distance

200 3.23 3.12 2.69 5.97

100 3.21 3.22 2.68 6.00

2 3.62 3.30 3.04 6.48

10 3.30 3.01 2.67 5.95

[10 10 10] 8.13 6.23 11.10 16.73

[5 5 5 5 5] 5.40 4.84 6.32 10.99

Harrington algorithm on

the same data for testing
4.94 2.89 3.47 7.51

Table 3.3: In the first column there is represented the number of hidden layer (number

of numerical elements) and the number of nodes in each hidden layer. In the column

HJCx HJCy and HJCz is reported the mean of error’s absolute value. In column distance

the mean of the distances is reported.

HJCx error HJCy error HJCz error Distance

Mean RMS Max Mean RMS Max Mean RMS Max Mean Variance RMS

NN accuracy 3.31 4.06 10.17 3.08 3.92 10.10 2.77 3.27 7.49 6.01 2.58 6.52

H accuracy 4.94 5.88 11.50 2.89 3.65 6.96 3.47 4.32 12.00 7.51 3.23 8.16

NN generalization 5.15 6.27 13.27 3.75 4.86 12.19 5.17 6.84 21.25 9.39 4.70 10.48

H generalization 5.45 6.98 15.44 5.08 6.12 13.22 6.19 8.20 22.02 11.18 5.41 12.39

Table 3.4: Results of Algorithm 1. Mean of HJC errors are the mean of the absolute

value of the errors, RMS is the root mean square of the error and Max is the maximum

error encountered without sign.

function Bayesian regularization, therefore, only the results of these networks are shown.

In Tab. 3.5 the statistics on the error in the estimation of HJC using these networks

are summarized and it is possible to see how close they are to the one obtained in the

previous section. In the following chapters we will refer to this algorithm as Algorithm

2.
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Figure 3.7: Three network trained independently each one with 5 input and 1 output.

3.4 Network with HJCy as input to estimate HJCx and

HJCz

Both the algorithm implemented in chapter 3.3 proved to be able to estimate HJCy

in a very accurate way (considering RMS value), on the contrary estimation of HJCx

and HJCz had considerably higher RMS error when generalizing to other datasets.

Therefore, in this section we tried to find a solution to decrease also the HJCx and

HJCz estimation. To do so we decided to start from the estimation of HJCy, and then

use this estimation as an input parameter of the neural networks for the estimation of

HJCx and HJCz.
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HJCx error HJCy error HJCz error Distance

Mean RMS Max Mean RMS Max Mean RMS Max Mean Variance RMS

NN accuracy 3.30 3.79 7.29 3.21 4.07 10.68 2.81 3.52 9.62 6.05 2.62 6.58

H accuracy 4.94 5.88 11.50 2.89 3.65 6.96 3.47 4.32 12.00 7.51 3.23 8.16

NN generalization 5.13 6.15 12.18 4.02 5.11 12.82 4.99 6.51 19.48 9.34 4.41 10.31

H generalization 5.45 6.98 15.44 5.08 6.12 13.22 6.19 8.20 22.02 11.18 5.41 12.39

Table 3.5: Results of Algorithm 2. Mean of HJC errors are the mean of the absolute

value of the errors, RMS is the root mean square of the error and Max is the maximum

error encountered without sign.
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Figure 3.8: Network for estimation of HJCy is developed independently, the networks

for HJCx and HJCz are made using the output of the HJCy estimation ANN as an

input parameter.

As it can be seen in Fig. 3.8 the ANN implemented for HJCy is made up in the same

way as in the previous section (5-inputs, 1-output). The networks for HJCx and HJCz
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CHAPTER 3. DATASET AND MODEL CONSTRUCTION

estimation instead have 6 input parameters and one output parameter each. The results

obtained with this ANN fashion lead a decrease in the overall distance between estimated

HJC and true HJC. The best neural networks for HJCx and HJCz localization have 15

nodes grouped into one hidden layer. The increase of nodes number may be due to the

augmented number of input parameters. Learning algorithm is Bayesian regularization

with weight initialized with random numbers in range [-1, 1]. f is the sigmoid function

while g is a linear function. Although the networks showed here may seem to perform

the same as the two in Section 3.3, with further analysis in the Chapter 4.1 will be

proved using statistical hypotesis test that the neural networks here developed are the

networks that give the lowest distances between real and estimated HJC. In the following

chapter we will refer to this algorithm with the name Algorithm 3.

HJCx error HJCy error HJCz error Distance

Mean RMS Max Mean RMS Max Mean RMS Max Mean Variance RMS

NN accuracy 3.11 3.59 7.52 3.21 4.11 9.76 2.78 3.45 9.27 5.94 2.58 6.46

H accuracy 4.94 5.88 11.50 2.89 3.65 6.96 3.47 4.32 12.00 7.51 3.23 8.16

NN generalization 5.31 6.34 12.35 3.80 4.77 11.66 4.98 6.49 19.24 9.26 4.44 10.25

H generalization 5.45 6.98 15.44 5.08 6.12 13.22 6.19 8.20 22.02 11.18 5.41 12.39

Table 3.6: Results of Algorithm 3. Mean of HJC errors are the mean of the absolute

value of the errors, RMS is the root mean square of the error and Max is the maximum

error encountered without sign.

3.5 Input gender free network

Male and female differences in pelvis shape is well known and it is considered to be

linked intimately with its adaptive functions; pelvis shape represents the total response

to the requirements for efficient bipedalism and parturition. In particular the female

pelvis has evolved to its maximum width for childbirth and the male pelvis has been

optimized for bipedal locomotion. [22][23]. The structure of the pelvis is significantly
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3.5. INPUT GENDER FREE NETWORK

Figure 3.9: Differences between male (left) and female (right) pelvic bone shape.

heavier and thicker in male than in female and within the variations due to sexual

dimorphism there is the overall shape which it has been demonstrated to have a more

rounded frame in the female pelvis [23]. The main differences between man and woman

pelvic bone is that females have: iliac bones more flared, angle of pubic arch grater,

higher distance between ischial spine and sacral curvature shorter and wider. The pelvic

inlet is said to be oval-shaped in female and heart-shaped in males Fig. 3.9. Finally the

male acetabulum has been designed to fit a bigger femur head.

The ANN developed for testing the importance of including gender as param-

eter for HJC localization estimation was developed using a fashion very similar to the

one in section 3.4 with estimation of HJCy that is then used as input parameter for

HJCx and HJCz computation. The best performing network had one hidden layer with

10 nodes, learning algorithm was Bayesian regularization with all weights initialized

with random numbers in range [-1, 1]. f is a sigmoind function and g a linear one. A

graphic rapresentation of the network is shown in Fig. 3.10. In Tab. 3.7 the results

obtained with the network are summarized. It is possible to see that the accuracy of

the network on the dataset it was trained on keeps almost the same with RMS value

of 3.90mm(previously 3.59mm), 4.09mm (previously 3.76mm) and 3.52mm (previously
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Figure 3.10: Network for estimation of HJCy is developed independently, the network

for HJCx and HJCz is made using the output of the HJCy estimation ANN as an input

parameter. In this case there isn’t gender among the input parameters

3.45mm) for HJCx, HJCy and HJCz respectively. On the contrary there is a consistent

worsening in the generalization capability of the network which is particularly clear

having a look to the maximum HJCx error which goes from 12.35mm (network with

gender) to 22.81mm which corresponds af an almost 50 % increase in localization error.

More detailed statistical analysis comparing this network and the one in section 3.4

will be held in chapter 4.1. In the following chapter we will refer to this algorithm as

Algorithm 4.
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3.6. INPUT AGE FREE NETWORK

HJCx error HJCy error HJCz error Distance

Mean RMS Max Mean RMS Max Mean RMS Max Mean Variance RMS

NN accuracy 3.36 3.90 8.43 3.31 4.09 10.30 2.84 3.52 9.53 6.12 2.67 6.66

H accuracy 4.94 5.88 11.50 2.89 3.65 6.96 3.47 4.32 12.00 7.51 3.23 8.16

NN generalization 7.06 9.27 23.81 3.92 4.94 12.17 5.03 6.68 20.52 10.76 6.32 12.44

H generalization 5.45 6.98 15.44 5.08 6.12 13.22 6.19 8.20 22.02 11.18 5.41 12.39

Table 3.7: Results of Algorithm 4. Mean of HJC errors are the mean of the absolute

value of the errors, RMS is the root mean square of the error and Max is the maximum

error encountered without sign.

3.6 Input age free network

Analysing our dataset it is possible to see that data from children are considerable

different from adults one. This difference is surely due to the different stature and

wight of the subjects. Another reason may be due to the fact that since they are not

skeletally fully matured they may have a slightly different shape of pelvic bone compared

to adult of the same gender. For this two reasons we included age as input parameter

for the ANN in the first place.

In this section we aim at evaluate if age is actually improving the HJC estimation, to do

so we implemented a new network with the same structure of the one in Fig. 3.10, with

the only difference that the input parameter age is substituted by the gender. As it is

possible to see analysing the results resumed in Tab. 3.8 the HJC estimation is almost

the same as in section 3.4. Neural networks have the intrinsic capability of avoiding

usage of non relevant input data, and this may be what happened with age parameter:

the weight associated are very small and so the overall estimation in not very much

affected when age is no longer used. More detailed analysis is carried out in Chapter 4.

In the following chapter we will refer to this algorithm as Algorithm 5.
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HJCx error HJCy error HJCz error Distance

Mean RMS Max Mean RMS Max Mean RMS Max Mean Variance RMS

NN accuracy 3.13 3.67 7.31 3.40 4.57 10.33 2.85 3.61 9.83 6.22 3.00 6.88

H accuracy 4.94 5.88 11.50 2.89 3.65 6.96 3.47 4.32 12.00 7.51 3.23 8.16

NN generalization 5.34 6.40 12.49 3.82 5.07 12.80 5.02 6.50 18.87 9.37 4.64 10.44

H generalization 5.45 6.98 15.44 5.08 6.12 13.22 6.19 8.20 22.02 11.18 5.41 12.39

Table 3.8: Results of Algorithm 5. Mean of HJC errors are the mean of the absolute

value of the errors, RMS is the root mean square of the error and Max is the maximum

error encountered without sign.

3.7 Net trained with Harrington data

In order to evaluate more in detail if the capability of ANN methods are better than Har-

rington’s linear regression we implemented some network also using Harrington dataset

for the training. We tried using different combination of hidden layer (one to 5) and

numbers of nodes (1 to 100) but the result we obtained was slightly worst than Har-

rington method itself. Since ANN proved, as showed in 3.4, to have very good lending

in solving our fitting problem the lack of performance of this network may be due to

the very little number of sample used for the training (only 32).

3.8 Fat and skin artefact simulation

After implementing neural networks using imaging data we decided to make the dis-

cussion more complete by simulating the presence of noise due to layers of skin muscle

and fat between the anatomical landmarks located on the bones and the corresponding

point identified by the cutaneous markers. To do so we added noise to the data from

Dataset1 before training again the network; since we are now simulating the condition

of markers placed on the skin another parameter starts to be relevant: body mass index
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3.8. FAT AND SKIN ARTEFACT SIMULATION

(BMI).

BMI =
weight(kg)

height2
[kg]

[m2]

The relationship between BMI index and the subcutaneous adipose tissue depth (SATD)

has already been investigated leading to the conclusion that higher BMI index are

consistent with bigger SATD [24]. In the implementation of our ANN we already had a

parameter that is strongly related with subject height which is LL (50 % of total height)

[25] but so far no input was accounting for weight so we decided to include it in this

analysis. Two simulation of the error were performed that were equal except for the

noise on PD. The error added to the parameter is summarized below:

• Gender : no error added

• Age: no error added

• Weight : no error added

• Leg Length: random error in the range ± 30mm

• Pelvis Depth (without BMI): 10mm + random error in range 0mm-20mm

• Pelvis Depth (with BMI):10mm + BMI and multiplied by a random error in range

0-1. Which correspond to an error in range 10mm-37.82mm

• Pelvis Width: random error in the range ± 10mm

The error on age and gender was set to 0 for obvious reasons. We didn’t add noise to

the weight because the measure was made with standard balance. The error on LL and

PW were chosen according to [26] which states that mean error on marker placement

in relaxed condition is about 10mm, since for LL measurement three markers need to

be placed we set a error in range ± 30mm. For inter ASIS distance error is lower

because we are not concerned about antero-posterior displacement of the marker and is

of ± 5mm for each of the two markers 8total of ±10mm). For this statement we have

assumed an equal thickness in the layer of skin, muscle and fat at the right and left
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CHAPTER 3. DATASET AND MODEL CONSTRUCTION

ASIS, and consequently the error in the antero-posterior direction, although present,

does not influence the final value of the inter ASIS distance. According to [27] PD is

Figure 3.11: Difference between PDGAIT and PDIMAGING on low dose bi-planar

X-ray image[27]

the main source of error associated to predictive methods. It is important to note that

soft tissue located between the ASIS and PSIS markers and the corresponding bony

landmarks have a direct effect on PD as shown in Fig. 3.11. We can approximate this

relationship by

PDGAIT = PDIMAGING + ∆F + ∆B

where PDGAIT is the measure obtained from the ASIS and PSIS markers, PDIMAGING

the measure obtained directly from the bony landmarks deduced from imaging data and

∆F , ∆B the thickness of the soft tissues between the bone and the skin at the front

and the back of the pelvis respectively. There is no obvious equivalent relationship for

PW and LL. While simulating the artefacts over PD we considered an always positive

error which minimum value wa set to 10 mm. Then we have summed to the latter

two different kind of random error. In the first case we used a random noise of ±

20mm which leads to an error bounded between 10mm and 30mm. In the second case

we added a random noise in range [0,1] multiplied by BMI.The added error is bounded

between 10mm and 40mm(which is consistent with [24]), and the actual maximum value
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3.8. FAT AND SKIN ARTEFACT SIMULATION

obtained in the simulation was 37.82mm.

Once the simulation of skin and fat artefact was performed we started implementing the

ANN one this data. Again the dataset was divided so to have 100 random samples for

training, 25 for validation and 32 for testing the network performances. Many fashion of

the network were tested until finding the best performing which consiste in one hidden

layer fully connected network as shown in Fig 3.12. As in previous network all weight

were initialized with random numbers in range [-1, 1], the learning algorithm used is

Bayesian Regularization, f is a sigmoid function and g is a linear function. As previously
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Figure 3.12: First HJCy is estimated, then HJCy is used as input parameter for HJCx

and HJCz computing. Differently from 3.8 the weight was included as input parameter.
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mentioned we trained the network with two different simulation of the PD skin artefact.

When BMI was not used in the PD error simulation the best performing network had

15 nodes in the hidden layer for the estimation of all coordinates of HJC, the number

of node increase to 20 when BMI was included in artifact simulation. If we look back

to section 3.4 we can see that the optimum number of nodes for the networks with six

input parameter is 15, in the case of no usage of BMI as error parameter the number

is the same. This may be due to the fact that since skin and fat artefact over all the

anthropometric parameters (LL, PD and PW) have no correlation with weight and also

the PD, PW and LL are measured on the actual bony landmark, there is no correlation

with weight in none of the date. Therefore including weight as input parameter is not

leading to any improvement. On the contrary when BMI index is used for simulation

of the error over PD the best networks have 20 nodes, and we have an overall increase

of accuracy, compared to the white noise only. In the following chapter we will refer to

the algorithm developed without BMI in artifact simulation with the name Algorithm

6 and the one implemented including BMI in the simulation with the name Algorithm

7.

HJCx error HJCy error HJCz error Distance

Mean RMS Max Mean RMS Max Mean RMS Max Mean Variance RMS

Algorithm 6 3.41 4.19 9.34 3.37 4.39 9.11 3.07 3.66 7.10 6.50 2.88 7.09

Algorithm 7 3.13 3.85 9.63 3.51 4.35 9.25 3.02 3.54 6.61 6.28 2.64 6.80

H without noise 4.94 5.88 11.50 2.89 3.65 6.96 3.47 4.32 12.00 7.51 3.23 12.39

Table 3.9: Results of Algorithm 6 and Algorithm 7. Mean of HJC errors are the mean

of the absolute value of the errors, RMS is the root mean square of the error and Max

is the maximum error encountered without sign.
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4
Results and discussion

In this chapter the statistical analysis on the results is carried out. In the first

part we make a comparison, through statistical hypothesis tests, on the performance of

the algorithm implemented in the previous chapter and Harrington’s algorithm. In the

second part we analyse, from a formal statistical point of view, the algorithm perfor-

mance with and without gender and age as input parameter. The statistical hypothesis

tests described in this chapter have been developed within MATLAB R©environment.

4.1 Improvement in the field

In this section, we will perform the statistical analysis on the HJC estimation data we

obtained by applying the algorithms developed in Chapter 3. The analysis is made

through the comparison with Harrington’s algorithm which, as mentioned in Section

2.4, is the best current predicting method, according to Fiorentino et al. [5] and Kainz

et al. [6]. The comparison, made through statistical hypothesis tests, is going to be

performed on the difference between the real data, obtained by imagining technique,

and the data estimated by ANN and with Harrington’s method. We will evaluate three

separate parameters for x, y and z direction, and a parameter that involves the three

41



CHAPTER 4. RESULTS AND DISCUSSION

directions together. In particular, we consider the squared HJCx,y,z error, defined as

follows:

squaredHJCx, y, z error =


squared HJCx error

squared HJCy error

squared HJCz error

=


(HJCxtrue −HJCxest)

2

(HJCytrue −HJCyest)
2

(HJCztrue −HJCzest)
2

(4.1)

and the distance, described below as

distance = ||HJCtrue −HJCest||, (4.2)

where

HJCtrue =


HJCxtrue

HJCytrue

HJCztrue

 and HJCest =


HJCxest

HJCyest

HJCzest

 , (4.3)

and || · || is the Euclidean norm. In this way ||HJCtrue −HJCest|| corresponds to the

3D distance between the true HJC and the estimated one. We are convinced that the

introduction of this distance parameter in the statistical comparison is highly important,

since it is the only parameter that gives an overall accuracy evaluation of the HJC

estimate for each subject.

We now divide the statistical analysis in three parts. In Section 4.1.1 we will

compare the data obtained applying our ANN on the dataset used for training the net-

work (Dataset1), and Harrington’s regression equation on its own dataset (Dataset2).

In Section 4.1.2 the tests are performed on the data obtained by applying the aforemen-

tioned algorithms on other datasets. Fig. 4.1 shows a diagram resuming the performed

tests. Finally, in Section 4.1.3 we will perform the statistical analysis on data with

simulated noise addiction.
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Harrington’s algorithm

Dataset2

Harrington’s

estimation error

Statistical compar-

ision for accurancy

Our estima-

tion error

Neural Network method

Testing part of dataset1

Network train-

ing with dataset1
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Harrington’s

estimation error

Statistical comparision for

generalization capabilities

Our estima-

tion error

Neural Network method

Dataset2 and Dataset3

Network train-

ing with dataset1

Harrington’s algorithm

Dataset2 without

artefact simulation

Harrington’s

estimation error

Statistical comparision

Our estima-

tion error

Neural Network method

Testing part of dataset1

with artefact simulation

Network training

with dataset1 with

artefact simulation

Figure 4.1: In red, test to compare accuracy of the two methods; in blue, test to

compare accuracy while generalizing to other datasets; in green the statistical analysis

of data with simulated fat and skin artefact.

4.1.1 Test on accuracy data

The data we will use here were obtained by applying the implemented algorithms on

the testing subset of Dataset1. The gold standard data were obtained by applying
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Harrington’s algorithm on Dataset2.

Before performing the statistical comparison we evaluated whether the data

under analysis are normally distributed or not. To do so, we performed two different

tests: Lilliefors and Chi-squared test for normality. The tests were executed on the

squared HJCx,y,z error and on the parameter distance; the results are resumed in Tab.

4.1.

NORMALITY TEST

Squared HJCx error Squared HJCy error Squared HJCz error Distance

Lilliefors

normality

Chi-squared

normality

Lilliefors

normality

Chi-squared

normality

Lilliefors

normality

Chi-squared

normality

Lilliefors

normality

Chi-squared

normality

Algorithm 1 no no no no no yes yes yes

Algorithm 2 no yes no no no no yes yes

Algorithm 3 no yes no no no no yes yes

Algorithm 4 no yes no yes no no no yes

Algorithm 5 no yes no yes no no no yes

Harrington no yes no yes no no yes yes

Table 4.1: Results of the normality test over squared HJCx,y,z error. In the first 5 rows

the data are from our predictive method, in the last one data are from Harrington’s.

As it is possible to see from the table the Lilliefors test is stricter than Chi-

squared in the evaluation of normality. This is due to the fact that Lilliefors is a

non-parametric test, while Chi-squared test is parametric. This analysis proved that

the squared HJCx,y,z error in x, y and z direction is most of the time not normally

distributed according to Chi-squared test, and never normally distributed according to

Lilliefors test. Instead, the distance is always normally distributed, except when we

apply the Lilliefors test to the network without gender (Algorithm 4 ) and without age

(Algorithm 5 ).

Due to the results obtained about the normality of the distribution of the

data, we decided to perform two different type of one-sided hypothesis test. For squared

HJCx,y,z error data we performed a two-sample Kolmogorov-Smirnoff one-sided test,

while for distance we did a one-tail two-sample t-test. Kolmogorov-Smirnoff test is a
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non-parametric test that makes inferences about the equality of two probability distri-

butions. It can be used to compare a sample distribution with a reference probability

distribution, or to compare two samples between themselves, which is our case. For this

test the null hypothesis (H0) to be rejected is that the two data came from the same

distribution, while the alternative hypothesis (H1) is that the estimation error values

obtained with Harrington method tend to be larger than those computed with ANN

algorithm.

The two-sample t-test is usually employed to verify if the mean value of two normally

distributed data samples are equal or not. In our case we performed the test with the

null hypothesis (H0) of equal mean of two samples of the distance data, and the al-

ternative hypothesis (H1) that the mean value of distance computed with Harrington’s

HJC estimation algorithm was higher than the mean value of distance computed with

ANN-based estimation algorithm.

STATISTICAL COMPARISON

Distance t-test Distance K-S test

Is better? p-value Is better? p-value

Algorithm 1 yes 0.022 - -

Algorithm 2 yes 0.026 - -

Algorithm 3 yes 0.018 - -

Algorithm 4 yes 0.032 yes 0.035

Algorithm 5 10% 0.051 yes 0.035

Table 4.2: Statistical hypothesis tests for the comparison of Harrington’s method with

ANN. On the distances we performed t-test, and for data non-normally distributed

according to Lilliefors test, also a Kolmogorov-Smirnoff test

The results of Kolmogorov-Smirnoff test on squared HJCx,y,z error proved,

at 5% significance level, that the Algorithm 3 and Algorithm 5 have improved HJCx

estimation. Instead, for Algorithms 1, 2 and 4, there is statistical evidence of HJCx

estimation improvement but only at 10% significance level. We found no proves of HJCy
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and HJCz increase of accuracy. On squared HJCy,z we performed another Kolmogorov-

Smirnoff test with the same null hypothesis as before but with the alternative hypothesis

that the Harrington’s samples have smaller error than ours. This last test never rejected

H0 which means we don’t have statistical evidence that Harrington’s results have smaller

errors than ours in y and z directions. According to the above consideration, we can

state that the localization of HJC made with ANN have lead to an improvement in

the estimation accuracy of the x-direction, while no improvement is shown in y and z

directions. To make a comparison that takes into account the three direction x, y and z

together, we analysed the distance between the real HJC and the estimated one (Tab.

4.2). Data in green are the one that proved to have lower error than Harrington’s at 5%

significance level, while in orange are reported the data that proved to have lower error

than Harrington’s but at 10% significance level. The Chi-squared test on distance data

proved all the data to be normally distributed, so we used the two-sample one-sided

t-test for the comparison. According to this test, there is statistical evidence that the

distance between the real HJC and the one estimated with ANN is smaller with our

algorithms than when estimation is made with Harrington’s method. From this analysis

we proved to have statistical evidence, at 5% significance level, that using ANN leads to

an improvement of overall HJC estimation. Additionally, we executed the Kolmogorov-

Smirnoff test on the data obtained with Algorithms 5 and 6 since they were not normal

according to Lilliefors test. The results of this last two tests is consistent with the one

obtained before, assuring the statistical evidence of smaller HJC localization error.

The networks mentioned in this chapter proved to have lower mean value of

distance than Harrington’s. All of them allowed us to obtain an average distance be-

tween real and estimated HJC slightly above 6mm (except Algorithm 3 slightly below

6mm). The mean value of distance obtained with Algorithm 3 corresponds to an accu-

racy improvement of 21% with respect to Harrington’s method. Furthermore there is a

decrease of variance and RMS value of 20% each compared to Harrington’s data.
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4.1.2 Test on generalization data

The second test set evaluates the capability of the algorithm to generalize the results to

other datasets. Therefore, we used the ANN (trained on Dataset1) to estimate the HJC

from the data in Dataset2 and Dataset3. Harrington’s algorithm was used to localize

the HJC of the subjects in the testing subset of Dataset1 and in Dataset3. Again,

before starting statistical comparison, we wanted to evaluate if the data were normally

distributed. The results of the normality tests are resumed in Tab. 4.3.

NORMALITY TEST

Squared HJCx error Squared HJCy error Squared HJCz error Distance

Lilliefors

normality

Chi-squared

normality

Lilliefors

normality

Chi-squared

normality

Lilliefors

normality

Chi-squared

normality

Lilliefors

normality

Chi-squared

normality

Algorithm 1 no no no no no no no yes

Algorithm 2 no no no no no no no yes

Algorithm 3 no no no yes no no yes yes

Algorithm 4 no no no yes no no yes yes

Algorithm 5 no no no no no no yes yes

Harrington no no no yes no no yes yes

Table 4.3: Results of the normality test over HJC squared error. In the first 5 row the

data are from our predictive method, in the last one data are from Harrington’s.

As it is possible to see in the above table, this analysis proved that the squared HJCx,y,z

error in x, y and z direction is most of the time not normally distributed according to

Chi-squared test, and never normally distributed according to Lilliefors test. Instead,

the distance is normally distributed, except for the data obtained with Algorithms 1

and 2.

Similarly to the previous section, we performed the statistical comparison of

our and Harrington’s data using a one-sided two-sample Kolmogorv-Smironff test for

non-normally distributed data (squared HJCx,y,z error) and a one-sided two-sample

t-test for normally distributed data (distance). While analysing squared HJCx,y,z er-

rors, no statistical evidence of improvement was found in x and z direction while, we

had statistical evidence of lower error in HJCy estimation at 5% significance level for
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STATISTICAL COMPARISON

Distanza t-test Distanza K-S test

Is better? p-value Is better? p-value

Algorithm 1 10% 0.053 10% 0.051

Algorithm 2 yes 0.044 yes 0.028

Algorithm 3 yes 0.038 - -

Algorithm 4 yes 0.372 - -

Algorithm 5 10 % 0.051 - -

Table 4.4: Statistical hypothesis tests for the comparison of Harrington’s method

with ANN. On the distances we performed t-test, and for non normally distributed

data, according to Lilliefors test, aslo a Kolmogorov-Smirnoff

Algorithms 2, 3 and 4, and at 10% significance level for Algorithms 1 and 5. There-

fore, we performed on squared HJCx,z error another Kolmogorov-Smirnoff test with the

null hypothesis of data equality and the alternative hypothesis that the Harrington’s

data have smaller error than ours. This last test never rejected H0, which means we

don’t have statistical evidence that Harrington’s results have smaller errors fr HJCx

and HJCy. The t-test on the distance parameters proved that only two of the imple-

mented algorithms had statistical evidence, at 5% significance level, to improve HJC

localization: Algorithm 2 and Algorithm 3. Between them only Algorithm 3 proved

to provide a better HJC estimation than Harrington’s, at 5% significance level, both

when used on data from the same dataset they were trained on, and when used on

data coming from different datasets. Algorithm 1 and Algorithm 5 also proved to have

lower distance error than Harrington’s, but only at 10% significance level. There was

no statistical evidence that Algorithm 4, which is the one implemented without gender

as input parameter, was improving HJC estimation.

According to the analysis performed here and in the previous section, we con-

sider Algorithm 3 the best performing among all the algorithms implemented. By

applying this algorithm, the mean value of distance that is below 9.5mm, which corre-
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4.1. IMPROVEMENT IN THE FIELD

NORMALITY TEST

Algorithm Squared HJCx error Squared HJCy error Squared HJCz error Distance

Lilliefors

normality

Chi-squared

normality

Lilliefors

normality

Chi-squared

normality

Lilliefors

normality

Chi-squared

normality

Chi-squared

normality

Lilliefors

normality

Algorithm 6 no yes no yes no yes yes yes

Algorithm 7 no no no no no yes yes yes

Harrington no yes no yes no no yes yes

Table 4.5: Results of the normality test over squared HJCx,y,z error and distance. In

the first 2 rows the data are from our predictive method, in the last one data are from

Harrington’s.

sponds to an improvement compared with Harrington’s method of 20%. Similarly to

the previous section, there is also a decrease in variance (19%) and in RMS value (17%).

4.1.3 Statistical analysis of noisy data

In section 3.8 fat and skin artefact have been simulated in two different ways (with and

without body mass index) and added to the data in Dataset1. The neural networks in

this two algorithms have been trained to estimate HJC from noisy data. Then, the two

implemented algorithms were applied to a subset of the noisy dataset that wasn’t used

for training. The statistical analysis was performed on the aforementioned data and the

gold standard used for the comparison was Harrington’s algorithm applied on Dataset2

without noise addition.

For this datasets we performed the statistical analysis on the squared HJCx,y,z

errors and on the distance parameter. The analysis steps are the same as in the previous

section: first, we verified normality of data distribution using Lilliefors and Chi-squared

tests, and then we executed the comparison with Harrington’s method. The results of

the normality tests are in Tab. 4.5.

From normality tests we can deduce that squared HJCx,y,z errors are not

normally distributed according to Lilliefors test while, according to Chi-squared test,
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some of them are normally distributed. Instead, distance data proved to be normally

distributed according to both Lilliefors and Chi-squared tests.

COMPARISON TEST

Distance t-test

Is better? p-value

Algorithm 6 10% 0.095

Algorithm 7 yes 0.050

Table 4.6: Statistical hypothesis tests for the comparison of Harrington’s method with

ANN with noise simulation. We performed t-test on distances data.

Since squared HJCx,y,z errors were non-normally distributed, we performed

the Kolmogorov-Smirnoff test. As concerns distance data, that we proved to be normal,

we used t-test for the comparison. We found statistical evidence of HJCx estimation im-

provement, but no evidence of estimation improvement in y and z direction. Therefore,

as in the previous section, we performed on squared HJCy,z error another Kolmogorov-

Smirnoff test, with the null hypothesis of data equality and the alternative hypothesis

that the Harrington’s data have smaller error than ours. For none of the tests the null

hypothesis was rejected, meaning that there isn’t statistical evidence that our HJCy

and HJCz estimation is worse then Harrington’s. For the network developed without

BMI, we had evidence that, at 10% significance level, the squared HJCx error is smaller

than the one estimated by Harrington. Instead, while considering the network with

BMI index, we get to the same conclusion but with a significance level of 5%. When

analysing distance data, we had statistical evidence of a smaller distance between real

and estimated HJC with a 5% significance level for simulation with BMI, and of 10%

when BMI was not used. Although the estimation with Harrington algorithm was made

without noise addition, our method still proved to localize HJC better. In particular,

we have an increase of accuracy in HJCx estimation of 16% (simulation with BMI) and

of 13% (simulation without BMI). The improvement in distance is of 19% (simulation

without BMI) and 25% (simulation with BMI).
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4.2. GENDER AND AGE FACTORS

4.2 Gender and age factors

In this final part of the statistical analysis on the results we will evaluate if the increase

of accuracy that we have obtained by using ANN can be imputed to the introduction

of age and gender as input parameters. This analysis was also made in [7], and in this

case the authors reached to the conclusion that the utilization of age and gender in

predictive HJC estimation was not improving the accuracy of the results.

We started by analysing the differences between the estimation with and with-

out age parameter. The mean and RMS on the error data estimated with the two

algorithms were almost equal, with differences of the order of tenths of a millimetre.

Therefore, we hypothesised that there was no accuracy difference between the two algo-

rithms. Our prediction was confirmed by the Kolmogorov-Smirnoff test we performed

on the squared error of HJCx,y,z and also by the t-test and Kolmogorv-Smirnoff we

performed on the 3D distances between real and estimated HJC.

Network without gender VS Network with gender

Squared HJCx error Squared HJCy error Squared HJCz error t-test on distances K-S test on distances

Is better? p-value Is better? p-value Is better? p-value Is better? p-value Is better? p-value

Accuracy

data
no 0.739 no 0.874 no 0.967 - - no 0.432

Generalization

data
yes 0.015 no 0.976 no 0.906 no 0.103 - -

Table 4.7: Statistical hypothesis tests for the comparison of Algorithm 3 (including

gender among input parameter) and Algorithm 4 (not including gender among input

parameters). The test on squared HJCx,y,z is Kolmogorov-Smirnoff. On the distances

we performed t-test for normally distributed data and Kolmogorov-Smirnoff for the

other.

Then we proceed with comparison of the prediction of HJC position with

the network without gender among estimation parameters (Algorithm 4 ) and the one

with full input parameter (Algorithm 3 ). According to the normality tests on the
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data performed in Section 4.1.1 and in Section 4.1.2, we have evidence that there is

only one normally distributed dataset among the result. It is the one referred to the

parameter distance, and only when the ANN is applied to dataset that are not used for

the training. While testing for normality the results dataset obtained in Section 3.4,

all the squared HJCx,y,z errors are not normally distributed, while the two distance

datasets are. In Tab. 4.7 are reported the results of the comparison test for the accuracy

data and generalization data. Accuracy data are the data obtained applying the selected

algorithm to the testing subset of Dataset1, while generalization data are obtained by

applying the same algorithm to Dataset2 and Dataset3.

If we analyse the accuracy data comparison there seems to be no improvement

at all. Instead, when evaluating accuracy of the algorithm while generalising to other

datasets, we can spot in the distance comparison a p-value of 0.103 (yellow data) and

in squared HJCx estimation a p-value of 0.015. This result gives statistical evidence

that with a 10.3% significance level we can observe a decrease in distance between real

and estimated HJC, and also a decrease in HJCx estimation at 1.5% significance level.

All this is due to the introduction of gender in the input parameters. Moreover, with

reference to Tab.4.4, we can see that among all the implemented and tested network the

only one that haven’t proved to perform better than Harrington’s method is the ANN

developed without gender as input parameter. We weren’t able to demonstrate that

the network with full input parameters performs better than the one without gender

in both tests, and therefore, we believe that our analysis is not conclusive. Anyway,

we think that this results together with the comparison of performance of Algorithm 4

with Harrington’s method indicates that the use of gender should be take into account.
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5
Conclusion and further work

In this thesis work, a novel method for estimating the position of the joint

articulation centre of the hip for lower limb motion analysis applications was conceived,

developed and evaluated. The application we see for this method is in gait pattern

analysis of subject with neural or musculoskeletal disabilities. Therefore a suitable

method for estimation of HJC should be a predictive one [6]. The best algorithm for

predictive HJC estimation is the regression based approach developed by Harrington

et al; in their work the regression-based estimation is made on the length of three

anatomical parameter: pelvis depth, pelvis width and clinical leg length. The novel

estimation method we developed instead was implemented using neural networks, and

so it was possible to include a binary data (gender) among input parameter for HJC

estimation. Age was also included.

The ANN algorithm has been validated in two distinct phases: on testing

subset of Dataset1 (on which the network was trained) and on Dataset2 and Dataset3.

In both validation stages, the performance of the algorithm was compared with the

accuracy Harrington’s method. Then the presence of soft tissue artefacts was simulated

noise addition to the original measurements of PW, PD and LL that were made on

imaging data. A comparison of our performance with the gold standard for predictive

method was also made.
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Within the validation phase we evaluate two property of the network: one

is accuracy and the other is the accuracy of the algorithm while generalising to other

datasets. Among the implemented algorithms the best performing is Algorithm 3. The

most notable differences between the ANN algorithm and Harrington’s can be spotted

in the comparison of the distance between real and estimated HJC. For this parameter

the accuracy of our method proved to have improved precision of the localization of

20% (accuracy test) and 17% (generalization test). The mean distance was below 6mm

and 10mm respectively. The statistical analysis made on HJCx, HJCy and HJCz alone

proved no difference among the two methods for HJCz. For HJCx we proved better

performance of Algorithm 3 when applied on testing subset of dataset1, while no ev-

idence of this were found when applied Dataset2 and Dataset3. For HJCy we proved

better performance of Algorithm 3 when applied on Dataset2 and Dataset3, while no

evidence of this improvement were found when the algorithm was applied to the testing

subset of Dataset1.

The validation of the best performing method was carried out also on data

with simulated noise. The noise added was simulated as follows: white noise in range

± 10mm to PW, random error in range 10mm-38mm to PD and white noise in range

± 30 to LL . PD was also simulated as 10mm plus random error in range [0,1] and

multiplied by BMI. After two new neural network was trained and tested on the noisy

data. We compared this results with Harrington’s (without noise addiction) and again,

analysing the data of distance between real and simulated HJC, we proved that ANN

was performing better. The mean distance was slightly above 6mm with an improvement

still around 19%. The error was slightly higher for the simulation without BMI.

Our analysis on the importance of including gender as input parameter was

not conclusive. Anyway, the obtained data proved a certain correlation between the

improvement in HJC localization and the use of gender as input parameter. Therefore,

we believe further analysis on this correlation should be conducted.

In this thesis project the neural networks were implemented with supervised

54



training using data from only one dataset and with a limited amount of data. Since

the inference strength of ANNs is related to the quantity, as well as diversity, of the

data used in training phase, we believe that more accurate network can be implemented

using more data from different datasets. This means that the room for improvement of

this method is considerable and could be exploited when new data will be available.

Within this project we have simulated the noise due to soft tissue artefact on

the estimation parameter. Due to lack of sterophotogrammetric data in the relative

literature, it was not possible to evaluate our algorithm in experimental conditions.

This is a common problem to all the papers on predictive methods we analysed in the

thesis. Nevertheless, we believe that a comprehensive analysis on experimental data

should be enforced, in order to obtain a deeper understanding on the predictive power

of our method.
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A
Used dataset

The three full datasets used for the development of this project are reported

below. The first one is Dataset1 from Hara et al.[7]. In the column there are fifteen

elements:

• KEY: unique number to represent the individual

• AGE: age

• GROUP (3): age group with 3 categories: children 1, adolescents 1 and adults 3

• GROUP (2): age group with 2 categories: children C and skeletally matured A

• SEX: Male or Female

• SIDE: Right or Left

• Inter ASIS distance (mm): distance between the left and right ASIS

• Clinical Leg Length (mm): leg length, measured from ASIS to medial epicondyle

of the knee, then to medial malleola

• Total Pelvic Width (mm): distance between the two most lateral points of the

pelvis (edge of the iliac crest)
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• Pelvic Depth (mm): distance between the ASIS midpoint and the PSIS midpoint

• Height (mm): height, measured on the CT table

• Weight (kg): weight, measured on the CT table

• HJCx (mm): X (antero-posterior) position of the hip joint centre

• HJCy (mm): Y (lateral-medial) position of the hip joint centre

• HJCz (mm): Z (up-down) position of the hip joint centre

KEY AGE
GROUP

(3)

GROUP

(2)
SEX SIDE

Inter ASIS

distance (mm)

Clinical Leg

Length (mm)

Total Pelvic

Width (mm)

Pelvic

Depth (mm)

Height

(mm)

Weight

(Kg)

HJCx

(mm)

HJCy

(mm)

HJCz

(mm)

1101 5 1 C M R 156.1 476.8 169.4 64.9 1040 17 -12.4 48.7 -45.4

1102 5 1 C M R 154.3 524.5 173.9 77.4 1000 22 -18.0 53.5 -47.8

1103 5 1 C M R 145.9 511.9 161.0 77.3 1050 18 -22.0 51.3 -51.2

1104 5 1 C M R 139.7 551.9 166.1 83.6 1160 17 -27.6 55.6 -54.4

1105 5 1 C M R 153.1 539.3 178.5 80.9 1160 26 -27.0 54.9 -49.6

1106 9 1 C M R 183.7 675.0 200.2 89.7 1380 38 -21.3 66.0 -64.0

1107 6 1 C M R 154.6 550.7 172.6 78.7 1130 23 -16.9 53.2 -53.4

1108 5 1 C M R 171.0 547.5 191.1 81.2 1170 28 -14.7 59.1 -54.8

1109 9 1 C M R 169.1 748.7 200.4 108.5 1470 36 -40.9 65.7 -61.7

1111 6 1 C M R 158.7 585.5 189.0 89.8 1190 22 -30.2 58.8 -55.8

1112 9 1 C M R 177.2 684.0 202.1 97.5 1350 38 -32.4 61.4 -61.8

1113 5 1 C M R 147.2 507.3 168.0 80.0 1040 17 -24.1 50.8 -45.6

1114 8 1 C M R 190.9 722.3 216.8 102.0 1410 44 -34.9 66.3 -62.3

1115 6 1 C M R 181.8 633.8 200.4 88.5 1300 34 -21.7 61.2 -59.8

1116 5 1 C M R 161.0 534.5 180.5 81.3 1110 26 -23.8 57.8 -50.6

1117 6 1 C M R 138.2 555.8 162.8 78.7 1120 21 -25.8 55.6 -51.1

1118 8 1 C M R 181.1 631.9 197.6 86.9 1290 23 -23.2 62.0 -62.4

1119 11 1 C M R 225.3 817.3 260.1 120.3 1700 77 -41.2 76.4 -74.5

1120 5 1 C M R 144.3 510.4 162.3 73.1 1070 20 -24.3 53.1 -48.5

1121 5 1 C M R 153.6 510.0 177.7 77.1 1100 23 -19.9 55.5 -52.1

1122 5 1 C M R 144.3 505.3 163.8 69.9 1050 16 -20.6 48.4 -51.6

1123 9 1 C M R 166.8 695.8 193.6 94.3 1330 29 -29.3 57.5 -59.7

1124 10 1 C M R 223.0 778.9 247.9 104.9 1520 70 -22.8 70.2 -69.8

1125 10 1 C M R 175.5 728.6 208.5 106.9 1490 35 -33.9 69.1 -61.9

1201 5 1 C F R 139.7 526.5 159.2 80.7 1110 19 -28.9 53.9 -52.5

1202 11 1 C F R 170.9 680.0 198.7 100.7 1350 26 -38.0 64.0 -62.0

1203 11 1 C F R 199.8 735.7 229.4 109.8 1480 65 -33.8 66.6 -61.9

1204 11 1 C F R 196.6 738.6 225.9 123.2 1400 40 -41.3 78.1 -67.3

1205 11 1 C F R 224.5 780.2 240.3 107.7 1490 67 -34.9 75.8 -75.7

1206 7 1 C F R 148.7 617.8 175.7 86.0 1210 20 -31.3 54.1 -58.1

1207 10 1 C F R 198.0 748.4 223.6 111.0 1470 61 -31.3 66.2 -60.9

1208 9 1 C F R 174.2 665.8 200.5 92.5 1320 27 -31.3 59.5 -57.9

1209 9 1 C F R 174.9 765.7 199.4 95.6 1560 53 -38.0 60.3 -65.6

1210 8 1 C F R 177.0 660.0 201.2 91.7 1350 30 -28.2 60.1 -57.7

1211 8 1 C F R 174.7 673.4 204.2 94.1 1310 33 -27.5 59.1 -56.1

1212 8 1 C F R 166.8 605.0 184.4 87.7 1210 27 -24.4 59.5 -54.2

1213 7 1 C F R 161.1 651.2 183.8 83.6 1230 23 -28.6 53.8 -58.9

2101 17 2 A M R 222.5 873.1 264.9 136.2 1720 82 -37.2 80.1 -76.9

2102 18 2 A M R 234.2 871.5 273.0 143.2 1680 59 -47.8 79.4 -84.8
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APPENDIX A. USED DATASET

KEY AGE
GROUP

(3)

GROUP

(2)
SEX SIDE

Inter ASIS

distance (mm)

Clinical Leg

Length (mm)

Total Pelvic

Width (mm)

Pelvic

Depth (mm)

Height

(mm)

Weight

(Kg)

HJCx

(mm)

HJCy

(mm)

HJCz

(mm)

2103 19 2 A M R 198.1 907.1 264.1 151.7 1780 64 -55.7 87.3 -83.9

2104 16 2 A M R 242.0 812.8 277.8 126.4 1710 96 -24.8 82.7 -83.9

2105 16 2 A M R 202.1 855.4 231.5 123.5 1660 55 -52.2 76.4 -70.5

2106 19 2 A M R 227.8 891.7 272.6 140.1 1730 67 -42.7 80.3 -76.7

2107 19 2 A M R 217.2 868.8 255.3 138.4 1650 71 -33.5 84.7 -82.7

2108 19 2 A M R 231.3 901.2 261.1 132.1 1690 63 -37.2 76.0 -89.0

2109 16 2 A M R 225.6 902.9 287.5 146.9 1700 91 -40.0 80.5 -80.6

2110 17 2 A M R 214.4 875.6 271.6 142.6 1700 81 -55.2 82.7 -79.6

2111 18 2 A M R 185.2 922.2 240.9 148.3 1760 66 -59.2 86.5 -76.8

2112 16 2 A M R 242.9 882.1 272.8 142.8 1720 70 -37.4 82.1 -85.7

2113 17 2 A M R 199.7 866.7 265.5 143.5 1730 61 -47.6 84.1 -82.6

2114 19 2 A M R 201.5 910.2 265.7 157.9 1780 82 -57.3 86.2 -81.5

2115 17 2 A M R 216.6 908.1 250.6 145.5 1700 59 -44.1 82.4 -72.6

2116 16 2 A M R 235.5 951.2 270.6 144.0 1730 57 -41.8 78.9 -83.3

2117 17 2 A M R 226.2 918.7 264.9 139.2 1800 63 -50.6 82.0 -82.7

2118 18 2 A M R 203.0 827.1 266.0 145.4 1630 81 -45.3 81.7 -80.9

2119 19 2 A M R 263.4 965.9 293.5 145.8 1860 80 -36.3 86.7 -78.8

2120 18 2 A M R 217.4 958.8 265.9 155.3 1800 59 -49.6 82.8 -74.7

2121 19 2 A M R 198.8 947.9 243.5 142.2 1760 74 -41.9 80.9 -77.7

2122 17 2 A M R 208.7 893.3 257.6 148.3 1710 78 -52.7 85.8 -78.7

2123 19 2 A M R 226.1 859.4 270.1 150.3 1720 108 -50.1 81.2 -73.7

2124 17 2 A M R 236.3 942.5 275.9 137.7 1700 57 -44.9 86.5 -79.7

2125 19 2 A M R 231.7 866.7 259.9 145.1 1700 64 -38.1 77.7 -66.8

2126 18 2 A M R 248.2 869.4 278.4 127.0 1660 87 -37.8 76.5 -79.9

2127 19 2 A M R 223.3 959.4 275.5 151.5 1820 74 -56.3 87.4 -83.6

2128 19 2 A M R 200.0 923.7 218.5 119.3 1700 54 -34.3 68.8 -74.3

2129 18 2 A M R 230.9 893.8 270.1 140.2 1670 60 -41.3 81.1 -75.6

2130 18 2 A M R 221.7 843.0 261.7 128.6 1640 53 -45.0 80.7 -82.1

2201 18 2 A F R 159.1 850.8 214.0 148.4 1630 55 -48.6 79.0 -81.1

2202 17 2 A F R 187.6 819.3 222.9 149.9 1620 53 -50.9 82.1 -72.8

2203 18 2 A F R 209.9 816.8 255.9 143.9 1580 73 -49.4 86.1 -85.9

2204 19 2 A F R 209.9 811.3 251.0 136.8 1540 57 -38.9 78.0 -73.6

2205 19 2 A F R 197.5 792.3 226.6 127.0 1540 68 -33.3 78.3 -80.4

2206 17 2 A F R 215.7 820.4 255.2 141.9 1610 52 -50.2 83.8 -75.8

2207 16 2 A F R 211.6 881.8 259.4 152.8 1690 54 -52.2 81.2 -77.2

2208 17 2 A F R 215.5 847.5 268.3 146.3 1730 64 -46.3 87.2 -76.8

2209 17 2 A F R 191.2 815.6 240.3 136.1 1610 60 -39.4 82.9 -82.6

2210 19 2 A F R 187.4 836.4 239.2 142.6 1580 64 -43.6 78.2 -84.1

2211 18 2 A F R 255.7 834.5 288.8 149.3 1640 112 -39.9 86.9 -72.8

2212 18 2 A F R 213.9 814.4 250.1 131.7 1610 52 -36.0 85.0 -76.2

2213 16 2 A F R 205.5 850.8 254.8 137.4 1680 57 -47.6 85.9 -61.7

2214 16 2 A F R 202.2 845.1 238.4 136.0 1650 54 -46.0 80.1 -78.4

2215 16 2 A F R 231.5 893.4 265.2 145.4 1710 64 -52.7 88.6 -82.3

2216 19 2 A F R 214.7 814.9 263.8 137.6 1650 73 -43.3 82.9 -75.2

2217 16 2 A F R 226.2 890.1 266.8 145.9 1570 53 -50.3 81.6 -80.2

2218 18 2 A F R 243.5 910.4 284.8 136.2 1690 54 -41.8 90.7 -82.6

2219 18 2 A F R 207.8 815.7 255.5 144.1 1650 74 -44.1 82.5 -77.5

2220 18 2 A F R 204.8 886.0 262.0 138.4 1660 53 -43.4 83.6 -78.7

2221 17 2 A F R 213.1 860.9 257.5 141.8 1660 53 -53.5 88.3 -85.5

2222 17 2 A F R 228.5 885.8 260.0 137.1 1640 57 -36.9 84.4 -82.7

2223 18 2 A F R 219.6 920.6 277.4 162.4 1730 63 -62.0 81.3 -82.6

2224 19 2 A F R 208.8 843.2 245.5 137.2 1640 63 -41.5 77.4 -73.2

2225 17 2 A F R 228.0 876.0 274.7 147.6 1720 57 -50.3 85.9 -77.2

2226 19 2 A F R 204.2 799.3 244.3 136.9 1550 52 -43.3 81.0 -66.2

2227 17 2 A F R 191.2 847.0 247.6 142.8 1630 49 -47.9 78.8 -75.4

2228 17 2 A F R 213.3 816.7 271.0 140.1 1600 73 -42.4 80.2 -74.3
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2229 19 2 A F R 220.7 896.4 267.7 144.1 1700 66 -54.2 87.9 -80.5

2230 16 2 A F R 214.0 788.9 246.4 133.4 1500 51 -39.9 75.0 -72.8

3101 39 3 A M R 238.4 898.8 274.3 133.0 1750 62 -28.3 80.4 -75.0

3102 25 3 A M R 220.2 824.9 257.7 130.8 1640 61 -39.4 82.6 -71.9

3103 29 3 A M R 211.8 849.5 260.6 142.2 1650 81 -43.7 84.4 -75.4

3104 33 3 A M R 225.9 923.0 270.7 142.1 1760 95 -36.0 86.1 -85.3

3105 31 3 A M R 230.6 871.7 272.0 151.7 1770 80 -48.9 95.0 -84.3

3106 25 3 A M R 211.0 819.5 261.1 146.5 1640 67 -45.3 81.7 -72.1

3107 37 3 A M R 197.0 853.4 255.1 152.5 1670 103 -53.6 86.7 -80.6

3108 36 3 A M R 242.4 885.4 291.7 148.6 1700 107 -41.3 80.7 -80.8

3109 35 3 A M R 260.9 883.7 296.3 137.1 1710 77 -41.6 88.1 -80.7

3110 28 3 A M R 230.0 888.6 270.5 139.7 1730 70 -45.6 83.7 -81.4

3111 31 3 A M R 224.8 839.6 259.1 136.1 1660 70 -42.5 82.2 -78.3

3112 31 3 A M R 234.3 947.8 260.5 142.4 1780 58 -47.4 88.0 -83.4

3113 40 3 A M R 220.1 982.2 270.9 161.6 1890 123 -56.8 97.1 -85.5

3114 28 3 A M R 224.3 881.5 260.6 151.5 1700 67 -48.7 90.9 -69.0

3115 34 3 A M R 247.3 958.1 282.0 149.6 1840 70 -49.5 96.6 -86.2

3116 35 3 A M R 194.4 786.0 223.8 128.0 1550 74 -49.0 75.2 -72.3

3117 30 3 A M R 223.0 892.5 263.9 121.2 1700 73 -37.5 81.2 -72.6

3118 31 3 A M R 224.2 925.9 284.9 153.2 1750 65 -43.6 95.4 -85.6

3119 26 3 A M R 243.3 852.2 277.1 135.9 1710 62 -43.6 87.7 -76.2

3120 32 3 A M R 255.5 964.0 296.2 150.5 1840 90 -53.3 94.6 -87.2

3121 38 3 A M R 224.3 927.6 262.9 149.6 1740 84 -50.9 89.2 -88.8

3122 25 3 A M R 242.5 953.2 288.6 143.6 1840 135 -41.4 94.3 -88.8

3123 27 3 A M R 199.8 992.2 261.1 148.1 1840 76 -41.7 86.7 -80.1

3124 25 3 A M R 239.8 1045.7 293.1 162.3 1900 78 -52.1 88.0 -88.7

3125 32 3 A M R 229.2 864.1 301.7 153.4 1690 79 -54.5 89.1 -80.7

3126 39 3 A M R 232.9 896.0 261.4 145.8 1710 93 -37.0 88.7 -75.1

3127 37 3 A M R 252.2 993.8 296.9 152.6 1880 121 -51.1 96.9 -91.9

3128 29 3 A M R 243.2 955.5 280.4 130.3 1730 77 -41.2 83.7 -77.8

3129 26 3 A M R 245.9 941.6 290.0 149.6 1800 86 -38.6 83.6 -81.4

3130 29 3 A M R 229.2 937.2 270.3 157.0 1800 88 -45.6 80.3 -82.6

3201 25 3 A F R 220.7 905.7 271.3 157.1 1700 107 -59.8 88.9 -88.6

3202 35 3 A F R 244.9 827.9 275.4 132.8 1610 84 -46.9 87.4 -80.5

3203 31 3 A F R 221.7 855.4 267.3 140.4 1650 52 -46.0 81.7 -79.0

3204 30 3 A F R 224.7 799.5 249.1 126.1 1510 44 -43.6 84.3 -62.3

3205 37 3 A F R 200.7 802.7 259.3 145.1 1580 67 -49.8 82.4 -73.2

3206 28 3 A F R 228.4 806.9 277.8 147.0 1620 59 -43.4 91.4 -71.8

3207 29 3 A F R 229.4 875.0 271.3 146.2 1670 68 -42.8 85.9 -82.0

3208 35 3 A F R 222.0 776.7 272.7 150.0 1560 109 -44.5 90.2 -76.2

3209 34 3 A F R 200.3 877.8 241.4 138.6 1570 52 -44.8 88.2 -73.1

3210 38 3 A F R 210.2 875.5 259.2 145.5 1720 69 -44.5 93.8 -91.7

3211 35 3 A F R 248.7 820.9 275.2 131.3 1580 94 -27.6 83.4 -80.6

3212 37 3 A F R 216.1 904.2 248.5 122.3 1610 56 -40.2 81.1 -73.7

3213 38 3 A F R 198.4 820.8 265.2 151.0 1620 89 -39.6 86.7 -68.3

3214 29 3 A F R 236.9 823.4 277.0 136.2 1600 57 -40.1 88.3 -71.3

3215 30 3 A F R 213.6 806.5 261.1 142.9 1650 97 -47.9 83.7 -74.1

3216 25 3 A F R 216.1 758.0 255.9 129.0 1500 51 -37.8 74.0 -64.3

3217 33 3 A F R 200.9 870.4 275.2 149.4 1710 76 -53.9 95.1 -83.7

3218 31 3 A F R 252.2 832.3 291.9 137.3 1660 72 -37.3 86.4 -75.2

3219 25 3 A F R 248.7 893.7 294.5 142.8 1700 79 -46.6 86.5 -76.3

3220 39 3 A F R 224.0 897.6 289.1 156.1 1700 87 -58.0 94.6 -78.7

3221 25 3 A F R 192.2 796.0 231.6 134.0 1570 67 -44.0 77.7 -75.9

3222 33 3 A F R 219.3 776.5 270.4 137.1 1570 50 -40.0 79.0 -73.0

3223 38 3 A F R 259.1 877.4 288.4 141.7 1630 58 -44.0 82.6 -74.0

3224 29 3 A F R 217.7 820.8 258.7 143.4 1600 53 -37.4 77.7 -68.4
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APPENDIX A. USED DATASET
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3225 31 3 A F R 233.9 911.8 286.9 150.7 1690 72 -46.1 86.4 -75.9

3226 29 3 A F R 255.0 879.7 299.0 155.3 1700 65 -51.6 94.2 -85.0

3227 40 3 A F R 210.7 802.4 273.0 129.8 1550 85 -46.7 79.5 -78.2

3228 39 3 A F R 198.8 849.4 264.0 159.7 1610 83 -49.3 96.6 -73.3

3229 37 3 A F R 244.7 938.3 271.3 147.0 1770 111 -45.4 88.7 -76.2

3230 36 3 A F R 227.7 820.0 274.4 151.8 1640 61 -43.5 92.0 -71.8

Dataset2 is from Harrington et al. [4]. The column elements represents the

following data:

• Subject: H: healthy child, A: adult, C: child with cerebral palsy

• Sex: Male or Female

• Age: age

• Mass: weight measured in kg

• H: height in mm

• Leg Length: leg length measured in mm

• D: antero/posterior component of the distance between a point approximating the

hip centre and the homolateral ASIS;

• PD: distance between the ASIS midpoint and the PSIS midpoint

• PW: distance between the left and right ASIS

• HJCx: X (antero-posterior) position of the hip joint centre

• HJCy: Z (up-down) position of the hip joint centre

• HJCz: Y (lateral-medial) position of the hip joint centre
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Subject Sex Age (yrs) Mass (kg) PW (mm) PD (mm) Leg Length (mm) HJCx (mm) HJCy (mm) HJCz (mm)

H1 M 5.9 20 158.9 89.1 535 -24.50 -47.90 58.50

H2 M 6 21.5 171.2 96.2 602.5 -23.70 -58.30 60.10

H3 M 6 15.5 140.6 81 500 -26.10 -53.10 52.20

H4 F 6.1 21.5 156.2 97.3 612.5 -31.90 -60.60 60.00

H5 F 6.4 23 162.5 100.7 610 -28.00 -69.50 59.20

H6 F 8.1 22.5 171.8 93.7 695.5 -23.70 -65.40 62.80

H7 M 8.3 32 203.2 95 750 -34.60 -66.50 66.00

H8 F 8.5 27.5 181.5 106.3 687.5 -43.30 -64.00 61.80

H9 F 9.6 30 189.1 109.7 795.5 -33.90 -72.70 63.70

H10 M 9.8 34.5 173.4 110.2 785 -41.20 -69.30 64.50

H11 F 10.1 34 171 113.5 730 -37.90 -68.50 60.80

H12 M 11.4 36.5 213.2 103.8 780.5 -40.60 -78.10 75.90

H13 F 12.3 47 215 125 847.5 -48.70 -75.60 78.60

H14 M 13 44 228.2 121.3 880 -36.40 -79.70 72.40

A1 F 22.9 54 205.5 138.9 810 -41.40 -73.90 85.60

A2 M 24.1 79 275.6 163.2 980 -48.10 -91.80 96.10

A3 M 26.1 72.5 246.1 155.8 955 -43.60 -81.90 88.90

A4 F 27 69 231.5 152.5 920 -39.60 -86.60 94.60

A5 M 28.1 75 238.6 152.7 950 -49.70 -90.40 90.10

A6 F 32.6 56 238.4 142.5 865 -51.10 -88.20 86.10

A7 M 33.7 76.5 249.4 145.5 985 -33.40 -82.30 91.90

A8 M 40.1 81 276.1 164.2 950 -51.80 -95.20 95.70

C1 M 6.1 20.5 156.8 92.9 580 -37.20 -53.50 61.50

C2 M 8 20 149.9 91.7 580 -32.80 -57.40 57.20

C3 F 8.2 25 157.2 98.9 660 -37.10 -56.70 62.90

C4 F 8.3 22.5 180.1 83.1 630 -28.20 -59.90 60.90

C5 F 9.1 35 187.4 98 715 -22.90 -70.90 63.70

C6 F 10.6 30 160 102.5 700 -46.00 -65.20 68.00

C7 M 11.4 40 175.3 111.5 745 -40.30 -63.10 66.80

C8 F 11.5 27 182.1 106.1 730 -43.10 -64.60 73.40

C9 M 12.4 40 182.2 112 770 -33.70 -66.40 65.60

C10 M 12.5 29.5 188 90.6 700 -34.50 -67.50 70.10

Dataset3 is from Leardini et al. [8].

• Subject: number associated to a subject

• Sex: Male or Female

• Age: age

• Mass: weight measured in kg

• PW: distance between the left and right ASIS

• PD: distance between the ASIS midpoint and the PSIS midpoint
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APPENDIX A. USED DATASET

Subject Age (yrs) Mass (kg) H (mm) L (mm) D (mm) PD (mm) PW (mm) HJCx (mm) HJCy (mm) HJCz (mm)

1 42 80 1945 1015 73 173 245 -60.8 -100.1 96.8

2 33 70 1840 960 50 159 258 -43.2 -90.1 86.1

3 29 72 1815 975 55 151 241 -46.6 -91.6 78

4 26 74 1730 875 93 170 203 -45.4 -96.6 83.3

5 26 71 1775 940 87 157 242 -53.4 -92.5 84.2

6 20 59 1705 870 73 170 202 -51.9 -80 94.5

7 35 77 1760 840 76 178 231 -54.1 -72.1 86.1

8 27 84 1865 950 77 138 242 -43.2 -81.5 89.6

9 29 84 1850 1005 54 191 250 -61.8 -109.3 92.7

10 26 93 1740 880 45 185 231 -57.1 -87.6 95.9

11 29 77 1735 900 69 178 235 -47.6 -87.5 82.9

• Leg Length: measured from ASIS to medial epicondyle of the knee, then to medial

malleola

• HJCx: X (antero-posterior) position of the hip joint centre

• HJCy: Z (up-down) position of the hip joint centre

• HJCz: Y (lateral-medial) position of the hip joint centre
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