
Politecnico di Milano
Scuola di Ingegneria Industriale e dell’Informazione
Corso di Laurea Magistrale in Ingegneria Gestionale

Exploration in Policy Search
via Multiple Importance Sampling

Relatore: Prof. Marcello RESTELLI
Correlatori: Dott. Matteo PAPINI

Dott. Alberto Maria METELLI

Tesi di Laurea di:
Lorenzo LUPO
Matr. 868670

Anno Accademico 2017-2018

Abstract

Reinforcement Learning (RL) is a Machine Learning area that aims at building
autonomous agents capable of learning to solve sequential decision problems,
such as automation control or robotics tasks. The learning process consists of a
sequence of interactions between the agent and the environment, in the presence of
a quantitative reward. The goal of the agent is to maximize a performance metric
by learning a suitable policy (strategy). This objective entails a critical aspect
of the learning process: the balance between the exploration of the environment,
which enables the discovery of new profitable actions, and the exploitation of the
most rewarding actions already learned. In this thesis, we address the exploration-
exploitation trade-off in Policy Search (PS), an effective approach to RL for
solving control tasks with continuous state-action spaces. PS explicitly models
policies as stochastic parametric functions and directly optimizes performance
against policy parameters. We design an innovative formulation of the Policy
Search problem as a suitable Multi Armed Bandit (MAB) problem. The MAB
problem is equivalent to an RL problem in which the environment has a single
state and the actions available to the agent are called arms. Such framework
readily lends itself to the study of the exploration-exploitation trade-off because
of its simplicity. In our formulation, the arm set is the policy parameter space.
This allows us to easily transfer some theoretically sound methods of the MAB
literature to the PS setting. We propose a novel class of algorithms that effectively
explore the parameter space, by leveraging Multiple Importance Sampling to
perform an estimation of performance. We also provide theoretical guarantees
on their regret w.r.t. the optimal policy. Specifically, we prove that the regret is
bounded by rOp

?
T q for both discrete and continuous parameter spaces. Finally,

we evaluate our algorithms on tasks of varying difficulty, comparing them with
existing MAB and RL algorithms.

Ringraziamenti

Questa tesi è solo l’ultimo gradino della lunga scala che è stata la mia formazione
universitaria. Ripercorrendola a ritroso, desidero ringraziare le persone che mi
hanno sorretto in questi anni, a cui devo sicuramente una parte dei miei risultati.
Ringrazio il Professor Marcello Restelli, che ha guidato la direzione di questa
tesi con grande esperienza e con rara gentilezza. Ringrazio i Dottori Matteo
Papini e Alberto Maria Metelli, che hanno contribuito a questo lavoro in maniera
determinante, con professionalità esemplare e tanta passione per la ricerca.

Ringrazio la mamma e il papà, il cui sostegno incondizionato mi ha sempre
sorretto, anche nei momenti più difficili della mia formazione. Un grazie speciale
va ai miei nonni, Lia e Silvestro, per avermi coraggiosamente ospitato a casa
loro per ben tre anni della mia permanenza a Milano, aggiudicandosi il titolo
di Super Nonni. Ringrazio anche Tiziana, Simo e Mario per avermi accolto
affettuosamente nella loro famiglia, nonostante tutte le mie stranezze.

Per tutti i bei momenti di spensierata felicità che hanno arricchito questi anni,
ringrazio le mie sorelle e i miei amici. Devo a voi anche tante occasioni di
confronto e di esempio, che mi hanno spinto a migliorare.

Ringrazio infine Marina che, con la sua saggezza, la sua intelligenza e il suo
amore, è faro quotidiano della mia formazione.

Contents

List of Figures v

List of Tables vi

List of Algorithms vii

Acronyms viii

1 Introduction 1

1.1 Motivation and Goal . 2

1.2 Original Contributions . 3

1.3 Overview . 5

2 Preliminaries 6

2.1 Multi Armed Bandits . 6

2.1.1 Exploration and Exploitation 8

2.1.2 Stochastic Bandits With Finitely Many Arms 9

2.1.3 X -armed Bandits . 10

2.2 Markov Decision Processes . 11

2.2.1 Policies . 13

2.2.2 Performance . 14

2.2.3 Value Functions . 15

2.3 Reinforcement Learning . 16

Contents ii

2.3.1 Problem Formulation . 16

2.3.2 Taxonomy . 17

2.4 Policy Search . 20

2.4.1 Overview . 20

2.4.2 Policy Gradient . 21

2.4.3 Policy Gradient Estimation 25

2.4.4 Algorithms . 26

2.5 Multiple Importance Sampling 30

3 Exploration Techniques 33

3.1 Exploration in Multi Armed Bandits 34

3.1.1 Undirected Exploration 34

3.1.2 Count-based Exploration and Upper Confidence Bound . 35

3.1.3 Optimism in the Face of Uncertainty 37

3.1.4 Hierarchical Optimistic Optimization 38

3.1.5 Posterior Sampling . 41

3.1.6 Gaussian Process Upper Confidence Bound 43

3.2 Exploration in Reinforcement Learning 45

3.2.1 Undirected Exploration 45

3.2.2 Count-based Exploration and Intrinsic Motivation 47

3.2.3 Posterior Sampling . 51

4 Optimistic Policy Search via Multiple Importance Sampling 53

4.1 Robust Importance Sampling Estimation 53

4.2 Problem Formalization . 55

4.3 Algorithms . 57

4.4 Regret Analysis . 58

4.4.1 Discrete arm set . 59

Contents iii

4.4.2 Compact arm set . 60

4.4.3 Discretization . 61

5 Numerical Simulations 63

5.1 Practical Aspects . 63

5.1.1 Divergence Between Gaussian Multivariate Distributions 64

5.1.2 Uniformly Bounded Rényi divergence 65

5.2 Linear Quadratic Gaussian Regulator 65

5.2.1 Gain only . 68

5.2.2 Gain and standard deviation 69

5.3 Continuous Mountain Car . 70

5.4 Inverted Pendulum . 74

5.5 Action-based setting . 76

6 Conclusions 79

6.1 Recapitulation . 79

6.2 Limitations and Future Works 80

Appendices 82

A Proofs 82

Bibliography 97

List of Figures

2.1 Interaction protocol for Markov decision processes 12

2.2 A taxonomy of PS methods [Deisenroth et al., 2013] 21

5.1 Cumulative regret in the LQG experiment. Comparison between
OPTIMIST, UCB1 and GPUCB when learning the hyperpolicy
mean. (30 runs, 95% c.i.) . 67

5.2 The gain parameter µ selected at each iteration of GPUCB (left)
and OPTIMIST (right) in the LQG experiment. 67

5.3 Mean return of arms µ P r´0.9,´0, 5s, calculated by averaging
the return collected over 2000 trajectories in the LQG experiment. 68

5.4 Cumulative regret in the LQG experiment, comparing OPTIMIST,
UCB1 and GPUCB when learning both the mean and the standard
deviation hyperparameters. (30 runs, 95% c.i.) 70

5.5 Graphical representation of the Mountain Car problem
[Brockman et al., 2016]. 70

5.6 Cumulative regret in the Continuous Mountain Car experiment.
Comparison between OPTIMIST, PGPE and PBPOIS when
learning the two-dimensional hyperpolicy mean. (5 runs, 95%
c.i.) . 71

5.7 Gaussian kernel density estimation [Scott, 2015] of the probability
distribution of the arm set ξ “ µ induced by PGPE (left) and
OPTIMIST (right). 73

5.8 Graphical representation of the Inverted Pendulum task
[Wawrzyński, 2005]. 74

List of Figures v

5.9 The hyperpolicy mean parameter selected at each iteration of
OPTIMIST in the Inverted Pendulum experiment. 77

5.10 Truncated MIS estimator (left) and exploration bonus (right) of
the arms selected by OPTIMIST at each iteration of the Inverted
Pendulum experiment. 77

List of Tables

5.1 Environmental coefficients (left-side), task coefficients (center) and
OPTIMIST input parameters (right-side) for the LQG experiments. 67

5.2 Task parameters (left side) and OPTIMIST input parameters
(right side) for the Continuous Mountain Car experiment. 69

5.3 Number of points in the discretized state space, following discreti-
zation schedule τt “ rt

1
κ s, where d refers to the number of space

dimensions and k is a free-parameter. 73

5.4 Task parameters (left side) and OPTIMIST input parameters
(right side) for the Inverted Pendulum experiment. 74

List of Algorithms

2.1 Explore-then-commit . 10
2.2 Generic PG algorithm . 25
2.3 Episodic REINFORCE with component-wise optimal baseline. . . 27
2.4 Episodic PGPE . 29
3.1 UCB(δ) algorithm . 37
3.2 HOO algorithm . 41
3.3 TS for Bernoulli MAB with Beta priors 43
3.4 GPUCB . 45
3.5 VIME . 51
4.1 OPTIMIST . 58
4.2 OPTIMIST2 . 61

Acronyms

AI Artificial Intelligence.

BH Balance Heuristic Estimator.

GP Gaussian Process.

GPOMDP Gradient of the average reward in Partially Observable MDPs.

GPUCB Gaussian Process Upper Confidence Bound.

HOO Hierarchical Optimistic Optimization.

KL Kullback-Leibler.

LQG Linear Quadratic Gaussian regulation.

MAB Multi Armed Bandit.

MDP Markov Decision Process.

MIS Multiple Importance Sampling.

OFU Optimism in the Face of Uncertainty.

OPTIMISTOptimistic Policy opTImization via Multiple Importance Sampling
with Truncation.

PBPOIS Parameter-Based Policy Optimization via Importance Sampling.

PG Policy Gradient.

PGPE Policy Gradient with Parameter-Based Exploration.

Acronyms ix

PGT Policy Gradient Theorem estimator.

PS Policy Search.

RL Reinforcement Learning.

std standard deviation.

TS Thompson Sampling.

UCB Upper Confidence Bound.

VIME Variational Information Maximizing Exploration.

Chapter 1

Introduction

With the advent of the 21st century, worldwide economies have been profoundly
shaped by an ever-growing access to large amounts of data and fast computers.
These two events entailed a new dawn of Artificial Intelligence (AI), which today
represents a dominant field in the technological and scientific landscape, with
inevitable repercussions on the whole society. At the heart of this new dawn is
Machine Learning (ML) [Goodfellow et al., 2016], a branch of AI that aims at
building computers capable of learning from experience, i.e., from data. Since
computers gather knowledge from experience, there is no need for a human
computer operator to formally specify all the knowledge the computer needs to
solve complex and intelligent tasks.

Many real-world problems require the solver (the agent) to make a sequence
of decisions without knowing the dynamics of the environment in which it is
operating and, possibly, without receiving immediate feedback on the goodness
of its actions. This type of problems arises in many fields, such as automation
control, robotics, finance, operations management, and games. Reinforcement
Learning (RL) is a branch of ML that deals with such problems and has seen
significant advances in the last few decades [Sutton and Barto, 2018]. In RL,
an autonomous agent learns how to solve a task by repeated interaction with
an unknown environment, which may be only partially observable. The unique
information available to the agent is its internal representation of the environment
and a feedback (a numerical reward) that serves as an assessment of its actions.
Hence, the agent learns by trial and error, as humans would do when learning
a new skill without being instructed by a teacher. We refer to the strategy
adopted by the agent when interacting with the environment as its policy: a
mapping, possibly stochastic, that instructs the agent about what action to

Chapter 1. Introduction 2

perform in each state. The goal is to learn a suitable policy to maximize the
cumulative sum of rewards collected until the end of the task. Since the rewards
received by the agent can be infrequent or even very sparse, the agent needs
sufficient exploration to improve the knowledge of the unknown environment.
Hence, the agent has to exploit the most rewarding actions learned, but also
has to explore in order to improve the action selection in the future. This trade-
off, called exploration-exploitation trade-off, arises at every decision step of the
learning process. Traditional exploration strategies, such as random walks, aim
to generate heterogeneous experiences by selecting actions randomly. This is
obviously extremely inefficient and quickly leads to unfeasible learning times as
the complexity of the problem grows. More advanced exploration techniques,
referred to as directed exploration [Thrun, 1992], leverage on the knowledge
acquired during learning to explore more efficiently.

One of the current challenges of RL is continuous control tasks, such as robotic
locomotion, in which states and actions are naturally modelled as real numbers.
Policy Search (PS) is a family of RL algorithms that are particularly suited to
this class of problems because they scale gracefully with dimensionality and offer
appealing convergence guarantees [Deisenroth et al., 2013]. In PS, the behaviour
of the agent, or policy, is explicitly modelled, typically as a stochastic parametric
function from states to actions. Learning corresponds to the optimization of a
performance measure, typically an estimation of the cumulative sum of rewards,
w.r.t. the policy parameters.

1.1 Motivation and Goal

The available literature on PS focuses mainly on the problem of finding the
optimal policy with the minimum amount of interaction [Sutton et al., 2000,
Sehnke et al., 2008, Silver et al., 2014, Schulman et al., 2015, Mnih et al., 2016,
Espeholt et al., 2018]. This is well motivated, as interacting with some environ-
ments can be very expensive. However, in many cases, we are also interested
in the performance of the agent during the learning process. This goal is par-
ticularly relevant in applications where an agent must be deployed in the real
world to perfect its behaviour (e.g., robot learning) or to learn from scratch
(e.g., recommender systems). In such cases, the exploration-exploitation dilemma
arises naturally, as the agent must continually find the right trade-off between
complying with its current expertise or widening it by trial and error. In the

Chapter 1. Introduction 3

context of PS, exploration is carried out in the space of policy parameters and this
makes exploration particularly necessary. In fact, the parameter space is often
characterised by multiple local optima and the common optimization strategies
such as gradient ascent frequently get stuck in sub-optimal solutions. To tackle
this problem, the scientific community has proposed various strategies, mainly
focused on random exploration through the maximization of the entropy of the
policy. These solutions do not exploit the information gathered by the agent
across iterations to guide exploration. Instead, they only push the agent to consis-
tently explore, in an experience-agnostic fashion, often without any convergence
guarantee [Ziebart et al., 2008, Haarnoja et al., 2017, Haarnoja et al., 2018]. At
the moment, the PS literature lacks directed strategies for exploring the parame-
ter space. This lack of direct exploration solutions for PS, which is of paramount
importance for nowadays challenges such as robotics, motivates the research
direction of this thesis project.

The goal of this thesis is to devise novel algorithms, backed by solid theoretical
guarantees, which aim at solving the problem of exploration in PS.

1.2 Original Contributions

The problem of maximizing online performance, i.e., performance during learn-
ing, is equivalent to minimizing the agent’s total regret w.r.t. an optimal
policy, i.e., a policy that maximizes performance. This problem has been
widely studied in the Multi Armed Bandit (MAB) field [Auer et al., 2002,
Lattimore and Szepesvári, 2019]. In a MAB problem, an agent has to repeatedly
select an action, called arm, in order to maximize an unknown, stochastic reward.
This problem can be seen as an RL problem in which the environment has a
unique state. Since the problem of directed exploration is thoroughly investigated
in the MAB literature, we started our work by reviewing it to find exploration
methods that could be transferred to the PS setting.

The first contribution of this thesis is the direct result of this literature review,
namely a new formulation of the PS problem. Our new formulation looks at
PS as a peculiar MAB-like problem, where the set of available actions (arms) is
the parameter space of the agent’s policy. This allows us to apply some of the
theoretical and algorithmic ideas developed in the MAB literature to the problem
of exploration in continuous-action RL, whose solutions proposed so far have been
largely heuristic and undirected [Houthooft et al., 2016, Haarnoja et al., 2017,

Chapter 1. Introduction 4

Haarnoja et al., 2018].

In particular, the Optimism in the Face of Uncertainty (OFU) principle
at the heart of the Upper Confidence Bound (UCB) [Lai and Robbins, 1985,
Agrawal, 1995b, Auer, 2002] family of MAB algorithms lends itself to a relatively
straightforward application to PS. The core idea of this principle is simply to over-
estimate the expected reward of arms, which, in our scenario, are the policies that
the agent can play. The overestimation is larger for those arms the agent knows
less about. To apply the OFU principle to policy optimization, we exploited
the structure in the way arms (policy parameters) concur to generate rewards.
This was both necessary, as the parameter space is typically continuous, and
desirable, as there exists an evident correlation between arms (different policies
can lead to similar performances) that we exploited in order to devise novel
algorithms with sub-linear regret. In practice, we used a statistical technique
called Multiple Importance Sampling (MIS) [Veach and Guibas, 1995] to capture
the information shared by different policies and we employed robust estimators
inspired by [Bubeck et al., 2013] to overcome the heavy-tail behaviour typical
of importance sampling. We adapted techniques from [Metelli et al., 2018] to
build confidence intervals for the expected performance of policy parameters via
robust MIS. We employed these tools to design two UCB-like algorithms for PS.

Furthermore, we show how these algorithms can be used both in discrete and
continuous parameter spaces and we prove that in both cases they attain a regret
bound of rOp

?
T q. Since the optimization problem can be challenging in the

continuous case, we propose a general discretization method that allows to trade
computational complexity with regret, preserving the sub-linearity of this latter.

Our final contribution consists of a set of numerical simulations that prove
the effectiveness of our algorithms in exploring the parameter space. We show
competitive results on the Linear Quadratic Gaussian regulation (LQG) and Con-
tinuous Mountain Car. Instead, the simulations on the Inverted Pendulum shed
light on the limitations of our approach and provided interesting considerations
for future developments.

In summary, our original contribution is threefold:

(i) an algorithmic contribution, consisting of two new algorithms for explo-
ration in PS, for both discrete and continuous parameter spaces;

(ii) an ample theoretical contribution, consisting of a novel formulation of the
PS problem, the definition of a new robust estimator for MIS, and high

Chapter 1. Introduction 5

probability regret bounds for both our algorithms;

(iii) an experimental contribution, consisting of numerical simulations on three
RL benchmarking tasks of increasing difficulty.

1.3 Overview

In the following, we begin by providing the essential background in Chapter
2. We introduce the reader to the MAB problem, describing two settings of
particular interest to our research: the stationary stochastic bandits with finitely
many arms and the X -armed bandits. We proceed by outlining the Markov
Decision Process (MDP) problem and RL, which aims at solving it. Particular
attention is paid to PS techniques. We conclude by introducing the basic notions
of importance sampling and MIS, which will be used to devise our algorithms.

In Chapter 3 we present the highlights of our broad literature review on explo-
ration techniques for MABs and RL. In both cases, we start with presenting
undirected exploration techniques, then we proceed to analyse more directed
techniques, in greater details. This chapter will acquaint the reader with many
concepts and algorithms that inspired our work.

Our algorithmic and theoretical contributions are discussed in Chapter 4. We
start by devising a robust importance sampling estimator. Then we re-frame the
PS framework in a suitable and original fashion. In the second half of this chapter,
we derive our algorithms for exploration in PS, for both discrete and continuous
action-spaces, backed by suitable theorems that guarantee their sub-linear regret.

In Chapter 5 we empirically evaluate the proposed methods on three continuous
control tasks: LQG, Continuous Mountain Car and Inverted Pendulum, and we
discuss several insights provided by the experimental results.

In Chapter 6, we conclude by summarising the results achieved along this thesis,
outlining the limitations encountered and possible directions for future work.

Finally, in Appendix A we present the proofs of our lemmas and theorems. Every
proof goes with comments and remarks to facilitate their understanding and to
shed light on the mechanisms underlying our algorithms.

Chapter 2

Preliminaries

In this chapter we provide an introduction to the Multi-Armed Bandit framework
and the Reinforcement Learning framework, which are the two frameworks of
reference of this thesis project. The Reinforcement Learning section is opportunely
preceded by an overview of Markov Decision Processes, which are the building
blocks of Reinforcement Learning. Then, we present a particular class of strategies
to solve the Reinforcement Learning problem: Policy Search methods. The aim
is to introduce concepts that will be used extensively in the following chapters.

2.1 Multi Armed Bandits

Consider a situation in which a gambler (the agent) is sitting in a casino, staring
at a number of slot machines from which he wants to pick the most profitable
one and play with it all night long. Each slot machine is characterized by a
certain mean reward. The objective of the gambler is to maximize the gains that
he will have won by the end of the night, but, unfortunately, he can not know
a priori the mean reward associated to each slot machine. Hence, the gambler
must find a suitable strategy in order to effectively explore his possibilities, by
testing the different slot machines, and, then, exploit the ones that prove to be
more profitable. In fact, the gambler would face an equivalent problem if he
was to play a single machine with as many arms (levers) as the number of slot
machines present in the casino, each with its own specific mean reward. Hence
the name MAB [Lai and Robbins, 1985] given to this problem, in homage to
the one-armed bandit, an old-fashioned name for a lever operated slot machine
("bandit" because it steals your money). In the artificial intelligence literature,

Chapter 2. Preliminaries 7

MAB refers to a broad class of problems that can be formulated as this gambling
learning problem. Of course, MABs have other, more valuable, applications other
than gambling. Current applications span from web interfaces configuration,
news recommendation, dynamic pricing, ad placement, networking routing and
game design.

Definition 2.1.1. (Multi Armed Bandit) A MAB is a tuple xX ,Ry, where:

(i) X is the dX -dimensional set of possible arms, or actions, that the agent
can pick; X can be discrete or continuous, one dimensional or multi-
dimensional, finite or infinite.

(ii) R : X Ñ ∆pRq is an unknown function of rewards such that for every
x P X it assigns a probability measure Rp¨|xq over R.

One can think to the set of possible arms and reward functions associated to
them as the environment the learner interacts with. According to the specific
characteristics of the environment, there exist a broad taxonomy of MABs. For
our reader, it is sufficient to know that in this work we deal with stochastic
stationary bandits. In this case, the environment is restricted to generate the
reward in response to each action from a probability distribution Rp¨|xq that is
specific to that action, stationary along time and independent of the previous
action choices and rewards. For example, the reward distribution could be
Gaussian or Bernoulli. The expected reward of the stationary distribution
associated to arm x is noted µpxq “ E

r„Rp¨|xq
rrs.

The MAB game is played sequentially by a learner over multiple rounds t “
1, 2, . . . , T , up to the horizon T P N, which depends on the problem at hand.
Evidently, the agent can have memory but can not foresee the future. Thus, the
current action xt should only depend upon the sequence of previous actions and
rewards, the history I “ tx0, r0, x1, r1, . . . , xt´1, rt´1u. A policy is a mapping
from histories to actions which represents the behaviour of the agent, its strategy.
the first question which springs to mind is then: how can we evaluate the quality
of a policy? To this aim, the literature extensively adopts a performance measure
called the regret;

Definition 2.1.2. (Immediate Regret) The immediate regret suffered by a learner
at round t is:

∆t “ µpx˚q ´ µpxtq (2.1)

where x˚ P arg maxxPX µpxq is an arm with the highest expected reward i.e., an
optimal arm.

Chapter 2. Preliminaries 8

Definition 2.1.3. (Regret) The regret of a learner is the cumulated sum of the
instantaneous regrets:

RegretpT q “
T
ÿ

t“0
∆t (2.2)

The quality of a certain policy is then given by the rate of growth of the regret
as the horizon T grows. A good learner achieves sub-linear regret, which means
that RegretpT q “ opT q or, equivalently, that limTÑ8RegretpT q{T “ 0. For
example, some state of the art policies for different bandit settings have regrets
close to Op

?
T q or Oplogpnqq [Lattimore and Szepesvári, 2019]. The regret has

two characteristics that make it a good performance metric. First, it supplies
a degree of normalization because it is invariant under translation of rewards.
Second, it represents the price paid by the learner for not knowing the true
environment. Anyway, a crucial aspect for designing a sub-linear regret policy
is to carefully balance the trade-off between exploration and exploitation that
characterizes all bandits.

2.1.1 Exploration and Exploitation

In order to maximize its cumulative reward, a bandit agent must prefer high-
reward arms discovered in past rounds. But to discover such arms, it has to
spend a certain amount of rounds trying arms that it has not selected before. In
other words, the agent has to exploit the most profitable actions revealed in the
past, but it also has to explore in order to make better action selections in the
future. If the reward function is stochastic as in stationary stochastic bandits,
even more resources should be dedicated to exploration, because one trial is not
enough to have a good estimate of the expected reward of one arm. In fact, the
exploration-exploitation trade-off is a well known mechanism that goes back to
psychology and it affects us all in our daily lives. Take, for example, a typical
lunch break on a working day. Say that your favourite restaurant is right around
the corner. If you go there every day (exploitation), you will be confident of
what you will get, but miss the chances of discovering an even better option.
On the contrary, if you try new places all the time (exploration), you are very
likely going to eat unpleasant food from time to time. The sweet spot is usually
in between these two extreme options and a crucial challenge for any bandit
algorithm is to properly balance between exploration and exploitation. As we
will see, this dilemma arises in reinforcement learning too and will be at the very
core of our discussion.

Chapter 2. Preliminaries 9

Now, we proceed by briefly sketching out two bandit settings that are of central
interest to this work.

2.1.2 Stochastic Bandits With Finitely Many Arms

An important declination of the bandit problem, much studied in the literature
[Lattimore and Szepesvári, 2019], is the stationary stochastic bandit problem
with finitely many arms, i.e., stationary stochastic bandits whose action space
consists of a discrete arm set |X | “ K P N`. This setting is particularly
important because of its semplicity, which makes it a perfect starting point for
understanding the exploration-exploitaiton trade-off and for designing algorithms
that can be extended to more complex settings afterwards. Also, many real world
applications can be modeled as finitely-armed stationary stochastic bandits.
In order to deepen our understanding of this setting, and of the bandit problem
in general, let’s discuss the most simple policy that one can imagine: the explore-
then-commit algorithm. Basically, this policy consists in choosing each arm a
certain number of times m and subsequently exploit by playing the arm that
appeared to be the best after exploration. Because there are K actions, the
algorithm will explore for mK rounds before choosing a single action for the
remaining rounds. The choice of the agent goes to the arm i with the highest
average pay-off received up to round t:

pµiptq “
1

Tiptq

t
ÿ

s“1
1txs“iurs (2.3)

where Tiptq “
řt
s“1 1txs“iu is the number of times up to round t the agent picks

action i. Algorithm 2.1 shows the pseudo-code of the explore-then-commit policy.
Recall @a, b P N`, a mod b “ a´ bta{bu.
It suffices a quick glance to the algorithm to have a tangible demonstration of
the importance of the trade-off between exploration and exploitation. This is
confirmed by the analysis of the regret.

Theorem 2.1.1. [Lattimore and Szepesvári, 2019] The expected regret of the
explore-then-commit policy is bounded by:

RegretpT q ď min
`

m, r T
K

s
˘

K
ÿ

i“1
∆i`max pT ´mK, 0q

K
ÿ

i“1
∆i exp

ˆ

´
m∆2

i

4

˙

(2.4)

where ∆i is the immediate regret of arm i as defined in 2.1.2.

Chapter 2. Preliminaries 10

Algorithm 2.1 Explore-then-commit
1: Input: m P N
2: for t “ 1, . . . , T do
3: Choose arm

xt “

$

&

%

i, if pt mod Kq ` 1 “ i and t ď mK

arg max pµipmKq, if t ą mK

4: end for

Evidently, if m is large the policy explores for too long and the first term
will be eventually too large. On the other hand, if m is too small, then the
probability that the algorithm exploits the wrong arm will grow and the second
term will become too large. Explore-then-commit is an evident case of undirected
exploration: during the exploration phase, all the arms are pulled uniformly
without leveraging any information that the agent collect in the process.
In the next chapter, we will present various techniques that tackle the exploration
problem in a more directed way.

2.1.3 X -armed Bandits

Another stationary stochastic bandit setting interesting to our scope is the
continuum-armed bandit setting [Agrawal, 1995a]. Here, the arms are chosen
from a subset of the real numbers X P RdX , hence, the action space is infi-
nite. Moreover, the mean rewards are assumed to be a continuous function
of the arms. An example of such bandits are continuous Lipschitz bandits
[Magureanu et al., 2014], where the expected reward is a Lipschitz function of
the arm. This assumption is extremely useful because it implies that the informa-
tion obtained by selecting one arm can be shared to its neighbouring arms. Thus,
exploration can be made more efficient, and possibly directed, by exploiting
the correlation between arms. Indeed, when the set of arms is infinite it is
necessary to make some assumption on the correlation between arms. If arms
can not share any information, learning become unfeasible. X -armed bandits
[Bubeck et al., 2011] are a further generalization of this setting where the set
of arms, X , is allowed to be a generic measurable space and the mean-payoff
function is weak Lipschitz with respect to a dissimilarity function that is known
to the decision maker.

Chapter 2. Preliminaries 11

By now, the reader should have noticed that a distinguishing feature of bandit
problems is that the learner never needs to plan for the future. More precisely,
in bandits we invariably make the assumption that the learner’s choices and
rewards tomorrow are not affected by its decision today. In the next chapter, we
discuss a more general framework that includes this kind of long-term planning.

2.2 Markov Decision Processes

A MDP is a more powerful way to model the interaction between an agent, which
is the learner and the decision maker, and an environment. When the agent
performs an action a, the environment responds presenting a new state s to
the agent and rewarding the agent with a certain scalar signal called immediate
reward. Importantly, the environment dynamics of a MDP are stationary, i.e.,
they do not depend upon time. Moreover, the state sh`1 at time step h ` 1
must depend only on the previous state sh and action ah. This property, called
Markovian Property, entails that the agent can forget the states and actions of
the past. Still, differently from what happened in bandits, the current state and
set of possible actions and subsequent rewards the agent faces, are determined
by his previous choice. This is a strong mechanism that encourages the agent
to take into account the consequences of its choices over time. On top of this,
there is another mechanism that makes the agent even more concerned by long
term consequences. In fact, the objective of the agent is to maximize over time
the cumulative reward or return, which is the cumulated sum of the immediate
rewards obtained after each action undertaken by the agent. Evidently, sometimes
it is more profitable to sacrifice immediate reward in order to reach a higher
cumulative reward in the long term. This mechanism pushes the agent to take
into account the future in its current decisions.
Hence, MDPs are a powerful tool capable of modelling many challenges that we
encounter in life, science and engineering. Take, for example, a hungry newborn
infant in his mother’s arms. Through various attempts, the infant moves around
his arms, head and mouth looking for food. In this way, he changes its state
until the moment he eventually receives a positive reward, the mother’s milk.
Little by little, the baby will learn the precise sequence of actions and states that
rewards him with milk. Having understood the general principles underlying
MDPs, we can now move to a formal definition.

Definition 2.2.1. (Markov Decision Process) A continuous MDP
[Puterman, 2014, Sutton and Barto, 2018] is a tuple M “ xS,A,P ,R, γ, µy,

Chapter 2. Preliminaries 12

h “ 0 and sample s0 „ µ

Observe state sh

Choose action ah P A Increment h

Receive reward rh „ Rp¨|ah, shq Update sh`1 „ Pp¨|sh, ahq

Figure 2.1: Interaction protocol for Markov decision processes

where:

(i) S P RdS is the dS-dimensional state space, i.e., the set of all possible
observable states of the environment.

(ii) A P RdA is the dA-dimensional action space, i.e., the set of all possible
actions that the agent can perform. Sometimes, not all the actions are
performable in all states. In such cases, we can define the set Apsq for all
s P S, such as A “

Ť

sPS Apsq.

(iii) P : S ˆ A Ñ ∆pSq is a function called transition model such that, for
every s P S and a P A, it assigns a probability measure Pp¨|s, aq over
S. In general, we denote with ∆pX q the set of probability measures over
a measurable space X ; The corresponding probability density function is
P p¨|s, aq.

(iv) R : SˆAÑ ∆r´Rmax, Rmaxs is a bounded reward function such that, every
time the agent chooses action a P A in state s P S, it assigns a probability
measure Rp¨|s, aq over r´Rmax, Rmaxs. With little abuse of notation, we
will denote Rps, aq its expected return too. Rmax is the maximum absolute
reward that the agent can receive, i.e., sup

s,a
|Rps, aq|.

(v) γ P p0, 1s is a discount factor to apply to future rewards. From an economical
point of view, it accounts for the fact that an agent might be more interested
in a pay-off obtained in the near future rather than a pay-off obtained far

Chapter 2. Preliminaries 13

in the future. From a statistical point of view the discount factor is related
to the probability that the process continues for another decision epoch.

(vi) µ P ∆pSq is the initial state distribution, such that the initial state is drawn
as s0 „ µ.

In the more general case, the state space S and the action space A, which are
the sensor and actuator possibilities of the agent, respectively, can be both
continuous and discrete, finite or infinite. In what follows, we will focus on the
continuous case because it is the most relevant to our work. The time is typically
modelled as a discrete sequence of decision steps represented by the natural
numbers: H “ t0, 1, . . . , Hu, where H P N is the horizon of a given task, which
can be either infinite (H “ 8) or finite. The agent-environment interaction
ends when either the horizon is reached or a terminal state is reached, i.e., a
state from which no other state can be reached. Tasks are called episodic when
there exists a terminal state. After having reached a terminal state, usually all
the rewards are considered to be zero. A trajectory is the sequence of states,
actions and rewards rh`1 „ Rp¨|ah, shq up to the last time step of the episode:
τ “ tsh, ah, rh`1u

H´1
h“0 .

2.2.1 Policies

The core of a MDP agent is the policy π, a mapping from perceived states of the
environment to possible actions.

Definition 2.2.2. (Policy) A policy is a stochastic function π : S Ñ ∆pAq, such
that the current action is drawn as a „ πp¨|sq

Hence, deterministic policies π : S Ñ A, such that the current action is prescribed
as a “ πpsq, are a particular case. As for bandits, in the most general case a
policy takes as input the past history of states and actions, but in our work we
only consider memoryless policies. In fact, we can always find an optimal policy
that depends only on the current state. Moreover, we assumed that the agent’s
policy is stationary.

Remark 2.2.1. Note that we are adopting different notations for time steps in
bandits and MDPs, t and h respectively. The reason is that we can think of a full
MDP episode performed with policy π as a unique decision epoch t of a bandit.

Chapter 2. Preliminaries 14

In other words, one could consider a bandit in which, at iteration t, the bandit
agent pulls a policy π. The MDP agent perform a trajectory by interacting with
its environment according to policy π. Then, the bandit agent obtains a reward
rt “

řH
h“1 rh. This is the modelling approach that we will adopt in our work.

For all details see Section 4.2.

2.2.2 Performance

A we stated above, the goal of an MDP agent is usually to maximize the total
discounted reward, also called return:

ν “
8
ÿ

h“0
γhrh`1, (2.5)

where γ P p0, 1s is the discount rate. Given this objective, how can we evaluate
the agent’s policy ? We need to design a utility function which represents the
performance of the agent’s policy with respect to its objective. There are two
common formulations of the performance Jpπq in the reinforcement learning
literature [Sutton et al., 2000]. In the start state formulation the performance
is calculated as the long-term discounted reward obtained by starting from a
designated start state s0:

Jpπq “ Erν | s0 „ µ, πs. (2.6)

Note that γ “ 1 is allowed in episodic tasks only, otherwise the convergence
of the performance is not guaranteed. We can now conveniently introduce the
stationary distribution of states under π:

dπpsq “ p1´ γq
8
ÿ

h“0
γhPrpsh “ s | s0 „ µ, πq, (2.7)

which is the probability induced by the policy π of having sh “ s, discounted by
γh, when tÑ 8. This allows us to rewrite the performance measure as:

Jpπq “

ż

S
dπpsq

ż

A
πpa|sqRps, aqdads. (2.8)

Chapter 2. Preliminaries 15

In the average reward formulation policies are ranked according to their long-term
expected reward per step:

Jpπq “ lim
nÑinf

1
n
E

«

n
ÿ

h“1
rh | π

ff

(2.9)

“

ż

S
dπpsq

ż

A
πpa|sqRps, aqdads,

where dπpsq “ limnÑ8 Prpsh “ s | s0 „ µ, πq. In this work, we mostly adopt the
first formulation of the performance utility function on episodic tasks, i.e., tasks
with an absorbing (terminal) state.

2.2.3 Value Functions

From the start state formulation of performance we can derive the value associated
to a state s by following policy π, i.e., the state-value function V πpsq : S Ñ R
defined recursively as:

V π
psq “ Erν | s0 “ s, πs (2.10)

“

ż

A
πpa|sq

ˆ

Rps, aq ` γ
ż

S
P ps1|s, aqV π

ps1qds1
˙

da, (2.11)

which allows to re write the performance as:

Jpπq “

ż

S
µpsqV π

psqds. (2.12)

Equation 2.11 is known as Bellman’s equation of the state-value function. Thanks
to another Bellman’s equation we can define another value function, namely
Qπ : S ˆAÑ R. This value function is more practical for control problems, in
which we prefer to reason in terms of which actions are more valuable in a given
state. Thus, we define the action-value function Qπps, aq as:

Qπ
ps, aq “ Erν | s0 “ s, a0 “ a, πs

“ Rps, aq ` γ
ż

S
P ps1|s, aq

ż

A
πpa1|s1qQπ

ps1, a1qda1ds1, (2.13)

Chapter 2. Preliminaries 16

The difference between the two value functions is known as advantage function
[Baird III, 1993]:

Aπps, aq “ Qπ
ps, aq ´ V π

psq (2.14)

Intuitively, the advantage function represents how much an action a is convenient
is a state s w.r.t. the average utility of the actions.
Value functions are useful for evaluating the quality of a given policy or in order
to define policies themselves. In fact, having an estimation of the value function
for every state (and possibly action) one can build a policy following a greedy
scheme. At each step we may choose the state-action pair that maximize the
action-value function, or an action that brings to the maximally valuable state
among those that are reachable from the current state.

2.3 Reinforcement Learning

The most basic way to solve MDPs is dynamic programming, which simply
consists in solving the Bellman equations presented in the previous chapter
through a fixed-point iteration scheme. Value iteration and Policy Iteration are
the most popular dynamic programming algorithms [Sutton and Barto, 2018],
which provide the basic structure for most of the value-based reinforcement
learning methods. However, these algorithms suffer of two major problems. First,
they require knowledge of the MDP transition kernel and of the reward function,
which is not available in many real world problems. Second, the update involves
an optimization with respect to all possible actions, which can be carried out
efficiently only in the case of finite (small) action spaces. RL is a subfield of
Machine Learning which aims at solving large-scale problems where the dynamics
of the MDP are not know, and thus dynamic programming algorithms can not
be employed.

2.3.1 Problem Formulation

RL is a branch of machine learning that aims at building learning agents capable
to behave in a stochastic and possibly unknown environment, where the only
feedback consists of a scalar reward signal. In order to maximize the long-run
reward, the agent must learn which state-action pairs are the most profitable by

Chapter 2. Preliminaries 17

trial-and-error. Therefore, RL algorithms can be seen as computational methods
to solve MDPs by directly interacting with the environment, for which a model
may or may not be available. The RL problem can be formulated as a stochastic
optimization problem aiming at finding the optimal policy π˚:

π˚ “ arg max
π

Jpπq (2.15)

Remarkably, it is guaranteed that every MDP admits an optimal policy when
the space of possible policies is unconstrained [Puterman, 2014].

Trial-and-error search and a delayed reward signal can be seen as the most
characteristic features of reinforcement learning. Compared to supervised learn-
ing, one of the main branches of machine learning, the feedback the learner
receives is usually less frequent and can be very sparse. In supervised learning,
the agent is provided with examples of the correct or expected behaviour by a
knowledgeable external supervisor and the agent’s goal is to learn how to replicate
these examples as well as possible, and possibly generalize this knowledge to
new examples. In reinforcement learning, the agent receives a numerical reward
that only represents a partial feedback about the goodness of actions taken. A
feedback system of this sort is said to be evaluative rather than instructive and it
makes it much more difficult for the agent to learn how to behave in uncharted
territory. Evidently, the exploration-exploitation trade-off is a substantial prob-
lem in RL as much as for bandits. An agent must exploit what is known of the
environment and the reward function in order to obtain rewards, but it also needs
to explore to select better actions in the future. On top of this, since rewards
might be delayed in time, it will be difficult for the agent to understand which
actions are mostly responsible for the received outcome. This represents another
characteristic problem of reinforcement learning known as credit assignement
problem [Sutton and Barto, 2018]. As we will see, RL algorithms are based on
two key ideas: the first is to use samples to derive an approximate representation
of the unknown dynamics of the controlled system. The second idea is to use
function approximation methods to estimate value functions and policies in
high-dimensional state and action spaces.

2.3.2 Taxonomy

Along the years, many algorithms have been proposed to solve the RL problem
as presented above. The solutions proposed often display similar approaches

Chapter 2. Preliminaries 18

that can be used to outline a rough taxonomy of the RL algorithms. In our
taxonomy we consider the algorithms along four dimensions: model requirements,
policy-based sampling strategy, solution search, sample usage. The first dimension
refers to the requirements of the algorithm w.r.t. the model of the MDP. On the
two sides of this dimension we have:

• Model-based algorithms, which require an explicit approximation of the
model of the MDP. Not every model-based algorithm is equally demanding
on this matter: some of them might need information about every element
of the MDP (transition model, reward model, initial state distribution,
etc.) while others might require approximations only for a fraction of them,
e.g., the reward model only. Examples: DYNA [Sutton, 1991], contextual
policy-search [Kupcsik et al., 2013].

• Model-free algorithms, on the other hand, do not require any explicit
approximation of the model. Model-free algorithms usually have low
computational demands but require lots of data in order to get good
results; they are well-suited for problems in which computation is costly
but sampling is cheap. Examples: Q-learning [Watkins, 1989], SARSA
[Rummery and Niranjan, 1994], REINFORCE [Williams, 1992].

The policy-based sampling strategy dimension refers to the relation between the
policy that is being used to interact with the environment (behavioural policy)
and the policy that is being learned by the agent (target policy);

• in off-policy algorithms there is a clear distinction between the behavioural
policy, the one which collects samples and explore the environment, and
target policy, which is learned independently. This approach is often useful
to safely improve exploration but it is usually more cumbersome to analyse
theoretically. Examples: Q-learning [Watkins, 1989], off-policy actor-critic
[Degris et al., 2012].

• in on-policy algorithms there is no distinction between target and be-
havioural policy. Examples: SARSA [Rummery and Niranjan, 1994],
TD{λ} [Sutton, 1988].

The solution search-space dimension refers to the space where the optimal solution
is searched:

Chapter 2. Preliminaries 19

• in direct policy search methods the optimal solution is searched in the
space of policies, e.g., the space in which their parameters lie. These
methods are well-suited for large state or action spaces, produce smooth
changes in the policy during the learning process, and allow to introduce
prior expert knowledge in the policy; unfortunately, they often suffer from
a high variance and have optimization issues. Examples: REINFORCE
[Williams, 1992], G(PO)MDP [Baxter and Bartlett, 2001].

• Value-based methods rely instead on the computation of the value function
to learn the optimal policy indirectly. Value-based techniques have good
convergence properties under small state and action spaces and turn out
very suitable when there is insufficient or none prior knowledge about the
problem. However, changes to the underlying policy during the learning
process can be unstable, and the convergence properties disappear when
large (e.g., continuous) state and action spaces demand the use of function
approximation. Examples: value-iteration [Sutton and Barto, 2018], FQI
[Antos et al., 2008].

Differently from the other dimensions which are populated by sharp dichotomies,
policy and value-based methods can be combined, often with very successful
results. For example, actor-critic methods [Grondman et al., 2012] look for the
optimal policy in the policy parameter space while leveraging on the predictive
power of value-functions in order to guide the parameters update.
The fourth dimension of the taxonomy is the update frequency, which refers to
the degree of interleaving between learning and experience. Along this dimension,
we distinguish:

• continuing algorithms, which update the policy (directly or indirectly
through the value function) every time new information is available, possibly
at each time step;

• episodic algorithms, which divides experience into finite segments, called
episodes, and update the policy in between each episode;

• batch algorithms, which divide learning and experience in two distinct
phases. Typically, these are off-policy methods in which a set of behavioural
policies collects the data and the target policy is updated upon completion
of the batch.

Chapter 2. Preliminaries 20

A finer classification of this dimension is presented in [Lange et al., 2012], where
the authors remark that the distinctions between the categories does not depend
on the actual formulation: almost any algorithm can fall in any of these three
categories depending on the implementation.

2.4 Policy Search

As mentioned in the introduction, this work focuses on improving the exploration
task in continuous state-action domains, possibly characterized by some noise in
the state as it happens for control tasks with noisy sensors. In such conditions,
value-based methods present numerous difficulties. First, they have no guarantees
of convergence to an optimal policy due to the need of function approximation for
large, continuous MDPs; second, value based methods are highly sensitive to small
perturbations in the state, which makes them useless in noisy control tasks. Hence,
direct PS methods represent the best alternative in such settings. Theoretical
guarantees are often available [Moré and Thuente, 1994], environment noise has
less impactful effects, and prior domain knowledge can be exploited to design
ad-hoc policies for specific tasks. Moreover, approximate value functions can
still be used to guide the search for the optimal policy, such as in actor-critic
methods. Indeed, PS has been successfully applied to complex control tasks,
as reported in [Deisenroth et al., 2013]: from robotic arms playing baseball to
simulated table tennis, from dart throwing to pan-cake flipping.

2.4.1 Overview

Given a predetermined class of policies Π̂, PS aims at finding the policy whose
performance Jpπq is as close as possible to the performance of the optimal policy
Jpπ˚q “ J˚:

π̂ “ arg min
πPΠ̂

}J˚ ´ Jpπq}p . (2.16)

When p “ 2, this optimization problem can be interpreted as finding the policy
π̂ P Π̂ whose orthogonal projection in the space of Markovian stationary policies
Π coincides with the optimal policy π˚.
A Variety of technique have been proposed in literature to solve the problem

Chapter 2. Preliminaries 21

Figure 2.2: A taxonomy of PS methods [Deisenroth et al., 2013]

defined by Equation 2.16. As well as for value-based methods, we can distinguish
between model-free, which learn policies directly based on sampled trajectories,
and model-based approaches, which use the sampled trajectories to first build
a model of the state dynamics. A part from this macro distinction, a further
classification can be based on whether we predict trajectories deterministically
or generate them stochastically by sampling. In the case of stochastic trajectory
generation, trajectories are sampled from the interaction of the agent with the
environment, or a simulation of it. Deterministic trajectory prediction does not
sample trajectories, but analytically predicts the trajectory distribution pθpτq.
Typically, deterministic trajectory prediction is computationally more involved
than sampling trajectories from the system. However, for the subsequent policy
update, deterministic trajectory prediction can allow for an analytic computation
of gradients, which can be advantageous over stochastic trajectory generation,
where these gradients can only be approximated. Moreover, we can classify policy
search methods according to their policy update strategies, as depicted in Figure
2.2. The policy updates in both model-free and model-based PS are based on
either policy gradients Policy Gradient (PG) [Sutton et al., 2000], expectation-
maximization-based updates [Dayan and Hinton, 1997, Kober and Peters, 2009],
or information-theoretic insights [Still and Precup, 2012]. In the followings, we
will focus on model-free PS with PG updates.

2.4.2 Policy Gradient

In the context of model-free PG, the agent’s behaviour is modelled as a differen-
tiable parametric policy πθ : S Ñ ∆pAq, independent of time (stationary), such

Chapter 2. Preliminaries 22

that the current action is drawn as ah „ πθp¨|shq “ πp¨|sh,θq, where θ P Θ Ď Rm

are the policy parameters. The most simple parametrization one could think of
is the linear one, where the policy only depends linearly on the policy parameters
and the action is drawn deterministically:

a “ πθpsq “ θ
Tφpsq, (2.17)

where φpsq can be any state feature function. In stochastic formulations, typically,
a zero-mean Gaussian noise vector is added to πθpsq, so that the policy becomes:

πθpa|sq “
1

?
2πσ

exp
˜

´
1
2

ˆ

a´ θTφpsq

σ

˙2
¸

. (2.18)

In some cases, the covariance matrix is learnable too, and the parameter set
becomes tθ; Σu. In most cases, Σ is diagonal, thus easing the complexity of
the learning task along with the theoretical analysis. Hence, Problem (2.16)
translates into finding the optimal policy parameters:

θ˚ “ arg max
θPΘ

Jpθq. (2.19)

This new optimization problem can be solved by resorting to gradient ascent on
the policy parameters, which is guaranteed to converge to a local optimum at
least:

θt`1
Ð θt ` αG´1

pθtq∇θJpθtq, (2.20)

where α ě 0 is the learning rate, or step size, and Gpθq is a positive definite
matrix, called preconditioning matrix. The quantity ∇θJpθq denotes the policy
gradient PG which gives the name to this method. Its expression is derived in
[Sutton et al., 2000].

Theorem 2.4.1. Policy Gradient Theorem Given a MDPM and a Markovian
stationary stochastic parametric policy πθ differentiable w.r.t. to θ for all state-
action pairs ps, aq P pS,Aq, the gradient of the policy performance is given by:

∇θJpθq “
ż

S
dπθpsq

ż

A
∇θπθpa|sqQπθps, aqdads

Chapter 2. Preliminaries 23

πθpsq is the stationary state distribution induced by policy πθ, as defined in
Equation 2.7. By applying a trivial differentiation rule, ∇ log f “ ∇f{f , we can
rewrite Equation 2.21 in a way that will turn out extremely useful:

∇θJpθq “
ż

S
dπθpsq

ż

A
πθ∇θ log πθpa|sqQπθps, aqdads

“ E
s„dπθ ,a„πθp¨|sq

r∇θ log πθpa|sqQπθps, aqs . (2.21)

This rephrasing is known as the REINFORCE trick [Williams, 1992] and gives
the name to an algorithm which is a milestone of RL. In practical applications it
can be inconvenient or impossible to compute the Q-function. One solution is to
leverage simple function approximators belonging to the class of compatible basis
functions, i.e., functions of the form fω “ ω

T∇θ log πθpa|sq. Such approximators
can replace Qπθps, aq in Equation 2.21 for the calculation of the policy gradient
as proven in [Sutton et al., 2000].
A second solution that prevent from calculating Qπθps, aq explicitly is to resort
to a trajectory-based reformulation of Equation 2.21. By rephrasing the expected
performance under policy πθ defined in Equation 2.6 as:

Jpθq “ E
τ„pθ

rRpτqs, (2.22)

where pθ is the distribution over trajectories τ P T induced by the policy πθ, and
Rpτq “

řH´1
h“0 γ

hrh`1, we can write:

∇θJpθq “
ż

T
∇θpθpτqRpτqdτ (2.23)

“ E
τ„pθ

r∇θ log pθpτqRpτqs (2.24)

This formulation of the PG turns out to be extremely practical. Not only because
it prevents from the calculation of the Q-function, but also because it does not
require any knowledge about the transition kernel of the MDP. In fact, log pθpτq
can be easily derived from the sheer knowledge of the trajectory and definition
of the policy:

∇θ log pθpτq “ ∇θ log
˜

µpsτ,0q
H´1
ź

t“0
πθpaτ,h|sτ,hqP paτ,h`1|sτ,h`1q

¸

(2.25)

Chapter 2. Preliminaries 24

“

H´1
ÿ

h“0
∇θ log πθpaτ,h|sτ,hq, @τ P T (2.26)

At this point, the careful reader might have noticed that we have not yet discussed
the meaning of the Gpθq in the parameters update Equation 2.20. The choice of
this matrix represent the direction we want to take when performing a gradient
update. The two most common direction choices in the RL literature are steepest
gradient ascent and natural gradient ascent. In the first case, it is sufficient
to set Gpθq “ I. However, this option might be ineffective in many cases
[Amari and Douglas, 1998]:

• when there are large plateaus where the gradient is very small and does
not point in the direction of the global optimum;

• when the performance function (or, in general, the loss function to optimize)
is multimodal;

• when the gradient is not isotropic in magnitude w.r.t. any direction away
from its maximum, creating troubles in the step size tuning.

In such cases, the natural gradient has been empirically proven to have faster
convergence and to avoid premature convergence to local maxima. Natural
gradient considers the parameter space as a Riemann manifold equipped with its
own norm }θ}2Gpθq “ θ

TGpθqθ, which replaces the Euclidean norm, }θ}2I “ θTθ.
Such parametric space is a Riemann manifold whose points are probability
measures defined on a common probability space. Since G represents the local
Riemann metric tensor, in this context it is given by the Fisher Information
Matrix, i.e., Gpθq “ F pθq:

F pθq “ E
τ„pθ

“

∇θ log pθpτq∇θ log pθpτqT
‰

. (2.27)

For more details on the advantages of the natural gradient over the
steepest ascent gradient we refer to [Amari and Douglas, 1998, Amari, 1998,
Peters and Schaal, 2008].
We are now ready to present the general setup for policy gradient methods,
showed in Algorithm 2.2.

Chapter 2. Preliminaries 25

Algorithm 2.2 Generic PG algorithm
1: Input: initial policy parameters θ0, learning rate α
2: Initialize t “ 0
3: while not converged do
4: Estimate Gpθtq with an estimator pGpθtq

5: Estimate ∇θJpθtq with an estimator p∇θJpθtq
6: Update the policy parameters θt`1 Ð θt ` α pG´1pθtqp∇θJpθtq
7: t “ t` 1
8: end while
9: return an approximation of the optimal policy parameters θ˚

2.4.3 Policy Gradient Estimation

As shown in the generic policy gradient algorithm, at each iteration an estimate of
the policy gradient is required. Indeed, finding a good estimator is one of the main
challenges of policy gradient methods. Since RL aims at solving MDPs whose
model is unknown to the agent, the sole mean to estimate the policy gradient
is by leveraging on the experience collected, i.e., the samples. Among several
techniques proposed in the literature over the last years, the most prominent
approaches to estimate the policy gradient from samples are Finite-Difference
and Likelihood Ratio methods [Glynn, 1990].

Finite differences
Finite difference methods aim at approximating the policy gradient as a quo-
tient of finite increments. The idea is to perform multiple perturbations
∆θ1,∆θ2,...,∆θN of the policy parameters. Then, with each set of per-
turbed parameters collect a number of sample trajectories in order to calculate
∆Ĵi “ Jpθ `∆θiq ´ Jpθq. At this point, the policy gradient can be estimated
by regression as:

p∇θJpθq “ p∆ΘT∆Θq´1∆Ĵ , (2.28)

where ∆Θ “ r∆θ1,∆θ2, . . . ,∆θN s and ∆Ĵ “ r∆Ĵ1,∆Ĵ2, . . . ,∆ĴN s. This
method is easy to implement and very efficient when applied to determinis-
tic tasks or pseudo-random number simulations. However, it becomes useless in
real control tasks, where a large number of trajectories is required and noise slows
down convergence. Moreover, the choice of the perturbation of the parameters
is a very difficult problem which may cause instability. For these reasons, the

Chapter 2. Preliminaries 26

likelihood-ratio method is largely preferred in real control tasks.

Likelihood ratio
Likelihood ratio methods were among the first policy search methods introduced
in the early 1990s by Williams [Williams, 1992], and include the famous REIN-
FORCE algorithm. These methods build upon the policy gradient formulation
given by Equation 2.24, which, in the same way of Equation 2.21, has been
rewritten by applying the so called REINFORCE trick, also called likelihood ratio
trick. As we have seen in Equation 2.26, the policy gradient (Equation 2.24) can
be approximated by using a sum over the sampled trajectories. In a similar way,
we can estimate Rpτq in a Monte-Carlo fashion. However, such estimates suffer
of very large variance. The variance can be reduced by introducing a baseline b
for the trajectory reward Rpτq, i.e.,

∇̂θJpθ, bq “ E
τ„pθ

r∇θ log pθpτq pRpτq ´ bqs (2.29)

Remarkably, adding the baseline keep the estimator unbiased. The baseline can
be chosen arbitrarily in order to minimize the variance, with the sole condition of
being action-independent. The variance-minimizing baseline is usually referred
to as optimal baseline. Clearly, the optimal baseline depends on the specific
likelihood gradient estimation adopted.

2.4.4 Algorithms

The most popular sample-based estimate of the gradient is undoubtedly REIN-
FORCE [Williams, 1992], which uses the total return directly:

∇̂θJpθ, bqRF “
1
N

N
ÿ

i“1

˜

H´1
ÿ

h“0
∇θ log πθpaτi,h|sτi,hq

¸˜

H´1
ÿ

h“0
γhrh`1

τi
´ b

¸

, (2.30)

based on N independent trajectories. The variance of such estimator is repre-
sented by a mˆm covariance matrix, with m equals the number of parameters
of the policy. We can obtain an optimal baseline in two ways. Either we mini-
mize each element of the diagonal, obtaining a component-wise baseline made
of m elements [Peters and Schaal, 2008]. Or we can minimize the trace of the
covariance matrix, obtaining a scalar baseline[Zhao et al., 2011]:

Chapter 2. Preliminaries 27

Algorithm 2.3 Episodic REINFORCE with component-wise optimal baseline.
1: Input: policy parametrization θ
2: Initialize: n “ 0
3: while not converged do
4: collect a trajectory τn
5: for every gradient component j “ 1, 2, . . . ,m do
6: Estimate the optimal baseline

bnj “

řn
i“1

´

řH´1
h“0 ∇θ log πθpaτi,h|sτi,hq

¯2 ´
řH´1
h“0 γ

hrh`1
τi

¯

řn
i“1

´

řH´1
h“0 ∇θ log πθpaτi,h|sτi,hq

¯2

7: Estimate the gradient element

∇̂θjJpθqn “
1
n

n
ÿ

i“1

˜

H´1
ÿ

h“0
∇θj log πθpaτi,h|sτi,hq

¸˜

H´1
ÿ

h“0
γhrh`1

τi
´ bnj

¸

8: end for
9: n “ n` 1
10: end while
11: return gradient estimate ∇̂θjJpθqN

pb˚RF qj “

E
τ„pθ

„

´

řH´1
h“0 ∇θ log πθpaτ,h|sτ,hq

¯2
Rpτq



E
τ„pθ

„

´

řH´1
h“0 ∇θ log πθpaτ,h|sτ,hq

¯2
 , j “ 1, 2, ...,m; (2.31)

b˚RF “

E
τ„pθ

„

›

›

›

řH´1
h“0 ∇θ log πθpaτ,h|sτ,hq

›

›

›

2

2
Rpτq



E
τ„pθ

„

›

›

›

řH´1
h“0 ∇θ log πθpaτ,h|sτ,hq

›

›

›

2

2

 . (2.32)

As for the REINFORCE estimator (2.30), these optimal baselines are estimated
simply by replacing the expectation with the empirical average. Algorithm 2.3
shows the full REINFORCE procedure with component-based optimal baseline
estimation. For sake of clarity, we underline that this algorithm, as well as the
others that we discuss in this section, is meant to carry out step (5) of the generic
policy gradient algorithm, i.e., Algorithm 2.2.

Another solution tackling the high-variance problem of REINFORCE is to lever-
age on the intuitive observation that future actions do not depend on past rewards

Chapter 2. Preliminaries 28

(unless policy changes take place continuously along the trajectory). Hence, we
can derive two other well-know gradient estimators, Gradient of the average
reward in Partially Observable MDPs (GPOMDP) [Baxter and Bartlett, 2001]
and PGT [Sutton et al., 2000]:

∇̂θJpθ, bqGPOMDP “
1
N

N
ÿ

i“1

˜

H´1
ÿ

h“0

˜

h
ÿ

h1“0
∇θ log πθpaτi,h1 |sτi,h1q

¸

`

γhrh`1
τi

´ bh
˘

¸

,

(2.33)

∇̂θJpθ, bqPGT “
1
N

N
ÿ

i“1

˜

H´1
ÿ

h“0
γh∇θ log πθpaτi,h|sτi,hq

˜

H´1
ÿ

h1“h

γh
1´hrh

1`1
τi

´ bh

¸¸

.

(2.34)

In [Peters and Schaal, 2008] the authors show that these two estimators are
equivalent, despite their apparent difference. In the same paper, the authors
show how to derive the optimal baseline for GPOMDP, which, differently from
the REINFORCE case, can be time dependent. In the case b = 0 and under
mild assumptions, this gradient estimation has been proven to suffer from
less variance than REINFORCE [Zhao et al., 2011]. However, large variance
remains a common trait of these Monte Carlo PG techniques. In fact, being
trajectories generated by sampling at each time step according to a stochastic
policy πθ, the estimators inherit the variance of the policy. To address this
issue, in [Sehnke et al., 2008] the authors propose the Policy Gradient with
Parameter-Based Exploration (PGPE) method, in which the search in the policy
space is replaced with a direct search in the model parameter space. This
allows the use of a deterministic controller πθ : θ P Θ Ď Rm for sampling the
trajectories, i.e., πθpa|sq “ δpa ´ υθpsqq, where υθ is a deterministic function
of the state s, e.g., [Sehnke et al., 2010]. The policy parameters are sampled
from a distribution νξ P δpΘq, called hyper-policy, where ξ P Ξ Ď Rd are the
hyper-policy parameters, or hyper-parameters. Thus, in episodic PGPE it is
sufficient to sample the parameters θ „ νξ once at the beginning of the episode
and then generate an entire trajectory following the deterministic policy πθ,
with a consequent reduction of the gradient estimate variance. As an additional
benefit, the parameter gradient is estimated by direct parameter perturbations,
without having to back-propagate any derivatives, which allows to use non-
differentiable controllers. For what concern the hyper-policy parametrization

Chapter 2. Preliminaries 29

Algorithm 2.4 Episodic PGPE
1: Input: initial hyper-parameters ξ0, learning rate α
2: Initialize t “ 0
3: while not converged do
4: for n “ 1, 2, . . . , N do
5: Sample controller parameters θpnq „ νξt
6: Sample trajectory τ „ pθ under policy πθ
7: end for
8: Estimate optimal baseline b
9: Estimate the hyper-policy gradient:

∇̂ξJpξtq “
1
N

N
ÿ

i“1
∇ξ log νξpθpiqqpRpτ piqq ´ bq

10: Update the hyper-parameters ξt`1 “ ξt ` α∇̂ξJpξtq
11: t “ t` 1
12: end while
13: return an approximation of the optimal policy parameters θ˚ „ νξ˚

choice, the most typical one is Gaussian with diagonal covariance matrix, as it
happens in classical PG. Although the policy is deterministic, the exploration
is guaranteed by the stochasticity of the hyper-policy. The hyper-parameters
ξ are updated by following the gradient ascent direction of the gradient of the
expected reward, which can be rewritten as:

Jpξq “

ż

Θ

ż

T
νξpθqpθpτqRpτqdτdθ, (2.35)

where νξpθqpθpτq “ pξpθ, τq because τ is conditionally independent from ξ given
θ. Applying the likelihood ratio technique, we obtain:

∇ξJpξq “ E
θ„νξ,τ„pθ

r∇ξ log νξpθqRpτqs (2.36)

In order to further reduce the estimate variance, we can adopt an estimator with
baseline and compute the optimal one similarly to the REINFORCE case. The
episodic PGPE algorithm is reported in Algorithm 2.4.

Chapter 2. Preliminaries 30

2.5 Multiple Importance Sampling

In the last section of this chapter we present a statistical tool which is an extension
of the well known importance sampling. Although this is not strictly related to
learning itself, we introduce this tool to the reader because our work leverages it
to enable off-line learning for the agent, in a way that is described thoroughly
in Chapter 4. We conclude this section with a lemma which represents the first
little contribution of this work to the literature and an essential building block
for further developments.

Importance sampling [Cochran, 2007, Owen, 2013] is a technique that allows
estimating the expectation of a function under some target or proposal distribution
with samples drawn from a different distribution, called behavioral. Let P and
Q be probability measures on a measurable space pZ,Fq, such that P ! Q

(i.e., P is absolutely continuous w.r.t. Q). The importance weight wP {Q is the
Radon-Nikodym derivative of P w.r.t. Q, i.e., wP {Q ” dP

dQ . Let p and q be the
densities of P and Q, respectively, w.r.t. a reference measure. From the chain
rule, wP {Q “ p

q
. In the continuous case, p and q are probability density functions

of absolutely continuous random variables having laws P and Q, respectively,
and wP {Q is a likelihood ratio. Given a bounded function f : Z Ñ R, and a set
of i.i.d. outcomes z1, . . . , zN sampled from Q, the importance sampling estimator
of µ :“ Ez„P rfpzqs is:

pµIS “
1
N

N
ÿ

i“1
fpziqwP {Qpziq, (2.37)

which is an unbiased estimator [Owen, 2013], i.e., E
zi

iid
„Q
rpµISs “ µ.

MIS [Veach and Guibas, 1995] is a generalization of the importance sampling
technique which allows samples drawn from several different behavioral distri-
butions to be used for the same estimate. Let Q1, . . . , QK be all probability
measures over the same probability space as P , and P ! Qk for k “ 1, . . . , K. Let
β1pzq, . . . , βKpzq be mixture weights, i.e., for all z P Z, β1pzq ` ¨ ¨ ¨ ` βKpzq “ 1
and βkpzq ě 0 for k “ 1, . . . , K. Let zik denote the i-th sample drawn from Qk.
Given Nk i.i.d. samples from each Qk, the MIS estimator is:

pµMIS “

K
ÿ

k“1

1
Nk

Nk
ÿ

i“1
βkpzikqwP {Qkpzikqfpzikq, (2.38)

which is also an unbiased estimator of µ for any valid choice of the mixture
weights. A common choice of the mixture weights having desirable variance

Chapter 2. Preliminaries 31

properties is the balance heuristic [Veach and Guibas, 1995]:

βkpzq “
Nkqkpzq

řK
j“1Njqjpzq

, (2.39)

which yields the Balance Heuristic Estimator (BH):

pµBH “

K
ÿ

k“1

Nk
ÿ

i“1

ppzikq
řK
j“1Njqjpzikq

fpzikq. (2.40)

Since (2.39) are valid mixture weights, pµBH is an unbiased estimator of µ. More-
over, its variance is not significantly larger than any other choice of the mixture
weights [Veach and Guibas, 1995]. An appealing interpretation of the balance
heuristic is that we can look at pµBH as an importance sampling estimation in
which samples are drawn from the mixture Φ “ ppzikq

řK
j“1

Nj
N
qjpzikq

.

To further characterize the variance of this estimator, we introduce the concept of
Rényi divergence. Given probability measures P and Q on pZ,Fq, where P ! Q

and Q is σ-finite, the α-Rényi divergence is defined as [Rényi, 1961]:

DαpP }Qq “
1

α ´ 1 log
ż

Z

`

wP {Q
˘α dQ, (2.41)

for α P r0,8s1. We denote the exponentiated α-Rényi divergence with:

dαpP }Qq “ exptDαpP }Qqu. (2.42)

Of particular interest is d2, as the variance of the importance weight is
Varz„Q

“

wP {Qpzq
‰

“ d2pP }Qq´1, which is a divergence itself [Cortes et al., 2010].
For this reason, we always mean the 2-Rényi divergence when omitting the order
α. The Rényi divergence was used by [Metelli et al., 2018] to upper bound the
variance of the importance sampling estimator as:

V ar
zi

iid
„q
rpµISs ď }f}

2
8
d2pP }Qq{N. (2.43)

A similar result can be derived for the BH estimator:

Lemma 2.5.1. Let P and tQku
K
k“1 be probability measures on the measurable

space pZ,Fq such that P ! Qk and d2pP }Qkq ă 8 for k “ 1, . . . , K. Let
1The special cases α “ 0, 1 and 8 are defined as limits.

Chapter 2. Preliminaries 32

f : Z Ñ R be a bounded function, i.e., }f}
8
ă 8. Let pµBH be the balance

heuristic estimator of f , as defined in (2.40), using Nk i.i.d. samples from each
Qk. Then, the variance of pµBH can be upper bounded as:

Var
zik

iid
„Qk

rpµBHs ď }f}
2
8

d2pP }Φq
N

, (2.44)

where N “
řK
k“1Nk is the total number of samples and Φ “

řK
k“1

Nk
N
Qk is a

finite mixture.

Chapter 3

Exploration Techniques

In this chapter we present the state of the art of MABs and RL techniques that
focus on the exploration challenge arising in these learning frameworks. While
sketching a sort of taxonomy of the exploration techniques, we describe some
emblematic algorithms for each category, with particular attention to those that
inspired our work. Indeed, the exploration problem in the PS setting is the main
target of our thesis project. Our main contributions, described in Chapters 4-5,
have been designed after a careful literature review. In this chapter we try to
report the most relevant insights collected along this review. The reader may
notice that, despite this thesis project aims at solving the exploration problem in
the framework of PS, few references to PS algorithms will be given. In fact, to
the best of our knowledge, little research has been done so far on the exploration
problem in PS.

Following the taxonomy outlined by Sebatian Thrun in 1992 for the RL framework
[Thrun, 1992], we divide both MABs and RL exploration techniques in two
families of exploration schemes: undirected and directed exploration. While the
former family is closely related to random walk exploration, directed exploration
techniques memorize exploration-specific knowledge which is used for guiding
the exploration search. In many finite deterministic domains, any learning
technique based on undirected exploration is inefficient in terms of learning
time, i.e. learning time is expected to scale exponentially with the size of the
state space [Whitehead and Ballard, 1991]. For all these domains, reinforcement
learning using a directed technique can always be performed in polynomial
time, demonstrating the important role of exploration in reinforcement learning
[Thrun, 1992]. However, an important remark is that we do not address the
problem of pure exploration, in which there is no price to be paid for exploration

Chapter 3. Exploration Techniques 34

and the only objective is to find the reward-maximizing actions. Instead, we
investigate effective exploration in the more general context of learning described
in the previous chapter (2.1.1), where the agent faces the exploration-exploitation
dilemma all along its journey. How can the agent achieve a better balance
between exploration and exploitation? How can it explore more effectively? Can
it improve the effectiveness of its exploration while going through the learning
process? We will try to answer these questions in the two sections of this chapter.
Each of the sections will start with an overview on undirected exploration
techniques, then directed strategies will be investigated more thoroughly.

3.1 Exploration in Multi Armed Bandits

3.1.1 Undirected Exploration

The most uninformed and basic way of exploring an unknown environment is
to generate actions randomly with uniform probability. This method is often
applied if exploration costs do not matter during learning. Sometimes tasks
are divided into two phases, namely an exploration and an exploitation phase,
and costs are not considered during the exploration phase. This is the case of
the explore-then-commit algorithm (Algorithm 2.1) presented in the previous
chapter, which explores uniformly the finite number of arms m before starting the
exploitation phase, after mK steps. Another common algorithm with undirected
uniform exploration is the ε-greedy algorithm [Lattimore and Szepesvári, 2019].
One can think of it as an extension of the explore-then-commit algorithm which
allows to continue exploring with probability ε even during the performance
phase (i.e., the exploitation phase). The idea is, after a pure exploration phase of
mK steps, to exploit the estimated best arm xt “ arg max pµiptq with probability
p1´ εtq, and explore uniformly the remaining set of arms with probability εt, at
each step. In 2002, Auer et al. [Auer et al., 2002] analyzed the regret of ε-greedy
with slowly decreasing ε and showed its asymptotic convergence to the optimal
solution. These are just asymptotic guarantees, however, and say little about
the practical effectiveness of the methods.
Another approach to undirected exploration which is more effective when costs
are relevant during learning is non-uniform exploration utilizing the current
utility estimates to influence action-selection. The higher the expected utility of
action i, the more likely i gets selected. This ensures that the learning system
explores and exploits simultaneously, as it happens for the ε-greedy algorithm, but

Chapter 3. Exploration Techniques 35

in an intuitively more effective way since actions are not chosen uniformly during
exploration. An example of utility-driven non-uniform undirected exploration is
the Boltzmann-distributed exploration [Cesa-Bianchi et al., 2017]. By defining
the average reward of an arm as in Equation 2.3:

µ̂iptq “
1

Tiptq

t
ÿ

s“1
1txs“iurs, (3.1)

the probability for an action i to get selected is a non-linear function of µ̂i:

Prpiq “
eµ̂iτ

´1

ř

aPX e
µ̂aτ´1 . (3.2)

Here τ is a gain factor, often called temperature, which determines the amount of
randomness in the action-selection procedure. With τ Ñ 0, pure exploitation is
approached, and with τ Ñ 8 the resulting distribution approaches the uniform
distribution.
In the rest of this section, we present some techniques of directed exploration,
which memorize knowledge about the learning process itself and utilize this
knowledge to guide the exploration.

3.1.2 Count-based Exploration and Upper Confidence
Bound

Count-based exploration memorizes knowledge about the number of times Tiptq
action i has been visited up to time-step t, for all i P X . Strategies based on
counting usually evaluate actions by a linear combination of an exploitation term
and an exploration term, called the exploration bonus, which is a (usually inverse)
function of Tiptq. Hence, action xt is selected in a deterministic fashion as:

xt “ arg max
xPX

tpµx ` bonuspTxpt´ 1qqu. (3.3)

Such strategy is at the core of the celebrated UCB algorithm
[Lai and Robbins, 1985, Agrawal, 1995a, Auer et al., 2002], that overcomes
many of the limitations of strategies based on exploration followed by commit-
ment. The algorithm has many different forms, depending on the distributional
assumptions on the noise. Here, we assume the noise is 1-subgaussian, i.e.,:

Chapter 3. Exploration Techniques 36

Definition 3.1.1. Subgaussianity A random variable X is σ-subgaussian if, for
all λ P R, it holds that E rexppλXqs ď exppλ2σ2{2q.

Coupling this property with Markov’s inequality, we can prove that:

Theorem 3.1.1. [Lattimore and Szepesvári, 2019] If X is σ-subgaussian, then,
for any ε ě 0,

P pX ě εq ď exp
ˆ

´
ε2

2σ2

˙

From this theorem, we can derive a key corollary which gives us precious infor-
mation about the concentration of the sample mean around the true mean of
independent, σ-subgaussian random variables:

Corollary 3.1.1. Assume that Xi ´ µ, for i “ 1, 2, . . . , n are independent, σ-
subgaussian random variables. Then, for any ε ě 0, with probability at least 1´ δ,
δ P r0, 1s:

µ ď pµ`

c

2σ2 logp1{δq
n

and µ ě pµ´

c

2σ2 logp1{δq
n

,

where pµ “ 1
n

řn
t“1Xt.

When considering its options in round t, the learner has observed Tipt ´ 1q
samples from arm i and received rewards from that arm with an empirical mean
of pµi. Then an optimist candidate for the unknown mean of the ith arm is:

UCBipt´ 1, δq “ pµipt´ 1q `

d

2 logp1{δq
Tipt´ 1q . (3.4)

Great care is required when comparing (3.1.1) and (3.4) because in the former
the number of samples is the constant n, but in the latter it is a random
variable Tipt´ 1q. Apart from this technicality, the intuition remains that δ is
approximately an upper bound on the probability of the event that the above
quantity is an underestimate of the true mean. In fact, by Corollary (3.1.1), for
any δ P r0, 1s:

Pr

˜

µ ě pµ`

c

2σ2 logp1{δq
n

¸

ď δ. (3.5)

Chapter 3. Exploration Techniques 37

Algorithm 3.1 UCB(δ) algorithm
1: Input: K arms and δ
2: Choose each action once
3: for t “ 1, 2, . . . , T do
4: if t ď K then
5: xt “ t

6: else
7: xt “ arg maxi UCBipt´ 1, δq
8: end if
9: end for

After having picked all actions once, the UCB policy simply picks at each time
step t the action i whose UCBipt´1, δq index is maximum, as shown in Algorithm
3.1.

The value of 1´δ is called the confidence level, and different choices lead to differ-
ent algorithms, each with their pros and cons, and sometimes different analysis.
For example, Auer et al. [Auer et al., 2002], present an algorithm originating
in [Agrawal, 1995a] called UCB1 which achieves asymptotic logarithmic regret
Oplog T q, for all reward distributions, with no prior knowledge of the reward
distribution. Equivalently, we say that UCB1 achieves asymptotic sub-linear
pseudo-regret rOp1q. UCB1 takes δ “ 1{t, where t is the current time step,
resulting in:

UCB1ipt, δq “ pµiptq `

d

2 logptq
Tiptq

(3.6)

However, rather than considering 1-subgaussian noise, Auer et al.
[Auer et al., 2002] consider bandits where the payoffs are confined to the r0, 1s
interval, which are ensured to be 1/2-subgaussian. Better bounds have been
proven for modifications of the UCB1 algorithm, for example Improved UCB
[Auer and Ortner, 2010] and Kullback-Leibler Upper confidence Bound (KL-
UCB) [Garivier and Cappé, 2011].

3.1.3 Optimism in the Face of Uncertainty

The family of UCB algorithms is of particular relevance because it represents
a successful implementation of the principle of OFU, which is applicable to

Chapter 3. Exploration Techniques 38

various exploration problems, not only finite-armed stochastic bandits. The OFU
principle states that one should choose their actions as if the environment is as
nice as plausibly possible.
To illustrate the intuition imagine of being in the same situation depicted in
(2.1.1), i.e., a standard lunch break from work. You can choose between your
good old-fashioned favourite restaurant or sampling a restaurant that you never
visited before. Taking an optimistic view of the unknown restaurant leads to
exploration because without data it could be amazing. Then, after trying the
new option a few times you can update your statistics about each choice and
make a more informed decision. On the other hand, taking a pessimistic view of
the new option discourages exploration and you may suffer significant regret if
the local options are delicious. The UCB strategy assigns to each arm an upper
confidence bound that with high probability is an overestimate of the unknown
mean reward. The intuitive reason why this leads to sublinear regret is simple.
Assuming the upper confidence bound assigned to the optimal arm is indeed
an overestimation, then another arm can only be played if its upper confidence
bound is larger than that of the optimal arm, which in turn is larger than the
mean of the optimal arm. And yet this cannot happen too often because the
additional data provided by playing a suboptimal arm means that the upper
confidence bound for this arm will eventually fall below that of the optimal arm.
The next algorithm that we discuss will be useful to better understand the OFU
principle and its exploration power, with application to a wider set of arms.

3.1.4 Hierarchical Optimistic Optimization

In 2011, Bubeck et al. [Bubeck et al., 2011] proposed a novel optimistic arm
selection strategy whose regret improved upon previous results on continuum and
Lipschitz bandits (e.g., [Kleinberg, 2005, Kleinberg et al., 2008]), extending and
generalizing the environment class of application to arbitrary topological spaces.
In particular, the setting is that of X -armed bandits, introduced in (2.1.3). This
algorithm is particularly interesting to us for two reasons:

(i) it applies the OFU principle to continuous action spaces, as we wish to do
in the context of RL Policy Search;

(ii) it leverages the correlation between arms (expressed as a dissimilarity
function) to explore the environment more effectively.

Chapter 3. Exploration Techniques 39

The functioning of the Hierarchical Optimistic Optimization (HOO) algorithm
is very similar to the UCB strategy, with application to a more general set of
arms. Consider for example a compact, two-dimensional continuous set of arms,
like a square plane in the euclidean space. The strategy is to recursively cutting
the square in rectangles, sub-rectangles and so on, building a binary graph of
sets and subsets. We start from the whole square, pull a random arm from it,
then divide it in two rectangles. These two rectangles become the new leaves of
the graph. Subsequently, we pick one of the two leaves, pull a random arm from
it, and spawn two new leaves by sectioning it. Then we repeat the procedure.
At each time step, the choice of the leaf (rectangle) depends on an upper bound
of the mean payoff of the arms laying within it. All the arms within the same
rectangle are considered to have a similar mean payoff because of the structure
imposed to the arm set.

Formally, the HOO strategy assumes that the decision maker is able to cover
the space of arms in a recursive manner, successively refining the regions in the
covering such that the diameters of these sets shrink at a known geometric rate
when measured with the dissimilarity metric. In particular, the authors define a
tree of coverings as:

Definition 3.1.2. (Tree of coverings) A tree of coverings is a family of mea-
surable subsets pPph,iqq1ďiď2h,hě0 of X such that for all fixed integer h ě 0, the
covering

Ť

1ďiď2h Ph,i “ X holds. Moreover, the elements of the covering are
obtained recursively: each subset Ph,i is covered by the two subsets Ph`1,2i´1 and
Ph`1,2i.

Remark 3.1.1. A typical choice for the coverings in a cubic domain is to let the
domains be hyper-rectangles. They can be obtained, for example, in a dyadic
manner, by splitting at each step hyper-rectangles in the middle along their
longest side, in an axis parallel manner; if all sides are equal, we split them along
the first axis.

The number of visits of a node ph, iq up to time-step T is given by the number
of visits of every node belonging to Cph, iq, i.e., the set of the node ph, iq and its
descendants:

Th,iptq “
t
ÿ

l“1
1tphl,ilqPCph,iqu, (3.7)

Chapter 3. Exploration Techniques 40

where phl, ilq are the coordinates of the node selected at time step l. Then, the
empirical average of the rewards received for the time-points when the path
followed by the algorithm has gone through ph, iq is:

pµh,iptq “
1

Th,iptq

t
ÿ

l“1
rl1tphl,ilqPCph,iqu. (3.8)

Thus, similarly to the UCBpδq algorithm, an upper confidence bound can be
defined as:

Uh,iptq “ pµh,iptq `

d

2 log t
Th,iptq

` ν1ρ
h, (3.9)

where ρ P p0, 1q and ν1 P R`0 are parameters of the algorithm. Specifically, given
depth h, ν1ρ

h represents an upper bound of the diameter of each node Pph,iq of
the three of coverings. The existence of such bound is a necessary assumption
for the functioning of HOO. Along with the nodes the algorithm stores what the
authors call B-values:

Bh,iptq “ mintUh,iptq,maxtBh`1,2i´1ptq, Bh`1,2iptquu (3.10)

Finally, let us denote by T the infinite tree of coverings, by Tt the set of nodes of
the tree that have been picked in previous rounds and by St the nodes which are
not in Tt. Now, for a node ph, iq in St, we define its B-value to be Bh,iptq “ `8 .
We now have everything we need to present the full HOO strategy in Algorithm
3.2.

The definition and use of B-values, that puts in relationship each node (subset of
X) with all its children (subsets of the subset of X), shows how the algorithm relies
on the correlation between the reward of an arm and that of its neighbours. Indeed,
the proof of the regret achieved by HOO relies on the following assumption:

Assumption 3.1.1. The mean-payoff function µ is weakly Lipschitz w.r.t. a
dissimilarity metric `, i.e., @x1, x2 P X ,

µ˚ ´ µpx2q ď µ˚ ´ µpx1q `maxtµ˚ ´ µpx1q, `px1, x2qu. (3.12)

Chapter 3. Exploration Techniques 41

Algorithm 3.2 HOO algorithm
1: Input: the infinite tree of coverings T , ρ P p0, 1q and ν1 P R`0
2: Initialize: t “ 0, T0 “ H, S0 “ T , Bh,ip0q “ `8 @ph, iq P S0

3: Choose the root node ph0, i0q “ p0, 1q and update t “ t` 1
4: for t “ 1, 2, . . . , T do
5: Choose a node according to the deterministic rule:

pht, itq “ arg max
ph,iqPSt

Bh,iptq (3.11)

6: Choose, possibly at random, an arm xt P Ppht,itq and collect reward rt
7: Update Bh,iptq for pht, itq and all its parent nodes
8: Tt`1 “ Tt Y pht, itq, St`1 “ St{pht, itq
9: end for

Note that weak Lipschitzness is satisfied whenever µ is 1-Lipschitz, i.e., @x1, x2 P

X , |µpx1q ´ µpx2q| ď `px1, x2q. On the other hand, weak Lipschitzness implies
local (one-sided) 1-Lipschitzness at any maxima. Indeed, at an optimal arm x˚,
Equation 3.12 rewrites as µpx˚q ´ µpx2q ď `px˚, x2q.
By carefully choosing the tree of coverings and the algorithm parameters, the
authors show that the regret of the proposed approach is bounded by rOp

?
T q “

Oplog
?
T q. For more details, refer to [Bubeck et al., 2011].

3.1.5 Posterior Sampling

Another way to address the exploration-exploitation dilemma in MABs is by pos-
terior sampling. Particularly relevant is an heuristic called Thompson Sampling
(TS), firstly introduced by [Thompson, 1933], which has been thoroughly studied
in the literature for its good properties. This technique is considered to be close to
UCB algorithms because it also allocates exploratory effort to actions that might
be optimal i.e., it also builds upon the OFU principle [Russo and Van Roy, 2013].
Indeed, similarly to UCB, TS avoids the under-exploitation of actions that are
potentially good and prevents from wasting time on actions that are already
known to be bad. The Bayesian approach is what sets TS apart from the tech-
niques previously mentioned. It requires a prior distribution for each arm as
input, which encodes the initial belief that a learner has on each arm reward.
Subsequently, at each round t, it samples from each arm distribution, chooses
the action with the best reward and updates its posterior distribution by means
of the Bayes’rule.

Chapter 3. Exploration Techniques 42

The elements of TS are the followings:

(i) a set Θ or parameters θ of the distribution of r „ Rθp¨|xq;

(ii) a prior distribution P pθq on these parameters;

(iii) the history It “ tx0, r0, x1, r1, . . . , xt´1, rt´1u of past observations;

(iv) a likelihood function P pIt|θq;

(v) a posterior distribution P pθ|Itq9P pIt|θqP pθq.

TS consists in playing the action x P X according to the probability that it
maximizes the expected reward according to your belief, i.e.,:

arg max
xPX

Err|xs “ arg max
xPX

ż

Err|θ, xsP pθ|Itqdθ (3.13)

Once having observed the reward from the chosen arm, the posterior distribution
can be updated using the Bayes’ rule. In practice, it is either impossible or
computationally expensive to compute the integral above. Therefore, usually
we resort to sampling θ̂t „ P pθ|Itq at time t, and then play the arm xt “

arg maxxPX Err|θ̂t, xs. Conceptually, this means that the player instantiates their
beliefs randomly in each round, and then acts optimally according to them.
In [Agrawal and Goyal, 2013] the authors prove that for the K-armed stochastic
bandit problem, Thompson Sampling has expected regret of

ErRegretpT qs ď p
a

KT log T q, (3.14)

which is identical to the best known problem-independent bound for the expected
regret of UCB1 [Bubeck et al., 2012].

Example: Thompson Sampling for Bernoulli MAB Suppose that the
reward function of each arm i, i “ 1, 2, . . . , K is a Bernoulli of parameter pi:
rt, i „ Bppiq i.e., the result of pulling an arm is either a success (with probability
pi) or a failure (with probability 1´ pi). We know that, given a uniform prior
over the parameter p „ Up0, 1q “ Betap1, 1q, and having observed α´1 successes
and β ´ 1 failures, the posterior distribution of the parameter p of a Bernoulli
is a Beta distribution of parameters α and β (Beta distributions are frequently

Chapter 3. Exploration Techniques 43

Algorithm 3.3 TS for Bernoulli MAB with Beta priors
1: Initialize: the prior distribution for each arm as Betap1, 1q
2: for t “ 1, 2, . . . , T do
3: for i “ 1, 2, . . . , K do
4: Sample p̂i „ Betapαi, βiq

5: end for
6: Pull arm xt “ arg maxi p̂i and observe rt P t0, 1u
7: Update distribution:

pαi, βiq “

$

&

%

pαi, βiq, if xt ‰ i

pαi, βiq ` prt, 1´ rtq, if xt “ i
(3.15)

8: end for

adopted as priors because of their conjugacy properties). Hence, TS can be
performed as shown in Algorithm(3.3).

For a more extensive discussion on algorithms implementing TS refer to
[Russo et al., 2018].

3.1.6 Gaussian Process Upper Confidence Bound

We conclude by presenting an algorithm, Gaussian Process Upper Confidence
Bound (GPUCB) [Srinivas et al., 2010], of particular interest to us for three
reasons:

(i) it serves as a further example of application of the OFU principle and of
UCB variant;

(ii) it formalizes the broad problem of optimizing an unknown, noisy function,
that is expensive to evaluate, as a multi-armed bandit problem;

(iii) it deals with a continuous set of arms.

Indeed, our main contribution builds upon a similar formalization of the RL
continuous control problem. Moreover, it also represents a case of posterior
sampling different from TS.
Consider the MAB problem presented in Chapter 2, where the reward distribution
can be seen as the sum of a reward function (e.g. the expected reward function

Chapter 3. Exploration Techniques 44

µpxtq, that here we note as fpxtq) and noise, i.e., yt “ Rp¨|xtq “ fpxtq ` εt.
As we already know, the goal is to maximize the sum of the rewards collected
by choosing a point of the domain xt P X at each round t up to the horizon
T . For example, we might want to find locations of highest temperature in a
building by sequentially activating sensors in a spatial network and regressing
on their measurements. Each activation draws battery power, so we want to
sample from as few sensors as possible. In this context, as in many other MAB
problems, a natural performance metric is the cumulative regret as defined
in Definition (2.1.3). GPUCB explicitly encourages additional exploration in
a UCB sense by choosing, at each step, the arm associated to the highest
upper bound of the mean return. Given an arm x this bound is calculated
by summing the mean and standard deviation of the estimator of f . In this
case, f is sampled from a prior distribution with known mean and standard
deviation, whose posterior is updated in a Bayesian fashion at every step. In
order to enforce some implicit properties like smoothness without relying on
any parametric assumption, the authors of [Srinivas et al., 2010] model f as
a sample from a Gaussian Process (GP): a collection of dependent random
variables, one for each x P X , every finite subset of which is multivariate
Gaussian distributed [Williams and Rasmussen, 2006]. A GP is a stochastic
process GP pµpxq, kpx,x1qq, specified by its mean µpxq “ E rfpxqs and covariance
function kpx,x1q “ E pfpxq ´ µpxqqpfpx1q ´ µpx1qq. GPUCB generally adopts
GP p0, kpx,x1qq as prior distribution over f . A major advantage of working with
GPs is the existence of simple analytic formulae for mean and co-variance of the
posterior distribution, which allow easy implementation of algorithms. For a
noisy sample yT “ ry1, y2, . . . , yT s

T at points AT “ tx1,x2, . . . ,xT u over f , the
posterior of f is a GP distribution again specified by mean µT pxq, covariance
kT px,x

1q and variance σ2
T pxq:

µT pxq “ kT pxq
T
pKT ` σ

2Iq´1yT , (3.16)
kT px,x

1
q “ kpx,x1q ´ kT pxq

T
pKT ` σ

2Iq´1kT px
1
q, (3.17)

σ2
T pxq “ kT px,xq, (3.18)

(3.19)

where kT pxq “ rkpx1,xq, kpx2,xq, . . . , kpxT ,xqs and KT is the positive definite
kernel matrix rkpx,x1qsx,x1PAT . The full GPUCB procedure, motivated by the
UCB algorithm, is shown in Algorithm 3.4.

Chapter 3. Exploration Techniques 45

Algorithm 3.4 GPUCB
1: Input: GP prior µ0 “ 0, µ0 “ 0, βt P R`

2: for t “ 1, 2, . . . , T do
3: Choose xt “ arg maxxPX µt´1pxq `

?
βtσt´1pxq

4: Sample yt “ fpxtq ` εt

5: Perform Bayesian update to obtain µt and σt
6: end for

Despite being a successful and easy-to-implement algorithm in many cases,
GPUCB suffers of two main drawbacks. First, the assumption of f being
sampled from a GP prior is unrealistic in many cases. Furthermore, finding the
upper confidence index in line 3 of Algorithm 3.4 may be hard if the arm set X
is continuous (or generally infinite). Indeed, the bound is multimodal in general.
Although global search heuristics might be effective, no successful practical
applications have been registered in the continuous case to our knowledge.

3.2 Exploration in Reinforcement Learning

3.2.1 Undirected Exploration

The most classic undirected exploration strategies in RL are the same of those
introduced earlier for MABs. Indeed, the ε-greedy policy is one of the most widely
used and known algorithm in reinforcement learning [Sutton and Barto, 2018].
In the same way, Boltzmann exploration, which uses the exponential of the
standard Q-function as the probability of an action, has been extensively stud-
ied [Thrun, 1992, Cesa-Bianchi et al., 2017]. Similar policy representations are
energy-based models, with the Q-value obtained from an energy model such as a
restricted Boltzmann machine [Sallans and Hinton, 2004]. An interesting family
of extensions to these techniques goes under the name of maximum entropy RL.

Maximum Entropy Reinforcement Learning
As stated in Chapter 2, Equation 2.15, the goal of RL is to find the optimal policy
π˚ which maximizes the performance Jpπq. Maximum entropy RL augments this
objective by introducing an entropy term, such that the optimal policy also aims
at maximizing its entropy at each visited state:

Chapter 3. Exploration Techniques 46

π˚ “ arg max
π

ÿ

h

E
sh,ah„dπ

rRpsh, ahq ` αHpπp¨|shqqs , (3.20)

where α is a convenient hyperparameter that can be used to determine the
relative importance of entropy and reward. This objective function entails a
novel approach to undirected exploration w.r.t. Boltzmann exploration. While
the latter greedily maximizes entropy at the current time step, maximum entropy
RL explicitly optimizes for policies that aim to reach states where actions
will have high entropy in the future. This distinction is crucial, since the
maximum entropy objective can be shown to maximize the entropy of the entire
trajectory distribution for the policy π, while the greedy Boltzmann exploration
approach does not. Optimization problems of this type have been covered in
a number of scientific papers, e.g., [Ziebart et al., 2008, Haarnoja et al., 2017,
Haarnoja et al., 2018]. In [Haarnoja et al., 2017], Haarnoja et al. extend the
objective presented above to infinite time horizons with the introduction of a
discount factor λ:

π˚ “ arg max
π

ÿ

h

E
sh,ah„dπ

«

ÿ

l

γl´h E
sl,al„dπ

rRpsl, alq ` αHpπp¨|slqq|sh, ahs

ff

.

(3.21)

his objective corresponds to maximizing the discounted expected reward and en-
tropy for future states originating from every state-action tuple psh, ahq weighted
by its probability dπ under the current policy. Then, they define a soft Q-value
Qπ
soft for any policy π as the expectation under π of the discounted sum of

rewards and entropy:

Qπ
soft “ r1 ` E

s0“s,a0“a,τ„π

«

8
ÿ

h“1
rh`1 ` αHpπp¨|shqq

ff

, (3.22)

from which they derive the soft Bellman equation. The authors build upon this
novel setting an algorithm called Soft Q-learning, which has similar mechanisms
to traditional Q-learning and adopts deep function approximation to compute
the Q-values over a continuous domain. Among the advantages presented over
other deep RL approaches, Soft Q-learning turns out to be more effective for
learning multi-modal policies for exploration. In fact, similarly to MABs, during

Chapter 3. Exploration Techniques 47

the learning process it is often best to keep trying multiple available options
until the agent is confident that one of them is the best. However, deep RL
algorithms for continuous control typically use unimodal action distributions,
which are not well suited to capture such multi-modality. As a consequence, such
algorithms may prematurely commit to one mode and converge to suboptimal
behaviour, as it happens in the practice. One year later, the same authors of
Soft Q-learning [Haarnoja et al., 2017] proposed a powerful extension named
Soft Actor-Critic [Haarnoja et al., 2018], which combined off-policy updates
with a stable stochastic actor-critic formulation.

Following the same pattern adopted for MABs, we proceed now with
presenting some techniques that deals with the exploration challange in a more
directed way, i.e., by leveraging on relevant information collected during the
learning process to lead exploration more effectively.

3.2.2 Count-based Exploration and Intrinsic Motivation

The classic, theoretically-justified MABs exploration methods based on count-
ing state-action visitations and turning this count into a bonus reward have
been introduced in Section 3.1.2. Taking inspiration from the MAB liter-
ature, many similar count-based algorithms have been designed for tabular
RL. It is the case of the notorious E3 algorithm [Kearns and Singh, 2002], and
two other popular optimist algorithms: Rmax [Brafman and Tennenholtz, 2002]
and UCRL [Auer and Ortner, 2007]. In recent works [Bellemare et al., 2016,
Tang et al., 2017, Ostrovski et al., 2017, Choshen et al., 2018], they have also
been adapted to large, non-tabular RL problems . A relevant exam-
ple is that of Bellamare et al. [Bellemare et al., 2016], later developed in
[Ostrovski et al., 2017], which proposes a novel algorithm for deriving a pseudo-
count from an arbitrary density model. Let ρ be a density model on a finite
space X and ρnpxq the probability assigned by the model to x after being trained
on a sequence of stated x1, x2, . . . , xn P X . Assume ρnpxq ą 0 for all x, n. The
recording probability ρ1npxq is then the probability the model would assign to x
one more time. The prediciton gain of ρ is:

PGnpxq “ log ρ1npxq ´ log ρnpxq. (3.23)

Note that PGnpxq ě 0 for all x P X whenever the the density model ρ is learning-

Chapter 3. Exploration Techniques 48

positive, i.e., if ρ1npxq ě ρnpxq for all x1, x2, . . . , xn. For learning -positive ρ, the
authors define the pseudo-count as:

pNnpxq “
ρnpxqp1´ ρ1npxqq
ρ1npxq ´ ρnpxq

, (3.24)

derived from postulating that a single observation of x P X should lead to a unit
increase in pseudo-count:

ρnpxq “
pNnpxq

n̂
, ρ1npxq “

pNnpxq ` 1
n̂` 1 , (3.25)

where n̂ is the pseudo-count total. The pseudo-count generalizes the usual state
visitation count function Nnpxq. Moreover, under certain assumptions on ρn,
pseudo-counts grow approximately linearly with real counts. Crucially, the
pseudo-count can be approximated using the prediction gain of the density
model:

pNnpxq “
`

ePGnpxq ´ 1
˘´1 (3.26)

Its main use is to define an exploration bonus that can be added to every extrinsic
reward rn received by the agent. For example, at step n, the agent would face a
total reward Rn given by:

r1n “ rn ` p pNnpxqq
´ 1

2 , (3.27)

which incentivize the agent to try to re-experience surprising situations. In
[Ostrovski et al., 2017] the authors adopt PixelCNN, an advanced neural
density model for images first introduced in [Oord et al., 2016], to supply a
pseudo-count. They manage to combine PixelCNN pseudo-counts with different
agent architectures to dramatically improve the state of the art on several hard
Atari games, a popular set of RL environments for benchmarking.

Interestingly, this notion of pseudo-counts and their application is closely re-
lated to the notion of intrinsic motivation. In fact, quantities related to pre-
diction gain have been used for similar purposes in the intrinsic motivation

Chapter 3. Exploration Techniques 49

literature [Lopes et al., 2012], where they measure an agent’s learning progress
[Oudeyer et al., 2007]. The concept of intrinsic motivation has been introduced
in the RL literature by Singh et al. in [Chentanez et al., 2005], who borrowed it
from psychology. Psychologists call behaviour intrinsically motivated when it is
engaged for its own sake rather than as a step toward solving a specific problem
of clear practical value. This concept builds on the one of curiosity, which has
been also extensively investigated in the RL literature after being introduced in
it by professor Jürgen Schmidhuber in 1991 [Schmidhuber, 1991]. The rationale
behind it is that, in some RL scenarios, as well as in human life, rewards are
supplied to the agent so sparsely that traditional techniques fails miserably in
the learning challenge. This is a problem as the agent receives reinforcement
for updating its policy only if it succeeds in reaching a pre-specified goal state.
Hoping to stumble into a goal state by chance (i.e. random exploration) is likely
to be futile for all but the simplest of environments. Intrinsic motivation / cu-
riosity have been used to instil the need to explore the environment and discover
novel states in the agent, regardless of the reward scheme. Most formulations of
intrinsic motivation can be grouped into two broad classes:

(i) encourage the agent to explore novel states;

(ii) encourage the agent to perform actions that reduce the error/uncertainty
in the agent’s ability to predict the consequence of its own actions, i.e., its
knowledge about the environment.

Measuring novelty requires a statistical model of the distribution of the
environmental states, as the one described above, whereas measuring prediction
error/uncertainty requires building a model of environmental dynamics that
predicts the next state sh`1 given the current state sh and the action ah executed
at time h. Evidently, these mechanisms, particularly the first one, are closely
related to the concept of count-based exploration. Indeed, Bellamare et al.
showed in [Bellemare et al., 2016] the close relationship between the two.

Variational Information Maximizing Exploration
To help the reader grasping these concepts, we proceed by describing a suc-
cessful implementation of the principle of intrinsic motivation, the Variational
Information Maximizing Exploration (VIME) algorithm [Houthooft et al., 2016].
VIME makes use of the information gain about the agent’s internal belief of the
dynamics model as a driving force, as described in the following. The approach

Chapter 3. Exploration Techniques 50

taken is model-based, where the agent models the environment dynamics via a
model ppsh`1|sh, ah, θq, parametrized by the random variable Θ with values θ P Θ.
Assuming a prior ppθq, it keeps a distribution over dynamic models through a
distribution over θ, which is updated in a Bayesian fashion. The authors formalize
the intrinsic goal of taking actions that maximize the reduction in uncertainty
about the dynamics as taking actions that lead to states that are maximally
informative about the dynamics model. In other terms, the agent is encouraged
to maximize the mutual information between the next state distribution Sh`1

and the model parameter Θ:

IpSh`1; Θ|ξh, ahq “ E
sh`1„Pp¨|ξh,ahq

rDKLrppθ|ξh, ah, sh`1q||ppθ|ξhqss , (3.28)

where DKLpP ||Qq is the Kullback-Leibler (KL) divergence between probabilities
P and Q, P are the true environment dynamics and ξh “ ts1, a1, ..., shu is the
history of the agent up until time step t. This KL divergence can be interpreted
as information gain. Therefore we can add each term IpSh`1; Θ|ξh, ahq as an
intrinsic reward to the standard reward rh obtained by the agent at time step t.
The trade-off between exploitation and exploration can now be realized explicitly
as follows:

r1h “ rh ` ηDKLrppθ|ξh, ah, sh`1q||ppθ|ξhqs, (3.29)

with η P R` being a hyperparameter controlling the urge to explore. The biggest
practical issue with maximizing information gain for exploration is that the com-
putation of this equation requires calculating the posterior ppθ|ξh, ah, sh`1q, which
is generally intractable. The practical solution adopted by the authors for calcu-
lating the posterior ppθ|Dq for a dataset D is to approximate it through an alterna-
tive distribution qpθ;φq, parametrized by φ, by minimizing DKLrqpθ;φq||ppθ|Dqs.
This is done through maximization of the variational lower bound Lrqpθ;φq,Ds,
also called evidence lower bound [Blei et al., 2017]:

Lrqpθ;φq,Ds “ E
θ„qp¨|φq

rlog ppD|θqs ´DKLrqpθ;φq||ppθqs. (3.30)

Rather than computing information gain in Equation 3.29 explicitly, we compute
an approximation to it, leading to the following total reward:

Chapter 3. Exploration Techniques 51

Algorithm 3.5 VIME
1: for each epoch t do
2: for for h “ 1, 2, . . . , H do
3: Generate action ah „ πpshq and sample sh`1 „ Pp¨|ξh, ahq, get rh
4: Add triplet psh, ah, sh`1q to FIFO replay pool R
5: Compute the approximated divergence DKLrqpθ;φ1t||qpθ;φtqs
6: Construct r1h “ rh ` ηDKLrqpθ;φ1t||qpθ;φtqs
7: end for
8: Sample randomly D from R
9: Minimize ´Lrqpθ;φtq,Ds and obtain the updated posterior qpθ;φt`1q

10: Use rewards r11, r1h, . . . , r1H , to update policy π using any standard RL
method

11: end for

r1h “ rh ` ηDKLrqpθ;φh`1q||qpθ;φhqs, (3.31)

with φh`1 the updated and φt the old parameters representing the agent’s belief.
Natural candidates for parametrizing the agent’s dynamics model qpθ;φq are
Bayesian neural networks, whose weight distribution (qpθ;φq itself) is given by the
fully factorized Gaussian distribution [Blundell et al., 2015]. This is particularly
convenient as it allows for a simple analytical formulation of the KL divergence,
that can be easily approximated. In fact, VIME approximates the KL divergence
between the former belief φt on the dynamics and the approximate updated
belief φ1t. Algorithm 3.5 outline the procedure. For more details about the
implementation the reader should refer to [Houthooft et al., 2016].

3.2.3 Posterior Sampling

The TS technique described in the previous section has been adopted and in-
vestigated in the framework of RL as well [Strens, 2000, Osband et al., 2013,
Osband and Van Roy, 2015, Osband et al., 2016]. Here, TS involves sampling a
statistically plausibly set of action values (or policies) and selecting the maxi-
mizing action (or best policy). These values can be generated, for example, by
sampling from the posterior distribution over MDPs and computing the state-
action value function of the sampled MDP. This approach, originally proposed
in [Strens, 2000], is called posterior sampling for reinforcement learning. In

Chapter 3. Exploration Techniques 52

[Osband and Van Roy, 2017], the authors present theoretical and experimental
arguments to show that posterior sampling is better than optimism in synthe-
sizing efficient exploration with powerful generalization. Although we build our
work leveraging on the principle of optimism in the face of uncertainty, posterior
sampling appears to be an interesting option to further investigate. Indeed, as
we will see, the formalization of the RL problem that we propose in this paper
seems to be a good testing ground for TS.

Chapter 4

Optimistic Policy Search via
Multiple Importance Sampling

In this chapter, we present the main theoretical contributions of this thesis project.
In Section 4.1, we extend Section 2.5 to develop robust MIS estimators that
will play an essential role in the algorithms proposed. In Section 4.2 we provide
a formalization of the online policy optimization problem. The algorithms are
presented in Section 4.3 and analyzed in Section 4.4. The proposed algorithms,
called Optimistic Policy opTImization via Multiple Importance Sampling with
Truncation (OPTIMIST) and OPTIMIST2, are based on the OFU principle
and follows the UCB strategy, both introduced in Section 2.1 and covered with
practical implementations in (3.1). The idea is to leverage on these techniques
to deal with the problem of exploration in continuous-action RL, for which the
solutions proposed so far have been largely heuristic, as we have seen in Chapter 3.
However, the solutions proposed here should not be interpreted as an application
of the MAB framework to PS but rather as a way to formulate exploration in
policy search as a MAB-like problem

4.1 Robust Importance Sampling Estimation

In this section, we discuss how to perform a robust importance weighting es-
timation. Recently, it has been observed that, in many cases of interest, the
plain estimator (2.37) presents problematic tail behaviors [Metelli et al., 2018],
preventing the use of exponential concentration inequalities. In fact, unless
we require that d8pP }Φq is finite, i.e., that the importance weight have finite

Chapter 4. Optimistic Policy Search via Multiple Importance Sampling 54

supremum, there always exists a value α ą 1 such that dαpP }Φq “ `8. A
common heuristic to address this problem consists in truncating the weight
[Ionides, 2008]:

qµIS “
1
N

N
ÿ

i“1
min

M,wP {Qpziq
(

fpziq, (4.1)

where M ą 0 is a threshold to limit the magnitude of the importance weight.
Similarly, for the multiple importance sampling case, restricting to the BH, we
have:

qµBH “
1
N

K
ÿ

k“1

Nk
ÿ

i“1
min

#

M,
ppzikq

řK
j“1

Nj
N
qjpzikq

+

fpzikq. (4.2)

Clearly, since we are changing the importance weights, we introduce a bias
term, but, by reducing the range of the estimation, we get a benefit in terms
of variance. Below, we present the bias-variance analysis of the estimator qµBH

and we conclude by showing that we are able, using an adaptive truncation,
to guarantee an exponential concentration (differently from the non-truncated
case).

Lemma 4.1.1. Let P and tQku
N
k“1 be probability measures on the measurable

space pZ,Fq such that P ! Qk and there exists ε P p0, 1s s.t. d1`εpP }Qkq ă 8

for k “ 1, . . . , K. Let f : Z Ñ R` be a bounded non-negative function, i.e.,
}f}

8
ă 8. Let qµBH be the truncated balance heuristic estimator of f , as defined

in (4.2), using Nk i.i.d. samples from each Qk. Then, the bias of qµBH can be
bounded as:

0 ď µ´ E
zik

iid
„Qk

rqµBHs ď }f}8M
´εd1`ε pP }Φqε , (4.3)

and the variance of qµBH can be bounded as:

Var
zik

iid
„Qk

rqµBHs ď }f}
2
8M

1´εd1`ε pP }Φqε

N
, (4.4)

where N “
řK
k“1Nk is the total number of samples and Φ “

řK
k“1

Nk
N
Qk is a

finite mixture.

It is worth noting that, by selecting ε “ 1, Equation 4.4 reduces to Lemma 2.5.1,
as the truncation operation can only reduce the variance. Clearly, the smaller
we choose M , the larger the bias. Overall, we are interested in mining the
joint contribution of bias and variance. Keeping P and Φ fixed we observe that
the bias depends on M only, whereas the variance depends on M and on the

Chapter 4. Optimistic Policy Search via Multiple Importance Sampling 55

number of samples N . Intuitively, we can allow larger truncation thresholds M
as the number of samples N increases. The following result states that, when
using an adaptive threshold depending on N , we are able to reach exponential
concentration.

Theorem 4.1.1. Let P and tQku
N
k“1 be probability measures on the measurable

space pZ,Fq such that P ! Qk and there exists ε P p0, 1s s.t. d1`εpP }Qkq ă 8

for k “ 1, . . . , K. Let f : Z Ñ R` be a bounded non-negative function, i.e.,
}f}

8
ă 8. Let qµBH be the truncated balance heuristic estimator of f , as defined

in (4.2), using Nk i.i.d. samples from each Qk. Let MN “

´

Nd1`εpP }Φqε

log 1
δ

¯
1

1`ε , then
with probability at least 1´ δ:

qµBH ď µ` }f}8

ˆ

?
2` 1

3

˙ˆ

d1`ε pP }Φq log 1
δ

N

˙

ε
1`ε

, (4.5)

and also, with probability at least 1´ δ:

qµBH ě µ´ }f}8

ˆ

?
2` 4

3

˙ˆ

d1`ε pP }Φq log 1
δ

N

˙

ε
1`ε

. (4.6)

Our adaptive truncation approach and the consequent concentration re-
sults resemble the ones proposed in [Bubeck et al., 2013]. However, unlike
[Bubeck et al., 2013] we do not remove samples with too high value, but we
exploit the nature of the importance weighted estimator only to limit the weight
magnitude. Indeed, this form of truncation turned out to be very effective in
practice [Ionides, 2008].

4.2 Problem Formalization

The online learning problem that we aim to solve does not fall within the
traditional MAB framework (not in its basic version, anyway) and can benefit
from an ad-hoc formalization, provided in this section.

Let X Ď Rd be our decision set, or arm set in MAB jargon. Let pΩ,F , P q be
a probability space. Let tZx : Ω Ñ Z | x P X u be a set of continuous random
vectors parametrized by X , with common sample space Z Ď Rm. We denote
with px the probability density function of Zx. Finally, let f : Z Ñ R be a
bounded payoff function, and µpxq “ Ez„px rfpzqs its expectation under px. For
each iteration t “ 0, . . . , T , we select an arm xt, draw a sample zt from pxt , and

Chapter 4. Optimistic Policy Search via Multiple Importance Sampling 56

observe payoff fpztq, up to horizon T . The goal is to maximize the expected
total payoff:

max
x0,...,xT PX

T
ÿ

t“0
E

zt„pxt
rfpztqs “ max

x0,...,xT PX

T
ÿ

t“0
µpxtq. (4.7)

Although we can evaluate px for each x P X , we can only observe fpztq for the
zt that are actually sampled. This models precisely the online, episodic policy
optimization problem. Within this problem formulation, we distinguish between
two categories of policy optimization: action-based and parameter-based policy
optimization.

• In action-based policy optimization, X corresponds to the parameter space
Θ of a class of stochastic policies tπθ | θ P Θu; Z to the set of possible
trajectories; px to the density pθ over trajectories induced by policy πθ;
and fpzq to cumulated reward Rpτq.

• In parameter-based policy optimization, X corresponds to the hyperparam-
eter space Ξ of a class of stochastic hyperpolicies tνξ | ξ P Ξu; Z to the set
of possible trajectories collected with policy πθ, with θ P Θ „ νξ; px to
hyperpolicy νξ; and fpzq to performance Jpθq.

In both cases, each iteration corresponds to a single episode, and horizon T is
the total number of episodes (not to be confused with the trajectory horizon H).
With reference to the standard PS framework, the first category is closely related
to standard PG methods that perform a search in a parametric policy space
by following the gradient of the utility function. The second is more related to
methods searching directly in the space of parameters like PGPE. From now on,
we will refer to (4.7) simply as the policy optimization problem.

Remark 4.2.1. In abstract terms, (4.7) is a sequential decision problem over a
functional space of random variables, and may have applications beyond policy
optimization.

The peculiarity of this framework, compared to the classic MAB one, is the
special structure existing over the arms. In particular, the expected payoff µ of
different arms is correlated thanks to the stochasticity of the px’s on a common
sample space Z. We could, of course, frame policy optimization as a MAB
problem, at the cost of ignoring some structure. It would be enough to regard
µpxq as the expectation of a totally unknown, stochastic reward function. This

Chapter 4. Optimistic Policy Search via Multiple Importance Sampling 57

would put us in the continuous MAB framework [Kleinberg et al., 2013], but
would ignore the special arm correlation. In the following, we will show how this
correlation can be exploited to guarantee efficient exploration. This insight stems
from the literature on X -armed bandits, as discussed in (2.1.3) and (3.1.4).

4.3 Algorithms

In this section, we use the mathematical tools presented so far to design a policy
search algorithm that efficiently explores the space of solutions. The proposed
algorithm, called OPTIMIST, is based on the OFU principle and follows the
UCB strategy.

To apply the UCB strategy to the policy optimization problem described above,
we need an estimate of the objective µpxq and a confidence region. We use
importance sampling to capture the correlation among the arms. In particular,
to better use all the data that we collect, we would like to use a multiple
importance sampling estimator like the one from (2.38). Unfortunately, the
heavy-tailed behavior of this estimator would result in an inefficient exploration.
Instead, we use the robust balance heuristic estimator qµBH from (4.2), which
has better tail behavior. To simplify the notation, we treat each sample x as a
distinct one. This is w.l.o.g. (as each sample is always multiplied by its number
of occurrences anyway) and corresponds to the case K “ t ´ 1 and Nk ” 1.
Hence, at each iteration t:

qµtpxq “
t´1
ÿ

k“0
min

#

Mt´1,
pxpzkq

řt´1
j“1 pxjpzkq

+

fpzkq, (4.8)

where Mt “

ˆ

td1`εppx}Φtqε
log 1

δt

˙
1

1`ε

and Φt “
1
t

řt´1
k“0 pxk . According to Theorem

(4.1.1), the following index :

Bε
t px, δtq :“ qµtpxq ` }f}8

ˆ

?
2` 4

3

˙

˜

d1`εppxt}Φtq log 1
δt

t

¸
ε

1`ε

, (4.9)

is an upper bound on µpxq with probability at least 1´δt, i.e., an upper confidence
bound. The OPTIMIST algorithm simply selects, at each iteration t, the arm
with the largest value of the index Bε

t pxq, breaking ties deterministically. The
pseudocode is provided in Algorithm 4.1. The initial arm x0 is arbitrary, as no
prior information is available. The regret analysis of Section 4.4 will provide a

Chapter 4. Optimistic Policy Search via Multiple Importance Sampling 58

Algorithm 4.1 OPTIMIST
1: Input: initial arm x0, confidence schedule pδtqTt“1, order ε P p0, 1s
2: Draw sample z0 „ px0 and observe payoff fpz0q

3: for t “ 1, . . . , T do
4: Select arm xt “ arg maxxPX B

ε
t px, δtq

5: Draw sample zt „ pxt and observe payoff fpztq
6: end for

confidence schedule pδtqTt“1. Knowledge of the actual horizon T is not needed.
Although we can use any ε P p0, 1s, we suggest to use ε “ 1 in practice, as it yields
the more common 2-Rényi divergence. To be able to compute the indexes (or to
perform any kind of index maximization), the algorithm needs to store all the xt
together with the observed pay-offs fpztq, hence OpTdq space is required, where
d is the dimensionality of the arm space X (not to be confused with cardinality
|X |, which may be infinite).

The optimization step (line 4) may be very difficult when X is not discrete
[Srinivas et al., 2010], as the index Bε

t px, δtq is non-convex and non-differentiable.
Global optimization methods could be applied at the cost of giving up theoretical
guarantees. In practice, this direction may be beneficial, but we leave it to future,
more application-oriented work. Instead, we propose a general discretization
method. The key intuition, common in the continuous MAB literature, is to
make the discretization progressively finer. The pseudocode for this variant,
called OPTIMIST2, is reported in Algorithm 4.2. Note that the arm space X
itself is fixed (and infinite), as adaptive discretization is performed for optimiza-
tion purposes only. Implementing any variant of OPTIMIST to solve a policy
optimization problem, whether in the action-based or in the parameter-based
formulation, requires some additional caveats, discussed in Section 5.1.

4.4 Regret Analysis

In this section, we provide high-probability guarantees on the quality of the
solution provided by Algorithm 4.1. First, we rephrase the optimization problem
(4.1) in terms of regret minimization. The instantaneous regret, as defined in
(2.1.2), is:

∆t “ µpx˚q ´ µpxtq, (4.10)

Chapter 4. Optimistic Policy Search via Multiple Importance Sampling 59

where x˚ P arg maxxPX µpxq. Let RegretpT q “
řT
t“0 ∆t be the total regret, as in

(2.1.3). As µpx˚q is a constant, problem (4.7) is trivially equivalent to:

min
x0,x1,...,xT PX

RegretpT q. (4.11)

In the following, we will show that Algorithm 4.1 yields sublinear re-
gret under some mild assumptions. The proofs combine techniques from
[Srinivas et al., 2010] and [Bubeck et al., 2013] and are reported in Appendix
A. First, we need the following assumption on the Rényi divergence:

Assumption 4.4.1. For all t “ 1, . . . , T , the p1 ` εq-Rényi divergence is uni-
formly bounded as:

sup
x0,x1,...,xT PX

d1`εppxt}Φtq “ vε ă 8,

where Φt “
1
t

řt´1
k“0 pxk ,

which can be easily enforced through careful policy (or hyperpolicy) design, as
discussed in 5.1.2.

4.4.1 Discrete arm set

We start from the discrete case, where |X | “ K P N`. This setting is particularly
convenient, as the optimization step can be trivially solved in time OpKtq per
iteration,1 where t is from evaluation of (4.8) via clever caching. This sums up to
total time OpKT 2q. This setting is also of practical interest: even in applications
where X is naturally continuous (e.g., robotics), the set of solutions that can be
actually tried in practice may sometimes be constrained to a discrete, reasonably
small set. In this simple setting, OPTIMIST achieves rOpT

1
1`ε q regret:

Theorem 4.4.1. Let X be a discrete arm set with |X | “ K P N`. Under As-
sumption (4.4.1), Algorithm 4.1 with confidence schedule δt “ 3δ

t2π2K
guarantees,

with probability at least 1´ δ:

RegretpT q ď ∆0 ` CT
1

1`ε

„

vε

ˆ

2 log T ` log π
2K

3δ

˙
ε

1`ε

,

where C “ p1 ` εq
`

2
?

2` 5
3

˘

}f}
8
, and ∆0 is the instantaneous regret of the

initial arm x0.

This yields a rOp
?
T q regret when ε “ 1.

1We consider the evaluation of pdf’s, payoffs and Rényi divergences in (4.8) atomic, as its
complexity is heavily problem-dependent.

Chapter 4. Optimistic Policy Search via Multiple Importance Sampling 60

4.4.2 Compact arm set

Now, we consider the more general case of a compact arm set X P Rd. This
case is also more interesting as it allows to tackle virtually any RL task. We can
assume, w.l.o.g., that X is entirely contained in a box r´D,Dsd, with D P R`.
We also need the following assumption on the expected payoff:

Assumption 4.4.2. The expected payoff µ is Lipschitz continuous, i.e., there
exists a constant L ą 0 such that, for every x,x1 P X :

|µpx1q ´ µpxq| ď L }x´ x1}1 .

This assumption is easily satisfied for policy optimization, as shown in the
following:

Lemma 4.4.1. In the policy optimization problem, Assumption 4.4.2 can be
replaced by:

sup
sPS,θPΘ

E
a„πθ

r|∇θ log πθpa|sq|s ď u1, (4.12)

in the action-based paradigm, and by:

sup
ξPΞ

E
θ„ρξ

r|∇ξ log νξpθq|s ď u2, (4.13)

in the parameter-based paradigm, where u1 and u2 are d-dimensional vectors and
the inequalities are component-wise.

In the proof (Appendix A), we show how to derive the corresponding Lipschitz
constants, and show how (4.12) and (4.13) are satisfied by the commonly-used
Gaussian policy and hyperpolicy, respectively. This is enough for OPTIMIST to
achieve rOpd

ε
1`εT

1
1`ε q regret:

Theorem 4.4.2. Let X be a d-dimensional compact arm set with X Ď r´D,Dsd.
Under Assumptions (4.4.1) and (4.4.2), Algorithm 4.1 with confidence schedule
δt “

6δ
π2t2p1`ddt2dq guarantees, with probability at least 1´ δ:

RegretpT q ď ∆0 ` CT
1

1`ε

„

vε

ˆ

2pd` 1q log T ` d log d` log π
2

3δ

˙
ε

1`ε

`
π2LD

6 ,

where C “ p1 ` εq
`

2
?

2` 5
3

˘

}f}
8
, and ∆0 is the instantaneous regret of the

initial arm x0.

Chapter 4. Optimistic Policy Search via Multiple Importance Sampling 61

Algorithm 4.2 OPTIMIST2
1: Input: initial arm x0, confidence schedule pδtqTt“1, discretization schedule
pτtq

T
t“1, order ε P p0, 1s

2: Draw sample z0 „ px0 and observe payoff fpz0q

3: for t “ 1, . . . , T do
4: Discretize X with a uniform grid rXt of τ dt points
5: Select arm xt “ arg maxxP rXt B

ε
t px, δtq

6: Draw sample zt „ pxt and observe payoff fpztq
7: end for

This yields a rOp
?
dT q regret when ε “ 1. Unfortunately, the optimization step

may be very time-consuming. In some applications, we can assume the time
required to draw samples to dominate the computational time. In fact, drawing
a sample (Algorithm 4.1, line 2) corresponds to generating a whole trajectory of
experience, which may take a long time, especially in real-world applications.

4.4.3 Discretization

When optimization over the infinite arm space X is not feasible, Algorithm 4.2
can be used instead. This variant restricts the optimization to a progressively
finer grid rXt of pτtqd vertices. A reasonably coarse discretization schedule can be
used at the price of a worse (but still sublinear) regret:

Theorem 4.4.3. Let X be a d-dimensional compact arm set with X Ď r´D,Dsd.
For any κ ě 2, under Assumptions (4.4.1) and (4.4.2), Algorithm 4.2 with confi-
dence schedule δt “ 6δ

π2t2
´

1`rt1{κs
d
¯ and discretization schedule τt “ rt

1
κ s guarantees,

with probability at least 1´ δ:

RegretpT q

ď ∆0 ` C1T
p1´ 1

κqd` C2T
1

1`ε ¨

„

vε

ˆ

p2` d{κq log T ` d log 2` log π
2

3δ

˙
ε

1`ε

,

where C1 “
κ
κ´1LD, C2 “ p1` εq

`

2
?

2` 5
3

˘

}f}
8
, and ∆0 is the instantaneous

regret of the initial arm x0.

Let us focus on the case ε “ 1, which is the only one of practical interest in
the scope of this paper. For κ “ 2, we obtain regret rOpd

?
T q. Unfortunately,

the time required for optimization is exponential in arm space dimensionality
d, i.e., Oprt 1

κ sdq. For d ě 2, we can break the curse of dimensionality by taking

Chapter 4. Optimistic Policy Search via Multiple Importance Sampling 62

κ “ d. In this case, the regret is rO
´

dT p1´
1
dq
¯

. On the other hand, the time
per iteration is only Opt2q. Note that the regret is sublinear for any choice of κ.
Going further: for any ζ ą 0, κ “ d

ζ
grants Opt1`ζq time per iteration at the cost

of rO
´

dT p1´
ζ
dq
¯

regret.

Remark 4.4.1. The worse dependency rOpdq of the regret on the arm space
dimensionality (w.r.t. rOp

?
dq of Algorithm 4.1) is also necessary to prevent the

time per iteration from being exponential in d.

Chapter 5

Numerical Simulations

In this chapter, we start by discussing two practical aspects related to the
experimental applications of the algorithms described in Chapter 4. Then,
we proceed by showing the results of our numerical simulations on three RL
benchmarking challenges: the LQG, the Continuous Mountain Car problem and
the Inverted Pendulum task.

The programming language chosen for implementing the numerical simulations
discussed in this chapter is Python. The code is publicly available on GitHub1,
and it is built upon the OpenAI Baselines library [Dhariwal et al., 2017].

5.1 Practical Aspects

In the numerical simulations that will be presented in the following sections we
place ourselves in the parameter-based PS setting (see Section 4.2 for details).
We adopt Gaussian distributions as target and behavioural hyperpolicies νξ “
N pµ,Σq, from which the policy parameters θ are drawn. In particular, we will
adopt hyperpolicies νξ, with hyperparameters ξ “ tθ,Σu, where Σ is diagonal:

νξpθq “
1

a

p2πqm|Σ|
exp

ˆ

´
1
2pθ ´ µq

TΣ´1
pθ ´ µq

˙

(5.1)

“
1

a

p2πqm
śm

i“1 σ
2
i

exp
˜

´
1
2

m
ÿ

i“1

pθi ´ µiq
2

σ2
i

¸

. (5.2)

1https://github.com/T3p/baselines/tree/exploration/baselines

Chapter 5. Numerical Simulations 64

This allows the use of a deterministic controller πθ : θ P Θ Ď Rm for sampling
the trajectories, that we define as πθpa|sq “ δpa ´ θsq. This parameter-based
setting follows the one adopted in PGPE, as described in (2.4.4).
This distribution choice for our target and behavioural hyperpolicies allows a
comfortable computation of the robust balance heuristic estimator qµtpxq defined
in Equation 4.8. Unfortunately, that is not enough for the computation of the
upper bound Bε

t px, δtq (4.9) that we need to optimize in each iteration t of
OPTIMIST.

5.1.1 Divergence Between Gaussian Multivariate Distri-
butions

Indeed, OPTIMIST also requires to compute the exponentiated Rényi divergence
between the target hyperpolicy px and the mixture Φt, i.e., d1`εppx}Φtq “

d1`εpνξ}Φtq, at each iteration. Even for Gaussian distributions, this quantity
cannot be obtained in closed form, while the Rényi divergence between Gaussians
can be computed exactly. In this section, we provide an upper bound for
computing the exponentiated Rényi divergence between a generic distribution
and a mixture.

Theorem 5.1.1. Let P be a probability measure and Φ “
řK
k“1 βkQk, with

βk P r0, 1s and
řK
k“1 βk “ 1, be a finite mixture of the probability measures

tQku
K
k“1. Then, for any α ě 1, the exponentiated α-Rényi divergence can be

bounded as:
dαpP }Φq ď

1
řK
k“1

βk
dαpP }Qkq

. (5.3)

The proof can be found in Appendix A. We can easily compute this upper bound
of the exponentiated Rényi divergence between the target distribution and the
mixture of behavioural distributions. In fact, all the hyperpolicies employed
are multivariate diagonal Gaussian distributions, and the Rényi divergence
between multivariate Gaussian distributions is known [Gil et al., 2013]. Let
P „ N pµP ,ΣP q, Q „ N pµQ,ΣQq and α P r0,8s:

DαpP ||Qq “
1
α
pµP ´ µQq

TΣ´1
α pµP ´ µQq ´

1
2pα ´ 1q log detpΣαq

detpΣP q
1´α detpΣQq

α
,

(5.4)

where Σα “ αΣQ` p1´αqΣP under the assumption that Σα is positive-definite.

Chapter 5. Numerical Simulations 65

5.1.2 Uniformly Bounded Rényi divergence

The other concern about the exponentiated Rényi divergence between the target
and the mixture of behavioural hyperpolicies is to make it compliant with
Assumption (4.4.1), i.e., uniformly bounded. Without this assumption, the
results on OPTIMIST regret (Theorems (4.4.1),(4.4.2) and (4.4.3)) are no more
guaranteed. This assumption can be easily respected by careful hyperpolicy
design. First, note that the results on the regret are provided for a compact
continuous (or finite discrete) arm set, hence the maximum distance among the
parameters is bounded. Additionally, we must ensure that the Rényi divergence is
bounded. As showed in Theorem (5.1.1), it is enough that the divergence is finite
between the target and one of the components of the mixture to guarantee a bound
on the divergence between a target distribution and a mixture of behavioural
distributions. Hence, we will focus on the constraints between behavioural/target
pairs. As an example, for multivariate diagonal Gaussian distributions with
fixed covariance Assumption (4.4.1) is easily guaranteed. In fact, the Rényi
divergence is a continuous function of the mean parameter [Gil et al., 2013] and
a continuous function on a compact set is bounded. If the standard deviation
(or covariance matrix) is also part of the parameter set, additional constraints
are needed, as one can understand by examining Equation 5.4. For ε “ 1, the
standard deviation σP of the target distribution must not be larger than twice
that of the behavioural (σQ) for the divergence to be finite. Hence, given a
minimum σ0 ą 0, it is enough to constrain the search within rσ0, 2 ¨ σ0s. We also
suggest initializing the first behavioural distribution with σQ “ 2 ¨ σ0, so that
the algorithm will move towards smaller standard deviations. This will result in
a less stochastic behaviour. Similar constraints can be defined for other kinds of
policies [Gil et al., 2013].

5.2 Linear Quadratic Gaussian Regulator

The goal of our numerical simulations on LQG is twofold. First, we need a simple
continuous control problem to understand the functioning of our algorithms.
Second, we want to compare OPTIMIST (Algorithm 4.1) with two classical MAB
algorithms presented in Chapter 3: UCB1 (3.1.2) and GPUCB (3.4), in the case
of discrete parameter space Ξ.
The LQG problem [Peters and Schaal, 2008] is a continuous state-action space
MDP that represents a useful testing ground for control algorithms, mainly

Chapter 5. Numerical Simulations 66

because of its simplicity. At each time-step h, the transition kernel and reward
function are given by:

sh`1 “ Ash `Bah ` ηh (5.5)
rh “ s

T
hQsh ` a

T
hRah (5.6)

where A, B, Q and R are coefficient matrices and ηh is a noise process assumed
to be a Gaussian white noise ηh „ N p0,ΣLQGq with uncorrelated components
ΣLQG “ σLQGI. The reward rh has to be intended as a cost for the agent,
something it wants to avoid. Intuitively, in this problem the agent has to bring
its state to zero, while facing a cost proportional to the magnitude of its state
and action. The optimal control policy in steady state conditions is the linear
controller ah “Ksh, where matrixK can be found by solving a Riccati equation
[Dorato et al., 1995]. We conducted our experiments on one-dimensional LQG.
For implementation reasons, we consider the case in which the state space is
limited to S “ r´4, 4s, the action space is A “ r´4, 4s and the horizon is
limited to H “ 20. At the beginning of the episode, the start-state is initialized
randomly s0 „ Upr´4, 4sq. The agent samples H “ 20 steps-long trajectories
with a discount factor of γ “ 0.99, for a total of T “ 5000 iterations.

As mentioned in the previous section, in all our experiments we employ diagonal
Gaussian hyperpolicies. In this case the hyperpolicy is univariate νξ “ N pµ, σ2q,
where µ is the mean parameter to be learned and σ can be either fixed or learnable
as well. On the other hand, the policy πθ adopted by the agent is a deterministic
linear controller ah “ πθpshq “ θ ¨sh, with θ „ νξ. Since UCB1 requires a positive
return rt P r0, 1s, we standardized the trajectory return Rpξtq “

řH´1
h“0 γ

hrh`1

associated to the arm ξt pulled at iteration t:

rt “ Rpξtq{Rmax, (5.7)

where Rmax is the maximum achievable cumulated return:

Rmax “

H´1
ÿ

h“0
γh ¨ 1 “ 1´ γH

1´ γ . (5.8)

All algorithms are run with the confidence schedule proposed in Theorem (4.4.1),
i.e., δt “ 3δ

t2π2K
, with δ “ 0.2 (similar results have been obtained with different

Chapter 5. Numerical Simulations 67

a b q r γ H T σLQG δ

1.00 1.00 0.90 0.90 0.99 20 5000 0.10 0.20

Table 5.1: Environmental coefficients (left-side), task coefficients (center) and
OPTIMIST input parameters (right-side) for the LQG experiments.

0 1000 2000 3000 4000 5000
trajectories

0

100

200

300

400

500

600

700

re
gr

et

GPUCB

UCB1

OPTIMIST

Figure 5.1: Cumulative regret in the LQG experiment. Comparison between
OPTIMIST, UCB1 and GPUCB when learning the hyperpolicy mean. (30 runs,
95% c.i.)

0 1000 2000 3000 4000 5000
trajectories

−1.0

−0.5

0.0

0.5

1.0

µ

0 1000 2000 3000 4000 5000
trajectories

−1.0

−0.5

0.0

0.5

1.0

µ

Figure 5.2: The gain parameter µ selected at each iteration of GPUCB (left)
and OPTIMIST (right) in the LQG experiment.

values of δ). The parameters used in the LQG experiments are summarized in
Table (5.1).

Chapter 5. Numerical Simulations 68

−0.9 −0.8 −0.7 −0.6 −0.5 −0.4
gain

0.9557

0.9558

0.9559

0.9560

0.9561

m
ea

n
re

tu
rn

Figure 5.3: Mean return of arms µ P r´0.9,´0, 5s, calculated by averaging the
return collected over 2000 trajectories in the LQG experiment.

5.2.1 Gain only

In order to benchmark OPTIMIST with both UCB1 and GPUCB on a discrete
set, we first consider the case in which the only learnable parameter of νξ is the
gain µ. To this end, we consider a uniform discretization of the interval r´1, 1s
made of 100 arms (every arm is a possible choice of µ). The hyperpolicy standard
deviation is fixed to σ “ 0.15. We experimented with different values of σ and
this turned out to be a good choice for making the task noisy, but not too noisy
to prevent learning.

In Figure 5.1, we show the cumulative regret of the three algorithms, averaged
over 30 runs. We can see that our algorithm significantly outperforms UCB1.
Indeed, OPTIMIST is able to exploit the structure of arms, i.e., hyperpolicies,
by means of the MIS estimation, whereas UCB1 does not make any assumption
on arm correlation. In other words, OPTIMIST performs a more informed
(directed) exploration, leveraging what the agent has experienced in past episodes
more effectively. On the contrary, GPUCB shows a better performance w.r.t. to
OPTIMIST. We point out that GPUCB requires to specify, at the beginning
of learning, the kernel of the Gaussian process from which the payoff function
is sampled. We employed the default scikit-learn2 kernel, i.e., the radial basis
function kernel:

kT px,x
1
q “ exp

´

´λ }x´ x1}
2
¯

, (5.9)

where λ is a free parameter. However, as it often happens in control tasks, our
2A popular library for data mining and data analysis. Available at: https://scikit-

learn.org/stable/

Chapter 5. Numerical Simulations 69

γ H T δ k

1.00 500 5000 0.20 3

Table 5.2: Task parameters (left side) and OPTIMIST input parameters (right
side) for the Continuous Mountain Car experiment.

payoff is not actually sampled from a Gaussian process. This invalidates all
theoretical guarantees of GPUCB and may be at the root of its strong commitment
to exploitation, contrary to UCB1 and OPTIMIST. We can visualize the amount
of exploration carried out by the three algorithms by looking at Figure 5.2, which
depicts, the arm µ pulled by GPUCB and OPTIMIST at every iteration. Indeed,
OPTIMIST explores the set of arms around the optimum much more extensively
then GPUCB, which, in the very first steps, commits to a near-optimal set
of arms (the neighbourhood of µ “ ´0.5 interval) and sticks to it all along.
This explains the lower regret of GPUCB w.r.t. OPTIMIST. In fact, the LQG
task presents a pretty wide set of optimal or near-optimal arms spanning in
r´0.9,´0.5s, as shown in Figure 5.3. Therefore, exploitation is a rewarding
strategy in this setting.

5.2.2 Gain and standard deviation

In the second experiment on LQG, we learn both the mean and the variance
parameter of the Gaussian hyperpolicy: νξ “ N pµ, expp2ρqq, where ξ “ pµ, ρqT “
pξ1, ξ2q

T . The parameters used in the experiment are the same as before, reported
in Table (5.1). In Figure 5.4, we show the cumulative regret averaged over 5 runs
comparing OPTIMIST, UCB1 and GPUCB. We see a trend similar to the case in
which we learn the mean parameter only. While OPTIMIST is able to exploit the
structure of the arms induced by the fact that hyperpolicies share information,
beating UCB1, GPUCB still displays a better performance. The wider confidence
intervals are a direct consequence of the wider spectrum of variances adopted
by the hyperpolicy, bringing to very different choices of policy parameters and,
subsequently, very difference performance from one run to another.

Chapter 5. Numerical Simulations 70

0 1000 2000 3000 4000 5000
trajectories

0

200

400

600

800
re

gr
et

GPUCB

UCB1

OPTIMIST

Figure 5.4: Cumulative regret in the LQG experiment, comparing OPTIMIST,
UCB1 and GPUCB when learning both the mean and the standard deviation
hyperparameters. (30 runs, 95% c.i.)

Figure 5.5: Graphical representation of the Mountain Car problem
[Brockman et al., 2016].

5.3 Continuous Mountain Car

The second experiment, illustrates the behaviour of OPTIMIST2 when the
parameters of the hyperpolicy belong to a compact (continuous) space, on the
Continuous Mountain Car task [Brockman et al., 2016]. We chose the Continuous
Mountain Car because it is a simple, well known, continuous problem and because
it constitutes a relevant exploration challenge w.r.t. other simple tasks such as
LQG.

In this problem, graphically represented in Figure 5.5, the agent has to control
the engine of an under-powered car in order to reach a target. The target is on

Chapter 5. Numerical Simulations 71

0 1000 2000 3000 4000 5000
trajectories

−40

−20

0

20

40

60

80

cu
m

ul
at

iv
e

av
er

ag
e

re
tu

rn

PBPOIS

PGPE

OPTIMIST

Figure 5.6: Cumulative regret in the Continuous Mountain Car experiment.
Comparison between OPTIMIST, PGPE and Parameter-Based Policy Optimiza-
tion via Importance Sampling (PBPOIS) when learning the two-dimensional
hyperpolicy mean. (5 runs, 95% c.i.)

top of a hill on the right-hand side of the car. If the car reaches it or goes beyond,
the episode terminates. On the left-hand side, there is another hill. Climbing this
hill can be used to gain potential energy and accelerate towards the target. On
top of this second hill, the car cannot go further than a position equal to -1, as
if there was a wall. Reward is 100 for reaching the target of the hill on the right
hand side, minus the squared sum of actions from start to goal. This reward
function raises an exploration challenge, because if the agent does not reach the
target soon enough, it will figure out that it is better not to move, and won’t
find the target eventually. The state space S “ r´1.20, 0.60s ˆ r´0.07, 0.07s
is constituted by a bi-dimensional vector with current position and velocity of
the car. The action space A P R is continuous: positive values correspond to
a forward engine traction, negative values to backward engine traction. Every
episode starts with the car in a random position between ´0.6 and ´0.4, with
null velocity. The agent samples H “ 500 steps-long trajectories with a discount
factor of γ “ 1.00 (the rationale of this choice is discussed in Remark (5.3.1)),
for a total of T “ 5000 iterations.

In our experiments we use a Gaussian hyperpolicy with a two-dimensional
learnable mean µ “ ξ “ pξ1, ξ2q

T , within a box µ P r´1,´1sˆr0, 20s, and a fixed
covariance Σ “ diagp0.152, 32q. Concerning the confidence and discretization
schedules for OPTIMIST2, we adopted those suggested in Theorem (4.4.3), i.e.,
δt “

6δ
π2t2

´

1`rt1{κs
d
¯ and τt “ rt

1
κ s, with δ “ 0.2 and k “ 3. The choice of k

Chapter 5. Numerical Simulations 72

influences the granularity of the discretization. Since τt “ rt
1
κ s the granularity is

non-decreasing with time, but smaller values of k allow for a finer granularity at
a given iteration t. For more information about the choice of k, refer to Remark
(5.3.2). The parameters used in the Mountain Car experiments are summarized
in Table (5.1).

We compare OPTIMIST2 (4.2) against parameter-based policy optimization
algorithms PGPE (2.4) and PBPOIS [Metelli et al., 2018]. The latter is a
parameter-based off-policy policy search algorithm which optimizes a lower
bound of the performance estimator. Similarly to OPTIMIST, this estimator
is built upon single importance sampling. We chose to compare OPTIMIST
with PBPOIS not only because of this similarity, but also because of their
intrinsic difference. In fact, despite being both off-policy algorithms based on
importance sampling, PBPOIS optimizes a lower bound on the performance,
which implies a very limited exploration. By contrast, OPTIMIST optimizes an
upper bound on performance, accordingly to the OFU principle. OPTIMIST
and PBPOIS are also compared with PGPE, which laid the foundations for both
of them. Moreover, PGPE too is known to lack exploration of the parameter
space. Finally, note that, unlike OPTIMIST, both PGPE and PBPOIS adopt
natural policy gradient ascent to optimize their hyperpolicies. The best learning
rate α for PGPE was searched in the set t3, 2, 1, 0.1, 0.01, 0.001u. For PBPOIS,
we used the suggested hyperparameters.

Results are shown in Figure 5.6. We can notice that OPTIMIST2 is able to learn
a good policy in a very short time thanks to its better exploration capabilities.
However, the policy gradient methods outperform it on the long run. In fact, the
exploitative behaviour of the other two algorithms results in a better performance
w.r.t. OPTIMIST, which continues to explore even after having found suitable
parameters in few iterations. Even though these results might not be satisfactory
from a performance point of view, our primary goal was to develop a PS algorithm
that would explore effectively the space of parameters. From this point of view,
the results turn out to be successful. To convince ourselves of this claim, we
refer to Figure 5.7, in which we show the density estimation of the probability
distribution induced over the arm set ξ “ µ by PGPE (left) and OPTIMIST
(right) during learning. The estimation has been carried out by means of the
Gaussian kernel density estimator [Scott, 2015] implemented in the SciPy library.3

Intuitively, this represents the likelihood of each two-dimensional arm to be pulled
3https://docs.scipy.org/doc/

Chapter 5. Numerical Simulations 73

−1.0 −0.5 0.0 0.5 1.0
µ1

0

5

10

15

20
µ

2

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

0.120

−1.0 −0.5 0.0 0.5 1.0
µ1

0

5

10

15

20

µ
2

0.004

0.008

0.012

0.016

0.020

0.024

0.028

0.032

Figure 5.7: Gaussian kernel density estimation [Scott, 2015] of the probability
distribution of the arm set ξ “ µ induced by PGPE (left) and OPTIMIST
(right).

State-space dimension k “ 2 k “ 3 k “ 4 k “ 5 k “ 6

d “ 2 5041 324 81 36 25
d “ 4 2541168 104976 6561 1296 625

Table 5.3: Number of points in the discretized state space, following discretization
schedule τt “ rt

1
κ s, where d refers to the number of space dimensions and k is a

free-parameter.

by either PGPE or OPTIMIST.

Remark 5.3.1. The rationale behind the choice of undiscounted (γ “ 1.00)
rewards lies in the design of the reward system of the Continuous Mountain Car
task. During learning, the car usually does not manage to reach the target before
a few hundred iterations, while collecting rewards equal to minus the squared
sum of actions in all previous steps. In such scenario, the agent would barely
distinguish between a successful episode (that ended by reaching the target) and
an unsuccessful one. For the sake of clarity, we will illustrate this situation with
an example. Say that, after driving up and down the hills for 300 episodes, the
agent finally manages to reach the target. Also, imagine that we are slightly
discounting rewards with γ “ 0.99. In this situation, the positive reward received
would be r301 “ 0.99300 ¨ 100.00 “ 4.90, while the negative reward cumulated
in previous steps (h “ 1, 2, . . . , 299) would at least be numbered in tens. This
means that the return of the episode would still be negative and numbered in
tens, because |r301| ! |

ř299
h“0 γ

hrh`1|. Hence, the agent would not learn from this
successful episode, because it could not tell it from an unsuccessful episode. This
problem is solved by setting γ “ 1.

Chapter 5. Numerical Simulations 74

Figure 5.8: Graphical representation of the Inverted Pendulum task
[Wawrzyński, 2005].

γ H T δ k

0.99 500 10000 0.20 5

Table 5.4: Task parameters (left side) and OPTIMIST input parameters (right
side) for the Inverted Pendulum experiment.

Remark 5.3.2. Considering that OPTIMIST needs to evaluate bound (4.9) for
every arm, at each iteration, the finer the discretization schedule the longer the
time required by numerical simulation. Indeed, the optimization of the bound is
much more computationally demanding than any other operation undertaken by
OPTIMIST. In Table (5.3) we report the total number of arms resulting from
different choices of k, according to the state-space dimension d, at final time
step T “ 5000. As a reference, with the computing capacity at our disposal
during this thesis project 4, the time needed for optimizing the bound over 5000
iterations was:

• approximately 4 hours with d “ 2 and k “ 3;

• approximately 39 hours with d “ 4 and k “ 4.

Evidently, our limited time and computing capacity did not allow for the finest of
the discretization schedules. However, we think that the discretization adopted
in the Mountain Car and Inverted Pendulum (discussed next) experiments was
appropriate to the task at hand.

5.4 Inverted Pendulum

As third comparative experiment, we attempted to run OPTIMIST on the
Cart-Pole Swing-Up task [Tornio and Raiko, 2006], also referred to as Inverted

420 cores of an Intel Xeon Processor E7-8880 v4 (55M Cache, 2.20 GHz, 126 GB of memory).

Chapter 5. Numerical Simulations 75

Pendulum task. Unfortunately, in this case OPTIMIST was not able to learn
any performant policy, neither optimal nor near-optimal. However, we present
the experiment and some considerations on what could have gone wrong as a
starting point for future developments. This problem is a classic benchmark for
non-linear control5, which requires a thorough exploration for finding the optimal
policy. The system consists of a pole attached to a cart, depicted in Figure 5.8).
The force applied to the cart can be controlled, and the goal is to swing the pole
to an upward position and stabilise it. This must be accomplished without the
cart crashing into the walls of the track. The state space S P R4 consists of four
observed variables. The position of the cart u (constrained in r´3, 3s), the angle
of the pole measured from the upward position φ, and their first derivatives u1

and φ1. Control input is the force applied to the cart. The reward system is
designed in a way that the agent receives a non-positive reward except when it
manages to achieve an upward position:

Rpat|stq “

$

&

%

´100, if |ut| ą 3
cospφq if |ut| ď 3

(5.10)

This task is known for requiring a thorough exploration of the parameter space
because it is easy to encounter local optima which are far from the global optimum
in terms of performance. An example would be a policy that continuously
rotates the pole in order to receive a close-to-zero return, spending half of the
time downwards and half upwards. The detailed dynamics and constraints for
the simulated cart-pole system can be found in [Kimura, 1999], while for the
implementation details (including the bounds applied to the position and the
force) the reader can refer to the rllab implementation6. Before every trajectory,
the system is initialized to a random state taken from the uniform distributions
u P r´1, 1s, u1 P r´2, 2s, φ P rπ ´ 1, π ` 1s, φ1 P r´3,`3s. The agent samples
H “ 500 steps-long trajectories with a discount factor of γ “ 0.99, for a total of
T “ 1000 iterations.

In our experiments we used a Gaussian hyperpolicy with a four-dimensional
learnable mean µ “ tµ1, µ2, µ3, µ4u, within a box µ P r´0.2, 0.2s4, and a fixed
covariance Σ “ σ2I, with σ “ 0.001. Concerning the confidence and discretiza-
tion schedules for OPTIMIST2, we adopted those suggested in Theorem (4.4.3),
i.e., δt “ 6δ

π2t2
´

1`rt1{κs
d
¯ and τt “ rt

1
κ s, with δ “ 0.2 and k “ 4. The summary of

5A broad benchmarking study on Inverted Pendulum is discussed in [Duan et al., 2016].
6https://github.com/rll/rllab

Chapter 5. Numerical Simulations 76

the parameters used in the Inverted Pendulum experiments is reported in Table
(5.4).

Unfortunately, OPTIMIST2 failed to learn a good policy in this task. This is
clearly visible by looking at the hyperparameters curve over decision epochs: even
after 10000 iterations the algorithm is still exploring (more or less) uniformly
the parameter space. We report the curve of µ1 in Figure 5.9. The reason for
this behaviour is likely to be σ. Indeed, for very small values of sigma, such as
σ “ 0.001, the behavioural hyperpolicies adopted during learning do not share
information with the target hyperpolicy. In other words, the Rényi between the
target and the mixture of behaviourals becomes very large and dominates the
OPTIMIST bound (4.9). We report the bound here for the sake of clarity:

B1
t px, δtq :“ qµtpxq ` }f}8

ˆ

?
2` 4

3

˙

˜

d2ppxt}Φtq log 1
δt

t

¸
1
2

. (5.11)

Evidently, when the Rényi divergence is very high the second half (the exploration
bonus) dominates the bound, and obliges the agent to explore disregarding the
estimated performances of the arms. This intuition is confirmed by looking at the
very irregular plots of the truncated MIS estimator qµtpxtq and the exploration

bonus }f}
8

`?
2` 4

3

˘

ˆ

d2ppxt}Φtq log 1
δt

t

˙
1
2

for the arms xt selected at iterations

t “ 1, 2, . . . , T , reported in Figure 5.10. The bonus (whose value is frequently
over 10000) largely dominates the performance estimator (whose value is mostly
negative). The intuitive counter-measure would be to adopt bigger values of σ.
Unfortunately, the Inverted Pendulum has a very narrow set of near optimal arms
and higher variances hinder learning, as confirmed by our numerical simulations.
Indeed, this knot could represent another interesting starting point for further
developments.

5.5 Action-based setting

The reader may wonder why we did not carry out numerical simulations in the
action-based setting. Actually, we did make some experiments, but we briefly
understood that there was a major obstacle represented by the computation
of the Rényi divergence. In fact, although what has been discussed in Section
5.1 also applies to policies (not only hyperpolicies), the loss function cannot be

Chapter 5. Numerical Simulations 77

0 2000 4000 6000 8000 10000
trajectories

−0.2

−0.1

0.0

0.1

0.2
µ

Figure 5.9: The hyperpolicy mean parameter selected at each iteration of OPTI-
MIST in the Inverted Pendulum experiment.

0 2000 4000 6000 8000 10000
trajectories

−1000

−500

0

500

1000

tr
un

ca
te

d
es

ti
m

at
or

0 2000 4000 6000 8000 10000
trajectories

0

2000

4000

6000

8000

10000

ex
pl

or
at

io
n

b
on

us

Figure 5.10: Truncated MIS estimator (left) and exploration bonus (right) of
the arms selected by OPTIMIST at each iteration of the Inverted Pendulum
experiment.

directly optimized since computing d1`εppx}Φtq requires the approximation of
an integral over the trajectory space and, for stochastic environments, to know
the transition model P , which is unknown in a model free setting. For the sake
of clarity, we report here the definition of the Rényi divergence between the
distributions pθ1pτq and pθpτq, induced over trajectories τ P T by the target πθ1
and behavioural πθ:

dαppθ1 ||pθq “

ˆ
ż

T
pθpτq

ˆ

pθ1pτq

pθpτq

˙α

dτ
˙

1
α´1

. (5.12)

Simple bounds to this quantity, like dαppθ1 ||pθq ď supsPS dαpπθ1p¨|sq||πθp¨|sqq
H ,

besides being hard to compute due to the presence of the supremum, are extremely

Chapter 5. Numerical Simulations 78

conservative since the Rényi divergence is raised to the horizon H. In our
experiments, we tested action-based OPTIMIST over the LQG problem by
estimating the exponentiated 2-Rényi divergence between a proposal Q and a
target P distribution as follows:

d̂2pP |Qq “
t

zESS
, (5.13)

where t is the number of samples available, which in our case corresponds
to the iteration step number, wP {Q is the importance weight, and zESS

[Martino et al., 2017] is a well known estimator of the effective sample size
(ESS) [Kong, 1992], given by:

zESS “

›

›wP {Q
›

›

2
1

›

›wP {Q
›

›

2
2

. (5.14)

Indeed, the effective sample size is defined as [Kong, 1992]:

ESS “
t

Varx„QrwP {Qpxqs ` 1 “
t

d2pP |Qq
. (5.15)

However, its estimator zESS is very rough due to its high (possibly infinite)
variance, and turned out to be useless in our case. The main problem of d̂2pP |Qq

(5.13) is that it is consistent with the true Rényi divergence only for close enough
target and behavioural policies (P and Q). This means that the estimator does
not allow to share the information obtained by a behavioural Q with distant target
distributions P . Moreover, by estimating the Rényi from the samples we would
lose OPTIMIST theoretical guarantees on the regret. Therefore, this estimator
proved to be impractical for the implementation of action-based OPTIMIST and
we decided to focus on the parameter-based setting. For future works, a study of
a good estimator for the Rényi would be another interesting research direction.

Chapter 6

Conclusions

In this chapter, we revisit our original contributions to the RL literature. Then,
we summarize the limitations of our work and suggest some possible directions
for future research that stem from these limitations.

6.1 Recapitulation

In this thesis we studied the exploration-exploitation problem in PS by leveraging
MAB techniques. After a thorough literature review of both MAB and RL, we
developed a threefold contribution to the existing work.

In Section 4.2, we provided an ad-hoc formalization of the online, episodic policy
optimization problem. This formulation does not fall within the traditional MAB
framework, but builds upon it. At every decision epoch, the agent selects a
parametrization of its policy (or hyperpolicy) as it would pull a bandit arm,
draws a trajectory with it, and observes its payoff, i.e., the cumulative return of
the trajectory. The goal is to maximize the expected total payoff. The peculiarity
of this framework w.r.t. the classic MAB one, is the special structure existing
over the arms, induced by the common sample space of the stochastic arms (the
agent’s policy parametrizations).

In Section 4.3 we exploited the correlation between arms to guarantee efficient
exploration by leveraging the OFU principle and multiple importance sampling.
In particular, we devised OPTIMIST, a suitable algorithm capable of learning
within a discrete set of arms. An intuitive extension of it is discussed in Section
4.4: OPTIMIST2 allows learning within a compact set of arms, by means of

Chapter 6. Conclusions 80

iterative discretization of the continuous space. Both algorithms have been
backed by theoretical guarantees on the convergence of their cumulative regret,
i.e., sub-linear regret, under assumptions that are easy to meet in practice. Also,
they have no equivalents in the PS literature, which strongly lacks studies on
both exploration and convergence properties of the existing algorithms.

In Chapter 5, we carried out several numerical simulations to test the proposed
algorithms on multiple tasks, and to compare them with other classical MAB
and RL algorithms. As we hoped, OPTIMIST (and its extension) proved to be
very effective in exploring the (hyper)parameter space by leveraging its structure.
In particular, its exploitative behaviour revealed to be more efficient than similar
MAB algorithms such as UCB1, and more effective than policy search algorithms
such as PGPE and PBPOIS. Nonetheless, numerical simulations shed light on
several limitations of the proposed algorithms.

6.2 Limitations and Future Works

The most evident limitation of OPTIMIST, revealed by numerical simulations,
consists in the inefficient way it optimizes its upper bound index (4.9). Taking
the argmax over a discrete set is very expensive and becomes unfeasible for large,
multidimensional state spaces. This problem showed up clearly in the Mountain
Car and Inverted Pendulum experiments. Given our limited computing capacity
and time, we could neither experiment with finer discretization schedules (smaller
k), nor optimize the covariance parameters, which would have meant to double
the number of arms (the covariance being diagonal). Another limitation has
been already discussed in Section 5.5. Computing the exploration bonus is
unfeasible because we lack proper estimators for the Rényi divergence between
a target and a mixture policy. To the best of our knowledge, the estimators
available in the literature are insufficient for modelling the Rényi distance between
probability distributions, as they suffer of high variance and generate numerical
instabilities during numerical simulations. Finally, comparative experiments
on LQG and Continuous Mountain Car showed that OPTIMIST struggles to
keep pace with the performances of more exploitative algorithms whenever an
extensive exploration is not required. In particular, after having performed many
epochs and extensively explored the parameter space, it would be desirable to
start exploiting more heavily. However (we should say, as expected), OPTIMIST
consistently sticks to the OFU principle, which inherently brings to continuous

Chapter 6. Conclusions 81

exploration even in tasks in which little exploration is enough.

The limitations discussed above constitute a natural starting point for future
developments. Future works should focus on finding more efficient ways to
perform optimization in the infinite-arms setting. The authors of GPUCB, facing
a similar optimization problem, suggest the adoption of global search heuristics.
Instead, the RL community generally favours gradient descent. However, the
latter displays bad performances when optimizing multimodal functions, like
our upper confidence bound. Nonetheless, there exist many different variations
of this technique (natural gradient, stein variational gradient, gradient with
momentum etc.), and some of them could reveal effective. On an other track,
parallel to the first one, future work could investigate appropriate estimators for
the exploration bonus in the action-based setting. Also, they could study how
to mitigate the strong exploration drive of OPTIMIST whenever it proves to
be excessive. Finally, an interesting line of research would be to study suitable
integrations of our problem formalization and bounds with posterior sampling.
Indeed, exploiting the sample efficiency that characterizes TS seems promising,
and already proved to be a more powerful solution than optimism in some RL
scenarios, as discussed in Section 3.2.3.

To sum up, we have proposed an innovative method to perform directed explo-
ration in PS and we have studied it thoroughly. Hopefully, our results will pave
the path for further improvements on this important challenge that remains
inadequately studied.

Appendix A

Proofs

Lemma 2.5.1. Let P and tQku
K
k“1 be probability measures on the measurable

space pZ,Fq such that P ! Qk and d2pP }Qkq ă 8 for k “ 1, . . . , K. Let
f : Z Ñ R be a bounded function, i.e., }f}

8
ă 8. Let pµBH be the balance

heuristic estimator of f , as defined in (2.40), using Nk i.i.d. samples from each
Qk. Then, the variance of pµBH can be upper bounded as:

Var
zik

iid
„Qk

rpµBHs ď }f}
2
8

d2pP }Φq
N

, (2.44)

where N “
řK
k“1Nk is the total number of samples and Φ “

řK
k“1

Nk
N
Qk is a

finite mixture.

Proof. The proof is similar to Lemma 4.1 of [Metelli et al., 2018]:

Var
zik

iid
„Qk

rpµBHs “ Var
zik

iid
„Qk

«

1
N

K
ÿ

k“1

Nk
ÿ

i“1
fpzkiq

ppzkiq
řn
j“1

Nj
N
qjpzkiq

ff

“
1
N2

K
ÿ

k“1

Nk
ÿ

i“1
Var
zik„Qk

«

fpzkiq
ppzkiq

řn
j“1

Nj
N
qjpzkiq

ff

(A.1)

ď
1
N2

K
ÿ

k“1

Nk
ÿ

i“1
E

zik„Qk

»

–

˜

fpzkiq
ppzkiq

řn
j“1

Nj
N
qjpzkiq

¸2
fi

fl

ď }f}8
1
N2

K
ÿ

k“1

Nk
ÿ

i“1
E

zik„Qk

»

–

˜

ppzkiq
řn
j“1

Nj
N
qjpzkiq

¸2
fi

fl

“ }f}28
1
N

E
z„Φ

»

–

˜

ppzq
řn
j“1

Nj
N
qjpzq

¸2
fi

fl (A.2)

Appendix A. Proofs 83

“ }f}28
d2pP }Φq

N
,

where (A.1) follows from the independence of the zik and (A.2) is obtained by
the definition of Φ and observing that for an arbitrary function g:

1
N

K
ÿ

k“1

Nk
ÿ

i“1
E

zik„Qk
rgpzikqs “

K
ÿ

k“1

Nk

N
E

z1k„Qk
rgpz1kqs “ E

z„Φ
rgpzqs. (A.3)

Lemma 4.1.1. Let P and tQku
N
k“1 be probability measures on the measurable

space pZ,Fq such that P ! Qk and there exists ε P p0, 1s s.t. d1`εpP }Qkq ă 8

for k “ 1, . . . , K. Let f : Z Ñ R` be a bounded non-negative function, i.e.,
}f}

8
ă 8. Let qµBH be the truncated balance heuristic estimator of f , as defined

in (4.2), using Nk i.i.d. samples from each Qk. Then, the bias of qµBH can be
bounded as:

0 ď µ´ E
zik

iid
„Qk

rqµBHs ď }f}8M
´εd1`ε pP }Φqε , (4.3)

and the variance of qµBH can be bounded as:

Var
zik

iid
„Qk

rqµBHs ď }f}
2
8M

1´εd1`ε pP }Φqε

N
, (4.4)

where N “
řK
k“1Nk is the total number of samples and Φ “

řK
k“1

Nk
N
Qk is a

finite mixture.

Proof. Let us start with the bias term. The first inequality 0 ď µ´E
zik

iid
„Qk

rqµBHs

derives from the fact that pµBH ě qµBH, being fpzq ě 0 for all z and observing that
pµ is unbiased, i.e., E

zik
iid
„Qk

rpµBHs “ µ. For the second inequality, let us consider
the following derivation:

µ´ E
xi„qi

rqµs

“ E
zik

iid
„Qk

rpµBHs ´ E
zik

iid
„Qk

rqµBHs

“
1
N

K
ÿ

k“1

Nk
ÿ

i“1
E

zik„Qk

„

fpzikq

ˆ

ppzikq
řK
j“1

Nj
N
qjpzikq

´min
#

M,
ppzikq

řK
j“1

Nj
N
qjpzikq

+

˙

(A.4)

“ E
z„Φ

»

—

—

–

fpzq

˜

ppzq
řK
j“1

Nj
N
qjpzq

´M

¸

1$

&

%

ppzq
řK
j“1

Nj
N
qjpzq

ěM

,

.

-

fi

ffi

ffi

fl

(A.5)

Appendix A. Proofs 84

ď E
z„Φ

»

—

—

–

fpzq

˜

ppzq
řK
j“1

Nj
N
qjpzq

¸

1$

&

%

ppzq
řK
j“1

Nj
N
qjpzq

ěM

,

.

-

fi

ffi

ffi

fl

(A.6)

ď }f}8 E
z„Φ

»

—

—

–

˜

ppzq
řK
j“1

Nj
N
qjpzq

¸

1$

&

%

ppzq
řK
j“1

Nj
N
qjpzq

ěM

,

.

-

fi

ffi

ffi

fl

ď }f}8 E
z„Φ

»

—

—

–

˜

ppzq
řK
j“1

Nj
N
qjpzq

¸1`ε˜
ppzq

řK
j“1

Nj
N
qjpzq

¸´ε

1$

&

%

ppzq
řK
j“1

Nj
N
qjpzq

ěM

,

.

-

fi

ffi

ffi

fl

ď }f}8 E
z„Φ

»

–

˜

ppzq
řK
j“1

Nj
N
qjpzq

¸1`ε
fi

flM´ε (A.7)

“ }f}8d1`εpP }ΦqεM´ε,

where (A.5) is an application of Equation A.3, (A.6) derives from recalling that
M ě 0 and (A.7) is obtained by observing that x´ε1txěMu is either 0 and thus
the bound holds or at most M´ε. For the variance the argument is similar:

Var
zik

iid
„Qk

rqµBHs

“ Var
zik

iid
„Qk

«

1
N

K
ÿ

k“1

Nk
ÿ

i“1
fpzkiqmin

#

M,
ppzkiq

řn
j“1

Nj
N
qjpzkiq

+ff

“
1
N2

K
ÿ

k“1

Nk
ÿ

i“1
Var
zik„Qk

«

fpzkiqmin
#

M,
ppzkiq

řn
j“1

Nj
N
qjpzkiq

+ff

ď
1
N2

K
ÿ

k“1

Nk
ÿ

i“1
E

zik„Qk

»

–

˜

fpzkiqmin
#

M,
ppzkiq

řn
j“1

Nj
N
qjpzkiq

+¸2
fi

fl

ď }f}8
1
N2

K
ÿ

k“1

Nk
ÿ

i“1
E

zik„Qk

»

–

˜

min
#

M,
ppzkiq

řn
j“1

Nj
N
qjpzkiq

+¸2
fi

fl

“ }f}28
1
N

E
z„Φ

»

–min
#

M,
ppzq

řn
j“1

Nj
N
qjpzq

+2
fi

fl (A.8)

“ }f}28
1
N

E
z„Φ

»

–min
#

M,
ppzq

řn
j“1

Nj
N
qjpzq

+1`ε

min
#

M,
ppzq

řn
j“1

Nj
N
qjpzq

+1´ε
fi

fl

ď }f}28
1
N

E
z„Φ

»

–

˜

ppzq
řn
j“1

Nj
N
qjpzq

¸1`ε
fi

flM1´ε (A.9)

Appendix A. Proofs 85

“ }f}28M
1´εd1`εpP }Φqε

N
,

where (A.8) is again an application of Equation A.3 and A.9 derives from
observing that mintx, yu ď x and also mintx, yu ď y.

Theorem 4.1.1. Let P and tQku
N
k“1 be probability measures on the measurable

space pZ,Fq such that P ! Qk and there exists ε P p0, 1s s.t. d1`εpP }Qkq ă 8

for k “ 1, . . . , K. Let f : Z Ñ R` be a bounded non-negative function, i.e.,
}f}

8
ă 8. Let qµBH be the truncated balance heuristic estimator of f , as defined

in (4.2), using Nk i.i.d. samples from each Qk. Let MN “

´

Nd1`εpP }Φqε

log 1
δ

¯
1

1`ε , then
with probability at least 1´ δ:

qµBH ď µ` }f}8

ˆ

?
2` 1

3

˙ˆ

d1`ε pP }Φq log 1
δ

N

˙

ε
1`ε

, (4.5)

and also, with probability at least 1´ δ:

qµBH ě µ´ }f}8

ˆ

?
2` 4

3

˙ˆ

d1`ε pP }Φq log 1
δ

N

˙

ε
1`ε

. (4.6)

Proof. Let us start with the first inequality. Observing that all samples zik are
independent and that qµBH ď M}f}8, we can state using Bernstein inequality
[Boucheron et al., 2013] that with probability at least 1´ δ we have:

qµBH ď E
zik„Qk

rqµBHs `

d

2 Var
zik

iid
„Qk

rqµBHs log 1
δ
` }f}8

M log 1
δ

3N

ď µ` }f}8

c

2M1´εd1`ε pP }Φqε log 1
δ

N
` }f}8

M log 1
δ

3N (A.10)

“ µ` }f}8

ˆ

?
2` 1

3

˙ˆ

d1`ε pP }Φq log 1
δ

N

˙

ε
1`ε

, (A.11)

where (A.10) is obtained by substituting the variance with its bound (4.4) and
(A.11) is from the choice ofM . For the second inequality we just need to consider
additionally the bias.

qµBH ě E
zik„Qk

rqµBHs ´

d

2 Var
zik

iid
„Qk

rqµBHs log 1
δ
´ }f}8

M log 1
δ

3N

“ µ´

ˆ

µ´ E
zik„Qk

rqµBHs

˙

´

d

2 Var
zik

iid
„Qk

rqµBHs log 1
δ
´ }f}8

M log 1
δ

3N

ě µ´ }f}8M
´εd1`ε pP }Φqε ´ }f}8

ˆ

?
2` 1

3

˙ˆ

d1`ε pP }Φq log 1
δ

N

˙

ε
1`ε

(A.12)

Appendix A. Proofs 86

“ µ´ }f}8

ˆ

?
2` 4

3

˙ˆ

d1`ε pP }Φq log 1
δ

N

˙

ε
1`ε

,

(A.13)

where (A.12) comes from substituting the bias with its bound (4.3).

Theorem 4.4.1. Let X be a discrete arm set with |X | “ K P N`. Under As-
sumption (4.4.1), Algorithm 4.1 with confidence schedule δt “ 3δ

t2π2K
guarantees,

with probability at least 1´ δ:

RegretpT q ď ∆0 ` CT
1

1`ε

„

vε

ˆ

2 log T ` log π
2K

3δ

˙
ε

1`ε

,

where C “ p1 ` εq
`

2
?

2` 5
3

˘

}f}
8
, and ∆0 is the instantaneous regret of the

initial arm x0.

Proof. Fix an ε ą 0. To ease the notation, let c´ :“ }f}
8

`?
2` 1

3

˘

, c` :“

}f}
8

`?
2` 4

3

˘

, and βtpxq :“
ˆ

d1`εppx}Φtq log 1
δt

t

˙
ε

1`ε

. We start by showing that,
with probability at least 1´ δ:

´ c`βtpxq ď qµtpxq ´ µpxq ď c´βtpxq for all x P X and t “ 1, . . . , T . (A.14)

Indeed:

P

˜

K
č

k“1

T
č

t“1

“

qµtpxkq ´ µpxkq ď c´βtpxkq
‰

¸

“ 1´ P

˜

K
ď

k“1

T
ď

t“1

“

qµtpxkq ´ µpxkq ą c´βtpxkq
‰

¸

ě 1´K
T
ÿ

t“1
P
`

qµtpx1q ´ µpx1q ą c´βtpx1q
˘

(A.15)

ě 1´K
T
ÿ

t“1
δt (A.16)

ě 1´ δ

2 , (A.17)

where (A.15) is from a double union bound (over time and over the finite elements
of X), (A.16) is from Theorem 4.1.1, and (A.17) is by hypothesis on δt and
řT
t“1

1
t2
ď
ř8

t“1
1
t2
“ π2

6 . Similarly:

P

˜

K
č

k“1

T
č

t“1

“

qµtpxkq ´ µpxkq ě ´c
`βtpxkq

‰

¸

Appendix A. Proofs 87

“ 1´ P

˜

K
ď

k“1

T
ď

t“1

“

qµtpxkq ´ µpxkq ă ´c
`βtpxkq

‰

¸

ě 1´K
T
ÿ

t“1
P
`

qµtpx1q ´ µpx1q ă ´c
`βtpx1q

˘

ě 1´K
T
ÿ

t“1
δt

ě 1´ δ

2 .

Hence, by union bound over the two inequalities, (A.14) holds with probability
at least 1´ δ. This allows to lower bound the instantaneous regret with the same
probability:

∆t “ µpx˚q ´ µpxq ď qµtpx
˚
q ` c`βtpx

˚
q ´ µpxtq (A.18)

ď qµtpxtq ` c
`βtpxtq ´ µpxtq (A.19)

ď pc´ ` c`qβpxtq for all t “ 1, . . . , T , (A.20)

where (A.18) and (A.20) are from (A.14), while (A.19) is by hypothesis, as
xt “ arg maxxPX pqµtpxq` c

`βtpxqq. Note that the union bound over the elements
of X in (A.14) was necessary for (A.18) as the optimal arm x˚ may not be unique.
Finally, with probability at least 1´ δ:

RegretpT q “
T
ÿ

t“0
∆t

“ ∆0 `

T
ÿ

t“1
∆t

ď ∆0 ` pc
`
` c´q

T
ÿ

t“1
βtpxtq (A.21)

ď ∆0 ` pc
`
` c´qv

ε
1`ε
ε

T
ÿ

t“1

˜

log 1
δt

t

¸
ε

1`ε

(A.22)

“ ∆0 ` pc
`
` c´qv

ε
1`ε
ε

T
ÿ

t“1

˜

2 log t` log π2K
3δ

t

¸
ε

1`ε

(A.23)

ď ∆0 ` pc
`
` c´q

„

vε

ˆ

2 log T ` log π
2K

3δ

˙
ε

1`ε T
ÿ

t“1
t´

ε
1`ε

ď ∆0 ` pc
`
` c´q

„

vε

ˆ

2 log T ` log π
2K

3δ

˙
ε

1`ε

p1` εqT
1

1`ε , (A.24)

where (A.21) is from (A.20) and holds with probability no less than 1´ δ, (A.22)

Appendix A. Proofs 88

is from Assumption 4.4.1, (A.23) is by definition of δt, and (A.24) is from:
T
ÿ

t“1
t´α ď

ż T`1

1
t´αdt “ 1

1´ α
`

pT ` 1q1´α ´ 1
˘

ď
T 1´α

1´ α for all 0 ă α ă 1,

(A.25)

with α “ ε
1`ε . The proof is completed by renaming C Ð p1 ` εqpc` ` c´q “

p1` εqp2
?

2` 5
3q }f}8.

Lemma 4.4.1. In the policy optimization problem, Assumption 4.4.2 can be
replaced by:

sup
sPS,θPΘ

E
a„πθ

r|∇θ log πθpa|sq|s ď u1, (4.12)

in the action-based paradigm, and by:

sup
ξPΞ

E
θ„ρξ

r|∇ξ log νξpθq|s ď u2, (4.13)

in the parameter-based paradigm, where u1 and u2 are d-dimensional vectors and
the inequalities are component-wise.

Proof. We consider the infinite-horizon case (H “ 8, γ ă 1), as the finite-horizon
case is w.l.o.g. under mild assumptions. To show Lipschitz continuity in the
action-based paradigm, it is enough to bound }∇θJ}8 under (4.12). From the
Policy Gradient Theorem [Sutton et al., 2000]:

∇θJpθq “
1

1´ γ E
s„ρθ
a„πθ

r∇θ log πθpa|sqQθps, aqs , (A.26)

where ρθ is the discounted state-occupancy measure under policy πθ and Qθ is
the action-value function [Sutton et al., 2000], modeling the reward that can be
obtained starting from state s, taking action a and following πθ thereafter. From
(A.26), for every θ P Θ:

|∇θJpθq| ď
Rmax

p1´ γq2 E
s„ρθ
a„πθ

r|∇θ log πθps, aq|s (A.27)

ď
Rmax

p1´ γq2 sup
sPS

E
a„πθ

r|∇θ log πθps, aq|s

“
u1Rmax

p1´ γq2 , (A.28)

where the inequalities are component-wise, (A.27) is from the trivial fact }Qθ}8 ď
Rmax
p1´γq , and (A.28) is from assumption (4.12). It follows that L “ }u1}8Rmax

p1´γq2 is a
valid Lipschitz constant under the l1 norm. The commonly used Gaussian policy:

πθpa|sq “ N pθTφpsq, σ2
q “

1
?

2πσ
exp

#

´
1
2

ˆ

a´ θTφpsq

σ

˙2
+

, (A.29)

Appendix A. Proofs 89

where φpsq is a vector of component-wise bounded state features, i.e.,
supsPS |φpsq| ď φmax, satisfies assumption (4.12):

E
a„πθ

r|∇θ log πθpa|sq|s “ E
a„πθ

„

|φpsqpa´ θTφpsqq|

σ2



ď
|φpsq|

σ
E

a„πθ

„
ˇ

ˇ

ˇ

ˇ

a´ θTφpsq

σ

ˇ

ˇ

ˇ

ˇ



ď
|φpsq|
?

2πσ

ż

R
e´x

2
|x|dx (A.30)

ď
2φmax
?

2πσ
:“ u1, (A.31)

where inequalities are component-wise and (A.30) is by the substitution x Ð
a´θTφpsq

σ
. Even when σ must be learned, proper parametrization (e.g., σ9 exptθu),

together with the compactness of Θ, allows to satisfy assumption (4.12).

To show Lipschitz continuity for the parameter-based paradigm, it is enough to
bound

›

›∇ξ Eθ„νξrJpθqs
›

›

8
under (4.13). For every ξ P Ξ:

ˇ

ˇ

ˇ

ˇ

∇ξ E
θ„νξ

rJpθqs

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

E
θ„νξ

r∇ξ log νξpθqJpθqs
ˇ

ˇ

ˇ

ˇ

ď
Rmax

p1´ γq E
θ„νξ

r|∇ξ log νξpθq|s (A.32)

ď
u2Rmax

p1´ γq , (A.33)

where the inequalities are component-wise, (A.32) is from the trivial fact Jpθq ď
Rmax
1´γ , and (A.33) is from assumption (4.13). It follows that L “ }u2Rmax}8

p1´γq is a
valid Lipschitz constant under the l1 norm. A Gaussian hyperpolicy νξpθq “
N pξ, diagpσqq satisfies assumption (4.13) with u2 “

2?
2πσ . The proof of this

fact is analogous to that of (A.31). Even when σ must be learned, proper
parametrization (e.g., σ9 exptξu), together with the compactness of Ξ, allows
to satisfy assumption (4.13).

Theorem 4.4.2. Let X be a d-dimensional compact arm set with X Ď r´D,Dsd.
Under Assumptions (4.4.1) and (4.4.2), Algorithm 4.1 with confidence schedule
δt “

6δ
π2t2p1`ddt2dq guarantees, with probability at least 1´ δ:

RegretpT q ď ∆0 ` CT
1

1`ε

„

vε

ˆ

2pd` 1q log T ` d log d` log π
2

3δ

˙
ε

1`ε

`
π2LD

6 ,

where C “ p1 ` εq
`

2
?

2` 5
3

˘

}f}
8
, and ∆0 is the instantaneous regret of the

initial arm x0.

Appendix A. Proofs 90

Proof. Fix an ε ą 0. Let c´, c` and βtpxq be defined as in the proof of Theorem
4.4.1. The finite cardinality of X allowed to perform a union bound over the
arms that was crucial for the proof of Theorem 4.4.1. We cannot do the same
here as X has infinite cardinality. To overcome this problem, we follow the line
of reasoning proposed by [Srinivas et al., 2010]. First, we can say something
about the arms that are actually selected by the algorithm, which are finite.
From Theorem 4.1.1, by a union bound over t “ 1, . . . , T , we have that, with
probability at least 1´

řT
t“1 δt:

qµtpxtq ´ µpxtq ď c´βtpxtq for all t “ 1, . . . , T . (A.34)

We also need a specular inequality for the optimal arm. Unfortunately, we cannot
assume there exists a unique optimal arm x˚.1 Even worse, a dense set of optimal
arms may exist. To overcome this problem, we introduce, only for the purposes
of the proof, a discretization of the arm space. Let rXt be a d-dimensional regular
grid of τ dt vertexes, where pτt P N`qTt“1 is a discretization schedule. Let rxst be
the closest vertex to x in rXt. From Assumption 4.4.2:

|µpxq ´ µprxstq| ď L }x´ rxst}1 ď
LDd

τt
, (A.35)

as each voxel of the grid has side 2D
τt

and no point can be further from a vertex
than d half-sides according to the l1 norm. Now fix a t ě 1 and an optimal arm
x˚. With probability at least 1´ δt:

µpx˚q ´ qµtprx
˚
stq “ µpx˚q ´ µprx˚stq ` µprx

˚
stq ´ qµtprx

˚
stq

ď µprx˚stq ´ qµtprx
˚
stq ` |µpx

˚
q ´ µprx˚stq|

ď c`βtprx
˚
stq `

LDd

τt
, (A.36)

where the inequality (A.36) is from Theorem 4.1.1 and (A.35). Since any voxel
may contain an optimal arm, we must perform a union bound over the rτ sd

vertexes of rXt, and a subsequent one over t, . . . , T . Hence, with probability at
least 1´

řT
t“1 τ

d
t δt:

µpx˚q ´ qµtprx
˚
stq ď c`βtprx

˚
stq `

LDd

τt
for t “ 1, . . . , T , @x˚ P arg max

xPX
µpxq.

(A.37)

We can now proceed to bound the instantaneous regret. With probability at
least 1´

řT
t“1 δtp1` τ dt q:

∆t “ µpx˚q ´ µpxtq ď qµtprx
˚
stq ` c

`βtprx
˚
stq `

LDd

τt
´ µpxtq (A.38)

1Instead, µpx˚) is always unique.

Appendix A. Proofs 91

ď qµtpxtq ` c
`βtpxtq `

LDd

τt
´ µpxtq (A.39)

ď pc` ` c´qβtpxtq `
LDd

τt
, (A.40)

where (A.38) is from (A.37) and holds with probability at least 1 ´
řT
t“1 τ

d
t δt,

(A.39) is by hypothesis, as xt “ arg maxxPX pqµtpxq` c
`βtpxqq, and (A.40) is from

(A.35) and holds with probability at least 1´
řT
t“1 δt. Hence, (A.40) holds with

probability no less than 1 ´
řT
t“1 τ

d
t δt ´

řT
t“1 δt “ 1 ´

řT
t“1 δtp1 ` τ dt q. Let us

pick as a discretization schedule τt “ dt2. This has no impact whatsoever on
the algorithm, as the discretization is only hypothetical. With this τt and the
confidence schedule proposed in the statement of the theorem, it is easy to verify
that (A.40) holds with probability at least 1´ δ.

Finally, we can bound the regret. With probability at least 1´ δ:

RegretpT q

ď ∆0 `

T
ÿ

t“1
∆t

ď ∆0 ` pc
`
` c´q

T
ÿ

t“1
βtpxtq ` LDd

T
ÿ

t“1

1
τt

(A.41)

ď pc` ` c´q
T
ÿ

t“1
βtpxtq `

π2LD

6 (A.42)

ď ∆0 ` pc
`
` c´qv

ε
1`ε
ε

T
ÿ

t“1

˜

log 1
δt

t

¸
ε

1`ε

`
π2LD

6 (A.43)

ď ∆0 ` pc
`
` c´qv

ε
1`ε
ε

T
ÿ

t“1

˜

logp1` ddt2dq ` 2 log t` log π2

6δ
t

¸
ε

1`ε

(A.44)

`
π2LD

6 (A.45)

ď ∆0 ` pc
`
` c´qv

ε
1`ε
ε

T
ÿ

t“1

˜

logp2ddt2dq ` 2 log t` log π2

6δ
t

¸
ε

1`ε

(A.46)

`
π2LD

6 (A.47)

“ ∆0 ` pc
`
` c´qv

ε
1`ε
ε

T
ÿ

t“1

˜

2pd` 1q log t` d log d` log π2

3δ
t

¸
ε

1`ε

(A.48)

`
π2LD

6

Appendix A. Proofs 92

ď ∆0 ` pc
`
` c´q

„

vε

ˆ

2pd` 1q log T ` d log d` log π
2

3δ

˙
ε

1`ε T
ÿ

t“1
t´

ε
1`ε

(A.49)

`
π2LD

6

ď ∆0 ` pc
`
` c´q

„

vε

ˆ

2pd` 1q log T ` d log d` log π
2

3δ

˙
ε

1`ε

p1` εqT
1

1`ε

(A.50)

`
π2LD

6 , (A.51)

where (A.41) is from (A.40) and holds with probability at least 1´ δ, (A.42) is
from the choice of τt and

řT
t“1 t

´2 ď
ř8

t“1 t
´2 “ π2

6 , (A.43) is from Assumption
4.4.1, (A.45) is from the choice of δt, (A.47) is from logp1` xq ď logp2xq, which
holds for every x ě 1, and (A.51) is from (A.25) with α “ ε

1`ε . The proof is
completed by renaming C Ð p1` εqpc` ` c´q “ p1` εqp2

?
2` 5

3q }f}8.

Theorem 4.4.3. Let X be a d-dimensional compact arm set with X Ď r´D,Dsd.
For any κ ě 2, under Assumptions (4.4.1) and (4.4.2), Algorithm 4.2 with confi-
dence schedule δt “ 6δ

π2t2
´

1`rt1{κs
d
¯ and discretization schedule τt “ rt

1
κ s guarantees,

with probability at least 1´ δ:

RegretpT q

ď ∆0 ` C1T
p1´ 1

κqd` C2T
1

1`ε ¨

„

vε

ˆ

p2` d{κq log T ` d log 2` log π
2

3δ

˙
ε

1`ε

,

where C1 “
κ
κ´1LD, C2 “ p1` εq

`

2
?

2` 5
3

˘

}f}
8
, and ∆0 is the instantaneous

regret of the initial arm x0.

Proof. The proof follows the one of Theorem 4.4.2 up to (A.37), except from the
fact that the discretization is actually performed by the algorithm. That is, with
probability at least 1´

řT
t“1 δtp1` τ dt q:

qµtpxtq ´ µpxtq ď c´βtpxtq and µpx˚q ´ qµtprx
˚
stq ď c`βtprx

˚
stq `

LDd

τt
(A.52)

for t “ 1, . . . , T and every x˚ P arg maxxPX µpxq. This is enough to bound the
instantaneous regret. With probability at least 1´

řT
t“1 δtp1` τ dt q:

∆t “ µpx˚q ´ µpxtq ď qµtprx
˚
stq ` c

`βtprx
˚
stq `

LDd

τt
´ µpxtq (A.53)

Appendix A. Proofs 93

ď qµtpxtq ` c
`βtpxtq `

LDd

τt
´ µpxtq (A.54)

ď pc` ` c´qβtpxtq `
LDd

τt
, (A.55)

where (A.51) and (A.54) are from (A.52) and hold simultaneously with prob-
ability at least 1 ´

řT
t“1 δtp1 ` τ dt q, and (A.53) is by hypothesis, as xt “

arg maxxP rXtpqµtpxq ` c`βtpxq. Note that the latter is true only by virtue of
the fact that both rx˚st and xt belong to rXt, as the optimization step of Algo-
rithm 4.2 is restricted to rXt.

Finally, we can bound the regret. With probability at least 1´ δ:

RegretpT q “ ∆0 `

T
ÿ

t“1
∆t

ď ∆0 ` pc
`
` c´q

T
ÿ

t“1
βtpxtq ` LDd

T
ÿ

t“1

1
τt

(A.56)

ď ∆0 ` pc
`
` c´q

T
ÿ

t“1
βtpxtq `

κ

κ´ 1LDT
p1´ 1

κqd (A.57)

ď ∆0 ` pc
`
` c´qv

ε
1`ε
ε

T
ÿ

t“1

˜

log 1
δt

t

¸
ε

1`ε

`
κ

κ´ 1LDT
p1´ 1

κqd (A.58)

ď ∆0 ` pc
`
` c´qv

ε
1`ε
ε

T
ÿ

t“1

¨

˚

˚

˝

2 log t` log
ˆ

1`
Q

t
1
κ

Ud
˙

` log π2

6δ

t

˛

‹

‹

‚

ε
1`ε

(A.59)

`
κ

κ´ 1LDT
p1´ 1

κqd (A.60)

ď ∆0 ` pc
`
` c´qv

ε
1`ε
ε

T
ÿ

t“1

¨

˝

2 log t` d log
´

t
1
κ ` 1

¯

` log π2

3δ

t

˛

‚

ε
1`ε

(A.61)

`
κ

κ´ 1LDT
p1´ 1

κqd (A.62)

ď ∆0 ` pc
`
` c´qv

ε
1`ε
ε

T
ÿ

t“1

˜

`

2` d
κ

˘

log t` d log 2` log π2

3δ
t

¸
ε

1`ε

(A.63)

`
κ

κ´ 1LDT
p1´ 1

κqd (A.64)

Appendix A. Proofs 94

ď ∆0 ` pc
`
` c´q

„

vε

ˆˆ

2` d

κ

˙

log T ` d log 2` log π
2

3δ

˙
ε

1`ε

(A.65)

¨

T
ÿ

t“1
t´

ε
1`ε `

κ

κ´ 1LDT
p1´ 1

κqd,

ď ∆0 ` pc
`
` c´q

„

vε

ˆˆ

2` d

κ

˙

log T ` d log 2` log π
2

3δ

˙
ε

1`ε

(A.66)

¨ p1` εqT
1

1`ε `
κ

κ´ 1LDT
p1´ 1

κqd,

(A.67)

where (A.56) is from (A.55) and holds with probability at least 1 ´ δ with
the proposed δt and τt, (A.57) is from the proposed τt and (A.25) with
α “ 1{κ, (A.58) is from Assumption 4.4.1, (A.60) is from the proposed δt,
(A.62) and (A.64) are from the fact logpx ` 1q ď logp2xq for x ě 1, and
(A.64) is from (A.25) with α “ ε

1`ε . The proof is completed by renaming
C1 Ð p1` εqpc` ` c´q }f}

8
“ p1` εqp2

?
2` 5

3q }f}8 and C2 Ð
κ
κ´1LD.

Lemma A.0.1. Let Ψ “
řL
l“1 ζlPl and Φ “

řK
k“1 βkQk, with ζl P r0, 1s,

řL
l“1 ζl “ 1, βk P r0, 1s and

řK
k“1 βk “ 1, be two finite mixtures of the probability

measures tPluLl“1 and tQku
K
k“1 respectively. Let tψiju i“1,2,...,L

j“1,2,...,K
and tφiju i“1,2,...,L

j“1,2,...,K

be two sets of variational parameters s.t. φij ě 0, ψij ě 0,
řK
k“1 φij “ ζl and

řL
l“1 ψij “ βk. Then, for any α ě 1, it holds that:

dαpΨ}Φqα´1
ď

L
ÿ

l“1

K
ÿ

k“1
φαlkψ

1´α
lk dαpPl}Qkq

α´1.

Proof. The proof follows the idea of the variational bound for the KL-divergence
proposed in [Hershey and Olsen, 2007]. Using the variational parameters we can
express the two mixtures as:

Ψ “

L
ÿ

l“1

K
ÿ

k“1
φlkPl,

Φ “
L
ÿ

l“1

K
ÿ

k“1
ψlkQk.

We use the convexity of the dα and we apply Jensen inequality:

dαpΨ}Φqα´1
“

ż
ˆ

Ψ
Φ

˙α

dΦ

Appendix A. Proofs 95

“

ż

˜

L
ÿ

l“1

K
ÿ

k“1

φlkPl
ψlkQk

ψlkQk

Φ

¸α

dΦ

ď

ż L
ÿ

l“1

K
ÿ

k“1

ψlkQk

Φ

ˆ

φlkPl
ψlkQk

˙α

dΦ (A.68)

“

n
ÿ

i“1

m
ÿ

j“1
φαlkψ

1´α
lk

ż
ˆ

Pl
Qk

˙α

dQk

“

n
ÿ

i“1

m
ÿ

j“1
φαlkψ

1´α
lk dαpPl}Qkq

α´1,

where (A.68) is obtained by Jensen inequality observing that ψlkQk
Φ is a distribu-

tion over t1, ..., Lu ˆ t1, ..., Ku.

We now consider the case in which f has just one mixture component, i.e., n “ 1.
In this case, we have that

řn
i“1 ψij “ ψj “ bj, therefore the result reduces to:

dαpf}gq
α´1

ď

m
ÿ

j“1
φαj b

1´α
j dαpf}gjq

α´1. (A.69)

We can now minimize the bound over the φj , subject to
řm
j“1 φj “ 1, we get the

following result.

Theorem 5.1.1. Let P be a probability measure and Φ “
řK
k“1 βkQk, with

βk P r0, 1s and
řK
k“1 βk “ 1, be a finite mixture of the probability measures

tQku
K
k“1. Then, for any α ě 1, the exponentiated α-Rényi divergence can be

bounded as:
dαpP }Φq ď

1
řK
k“1

βk
dαpP }Qkq

. (5.3)

Proof. We now consider the case in which Ψ has just one mixture component, i.e.,
L “ 1 and we abbreviate Ψ “ P . In this case, we have that

řL
l“1 ψkl “ ψk “ βk,

therefore the result reduces to:

dαpP }Φqα´1
ď

K
ÿ

k“1
φαkβ

1´α
k dαpP }Qkq

α´1. (A.70)

We can now minimize the bound over the φk, subject to
řK
k“1 φk “ 1. We use

the Lagrange multipliers.

Lptφkuk“1,2,...,K , λq “
K
ÿ

k“1
φαkβ

1´α
k dαpP }Qkq

α´1
´ λ

˜

K
ÿ

k“1
φk ´ 1

¸

Appendix A. Proofs 96

We take the partial derivatives w.r.t. the φk and the Lagrange multiplier λ.

BL
Bφk

“ αφα´1
k β1´α

j dαpP }Qkq
α´1

´ λ “ 0 ùñ φk “
λ

1
α´1βj

α
1

α´1dαpP }Qkq
.

We now replace the expression of φk into the constraint.

K
ÿ

j“1
φk “

λ
1

α´1

α
1

α´1

L
ÿ

k“1

βk
dαpP }Qkq

“ 1 ùñ λ “
α

´

řK
k“1

βk
dαpP }Qkq

¯α´1 .

And finally we get the expression for φk:

φk “

βk
dαpP }Qkq

řK
h“1

βh
dαpP }Qhq

. (A.71)

We can now compute the bound value:

K
ÿ

k“1
φαkβ

1´α
k dαpP }Qkq

α´1
“

K
ÿ

k“1

βαk
dαpP }Qkqα

´

řK
h“1

βh
dαpP }Qhq

¯αβ
1´α
k dαpP }Qkq

α´1

“

řK
k“1

βk
dαpP }Qkq

´

řK
h“1

βh
dαpP }Qhq

¯α

“
1

´

řK
k“1

βk
dαpP }Qkq

¯α´1 .

As a consequence the bound becomes:

dαpP }Φqα´1
ď

1
´

řK
k“1

βk
dαpP }Qkq

¯α´1 ùñ dαpP }Φq ď
1

řK
k“1

βk
dαpP }Qkq

,

which is the weighted harmonic mean of the exponentiated divergences.

Bibliography

[Agrawal, 1995a] Agrawal, R. (1995a). The continuum-armed bandit problem.
SIAM Journal on Control and Optimization, 33(6):1926–1951.

[Agrawal, 1995b] Agrawal, R. (1995b). Sample mean based index policies by
o (log n) regret for the multi-armed bandit problem. Advances in Applied
Probability, 27(4):1054–1078.

[Agrawal and Goyal, 2013] Agrawal, S. and Goyal, N. (2013). Further optimal
regret bounds for thompson sampling. In Artificial intelligence and statistics,
pages 99–107.

[Amari, 1998] Amari, S.-I. (1998). Natural gradient works efficiently in learning.
Neural computation, 10(2):251–276.

[Amari and Douglas, 1998] Amari, S.-I. and Douglas, S. C. (1998). Why natural
gradient? In Proceedings of the 1998 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181),
volume 2, pages 1213–1216. IEEE.

[Antos et al., 2008] Antos, A., Szepesvári, C., and Munos, R. (2008). Fitted
q-iteration in continuous action-space mdps. In Advances in neural information
processing systems, pages 9–16.

[Auer, 2002] Auer, P. (2002). Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning Research, 3(Nov):397–422.

[Auer et al., 2002] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time
analysis of the multiarmed bandit problem. Machine learning, 47(2-3):235–256.

[Auer and Ortner, 2007] Auer, P. and Ortner, R. (2007). Logarithmic online
regret bounds for undiscounted reinforcement learning. In Advances in Neural
Information Processing Systems, pages 49–56.

Chapter 6. Bibliography 98

[Auer and Ortner, 2010] Auer, P. and Ortner, R. (2010). Ucb revisited: Improved
regret bounds for the stochastic multi-armed bandit problem. Periodica
Mathematica Hungarica, 61(1-2):55–65.

[Baird III, 1993] Baird III, L. C. (1993). Advantage updating. Technical report,
WRIGHT LAB WRIGHT-PATTERSON AFB OH.

[Baxter and Bartlett, 2001] Baxter, J. and Bartlett, P. L. (2001). Infinite-horizon
policy-gradient estimation. Journal of Artificial Intelligence Research, 15:319–
350.

[Bellemare et al., 2016] Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. (2016). Unifying count-based exploration and
intrinsic motivation. In Advances in Neural Information Processing Systems,
pages 1471–1479.

[Blei et al., 2017] Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017).
Variational inference: A review for statisticians. Journal of the American
Statistical Association, 112(518):859–877.

[Blundell et al., 2015] Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wier-
stra, D. (2015). Weight uncertainty in neural network. In Bach, F. and Blei, D.,
editors, Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pages 1613–1622,
Lille, France. PMLR.

[Boucheron et al., 2013] Boucheron, S., Lugosi, G., and Massart, P. (2013). Con-
centration inequalities: A nonasymptotic theory of independence. Oxford
university press.

[Brafman and Tennenholtz, 2002] Brafman, R. I. and Tennenholtz, M. (2002).
R-max-a general polynomial time algorithm for near-optimal reinforcement
learning. Journal of Machine Learning Research, 3(Oct):213–231.

[Brockman et al., 2016] Brockman, G., Cheung, V., Pettersson, L., Schneider,
J., Schulman, J., Tang, J., and Zaremba, W. (2016). Openai gym.

[Bubeck et al., 2012] Bubeck, S., Cesa-Bianchi, N., et al. (2012). Regret analysis
of stochastic and nonstochastic multi-armed bandit problems. Foundations
and Trends R© in Machine Learning, 5(1):1–122.

Chapter 6. Bibliography 99

[Bubeck et al., 2013] Bubeck, S., Cesa-Bianchi, N., and Lugosi, G. (2013). Ban-
dits with heavy tail. IEEE Transactions on Information Theory, 59(11):7711–
7717.

[Bubeck et al., 2011] Bubeck, S., Munos, R., Stoltz, G., and Szepesvári, C.
(2011). X-armed bandits. Journal of Machine Learning Research, 12(May):1655–
1695.

[Cesa-Bianchi et al., 2017] Cesa-Bianchi, N., Gentile, C., Lugosi, G., and Neu, G.
(2017). Boltzmann exploration done right. In Advances in Neural Information
Processing Systems, pages 6284–6293.

[Chentanez et al., 2005] Chentanez, N., Barto, A. G., and Singh, S. P. (2005). In-
trinsically motivated reinforcement learning. In Advances in neural information
processing systems, pages 1281–1288.

[Choshen et al., 2018] Choshen, L., Fox, L., and Loewenstein, Y. (2018). Dora
the explorer: Directed outreaching reinforcement action-selection. poster. In
International Conference on Learning Representations.

[Cochran, 2007] Cochran, W. G. (2007). Sampling techniques. John Wiley &
Sons.

[Cortes et al., 2010] Cortes, C., Mansour, Y., and Mohri, M. (2010). Learning
bounds for importance weighting. In Lafferty, J. D., Williams, C. K. I.,
Shawe-Taylor, J., Zemel, R. S., and Culotta, A., editors, Advances in Neural
Information Processing Systems 23, pages 442–450. Curran Associates, Inc.

[Dayan and Hinton, 1997] Dayan, P. and Hinton, G. E. (1997). Using
expectation-maximization for reinforcement learning. Neural Computation,
9(2):271–278.

[Degris et al., 2012] Degris, T., White, M., and Sutton, R. S. (2012). Off-policy
actor-critic. CoRR, abs/1205.4839.

[Deisenroth et al., 2013] Deisenroth, M. P., Neumann, G., Peters, J., et al. (2013).
A survey on policy search for robotics. Foundations and Trends R© in Robotics,
2(1–2):1–142.

[Dhariwal et al., 2017] Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert,
M., Radford, A., Schulman, J., Sidor, S., Wu, Y., and Zhokhov, P. (2017).
Openai baselines. https://github.com/openai/baselines.

https://github.com/openai/baselines

Chapter 6. Bibliography 100

[Dorato et al., 1995] Dorato, P., Abdallah, C. T., Cerone, V., and Jacobson, D. H.
(1995). Linear-quadratic control: an introduction. Prentice Hall Englewood
Cliffs, NJ.

[Duan et al., 2016] Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel,
P. (2016). Benchmarking deep reinforcement learning for continuous control.
In International Conference on Machine Learning, pages 1329–1338.

[Espeholt et al., 2018] Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I., Legg, S., and
Kavukcuoglu, K. (2018). IMPALA: scalable distributed deep-rl with importance
weighted actor-learner architectures. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, pages 1406–1415.

[Garivier and Cappé, 2011] Garivier, A. and Cappé, O. (2011). The kl-ucb
algorithm for bounded stochastic bandits and beyond. In Proceedings of the
24th annual conference on learning theory, pages 359–376.

[Gil et al., 2013] Gil, M., Alajaji, F., and Linder, T. (2013). Rényi divergence
measures for commonly used univariate continuous distributions. Information
Sciences, 249:124–131.

[Glynn, 1990] Glynn, P. W. (1990). Likelihood ratio gradient estimation for
stochastic systems. Communications of the ACM, 33(10):75–84.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016).
Deep learning. MIT press.

[Grondman et al., 2012] Grondman, I., Busoniu, L., Lopes, G. A., and Babuska,
R. (2012). A survey of actor-critic reinforcement learning: Standard and natural
policy gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 42(6):1291–1307.

[Haarnoja et al., 2017] Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. (2017).
Reinforcement learning with deep energy-based policies. In Proceedings of
the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, pages 1352–1361.

[Haarnoja et al., 2018] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018).
Soft actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. In Proceedings of the 35th International Conference on

Chapter 6. Bibliography 101

Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018, pages 1856–1865.

[Hershey and Olsen, 2007] Hershey, J. R. and Olsen, P. A. (2007). Approxi-
mating the kullback leibler divergence between gaussian mixture models. In
Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE Interna-
tional Conference on, volume 4, pages IV–317. IEEE.

[Houthooft et al., 2016] Houthooft, R., Chen, X., Duan, Y., Schulman, J.,
De Turck, F., and Abbeel, P. (2016). Vime: Variational information maximiz-
ing exploration. In Advances in Neural Information Processing Systems, pages
1109–1117.

[Ionides, 2008] Ionides, E. L. (2008). Truncated importance sampling. Journal
of Computational and Graphical Statistics, 17(2):295–311.

[Kearns and Singh, 2002] Kearns, M. and Singh, S. (2002). Near-optimal rein-
forcement learning in polynomial time. Machine learning, 49(2-3):209–232.

[Kimura, 1999] Kimura, H. (1999). Efficient non-linear control by combining
q-learning with local linear controllers. In Proceedings of the 16th International
Conference on Machine Learning, pages 210–219.

[Kleinberg et al., 2008] Kleinberg, R., Slivkins, A., and Upfal, E. (2008). Multi-
armed bandits in metric spaces. In Proceedings of the fortieth annual ACM
symposium on Theory of computing, pages 681–690. ACM.

[Kleinberg et al., 2013] Kleinberg, R., Slivkins, A., and Upfal, E. (2013). Bandits
and experts in metric spaces. CoRR, abs/1312.1277.

[Kleinberg, 2005] Kleinberg, R. D. (2005). Nearly tight bounds for the continuum-
armed bandit problem. In Advances in Neural Information Processing Systems,
pages 697–704.

[Kober and Peters, 2009] Kober, J. and Peters, J. R. (2009). Policy search for
motor primitives in robotics. In Advances in neural information processing
systems, pages 849–856.

[Kong, 1992] Kong, A. (1992). A note on importance sampling using standardized
weights. University of Chicago, Dept. of Statistics, Tech. Rep, 348.

[Kupcsik et al., 2013] Kupcsik, A. G., Deisenroth, M. P., Peters, J., and Neu-
mann, G. (2013). Data-efficient generalization of robot skills with contextual
policy search. In Twenty-Seventh AAAI Conference on Artificial Intelligence.

Chapter 6. Bibliography 102

[Lai and Robbins, 1985] Lai, T. L. and Robbins, H. (1985). Asymptotically
efficient adaptive allocation rules. Advances in applied mathematics, 6(1):4–22.

[Lange et al., 2012] Lange, S., Gabel, T., and Riedmiller, M. (2012). Batch
reinforcement learning. In Reinforcement learning, pages 45–73. Springer.

[Lattimore and Szepesvári, 2019] Lattimore, T. and Szepesvári, C. (2019). Ban-
dit Algorithms. Cambridge University Press (preprint).

[Lopes et al., 2012] Lopes, M., Lang, T., Toussaint, M., and Oudeyer, P.-Y.
(2012). Exploration in model-based reinforcement learning by empirically
estimating learning progress. In Advances in Neural Information Processing
Systems, pages 206–214.

[Magureanu et al., 2014] Magureanu, S., Combes, R., and Proutière, A. (2014).
Lipschitz bandits: Regret lower bounds and optimal algorithms. CoRR,
abs/1405.4758.

[Martino et al., 2017] Martino, L., Elvira, V., and Louzada, F. (2017). Effective
sample size for importance sampling based on discrepancy measures. Signal
Processing, 131:386–401.

[Metelli et al., 2018] Metelli, A. M., Papini, M., Faccio, F., and Restelli, M.
(2018). Policy optimization via importance sampling. In Advances in Neural
Information Processing Systems, pages 5447–5459.

[Mnih et al., 2016] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P.,
Harley, T., Silver, D., and Kavukcuoglu, K. (2016). Asynchronous methods
for deep reinforcement learning. In Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016, pages 1928–1937.

[Moré and Thuente, 1994] Moré, J. J. and Thuente, D. J. (1994). Line search
algorithms with guaranteed sufficient decrease. ACM Transactions on Mathe-
matical Software (TOMS), 20(3):286–307.

[Oord et al., 2016] Oord, A. V., Kalchbrenner, N., and Kavukcuoglu, K. (2016).
Pixel recurrent neural networks. In Balcan, M. F. and Weinberger, K. Q.,
editors, Proceedings of The 33rd International Conference on Machine Learning,
volume 48 of Proceedings of Machine Learning Research, pages 1747–1756,
New York, New York, USA. PMLR.

Chapter 6. Bibliography 103

[Osband et al., 2016] Osband, I., Blundell, C., Pritzel, A., and Van Roy, B.
(2016). Deep exploration via bootstrapped dqn. In Advances in neural
information processing systems, pages 4026–4034.

[Osband et al., 2013] Osband, I., Russo, D., and Roy, B. V. (2013). (more)
efficient reinforcement learning via posterior sampling. In Advances in Neural
Information Processing Systems 26: 27th Annual Conference on Neural Infor-
mation Processing Systems 2013. Proceedings of a meeting held December 5-8,
2013, Lake Tahoe, Nevada, United States., pages 3003–3011.

[Osband and Van Roy, 2015] Osband, I. and Van Roy, B. (2015). Bootstrapped
thompson sampling and deep exploration. arXiv preprint arXiv:1507.00300.

[Osband and Van Roy, 2017] Osband, I. and Van Roy, B. (2017). Why is poste-
rior sampling better than optimism for reinforcement learning? In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pages
2701–2710. JMLR. org.

[Ostrovski et al., 2017] Ostrovski, G., Bellemare, M. G., van den Oord, A., and
Munos, R. (2017). Count-based exploration with neural density models. In
Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 2721–2730. JMLR. org.

[Oudeyer et al., 2007] Oudeyer, P.-Y., Kaplan, F., and Hafner, V. V. (2007).
Intrinsic motivation systems for autonomous mental development. IEEE
transactions on evolutionary computation, 11(2):265–286.

[Owen, 2013] Owen, A. B. (2013). Monte Carlo theory, methods and examples.

[Peters and Schaal, 2008] Peters, J. and Schaal, S. (2008). Reinforcement learn-
ing of motor skills with policy gradients. Neural networks, 21(4):682–697.

[Puterman, 2014] Puterman, M. L. (2014). Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.

[Rényi, 1961] Rényi, A. (1961). On measures of entropy and information. Tech-
nical report, Hungarian Academy of Sciences Budapest Hungary.

[Rummery and Niranjan, 1994] Rummery, G. A. and Niranjan, M. (1994). On-
line Q-learning using connectionist systems, volume 37. University of Cam-
bridge, Department of Engineering Cambridge, England.

Chapter 6. Bibliography 104

[Russo and Van Roy, 2013] Russo, D. and Van Roy, B. (2013). Eluder dimension
and the sample complexity of optimistic exploration. In Advances in Neural
Information Processing Systems, pages 2256–2264.

[Russo et al., 2018] Russo, D. J., Van Roy, B., Kazerouni, A., Osband, I., Wen,
Z., et al. (2018). A tutorial on thompson sampling. Foundations and Trends R©
in Machine Learning, 11(1):1–96.

[Sallans and Hinton, 2004] Sallans, B. and Hinton, G. E. (2004). Reinforcement
learning with factored states and actions. Journal of Machine Learning
Research, 5(Aug):1063–1088.

[Schmidhuber, 1991] Schmidhuber, J. (1991). A possibility for implementing
curiosity and boredom in model-building neural controllers. In Proc. of the
international conference on simulation of adaptive behavior: From animals to
animats, pages 222–227.

[Schulman et al., 2015] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and
Moritz, P. (2015). Trust region policy optimization. In International Conference
on Machine Learning, pages 1889–1897.

[Scott, 2015] Scott, D. W. (2015). Multivariate density estimation: theory,
practice, and visualization. John Wiley & Sons.

[Sehnke et al., 2008] Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Pe-
ters, J., and Schmidhuber, J. (2008). Policy gradients with parameter-based
exploration for control. In International Conference on Artificial Neural
Networks, pages 387–396. Springer.

[Sehnke et al., 2010] Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Pe-
ters, J., and Schmidhuber, J. (2010). Parameter-exploring policy gradients.
Neural Networks, 23(4):551–559.

[Silver et al., 2014] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. (2014). Deterministic policy gradient algorithms. In ICML.

[Srinivas et al., 2010] Srinivas, N., Krause, A., Kakade, S., and Seeger, M. (2010).
Gaussian process optimization in the bandit setting: No regret and experimen-
tal design. In Fürnkranz, J. and Joachims, T., editors, Proceedings of the 27th
International Conference on Machine Learning (ICML-10), pages 1015–1022,
Haifa, Israel. Omnipress.

Chapter 6. Bibliography 105

[Still and Precup, 2012] Still, S. and Precup, D. (2012). An information-theoretic
approach to curiosity-driven reinforcement learning. Theory in Biosciences,
131(3):139–148.

[Strens, 2000] Strens, M. (2000). A bayesian framework for reinforcement learn-
ing. In ICML, volume 2000, pages 943–950.

[Sutton, 1988] Sutton, R. S. (1988). Learning to predict by the methods of
temporal differences. Machine learning, 3(1):9–44.

[Sutton, 1991] Sutton, R. S. (1991). Dyna, an integrated architecture for learning,
planning, and reacting. ACM SIGART Bulletin, 2(4):160–163.

[Sutton and Barto, 2018] Sutton, R. S. and Barto, A. G. (2018). Reinforcement
learning: An introduction. MIT press.

[Sutton et al., 2000] Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,
Y. (2000). Policy gradient methods for reinforcement learning with function
approximation. In Advances in neural information processing systems, pages
1057–1063.

[Tang et al., 2017] Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, O. X.,
Duan, Y., Schulman, J., DeTurck, F., and Abbeel, P. (2017). # exploration: A
study of count-based exploration for deep reinforcement learning. In Advances
in neural information processing systems, pages 2753–2762.

[Thompson, 1933] Thompson, W. R. (1933). On the likelihood that one unknown
probability exceeds another in view of the evidence of two samples. Biometrika,
25(3/4):285–294.

[Thrun, 1992] Thrun, S. B. (1992). Efficient exploration in reinforcement learning.
Technical report, Pittsburgh, PA, USA.

[Tornio and Raiko, 2006] Tornio, M. and Raiko, T. (2006). Variational bayesian
approach for nonlinear identification and control. In Proc. of the IFAC Work-
shop on Nonlinear Model Predictive Control for Fast Systems, NMPC FS06,
pages 41–46. Citeseer.

[Veach and Guibas, 1995] Veach, E. and Guibas, L. J. (1995). Optimally com-
bining sampling techniques for Monte Carlo rendering. In Proceedings of the
22nd annual conference on Computer graphics and interactive techniques -
SIGGRAPH ’95, pages 419–428. ACM Press.

Chapter 6. Bibliography 106

[Watkins, 1989] Watkins, C. J. C. H. (1989). Learning from delayed rewards.
PhD thesis, King’s College, Cambridge.

[Wawrzyński, 2005] Wawrzyński, P. (2005). Intensive reinforcement learning.
PhD thesis, Institute of Control and Computation Engineering, Supervisor:
Andrzej Pacut,.

[Whitehead and Ballard, 1991] Whitehead, S. D. and Ballard, D. H. (1991). A
study of cooperative mechanisms for faster reinforcement learning. University
of Rochester, Department of Computer Science Rochester, NY.

[Williams and Rasmussen, 2006] Williams, C. K. and Rasmussen, C. E. (2006).
Gaussian processes for machine learning, volume 2. MIT Press Cambridge,
MA.

[Williams, 1992] Williams, R. J. (1992). Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Machine learning, 8(3-
4):229–256.

[Zhao et al., 2011] Zhao, T., Hachiya, H., Niu, G., and Sugiyama, M. (2011).
Analysis and improvement of policy gradient estimation. In Advances in Neural
Information Processing Systems, pages 262–270.

[Ziebart et al., 2008] Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.
(2008). Maximum entropy inverse reinforcement learning. In Aaai, volume 8,
pages 1433–1438. Chicago, IL, USA.

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Introduction
	Motivation and Goal
	Original Contributions
	Overview

	Preliminaries
	Multi Armed Bandits
	Exploration and Exploitation
	Stochastic Bandits With Finitely Many Arms
	X-armed Bandits

	Markov Decision Processes
	Policies
	Performance
	Value Functions

	Reinforcement Learning
	Problem Formulation
	Taxonomy

	Policy Search
	Overview
	Policy Gradient
	Policy Gradient Estimation
	Algorithms

	Multiple Importance Sampling

	Exploration Techniques
	Exploration in Multi Armed Bandits
	Undirected Exploration
	Count-based Exploration and Upper Confidence Bound
	Optimism in the Face of Uncertainty
	 Hierarchical Optimistic Optimization
	Posterior Sampling
	Gaussian Process Upper Confidence Bound

	Exploration in Reinforcement Learning
	Undirected Exploration
	Count-based Exploration and Intrinsic Motivation
	Posterior Sampling

	Optimistic Policy Search via Multiple Importance Sampling
	Robust Importance Sampling Estimation
	Problem Formalization
	Algorithms
	Regret Analysis
	Discrete arm set
	Compact arm set
	Discretization

	Numerical Simulations
	Practical Aspects
	Divergence Between Gaussian Multivariate Distributions
	Uniformly Bounded Rényi divergence

	Linear Quadratic Gaussian Regulator
	Gain only
	Gain and standard deviation

	Continuous Mountain Car
	Inverted Pendulum
	Action-based setting

	Conclusions
	Recapitulation
	Limitations and Future Works

	Appendices
	Proofs
	Bibliography

