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Abstract

Information regarding occupancy is a key component to facilitate people’s lives.

Indeed, occupants presence have significant impact on space around us. It is

interesting to know how many people are present in different environments.

Generally speaking, information about allocation and reservation of spaces

make people feel more comfortable, allowing them to save their time using public

transportation, to better manage energy consumption of indoor environments,

etc.

The main goal of this thesis project is to perform space occupancy esti-

mation using packet sniffing and Machine Learning algorithms. On the one

hand, packet sniffing is carried out through Bluetooth Low Energy and Classic

Bluetooth advertising packet detection and count. Packets have been captured

using a sniffing hardware named Ubertooth One and the bluetooth Linux stack

Bluez HCItool. On the other hand, machine learning techniques such as Linear

Regression, Decision Tree Regression and Support Vector Regression were used

to estimate occupancy. Despite we used low-cost wireless sniffers, it is shown

that the task of occupancy estimation can be performed with a good level of

accuracy.

Sniffing and Data Acquisition processes are discussed, also explaining how

the features sets are built to best fit the occupancy predicting models.

Experimental results, expressed in terms of RMSE and MAPE indicators

demonstrate the validity of the proposed system in both indoor and outdoor

uncontrolled scenarios. Finally, we spend a few words on the reason why we

believe in the potential of this non-intrusive methodology.
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Sommario

L’informazione riguardo l’occupazione di un luogo è una componente chiave per

facilitare la quotidianità delle persone. Infatti, la presenza di occupanti ha un

impatto significativo sullo spazio intorno a noi. È interessante sapere quante

persone sono presenti in diversi ambienti. In generale, conoscere le informazioni

sull’assegnazione e la prenotazione degli spazi fanno sentire le persone più a loro

agio, consentendo loro di risparmiare tempo utilizzando i mezzi pubblici, per

gestire meglio il consumo energetico degli ambienti interni, ecc.

L’obiettivo principale di questo progetto di tesi è quello di eseguire la stima

di occupazione dello spazio usando tecniche di ”Sniffing” e ”Machine Learning”.

Da un lato, il processo di Sniffing viene eseguito tramite la rilevazione e il conteg-

gio di pacchetti pubblicitari ”Bluetooth Classico” e ”Bluetooth Low Energy”.

I pacchetti vengono catturati usando un dispositivo di sniffing, chiamato Uber-

tooth One, e lo stack Bluetooth di Linux, Bluez hcitool. Dall’altro lato, tecniche

di Machine Learning, come Regressione lineare, Regressione a supporto vettori-

ale e alberi di decisione, sono state utilizzate per stimare l’occupazione. Nonos-

tante abbiamo utilizzato sniffer wireless a basso costo, abbiamo dimostrato che

l’obiettivo della stima di occupazione può essere eseguito con un ottimo livello

di accuratezza. Vengono discussi i processi di sniffing e acquisizione dati, spie-

gando come vengono costruiti i gruppi di descrittori per adattarsi al meglio ai

modelli di previsione di occupazione. I risultati sperimentali, espressi in termini

di indicatori RMSE e MAPE, dimostrano la validità del sistema proposto in

scenari sia interni che esterni incontrollati. Infine, dedichiamo alcune parole sul

motivo per cui crediamo nel potenziale di questo metodo non intrusivo.

III





Ringraziamenti

Il primo ringraziamento vorrei dedicarlo al mio relatore Prof. Alessandro E.

C. Redondi per avermi concesso la possibilità di conseguire il seguente lavoro
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che mi regala, la serenità che mi trasmette con cui ho affrontato questi anni, i

migliori di sempre.

Infine dedico questo lavoro ai complici di tutti i miei successi, alle due per-

sone che mi hanno educato e sostenuto in questi anni, con tanti sacrifici, con

tanto coraggio. A loro che hanno sempre creduto in me rendendo possibile tutto

questo.

A voi Mamma e Papà.
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Chapter 1

Introduction

Imagine we could estimate the number of people in a library, or a study hall,

making people aware of the sits still available before leaving home. Also, we

could have information on public spaces occupancy level such as a bus stop or

a volleyball field. Information of this type can be easily collected leveraging

wireless packets sniffing coming from smartphones or less complex personal

devices. Indeed, the presence of personal devices with wireless communication

capabilities other than smartphones is exponentially growing. It is estimated

that being equipped with such devices will soon be a primary requirement.

Recent CISCO reports estimate that by 2021 there will be around 11.6

billions active mobile-connected devices, exceeding the forecasted global pop-

ulation of 7.8 billion, that is around 1.5 mobile devices per capita. Most of

these devices will be smartphones or equivalent handheld personal ready de-

vices; however, it is expected that a fraction as large as 30% will be constituted

by wearable or M2M devices (smart watches, health and fitness trackers, etc.)

that will communicate to the network either directly through embedded cellular

connectivity or most likely through a smartphone with other wireless communi-

cation technologies such as WiFi, Bluetooth or Bluetooth Low Energy (BLE).

The growth of the presence of these devices shows no signs of slowing down and

it steadily becomes the cause of a new pervasive paradigm in computing and

communications.

Internet of Things (IoT) is a recent communication paradigm that envi-

sions a near future, in which the objects of everyday life will be equipped with

microcontrollers, transceivers for digital communication, and suitable protocol



stacks that will make them able to communicate with one another and with the

users, becoming an integral part of the Internet. The IoT concept, hence, aims

at making the Internet even more immersive and pervasive. Furthermore, by

enabling easy access and interaction with a wide variety of devices such as, for

instance, home appliances, surveillance cameras, monitoring sensors, actuators,

displays, vehicles, and so on, the IoT will foster the development of a number of

applications that make use of the potentially enormous amount and variety of

data generated by such objects to provide new services to citizens, companies,

and public administrations. This paradigm indeed finds application in many

different domains, such as home automation, industrial automation, medical

aids, mobile healthcare, elderly assistance, intelligent energy management and

smart grids, automotive, traffic management, and many others. The adoption

of the IoT paradigm in urban context is of particular interest, as it responds to

the strong push of many national governments to adopt ICT solutions in the

management of public affairs, thus realizing the so-called Smart City concept.

The Smart City market is estimated at hundreds of billion dollars by 2020,

with an annual spending reaching nearly 16 billions. This market springs from

the synergic interconnection of key industry and service sectors, such as Smart

Governance, Smart Mobility, Smart Utilities, Smart Buildings, and Smart En-

vironment. These sectors have also been considered in the European Smart

Cities project (http://www.smart-cities.eu) to define a ranking criterion that

can be used to assess the level of ”smartness” of European cities. The IoT vision

can become the building block to realize a unified urban-scale ICT platform,

thus unleashing the potential of the Smart City vision.

With the proliferation of Internet of Things (IoT) devices such as smart-

phones, sensors, cameras, and RFIDs, it is possible to collect massive amount of

data for counting people. Indeed, both Bluetooth and Bluetooth Low Energy

(BLE) are wireless communication protocols whose management frames can

be easily captured with minimal hardware equipments and processed to per-

form user localization and tracking, behaviour estimation, device classification

and de-anonymisation, market analysis and many others [1]. In this way, we

can have real-time access to occupancy counts in different zones of the build-

ing and outdoor environments. Also, it is possible to locate most of the users

carrying a wireless device. This real-time occupancy status information can

be used in a variety of applications. For example, the smart building systems
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of the future can adjust their energy consumption by intelligently controlling

the HVAC, an accurate information of the number of occupants may allow en-

ergy savings ranging from 30% up to 80%, according to several studies [2][3][4],

and also make the system respond promptly to any potential issues that can

put the building off its track to carbon neutrality [5][6]. In addition to en-

ergy issues, real-time occupancy counting may also help rescuing survivors in

case of emergency response applications. Finally, this information may also be

used to improve building surveillance and security, and help in better deploying

the wireless communication infrastructure for fulfilling ubiquitous throughput

guarantees throughout the buildings.

Numerous methods have been developed to study occupancy in both indoor

and outdoor environments. These methods can be categorized as ”direct ap-

proach” and ”indirect approach”: the former is a method based on direct detec-

tion of occupants using positioning technologies such as passive infrared (PIR)

motion detector, video camera and radio-frequency identification (RFID); the

latter is a method based on indirect sensing management frames coming from

wireless devices, CO2 concentration, temperature data in the near environment

to estimate occupancy through the use of machine learning techniques.

The direct approach technologies rely on occupancy status analysis from

data directly collected in the surrounding environment. While environmental

sensors are a cheap solution although generally not very accurate, camera-based

systems are much more precise but generally costly to deploy. Moreover, despite

their effectiveness in detecting occupancy levels, privacy can be a major con-

cern for deploying these technologies in the real world. For these reasons, our

approaches is based on non-intrusive ”indirect” occupant measurement meth-

ods exploiting wireless sniffing and machine learning algorithms. We show that

the task of occupancy estimation can be performed accurately using low-cost

Bluetooth sniffers, which capture management frames transmitted by Bluetooth

personal devices even without a proper connection to a network nor user data

to deliver. Our work provides an analysis of the existing approaches and help

address the aforementioned issue by promoting the use of multi-modal data

fusion that will be collected from the existing IoT network. Fusing data from

Classic and Low Energy Bluetooth could improve the accuracy of occupancy de-

tection while maintaining a low intrusiveness. By exploiting the synergy among

the available data, information fusion techniques can filter noisy measurements
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coming from IoT devices, and make predictions and inferences about occupancy

status.
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Chapter 2

State of the art

Occupancy detection is one of the most stimulating study that interests many

researchers developing new methods.

Many approaches have been proposed in the literature by considering the

use of different devices, assumptions, and goals. These approaches have certain

drawbacks with respect to accuracy, cost, intrusiveness, and privacy. Accuracy,

cost and intrusiveness are inter-related in the sense that with the increased cost,

you can deploy additional devices (such as various sensors, RFIDS, cameras)

and increase the accuracy of the system while at the same time increase the

intrusiveness. Therefore, a wise method to reduce costs is to rely on the existing

devices as much as possible. This automatically addresses the intrusiveness

issue since there will be no need to deploy additional devices inside the rooms,

and additional applications on the users’ devices. Nonetheless, this raises the

question of accuracy which may be severely affected.

In the chapter 1 we mentioned the division of direct and indirect approaches.

In this chapter we focus on indirect approaches, dividing the chapter in two

sections, we first propose a small summary on related Occupancy estimation

direct-approach-based works, emphasising the pros and cons; second, we anal-

yse indirect-approaches-based works distinguishing between Occupancy estima-

tion through wireless technologies and Occupancy estimation through machine

learning techniques such as Classification and Regression, emphasising similar-

ities and results with respect to our work.



2.1 Direct approaches Video-based Occupancy esti-

mation works

The direct approach consists in using video cameras for estimating the num-

ber of people occupying a space through image processing techniques [7]. The

main works in this area are summarised in Table 2.1: the occupancy estima-

tion problem is generally approached as a multi-class classification problem and

the main performance figure used in such works is the classification accuracy.

Cameras installed in public spaces generally raise privacy concerns: therefore

they are either installed in such a way such that faces are not revealed, e.g.

attached to the ceilings, or they are operated with very low image resolutions

[8], however it does not solve the problem because the perception of the people

present remains that of being continually observed. Other approaches ensuring

privacy use cameras in the non-visible domain, such as passive infrared (PIR)

sensors [9][10] or depth cameras [11]. Compared to indirect approaches solu-

tions, video-based approach allows for higher estimation accuracy, but does not

solve the aforementioned privacy issue and are also more costly to setup and

maintain as well as being sensible to lighting conditions. For this reasons, some

works propose hybrid data-fusion systems in which cameras are coupled with

CO2 and other environmental sensors [12], in order to improve the estimation

accuracy in poor lighting conditions.

Reference Sensor Location MAX #People Accuracy

Benezeth et al., [7] RGB camera (QVGA) Indoor 2 93%

Amin et al., [8] RGB + thermal Indoor 10 97%

Wahl et al., [9] PIR Indoor 3 99%

Munir et al., [11] Depth camera Indoor 12 100%

Wang et al., [12]
CO2

RGB camera
Indoor 12 91%

Table 2.1: Summary of video-based occupancy estimation works
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2.2 Indirect approaches-based Occupancy estimation

works

2.2.1 Environmental sensing Occupancy estimation using Ma-

chine Learning

Many works leverage environmental data to perform either presence detection

(i.e., detecting if someone is present in an area or not) or occupation estimation

(i.e., counting how many people are present). For what concerns indoor spaces,

the gold standard input measurement used in this kind of works is the CO2

level, which is a good indicator of the number of person in a room and at the

same time is able to preserve the privacy of the occupants [13]. Occupancy

information is generally retrieved by analyzing the gradient of the CO2 level or

by solving the air mass balance equation [14]. However, both methods assume

that the indoor CO2 concentration is uniform. Therefore, in real applications,

these methods suffer from common issues such as unpredictable opening of doors

and windows and uncertainties involved with the CO2 concentration level or

its gradient, which lead to poor estimation accuracy. Presence detection and

occupancy estimation are generally treated as classification problems and solved

with supervised machine learning tools. While presence detection is approached

as a binary classification problem (absence/presence of people, [15]), occupancy

estimation is solved with multi-class approaches and ground truth information is

generally quantised in occupancy levels (e.g. low, medium, high, [16]) or directly

used as class label when the maximum number of person to estimate is very low

(e.g. below 10). The performance obtained with such methods are generally

excellent for what concern presence detection, with classification accuracy close

to 100%, whereas for occupancy estimation the results obtained are mediocre.

To improve the performance, some works take into account other environmental

sources of information such as light, temperature, humidity or even energy

consumption of appliances [17]. Seung Ho Ryu and Hyeun Jun Moon tackle

these issues, proposing a data-driven model for occupancy prediction using

machine learning techniques. The experiments was conducted in a controlled

space to collect the ground truth occupancy profiles, indoor CO2 concentrations

and electricity consumption of lighting systems and appliances. The results

show that using the decision tree and hidden Markov model (HMM) algorithms

are well suited to account for occupancy detection at the current state and
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Reference Sensor Location MAX #People Models used Accuracy

Candanedo et al.,[15]

CO2

Light

Temperature

Humidity

Indoor Absence/Presence

CART

Binary

Classifier

99%

Chen et al., [17]

CO2

Light

Temperature

Pressure

Indoor 10

SVM

ANN

KNN

71.6%

Ryu et al., [18]
CO2

Energy
Indoor 5 HMM 93.2%

Table 2.2: Related works using environmental data using Machine learning

occupancy prediction at the future state, respectively [18]. Another similar work

was proposed by Sunil Mamidi and Yu-Han Chang, they implemented a multi-

modal sensor agent that combines information such as motion detection, CO2

reading, sound level, ambient light, and door state sensing. Results show that

these sensor agents can be used to accurately estimate the number of occupants

in each room using machine learning technique such as linear regression, logistic

regression, multi-layer perception, and support vector machines (SVM) [19].

These types of works have usually a very low level of intrusiveness, thanks to

the fact that people do not perceive the presence of sensors due to their reduced

size, have a low cost, but as we can see from the results in table 2.2, the level of

accuracy of occupancy counting is low, and in those cases where the accuracy

is high the experiments were conducted in ”controlled” indoor environments,

where the number of occupants is quite low, from zero to ten.

2.2.2 Wireless technologies Radio-based Occupancy estimation

Very recently, attention has been given to occupancy estimation systems which

are based on wireless radio measurements rather than on traditional sensors.

Beside being very cheap, such systems have the benefit of being able to work

both in indoor and outdoor spaces. Many works approach the problem in a

device-free fashion, without relying on the personal devices carried by people.

Such works analyse the propagation characteristics of probing radio signals and

correlate features derived by the Received Signal Strength (RSS) to the num-

ber of people occupying a certain space. Representative works include the one

in [20], where an approach for estimating the total number of people based
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on only WiFi power measurement was proposed, a couple of transmitter and

receiver devices is used to assess the impact of a certain number of people on

the signal strength indicator at the receiver or on line of sight (LOS) block-

ing effects. Authors develop a model for the probability distribution of the

received signal amplitude as a function of the total number of occupants and

use that as estimation methods. The work in [21] approaches the same problem

using 13 radio transmitters and 9 receivers. Lars Mikkelsen, in [22], provides

an estimation of public transport occupancy collecting WiFi probes emitted by

WiFi enabled devices of the passengers, specifically estimating bus passenger

load. Filippoupolitis proposed a new approach using Bluetooth BLE instead

WiFi, this work is able to provide the location of a user using information from

BLE beacons installed in a building. Three machine learning approaches (k-

nearestneighbours, logistic regression and support vector machines) were used

to determine the presence of occupants in indoor environment [23]. In [24], the

authors present a system based on iBeacons for detecting the occupancy of a

building. They have evaluated their system by predicting whether a user was

inside or outside of a single room. Another approach presented in [25] aims at

estimating a building’s occupancy using Arduino hardware beacons that imple-

ment Apple’s iBeacon protocol and Apple mobile phones. The evaluation only

addresses the users presence inside or outside a room and does not give details

on the individual room occupancy accuracy. The systems that use iBeacons

need applications to be installed on user’s devices to work properly, this raises

up the intrusiveness of the system. Authors in [26] propose an occupancy esti-

mation system based on the capture of both Wi-Fi and Bluetooth or Bluetooth

Low Energy management frames transmitted from discoverable devices. The

system leverages a supervised learning model to adapt to different spaces. This

work is similar to our work, with the crucial difference that the system is not

able to capture Bluetooth packets coming from Non-visible devices. Research

studies on WiFi and Bluetooth/BLE frame sniffing and analysis targeting user

tracking, device classification, social analysis and privacy issues can be found

in [27][28][29][30].

A general comment on these works is that the occupancy estimation problem

is again treated as a classification problem by the most for indoor environments

only. The experimental evaluation of these works is therefore generally limited

to less than 10 people to keep the problem tractable, and it is not clear if such

9



approaches scale to higher number of occupants. Moreover, the intrusiveness of

the systems aforementioned could be increased. Our work tends to avoid these

cons above cited: we treat the occupancy estimation using Regression instead

Classification, which works well for counting people presence; we capture RSSI

information from the packets of the devices to better adapt the model in the

different spaces, indoor and outdoor; our method is able to capture Bluetooth

packets from non-visible devices also; our method does not need any application

to be installed on the user’s devices. Therefore we propose a method that

guarantees accuracy, non-intrusiveness and low cost.
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Chapter 3

Theoretical fundamentals

This chapter is intended as a review of the theoretical fundamentals used in

this thesis. The aim is to better comprehend the working principles of the tech-

nologies used in this work. In order to do this, first this chapter introduces the

standard 802.15.1, spending a few words on the main features and the reasons

why this technology has a strong impact in Telecommunications. Secondly, we

give a review of Classic and Low Energy version of Bluetooth, showing some

details of the architecture, connectivity, and others details, emphasising the

discovery and advertising processes, differences and similarities.

3.1 Introduction on IEEE 802.15.1 Standard

IEEE 802.15.1, better known as Bluetooth, is the name given to a technology

standard using short-range radio links, intended to replace the cable(s) connect-

ing portable and/or fixed electronic devices. The standard defines a uniform

structure for a wide range of devices to communicate with each other, with min-

imal user effort. Its key features are robustness, low complexity, low power and

low cost. The technology also offers wireless access to LANs, PSTN, the mobile

phone network and the Internet for a host of home appliances and portable

handheld interfaces. The immediate need for Bluetooth came from the desire

to connect peripherals and devices without cables. Bluetooth integration is

further fueled by the demand for mobile and wireless access to LANs, Internet

over mobile and other existing networks, where the backbone is wired but the

interface is free to move. This not only makes the network easier to use but also



extends its reach. The advantages and rapid proliferation of LANs suggest that

setting up personal area networks, that is, connections among devices in the

proximity of the user, will have many beneficial uses. Bluetooth could also be

used in home networking applications. With increasing numbers of homes hav-

ing multiple PCs, the need for networks that are simple to install and maintain,

is growing. There is also the commercial need to provide ”information push”

capabilities, which is important for handheld and other such mobile devices and

this has been partially incorporated in Bluetooth. Bluetooth’s main strength is

its ability to simultaneously handle both data and voice transmissions, allowing

such innovative solutions as a mobile hands-free headset for voice calls, print

to fax capability, and automatically synchronizing PDA, laptop, and cell phone

address book applications. These uses suggest that a technology like Bluetooth

is extremely useful and will have a significant effect on the way information is

accessed and used.

3.2 Classic Bluetooth (BT)

Bluetooth is managed by the Bluetooth Special Interest Group (SIG). Blue-

tooth is a wireless technology built to Personal Area Networks (PANs). Since

Bluetooth operates in the unlicensed ISM band that is also used by other devices

such as 802.11 networks, baby monitors, garage door openers, microwave ovens

etc, there is possibility of interference, Bluetooth uses Frequency Hop Spread

Spectrum (FHSS) to avoid any interference. A Bluetooth channel is divided

into time slots each 625 μs in length. The devices hop through these timeslots

making 1600 hops per second, with adaptive frequency-hopping (AFH) enabled.

This trades bandwidth efficiency for reliability, integrity and security.

3.2.1 Device classes

Devices equipped with Bluetooth are divided into 3 transmission power classes:

• Class 1;

• Class 2;

• Class 3;
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Figure 3.1: Classes of Bluetooth

These Classes determine the maximum trasmission power (ERP) in radio

frequency, including the increase due to the gain in transmission of the antenna

of the device and the maximum range of communication, without obstacles,

within which the connection between BT devices can occur.

3.2.2 Timing and clock

Bluetooth technology plans to synchronize most operations with a clock signal

in real time. It serves, for example, to synchronize data exchanges between

devices, to distinguish between retransmitted or lost packets, to generate a

predictable and reproducible pseudo-random sequence. The Bluetooth clock is

made with a 28-bit counter that is set to 0 when the device is switched on and

immediately continues, increasing every 312.5 μs (half slot then). The counter

cycle covers approximately one day’s duration.

Each Bluetooth device has its native clock (CLKN) that controls the timing

of that device. In addition to this value, just for each device, Bluetooth defines

two other clocks: CLK: this is the clock of the piconet, coincides with the

CLKN of the master unit of the piconet. All units active in the piconet must

synchronize their CLKN with the CLK. The synchronization is done by adding

an offset to the CLKN of the slave to make it coincide with the pictonet CLK.

CLKE: also this clock is derived by an offset from the CLKN and is used by

the master in the specific case of creating a connection to a slave, and before

that slave has synchronized with the master (ie when it is a new slave) . The

first 2 bits of the counter are used directly to delimit the slots and the so-called

”half slots”, for the transmission and reception of the packets; they also serve

to establish Tx (transmission) or Rx (reception) slots over time, depending on

whether the device in question is operating as master or slave. A transmission

by the master will always start when CLK [1: 0] = 00 (even index slot), while

a slave transmission will always start when CLK [1: 0] = 10 (odd index slot).
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3.2.3 Connectivity

Bluetooth is a packet-based protocol with a master/slave architecture. Two

or more devices connected together form a piconet. Devices within a piconet

can be of two types: master or slave. The master is the device that within a

piconet takes care of everything related to the synchronization of the clock of

other devices (slaves) and the sequence of frequency jumps. Slaves are units of

the piconet synchronized to the master’s clock and to the frequency channel.

Slaves can belong to several piconets simultaneously, while the master of a

piconet can at most be the slave of another. The connections that can be

established between the different devices are of two types: Connection Oriented

and Connectionless. A Connection-Oriented connection requires establishing a

connection between the devices before sending the data; while a link without a

connection requires no connection before sending the packets. The transmitter

can at any time start sending its own packets as long as it knows the address

of the recipient.

The Bluetooth technology defines two types of connections to support voice

and data transfer applications: a Asynchronous ConnectionLess Service (ACL)

and a Synchronous Connection-Oriented Service (SCO).

ACL supports data type traffic and is based on a best-effort service. The

information conveyed can be of the user or control type. SCO, on the other

hand, is a link that supports connections with real-time and multimedia traffic.

The ACL connection supports packet-switched connections, point-to-multipoint

connections, and symmetric or asymmetric connections. In the case of symmet-

rical connections, the maximum data rate is 433.9 kbit/s in both directions;

while, for asymmetrical connections, 723.2 kbit/s in one direction and 57.6

kbit/s in the opposite one are reached. A slave can only transmit if it had

received a packet from the master in the previous slot. In these types of con-

nections, packet retransmission is typically applied.

The SCO connection provides circuit-switched connections, point-to-point

connections and symmetrical connections. This type of connection is generally

used for the transport of the voice in 64 kbit/s channels. The master can

support up to three SCO connections to the same slave or to different slaves

belonging to the same piconet. A slave, on the other hand, can support up to

three SCO connections to the same master, or two if the links have been created

by several masters. Because of the delayed sensitivity of these packets (they
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carry real-time data), no retransmission is expected in case of error or loss.

Each device, when connecting to a Bluetooth network, identifies the other

devices via a 24-bit code (COD), activating the correct services.

3.2.4 Architecture

As with the OSI architecture shown in figure 3.2, Bluetooth specifies a tiered

approach in its protocol structure. Different protocols are used for different

applications. Regardless of the type of application, however, the Bluetooth

protocol stack always leads to the use of data-link and physical levels. Not all

applications use all the protocols of the Bluetooth stack, in fact, it is represented

on multiple vertical levels, above which there is a specific application.

Going down a little more in detail, it is possible to identify the main func-

tions performed by the most important protocols of the Bluetooth stack:

• Bluetooth Radio: defines the requirements of the radio frequency part.

This is where the radio signals are processed.

• Baseband: enables the physical connection between devices within a pi-

conet. This level is based on inquiry and paging procedures for synchro-

nization and connection of bluetooth devices. It allows to establish the

two types of connection (ACL and SCO) mentioned above.

• LMP: is responsible for organizing the connection, controlling between

bluetooth devices and controlling and negotiating packet size. It is also

used for security: authentication and encryption, generation, exchange

and key control. It also controls the various power management modes

(park, sniff, hold) and the connection status of a device within the pi-

conet. LMP messages are filtered and interpreted by the link manager at

reception, as a result they will never be transmitted to the higher levels.

These messages take priority over packets that carry user data.

• L2CAP: performs the multiplexing of the higher level protocols, the seg-

mentation and reassembly of the packets and the transport of information

related to the QoS (Quality of Service) or it is possible to request a certain

QoS to be reserved for a given link. L2CAP allows higher level protocols

and applications to transmit and receive data packets larger than 64 kb.

It defines only a connectionless connection. Audio channels are usually
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run on SCO connections; to overcome this problem, audio data can be

sent in packets of protocols that run on L2CAP.

• RFCOMM: emulates a serial port (RS-232) on the L2CAP protocol. This

level is necessary because there are applications (such as OBEX) that use

a serial transmission mechanism.

• TCS BIN: operates at the bit level and defines the control signals for

voice and data calls between Bluetooth devices and the procedures for

managing groups of TCS devices.

• SDP: is an important element within Bluetooth technology, as it allows

applications to have information about the devices, the services offered

and the features of the services available. After identifying the device

that implements a certain service, it is possible to establish a connection.

• AUDIO: the function of this layer is to encode the audio signal. Two tech-

niques can be adopted: log PCM and CVSD; both provide a 64 kbit/s bit

stream. The PCM (Pulse Code Modulation) coding consists of an uneven

8-bit quantization. In the CVSD (Continuous Variable Slope Delta Mod-

ulation) encoding the output bit indicates whether the predicted value is

greater or less than the value of the incoming waveform, consisting of a

PCM signal with uniform quantization. The pitch is determined by the

slope of the waveform.

Figure 3.2: Bluetooth Architecture
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3.2.5 Inquiry and Discovery Processes for Bluetooth devices

Bluetooth devices have two major states, connection and standby, and seven

substates. Connection is used for communication whereas standby is the power-

save mode in which no transmissions occur. The substates are used for joining

as a slave in a piconet. The page substate is used by the master for adding

slaves. For this paging procedure, the clock counter (28-bit, CLK) and the MAC

address of the devices must be used. In the inquiry procedure this information

is exchanged in order to set up a lasting connection. As the master sends its

address and clock value, the slave can construct the correct hopping sequence

of the piconet by that information. The master also provides the slave with a

3-bit identification number. This limits the number of slaves in a piconet to

seven. In order to exchange this kind of information between devices, a process

must take place to actually find each other (discover).

During the inquiry (discovery) process, the master enters the inquiry sub-

state, whereas the slaves enter the inquiry scan substate. During the inquiry

process the master trasmits inquiry packets on different frequencies, and the

slave, called also inquiry scanner, scans those frequencies. An inquirer transmits

two inquiry packets on two different frequencies during one regular transmission

timeslot. 625 μs later, the inquirer listens on the same frequency. The inquiry

scanners, in scan mode, change the frequency on which they listen every 1.28

seconds. In those 1.28 seconds they scan for 11.25 ms only. After receiving an

inquiry packet, the inquiry scanner replies with an FHS (Frequency Hopping

Synchronization) packet 625 μs later, and enters a backoff period between 0 and

1024 timeslots (0-640 ms). This FHS packet contains the device’s address, its

clock offset and a CRC code. Using this information a link can be established.

Moreover, we can distinguish two cases in order to begin a Bluetooth con-

nection between two devices, the target device can be:

• ”Non-Discoverable”: if not all devices are able to see it;

• ”Discoverable”: if every device is able to see it;

In the first case only devices which know the device address of the target device

can reach it and initiate the pairing process. In the second case, the target

device is visible to everybody and the pairing process can be easily started.

This is not an information to neglect, we will see later how much crucial this

information is and how it impacts on our purpose.
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Basically, the device which wish to set up a connection sends inquiry packets

as explained before, and all the visible devices, in scan mode, can answer. Then

a inquiry scan process starts, and zero or more devices can be discovered.

The inquiry scan provides some information, we list only those of our interest

down below:

• Unique MAC address: a physical address assigned uniquely to each device;

• Received Signal Strength Indicator (RSSI): a measure of the power present

in a received radio signal;

The reason why we paid more attention to these two fields will be clarified in

chapter 4.

3.2.6 Topology Options

To best meet the wireless connectivity needs of different applications, Bluetooth

technology supports multiple topology options. The Bluetooth specifications

provide 3 types of topologies are Point-to-Point, Point-to-Multipoint and Mesh,

several piconets can be connected to each other in a topology called scatternet:

• Point-to-Point: it is a network topology used for establishing one-to-one

(1:1) device communications. The point-to-point topology available on

Bluetooth Basic Rate/Enhanced Data Rate(BR/EDR) is optimized for

audio streaming and is ideally suited for a wide range of wireless devices,

such as speakers, headsets, and hands-free car kits. The point-to-point

topology available on Bluetooth Low Energy (LE) is optimized for data

transfer and is well suited for connected device products, such as fitness

trackers, health monitors, and PC peripherals and accessories.

• Broadcast (Point-to-Multipoint): it is a network topology used for estab-

lishing one-to-many (1:m) device communications. The broadcast topol-

ogy only available on Bluetooth LE is optimized for localized information

sharing and is ideal for location services such as retail point-of-interest

information, indoor navigation and wayfinding, as well as item and asset

tracking.

• Mesh: it is a network topology used for establishing many-to-many (m:m)

device communications. The mesh topology only available on Bluetooth
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LE enables the creation of large-scale device networks and is ideally suited

for control, monitoring, and automation systems where tens, hundreds,

or thousands of devices need to reliably and securely communicate with

one another.

3.3 BLuetooth Low Energy (BLE)

Bluetooth Low Energy (BLE), sometimes referred to as ”Bluetooth Smart”,

is a light-weight subset of Classic Bluetooth and it was introduced as part of

the Bluetooth 4.0 core specification. While there is some overlap with BT,

BLE actually has a completely different lineage and was started by Nokia as an

in-house project called ’Wibree’ before being adopted by the Bluetooth SIG.

Compared to Classic Bluetooth, Bluetooth Low Energy is intended to provide

considerably reduced power consumption and cost while maintaining a similar

communication range. Bluetooth Low Energy is a Wireless Personal Area Net-

work technology (WPAN) aimed at novel applications in the healthcare, fitness,

beacons, security, and home entertainment industries. Bluetooth Low Energy

is expected to be incorporated into billions of devices in the next few years. The

number of devices integrating BTLE is expected to grow by 2.9 billion devices

per year by 2016. BLE represents a trade-off between energy consumption,

latency, piconet size, and throughput. According to theoretical results, the life-

time of a BLE device powered by a coin cell battery ranges between 2 days and

14 years. The number of simultaneous slaves per master ranges between 2 and

5,917. The minimum latency for a master to obtain a sensor reading is 676 μs.

3.3.1 Radio Channels

BLE radio uses the 2.4 GHz ISM (Industrial, Scientific, and Medical) band to

communicate and divides this band into 40 channels on 2 MHz spacing from

2.4000 GHz to 2.4835 GHz, starting at 2402 MHz.

As we can see in the figure 3.3 below, the 40 channels are divided into 3 Adver-

tising Channels (Ch. 37, 38, 39), and 37 Data Channels (Ch. 0-36). Advertising

Channel are used for:

• Device Discovery;

• Connection Establishment;
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• Broadcast Transmissions;

Data Channel instead for:

• Bidirectional communication between connected devices;

• Adaptive frequency hopping used for subsequent connection events;

When transmitting data, the BLE radio transmits at 1 Mbps, with 1 bit per

symbol. The radio is optimized for sending small chunks of data quickly. The

BLE radio uses Gaussian frequency-shift keying (GFSK), whereby the data

pulses are filtered with a Gaussian filter before being applied to alter the carrier

frequency, in order to make the frequency transitions smoother. Since the

advertising channels form the basis for how BLE operates, they have been

assigned center frequencies that minimize overlapping with the most common

802.11 channels. In figure 3.3 we illustrate a picture representing the channels

and the frequency hopping.

Figure 3.3: Radio channels and frequency hopping

3.3.2 Architecture

The following diagram in figure 3.2, depicts the architecture (major layers) of

the BLE protocol stack divided in: Controller Layer, Host Layer and Appli-

cation Layer. The Bluetooth Low Energy (BLE) Controller Layer is divided

in:
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Figure 3.4: BLE Architecture

• Physical Layer (PHY): The BLE physical layer contains the analog com-

munications circuitry responsible for translation of digital symbols over

the air. It is the lowest layer of the protocol stack, and provides its services

to the Link Layer.

• Link Layer (LL): The Link Layer is the part that directly interfaces to the

PHY. It is responsible for advertising, scanning, and creating/maintaining

connections.

The Host Layer is divided in:

• Generic Access Profile (GAP): it controls connections and advertising

process. GAP is what makes your device visible to the outside world, and

determines how two devices can (or can’t) interact with each other.

• Generic Attribute Protocol (GATT): it comes into play once a dedicated

connection is established between two devices, meaning that you have

already gone through the advertising process governed by GAP. GATT

defines the way that two Bluetooth Low Energy devices transfer data

back and forth using concepts called ”Services” and ”Characteristics”.

It makes use of a generic data protocol called the ”Attribute Protocol”

(ATT), which is used to store Services, Characteristics and related data

in a simple lookup table using 16-bit IDs for each entry in the table.

• Security Manager (SMP): The SMP (Security Manager Protocol) offers

applications running over a Bluetooth Low Energy stack access to the
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types of services like Device Authentication and Authorization, Data In-

tegrity and Privacy, what services and keys are used for the communi-

cation between two devices are established during the SMP Pairing pro-

cedure which is performed by the SMP and set up by the Application

according to its needs.

• Logical Link Control Adaptation Protocol (L2CAP): The L2CAP layer

transfers data between the upper layers of the host (GAP, GATT, appli-

cation) and the lower layer protocol stack. This layer is responsible for

protocol multiplexing capability, segmentation, and reassembly operation

for data exchanged between the host and the protocol stack.

It is worth spending a few more words on GAP protocol because, for our pur-

pose, the most important thing is how the Advertising and Scan Response

processes take place.

3.3.3 Advertising Process with GAP

Before two Bluetooth low energy devices can connect and get it on (technical

term meaning ”interact and exploit each other’s services”) they need to find

each other and decide if one is interested. GAP is responsible for helping devices

find each other and connect. We call this the discovery process.

The discovery process involves devices wishing to be discovered doing some-

thing known as ’advertising’. An advertising device emits small packets con-

taining data deemed useful to scanning devices. How often advertising packets

are emitted is a parameter which may vary considerably according to the device

type or use case. Devices wishing to find other devices to connect to engage

in a process called ’scanning’, and receive and process advertising packets from

other devices.

To better explain the Advertising process it is necessary to distinguish the de-

vice roles:

• Peripheral device: is that device that wants another device to connect to

it. They are usually small, low power and such a device that can connect

to a much more powerful central device. Peripheral devices are things like

a heart rate monitor, a BLE enabled proximity tag, etc.
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• Broadcaster devices: are often Bluetooth beacons, these devices adver-

tises themselves but are not willing to accept connections. For scanning

devices, sometimes the content of the advertising packet is the only thing

needed, there being no intention to connect at all and again. When this

is the case, the scanning device is termed a Observer.

• Central devices: are usually mobile phone or table, devices that have

more processing power and memory and are interested in connecting to

the other device.

As we have seen in the radio channels paragraph there are three channels which

can be used for advertising one, two or all three may be used. In contrast, data

packets are subject to adaptive frequency hopping across the other 37 channels.

When advertising is using more than one of the three channels (and using all

three is quite typical) then each time an advertising packet is transmitted, the

same packet is transmitted on each of those designated channels.

It is important what advertising devices put in those advertising packets.

The data part of an advertising packet consists of fields called AD Types. Ex-

amples of AD Types include Local Name, Service UUID and Manufacturer

Specific Data to name but a few of the available types. Developers choose what

to include in advertising packets from the list of AD Types but are constrained

by the amount of available space and so they must make choices. If the device

is a GAP Broadcaster then the AD types they intend to use to contain the

data they want their device to broadcast are chosen. If it is a GAP Peripheral,

they consider how best to indicate to a scanner this is a device it should be

interested in connecting to. A common approach is to use the Service UUID

AD Type to include a list of the UUIDs of the most important GATT services

which the device has. Scanning devices should be able to deduce that the device

is of interest from this list. If there is not a defined AD Type for the kind of

data the device wishes to advertise, the Manufacturer Specific Data field can

be used. This field is designed to contain anything you like. The only rule is

that the first two bytes must contain the Company Identifier for the company

whose data format is being used within the Manufacturer Specific Data field.

There are four different types of advertising which are possible, some more

commonly used than others:

• General Advertising (Connectable): this is the most basic type of adver-
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tising and one which acts as a general invitation to some other device.

• Directed Advertising: this is a special-purpose type of advertising, de-

signed to invite a specific peer device to connect as quickly as possible. It

contains the address of both the advertising device and the device being

invited to connect. On receipt of this advertising packet, the receiving de-

vice (known now as the ”initiator”) will immediately and automatically

send a connect request. In direct advertising mode, advertising packets

are sent very frequently, every 3.75 milliseconds, but for no more than

1.28 seconds. This is so that advertising channels do not get congested.

• Non-connectable Advertising: GAP Broadcasters use non-connectable ad-

vertising. How this is indicated in advertising packets is explained be-

low in the section on ”Flags”. Devices whose sole purpose it to perform

non-connectable advertising only need to be equipped with a transmitter.

They do not need a receiver in their controller.

• Discoverable Advertising (Non-connectable): this mode can be used for

what might be thought of as ”extended broadcasting”. Devices perform-

ing discoverable advertising do not accept connections but they can re-

spond to Scan Requests and therefore in contrast to non-connectable ad-

vertising, they do need a receiver as well as a transmitter.

The Bluetooth Low Energy Link Layer has only one packet format used for

both advertising channel packets and data channel packets.

There are seven advertising channel PDU types, each having a different payload

Figure 3.5: BLE packet format

format and function:

• Advertising PDUs: ADV IND, ADV DIRECT IND,

ADV NONCONN IND, ADV SCAN IND.
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• Scanning PDUs: SCAN REQ, SCAN RSP.

• Initiating PDUs: CONNECT REQ.

3.3.4 Discovery Modes

The discovery modes are crucial to our project because, they are concerned with

how a peripheral advertises its presence and what centrals can/should do with

that information. The following table matches several peripheral ”discovery”

modes with applicable central ”discovery” procedures:

Discovery Modes Applicable Roles Applicable Peer Procedure

Non-Discoverable Peripheral N/A

Limited-Discoverable Peripheral Limited and General-Discoverable

General Discoverable Peripheral General-Discoverable

Table 3.1: Discovery Modes

As we can see in the table 3.1, the discovery modes are: Non-discoverable,

Limited-discoverable and General-discoverable:

• Non Discoverable Mode: this state indicates that the peripheral does not

desire to be discovered.

• Limited Discoverable Mode: this state indicates the peripheral’s desire

to reconnect to a specific peer. It is identified by the transmission of

ADV DIRECT IND advertising packets in short bursts. These packets

contain the MAC address of the desired Central device.

• General Discoverable Mode: this state indicates the peripheral’s desire to

be discovered by peers for connection establishment. It is identified by

the transmission of ADV IND advertising packets at regular intervals. It

represents the initial ”factory default” state for the peripheral.

3.3.5 Connection Establishment Modes

These are primarily concerned with how a Central selects which Peripheral to

interact with. The table 3.2 matches several peripheral ”connection” modes
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with applicable central ”connection” procedures:

Connection Modes Applicable Roles Applicable Peer Procedure

Non-Connectable Peripheral N/A

Undirected-Connectable Peripheral General Connection Establishment

Directed-Connectable Peripheral Directed Connection Establishment

Table 3.2: Connection Modes

• Non Connectable Mode: the peripheral does not need to exchange any

data information, usually this type of devices are sensors that do not

need to connect to any device. They store the information they want to

broadcast in ADV NONCONN IND advertising packets and send them

periodically.

• Undirected Connectable Mode: a peripheral is automatically in this ”con-

nection mode” when operating in ”General-Discoverable” mode as dis-

cussed above. It is sending ADV IND packets (which are promiscuous),

and looking for a connection with any peer (”Undirected”).

• Directed Connectable Mode: in this case the peripheral device is in ”con-

nection mode” but only with a specific device.

It sends ADV DIRECT IND advertising packets to reach the device.

3.3.6 Discovery and Connection process

We summarize the Discovery and Connection Process as follows: first discussing

the the Unicast Connection (Peer-to-Peer) and then the Broadcast one.

Unicast (Peer-Peer) Connection

The diagram below, in fig 3.7, depicts two BLE hosts, initially in a Standby

(unconnected) state. They enter a Discovery state whereby the device wish-

ing to be discovered becomes the Advertiser and the host wishing to connect

becomes a Scanner.

26



There are four types of advertising that can be performed: General, Di-

rected, Non-Connectable, and Discoverable. Each time a device advertises it

transmits the same packet in each of the three advertising channels. This se-

quence of events is called an advertising event. The Advertiser sends advertising

packets containing basic information about the host. All Scanners receive these

packets. There are two ways to send advertising out with GAP. The Advertis-

ing Data payload and the Scan Response payload. Both payloads are identical

and can contain up to 31 bytes of data, but only the advertising data payload

is mandatory, since this is the payload that will be constantly transmitted out

from the device to let central devices in range know that it exists, and this is

crucial to our purpose. The scan response payload is an optional secondary

payload that central devices can request, and allows device designers to fit a bit

more information in the advertising payload such a strings for a device name,

etc.

A peripheral device will set a specific advertising interval, and every time

this interval passes, it will retransmit its main advertising packet, as shown in

figure 3.6. A longer delays saves power but feels less responsive if the device only

advertises itself once every 2 seconds instead of every 20ms. If a listening device

is interested in the scan response payload (and it is available on the peripheral)

it can optionally request the scan response payload, and the peripheral will

respond with the additional data.

Figure 3.6: Advertising intervals

At some point, the Scanner (after filtering/analyzing information contained

in the advertising packets) becomes an Initiator and decides to initiate a con-

nection with a specific advertiser. There are two types of Scanners:

• Passive Scanners: the scanner simply listens for advertising packets. The

advertiser is never aware that packets were received.

• Active Scanners: is typically used when the potential central device would
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like more information than can be provided in an ADV IND packet, be-

fore making a decision to connect to it. In an advertising interval, the

scanner issues a SCAN REQ packet. The advertiser responds with more

information in a SCAN RSP packet.

Once a Scanner has acquired enough information to decide which Advertiser

to connect to (including its MAC address, RSSI, etc.), it becomes an Initiator,

initiating a connection process. This is known as the Connecting phase and is

highlighted by the Initiator sending a CONNECT REQ advertising packet to

the Advertiser, as we can see in the picture.

Once the CONNECT REQ packet is received, the devices are connected

and data packets can be exchanged. The Initiator becomes the Link Layer

Master, while the Advertiser becomes the Link Layer Slave. This is known as

the Connected phase.

Figure 3.7: Discovery and Connection process
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Broadcast Connection

While most peripherals advertise themselves so that a connection can be es-

tablished and GATT services and characteristics can be used (which allows for

much more data to be exchanged and in both directions), there are situations

where devices only want to advertise data. The main use case here is where you

want a peripheral to send data to more than one device at a time. This is only

possible using the advertising packet since data sent and received in connected

mode can only be seen by those two connected devices. By including a small

amount of custom data in the 31 byte advertising or scan response payloads,

you can use a low cost Bluetooth Low Energy peripheral to sent data one-way

to any devices in listening range. This is known as Broadcasting in Bluetooth

Low Energy, , as shown in the illustration below, figure 3.8, the Broadcast Net-

work Topology.

Figure 3.8: Broadcast Topology

For broadcast connections, the link layer roles do not change. The defined roles

are Broadcaster (the host sending the packets) and Observer. Messages can be:

one-way, one-to-many and ADV IND is one of three advertising packet types

that can be used by Broadcasters to broadcast data to Observers. See Figure

3.9.

Once you establish a connection between your peripheral and a central de-

vice, the advertising process will generally stop and peripheral will typically

no longer be able to send advertising packets out anymore, and you will use
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Figure 3.9: Example of a Broadcaster sending packets

GATT services and characteristics to communicate in both directions. GATT

comes into play once a dedicated connection is established between two devices,

meaning that you have already gone through the advertising process governed

by GAP.

The most important thing to keep in mind with GATT and connections is

that connections are exclusive. What is meant by that is that a BLE peripheral

can only be connected to one central device (a mobile phone, etc.) at a time.

As soon as a peripheral connects to a central device, it will stop advertising

itself and other devices will no longer be able to see it or connect to it until the

existing connection is broken.

3.4 Differences and similitudes between Bluetooth

radio versions: BT and BLE

In this section we summarise the differences and similitudes of the two radio

versions.

3.4.1 Differences

The main differences between Classic and BLE Bluetooth protocols can be

summarised as:
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• Both Bluetooth versions operate in the unlicensed ISM band at 2.4 GHz,

with the difference that the Classic one uses 79 channels between 2.402

GHz to 2.480 GHz, and the BLE one 40 channels where 3 used for adver-

tising process and the rest for data trasmission.

• Classic Bluetooth radio version includes multiple PHY options that sup-

port data rates from 1 Mb/s to 3 Mb/s, and supports multiple power

levels, from 1 mW to 100 mW, as well as multiple security options. The

Bluetooth LE radio provides developers a tremendous amount of flexi-

bility, including multiple PHY options that support data rates from 125

Kb/s to 2 Mb/s, multiple power levels, from 1 mW to 100 mW, as well

as multiple security options up to government grade.

• Moreover, Classic Bluetooth supports a point-to-point network topology

that is optimized for audio streaming. Instead, Bluetooth LE also sup-

ports multiple network topologies, including a point-to-point option used

for data transfer, a broadcast option used for location services and a mesh

option used for creating large-scale device networks.

3.4.2 Similitudes

The two radio versions have two main similitudes, RSSI and MAC device ad-

dress. We will see in the next chapter how crucial these similitudes are for our

purpose.

Received Signal Strength Indicator (RSSI)

One of the most important concept used in the thesis is the RSS indicator.

The Received Signal Strength Indicator (RSSI) is a measurement of the power

present in a received radio signal after the antenna of the receiver device.

Usually, the RSSI is represented in decibels referenced to one milliwatt called

”dBm”. Thus, when an RSSI value is represented in a negative form (e.g. -100),

the closer the value is to 0, the stronger the received signal has been, therefore,

the higher the RSSI number, the stronger the signal. The two versions work

with the same range of power levels and because of that the RSSI provides more

or less the same metric evaluation of distance.
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Device MAC Address

MAC address is the acronym of Media Access Control Address. It is an unique

identifier of a IEEE 802 network interface. Some examples of IEEE 802 stan-

dards are: ethernet, WiFi, ZigBee, FDDI (Fiber Distributed Data Interface)

and Bluetooth. In our case MAC address is a fundamental information because

it identifies uniquely a particular network interface of the device. The structure

is a 12 digits (48 bits or 6 bytes) address for both radio versions, usually written

in the following format:

• MM:MM:MM:SS:SS:SS

The leftmost 6 digits (24 bits) called prefix is associated with the adapter man-

ufacturer, called OUI (Organizationally Unique Identifier). Each vendor regis-

ters and obtains MAC prefixes as assigned by the IEEE. Vendors often possess

many prefix numbers associated with their different products. Discover on the

web the vendor from the prefix is quite easy. The rightmost digits of a MAC

address represent an identification number for the specific device. It is called

Network Interface Controller (NIC). Among all devices manufactured with the

same vendor prefix, each is given its own unique 24 bits number. To safeguard

user privacy, manufacturers can make use of a Bluetooth Smart feature known

as ”LE Privacy”.

Figure 3.10: MAC address Randomization

As shown in figure 3.10, there are two macro types of device addresses:

• Public Device Address: this is the standard, IEEE-assigned 48-bit
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universal LAN MAC address which must be obtained from the IEEE

Registration Authority. It is divided into two fields:

– IEEE-assigned company ID held in the 24 most-significant bits

– Company-assigned device ID held in the 24 least significant bits

• Random Device Address: since all BLE packets include a Device Ad-

dress, it’s possible to track the BLE device as it’s moving and commu-

nicating, unless it changes its address periodically. BLE adds the ability

to periodically change the address. Two Random Address Types are pro-

vided:

– Static Address: A 48-bit randomly generated address. A new value

is generated after each power cycle.

– Private Address: When a device wants to remain private, it uses pri-

vate addresses. These are addresses that can be periodically changed

so that the device can not be tracked. These may be resolvable or

not:

∗ Resolvable Private Address: This is an address that can be re-

solved through a pre-shared hash key. Only the trusted entities

that have your pre-shared key can identify you. For all other

entities, the address seems to be randomly changing and un-

trackable.

∗ Non-Resolvable Private Address: This is an address that is ran-

dom and can not be ”expected”. A possible use case: a device

that already communicated a non-resolvable address to a peer

for a reconnection.
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Chapter 4

Proposed System

Traditional systems for occupancy estimation that rely either on environmental

sensors (CO2,temperature, humidity) or video cameras have drawbacks of pri-

vacy, intrusiveness and also cost. Our goal is to perform occupancy detection

to avoid the traditional systems drawbacks. Due to the capillary spread of per-

sonal devices equipped with wireless communication capabilities we proposed a

cheap and accurate occupancy estimation system based on the capture of Clas-

sic Bluetooth and BLE management frames transmitted from users’ devices.

This is a non-intrusive indirect approach, and so it is less problematic for what

concerns privacy issues. The system is implemented on low-cost hardware and

leverages a supervised learning model to adapt to different spaces.

In every project there are theoretical basis and a practical application of

them. In the chapter 3 the theoretical fundamentals were discussed while this

chapter is intended as an explanation of the system’s implementation.

The chapter is divided in two main parts:

• Tools: in this part we discuss about the used materials, BlueZ and the

Ubertooth One sniffer. After a brief introduction on the characteristics of

them, we discuss the main functionalities and properties.

• Code: this part covers the explanation of the python-coded programs

used to handle the management frames transmitted from usersâ devices

and processed by the sniffer.



4.1 Tools

In this section we discuss the tools we needed to build the Sniffing process,

giving an overview on the main features used.

4.1.1 Bluez

In the Linux kernel-based family operating system, the Bluetooth stack is man-

aged by Bluez. The most useful command of Bluez is hcitool. Hcitool (Host

Controller Interface Tool) is used to configure Bluetooth connections and send

some special command to the Bluetooth devices. The main functionalities are

to discover (inquire a remote device), add, and manage devices on the piconet;

to configure controller properties; to set up, manage and release logical trans-

ports and links. In particular, hcitool provide access to the device MAC address

and RSSI of a connected device, this is a fundamental information.

4.1.2 Ubertooth One

Ubertooth One is the hardware platform of Project Ubertooth. Ubertooth is a

platform for Bluetooth experimentation. It is able to sniff BLE, discover undis-

coverable classic Bluetooth devices, and perform sniffing of classic Bluetooth

devices. Ubertooth is a USB dongle with an RF frontend, CC2400 radio chip,

and LPC microcontroller. The CC2400 has a reconfigurable narrowband radio

transceiver that can monitor a single BTLE channel at any given moment. The

CC2400 converts RF into a bitstream, which is then processed entirely on the

LPC. When a BTLE device transmits a packet on a particular channel it gen-

erates a small amount of RF energy. At the lowest level this modulated RF is

what we aim to sniff. Ubertooth converts this RF energy into something we

can work with: bits. Ubertooth transmits and receives at the frequency of 2.4

GHz, transmitting power and receiving sensitivity are comparable to a Class 1

Bluetooth device.

Ubertooth One provides a lot of interesting sniffing tools, usable typing pre-

formatted line codes. We tested many tools and finally used the main that best

matches our purpose, that are:
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Figure 4.1: Ubertooth One and its radio antenna

• ubertooth-btle: sniffing connections is the most robust feature sup-

ported by ubertooth-btle. It has two primary modes of operation: follow

mode, no-follow mode and promiscuous mode.

– The follow mode can be used typing the pre-formatted line code

”ubertooth-btle -f”. Ubertooth will listen on one of three advertising

channels waiting for a BLE connection to be established. When a

connection is established, Ubertooth will hop along the data chan-

nels, passively capturing the data sent between the central and pe-

ripheral. After the connection terminates, Ubertooth will return to

the advertising channel and wait for another connection.

– No-follow mode is similar to follow mode, we use it typing ”ubertooth-

btle -n”. In this case Ubertooth only logs advertising packets and

will not follow connections as they are established.

– Promiscuous mode is a mode for sniffing connections after they have

already been established. the pre-formatted line code is ”ubertooth-

btle -p”. This mode can be used to sniff long-lived connections.

When sniffing, Ubertooth can only operate in either follow mode or promis-
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cuous mode, but not both at the same time.

• ubertooth-rx: It is the primary interface into Classic Bluetooth (BT)

functionality provided by Ubertooth. It has two main modes of operation:

piconet following mode and survey mode. In either mode, ubertooth-rx

is able to discover undiscoverable devices. As we said in the previous

chapter, Classic Bluetooth devices iterate each others in piconets. Classic

Bluetooth piconets are defined by the Lower Address Part (LAP) and

Upper Address Part (UAP) of the master device. These are elements

of the master device’s Bluetooth Address (BD ADDR) that ubertooth-rx

tool try to find.

– In piconet following mode, the tool will follow the first piconet it

fully identifies. Piconet following is the main mode entered when no

arguments are passed to the command or a LAP and optionally a

UAP are provided. If no arguments are passed, the tool will attempt

to calculate the UAP for any observed LAPs. If a LAP is passed, the

UAP will be calculated for that specific LAP. The tool will recover

LAP values from the air and attempt to calculate the UAP from

those. Once a LAP and UAP have been recovered, the tool will

attempt to recover the clock value, and if that succeeds it will follow

that piconet.

– Survey mode instead will record all LAPs and attempt to calculate

the UAPs for any observed LAPs. In survey mode the device will

attempt to identify all piconets in a given area and display them

after either a timeout or manual interruption.

Example: Consider the following BD ADDR: 22:44:98:88:AA:BB. The

lower address part (LAP) is the lower 24 bits, so 88:AA:BB. The upper

address part is the next 8 bits, so 98. The 22:44 is called the Non-

significant Address Part (NAP).

To convert LAP+UAP pairs back into Bluetooth addresses, the tool do

the reverse of the above. For example, if the tool recovers a LAP of

88:AA:BB and a UAP of 98, the associated Bluetooth address is

”??:??:98:88:AA:BB”. Any value can be substituted into the ”??” slots

and most Bluetooth tools will still work. For example, hcitool name
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00:00:98:88:AA:BB will establish a connection to the device and return

its name.

4.2 Code

The software is written in Python (version 2.7) through PyCharm, an inte-

grated development environment (IDE) used in computer programming because

it makes writing the code much easier thanks to the large amount of libraries

available on it.

To better explain the python program we can distinguish two phases:

• Sniffing Packets Process: explaining the various aspects of the sniffing

process and how we organised it.

• Data Acquisition Process: an explanation of the way we acquired the

data coming from the sniffing process and how we organised those data.

4.2.1 Sniffing Process

As we said in the previous chapters, we are interested in capturing Bluetooth

and Bluetooth Low Energy packets transmitted from users’ devices in the sur-

rounding environment. In this section we explain how we capture packets and

which type of them we are interested to. First of all, we plug in the Ubertooth

One USB dongle to the port of our Laptop, we will see that three LEDs will

light up: 1V8, RST and USB. In this case Ubertooth is working properly.

The entire Sniffing process was organized as follows:

• T1;

• T2;

• T3;

• T = T1 + T2 + T3;

respectively, T1 is the Sniffing time dedicated for BLE device packets sniffing

tool using the ”ubertooth-btle -n”, we have chosen T1 equal to 30 seconds; T2

the time dedicated for the Non-discoverable device packets using ”ubertooth-

rx” function, setting T2 equal to 30 seconds; T3 is a variable amount of time
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needed to complete the inquiry process to discover the Discoverable devices us-

ing the Bluez hcitool tool. Finally, we define T as the sum of the above Sniffing

times.

Capturing BLE device packets (T1)

Choosing the right ubertooth function requires to understand how BLE devices

interact each other first. As for devices working according to the Bluetooth

Low Energy standard, they periodically transmit advertising packets to estab-

lish a connection with other devices or simply to broadcast information. Such

advertisement packets are transmitted in-the-clear over 3 of the 40 available

Bluetooth frequency channels and contain, among other fields, the advertiser’s

address. Listening periodically on the three advertising channels with a BLE

receiver is therefore enough to capture such packets. We discussed about the

function ubertooth-btle in chapter 3. Studying entirely the interaction between

the BLE devices, we have chosen to use the ”ubertooth-btle -n” function instead

the ”ubertooth-btle -f ” because we do not need to capture data packets because

the information carried by the advertising packets provides all we need to rec-

ognize the presence of the devices. Examples of capture of BLE Connectable

and Non-Connectable are shown in figures 4.2 and 4.3 respectively.

Figure 4.2: Example of BLE Connectable packet sniffed by ”ubertooth-btle -n”
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Figure 4.3: Example of BLE Non-Connectable packet sniffed by ”ubertooth-btle -n”

Capturing Non-Discoverable BT Device packets (T2)

There are some Classic Bluetooth devices that are configured as ”Non-Discoverable

Mode”, and the common Bluetooth Discovery Tools are not be able to discover

this kind of devices. To solve this problem we used again Ubertooth, choosing

the ”ubertooth-rx” function. According to the Ubertooth procedure, the Blue-

tooth MAC address will be built finding the LAP and UAP of Non-Discoverable

devices. Ubertooth is not always able to recover the UAP, if it occurs the ad-

dress is not complete. Nevertheless we can easily count the number of different

LAPs to recognise the presence of the surrounding Non-Discoverable devices,

even if ubertooth does not recover the UAP. Below we explain how it is possible

to count them anyway using an real example.

Figure 4.4: Example of the output of the tool ”ubertooth-rx”

A real example of Bluetooth MAC addresses are:
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• F4:E3:FB:85:53:1D

• F4:E3:FB:A5:66:D8

We know that the first three bytes are useful to identify the Vendor of the

device, the remaining part (LAP) is useful to identify that particular device.

In the first address we can see that UAP is ’FB’ and LAP is ’85:53:1D’. In the

second one the UAP is the same of the previous address and LAP is different,

’A5:66:D8’. What we can surely say is that they are two distinct devices because

of the different LAPs, and they belong to the same manufacturer. Therefore,

if Ubertooth is not able to recover the UAP byte we simply do not know the

Manufacturer, but we can distinguish two distinct devices anyway, knowing

the LAP only. Thus, we can recognise devices with different LAP as different

Non-Discoverable devices and count them anyway. In figure 4.4 we can see a

common output of ubertooth-rx tool.

Capturing Discoverable BT Device packets (T3)

The Discoverable devices are the most easiest to find. The inquiry process reg-

ulates the discovery of available devices. In details, a master device transmits

inquiry packets on different frequencies and a discoverable device receiving one

of such inquiries must reply with a particular Inquiry Response packet, carrying

the unit’s parameter including its MAC address. Inquiry Response packets may

be easily captured. It is therefore enough to mimic such an inquiry process and

use a Bluetooth transmitter to broadcast inquiry packets in order to retrieve

information on the available surrounding Bluetooth Classic devices. We used

a python library called ”bluepy” that performs the inquiry process using Bluez

hcitool and gets from the responding Bluetooth devices the information we need

to count, the Bluetooth MAC address and its RSSI value. In figure 4.5 is shown

an example of the output of a single inquiry process.

4.2.2 Data Acquisition

The Data Acquisition process consists of collecting all the useful information

from the capture of the different packets mentioned above. We explain indi-

vidually the various steps of data acquisition for each category, respectively
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Figure 4.5: Example of bluepy code output.

BLE, Non-Discoverable and Discoverable packets coming from the output of

the sniffing process.

BLE devices Data Acquisition

As we have seen, everytime Ubertooth capture a BLE packet, it provides a

series of information fields such as RSSI, Type, Channel, AdvA, Data, CRC,

etc., it is clearly shown in figure 4.2. In this stage we have chosen to consider

only a part of these fields, the most useful to count devices, that are:

• RSSI: this information is very important for our purpose because it allows

us to have an idea on how far the device is from our receiver, and then

to understand whether it should be considered in our count or not. It is

counted if the value does not exceed the threshold -100dBm, otherwise

we do not take it into account because the device could be too far away

from the receiver and probably be outside our range of interest.

• Type: the Type field tells us which type of Connection Mode the de-

vice is set to. In particular we distinguish two main types of Connec-

tion Modes, ADV IND (CONNECTABLE) and ADV NONCONN IND

(NON-CONNECTABLE). These types are the most common. Sniffing

many packets we have noticed that only a very small percentage of de-

vices use different Types.
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• AdvA: the AdvA is the device address, 48 bits useful for identifying the

device that sent the packet. As we have seen in the theoretical chapter,

a Device Address can be ”Public” or ”Random”. A device is uniquely

identified if its address always remains the same, and this only happens

if the address is ”Public”. In the other case the address will be random,

so it will certainly be a different address with respect to the real one.

We consider two different Status of the address, ”Random” and ”Non-Random”.

In the case of public address a Non-Random device address will be considered

and we have no problem to identify and count it, differently concerning the

random ones. The problem is that a random device address could change

continuously with a variable frequency depending on the factory manufacturer,

so it could be extremely difficult to recognise if packets with different addresses

come from the same device or not. As we can see in the figure 4.2, Ubertooth

provides the status of the device address between the brackets on the same field

of the address itself, thus we can get a direct mapping between the address

and its status. To solve the aforementioned problem of recognising devices

with random address, we have considered the following algorithm to divide the

packets:

1. the type they belong:

• ADV IND (Connectable);

• ADV NONCONN IND (Non-Connectable);

2. the Status of the address:

• Non-Random Address;

• Random Address;

3. its RSSI:

• from -100dBm to -30dBm;

Certainly it is not possible to completely solve the problem of address ran-

domness, but we proposed the following solution. We merge the informations

defining a series of features that will be given at the input of a predicting model,

here we list them:
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• Connectable Non-Random: we consider Connectable Non-Random a de-

vice that has ADV IND as AD Type and maintains its address over time.

This type of device sends many packets with the same address and thus we

easily identify them counting those packets throughout a packet sniffing

period, then we count that address as a single device.

• Connectable Random: Connectable Random are all the devices that have

ADV IND as AD Type and its address appears only once throughout the

packet sniffing period. This type of device can send hundreds of packets

changing address everytime, so we decided to divide them from Non-

Random ones because the predicting model must give a different weight

to reduce the error made by the fact that we could count hundreds device

instead of one.

• Non-Connectable Non-Random: Non-Connectable Non-Random are the

devices that have ADV NONCONN IND in the AD Type field and have

Non-Random device address.

• Non-Connectable Random: Non-Connectable Random are the Non-Connectable

devices that have Random device address.

Figure 4.6: In this figure we represent the division above mentioned.

In figure 4.6 is shown the division. In this way we can easily count the number

of surrounding device addresses within a certain RSSI threshould, for each of

45



the four feature above mentioned. In the next chapter we will explain how the

way we count them.

Non-Discoverable devices Data Acquisition

As explained above, the sniffing process of the Non-discoverable device packets

made by the Ubertooth function ”ubertooth-rx” provides us the following useful

informations. What we do in this stage is to save the two main fields of each

packet:

• LAP+UAP (Address);

• RSSI;

In this way we have all the Non-Discoverable device address and its correspond-

ing RSSI value. We can easily have the direct mapping between the number

of Non-Discoverable device addresses within a RSSI threshould as well as the

previous cases.

Discoverable devices Data Acquisition

In the case of Discoverable devices, the data acquisition is the most easier

because we do not need any processing of the output of the inquiry process

Bluez hcitool, the tool already provides us exactly the direct mapping between

the MAC address and RSSI. We only count the number of Discoverable devices

present within the RSSI threshould.
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Chapter 5

Experiments and Results

5.1 Experiments

In this section we describe the experiments setup. A description of the different

environments where the experiments took place is provided, highlighting their

main characteristics. Then, we discuss the way we build the sets of the ML

features to give as input of the estimation models. Finally, we give a brief

review of the estimation models and how we optimised them.

5.1.1 Environments

In order to evaluate the performance of the proposed system, we carried out

measurements in different environments. These environments are used for work-

ing, studying and leisure activities and are characterised by different degrees of

occupants mobility. All measurements are taken using the same procedure for

every environment, which is:

1. Place the laptop, with the Ubertooth One sniffer plugged in, in the cen-

ter of the space to uniformly acquire packets distributed throughout the

space;

2. Run the developed python script to launch the sniffing process. The

process takes a time T to make a single observation, as mentioned in the

previous chapter;



3. Count the people present in the surrounding environment and insert the

count in the python script to collect the ground truth;

4. Repeat the last two phases (2. and 3.) as many times as the number of

the observations we are interested in taking.

In particular, we divide the considered environments in indoor, outdoor and

hybrid (i.e. an overlapping indoor and outdoor area) as follows:

• Indoor:

– Indoor Space 1 (IS1): the first indoor experiment is conducted in

a university laboratory, the Advanced Network Technologies LAB-

oratory (ANTLab). The environment has an area of about 80 sqm

and is characterized by about 30 fixed seats and a daily number of

occupants average of about 16, with a minimum of 4 to a maxi-

mum of 26 people present. Since the laboratory focus is on wireless

communication technologies, with daily activities on wireless device

testing and experimentation, a great amount of wireless devices are

present. The measurement campaign lasted for about 8 hours dis-

tributed in two days, and a total of 318 ground truth observation

were collected.

– Indoor Space 2 (IS2): the second indoor experiment is run in

a secondary Laboratory where usually students study and work for

their thesis. The room measures 21 sqm, has 13 fixed seats and

is occupied by an average of 7 people, with a minimum of 2 and a

maximum of 13 people. The measurement campaign lasted for about

4 hours distributed in two days, with a total of almost 200 obser-

vations. Due to the fact that the environment has many adjacent

rooms, our expectation was a great amount of background noise due

to the missing count of the people present in the adjacent rooms.

– Indoor Space 3 (IS3): the third indoor experiment is made in a

room of the Central Library of Politecnico di Milano. The room is

about 70 sqm with 46 fixed seats and an occupancy average of 27

people, with a minimum of 3 people present and full environment

state. In this Library room we took 200 observations distributed in

almost 5 hours in two days. The environment is quite static, the
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filling and emptying of the space is gradual and varies slowly. This

environment is mostly frequented by students and a large percentage

of them used laptops, smartphones and headphones.

• Outdoor:

– Outdoor Space 1 (OS1): this experiment is executed in an out-

door recreational area where people have lunch or take a coffee break.

The space is about 80 sqm and has 54 fixed seats. The average num-

ber of people present in this space is 21, with a minimum of 1 person

and a maximum of 52 people present. Even in this environment were

taken 200 observation with the same procedure. In this case, the en-

vironment was very dynamic, due to the fact that many students

have lunch or take a coffee break in group, and when they finish

they leave together, so we observe a very variable dataset.

– Outdoor Space 2 (OS2-m): the experiment OS2-m is conducted

in a public transport vehicle in Milan, to be precise on the tram

line 33. This vehicle is the iconic old school Milan tram series 1500

that can accommodate 29 seats and up to 100 standing places. The

environment is occupied by an average of 13 people, with a minimum

of 2 and a maximum of 38 people. The 225 observations were taken

by sitting in the center of the moving vehicle and counting all those

traveling inside. Our expectations were that this environment could

be noisy due to the fact that the transport vehicle moves to the side

of the road where there are pedestrians and travelers driving cars

and motorcycle in the road immediately adjacent to the tram line.

• Hybrid:

– Hybrid Space (HS): the last experiment is run in a recreational

space used even for studying, we consider it an hybrid environment

because it looks like a cross between an outdoor and an indoor envi-

ronment. The space is outdoor but is totally enclosed by a removable

awning. It is very similar to the OS1 in terms of size and seating

capacity, with the difference that this one is less dynamic. The mea-

surement campaign lasted for about 4 hours in two days, and a total

of 200 ground truth observation were collected. The average number
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of people present was 19, with a minimum of 7 to a maximum of 35

people.

The details of the previously described scenarios are summarised in the

following tables 5.1 and 5.2.

The environments have different characteristics from one another. We can

distinguish four:

• Dispersion: the indoor environments are clearly less dispersive in terms

of crowding of occupants. In the outdoor environments people move with-

out following a precise path often also at the boundary of the space while

in the indoor ones people have a precise location.

• Average occupancy: the environments differ each other for the average

number of occupants in the space, as we can see in the table 5.1.

• Dynamicity: all the space differ also respect to how rapidly the occu-

pants presence changes in time. In the indoor spaces people are usually

standing, while in the indoor ones people are sitting.

• Type of people: we can distinguish different type of people for each

space, IS1, IS2 and IS3 are spaces are frequented by engineer students,

that more likely carried many Bluetooth wireless devices with respect to

a common user present in the other spaces. In particular, IS1 and IS2

are used for wireless studies and experiments, adding a great noise to the

environment.

Testbed Min #People Max #People AVG #People

IS1 4 26 15.89

IS2 2 13 6.64

IS3 3 46 26.99

OS1 1 52 21.24

OS2-m 2 38 13.42

HS 7 35 19.44

Table 5.1: A description on the minimum and maximum number of people and its average
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Testbed
Duration

time (h:m)

# dev.

addr.

# BLE

addr.

# BT

Non-Disc.

# BT

Disc.

RSSI

Min\Max

(dBm)

IS1 8:06 183553 178429 1947 3177 -99/-31

IS2 3:52 46862 45860 686 316 -99/-30

IS3 4:52 110524 106467 1188 2869 -99/-30

OS1 4:57 256286 251980 2731 1575 -99/-30

OS2-m 4:54 241707 236903 3411 1393 -99/-30

HS 4:23 85207 83380 769 1058 -99/-35

Table 5.2: Here it is shown respectively the duration in time of the Sniffing process,

the number of the device addresses captured, BLE only and BT Discoverable and Non-

Discoverable, the minimum and maximum of RSSI per environment.

5.1.2 Features Implementation

In this paragraph we discuss how we implemented the set of features to be

provided at the input of the model. As we said in the previous chapter, the

cascade of sniffing and data acquisition processes provided us a direct mapping

between six different categories of devices (i.e. BLE CONN Non-Rand, BLE

CONN Rand, BLE NON-CONN Non-Rand, BLE NON-CONN Rand, BT Non-

Discoverable and BT Discoverable) and the corresponding RSSI values.

Figure 5.1 represents an example situation, where the centrally positioned

Ubertooth One sniffer is surrounded by a group of devices, belonging to a given

Bluetooth category. Figure 5.2 gives a schematic representation of the same

situation. Circles at fixed RSSI correspond to a fixed distance from the sniffer,

equal to the radius of the circles themselves. Considering this representation, for

a given Bluetooth category cat, we can easily count the devices staying within a

given circle, i.e. all those devices which RSSI is lower or equal than the circle’s

RSSI threshold, which we refer to as θ. With this we introduce DevAddrcatθ as

a feature. Ranging θ from -60 dBm to -100 dBm with pace of 5 dBm, we define

6 sets (i.e. one per category) of 9 features each. Table 5.3 shows an example of

a dataset built considering all the devices for a given space. The first column is

the ground truth, i.e. the real number of people in the considered space. The

other columns correspond to the features for the different values of θ. Later we

will describe how we merged the different features sets to perform prediction.
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Figure 5.1: Example of Sniffing of different device packets with RSSI

5.1.3 The Estimation Models

The estimation models we used are the following ones:

• Lasso Regression

• Support Vector Regression (SVR)

• Decision Tree

Lasso Regression

In literature, in the vast majority of cases of occupancy estimation, the linear

regression model is used. It is used to determine the extent to which there is a

linear relationship between a dependent variable and one or more independent

variables. In particular, the purpose of linear regression is to ”predict” the

value of the dependent variable (regressand) based upon the values of one or

more independent variables (predictors). It matches perfectly to our purpose.

The core idea is to obtain a line that best fits the data. The best fit line is the

one for which total prediction error (all data points) are as small as possible.

Error is the distance between the point to the regression line, and in our case, is

the difference between the predicted number of people present and the ground

truth occupancy information.
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Figure 5.2: Concentric Circles and Bluetooth Devices

Having more features may seem like a perfect way for improving the accu-

racy of our trained model (reducing the loss), because the model that will be

trained will be more flexible and will take into account more parameters. On

the other hand, we need to be extremely careful about overfitting the data. As

we know, every dataset has noisy samples. The inaccuracies can lead to a low-

quality model if not trained carefully. The model might end up memorizing the

noise instead of learning the trend of the data. If not filtered and explored up

front, some features can be more destructive than helpful, repeat information

that already expressed by other features and add high noise to the dataset.
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#

people

BLE

CONN

Non-

Rand

(-100dBm)

BLE

CONN

Non-

Rand

(-95dBm)

...

BLE

CONN

Non-

Rand

(-60dBm)

BLE

CONN

Rand

(-100dBm)

BLE

CONN

Rand

(-95dBm)

...

BT

Disc

(-100dBm)

...

BT

Disc

(-60dBm)

23 67 63 ... 0 350 342 ... 14 ... 3

23 61 60 ... 1 379 366 ... 14 ... 2

23 73 69 ... 1 423 412 ... 16 ... 1

20 68 68 ... 1 317 302 ... 15 ... 1

16 62 60 ... 2 364 345 ... 14 ... 3

17 63 59 ... 0 284 245 ... 14 ... 2

18 68 64 ... 1 307 304 ... 12 ... 2

18 72 69 ... 0 428 412 ... 14 ... 2

18 70 67 ... 0 350 344 ... 12 ... 1

19 65 65 ... 0 265 254 ... 13 ... 0

20 59 58 ... 0 352 322 ... 13 ... 3

21 59 54 ... 0 301 293 ... 10 ... 2

22 57 56 ... 1 321 311 ... 13 ... 3

22 67 62 ... 1 402 397 ... 13 ... 1

19 69 62 ... 1 356 323 ... 10 ... 1

19 70 65 ... 3 355 343 ... 15 ... 1

19 63 62 ... 1 401 387 ... 13 ... 2

19 64 61 ... 1 349 333 ... 12 ... 2

19 55 53 ... 1 290 288 ... 11 ... 2

19 55 54 ... 1 360 346 ... 11 ... 2

Table 5.3: Example Complete sets of features, we can see all the features of all the categories

per θ

Because overfit is an extremely common issue in many machine learning prob-

lems, there are different approaches to solving it. The main concept behind

avoiding overfit is simplifying the models as much as possible. Simple models

do not usually overfit. On the other hand, we need to pay attention the to

gentle trade-off between overfitting and underfitting a model. One of the most

common mechanisms for avoiding overfit is regularization. Regularized machine

learning model, is a model that its loss function contains another element that

should be minimized as well.

Regularized Linear Regression Models, have a loss function that includes two

elements:

L =
T∑
i=1

(ŷi − yi)
2 + λ

T∑
i=1

β2i (5.1)

where the first term is the sum of distances between each prediction and its

ground truth and the second one is the regularization term.
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There is a gentle trade-off between fitting the model, but not overfitting

it. This approach is called Ridge regression. Ridge regression is a regularized

linear regression model where the λ parameter is a scalar that help to mini-

mize the loss function for high values of the coefficient beta. The λ parameter

should be learned as well, using a method called cross validation that will be

discussed later. An important fact we need to notice about Ridge regression is

that it enforces the β coefficients to be lower, but it does not enforce them to be

zero, it will not get rid of irrelevant features but rather minimize their impact

on the trained model. Lasso Regression is another extension built on regular-

ized linear regression, the only difference from Ridge regression is that Lasso

method overcomes the disadvantage of Ridge regression by not only punishing

high values of the β coefficients but actually setting them to zero if they are

not relevant. Therefore, you might end up with fewer features included in the

model than you started with, which is a huge advantage for us. This difference

has a huge impact on the trade-off we have discussed before. For this reason we

have chosen the Lasso Regression Model implemented in python by scikit-learn.

Lasso allows us to set many parameters, the most important is the λ parame-

ter. As we said, the λ parameter must be learned using a method called cross

validation. We divided each dataset of each environment as follows:

1. The dataset is divided according to k-fold cross-validation with k=5, this

means that we divide the entire dataset in two part, Training set (80%)

and Test set (20%) five times. In this way we have five pairs of Training

set and Test set.

2. Per each of the these five pairs of sets we divide once more the Training

set (80%) in another internal Training in set (80% of the Training set)

and Validation set (20% of the Training set) using another k-fold cross-

validation (k=5) five times.

The cross-validation process was made as follows:

1. First, we fit the Lasso model with the Training in set using a vector of λ

values from 0.05 to 5 with step 0.01, and we predict on the Validation set.

We calculate the corresponding RMSE per each λ value, retrieving the

best, the one that provide the minimum RMSE. We iterate this process
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as many times as the number of the folds, thus five times, getting five

Best λ values. Finally we calculate the average of the five Best values. In

this way we avoid the overfitting due to the Best λ value choice.

2. Second, we fit the Lasso model with the Training set using the Best av-

erage λ value found in the previous point. Then we predict on the Test

set and calculate the corresponding RMSE. We iterate again the second

process five times, once per each fold, getting five RMSE values and we

take the average.

The same procedure was executed per each environment dataset. Here below

some examples on the Lasso Regression.

In the graphs below, we can see examples of Lasso regression using respec-

tively: BLE sets of features only in figure 5.3, BT DISC set only in figure 5.4

and BT NON-DISC set only in figure 5.5. Some point are marked with a bigger

marker. The size of the marker will grow up as much as the number of obser-

vations dropped at that point of the graph.

Figure 5.3: IS1 Lasso Regression result using BLE only
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Figure 5.4: IS1 Lasso Regression result using BT Discoverable only

Figure 5.5: IS1 Lasso Regression result using BT Non-Discoverable only

Support Vector Regression (SVR)

Support vector machines (SVMs) are a set of supervised learning methods. The

basic idea of this regression model is to find a linear function f(x) that has at

most ε deviation from the actually obtained targets yi for all the training data,

and at the same time is as flat as possible. In other words, we do not care

about errors as long as they are less than ε, but will not accept any devia-

tion larger than this. It is possible that no such function f(x) exists to satisfy
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these constraints for all points. To deal with otherwise infeasible constraints,

introduce slack variables ξi and ξi’ for each point. This approach is similar to

the ”soft margin” concept in SVM classification, because the slack variables

allow regression errors to exist up to the value of ξi and ξi’, yet still satisfy the

required conditions. Including slack variables leads to the objective function,

also known as the primal formula

L =
1

2
β′β + C

T∑
i=1

(ξi + ξ′i) (5.2)

The constant C is the box constraint, a positive numeric value that controls the

penalty imposed on observations that lie outside the ε margin and helps to pre-

vent overfitting (regularization). This value determines the trade-off between

the flatness of f(x) and the amount up to which deviations larger than ε are

tolerated. There are different implementations of Support Vector Regression,

we have chosen the faster version of SVR, the one with the linear kernel, im-

plemented by scikit-learn in python. The regularization, in this case, was done

by finding the optimal value of the C parameter through the aforementioned

cross-validation process. Thus:

1. First, we fit the linear kernel SVR model with the Training in set using

various values of C to understand first which is the range of the best

values. Trying many times we understood that the best value is a number

between 0.001 and 0.01, thus we fitted the model using a vector of C values

from 0.001 to 0.01 with step 0.001, and we predict on the Validation set.

We calculate the corresponding RMSE per each value of C and we take the

best, the one that provide the minimum RMSE. We iterate this process

as many times as the number of the folds, thus five times, getting five

Best C value. Finally we calculate the average of the five Best values.

2. Second, we fit the SVR model with the Training set using the Best average

C value found in the previous point. Then we predict on the Test set and

calculate the corresponding RMSE. We iterate again the second process

five times, once per each fold, getting five RMSE values and we take the

average.

As the case of Lasso Regression we avoided to overfit the choice of C parameter

by cross-validation.

58



Decision Tree Model

Decision Tree is a non-parametric supervised learning method used for classifi-

cation and regression. The goal is to create a model that predicts the value of

a target variable by learning simple decision rules inferred from the data fea-

tures. The decision Tree builds regression or classification models in the form

of a tree structure, greedily from top to bottom. It breaks down a dataset into

smaller and smaller subsets while at the same time an associated decision tree

is incrementally developed. Each split is selected to maximize information gain

(IG), the difference between the Error before the split and the Error after the

split. The final result is a tree with decision nodes and leaf nodes. A decision

node has two or more branches, each representing values for attribute tested

and a Leaf node represents a decision tree on the numerical target. Finally,

the topmost decision node in a tree which corresponds to the best predictor is

called Root node.

The goal of the decision tree is to find a function f(x) such that minimize

the error at the training set:

min
T∑
i=1

(f(xi) − yi)
2 (5.3)

Decision trees tend to overfit on data with a large number of features. Get-

ting the right ratio of samples to number of features is important, since a tree

with few samples in high dimensional space is very likely to overfit. Setting the

maximum depth of the tree is so necessary to avoid this problem.

For our purpose, the scikit-learn DecisionTreeRegressor model was adopted

to perform the regression of Decision tree. It provides many parameters to set in

order to optimize at best. For simplicity, we have chosen to leave all the default

parameters unchanged except the maxDepth parameter. Initially we tried to

fit the model starting from the maxDepth parameter value of 3, as reported in

literature, and continuing to increase it we found that the best value fluctuated

between 3 and 20. Therefore we have defined, as in the previous cases, a vector

of maxDepth values from 2 to 20 with step 2. The regularization was done

following the aforementioned procedure, which we again summarize:

1. We fit the DecisionTreeRegressor model with the Training in set using the
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vector of maxDepth we discussed above, and we predict on the Validation

set. We calculate the corresponding RMSE per each value and we take the

best, the one that provide the minimum RMSE. We iterate this process as

many times as the number of the folds, thus five times, getting five Best

maxDepth values. Then we calculate the average of the five Best values.

2. Then we fit the model with the Training set using the Best average

maxDepth value found in the previous point. Then we predict on the

Test set and calculate the corresponding RMSE. We iterate again the

second process five times, once per each fold, getting five RMSE values

and we take the average.

5.2 Results

In this paragraph we first discuss about the two indicators used, Root Mean

Square Error (RMSE) and Mean Absolute Percentage Error (MAPE), to evalu-

ate the performance of the three models seen for each dataset of the different en-

vironments described above, spending a few words on how we split the datasets

with which we fit the models. Furthermore we discuss the performances ob-

tained by the various combinations of set of features in terms of RMSE and

MAPE.

Evaluation Metrics

Here we give a briefly description of two commonly used evaluation metrics of

machine learning algorithms performances, which are the Root Mean Square

Error (RMSE) and the Mean Absolute Percentage Error (MAPE):

• RMSE: Root Mean Square Error (RMSE) is the standard deviation of

the residuals (prediction errors). Residuals are a measure of how far from

the regression line data points are. In other words, it tells you how con-

centrated the data is around the ”line of best fit”, and thus is a measure of

how spread out these residuals are. RMSE is always non-negative value.

In our case the lower is the value the better the model works. How-

ever, comparisons across different types of data would be invalid because
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the measure is dependent on the scale of the numbers used. Therefore

RMSE is a measure of accuracy, to compare forecasting errors of different

models for a particular dataset, but not between datasets, because it is

scale-dependent.

RMSE =

√√√√ 1

T

T∑
i=1

(ŷi − yi)2 (5.4)

• MAPE: Mean Absolute Percentage Error is a measure of difference be-

tween two continuous variables. As the name suggests, the MAPE is an

average of the absolute errors between the prediction and the true value

divided by the true value. It expresses accuracy as a percentage. Com-

pared to RMSE, MAPE is not scale-dependent and is often useful for

forecast evaluation, therefore can be used to make comparisons between

datasets using different scales.

MAPE =
100%

T

T∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (5.5)

Performances

It is interesting to see the performances in terms of RMSE and MAPE of the

models we explained above. We have distinguished several features set combi-

nations to understand which of them carries more useful information and which

leads the model to make more mistakes. Below we provide a description of how

we merged the Features sets and then the results of the chosen combinations of

sets per space for each classifier used in the tables 5.4, 5.5, 5.6, 5.7, 5.8, 5.9:

• ALL: we used the entire features sets to fit the models (BLE CONN Non-

Rand, BLE CONN Rand, BLE NONCONN Non-Rand, BLE NONCONN

Rand, Non-Discoverable and Discoverable);

• BLE: in this case we considered all the features sets that belong to BLE

only (BLE CONN Non-Rand, BLE CONN Rand, BLE NONCONN Non-

61



Rand, BLE NONCONN Rand). Within this group, we distinguish the

following case studies:

– CONN: we used the Connectable ones only (BLE CONN Non-Rand,

BLE CONN Rand),

– NON-CONN: the Non-connectable only (BLE NONCONN Non-Rand,

BLE NONCONN Rand),

– RAND: we used BLE Connectable and Non-connectable with ran-

domized addresses only (BLE CONN Rand, BLE NONCONN Rand),

– NON-RAND: BLE Connectable and Non-connectable with non-randomized

addresses only (BLE CONN Non-Rand, BLE NONCONN Non-Rand),

– BLE-ALL: all BLE features;

• BT-CLASSIC: in this case, we considered the set of features belonging to

Bluetooth Classic only (Discoverable and Non-Discoverable). We distin-

guish three sub-cases:

– DISC: the Discoverable ones only,

– NON-DISC: the Non-Discoverable ones only,

– BT-ALL: all BT features.

RMSE ALL BLE BT

Testbed BLE-ALL
BLE

CONN

BLE

NON-

CONN

BLE

RAND

BLE

NON-

RAND

BT

DISC

BT

NON-

DISC

BT-ALL

IS1 2.002 2.324 2.587 2.802 2.992 2.395 3.052 3.202 2.774

IS2 1.635 1.651 2.705 1.679 1.983 1.776 2.863 2.283 2.207

IS3 3.673 3.743 5.738 4.486 5.890 3.874 8.683 9.209 7.537

OS1 8.546 8.325 9.079 12.737 11.168 8.752 13.127 13.798 13.715

OS2-m 6.631 6.695 7.028 7.840 7.510 6.741 7.944 7.328 7.364

HS 4.493 4.883 4.974 7.170 6.295 5.052 5.332 7.101 5.265

Table 5.4: Lasso Regression RMSE results
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MAPE ALL BLE BT

Testbed BLE-ALL
BLE

CONN

BLE

NON-

CONN

BLE

RAND

BLE

NON-

RAND

BT

DISC

BT

NON-

DISC

BT-ALL

IS1 13.50% 15.64% 16.93% 19.47% 18.29% 16.41% 21.45% 20.33% 18.52%

IS2 26.76% 26.98% 46.13% 27.17% 34.49% 28.78% 51.76% 38.96% 38.90%

IS3 15.76% 16.05% 30.83% 18.43% 32.16% 15.93% 50.20% 52.85% 38.88%

OS1 73.33% 72.53% 77.50% 112.52% 99.15% 73.67% 113.89% 124.21 118.67%

OS2-m 67.11% 68.42% 73.10% 82.31% 79.98% 67.85% 87.37% 75.74% 75.56%

HS 24.15% 25.73% 27.35% 40.83% 34.95% 28.09% 29.47% 40.42% 28.26%

Table 5.5: Lasso Regression MAPE results

RMSE ALL BLE BT

Testbed BLE-ALL
BLE

CONN

BLE

NON-

CONN

BLE

RAND

BLE

NON-

RAND

BT

DISC

BT

NON-

DISC

BT-ALL

IS1 2.119 2.300 2.709 2.835 2.976 2.324 3.133 3.253 2.808

IS2 1.692 1.765 2.761 1.796 1.994 2.140 2.875 2.364 2.401

IS3 3.794 3.821 5.471 4.667 5.907 4.288 8.560 8.890 7.655

OS1 8.084 8.369 8.880 11.540 9.732 9.968 14.098 15.080 14.320

OS2-m 7.032 7.230 7.628 8.126 7.988 7.249 8.189 7.560 7.587

HS 4.318 5.046 4.966 7.258 6.276 5.115 5.257 7.155 5.279

Table 5.6: Support Vector Regression RMSE results

As we can see, we proposed two tables per classifier, the reason is that

we need both to compare the results of the various environment and classifier

used. In particular, as mentioned above, we cannot compare results coming

from different datasets in terms of RMSE because of the scale-dependency.

Therefore we use RMSE to evaluate the performances of each classifier fixing

the environment (i.e. compare results fixing the row) and MAPE to evaluate

the performances comparing the different datasets (i.e. comparing results in

columns).

Let’s consider the results of Lasso Regression in terms of RMSE: As we can

see from the table 5.4, the best performances are given by using the entire sets

of features for almost all the environment datasets except by the OS1 space,

the Library, where it is worth to not consider the information coming from BT

packets. It means that for the vast majority of cases both BT and BLE infor-

mation gives a contribution to the model, but BLE dominates the comparison,

indeed if we only consider BLE packets the performances are almost the same.

In terms of MAPE, the results provided by table 5.5 say that the performances
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MAPE ALL BLE BT

Testbed BLE-ALL
BLE

CONN

BLE

NON-

CONN

BLE

RAND

BLE

NON-

RAND

BT

DISC

BT

NON-

DISC

BT-ALL

IS1 14.45% 15.69% 17.24% 19.37% 17.63% 16.26% 20.92% 20.13% 18.45%

IS2 25.85% 26.31% 46.01% 28.13% 32.72% 34.19% 47.00% 41.70% 42.19%

IS3 15.66% 16.73% 30.73% 18.78% 28.72% 17.94% 49.35% 52.24% 39.77%

OS1 61.67% 59.46% 61.21% 75.58% 65.40% 85.97% 98.98% 108.21% 97.62%

OS2-m 54.57% 55.49% 65.51% 77.00% 68.02% 54.58% 82.37% 67.05% 66.96%

HS 23.24% 28.04% 29.33% 39.53% 34.42% 29.21% 29.09% 40.85% 29.35%

Table 5.7: Support Vector Regresssion MAPE results

RMSE ALL BLE BT

Testbed BLE-ALL
BLE

CONN

BLE

NON-

CONN

BLE

RAND

BLE

NON-

RAND

BT

DISC

BT

NON-

DISC

BT-ALL

IS1 1.988 2.438 2.943 2.679 3.548 2.052 3.419 3.164 2.570

IS2 1.905 1.811 2.971 1.737 2.373 1.804 2.982 2.333 2.466

IS3 4.967 4.636 5.552 5.985 6.104 4.308 8.398 8.859 8.397

OS1 10.365 10.234 11.707 16.124 13.474 10.765 14.741 15.090 13.382

OS2-m 7.404 7.596 7.679 7.737 8.203 8.079 8.295 7.964 7.783

HS 4.347 4.156 5.311 7.492 6.398 4.466 5.406 7.264 5.795

Table 5.8: Decision Tree RMSE results

depends on the characteristics of the spaces mentioned in the environments

description, thus the performances depend on:

• Dispersion: Lasso regression provides better results where the surround-

ing environment forces people to stay in a limited space. Indeed, indoor

spaces provide better performances with respect to the outdoors and hy-

brid.

• Average occupancy: the model works better if the average number of

occupants is higher, this is confirmed by the fact that the performances

of the IS2 are a bit lower with respect to the others with higher average

number of occupants, although it is an Indoor space. The table 5.1 shows

the differences of environments in terms of average number of people.

• Dynamicity: there is clearly a relationship between the results of the

dynamic spaces and the non-dynamic ones. Performances of the Library

and Laboratories, are higher respect to the ones provided by the spaces
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MAPE ALL BLE BT

Testbed BLE-ALL
BLE

CONN

BLE

NON-

CONN

BLE

RAND

BLE

NON-

RAND

BT

DISC

BT

NON-

DISC

BT-ALL

IS1 10.45% 13.16% 14.89% 16.25% 18.02% 11.17% 22.05% 18.34% 15.74%

IS2 26.22% 26.54% 36.69% 23.64% 37.65% 25.46% 52.76% 35.50% 39.25%

IS3 16.77% 17.89% 20.98% 21.55% 21.63% 15.02% 33.15% 37.96% 32.23%

OS1 77.11% 76.52% 87.79% 123.57% 110.31% 77.77% 112.44% 120.29% 102.92%

OS2-m 72.14% 74.87% 74.19% 79.00% 80.17% 77.71% 88.62% 75.59% 80.23%

HS 17.66% 15.87% 27.14% 41.06% 33.55% 18.39% 26.37% 39.14% 29.99%

Table 5.9: Decision Tree MAPE results

where people pass quickly through or nearby without stopping, as in the

cases of the HS (Bar) and OS2-m (Tram).

• Type of people: the results give us the idea that performances are as better

as the number of wireless devices present per occupant. In the case of IS1

the space was narrow and fairly crowded, with a minimum of 4 people and

a maximum of 26, furthermore people were PhD students in a Network

technology Laboratory that surely use wireless technology more than the

average usage of normal people. This surely impacts on our measurements

because we have more probability to acquire a lot of bluetooth packets.

We can say the same for the IS3 (Library), where many occupants were

students and had headphones, smartphones, smartwatches and laptops.

In the case of Support Vector Regression in tables 5.6 and 5.7, we are not

surprised about almost the same performances of the Lasso regression because

they are both linear classifier and work similarly each other. The fact that they

provide the same results validates the correctness of the performance achieved.

Therefore, also in this case we can say that the most useful information is

carried out by BLE packets, but the system works better if we take into ac-

count BT packets also. The performances are strongly dependent on the spaces

characteristics aforementioned.

Looking at the results given by Tables 5.8 and 5.9, the decision tree seems

to work better using different sets of features compared to the two Linear clas-

sifiers. In particular, the MAPE results highlight that decision tree works a bit

better of the two linear classifiers in Indoor environments IS1, IS2, IS3 and in

HS, worse in OS1 and OS2-m. We would say that the reason is the dynamicity

of the last two and the non-linearity that linear regression does not consider.
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Chapter 6

Conclusion and Future works

The thesis proposes a system for estimating the occupancy of spaces based on

the capture of Bluetooth/BLE inquiry and advertising packets. The system

is built using Ubertooth One sniffer and BlueZ Linux Bluetooth stack able to

process received packets and create different sets of features capturing differ-

ent device behaviours. Such sets of features are merged in different combina-

tions and later fed into three supervised Machine Learning models, Regularized

Linear Regression (Lasso), Support Vector Regression and Decision Tree for

performing precise occupancy estimation. We tested our prototype in several

uncontrolled scenarios: three indoor, two outdoor, an hybrid one and we val-

idate them through extensive experiments. The results obtained confirm the

validity of the proposed solution, which is able to perform accurate occupancy

estimation in both indoor and outdoor environments, also characterised by dif-

ferent levels of crowding (from few people to more than fifty) and dynamicity.

In particular the performances highlight that Decision Tree algorithm works a

slightly better in indoor environments but presents lower accuracy in the cases

of outdoor and more dynamic spaces with respect to Lasso Regression and Sup-

port Vector Regression.

Compared to other works in the literature, the proposed solution comes at a

very low cost for what concerns both the hardware design and the overhead

for supervising the learning algorithms, it is accurate as much as the related

works that use more than one IEEE standard and environmental data sensing,

reaching the accuracy of 85%. Our work is an indirect approach and so is non-

intrusive.



Furthermore, with the proliferation of the Internet of Things, the Smart City

project will soon be a reality, and thanks to this more and more people will

carry one or even more wireless device with them. This is a key component for

our system, because it will work better and better, reaching even higher lev-

els of accuracy. We strongly believe on the potential of this indirect approach

occupancy estimation and future works can be conducted merging other wire-

less technologies including WiFi, Wireless Personal Access Networks, such as

ZigBee and 6LoWPAN, adding more useful information to be processed by su-

pervised learning models.

Future works can be based on the use of different predicting occupancy models

such as Artificial Neural Networks (ANN) that is more complicated but can

reach better performances. Another way to improve this system can be a bet-

ter analysis on the surrounding environment features, evaluating the geometry

of the spaces and their obstacles, that can impact negatively to the accuracy of

RSSI values because of multipath and scattering effects and consequently affect

performances.
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