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I N T R O D U C T I O N

Replication of the human brain is one of the greatest challenge the human race has
been working on. The first recorded reference to the brain date back to the 17

th

century b.c. , on an ancient Egyptian medical treatise. The great thinkers of history
from Greece to Rome believed the brain to be the seat of intelligence. The modern
study of the brain anatomy began in the Renaissance, from the work of Mondino
de Luzzi, and they continue over the years until the invention of high technological
tools, the miscroscopes. Camillo Golgi was able to show the structure of a neuron, and
gradually the knowledge increases to this time, where quantum physic is able to
push science beyond our wildest dream [19]. (From Wikipedia Contributors, Human
brain [23]).

From ’60s, mathematical models start developing while the step change coincides
with the spread of personal computers. As a matter of fact, like in many other fields,
the actual realization of theoretical concepts becomes real. Artificial Neural Networks
are hidden in our everyday lives, as SPAM filter for email client or marketing strate-
gies through cookies. Other application lies on objects recognition, and in general
term of features extraction from large database of data.

Artificial Neural Networks are the hot topic of this historical period (i.e. the first
quarter of the 20

th century) and researchers from the all the countries are currently
working on it and techniques are continually evolving.

The purpose of the thesis is to apply Artificial Neural Networks to the Mechani-
cal engineering field. Experimental data are usually available but often it is not clear
how to tackle them properly: ANNs are able to interpret them and to generate mod-
els for next insights. For particular applications, some versions of ANNs, namely
Recurrent Neural Networks, can substitute determinist approaches, like the finite el-
ement methods, if sufficiently trained; this may give benefits when the algorithms
demand high computational costs and resources.

Literature often addresses the problem from a theoretical point of view neglecting
practical implications: the imprint of the work tries to answers to the call of a coder
who needs efficient combination of theory and practice.

MATLAB®, and in particular the Deep Learning Toolbox™, is used for the ANN
algorithms. The worked examples are developed from scratch, in detail:

• The analytical solution of 3.1, 3.2 and 3.3 is implemented in MATLAB®.

• The solution of 3.4 is achieved applying the FEM, coded in FORTRAN with
The NAG® Fortran compiler.

• The solution of 3.5 is computed by a MATLAB® program given from the
authors Confalonieri, Terraneo, and Corigliano of [3].

The analytical solutions are presented in the appendices to centre the attention on
results, since the physical nature of the problem is not perceived by the network.
In fact, what influences the most is the tuning of parameters defining the neural
network. Results shows that small changes in the architecture for the same problem
or equal architectures for systems apparently similar, lead to divergent output. It is
not trivial to overcome this sensitivity, and a possible way is to find the solution in
an iterative manner.

The thesis is divided in three parts:

first chapter describes the feed-forward backpropagation neural networks. It
starts with an overview of the mathematical model, and it includes a series of
introductory examples.
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viii introduction

second chapter extends the concept of the first chapter to Recurrent Neural Net-
works. It contains differences and novelties of this architecture along with an
example based on a dynamic response of a damped oscillator.

third chapter focuses and develops worked examples, based on structural Me-
chanics and thermo-Mechanics. In details:

i. Static deflection of a cantilever beam at page 39.

ii. Dynamic deflection of a simply supported beam at page 45, developed
analytically through modal analysis.

iii. Dynamic deflection of a cantilever beam at page 50, developed numeri-
cally by the FEM method.

iv. Dynamic response of a portal frame at page 45, developed analytically
through modal analysis.

v. Dynamic response of a plane resonator at page 52, coupled in the sense
of thermo-Mechanics, developed numerically by the FEM method.



1 A R T I F I C I A L N E U R A L N E T W O R K S

Work on artificial neural network is been motivated from its inception by the recog-
nition that the human brain computes in an entirely different way from the con-
ventional digital computers. The brain has the capability to organize its structural
constituents, known as neurons, to perform certain computations (for example pat-
tern recognition, perception and motor control) many time faster than the fastest
digital computer existing today.

To do all of this, at birth, a brain already has considerable structure and the ability
to build its own rules of behaviour through what we usually refer to as "experience".
Indeed, experience is built up over time, with much of the development of the
human brain taking place during the first two years from birth, but the development
continues well beyond that stage.

Very generally, a neural network is a machine that is designed to model the way
in which the brain performs a particular task or function of interest; the network is
usually implemented by using electronic components or is simulated in software on
digital computer. To achieve good performance, neural networks employ a massive
interconnection of simple computing cells referred to as "neurons" or "processing
units".

The design of neural network is motivated by analogy with the brain, which is
living proof that fault-tolerant parallel processing is not physically possible, but
also fast and powerful. Engineers look to neurobiology for new ideas to solve prob-
lems more complex than those based on conventional hardwired design techniques.
(From Haykin, Neural Networks and Learning Machines [7]).

1.1 perceptron
The first neuronal model is due to Rosenblatt, and it is call Perceptron. It is composed
by:

inputs A series of inputs simulating the signals from the external environment.

sinaptic weights Parameters that give a weight to each input signal, assigning
an importance level.

bias Internal fixed input working as activation parameter for the neuron.

summing junction The sum of all the weighted inputs coming to the neuron.

activation function A priori function that process the summing function, giv-
ing the output of the neuron.

Picture 1 depicts a schematic view of the perceptron.
The model for the k-th perceptron can be cast as:

uk =
m

∑
j=1

ωkjxj

yk = ϕ(uk + bk︸ ︷︷ ︸
vk

)
(1)

Where:

xj Inputs.

1
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Figure 1: Perceptron Model.

ωkj Synaptic weights.

uk Linear Combiner.

bk Bias.

vk Induced local field or activation potential.

ϕ(·) Activation function.

The writing can be lighten considering the bias as an additional synapse setting:{
x0 = 1
ωk0 = bk

(2)

Hence, 
uk =

m

∑
j=0

ωkjxj

yk = ϕ(uk + bk︸ ︷︷ ︸
vk

)
(3)

1.2 architecture
The architecture of a neural network defines its work flow. The single perceptron
model, defined in 1.1, is the fundamental component of every neural network archi-
tecture.

Two basic types of network architectures can be distinguished:

single-layer/multilayer feedforward networks The work flow is one di-
rectional from the input to the output.

recurrent networks The work flow is bi-directional; the input is influenced by
feedback of previous output.

Other typology are directly derived, improving the network for specific tasks.
Picture 2 depicts a schematic view of a multi-layer feed-forward network.

1.3 the training concept
A neural network should learn from the environment in the same way a biological
brain would do, by experience. Learning means understanding of concatenation of
actions and reactions leading to a specific event, aiming the replication. The same
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Figure 2: Multilayer feedforward networks scheme

concept is here applied: synaptic weights and bias are adjusted in such a way to
reproduce a particular event, represented by known couples of input and expected
output, forming a dataset.

Data can be distinguished in:

labeled Where pairs of input-output data are available.

unlabeled Where only input data are available.

The training phase refers to supervised and unsupervised whether the data is la-
beled or unlabeled.

As an example of the first type, the input could be the rainfall in a particular
area while the output the water level of a river: the aim of the network would be
to predict the flood hazard. On the contrary, the second type could be tricky to be
understand: in signal processing, inputs might be time instants where the aim is
the data compression. The neural network would extract the meaningful data and
reconstruct the original dataset, keeping input and output equals. The latter type
of architecture is called auto-encoder.

Therefore, the dataset is part of the definition of a network, being strictly con-
nected within its architecture.

During learning, replication of data, i.e outputs for a neural network, would gen-
erally not be equal to observation: closer is the reproduction, higher is the level of
understanding. Thus, this process can be seen as minimizing the difference between
observed and predicted data, which is the aim of a specific branch of mathematics,
which belongs to a well known mathematical class of problems, called optimization
problems. The minimization is set between the target data, i.e the response of the
observation, and the output of the neural net, that depends on weights and biases
as previously mentioned. Then a statistically meaningful function is defined, called
loss function, and the minimum deviation computed. The typical one is the mean
square error or MSE, defined as:

MSE =
∑n

n=0
(
yi − ŷi

)2

n
(4)
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(a) Supervised (b) Unsupervised

Figure 3: Example of different architectures for supervised and unsupervised learning.

Where yi and ŷi are the i-th target and the output respectively.
Generally, the training phase is subdivided into three steps, at which different

parts of the dataset are associated:

learning Actual minimization of the loss function based on the largest part of the
dataset.

testing Test, or validation, of the neural network over a small part of the dataset
during the learning. It uses techniques useful to prevent over-fitting.

generalization The neural network is asked to generalize, i.e to correctly predict
target values.

The minimization is based on backpropagation of the error, i.e the error at the
output layer is brought back through hidden layers, weights and biases adjusted
and new outputs computed. This process is performed until convergence is reached,
and each back-forward passage is called epoch.

1.4 backpropagation algoritm
The backpropagation algorithm is at the base of the training of every neural network.
The loss function is minimized computing the gradient related to each node of
the network, that is function of weights and biases. The different ways in which
the gradient is computed lead to algorithm specifically designed to increase the
speed of convergence, optimization of the memory or attenuation of overfitting and
convergence to local minima. Among them there are the ones based on the gradient
descent and the quasi-Newton algorithm.

For a deep understanding of the backpropagation algorithm [see 7, pp. 129–141].
For the optimization problem [see 7, pp. 186–199] and [9, 14].

1.4.1 Gradient Descent Algorithm

Let us consider a differential function f (x, y) in the two variables x and y, the
gradient ∇ f (x, y) is defined as:

∇ f (x) =
∂ f (x, y)

∂x
· i + ∂ f (x, y)

∂j
· j (5)

It has the following properties:
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i. The direction is normal to the contour lines in any point (a, b).

ii. In any point (a, b), f (x, y) decreases more rapidly in the direction −∇ f (a, b).

The two properties can be used to find the minimum of f (x, y) if f is differentiable
and convex.

Rewriting the function f in a vectorial form, by setting:

(a, b) =
[

a
b

]
= x (6)

The minimum can be found starting from an initial guess x0 and moving towards
minimum by using i. and ii.:

x1 = x0 − γ · ∇ f (x0) (7)

γ is a parameter that governs the decreasing rate. The procedure is set in an iterative
form as:

xn+1 = xn − γ · ∇ f (xn) (8)

Until convergence is satisfied:

f (xn) ' 0 (9)

Alternative versions of the gradient descent algorithm compute the optimal di-
rection at each step of the iteration, such as the scaled-conjugated gradient descent
algorithm.

1.4.2 Quasi-Newton Methods

The Newton or Newton-Raphson methods are based on the computation of the
Hessian matrix.

Considering a differentiable function f (x). Its Taylor expansion reads:

f (x0 + δx) = f (x0) +∇ f (x0))δx +O(δx2) (10)

Then, by setting:

f (x0 + δx) = 0 (11)

one finds:

δx = −J(x0)
−1 f (x0) (12)

Where J(x) is the Jacobian of f (x0):

J(x) = ∇ f (x0) (13)

If x is a root, δx measures how far is the solution from the vector x0. If f (x) is
non-linear, the vector:

x1 = x0 − J(x0)
−1 f (x0) (14)

si approximation of the root. The procedure can be set in an iterative way by setting:

xn+1 = xn − J(xn)
−1 f (xn) (15)

checking the convergence on f (xn+1).
The latter procedure can be also used to find minima and maxima. The gradient

of f is set equal to zero:

∇ f (x) = 0 (16)
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Then, substituting into 10:

∇ f (x + δx) = ∇ f (x0) + H(x0)δx = 0 (17)

Where H(·) is the Hessian operator. Rearranging some terms:

δx = −H(x0)
−1∇ f (x0) (18)

Finally, the iterative procedure reads:

xn+1 = xn − H(xn)
−1∇ f (xn) (19)

The drawback of this method is the computation of the inverse of the Hessian ma-
trix, due to its high computational cost, especially if the problem has several vari-
ables.

The quasi-Newton method accounts for the problem of substituting the inverse
of the Hessian matrix at each iteration step with an approximation of it, for instance
by using the secant tangent stiffness.

1.4.3 Levemberg-Marquardt Method

The Levemberg-Marquardt method defines the step increment δx as a linear combi-
nation between the ones determined by the gradient descend and the quasi-Newton
methods:

δx = −[H−1 + λI]∇ f (x0) (20)

The idea is to combine the robustness of the gradient descent method with the
speed of convergence of the Quasi-Newton one.

For additional information regarding the implementation and the effects of λ on
the stability of the algorithm [7, see].

1.5 function approximation problem
Considering the following problem:

d = f (x)
d = Output
x = Input
f = Unknown model

(21)

And a set of labeled data τ:

τ =
{
(xi, di)

}N

i=1
(22)

The aim is to built up a neural network such that:

‖F(x)− f (x)‖ < ε for all x (23)

With

f (x) Unknown function to be evaluated.

F(x) Function given by the neural network (due to the mapping between input and
output).
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Figure 4: Subclasses of AI

1.6 design of multilayer feedforward networks

The definition of the architecture of a neural network itself is characterized by the
choice of number of perceptrons, layers, synaptic connections which allows to create
several type of ANNs, still remaining in the chosen network category. Also, the
backpropagation algorithm may converge, as it would probably do, to different
local minima or in the best scenario to the absolute minimum. This means that
there is not a unique correct configuration, but only the best one upon some a priori
fixed thresholds: the design maybe be set up as find the best configuration among
different architectures or find the first architecture that leads to suitable results. The
downside is that there is not a theoretical approach to find out those configurations:
the choices are based on the experience of the developer and the use of code in trial
and error fashion.

In the following sections is explored how neural networks are influenced by the
choice of parameters, studying the sensitivity to modifications, varying one by one
the principal characteristics of an ANN.

1.6.1 Number of Layers

The number of layers is strictly connected to a specific branch of machine learning,
generally referred as deep learning. The word deep is there to indicate how much the
neural network is deep, i.e how many hidden layers are chosen.

This number is mainly defined depending on the aim of the ANN: considering
the applications described in the introduction, the sufficient number of layers may
varies from one for function approximation 1.5 and dozens for image recognition.
This discussion is mainly focused on function approximation, hence it overlooks the
second type.

The word sufficient is emphasised to highlight the considerations made in the in-
troduction of the section. To this scope, it is helpful to remember that higher is the
number of free parameters of the problem, higher is the difficulty to reach conver-
gence: for instance, the number of local minima increases within free parameters
and so the possibility to be stuck over one of them. An high number influences the
overfitting as well.

These observations lead to the choice as first attempt of a single hidden layer.
The presented examples show clearly that one hidden layer is generally sufficient
to approximate any generic function, taking care of the choices of the other elements
of the ANN.
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TS R NL-I GS L-I-E NL-I-E

Figure 5: Graphical interpretation of the overfitting due to high number of perceptrons.

1.6.2 Number Of Hidden Neurons

Hidden neurons are the part of the neural network that actually performs the com-
putations: they take inputs, analyse the importance of each of them according to
the training (i.e weighed sum) and give a response. The responses are generally
treated a second time in the output layer, which eventually gives the output of the
ANN.

According to this, there should be a minimum value of neurons which does not
produce an underfitting of data and no bounds for what concern the maximum
value. On the contrary, the use of a too high number of neurons introduces too
much flexibility in the network, and then the possibility to lead to the problem of
overfitting.

Too many perceptrons would create a neural network which is not able to generalize.
The problem of generalization refers to the case in which the training of the ANN
performs well in the learning phase, i.e the minimization of the error is reached, but
the response of the neural network is bad for data outside the training phase. This
problem is usually clarified by the Occam’s razor: the simplest solution tends to be
the most correct.

Imaging to interpolate a set of experimental data, which can be the training one
TS, with linear trend through linear regression R: by definition, only two free param-
eters define the interpolation, the slope m and the intercept of the y-axis q. Being
the data experimental, they will be affected by noise. The use of complex functions
for the interpolation is not forbidden: increasing the number of free parameters
by using non-linear function it may decrease the MSE, since the interpolation bet-
ter follows the series of points. Inquiring the solution in a new set of data, which
can be the generalization set GS, the results may have a response totally different
from the linear one of the training, because the interpolation tends to include the
noise. Picture 5 shows that the error considering the linear interpolation L-I-E is
globally lower than the error of the non-linear interpolation NL-I-E .

This effect is strictly related to the data on which the ANN is asked to work. As a
consequence, there is not a priori number of perceptrons which is suitable for every
type of problems.

A general indication of the upper bound can be computed by considering the
ratio between the number of data in the training set and the total number of free
parameters inside the model:

α · Nh · (Ni + No) = Ns (24)

Where

Nh Number of hidden neurons.

Ni Number of input neurons.

No Number of output neurons.



1.6 design of multilayer feedforward networks 9

Overfitting

Number of iteration

M
SE

Training set
Validation set

Figure 6: Overfitting due to data

Ns Number of samples in training dataset.

α Scaling factor, between two and ten.

The idea is to keep the number of free parameters always lower than the number of
data for the training, introducing the parameter α. Then:

Nh =
Ns

α · (Ni + No)
(25)

The problem of overfitting can be mitigated through techniques that work directly
during the training and through the use of specific algorithms.

A widely used approach is the subdivision in different portions of the dataset as
introduced in section 1.3. The definition of a validation dataset allows to train and
test the ANN on different data: indeed, during the training, the neural network
is tested on data not employed in the optimization procedure and checked. If the
loss function decreases on the training set while it increases on the validation one
overfitting is occurring and the algorithm stops. This method does not actually
prevent overfitting but it is a warning, and it suggests other precautions. To have an
effective and true vision over the whole set of data, the selection for each portion is
based on random process instead of a continuous blocks subdivision. This approach
may have some side effects for some typology of neural networks. Picture 6 shows
the concept.

At the algorithm level, an usual effective procedure is to update weights and
biases for a smaller part of the whole training dataset, in the order of 64 or 128,
called batches. An iteration is when a batch is passed and the parameters updated,
while an epoch is when the whole training dataset is passed from input to output.

Example 1.6.2.1 Variation of number of neurons
The example regards the built-up of a feedforward neural network with constant
parameter varying the number of neurons. The aim of the ANN is to approximate
a sine curve following the concept of section 1.5.

Ns Ni No Nh TA LF ϕ(·)

25 1 1 - GD MSE tanh

Table 1: ANN parameters.
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Figure 8: Inference variation due to the number of hidden neurons.

The figure shows how the net underfits the data (20a), inferences within good
approximation (20b) and starts to overfit (20c) and (20d), increasing the oscillations
at increasing number of hidden neurons. Passing from three (20b) to four (20c),
the ANN completely corrupts the acceptable results; passing from four (20c) to
five (20d) it restores the good predictions, although it shows the characteristics of
overfitting.

1.6.3 Activation Function

The activation function has a pivotal role in the functioning of neural networks, hav-
ing the role of activator of perceptrons. Giving a vector of inputs, each perceptron
should be able to identify the relative importance of each one of its entries, in accor-
dance with its role and infers the desired output. The idea is to find out a function
that is able to distinguish and plotting different values, giving an univocal response
in case some conditions are not fulfilled. From some points of view, the perceptron
should work similarly to a Boolean function: giving a "positive" response if the
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Figure 9: Hyperbolic tangent.

condition is true, i.e the inputs contribution falls in a specific range, actually giving
different results, and a "negative" response, giving out a default number.

A family of functions that satisfies these conditions are the sigmoid functions1.
A sigmoid function is a s-shaped function which is approximately linear in small
ranges around zeros, and quickly goes towards two horizontal asymptotes. When
the argument varies in the first range, the outputs are well separate, assimilating the
"positive" response of a Boolean function, while outside they are closer and closer,
assimilating the "negative" response of a Boolean function.

A well known sigmoid function is the hyperbolic tangent, which has the following
definition:

tanh(x) =
ex − e−x

ex + e−x (26)

And properties:

lim
x→±∞

tanh(x) = ±1 (27)

lim
x→0

tanh(x) = x (28)

Moreover:

tanh(x) ≈ x , x = [−1;+1] (29)

The latter property is also important with regard to the initialization of parameters
(see 1.6.4).

As previously defined, the argument of the sigmoid is a weighted sum over the
inputs plus the bias, which, in light of this working mechanisms, has the role of
translating the ordinates, increasing or decreasing the trigger point. Considering
the example 1.6.4.1 in section 1.6.4, the picture 10 shows when each perceptron is
activated for x =

{
− 1; 0.25, 0.75

}
.

An essential remark regards the condition required to fulfil (29). If the input
vector ranges too big or too small values, the weights, which are the parameters
controlling the width of the sigmoid argument, would be too small or too big re-
spectively, in order to squash the domain in the sought range. This condition may
arise numerical issues during the minimization procedure worked out by the back-
propagation algorithm, increasing the computational time or not reaching any con-
vergence. This problem is generally known as vanishing of the gradient, and it occurs
when the weights are closer to zero.

1 12.
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Figure 10: Activation function range

In order to avoid this issue, an effective procedure that should be always per-
formed is to scale the input and the target vectors, using standardization or nor-
malization. The first one scales numbers belonging to the range xMin-xMax and
translates them in values belonging to the new range xmin-xmax :

x ∈
[
xMax; xMin

]
→ xs ∈

[
xmax; xmin

]
xs =

x− xMin
xMax − xMin

(
xmax − xmin

)
+ xmin (30)

While the second procedure normalizes the number with respect to mean E[X] ad
variance σ2

X :

xn =
x− E[X]

σ2
X

(31)

An activation function that is commonly used in the output layer is the linear ac-
tivation function, which does not modify the activation potential (see the definition
of the perceptron 1.1). The main role of the output layer is to filter the outputs of
the hidden layer removing the saturation terms and leaving only the output in the
active region. This behavior can be observed looking at the figure 13.

Considering for instance an input value:

xs = −0.25⇔ x =
5
4

π (32)

the activation potential in the output layer becomes:

uk =
3

∑
i=1

ωioS
(
ωhix + bhi

)
(33)
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Substituting the values of weights and biases:

uk =+ 0.76 · S
(
+ 4.30 · (−0.25) + (−4.11)

)
+

+ (−0.96) · S
(
+ 4.22 · (−0.25) + 0.01

)
+

+ (−0.99) · S
(
(−4.18) · (−0.25) + (−4.24)

)
+0.76 · S(−5.19)︸ ︷︷ ︸

Saturation P.1

+ (−0.96) · S(−1.05)︸ ︷︷ ︸
Active region

+ (−0.99) · S(−3.20)︸ ︷︷ ︸
Saturation P.3

+0.23︸ ︷︷ ︸
Saturation sum

+ +0.75︸ ︷︷ ︸
Active region

(34)

In this way, the sum of the saturation terms is removed by the bias:

vk =
3

∑
i=1

ωioS
(
ωhix + bhi

)
− bo = +0.23 + 0.75− 0.23 = +0.75 (35)

And:

vk = 0.75 ' sin
(5

4
π
)
=

√
2

2
(36)

1.6.4 The Problem of Random Initialization of Parameters

Traditionally, the minimimization problem starts with a random selection of weights
and biases. The number of local minima increases with the number of variables the
loss function depends on, and consequently the possibility to be stuck over one of
them is increased. A proper selection of the first initial guesses reduces the risk.

A widely use algorithm for two layers neural networks is the Nguyen-Widrow
algorithm. The algorithm selects the initial parameters such that each perceptron
covers a specific part of the input space, without or with small overlapping domains.
In this way all the perceptron are independently responsible of a portion of the
training set. To improve the stability of the procedure the input space is generally
standardized in the range of minus plus one. In section 1.6.3 other benefits of the
pre-processing of data have already been discussed. For additional information [see
12].

Considers an ANN with the following features:

• Two layers feedforward network.

• Single input and single output.

• N number of hidden perceptron.

• Sigmoid activation function.

• Unitary weights in the output layer.

The output of such neural network can be written as:

y =
N−1

∑
i=0

viS
(
ωix + ωbi

)
(37)

Considering to have standardized input vector in the range plus-minus one, the
ωi and ωbi in the argument of the sigmoid function can be seen as the width and
the center of the portion of the abscissa taken by the i− th perceptron. The image
of the function is almost linear in the range minus-plus one, with first derivative
equal to one, while it tends quickly to two horizontal asymptotes outside. When the
argument of the sigmoid falls into the latter range, it is said the perceptron saturates.
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Figure 11: Optimal definition of parameters for random initialization.

This condition can be avoided limiting the domain of the sigmoid between minus
and plus one.

−1 < wix + ωbi < 1 (38)

Hence, the x interval can be written as:

− 1
ωi
−ωbi < x <

1
ωi
−ωbi (39)

Thus, the length of the interval is:∣∣∣∣− 1
ωi

∣∣∣∣+ 1
ωi

=
2

ωi
(40)

If the input domain is proportionally distributed among the number of perceptrons,
the single interval turns to be the total length over N. Imposing the equality with
expression (40):

2
ωi

=
2
H

(41)

The computation of the initial weight ωi is straightforward. However, it is better to
have slightly overlapped domains, to be sure of covering all values over the inter-
section. an α parameter that guarantees the latter condition is therefore introduced:

2
αωi

=
2
H
→ ωi >

H
α

(42)

The authors in Nguyen and Widrow [12] suggest a value of α = 0.7.
Then, the biases are randomly uniformly distributed such that the condition (38)

is verified.
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Figure 12: Sigmoid domain for the three perceptron.

Picture 12 shows how the perceptrons initialized with the NW algorithm widely
covers all the input space, compared to a generic random generation function.
Weights and biases of the first layer are computed according to the previous equa-
tions for standardize input between minus and plus one.

For the case of feedforward backpropagation neural networks applied to func-
tion approximation, another important remark that can be deduced from picture 12

regards the definition of the number of layers. The considerations presented in sec-
tion 1.6.1 are strengthened by the fact that if the perceptrons are widely distributed
across the input space, there is no need,in order to correctly approximate the func-
tion, to add a second hidden layer. As a matter of fact, by using the discussed
initialization rule, the second layer would have an input space made mainly by
saturated terms, i.e set of values close to minus-plus one.

On the contrary, the number of unknowns would increase, and consequently it
increases the uncertainties and the complexity of the problem, especially to what
concerns the minimization of the loss function. In deep learning for image recog-
nition, for instance in convolutional neural networks, at each layer is assigned a
portion the data, i.e a portion of an image identified by a matrix of pixels, that it is
studied independently. In function approximation, there is only one output, which
is the value of the function.

Example 1.6.4.1 Initialization function
The example regards how the random initialization function influences the con-
vergence of the training, keeping the other parameters constant. In details, the
Nguyen-Widrow algorithm is compared with an initialization based on a random
number generator.
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Ns Ni No Nh TA LF ϕ(·) NI

25 1 1 3 GD MSE Sig 1000

Table 2: ANN parameters.
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Figure 13: NW initialization
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Figure 14: Generic random initialization.

Picture 14 shows how big is the influence of the choice of the weight initialization
strategy on the final results. On the contrary, the good behaviour of the NW
algorithm can be seen comparing the variation of the weights and biases in the
hidden layer before and after training: small differences are synonym of right
initial guesses, while large variation for bad ones, like the second case.
One may think that the difference between the two initialization strategies is just
in the number of iteration necessary to reach convergence, but this is not generally
true: when a bad initialization is done, the training may stop due to validation
check preventing overfitting.

1.6.5 Data Distribution

The learning of any type of artificial intelligence is based on observation, as briefly
introduced in section 1.3. It can be said that higher is the experience that it is fed,
higher is the level of learning. For neural networks, this concept has a limitation,
since after a suitable minimum is reached, the solution does not improve substan-
tially, even increasing the number of data (see example 1.6.5.1). If anything, the
computational time increases. A possible solution to optimize the ANN is to pre-
process the data depending on the distribution. Again, there is not a theoretical way
to find an optimal training set size, and the only reasons are based on experience.

Example 1.6.5.1 Variation of the size of the training set
The example treats the influence of the size of the training set in the learning of an
ANN. Four increasing size dimensions are considered, starting from twenty-five
to one hundred elements.



18 artificial neural networks

Ns Ni No Nh TA LF ϕ(·)

- 1 1 3 GD MSE tanh

Table 3: ANN parameters.
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Analytical Inference

Figure 15: Inference variation due to the size of the training set.

The pictures show how increasing the input size does not produce any meaningful
improvement . This result may be taken into account when the available data are
unnecessary too close, for instance for a sensor continuously receiving data or
dynamic finite elements solution where a small step dimension is necessary.

1.6.6 Training Algorithms

This section considers how much the chosen algorithm influences the outcomes of
a feedforward backpropagation neural network. The examples 1.6.2.1 and 1.6.4.1
will analyse the effect of the application the quasi-Newton QN and the levemberg-
Marquardt LM methods. The details about the methods are presented in section 1.4.
The examples disregard the computational time and the RAM necessary to perform
the computations, information that may influence the choice of the algorithm.

Example 1.6.6.1 Training algorithms - Number of perceptrons.
The example treats the influence of the training algorithm in the learning of an
ANN.

Ns Ni No Nh TA LF ϕ(·)

25 1 1 - - MSE tanh

Table 4: ANN parameters.
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Figure 16: Inference variation due to the number of hidden neurons - Quasi-Newton algo-
rithm.
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Figure 17: Inference variation due to the number of hidden neurons - Lavemberg Marquart
algorithm.

It can be seen from figures 16 and 17 that for what concern the case with two
neurons 16a and 17a, the response is good only for the half of the domain, even
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if better than the case with the gradient descent. For three perceptron, the good
response with the gradient descent is reflected also with the QN and LM method.
This is in accordance with the idea that optimized algorithms should always im-
prove the solution, instead of worsen it. The response with four neurons is par-
ticularly interesting, since the solution for both GD and LM is good, while the in-
terpolation fails with the GD. This example shows the effects of adopting optimal
algorithms in the interpolation ability of an ANN. In other words, they stabilize
the results in terms of number of perceptrons, reducing incertanties and simpli-
fying the design. It should be noted that, regardless of the employed training
algorithm, the results become again bad by increasing the number of perceptrons.
Concluding, the use of optimal algorithms is crucial to have good responses from
ANNs, allowing for solutions really close to the actual ones (see case 17c: it can
be considered precise enough as the analytical) and increasing the numbers of
suitable network’s architecture to be employed.

Example 1.6.6.2 Training algorithms - Random initialization.
The example treats the influence of the random initialization of parameters in the
learning of an ANN.

Ns Ni No Nh TA LF ϕ(·)

25 1 1 - - MSE tanh

Table 5: ANN parameters.
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Figure 18: Inference variation due to the training algorithm for different random initializa-
tion of parameters.

Picture 18 shows the training algorithm sensitivity to the definition of the random
initial parameters.
The result of the GD, visible in figure 14, are not satisfactory: changing to the
LM, the solution improves, keeping in any case a certain level of error 18a, while
choosing the QN, the solution follows strictly the analytical results, improving
considerably the response 18b.
In conclusion, the optimal definition of the random parameters is definitely impor-
tant, since even an optimal algorithm such as the LM, is not enough to overcome
a bad initialization.
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1.7 noise
The section explores what happens if the approximated function is affected by noise.
It is artificially introduced by setting:

f (x) = f (x)
(
1 + αR(x)

)
(43)

Where α is a scaling constant and R(x) is a vector of normally distributed random
numbers.
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Example 1.7.0.1 Noise
The example treats the influence of noise in the response of an ANN.

Ns Ni No Nh α TA LF ϕ(·)

50 1 1 - 15% LM MSE tanh

Table 6: ANN parameters.
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Figure 19: Training set.

0 π 2π

−1

0

1

2

(a) Two Neurons.

0 π 2π

−1

0

1

2

(b) Three Neurons.

0 π 2π

−1

0

1

2

(c) Four Neurons.

0 π 2π

−1

0

1

2

(d) Five Neurons.

Training set Analytical Inference

Figure 20: Inference variation due to the number of hidden neurons.
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Recurrent neural networks or RNN are part of the neural network architecture fam-
ily in which feedback is involved. Whereas a dynamic system is taken into consid-
eration, the current response of the system depends on the previous behavior of
the system. This may happens for instance for speech recognition: the dynamic
system is made up by the sound flow and the interpretation of words depends on
the current and previous captured letters.

An heavy constraint of the feedforward backpropagation neural network is the
range of prediction domain, limited by the extremes of the training sets. In that
case, the normalization affects the interpolation capability of the neural network:
as a matter of fact, for values over the training maxima and minima, the response
of all the perceptrons in the hidden layer would fall on the saturated trench of its
sigmoid, if hyperbolic tangent are defined as activation function.

This problem is overcomed by RNN including feedbacks: the output at each time
step is influenced by the previous, making a direct connection between past and
current values. This allows to predict in future beyond the extremes of the training
set, imposing a closed circle or recurrency between initial values and current output.

x y

Feedback

Figure 21: Feedback for RNN.

In the function approximation field, the dynamic term defined for RNN can be
directly compared with the dynamics interpreted from a physical point of view, that
is the variation of a system in time. Considering for instance a generic function f :

f = f (t) , t ∈ Ω = [0,+∞) (44)

The current value f (tn) at the time instant tn can be evaluated suitably interpolating
the previous values of f :

f (P) : V→ R (45)

With:

P =
{

f (tn−1), f (tn−2), . . . , f (tn−p)
}

, |P| = p (46)

V =
{

f (t1), f (t2), . . . , f (tn−1)
}

, |V| = n− 1 (47)

The dimension p of the domain P represents the number of previous outputs to
be used for the current prediction, called delays. Increasing the number of delays
increases the information given to the neural network, and the tuning of it highly
depends on the function f : a small number would give not enough information for
correctly access the next step, while the RNN can misunderstand the data for too
many values.

For further information [see 7, chapter 15]

23
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yn

yn−i

Figure 22: RNN for function approximation

2.1 non-linear autoregressive neural networks
Non-linear autoregressive neural networks or NAR networks1 are based on an ar-
chitecture directly derived from the feedforward backpropagation ANN introduced
in chapter 1.

The skeleton, made of input, hidden and output layers, is shared: the recurrency
is set by connecting the output layer and the input one; at each cycle, the neural
network computes the n-th value starting from the vector of delays.

Then, the architecture is made out of a number of input nodes equal to the num-
ber of delays and a single output, while the hidden layer size is a chosen parameter.

Picture 23 shows the concept referring to the notation of section 2, by considering
three delays and two perceptrons in the hidden layer.

yn

yn−1

yn−2

yn−3

Figure 23: NAR network for function approximation.

The data input vector I for the training process contains the values of the function
f :

I =



f (1)
f (2)

...
f (i)

...
f (N)


(48)

Those values are taken in subvectors of dimension p, depending on the chosen
number of delays. At each step, the output is the next element of the input vector
at position (n + p + 1):

1 see 7, p. 791.
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I =



f (1)
...

f (n)
f (n + 1)

...
f (n + p)

...
f (N)





f (p + 1)
...

f (n + p + 1)
...

f (N)

 = T|P| = p ynRNN

Time step n

This means that the input and the target vectors during training are equal, aside
for the initial part corresponding to the number of delays, which are used to start the
recurrent process. The backpropagation of the error is slightly different for RNNs,
since the updating process runs over each time step, and it is called backpropagation
through time or BPTT.

2.2 non-linear autoregressive with exogenous
inputs neural networks

Non-Linear Autoregressive With Exogenous Inputs Neural Networks or NARX net-
works2 are an extension of the NAR network including external inputs in the feed-
forward network, at each time step.

This architecture allows to include additional information on the prediction from
another time function which does not directly depends on the primary one. An
example could be the prediction of the temperature in time of a room including the
humidity variation, known from the beginning of the analysis or real-time acquired
independently from other systems, like sensors.

The architecture is similar to the NAR one, and it includes dedicated input nodes
for the external inputs. The concept here is the same as the feedback for the function
f , and the number of input delays is decided on the base of external function and it
is not correlated with the previuosly defined number of feedback delays. Figure 24

depicts the same generic neural network introduced in section 2.1 including two
input feedbacks.

yn

yn−1

yn−2

yn−3

xn−1

xn−2

Figure 24: NARX network for function approximation.

2 see 7, p. 791.
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The mathematical model is the same, and it is here reported to highlight how two
different sets of weights are managed. The external input time series is indicated
with the letter x. The output depends on the input and feedback delays as:

y = y
(

x(t), x(t− 1), . . . |y(t− 1), y(t− 2), . . .
)

(49)

In the hidden layer: vk =
(

∑n
i=1 ωx

kixi + ∑m
j=1 ω

y
kjyj + bk

)
yk = ϕ(vk)

(50)

Where:

xi Inputs.

yj Feedbacks.

ωx
ki Input weights.

ω
y
kj Feedback weights.

bk Bias.

n Number of external inputs.

m Number of delays.

2.3 bptt - back-propagation through time
The backpropagation through time algorithm BPTT for training a recurrent network
is an extension of the standard back propagation algorithm. It may be derived
by unfolding the temporal operation of the network into a layered feedforward
network, similarly of what depicted in figure 25.

For detailed information of the actual algorithm [see 7, p. 808].

2.4 open and closed form
The supervised training of any neural networks is based, as already mentioned,
upon couples of known input-output vectors. The same applies for RNN: once the
number of delays is set, the loss function and weights and biases are updated at
each time step, as indicated in section 23.

In the case of NAR networks, the input and target vector must be equal by defi-
nition. The target vector can be built-up a priori of the training by using the same
values of the input one or built up in running using the output of the RNN. The
first case is referred as training in open form, while the second in closed form. In
the ideal case, they should be the same, but that does not always happen, because
of the propagation of error of which the output of the network is affected. In any
case, the RNN is able to make prediction only in closed form, when there is direct
connection between input and output: after the training in open form, the network
is converted in closed one imposing the recurrency.

This means a RNN trained in open form generally performs better than the closed
one in the training range of values, but it may fail in the prediction since it has
never considered the direct connection of the recurrency. A possible approach is
to perform the training in open form first, and then repeat it in closed form not
starting from scratch, but using the parameters, i.e weights and biases, computed
in the first step. This procedure set the starting point to values closer to convergence
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Figure 25: Training of RNN: open vs. closed form.

of the solution, for instance making possible to avoid early stops by the checking
systems preventing overfitting.

Picture 25 depicts the concept.

2.5 design of recurrent neural networks
The section explores the design of RNNs similarly of what already presented for
feedforward backpropagation networks. It is tested the sensitivity of the solution
with respect to the number of perceptrons and the data distribution, including the
additional parameters specific for this type of networks. In this analysis, the con-
clusions from the results obtained in chapter 1 about the influences of training
algorithms and the random initialization of parameters are accepted for valid. This
means the setting of the Lavemberg-Marquart algorithm for the training and the
Nguyen-Widrow algorithm for the initialization of parameters.

2.5.1 Similarities With Feedforward Neural Network

The architecture of NAR and NARX networks are directly derived from the one of
feedforward backpropagation networks, and they share some characteristics. Num-
ber of perceptrons, number of layers, activation function, training algorithms and
initialization of parameters have the same definition, and the same dissertation is
here still valid.

For instance the number of layers can be chosen arbitrarily between one to a
greater or smaller number, but a reasonable choice is to built up the architecture as
simple as possible: the definition of a sigmoid as activation function ensures that
a single layer, providing a sufficient number of perceptrons, is enough to correctly
approximate any function (See section 1.6.4 and 1.6.1 in chapter 1).

The problem of overfitting of data is still a critical element to be considered in the
definition of the architecture: the type of training algorithm and a correct initializa-
tion of parameters mitigate its influences, but they may not totally.

Some examples are further presented showing the sensitivity of RNNs to those
parameters. A small preview of examples 2.5.1.1 and 2.5.1.2: the training set must
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be properly selected, depending on the time series function. As matter of fact, for
proper predictions the periodicity have to be seen by the network.

Example 2.5.1.1 sensitivity to number of perceptrons and delays
The example treats the influence of the number of perceptrons and delays in the
response of a RNN.
The time series is the dynamics solution of a damped SDOF oscillator with linear
stiffness in free motion, depicted in figure ??. F is a static force keeping the system
in equilibrium. Removing the force F, the system starts to oscillates, until the new
equilibrated configuration is reached.

m F

Figure 26: SDOF system.

Nd Nh t f [s] S T.A. L.F. ϕ(·)

- - 0.5 0.005 L.M. MSE tanh

Table 7: RNN parameters.

The initial ANN configuration includes the minimum number of delays and per-
ceptrons. The idea is to identify them starting from the ground, gradually en-
hancing the solution. Figure 27 shows the training set used for the first RNN. Its
definition does not include on purpose the periodicity of the dynamic response,
to observe that the neural networ is able to predict.
Each prediction is complement with the open and close form solution for the train-
ing. When the close solution is far from the open one, no correct prediction must
be expected, according to what already said in section 2.4.
Figures 28b, 29b, 30b and 31b shows the results varying the number of perceptron
from 2 to 4 and a number of delays equal to 2 and 3. No ANNs is able to out-
come acceptable results, both in term of open vs. close and for predictions. The
motivation lies on the training set, too poor of data for a good training.
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Figure 27: Training set.
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Figure 28: Solution for 2 perceptrons and 2 delays.
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Figure 29: Solution for 3 perceptrons and 2 delays.
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(b) Analytical vs. predicted solution.

Figure 30: Solution for 4 perceptrons and 2 delays.
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(b) Analytical vs. predicted solution.

Figure 31: Solution for 3 perceptrons and 3 delays.

Example 2.5.1.2 sensitivity to the training set data
The example 2.5.1.1 shows that the RNN is not able to reproduce and predict the



2.5 design of recurrent neural networks 31

time series if the periodicity is not included in the training set. The prediction
capability of the network will be tested for a new time interval length t f .

Nd Nh t f [s] S T.A. L.F. ϕ(·)

- - - 0.005 L.M. MSE tanh

Table 8: RNN parameters.

As previously mentioned, the time interval is extended to 1 s. The ANN is able
to predict acceptable values for the case of 2 perceptrons and delays, i.e the mini-
mum values (figure 33). Increasing the complexy of the architecture, the response
becomes worse, similar to what happens for the ANNs defined in examples of
chapter 1. Increasing the training set increases the capability of the RNN to cap-
ture the trend of the function and make predictions.
Then, it is spontaneous wondering what happens for larger training sets. Fig-
ure 38b, 39b, 40b and 41b shows that the solution is worse: this is in accordance
with the fact that the more information are fed to a neural networks, the more
complex it must be to handle positively the problem.
Finally, it is worth noting that good results in term of open-closed form do not
correspond to good predictions, as shown by figures 35a and 34a. The same hap-
pens in figure 40, where the predictions are acceptable but not good as the ones
of figure 33.
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Figure 32: Training set for t ∈ [0 : 1] [s]
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(b) Analytical vs. predicted solution.

Figure 33: Solution for 2 perceptrons and 2 delays.
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Figure 34: Solution for 3 perceptrons and 2 delays.
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(b) Analytical vs. predicted solution.

Figure 35: Solution for 4 perceptrons and 2 delays.
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Figure 36: Solution for 3 perceptrons and 3 delays.
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Figure 37: Training set for t ∈ [0 : 2] [s]
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Figure 38: Solution for 2 perceptrons and 2 delays.
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Figure 39: Solution for 3 perceptrons and 2 delays.
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Figure 40: Solution for 4 perceptrons and 2 delays.
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Figure 41: Solution for 3 perceptrons and 3 delays.

2.5.2 Cross And Auto Correlation Function

The main feature of RNNs is the ability to acquire information from previous states
of system. The optimal number depends on the function: smooth curves would
need few delays to be correctly predicted, being small the variation between con-
secutive points while for convoluted trends more data should be necessary. In both
cases, it is important to avoid the inclusion of repetitions, i.e. giving useless infor-
mation already feed to the network.

An effective way is to evaluate the periodicity of the function: it can be done
computing the auto-correlation for what concern the NAR network and the auto-
correlation within the cross-correlation for the exogenous inputs for the NARX one3.

Considering a function f (t), the auto-correlation function R f (τ) is defined as:

R f (τ) = lim
T→∞

1
T

∫ T/2

−T/2
f (t) f (t + τ)dt (51)

Where τ is the time delay and T the period. It measures the sum between the
product of a function in a fixed time τ and the function itself over t ∈ [a, b]. R f
oscillates reaching the local maxima when τ is in correspondence of the maximum
sum. Applying (51) to a sin function:

R f (τ) = lim
T→∞

1
T

∫ T/2

−T/2
sin(t)sin(t + τ)dt , t ∈ [0, 2π] (52)

The time axis can be discretized in Ns elements depending on the time step S. The
τ domain can be defined in function of the latter definition by setting the number
of steps Nl , also called lags. Finally, the auto-correlation function is evaluated and
plotted. Considering: {

Ns = Nl = 100 → S = 0.0635 (53)

3 see 10, p. 408.
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Figure 42: Normalized autocorrelation function R̄ f (τ)

The maximum value of R f (τ) is at zero lags, when the two sine functions are
perfectly overlapped at τ = 0, corresponding to Nl ' 50. Multiplying the latter
quantity for the time step, one finds:

Nl · S ' 3.17 =
Tf

2
(54)

Where Tf is the period of the sine function, equal to:

Tf = 2π (55)

This means that for number of lags greater that this value the influence of additional
time steps decreases. Picture 42 shows the results. In conclusion, the number of
delays should be chosen close to the one of lags that maximises the autocorrelation
function.

The same holds for the cross-correlation function:

R f x(τ) = lim
T→∞

1
T

∫ T/2

−T/2
f (t)x(t + τ)dt (56)

Where x(t) is the exogenous input function. Again, the number of chosen lags
should maximize the function R f x(τ).

2.6 training set
The introduction of delays and recurrency brings some effects on the definition
of the set of data in the learning phase. For feedforward backpropagation neural
network, the set of labeled data are subdivided randomly in training, validation
and generalization by the algorithm, to reduce the possible overfitting.

The basic assumptions introduced in equation (45) assumes the previous outputs
must be fed to the RNN in a precise sequence, keeping constant the time step. This
is a crucial point, since weights are trained accordingly to that series.

Considering a random generation, the time step would never be constant and
the periodicity of the function not detectable. Then, it is preferable to define the
learning set in a sequential way, even if the possibilities that the network overfits
data increases. A possibile solution is to pre-treat input.

Besides, the sequential definition of data wells up another problem about the
pre-treating of inputs. The function generated from a complex problems, such as
structural dynamic systems, inherits some characteristics. For instance, numerical
solver, such as the Newmark algorithm, are stable, i.e they ensures convergence,
only if the sampling step is sufficiently small; it is commonly necessary to use a time
step in the order of 1× 10−6 ÷ 1× 10−7.

The higher number of steps has a counter part for the definition of the optimal
number of delays, since it would be necessary a too large number of lags to exploit
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the periodicity of the function. For the case 42, increasing Ns in the order of 1× 103,
leads to a Nd equal to 50 · 1× 103 = 50000, which is not compatible with the type of
problem RNNs are defined for. Instead, pre-treating data, sparsing the input values,
would have the double benefits of lightening the network, without invalidate the
prediction response, and mitigating overfitting.
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3.1 static beam deflection
The function approximation problem is suitable for a parametric analysis. Whereas
a linear or non linear relation within multiple parameters has to be analyzed, an
artificial neural network can be trained to store the solution. The possible reasons
are the necessity to access data in a real time fashion, useful for non-linear relations,
being the response of a trained ANN faster than any iterative algorithm, or to built
up graphical or a digital abaqus useful for initial design.

An example regards a parametric analysis of the cantilever beam depicted in
figure 43. The function to be approximated is the relation giving the vertical dis-
placement vB at the free edge within materials and geometric properties.

vB =
1
3

Fl3

EI
(57)

Adopting the same notation of section 1.5:{
d = vB

(
ξ = ξB

)
= f (x)

x =
{

F; l; E; b; h
} (58)

With:

f : D = R5 → I = R (59)

The set of labeled data τ is then:

τ =
{
(xi, vBi)

}N

i=1
(60)

Where N is the number of training data. The ANN is trained for different N to
observe the sensitivity of the solution, similarly to what presented in example 1.6.5.
The training set is built up considering fixed ranges of values and different steps
defined by a number of subdivisions Nd

Nd = 2n , for n = 1, . . . , 8 (61)

Table 9 collects the domain of the parameters.
The number of training elements NT is chosen to range from a small value, on

purpose not sufficient for a good training, to a suitable one. In details, 32 for the
poorest one, while 1 048 576 for the richest one.

The number of perceptron NP is chosen to range from 4 to 15.

EI

A B

ξ

vB

F

l
b

h

Figure 43: Clamped beam subjected to a fixed load

39
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- Min Max Unit

F 1 10 kN
l 0,5 2 m
E 28 33 GPa
a 20 40 cm
b 20 60 cm

Table 9: Input training set data - Clamped beam - Distributed data.

NP\NT 32 1024 7776 32 768 100 000 248 832 537 8241 048 576

4 0,85 0,16 0,24 0,65 0,66 0,97 0,97 1,83
5 0,58 0,05 0,13 0,24 0,39 0,59 0,59 1,25
6 0,51 0,05 0,09 0,19 0,32 0,79 0,79 0,94
7 0,43 0,05 0,10 0,14 0,23 0,57 0,57 0,64
8 0,80 0,07 0,07 0,25 0,29 0,30 0,30 0,54
9 1,53 0,04 0,07 0,10 0,20 0,30 0,30 0,50

10 0,45 0,03 0,07 0,15 0,17 0,19 0,19 0,34
11 1,49 0,11 0,06 0,08 0,16 0,19 0,19 0,45
12 0,86 0,05 0,03 0,05 0,11 0,16 0,16 0,28
13 0,53 0,02 0,05 0,07 0,13 0,20 0,20 0,31
14 1,51 0,06 0,02 0,06 0,18 0,09 0,09 0,18
15 1,23 0,04 0,02 0,06 0,09 0,15 0,15 0,27

Table 10: Euclidian norm of the error vs. number of perceptrons and training data - Dis-
tributed training data.

The error is computed inquiring the ANN with the same values of the training
set. Hence, the error does not measures the generalization capacity of the neural
network.

The error e2 is evaluated considering the Euclidian norm of the error vector e,
defined as the difference between the analytical and the exact solution, normalized
by the maximum displacement:

e2 = ‖e‖ =
∥∥∥∥vana − vANN

vmax

∥∥∥∥ (62)

Table 10 collects the errors e2. It is not simple to guess the possible trends of the
errors because the optimal definition of parameters of an ANN must be evaluated
cosidering simultaneously NP and NT. Increasing the elements of the training set is
useless, or it may have negative effects, if the number of perceptrons is not increased
accordingly; but in the same time it increases also the possibility of having overfit-
ting. The results show a consistent reduction of the error from 32 to 1024,7776 and
32 768 followed by a gain in the order or 25 %÷30 % (Figure 44a). The increase must
be seen from a global point of view: indeed, focusing only on 100 000,248 832,537 824
and 1 048 576 the error keep decreasing, suggesting that a number of perceptrons
higher the considered maximum 15 would lead to an improvement of the solution
(Figure 44b).

A second set of results is presented by changing the training dataset, defined
using the same range of values of table 9 but keeping a fixed step; see table 11.
Then, data sets are generated by picking up random combinations of values. In this
case, it is possible to compute the number of combinations NC by multiplying the
number of possible values Ni assumed by each parameter:

NC = Π5
i=1Ni = 70960176 (63)

The number of training elements is chosen proportionally to the total number NC:
100 elements for 0.000 14 % of NC and 1 000 000 for 1.4 % of NC.
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Figure 44: e2 error trends - Distributed training data.

- Min Max Step Unit Elements

F 1 0,1 10 kN 101
l 0,5 0,1 m 16
E 28 0,1 33 GPa 51
a 20 1 40 cm 21
b 20 1 60 cm 41

Table 11: Input training set data - Clamped beam - Distributed data.
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NP\NT 100 1000 10000 100000 1000000

4 0,86 0,55 0,29 0,40 0,40
5 8,91 0,36 0,20 0,25 0,24
6 2,19 0,34 0,16 0,51 0,21
7 1,95 0,25 0,18 0,10 0,10
8 1,73 0,10 0,16 0,24 0,13
9 1,51 0,70 0,08 0,09 0,07

10 1,26 0,26 0,07 0,13 0,06
11 1,82 0,25 0,06 0,08 0,08
12 4,20 0,19 0,06 0,05 0,06
13 0,95 0,17 0,03 0,05 0,05
14 1,29 0,24 0,06 0,05 0,05
15 2,63 0,29 0,02 0,06 0,05

Table 12: Error vs. number of perceptrons and training data - Random TS.

The error is computed according to (62) inquiring the ANN for values picked up
with the same reasons of the training sets. Hence, they could belong or not to the
training set, and the error measures also the generalization capacity of the ANN.
In particular, 10 elements for each parameters are chosen, leading to a number of
combinations up to 100 000.

Table 12 collects the errors e2 for the second training data definition. In this
case the results agree with the expectation: the order of magnitude is similar first,
indicating the goodness of the ANN architecture; the error trends decrease with
respect both NT and NP, showing also the generalization capability of the neural
network to interpolate data.

For both cases, a small number of training data is not sufficient to ensure a good
training. This is in accordance to the theoretical concept introduced in chapter 1.

Concluding, picture ?? shows the displacement variation with respect the param-
eters of table 9, for an ANN built up with the largest number of perceptrons and
training set, keeping mutually constant P = 5 kN, l = 1 m, E = 30 MPa, b = 25 cm
and h = 50 cm.

As reference, the training of the two sets of ANN takes around 10 h, trained on a
PC with the following specifications:

• Intel® i5200@2.2 GHz.

• 4 GB DDR3 RAM.
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Figure 45: e2 error trends - Random training data.
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Figure 46: Analytical vs. ANN - Curve comparison.
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- Min Max Nd Unit

F 1 10 15 kN
l 0,5 2 6 m
E 28 33 1 GPa
a 20 40 6 cm
b 20 60 6 cm
t 0 5 10 s

Table 13: Input training set data - Simply supported beam.

3.2 dynamic beam deflection
This example is an extension of the static beam deflection of section 3.1. The func-
tion to be approximated is the vertical displacement at the middle of the simply
supported beam depicted in figure ??. The material and geometrical parameters are
the kept the same, to make a direct comparison between the two. The analytical
solution is presented in appendix 3.5.

The dynamic term is introduced in the analysis as an additional parameter t:

t ∈ [0 : 5s] (64)

As a consequence, the analysis in time is defined only upon the training domain,
and no reliable results must be expected outside that range of values.

Differently from the previous example, the training set is generated setting a
number of divisions Nd for each parameter, to give preference at some of them.
This trick is necessary, otherwise the total number of combination would be too
large to be handled by the computer.

A B

F = F̄ · sin(ωt)

l

Figure 47: Simply supported beam - Harmonic excitation.

The solution has been searched varying the number of perceptron Np and the
dimension of the training set, that depends on Nd. Unfortunately, the results are
not good as the ones of the static beam deflection. For this reason, it is reported
only one solution for the data collected in table 13. Picture ?? shows the solution
in term of displacement variation with respect force and time. The ANN is able to
capture the linear variation within P, but not the harmonic trend with respect to t.

Summarizing, the response of an ANN feed with data generated from systems
apparently similar, is not taken for granted. Even if from a mechanical point of view
the physics is similar, the trend functions f (x) are totally different.

3.3 portal frame
The analysed time series function is taken from the dynamic modal solution of a
two-story frame subjected to an harmonic force. The problem is solved under the
hypothesis of axial inextensibility, which leads to the definition of two normal coor-
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Figure 48: Curve comparison.

dinates parallel to the ground. Table ?? collects material and geometrical properties.
The complete solution can be found in appendix 3.5.
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m1
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F sin(ωt)

Figure 49: Two-storey frame subjected to an harmonic force.

The important characteristics for the definition of the RNN are the time steps and
the final time, equal to 0.001 s and 0.5 s÷1 s respectively.

From the physical point of view, the time series function contains all the informa-
tion about the response of the structure: if the parameters are kept constant to the
whole analysis, there is no need to add additional information. Whereas there are
parameters that varies in time, a possible modification is to include them as exoge-
nous input to RNN. This may happen for instance if the frame system is subject to
an acceleration coming from the ground motion, i.e an earthquake.

Being the example a fully-fledged multi-dof system, the possible solution meth-
ods is to built-up a single RNN feed with both input time series and two outputs,
representing the solution at the time step n, or built up different RNNs.

In the first type, weights and biases will be shared within the functions: this
means that the network would try to make the interpolation with the same parame-
ters. If the trends are different, it could be difficult to find out acceptable predictions.
Also the number of delays is shared, meaning that the autocorrelation function can-
not be use any more. Moreover, the amount of RAM necessary to perform the
computation increases significantly, with the risk to make unstable the software.
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- Value Unit

m1 5× 103 m

m2 10× 103 m

E 30 GPa

l 3 m

a 50 cm

ξ 5% −
ω 10 Hz

F̄ 10 kN

∆t 0,001 s

Table 14: Material and geometrical properties for the 2D beam problem.

The second type is more flexible, because it allows to tune differently the RNNs.
The counter part is that, unless for specific hardware configuration, the training and
the consequent predictions are performed sequentially, and this maybe a problem
if the whole solution is needed at the same instant.

The analysis takes into consideration the top displacement.

S T.A. L.F. ϕ(·)

0.001 s L.M. MSE tanh

Table 15: RNN parameters.

The first RNN is built up to see the response from an architecture defined by
the lowest possible settings, that is 2 for both number of delays and perceptrons.
Picture 51 shows the results.
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Figure 50: Training set for t ∈ [0 : 0.5] [s]
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Figure 51: open vs. closed solution for 2 perceptrons and 2 delays.

The smooth result suggests that the time series is too complex for just two delays
and it should be necessary to increase them. Then, the number is chosen looking at
the auto-correlation function depicted in figure 52.
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Figure 52: Autocorrelation function for the frame system response

From the picture 52 it can be seen that the number of significant lags is around 40.
A possible strategy is to sample the input at steps of two, following the suggestion
of section 2.6. In this case, the number of lags is halved and chosen to be 18, a
reasonable value considering the elements of the training set. The number of per-
ceptrons increases accordingly, since the input layer is more complex to be analysed
and so it requires more tunable parameters.

The solution is found in a trial and error fashion, by setting an iterative proce-
dure, modifying the number of delays around the initial guess and the number of
perceptron between 2 and 15. The best solution is found out for 8 perceptrons and
18 delays, visible in figure 53

To complete the discussion, figure 54 reports the solution for 19 delays, to real-
ize how big it could be the misleading response by slightly changing some of the
architecture parameters.
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(b) Analytical vs. predicted solution.

Figure 53: Solution for 8 perceptrons and 18 delays.
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(b) Analytical vs. predicted solution.

Figure 54: Solution for 8 perceptrons and 19 delays.

To enhance the solution, the only way is to increase the training set range, if
possible. Picture 57 shows the final results: improvements can be seen in the last
part of the prediction, where solution 53 starts to get away from the analytical one.
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Figure 55: Training set for t ∈ [0 : 1] [s]
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(b) Analytical vs. predicted solution.

Figure 56: Solution for 8 perceptrons and 18 delays.

However, there is not generally a direct improvement of the solution: as a matter
of facts, additional data would require additional parameters, and so a previously
well trained RNN does not result in a better prediction capability. This means that
the best way of thinking is to tune the RNN every time a new information is added.

As corollary, picture shows the results of a RNN built up with the two DOFs.
Considering 18 number of delays and 8 number of perceptrons as solution 53, the
prediction fails: indeed, new design is always preferred when data changes, as
indicated in several occasions.

3.4 2d plane problem

This example considers the dynamic solution of a 2D plane problem. In detail, the
structure is a cantilever beam subjected to an harmonic force at the one extreme
with linear elastic material properties.
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Figure 57: Solution for 8 perceptrons and 18 delays.

The solution is numerically computed by the FEM, using 2D constant strain tri-
angle and solved by the Newmark’s algorithm. The structural scheme is the same
of example 43 introduced in chapter 1. Picture ?? shows the adopted mesh, defined
by 490 nodes and 802 elements.

The data of the problem are collected in table.

EI

A B

ξ

vB

F = F̄ sin(ωt)

l

Figure 58: Clamped beam subjected to an harmonic load.

Figure 59: 2D mesh - CST elements.

The RNN can be created following the same reasons of the portal frame intro-
duced in section 3.3. The main difference is the number of dofs: passing from 2
to 962, the built-up of a single RNN would require more than 40 GB of RAM, not
compatible with standard computers. The alternative is a single RNN for each dof.

The latter approach reveals another benefit given by the use of a single dof re-
sponse, that is the possibility to focus only on desired output. Whereas the deter-
ministic approach on which the FEM is based needs all the displacements in time
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- Value Unit

l 10 m

a 0,5 m

E 30 GPa

µ 0,18 −
γl 10 kN/m2

t 0,15 m

a 0,5 m

∆t 0,1 s

Table 16: Material and geometrical properties for the 2D beam problem.

to continue the analysis, the RNN allows to extract and predict values only for
characteristic points, such as the ones that expresses the maximum displacement.

For complex problems, as non-linear analysis, the computing time has a predomi-
nant role in the design, since the computational time may last several hours or days.
Then, an artificial neural network could replace the full analysis after some train-
ing windows are available. This approach is similar to the model order reduction
method, or MOR, widely used and based on features extraction for signals.

S T.A. L.F. ϕ(·)

0.001 s L.M. MSE tanh

Table 17: RNN parameters.

The optimal solution is found in an iterative way, similarly to the portal frame
example 3.3, ranging the value of perceptron between 2 and 15 and with the number
of delays found through the autocorrelation function, reported in figure 60.
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Figure 60: R̄ f (τ) - 2D plane beam - 1 sampling step.

Also in this example the number of delays is too large, and an opportune sam-
pling is required. In this case it is chosen to sample a step of three; picture 61 shows
the updated autocorrelation function, showing an optimal number of lags equal
to 18. It is reported directly the best solution found out from the iteration. It is
characterize by a number of delays equal to 16 and a number of perceptrons 7.
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Figure 61: R̄ f (τ) - 2D plane beam - 3 sampling step.
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Figure 62: Training set for t ∈ [0 : 1] [s] - 2D plane beam.

3.5 multi-physics - plane resonator

The term multi-physics is used to define systems which involve different physical
phenomena. In general, any problem is a multi-physical problem: when one phys-
ical aspect prevails upon the others, the secondary terms are disregarded from the
analysis, simplifying the mathematical modelling. This simplification is not always
applicable: for instance, a beam subjected to an high frequency pulsation gener-
ates a temperature differential which produces not negligible local compression
and tension stresses. In these cases, the problem belongs to the family of thermo-
mechanical problems, being coupled in the sense of mechanical and thermal effects.

Similarly, the effect of temperature cannot be anyway disregarded if the spatial
dimensions of the body of the system are very small, in the order of µm: this
happens for instance for micro electro-mechanical system or MEMS.

This example considers the dynamic behaviour of a plane resonator, a system
that is able to vibrate in resonance, preserving the frequency. The dissipation of
energy in term of generated heat from the temperature differential, produces a not
desired decrease in the vibration frequency. This phenomenon goes under the name
of thermo-elastic-damping (TED), and an in-deep analysis of the problem is useful
in the design process, due to the expensive production cost of the device. This
example is part of thermo-mechanical problem, since the dynamic response must
account for the additional term due to the temperature field.

A basic introduction to the problem is reported in appendix 3.5. Technical details
can be found in [3].

The solution is presented is a way similar to the previous examples, showing the
results for the displacement in the y direction and then for the temperature. The
time series functions belongs to the node at the center of the resonator.

First, the identification of the optimal number of delays from the autocorrelation
function reported in figure 65. As it can be seen from the picture, the number of
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(b) Analytical vs. predicted solution.

Figure 63: Solution for 7 perceptrons and 16 delays - 2D plane beam.

delays is too large; then, a number of 2 step is chosen, leading to a value equal to
35 (see picture 66).

Looking at the displacement function in figure ??, it can be seen that the trend
is not as smooth as in the previous cases, and this is due to the high frequency
of vibration and the coupling term with the temperature. Therefore, it cannot be
increased too much the number of sampling steps, otherwise the real signal trend
may be lost.

Then, the optimal result is found iteratively starting from 35 number of delays
and the same number of perceptron of example 3.4 and 3.3. Picture 68 shows that
the predicted solution does not follows the analytical curve as well as the previous
examples. This is due to the complexity of the function, where the output must
relies on the interpolation capability of the RNN. Again, the only possible strategy
is to extend the trained set, if data are available.

The same operation is performed for what concern the temperature variation.
The number of delays first: picture 69 shows a number of delays equal to 40 for a
sampling step equal to 2.

The temperature function here is even more complex than the displacement one:
it is expected acceptable results for the period but not so well for the amplitude.
Picture shows the results 71.

Another approach is suggested by the staggered algorithm introduced in ap-
pendix 3.5. In that case, the solution is found jumping back and forth from one
domain to another, until convergence is fulfilled. The same philosophy can be ap-
plied by using NARX architecture: considering for instance the displacement series,
the RNN is trained giving as external input the temperature variation; separately is
performed the same analysis by switching the time series.
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Figure 64: Multi-physics - Resonator - CST elements.
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Figure 65: R̄ f (τ) - Plane resonator - 1 sampling step - D.
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Figure 72: Passing information scheme from mechanical and thermal RNNs.

After the training, there would be two systems that can predict values giving as
input the output of the other one: in a loop cycle, this procedure allows to make
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Figure 66: R̄ f (τ) - Plane resonator - 2 sampling step - D.
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Figure 67: TS for t ∈ [0 : 2.5× 10−7] [s] - Plane resonator - D.

predictions until a desired final time. In the following it is reported the solution
organized as before, indicating also the cross-correlation function.

Picture 73 shows the auto-correlation and cross-correlation for the two time series.
It is chosen 35 feedback and input delays for the displacement function, while 40
and 35 for the temperature one respectively. Again the solution is found in an
iterative way as before.

Picture 74 shows the results in terms of open and closed form: for what concern
the displacement function, the closed trend is closer to the open one, similar to the
NARN network interpolation, while for the temperature the effects of oscillation
becomes higher and the RNN shows some difficulties in the reproduction of the
curve.

Picture 75 reports the predictions of the system of RNNs: the fitting is not even
closer for the temperature, while some the displacement it keeps the period but it
exhibits spurious oscillations.

In conclusion, the RNN shows some limits whereas the series are not sufficiently
smooth. A possibile strategy is to pre-treats inputs, not only for what regards the
sampling step, but also the shape, depending on the scope of the analysis and
whether the oscillations are relevant or not for the interpretation of data.
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(b) Analytical vs. predicted solution.

Figure 68: Solution for 10 NP and 35 delays - Plane resonator. - D.
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Figure 69: R̄ f (τ) - Plane resonator - 2 sampling step. - T.
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Figure 70: Training set for t ∈ [0 : 2.5× 10−7] [s] - Plane resonator - T.
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(b) Analytical vs. predicted solution.

Figure 71: Solution for 10 NP and 40 delays - Plane resonator - T.
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Figure 73: Normalized auto-correlation and cross-correlation function - Plane resonator - 2
sampling step.
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(a) Displacement time series - 35 delays - 10 perceptrons.
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(b) Temperature time series - 40 delays - 13 perceptrons.

Figure 74: Open and closed solution - Plane resonator.
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(a) Analytical vs. predicted solution - 10 perceptrons and 35 delays - Displacement.

0 1 2 3 4 5

·10−7

299,4

299,6

299,8

300

300,2

t [s]

v [m]

analytical
Prediction

(b) Analytical vs. predicted solution - 13 perceptrons and 40 delays - Temperature.

Figure 75: Solution for the coupled problem - Plane resonator





C O N C L U S I O N

The aim of the thesis is to explore the possible use of ANN on engineering
problems.

The first important observation coming from the starting chapter regards the non
linearity: what ones is led to think is that the function interpolating the data points
is non linear; actually what can be addressed as non linear is just at the global
view: the domain is divided in sets, each of them interpolated by a linear function,
defined by weights and biases.

The static 3.1 and the dynamic beam deflection 3.2 are used as examples of feed-
forward backpropagation ANN. The former includes a study of the variation of
errors with respect to the number of perceptrons and the size of the training set.
A first type of error is evaluated on the training set and, on the contrary of the
expectations, there is a small increase of the error as the size becomes larger. The
second one includes a test on the generalization capability and it follows the expec-
tations. In any case, the ANN expresses good interpolating capability, sustained by
the small amount of resources necessary to store and perform the computation. The
dynamic examples changes the function to be interpolated, and as expected, results
are not good: in fact, the trend of the curve and the data distribution highly effects
the outcome of an ANN. As conclusion, ANN are suitable for parametric analysis,
taking care of the goodness of the training phase.

The application of RNN for the case of portal frame 3.3 and 2D beam case 3.4
follows the standard definition: giving a time series function, deciding how many
points of it the user want to interpolate, RNN delivers a prediction. Acceptable
results are obtained if a sufficient number of entry data are given to the RNN. The
expectations are fulfilled: under some conditions, a working Recurrent Network
can be built up and used to obtain reliable results.

Finally, an ambitious tentative follows the path of the staggered algorithm widely
used for solving coupled physical systems. The aim is to make a direct compari-
son with MOR methods, where the solution is found on reduced basis decreasing
the order of magnitude of the size of the problem. They are based on a training
phase, fully in agreament with the one of neural networks, and performs the com-
putation relying only on statistically meaningful variables. Two RNNs are built-up
independently, with information coming from the different physics. Final predic-
tions are obtained inquiring the RNNs step-by-step passing information from one
to the other, similar of what the staggered algorithm is based on. Unfortunately, the
results are not good as desired, and the mistake may lie on the chosen physical sys-
tem: as a matter of fact, the thermo-Mechanical coupling of resonators occours only
under high frequency excitations, leading to trends extensively affected by oscilla-
tions, not positively handled by RNNs. Applying the same procedure to simpler
examples may have affermative conlusions.

The thesis can be enhanced following different reasons and attitude:

architecture Explore innovative architectures every day developed (Convolutional
networks, Long-Short-Term-Memory (LSTM) networks, generative adversarial
network (GAN), . . . ).

algorithm Improve the algorithm involved in the computation (Optimization al-
gorithm, Random initialization algorithm).

architecture functions In-deep studies of pivotal nodes of the architecture
(Activation function definition, weights and biases position).
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M O DA L A N A LY S I S F O R B E A M

The indefinite dynamic equilibrium equation reads:
EI

∂4ω

∂ξ4 = −$A
∂2ω

∂t2

ω(0, t) = ω(l, t) = 0

EI
∂2ω

∂ξ

∣∣∣
ξ=0

= EI
∂2ω

∂ξ

∣∣∣
ξ=l

= 0

(65)

Its solution leads to the definition of the modal shapes. For a simply supported
beam it holds:

φn(ξ) = sin(γξ) = sin
(nπ

l
ξ
)

(66)

Then, the solution can be written as:

ω(ξ, t) =
∞

∑
n=1

φn(ξ)qn(t) = φ(ξ)Tq(t) (67)

Where φn(ξ) and qn(t) are the modal shapes and the principal coordinates respec-
tively.

Introducing the Euler-Lagrangian equation for discrete dynamic system:

∂

∂t

(
∂T
∂q̇i

)
− ∂T

∂qi
+

∂V
∂qi

= Qi (68)

Where T is the kinetic energy, V is the potential, Qi the active Lagrangian compo-
nents and qi(t) the principal or generalized coordinates. By definition:

T =
1
2

∫
V

ω̇2dm =
∫ l

0
ρAω̇2(ξ, t)dξ (69)

E =
1
2

∫
V̄

σijεijdV =
∫ l

0
Mχdξ =

∫ l

0
EI
(

∂2ω

∂ξ2

)2

dξ (70)

δW = ∑
i

Qiδωi (71)

Substituting (67) into (69), (70) and (71) one obtains for the kinetic energy:

T =
1
2

∫ l

0
q̇TφTmφq̇dξ =

1
2

q̇T

[ ∫ l

0
φTmφdξ

]
q̇ =

=
1
2

q̇T


∫ l

0 mφT
1 φ1dξ 0 . . . 0
0

∫ l
0 mφT

2 φ2dξ . . . 0
...

...
. . .

...
0 0 . . .

∫ l
0 mφT

n φndξ

 q̇ =

=
1
2

q̇T


l
2 m 0 . . . 0
0 l

2 m . . . 0
...

...
. . .

...
0 0 . . . l

2 m

 q̇ =

=
1
2

q̇T l
2

mI︸︷︷︸
M∗

q̇ =
1
2

q̇TM∗q̇ (72)
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For the potential energy:

T =
1
2

∫ l

0
qTφ̈

Tmφ̈qdξ =
1
2

qT
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0
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Tmφ̈dξ
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qT


∫ l
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qTK∗q (73)

For the active component:

δW = F(t)δω(ξ, t) = F(t)φTδq(t) =

= F(t)


sin
(

π
l a
)

sin
(

2π
l a
)

...

sin
(

nπ
l a
)

 δq(t) = QTq(t) (74)

Being all the matrices diagonal, the problem is decoupled and each principal coor-
dinate can be studied as a single DOF system. Finally,

m∗i q̈i + k∗i q̇ = QiF(t)→ qi =
Qi
k

N(β) sin
(
ω̄t− ζ(β)

)
(75)

With:

N(β) =

∣∣∣∣ 1
1− β2

∣∣∣∣ (76){
ζ = 0, for 0 < β < 1
ζ = π, for β > 1

(77)

Where qi gives back the shape of the response of each DOF in time.
As a final remark, the damping can be included easily in the formulation, if the

problem can be considered decoupled in term of damping, by using the Rayleight
formula:

C∗ = αM∗ + βK∗ (78)

Where α and β are constants experimentally defined. Being C∗ a linear combination
of M∗ and K∗, the system is still studied with an updated version of solution (75):

N(β) =
1√(

1− β2
)2

+ 4ξ2β2
(79)

ζ = arctan
(

2ξβ

1− β2

)
, 0 ≤ ζ ≤ π (80)

The complete solution can be found in [1].



S D O F O S C I L L ATO R - F R E E M OT I O N

The basic SDOF oscillator is made up by a spring, a dumper and a punctual mass,
representing stiffness, damping term and inertia of the system respectively. As de-
picted in figure 76, no external forces are applied under the free motion hypothesis.
The equation of motion reads:

m

Figure 76: SDOF system.


mẍ(t) + cẋ(t) + kx(t) = 0
ẋ(0) = a
x(0) = b

(81)

Rearranging some terms:
ẍ(t) + 2ξω1 ẋ(t) + ω2

1x(t) = 0
ẋ(0) = a
x(0) = b

(82)

Where:

ω2
1 =

k
m

(83)

ξ =
c

2
√

km
(84)

The equilibrium equation is a second order linear differential equation with constant
coefficients. The solution can be sought in the form:

x(t) = X0eλt (85)

Substituing and manipulating some terms, the procedure will eventually lead to:

x(t) = e−ξω1t[A cos(ωdt) + B sin(ωdt)
]

(86)

Where: A = x(0)

B =
ẋ(0) + ξω1x(0)

ωd

(87)

And

ωd = ω1 ·
√

1− ξ2 (88)
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Considering the following initial condition:ẋ(0) = 0

x(0) =
F
k

(89)

The equilibrium equation reads:
x(t) = e−ξω1t[A cos(ωdt) + B sin(ωdt)

]
A =

F
k

B =
ξω1

ωd

F
k

(90)

The complete solution can be found in [1, 2, 10]



P O R TA L F R A M E

The solution is computed through modal analysis.
The discretized equilibrium equation reads:

mẍ + cẋ + kx = Q (91)

The displacement vector is manipulated by making the following transformation:

x = Φy (92)

Where Φ is a matrix collecting the eigenvectors and y the generalized, or normal,
coordinates. Substituting into (91), one finds:

x = Φy→ ΦTmΦÿ + ΦTcΦẏ + ΦTkΦy = ΦTQ→ (93)

→Mÿ + Cẏ + Ky = ΦTQ (94)

It can be demonstrated that:

ΦT(·)Φ (95)

is a diagonalization for the matrices M and K, while for C it holds under specific
conditions.

Then, the equilibrium system is decoupled and it can be solved thought the equa-
tions of the single dof system:

ÿj + 2ξωjẏj + ω2
j yj =

ϕjQ

Mj
(96)

Eigenvectors and eigenvalues are computed solving the eigenvalue problem:

(k−ω2m)ϕ = 0 (97)

Substituting the data collected in table ??, the solution of (97) leads to:

ω1 = 90.20 1/s (98)

ω2 = 217.76 1/s (99)

for the natural frequencies and:

ϕ1 =

[
0.0100
0.0071

]
;ϕ2 =

[
0.0100
−0.0071

]
(100)

for the eigenvectors.
Instead, it can be demonstrated that the solution of the SDOF system reads:

v(t) = eξω1t[A cos(ωdt) + B sin(ωdt)
]
+

F
k

N sin(ωt− ζ)

A = v(0) +
F
k

N sin(ζ)

B =
1

ωd

[
v̇(0) + ξω1

[
v(0) +

F
k

N sin(ζ)
]]
−ω

F
k

N cos(ζ)

(101)

With:

ζ = arctan
(

2ξβ

1− β2

)
(102)

β =
ω

ω1
(103)

N =
1√

(1− β2)2 + 4ξ2β2
(104)

The complete solution can be found in [1, 2, 10]
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T H E R M O - M E C H A N I C A L P R O B L E M S

In the following are reported the indefinite equilibrium equation for the two physics
and the coupling system. For the complete discussion [3, 15, 20].

1 thermal field
The indefinite equilibrium equation is based on the energy balance and the Fourier’s
law and reads:

∇ · (−K · ∇T) = g + c$Ṫ (105)

Where

K Thermal conductivity tensor.

T Temperature.

∇ · (·) Divergence operator.

∇(·) Gradient operator.

˙(·) Time derivative.

g Internal heat generation.

c Capacity.

$ Density.

The associated boundary conditions reads:{
T = T̄ , on ΓT

q · n = q̄ , on Γq
(106)

Where T̄ and q̄ are fixed temperature and flux respectively.
The coupling term is introduced a posteriori supposing that the flux depends

linearly on the strain velocity:

qt = βε̇ = T0 ·DαT ε̇ (107)

Where

T0 Initial temperature.

D Elastic tensor.

α Vector of coefficients of thermal expansion.

2 mechanical field
The coupling term is due to the temperature variation, and it has a component in
the total elastic deformation ε.

ε = εe − ε0 (108)

Where
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ε e Elastic deformation.

ε0 Inelastic deformation.

Consequently, the constitutive law reads:

σ = D · εe = D · (ε− ε0) = D · ε −D · ε0︸ ︷︷ ︸
Additional
to the FE

formulation

(109)

3 coupled indefinite equilibrium system
Mechanical domain: 


∇ · σ + F + $ü = 0

ε =
1
2
(
∇(u) +∇(u)T)

σ = Dσ − ε0)

, on Ω

u = ū , on Γu

nσ = f , on Γu

(110)

Thermal domain:
∇ · (−K · ∇T) = g + c$Ṫ + T0 ·DαT ε̇ , on Ω
T = T̄ , on ΓT

q · n = q̄ , on Γq

(111)

4 coupled discretized equilibrium system
After the discretization by the FEM, the equilibrium equation system reads:{

MuÜ + KuU−GuT = Pu

MTṪ + KTT + GT
TU̇ = PT

(112)

Where the products GuT and GT
TU̇ represents the coupling terms for the mechanical

and thermal problem respectively.

5 monolithic approach
The equilibrium system is cast in the form:[

Mu 0
0 0

] [
Ü
0

]
+

[
0 0

MT
T MT

] [
0
Ṫ

]
+

[
Ku −Gu
0 KT

] [
U
T

]
=

[
Pu
PT

]
→ (113)

→Ms s̈ + Cs ṡ + Kss = Ps

Then, the solution vector S is computed accordingly to the chosen algorithm. The
simplicity of this approach is counterbalanced by the computational cost, since
Ms,Cs and Ks are sparse matrices.

6 staggered approach
The equilibrium equation system is solved separately for the mechanical and ther-
mal part. At the time step n, it is computed the temperature distribution first, by
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using an initial guess vector for the velocity U̇0. Then, it is computed the displace-
ment field, substituting the temperature term previously obtained. Finally, a new
velocity vector U̇1 is computed and the convergence checked. This procedure is ap-
plied iteratively until the error is less than a fixed threshold. When the convergence
is fulfilled, the algorithm goes on time step n + 1.





A C R O N Y M

ann Artificial neural network.

rnn Recurrent neural network.

mse Mean Square Error.

ts Training set.

r Regression.

nl-i Non-linear interpolation.

gs Generalization set.

l-i-e Linear interpolation.

nl-i-e Non-linear interpolation error.

ta Training algorithm.

lf Loss function.

ni Number of iterations.

gd Gradient descend.

qn Quasi-Newton.

lm levemberg-Marquardt.

dof Degree Of Freedom.

nt Numer of training elements.

np Numer of perceptron.

bptt Back Propagation Through Time.

fem Finite Element Method.

mor Model Order Reduction.

lstm Long-Short-Term-Memory

gan generative adversarial network

ai Artificial Intelligence

ted Thermo-Elastic-Damping.

d Displacement.

t Temperature.
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