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Sommario

Nel corso degli ultimi decenni, è stato rivolto sempre maggiore interesse

verso la chirurgia minimamente invasiva (Minimally Invasive Surgery, MIS).

Essa, in contrapposizione alla chirurgia aperta, mira a intervenire limitando il

danno per il paziente, riducendo la dimensione delle incisioni, aumentando la

sicurezza dell’intervento riducendo i tempi di recupero per il paziente e i rischi

di complicazioni. La laparoscopia tradizionale tuttavia limita la destrezza

del chirurgo e la coordinazione tra mano e occhio, rendendo la procedura più

difficile per il chirurgo e più faticosa. Per questo motivo, sono stati introdotti

sistemi robotici per la chirurgia mini-invasiva.

Il robot da Vinci è attualmente il sistema più usato per la laparoscopia

roboticamente assistita. Sviluppato da Intuitive Surgical, esso ambisce ad

integrare l’approccio minimamente invasivo della laparoscopia tradizionale

con la tecnologia innovativa della robotica teleoperata e della realtà virtuale.

Il robot da Vinci consiste di una console la quale consente al chirurgo di

teleoperare, tramite due bracci master, due bracci slave dotabili di diversi

strumenti. Il chirurgo riceve feedback visivo da un visore stereo che invia

in tempo reale le immagini provenienti da una telecamera endoscopica. Il

sistema consente di filtrare il tremore della mano, può scalare i movimenti

del chirurgo e consente di raggiugere una coordinazione inedita tra occhio e

mano, aumentando così la precisione dell’operazione e l’abilità del chirurgo.

ix



Tuttavia, la versione del robot da Vinci attualmente sul mercato non è

dotata di feedback tattile o di forza al braccio master. Pertanto, il chirurgo

non ha la sensazione delle forze da egli stesso applicate e può contare solo

sulla propria esperienza per stimare le forze di interazione tra lo strumento

e il paziente. È stato dimostrato che un eventuale superamento di questa

lacuna può migliorare la curva di apprendimento per i chirurghi principianti

e può ridurre il rischio di danneggiare i tessuti o di rompere le suture. Per

questo motivo, le recenti attività di ricerca che utilizzano la piattaforma da

Vinci Research Kit (dVRK), ambiscono sempre più alla realizzazione di un

feedback di forza che rifletta le forze di interazione tra il braccio slave e il

paziente verso il braccio master.

Pertanto, l’obiettivo di questa tesi è presentare e convalidare un metodo

per la stima delle forze e delle coppie di interazione tra la punta del braccio

slave e il paziente. Il metodo proposto è sensorless, in quanto la stima non si

basa su un sensore di forza/coppia, ma viene eseguita indirettamente tramite

le coppie misurate a livello dei giunti. Parte cospicua di questo lavoro si

concentra sulla modellazione della dinamica del braccio slave. Il modello

dinamico è stato calcolato utilizzando l’algoritmo di Newton-Euler (NEA)

e include l’attrito viscoso e statico. I coefficienti dinamici del modello sono

stati identificati utilizzando un approccio ai minimi quadrati, a partire da dati

provienienti dal robot ottenuti durante l’esecuzione traiettorie ottimizzate di

eccitazione dei giunti. Tali dati includono posizioni e velocita di giunto e

coppie di giunto.

Il modello dinamico del braccio è necessario perché la coppia totale di giunto,

calcolabile a partire dalle correnti dei motori, include sia la coppia dovuta alla

dinamica del robot che la coppia risultante dall’interazione esterna. Infatti,

ogni volta che viene applicata una forza esterna alla punta del braccio, i
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motori devono esercitare una coppia aggiuntiva in modo da resistere a questa

interazione e mantenere la posizione dei giunti. Questa coppia deve essere

isolata per poter calcolare le forze e le coppie di interazione. Utilizzando

le coppie di giunto ottenute dalle correnti degli attuatori e sottraendo da

queste le coppie risultanti dalla dinamica del braccio del robot, cioè stimate

con il modello dinamico, è possibile ricavare le coppie di giunto dovute solo

alle forze e coppie esterne. Queste forze e coppie che agiscono sull’utensile

possono essere infine ottenute attraverso l’inversa della matrice Jacobiana

trasposta. L’accuratezza di questo metodo è stata valutata confrontando le

forze e le coppie stimate con quelle misurate da un sensore forza/coppia (ATI

mini 45). È stato dimostrato che le forze e le coppie esterne sono ben stimate

rispetto a quelle misurate, con una deviazione quadratica media normalizzata

tra il 6 e il 15 percento.
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Abstract

During the last decades, surgical procedures have evolved towards a min-

imally invasive approach. Minimally Invasive Surgery (MIS), as opposed to

open surgery, aims at lowering the damage to the patient’s body by inter-

vening on the patient with smaller incisions, so as to increase safety, to lower

the wound recovery time and in general the risk associated to a medical pro-

cedure. The traditional laparoscopic approach however limits the dexterity

of the surgeon and the hand to eye coordination, making the procedure more

difficult for the surgeon and more fatiguing. For this reason, robotic systems

for minimally invasive surgery were brought about.

The da Vinci system is currently the leading system for Robot-assisted

Minimally Invasive Surgery (RMIS). Developed by Intuitive Surgical, it merges

the minimally invasive approach of laparoscopy with the cutting-edge ad-

vances made in teleoperated robotics and virtual reality. It consists of a

console that allows the surgeon to teleoperate, by means of two master arms,

two slave arms that can be equipped with several tools such as grippers,

graspers etc. The surgeon receives visual feedback from a stereo viewer which

displays in real time the visual information filmed by an endoscopic camera.

The system allows to filter the surgeon’s hand tremor, it provides scaling of

movements and an augmented hand to eye coordination thus increasing the

precision and capability of the surgeon. However, The commercialized ver-
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sion of the da Vinci robot currently lacks of the haptic feedback to the master

arm. Thus, the surgeon has no haptic sense and can rely only on experience

to be aware of the forces of interaction between the tip of the tool and the

patient tissue. For this reason, in the recent research activities using the da

Vinci Research Kit (dVRK) platform, the reflection of the interaction force

between the slave tool tip and the environment to the master manipulator is

a topic of high interest. It has in fact been proven that the implementation

of force feedback benefits the learning curve of novice surgeon and reduces

the risk of damaging tissues or breaking suture knots.

Therefore, the goal of this thesis is to present and validate a sensorless

model-based method for the estimation of the forces and torques of interac-

tion at the tip of the slave arm of the da Vinci Research Kit. Sensorless,

because the estimation of the forces and torques of interaction does not rely

on any force/torque sensor, but it is carried out indirectly by means of the

torques measured at the actuators level. It is model-based, because the dy-

namic model of the slave arm is computed and explicitly taken into account.

The dynamic model of the dVRK slave arm, including viscous and static

joint frictions, was computed using the Newton-Euler algorithm. The base

parameters of the model were identified using a least squares approach, from

data obtained while exciting the robot with optimal trajectories. These data

include joint position and velocities and actuator torques. The dynamic

model is needed because the total joint torque, estimated by means of the

motor current, includes both the torque due to the dynamics of the robot

and the torque resulting form external interactions. In fact, whenever an

external force is applied to the tip of the arm, the motors must exert an

additional torque so as to resist to this interaction and to reach the desired

pose of the end effector. This torque must be separated from the total one
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in order to compute the forces and torques of interaction. The idea is to

use the actuator torques obtained from the measured motor currents and to

subtract the torques resulting from the dynamics of the robot arm, to be

estimated with the dynamic model. The resulting torques are therefore only

due to the external forces and torques acting on the tool. Finally, the forces

and torques of interaction are obtained through the inverse transpose of the

Jacobian matrix. The accuracy of this method is assessed by comparing the

estimated wrench to the one measured by a force/torque sensor (ATI mini

45). It was shown that the external wrench is well estimated compared to

the measured one, with a normalized root mean squared deviation (NRMSD)

between 6 and 15 percent.
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Chapter 1

Introduction & State of the Art

Minimally Invasive Surgery (MIS) is an umbrella term which defines the

medical procedures and devices which aim at intervening on the patient with

the lowest damage possible so as to reduce the trauma for the patient and the

time of recovery. Laparoscopic surgery for example, or endoscopic surgery

are all solutions which allow to operate the patient without performing open

surgery, avoiding the trauma that the latter approach entails. On the other

hand, in the passage from open surgery to MIS, some limitations are intro-

duced such as the loss of the haptic sensation for the surgeon, which will

be discussed later in this thesis. Several methods for MIS have been imple-

mented relying on surgical robots, of which an overview is given.

1.1 Surgical Robotics

In the last decades, robot manipulators have found application in the

medical field improving the quality of patient care. Surgical robots have

been increasingly adopted to enhance the surgeon’s ability and performance,

to improve the accuracy, the precision and the speed of the operation, and
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to reduce trauma and complications for patients [1]. This was made pos-

sible by the rapid technological advancements in the field of industrial au-

tomation which have eventually found application in the operating rooms.

The improvements in design, kinematics, and control algorithms have made

feasible the realization of robotic manipulators with suitable accuracy and

safety requirements suitable for use in a clinical environment. The use of

robotic manipulators, coupled with the computing abilities of modern com-

puters and to increasingly accurate pre-operative and intra-operative imaging

techniques, has paved the way for Computer-Aided-Surgery / Computer-

Integrated-Surgery. This approach comprises the acquisition and processing

of pre-operative images and the envisioning of a surgical plan to be executed

and monitored in real time during the procedure. The use of robotic ma-

nipulators allows to exploit the numeric nature of its kinematic parameters

so as to obtain a quantitative, rather than qualitative, information (e.g. the

position of a biopsy needle) and compare it to the data from a surgical plan.

The first robotic manipulators used in clinics were actually industrial

robots, exploited for their geometric accuracy and stability. In 1985, The

Unimation Puma 200 (Programmable Universal Machine for Assembly) robot

(Fig. 1.2) was used in the operating room to perform the first robotized

stereotactic brain biopsy [2]. In this context, the Puma 200 is used as a

passive needle holder capable of positioning and orienting a guide in such

a way that a biopsy needle can reach the surgical target inside the brain

following accurately a predetermined trajectory.

The trajectory is planned in advance using data acquired through CT

imaging. The target is localized on the CT image and its coordinates are

computed with respect to the base of a stereotactic frame surgically fixed

on the patient skull. After having bolted the robot to the patient’s couch,
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Figure 1.1: The Leskell Frame.

Figure 1.2: The Unimation PUMA 200, used to perform the first stereotactic brain biopsy in 1985 [2].

the coordinates of the target are computed with respect to the robots refer-

ence frame. The robot can then move smoothly its links to provide a virtual

fixture near the chosen entry point on the skull, so as to ensure a stable

trajectory inside the skull for a biopsy needle or an electrode for deep stimu-

lation. This procedure, in addition to ensuring a reliable trajectory planned

to avoid sensible structures in the brain, allows to avoid the tedious and

time consuming operations required to orient the needle guide that were pre-
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viously done manually with the Leskell frame. Moreover, if multiple entry

points are expected, the robot can re-orient rapidly the probe guide from one

entry point to another resulting in a faster and more flexible procedure. State

of the art systems stemming from this pioneering work include the Renishaw

Neuromate, FDA-cleared for deep brain stimulation (DBS) and stereoelec-

troencephalograpy (SEEG), and the Pathfinder surgical robot which provides

also an embedded optical localizer system [3]. Other robotic systems for neu-

rosurgery in research include the NeuroArm system [4], a telerobotic system

for neurosurgery compatible with intra-operative MRI image guidance. Six

DOF robotic arms have been exploited with a similar approach also for spine

surgery (Mazor X, ROSA spine). Similarly to neurosurgical devices, these

manipulators orient their end effector providing a virtual fixture to suitably

assist the placement of a screw pedicle [5] (Fig. 1.3).

Along with neurosurgical applications, orthopedics was one of the first

areas in which robotic applications were developed; this development was

mainly motivated by the rigidity of the surgical target [6]. The amount of

deformation undergone by bones during a surgical procedure is in fact negli-

gible with respect to the one affecting soft tissues, which must be estimated

using complex biomechanical models. This results in simpler techniques for

planning and robotic navigation, because the plan outline on pre-operative

images is considered reliable also intraoperatively.

The TSolution One® system by THINK Surgical (formerly ROBODOC),

for example, is a system for hip and knee surgery which performs bone

preparation prior to the placement of a prosthetic implant [7]. It consists of

two modules: the TPLAN® workstation for 3D pre-operative planning and

TCAT®, a computer-assisted tool for the execution of the procedure. A 3D

patient specific model of the bone anatomy and bone density is constructed
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Figure 1.3: Starting from the top left in anticlockwise direction: the Reinshaw Neuromate, the Pathfinder,

the ROSA spine, Mazor X.

from pre-operative CT images and it is used to plan the bone preparation

procedure specifying the type of implant and the desired fit and alignment.

Subsequently, after bone registration is performed, the system actively mills

and cuts the bone under surgeon supervision. The rigidity of the bone tissue

ensures a more stable correspondence between the patient specific model and

the actual tissue during the procedure.

Surgical robotic devices can be classified according to their degree of
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autonomy [6], [1]. The autonomy of a surgical robot indicates to which

amount its functionalities are driven by the commands of a surgeon or op-

erator during the surgical procedure (i.e. no autonomy) or are automated

via a surgical plan. A fully automated surgical procedure would therefore

be defined as totally autonomous. The TSolution One® system belongs to

this category since the robot autonomously performs the bone preparation

technique according to the plan, with only the supervision of the surgeon.

The MAKO system, commercialized by Stryker, is another popular FDA-

cleared system for hip and knee replacement. This system can be regarded

instead as a semi-autonomous device because, unlike TSolution One®, it

does not autonomously perform the operation but assists the surgeon with

virtual fixtures, which restrain the tool from exiting the area specified by the

pre-operative plan [8]. The two robotic platforms are shown in (Fig. 1.4).

Fully passive robots are usually teleoperated manipulators, as described in

the following section.

Figure 1.4: From left to right: the TSolution One® system by THINK Surgical and the MAKO system

by Stryker for total hip replacement.
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1.2 Teleoperation

Teleoperation is generally the control strategy of choice for completely

passive manipulators. It involves the control of a master manipulator by the

operator which causes the displacement of the robot manipulator, which in

this context is known as “slave”. In the first teleoperated robots mechanical

cables and linkages were used as communication links between the master

and the slave side. These systems were intended for manipulating hazardous

radioactive materials from a safe distance, typically from the other side of

a thick glass (Fig. 1.5). It was not long before the mechanical connections

between the operator and the robotic slave were replaced by electrical signals

exchanged by sensors and actuators, allowing for remote control through

greater distances [9].

Figure 1.5: Remote manipulator arms designed for the manipulation of radioactive material (Engine

Maintenance Assembly & Disassembly Facility, Area 25 of the Nevada Test Site).

Today, teleoperated robots are widely used in nuclear plant decommis-
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sioning, environment exploration and of course surgery [10], [11]. The idea

of teleoperated robots able to perform surgery was first brought about in the

1970’s, when researchers from the National Aeronautics and Space Adminis-

tration (NASA) imagined to operate astronauts in space by means of surgical

robots commanded from earth by expert surgeons [12]. However this idea

was soon abandoned because of the time delays introduced by the large dis-

tances [8]. Later the same idea was pushed forward by the Defense Advanced

Research Projects Agency (DARPA) which wished to perform remote surgi-

cal operation on soldiers directly on the battlefield [13]. The impulse given

by the DARPA to this kind of projects ultimately led to the development of

the first teleoperated surgical devices. The most popular of these devices is

the Da Vinci Surgical System which will be dealt with in detail in the next

sections.

Currently, several devices available on the market are controlled by means

of teleoperation. Such devices include the Flex Robotic System by Medrobotics

which provides a flexible endoscope steerable via a remote controller to per-

form transoral and transanal procedures [14]. Research devices which involve

a teleoperated control include the Preceyes system for eye surgery, and the

aforementioned Neuroarm system for neurosurgery (Fig. 1.6).

1.2.1 The Da Vinci Surgical System

The Da Vinci Surgical System is nowadays the most popular surgical

robot for Robot-assisted Minimally Invasive Surgery (RMIS). Installed in

more than 4400 hospital facilities around the world, it allows to perform

minimally invasive laparoscopic surgery with the benefits of robotic teleop-

eration. The scope of RMIS is to push forward the possibilities opened up

by traditional laparoscopic surgery [15]. In the traditional scenario, hand
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Figure 1.6: From top to bottom: The Preceys system for teleoperated eye surgery, the Neuroarm for

teleoperated MRI-compatible neurosergory and the FLEX endoscopic system.

held tools are inserted in the operating space by means of a trocar and a

small incision while the laparoscope provides visual feedback through a fiber

optic cable. The surgeon can than see the images on a side monitor screen,

while operating by means of th ehand held tools. Traditional laparoscopy

works well for simpler operations such as laparoscopic cholecystectomy (re-

moval of the gall bladder), oophorectomy (removal of an ovary or ovaries),

and hysterectomy (removal of the uterus) [13]. More complex operations in-
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volving more than just tissue excision and simple sutures were not carried

out in a significant manner. These shortcomings have pushed researchers

to develop robotic systems specifically tailored for robot-assisted minimally

invasive surgery, such as the Da Vinci Surgical System.

The first developments of the Da Vinci Surgical System date back to 1995,

when Dr. Frederick Moll founded Intuitive surgical. In 1997 the first human

intervention was performed with a Da Vinci prototype. In the same year

Computer Motion, the main competitor of Intuitive, launched its platform for

RMIS, the Zeus Robotic Surgical System (Fig. 1.7) [16]. Computer Motion

was one of the leading companies in surgical robotics, having specialized in

robotic tools for laparoscopy. The Zeus Robotic Surgical System was an

evolution of their earlier product AESOP (Automated Endoscopic System

for Optimal Positioning). AESOP was an endoscopic voice controlled camera

holder to be used in laparoscopic surgery and it was the first surgical robot

to receive FDA clearance. In the year 2000, Computer Motion sued Intuitive

Surgical for patent infringement, starting a legal litigation which finally ended

in 2003 with the merger agreement between Intuitive Surgical and Computer

Motion, and with the phasing out of the Zeus system in favor of the Da Vinci

[13].

The Da Vinci Surgical System is composed of a patient cart, a surgeon

console and a vision cart (Fig. 1.8). The patient cart consists of four or

more arms called patient side manipulators, which can be equipped with

different tools conceived to operate inside the patient body through a small

incision. One of the arms is equipped with an endoscopic camera which pro-

vides visual information to the surgeon console. The arms are teleoperated

by the surgeon from the surgeon console by means of two master arms. The

foot-switch at the surgeon console side allows the surgeon to switch between
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Figure 1.7: The Zeus Robotic Surgical System by Computer Motion.

operating patient side arms. Simultaneously, the surgeon visualizes the op-

erating space from the high resolution stereo viewer present in the surgeon

console (Fig. 1.9). The vision cart provides communication across the da

Vinci system components, and integrates image and signal processing. A

display also shows a live feed of the procedure, available to all the personnel

in the operating room. The immersivity guaranteed by the stereo viewer is an

appealing feature of the system because the surgeon feels as if he or she were

performing open surgery, while instead minimally invasive surgery is being

performed ensuring all the benefits for the patient in terms of post-operative

pain, blood loss and in duration of hospital stay. The robotic teleoperation

system is able to cancel hand tremor, to augment the natural range of motion

of the human hand, to scale the movements of the surgeon and to eliminate

the fulcrum effect, all disadvantages that were part of conventional laparo-

scopic surgery. Moreover the surgeon operates while seated and not standing

up, resulting in less fatigue.

One drawback of the Da Vinci Surgical System is the lack of the feeling
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of touch for the surgeon [17]. Even the residual kinesthetic feeling which is

transmitted by the traditional hand held laparoscopic tools is lost in the case

of RMIS. The reconstruction of such a feeling will be dealt with in the next

section.

1.3 Haptics

Haptics, from the greek word απτκικoς (haptikos) meaning "pertaining

to the sense of touch”, indicates the research field which aims at recreating

the sense of touch by means of forces or vibrations to the user. Along with

vision and hearing, touch is one of the main senses which allow a subject

to experience the external world. Therefore, research in haptics is of crucial

importance for the implementation of virtual environments as well as for the

remote reconstruction of real environments. This type of sensory translation

Figure 1.8: The Da Vinci Surgical Systems Components. From left to right: the patient cart, the surgeon

console and the vision cart.
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Figure 1.9: Left: different tools with which the patient side manipulators can be equipped. Right: an

example of the scene viewed by the surgeon through the high resolution stereo viewer.

has found application in several fields such as gaming, flight simulators, but

also in the development of artificial hands, prosthetic limbs and in surgical

robotics [18]. In the field of surgical robotics, haptic interfaces have found

application surgical simulators for training and in the recreation of the haptic

sense in teleoperated surgical systems, such as the Da Vinci. It is useful to

point out that the tactile sensation of an object is not reducible to a single

sensation, but it is constituted by the perception of a range of properties

such as temperature, texture, skin stretch, vibrations and forces. While

information regarding texture, temperature and skin stretch is detected by

receptors placed on the surface of the skin, force and torque information is felt

through receptors present in muscles and tendons. Consequently it is possible

to classify tactile information, and the respective devices to reconstruct that

information, into two categories: cutaneous and kinestethic [19].

In open surgery both the cutaneous and the kinesthetic information de-

riving from the interaction between the surgeon and the tissue are preserved,

since the surgeon can paplate directly the tissue with gloved hands. Tradi-

tional laparoscopic tools and hand held robotic devices such as the MAKO
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by Stryker or the TSolution One naturally transmit part of the kinestethic

sense to the surgeon, while discarding all cutaneous information. In teleop-

erated devices, such as the Da Vinci, all haptic sensation is lost if a proper

feedback is not developed. The surgeon relies only on experience and on

visual feedback to estimate the exerted force [20]. It has been shown, in the

context of RMIS, that the implementation of a force feedback using the mas-

ter device as a kinesthetic interface could provide several potential benefits.

In suturing tasks, the force feedback improves the learning curve of novice

surgeons and reduces the risk of breaking the suture knot [21]. In palpation

tasks, the force feedback allows for an easier detection of hard lumps under

the tissue, such as tumors [22]. In general the use of force feedback reduces

the risk of tissue damaging [23].

Force feedback implies the recreation of the forces of interaction from the

slave side, to the master side by means of actuators. Therefore, the inter-

action forces must first be sensed or estimated through a suitable approach,

then the stability of the master-slave loop must be ensured - even if it is not

addressed in this work - and finally the forces must be correctly displayed to

the surgeon. The reflection of forces to the master arm requires implement-

ing complex control architectures which all entail stringent requirements for

robustness and stability [24] [25]. These issues can be avoided by exploiting

different methods of displaying the force to the user such as auditory cues

[17], visual displays [21], or asymmetric force feedback [26].

1.3.1 Force Estimation Methods

In order to implement a force feedback from the slave arm to the master

arm, the force of interaction between the slave arm and the patient’s tissue

must be sensed or estimated. Many research works have been conducted in
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order to develop novel force sensors either to be integrated on the shaft or

on the tip of the instrument of the da Vinci (Fig. 1.10). In [27] an optical

sensor is placed on the terminal part of the trocar. In [28] strain gauges are

placed on the shaft of the tool, while in [29] they are placed on the shaft of

the cables which drive the wrist of the tool. Piezoresistive sensors were also

used, and were placed at the tip of the tool so as to estimate the interaction

[30]. In some cases, the design of completely new tools equipped with a

force sensor is required [31]. However, these solutions entail sterilization and

biocompatibility issues, as well as a high costs. In this thesis a sensorless

approach is studied, which could potentially solve these issues.

For what concerns products present in the market, the company TransEn-

Figure 1.10: Force sensor integration in the da Vinci tools. a) Piezoresistive sensors placed at the tip [30].

b) Optical sensor to be integrated on the terminal part of the trocar [27]. c) Strain gauges placed on the

cable shafts [29]. d) Completely re-designed tool equipped with force sensor, developed by the German

Aerospace Center (DLR) [31].
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terix, with their product Senhance, have recently proposed a teleoperated

system for RMIS, similar to the da Vinci, including also haptic feedback

making it the only device for RMIS today having such a feature [32]. It has

obtained FDA clearance and CE marking but is today present in few facilities

and it is struggling to compete with the more affirmed Da Vinci System.

The scope of this work is to exploit the dynamic model of a robotic arm

to gain an estimation of the forces of interaction at its tip, without having

to integrate an additional sensor. A review of the methods for dynamic

modeling of a robotic arm is presented in Appendix B.

1.4 Research Problem

The goal of this thesis is to present and validate a sensorless, model-

based method for the estimation of the forces and torques of interaction

at the tip of the slave arm of the Da Vinci Research Kit. It is sensorless

because the estimation of the forces and torques of interaction does not rely

on any force/torque sensor, but it is carried out indirectly by means of the

torques measured at the actuators. In fact, it is possible, by means of the

control software already available for the dVRK [33], to retrieve the total

torques exerted by the actuator to every joint of the robot. These torques are

estimated from the currents in the actuators by means of a proper calibration

already implemented in the dVRK control software [34]. These torques,

indicated as τtot in Fig. 1.11, include both the joint torques due to the

dynamics of the robot, which cause the robot’s motion, and the joint torque

resulting form external interaction (τext). In fact, whenever an external force

is applied to the tip of the arm, the motors must exert an additional torque so

as to resist to this interaction and to reach the desired pose of the end effector.
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Figure 1.11: Scheme of the composition of torques acting on a robotic joint.

This torque must be separated from the total one in order to compute the

forces and torques of interaction. By using the joint torques obtained from

the measured motor currents (τtot) and by subtracting from them the torques

resulting from the dynamics of the robot arm (τ̂), it is possible to obtain the

joint torques only due to the external forces and torques acting on the tool.

Finally, the forces and torques of interaction are obtained through the

inverse transpose of the Jacobian matrix. The accuracy of this method

is assessed by comparing the estimated wrench to the one measured by a

force/torque sensor (ATI mini 45). It is shown that the external wrench is

well estimated compared to the measured one.

This work is organized as follows. First the Da Vinci Research Kit

(DVRK), an open source robotic platform for research similar to the com-

mercially available system, is presented. Then the kinematic and dynamic

modeling of the DVRK is carried out. The parameters of the dynamic model

are then presented and identified through an optimal excitation experiment.

A section regarding the generation of the optimal excitation trajectory is also

provided. The model, along with its identified parameters, is validated by

assessing its capability of estimating joint torques during a task in free space.

The model is finally exploited to estimated external forces acting on the end

17



effector of the arm.
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Chapter 2

Materials and Methods

In this section, the Da Vinci Research Kit robotic platform is presented

and the kinematic and dynamic modeling of the slave arm is carried out.

Then, the problem of the identification of the model’s base parameters is ex-

plained in detail and finally the method to choose the optimal joint trajectory

for the identification of the dynamic parameters is shown.

2.1 The Da Vinci Research Kit Platform

The Da Vinci Research Kit1 is a telerobotic platform, consisting of parts

from earlier generations of Da Vinci systems, provided by Intuitive Surgical.

It is an open-source version of the commercially available Da Vinci Surgical

System described in the previous sections, conceived to provide to researchers

full access to the robot’s hardware and software [34]. Since the commercial-

ized Da Vinci Surgical System is a proprietary product, it provides limited

1Developed in partnership by: Johns Hopkins University, SMARTS Lab; Worcester

Polytechnic Institute, AIM lab; Medical Motion Corporation; Intuitive Surgical, Inc. and

Neuron Robotics, LLC



Figure 2.1: The da Vinci Research Kit platform available at The BioRobotics Institute comprising two pa-

tient side manipulators (PSM) and two master tool manipulators (MTM) with their respective controllers,

a high resolution stereo viewer (HRSV) and a footpedal tray.

access to its software: as a consequence, the development of an open source

telerobotic platform was of utmost importance for the flourishing of research

activities on RMIS. Currently, the dVRK is used in 35 research groups around

the world [35].

This research was carried out on the dVRK available at The BioRobotics

Institute of Scuola Superiore Sant’Anna. The system used in this work com-

prises two patient side manipulators (PSM), two master tool manipulators

(MTM), a high resolution stereo viewer (HRSV) with 640X480 resolution to

be coupled to an endoscopic camera manipulator (ECM) which is currently

to be integrated, and a footpedal tray (Fig. 2.1). Open source electronics
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for the PSM and MTM controllers were built and consist of an FPGA (with

its firmware) coupled to a quad linear amplifier, which communicate to a

Linux PC through a IEEE-1396 (firewire) bus [34], (Fig. 2.2). Open source

software was also implemented based on cisst [36] and SAW (Surgical As-

sistant Workstation) packages interfacing with the Robot Operating System

(ROS) (Fig. 2.3). This software was also integrated with different higher

level programming environments, such as Matlab and Python [37]. Because

the Python environment provides a higher frequency communication with

the robot, with respect to Matlab scripts, in this thesis Python scripts were

used to control the robot. Examples of such scripts will be shown in the

Appendices.

Figure 2.2: The open source electronics built for the dVRK: an FPGA controller with IEEE-1394 com-

munication bus coupled to a Quad Linear Amplifier with heat sink.
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Figure 2.3: A screenshot of the ROS based control software for the DVRK.

2.2 Kinematic Modeling of the PSM Arm

The PSM is a 7 DOFs serial robot with five revolute (R) joints and one

prismatic (P) joint in a RRPRRR configuration, which manipulates a tool

around a remote center of motion (Fig. 2.4). The kinematic model is de-

scribed by the modified Denavit-Hartenberg parameters given in Table 2.1,

which are available in the dVRK User Guide [38]. The last degree of free-

dom, corresponding to the opening and closing of the gripper, was neglected

in the modeling. These parameters will be needed afterwards to initialize the

Newton Euler Algorithm so as to obtain the dynamic model of the arm. A

schematic describing the PSM joints is shown in Fig. 2.5. It is worthwhile to

note that the movements of the wrist joints are actuated by tendons which

are in turn actuated by disks on the tool coupled to the sterile adapter 2.6.

In particular the yaw motion of the wrist and also the gripping are produced

by the coordinated movement of disks a and b, which move the two grippers.
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Table 2.1: PSM modified DH parameters

# Joint Name Type a α d θ

1 Outer Yaw R 0 π/2 0 q1 + π/2

2 Outer Pitch R 0 -π/2 0 q2 − π/2

3 In/Out Ins. P 0 π/2 q3 − 0.43 0

4 Outer Roll R 0 0 0.41 q4

5 Wrist Pitch R 0 -π/2 0 q5 − π/2

6 Wrist Yaw R 0.0091 -π/2 0 q6 − π/2

7 End Effector / 0 -π/2 0.01 0

Figure 2.4: The remote center of motion (RCM) of the PSM arm.

2.3 Dynamic Modeling of The PSM Arm

The dynamic model of a robot provides the relationship between the ac-

tuator torques acting on the robot joints, and the resulting joint accelerations

and joint motion [39]. The canonical expression of the PSM dynamic model

expressed in joint space formulation is given by:
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Figure 2.5: The Patient Side Manipulator arm and its joints. Joints 4, 1 and 2 allow respectively the

outer roll, pitch and yaw of the instrument; joint 3 permits the in/out insertion of the tool, while joints 5

and 6 provide the pitch and yaw of the wrist.

Figure 2.6: The disks on the sterile adapter that couple to the tool. The movement of disks a and b cause

the wrist yaw motion and the gripping, disk c causes the wrist pitch, and disk d is responsible for the roll

of the shaft.
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τ =M(q)q̈ + C(q, q̇) +G(q) (2.1)

where τ is a (6 × 1) vector containing the joint actuator torques, M is

the (6 × 6) inertia matrix, C is the (6 × 1) vector accounting for Coriolis

and centrifugal effects, G is the (6 × 1) vector of gravitational forces and

q, q̇, q̈ are respectively the (6× 1) vectors of the joint angles, velocities and

accelerations.

In the dynamic modeling of the PSM, several additional torque contri-

butions can be considered, as in [40]. Firstly, an elastic contribution τe was

taken into account to model the elastic effects present in joints 1 and 2 due

to power cables, and in joint 4 due to a torsional spring:

τe =Keq (2.2)

with Ke = diag{Ke1, Ke2, 0, Ke4, 0, 0}. No elastic effect was modeled on

joints 3, 5 and 6. The static and viscous friction contributions were modeled

as:

τf = Fvq̇ + Fssgn(q̇) (2.3)

where the matrices Fv = diag{Fv1, ..., Fv4,Fvl}, and Fs = diag{Fs1, ..., Fs6}.

The matrix Fvl is a 2 x 2 matrix modeling the viscous friction of the last 2

joints, that are coupled by a tendon driving mechanism. A constant additive

torque τ0 has been added to all joints in order to model the residual elastic

force of the cables and any motor current offset.

A simplified drive inertia term Ia, taking into account the effect of the

transmission system without considering gyroscopic effects, was modeled as:

τI = Iaq̈ (2.4)
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where Ia = diag{Ia1, ..., Ia6}.

Finally, since the mass of the last three links is negligible, they were

neglected in the dynamic modeling and their dynamic parameters were set

to zero. By summing all these contributions, the dynamic equations of the

PSM arm are expressed by:

τ =M(q)q̈ + C(q, q̇) +G(q)

+Keq + Fvq̇ + Fssgn(q̇) + τ0 + Iaq̈
(2.5)

A well known property of the dynamic model of a serial manipulator is its

linearity with respect to a set of dynamic parameters, known as barycentric

parameters [39]. By making explicit this linear relationship, it is possible to

rewrite the equation of motion in (2.5) as follows:

τ = Y (q, q̇, q̈)δ (2.6)

where δ = {δ1T , ..., δ6T}T is the vector of all the robots dynamic pa-

rameters. Matrix Y summarizes the whole dynamic model, and it depends

only on the robot motion. By taking into account the previously modeled
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dynamics, we can write the dynamic parameters of each link as follows:

δi = {Lxxi, Lyyi, Lzzi, Lxyi, Lxzi, Lyzi, lxi, lyi, lzi,

mi, Kei, Fvi, Fsi, Iai, τ0i}T for links 1 and 2

δ3 = {Lxx3, Lyy3, Lzz3, Lxy3, Lxz3, Lyz3, lx3, ly3, lz3,

m3, Fv3, Fs3, Ia3, τ03}T for link 3

δ4 = {lx4, ly4, lz4, Ke4, Fv4, Fs4, Ia4, τ04}T for link 4

δ5 = {lx5, ly5, lz5, Fv55, Fv56, Fs5, Ia5, τ05}T for link 5

δ6 = {lx6, ly6, lz6, Fv65, Fv66, Fs6, Ia6, τ06}T for link 6

Therefore δ groups 68 parameters in a column vector. Li is the inertia

tensor of the i-th link with respect to the center of mass, li is the first moment

of inertia of the i-th link and mi is the mass of the i-th link. However, in

(2.6), some of the columns of matrix Y (6 × 68) are always null or linearly

dependent. Therefore, it is possible to transform (2.6) in a set of linearly

independent equations [41], [42]:

τ = Yb(q, q̇, q̈)β (2.7)

where β(48 × 1) is the vector of the base parameters which are equal

to a linear combination of the barycentric parameters and Yb is a (6 × 48)

matrix whose values depend only on the robot’s motion, i. e. joint positions,

velocities and accelerations.

The expressions of each element of Yb and of all the base parameters were

computed using SymPyBotics, a symbolic computing software that uses as

input the robot DH parameters previously presented. The software is based

on the Newton-Euler algorithm and was developed at University of Coimbra

by Sousa and Cortesao [43], [44].
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2.4 Parameters Identification

The dynamic identification is a problem of estimating the model base pa-

rameters β from recorded data during an excitation trajectory. These data

include joint torques, joint positions, velocities and accelerations. The joint

torques are computed by reading the currents in the joint actuators. Joint

positions and velocities are given by encoders and acceleration is computed

by derivation.

The data were collected online at a rate of 100 Hz during an optimal

excitation trajectory. The computation of the optimal excitation trajectory

is done offline and will be described in the next section. The robot joints are

excited with the optimal trajectory by means of a Python script interfaced

with ROS, as described in Appendix A. The collected data were filtered of-

fline twice with a third order Butterworth low pass filter with 0.1 normalized

cut-off frequency, inverting the time in the second filtering so as to eliminate

the non linear phase shift.

Then, recalling (2.7), the data were organized in the following matrix equa-

tion:

τM = YM × β (2.8)

where τM is equal to:

τM =


τ (t1)
...

τ (tM)

 (2.9)

Vector τ (ti) (6× 1) is the vector of the joint torques estimated by means

of the motor currents, for each time instant ti (i = 1 . . .M , where M is the

number of acquired samples). The observation matrix YM was computed
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likewise by substituting the measured values of q(t), q̇(t), q̈(t) at each time

iteration in the expressions of Yb yielded in SymPyBotics, as:

YM =


Yb(q(t1), q̇(t1), q̈(t1))

...

Yb(q(tM), q̇(tM), q̈(tM))

 (2.10)

Since the torque values are not at the same order of magnitude on each

joint, a weighing matrix containing the inverse of the maximum torques

recorded at each joint was introduced:

W = diag{1/max(τ )i, ..., 1/max(τ )n} (2.11)

Consequently, both sides of (2.8) were premultiplied offline by W as fol-

lows:


W × τ (t1)

...

W × τ (tM)

 =


W × Yb(q(t1), q̇(t1), q̈(t1))

...

W × Yb(q(tM), q̇(tM), q̈(tM))

β (2.12)

The approach chosen to identify the optimal base parameters vector β∗

is the general least squares approach based on the left pseudo inverse of the

observation matrix YM:

β∗ = (YM
TYM )−1YM

T × τM (2.13)

The identified parameters were computed offline and are given in Table

2.2. Note that not all identified parameters are physically consistent: for

instance the positive definiteness of the inertia matrix, which is a property

of physically existing inertia matrices, was not respected. This is due to the

non-consideration of the parameters feasibility, since the minimization of the
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Table 2.2: Identified PSM dynamic base parameters

fv56 0.0087

fv65 0.015

Ke1 2.5958

Ke2 0.6219

Ke4 0.0022

m3 0.0115

lx1 0.2298

l1y + l2z -0.0069

fv1 0.1090

fc1 0.1363

τo1 -0.3259

lx2 -0.0013

ly2 -0.2103

fv2 0.2940

fc2 0.1896

τo2 -0.0107

lx3 -0.0093

ly3 -0.0247

lz3 + lz4 -0.2299

Ia3 0.0132

fv3 -13.5792

fc3 1.7079

τo3 0.4847

lx4 7.74e-4

ly4 + ly5 -2.77e-4

Ia4 -9.86e-5

fv4 0.0015

fc4 0.0029

τo4 -0.0052

lx5 2.9e-5

ly5 5.83e-4

Ia5 -0.0025

fv5 0.0271

fc5 0.0126

lx6 2.59e-4

ly6 1.52e-4

lz6 -0.0014

Ia6 -0.0028

fv6 0.014

fc6 0.004

τo6 0.0079

Ia1 + Lzz1 + Lyy2 + Lzz3 0.0201

Lxx2 − Lyy2 + Lxx3 − Lzz3 + 0.8324 ∗ lz4 0.0385

Lxy2 − Lxz3 -0.0352

Lxz2 − Lxy3 -0.0072

Lyz2 − Lyz3 0.0012

Ia2 + Lzz2 + Lyy3 + 0.8324 ∗ lz4 -6.32e-4

torque prediction error was considered as the only optimization criterion. It

has been shown that the physical inconsistency of the dynamic parameters

gives rise to problems in control [43]. However, works in literature have

proved that torque prediction without accounting for the consistency of the

dynamic parameters is possible [45].
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2.5 Generation of The Optimal Excitation Tra-

jectory

In order to identify the dynamic parameters, the excitation of the robot

in its joint space is required. The excitation trajectory should be sufficiently

rich in harmonics so as to obtain an accurate estimation of the dynamic

parameters. However unmodeled dynamics, such as link elasticity, should

not be excited. The optimal excitation trajectory is chosen among a class of

trajectories which are described by the following equation [46], [47]:

qi(t) =
L∑
l=1

ail
ωf l

sin (ωf lt)−
bil
ωf l

cos (ωf lt) + qi0. (2.14)

The chosen trajectory is thus a finite harmonic series with L harmonics

of the fundamental frequency ωf/2π. The number of harmonics L limits the

frequency content of the excitation trajectory, so as to not excite unmodeled

dynamics. In this study L = 5 and ωf/2π = 0.1 Hz were imposed, as in [40].

The quantities ail, bil and qi0 were tuned so as to minimize the conditioning

number of YM × P , where P is a (68× 68) weighting matrix of the form:

P = diag(
1

||YM,1||
, · · · , 1

||YM,p||
) (2.15)

In (2.15), ||YM,i|| is the norm of the i-th column of YM [40]. This mini-

mization strategy was chosen because the conditioning number of YM ×P is

a measure of the sensitivity of the least squares solution β∗ to perturbations

in YM and in the measured torques τM . The minimization was computed

using the Active-Set algorithm [48] with constraints on maximum and min-

imum joint positions (qmax, qmin) and on maximum and minimum joint

velocities (q̇max, q̇max):
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Table 2.3: PSM joint limits

J1 J2 J3 J4 J5 J6

qmin [deg - m] -60 -45 0.05 -180 -90 -90

qmax [deg - m] 60 45 0.18 180 90 90

q̇min [rad/s - m/s] -2 -2 -0.4 -6 -5 -5

q̇max [rad/s - m/s] 2 2 0.4 6 5 5

Figure 2.7: Optimal Excitation Trajectories of the PSM arm joints.

qmin < q(t) < qmax

q̇min < q(t) < q̇max

(2.16)

The imposed constraints on joint position and velocity are summarized

in Table 2.3. The resulting PSM optimal joint trajectories are shown in Fig.

2.7.
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Chapter 3

Results and Discussion

In this section, the validation of the proposed dynamic model with the

identified parameters is shown and an application of the model is proposed.

The validation is performed by assessing the capability of the model to es-

timate the torques exerted by the joint actuators during a motion of the

robot in free space. Conversely, the proposed model application is to exploit

the dynamic model to estimated forces and torques exerted at the tip of the

slave arm (interaction wrench). This wrench, in a surgical scenario, could

represent the forces and torques exchanged between the slave arm and the

patient tissue.

3.1 Free-space Manipulation - Model Valida-

tion

Ideally, in free-space manipulation, the torques estimated with the dy-

namic model are identical to the ones estimated by means of the motor

currents, which are given by the ROS-Python interface and are used for val-

idation. Consequently, the validation of the proposed model is performed by



evaluating the ability of the model to estimate joint torques during free space

motion.

The validation data were acquired using two different protocols. In the

first protocol, a test trajectory in joint space was imposed automatically us-

ing the DVRK control software. This trajectory was chosen among the same

class of trajectories described by (2.14), but different from the trajectory

used for identification (reported in Fig. 2.7). Conversely, during the second

validation protocol an operator tele-manipulated the PSM from the master

console. During both tests the data for validation were recorded. These data

include, joint torques from motor currents, joint positions and velocities from

encoders. All these signals were acquired using the open-source controller de-

scribed in [34], and were filtered twice with a third order Butterworth LPF,

inverting the time in the second filtering so as to obtain zero-lag (normalized

cutoff frequency 0.1). Accelerations were computed by derivation of veloci-

ties.

The torques estimated by means of the dynamic model are given by:

τ̂ = Yb(q, q̇, q̈)β
∗ (3.1)

Where β∗ is the vector of the identified base parameters and q, q̇, q̈ are

the values of the robot motion which are substituted in Yb. The estimated

torques in both tests were compared with the actual joint torques, estimate

by means of the the motor currents. Results are shown in Fig. 3.1 for the

automatic trajectory and in Fig. 3.2 for the teleoperation.

A numerical and undimensional evaluation metric of the model perfor-

mance is provided by exploiting the normalized root mean square deviation

for each joint:
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Figure 3.1: Estimated and measured joint torques in an automatic trajectory tracking.

NRMSDi =

√
1
N

∑N
n=1[τ̂(tn)− τ(tn)]2i

(τmax − τmin)i
(3.2)

where τ̂(tn)i is the torque computed with the model at time tn for the
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Figure 3.2: Estimated and measured joint torques in a teleoperation scenario.

ith joint. Likewise, τ(tn)i is the torque estimated from the motor currents at

time tn for the ith joint, and N is the number of samples. The performance of

the model in terms of dynamic joint torque estimation in free-space is shown

in Tables 3.1 and 3.2. A better precision is achieved on every joint during
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Table 3.1: PSM torque NRMSD in a teleoperation scenario

joints 1 2 3 4 5 6

NRMSD(%) 5.92 5.78 18.84 10.41 16.84 22.96

Table 3.2: PSM torque NRMSD in an automatic trajectory tracking scenario

joints 1 2 3 4 5 6

NRMSD(%) 2.38 4.80 12.83 6.49 15.29 18.11

a test trajectory (i. e. with no operator) rather than in teleoperation. This

is because the test trajectory is similar to the excitation trajectory used for

identification, meaning that it follows the same parametric equation but with

different parameters. For the test trajectory, the best performance is achieved

on joint 1 (2.38 % NRMSD) while the worst performance is achieved on the

last joint (18.11 % NRMSD). Instead, the teleoperation trajectory shows best

performance on joint 2 (5.78 % NRMSD) while the worst performance is

again on the last joint (22.96 % NRMSD). The evaluation of these estimated

torques using the same criterion as [40] gives similar accuracy.

3.2 External Wrench Estimation - Model Ap-

plication

In the presence of an external interaction wrench at the tip of the PSM,

the total torques at each joint are given by:

τ =M(q)q̈ + C(q, q̇) +Gq

+Keq + Fvq̇ + Fssgn(q̇) + τ0 + Iaq̈ + τext

(3.3)
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Where τext is the effect at the joint level of the external forces and torques.

These external forces and torques in the surgical scenario could represent the

interaction between the surgical tool and the patient. Equation 3.3 can be

rewritten as:

τ = Yb(q, q̇, q̈)β
∗ + τext (3.4)

therefore, recalling Eq. 3.1, it is possible to obtain the torques due to

external interaction by:

τext = τ − τ̂ (3.5)

The wrench w at the end effector was estimated, as in [39], by:

w = (JT )+ ∗ τext (3.6)

where (JT )+ is the Moore-Penrose inverse of the transpose of the robot

Jacobian. The wrench at the end effector estimated with (3.6) was compared

with the forces and torques sensed by an ATI mini 45 force/torque sensor,

previously calibrated by using a look-up table in LabVIEW. The experimen-

tal setup is shown in Fig. 3.3. An operator teleoperates the PSM so as to

make its end effector interact with a pin attached to the force sensor fixed to

ground. At the same time, the data from the ATI mini 45 is acquired through

LabVIEW (Fig. 3.4), and q, q̇, q̈ and τ are acquired via ROS-Python. In the

experiment aiming at measuring torques, they were exerted at an equal dis-

tance from the sensor reference frame and the robot’s reference frame, which

is on the system’s RCM (the z axes of both frames are coaxial). This allows

obtaining consistent torque measures. The wrench estimated with (3.6) was

computed with respect to the robot reference frame by using the spatial Ja-
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Figure 3.3: Interaction force and torque sensing using an ATI mini 45 force/torque sensor.

cobian matrix. In Fig. 3.5 a comparison between the estimated wrench and

the wrench measured with the sensor is shown.

The normalized root mean square deviation of the forces and torques

for each axis can be calculated and evaluated as an index of the prediction

accuracy, and therefore as a performance measure of the method:

NRMSD =

√
1
N

∑N
n=1[F̂ (tn)− F (tn)]2i

(Fmax − Fmin)i
(3.7)

NRMSD =

√
1
N

∑N
n=1[T̂ (tn)− T (tn)]2i

(Tmax − Tmin)i
(3.8)

Where F̂ and T̂ are the external forces/torque estimated with the model,

while F and T are the external forces/torques measured with the ATI sensor.

The NRMSD is presented in Table 3.3. External torques and forces acting at
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Figure 3.4: A screenshot of the acquisition of forces and torques from the ATI mini 45 sensor through

LabVIEW.

Figure 3.5: Comparison of measured and estimated external forces/torques.
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Table 3.3: NRMSD of the force and torque estimation

Fx Fy Fz Tx Ty Tz

NRMSD (%) 8.26 5.96 6.10 8.13 5.71 15.50

the end effector are well estimated except for some jumps due to the sudden

loss of contact between the gripper and the pin. In some cases the torque

around the Z axis is not transmitted faithfully during the torsion of the pin

since it was hard to grip well the pin with the tool. This may have given rise

to less accurate sensed torque ( Fig. 3.5f).

The only work found in the literature which can bring a comparison to

this results is [49]. Here, the performance in the estimation of the forces

achieved is higher (2.29% for Fx, 3.19% for Fy, 3.35 % for Fz). However,

only a small range of external forces have been exerted compared to the ones

typically used in surgical applications, which can be as high as 5 N for pal-

pation and 7 N for suturing [50] [20]). Also, in [49], the external torques of

interactions were not considered in the model evaluation.

In this thesis instead, the exerted forces were in the range used in typical

surgical applications, proving that this method could be used in such scenar-

ios. Note that this comparison between the measured forces/torques and the

estimated ones is highly dependent on the used filter. In fact, all measured

data - wrench obtained from force sensor, position obtained from encoders

and used for the estimation - are noisy.
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Chapter 4

Conclusion

This thesis was developed in collaboration with the Biorobotics Institute

of Scuola Superiore Sant’anna in Pontedera. The aim of this thesis is the

dynamic modeling of the patient side manipulator (PSM) of the da Vinci

Research Kit (dVRK) in order to better estimate the external interaction

wrench exerted on the tip of the robotic tool. The modeling was done by

exploiting a Python package available online which implements the Newton

Euler Algorithm and computes the dynamic model of the robot arm starting

from its DH parameters [43]. The identification of the model’s parameters

was done by means of optimal excitation trajectories. The excitation of the

robot is achieved via Python scripts which interface with the Robot Operat-

ing System. The data from the robot such as joint positions, joint velocities

and joint torques was acquired with the same method. The dynamic model

was validated by evaluating its torque estimation ability at the joint level

and its contact wrench estimation ability at the end effector. The model is

able to estimate the joint dynamic torques during a free space task with an

accuracy that is comparable to the one present in the literature [40]. It is

also shown that the model can be used to estimate the interaction wrench,



in the range of forces of typical robotic procedures [50], [20]. Limitations of

the model include the fact that it doesn’t consider backlash of the tendons

that drive the actuation of the joints, which is difficult to model. Also, the

links are considered as infinitely rigid whereas some link elasticity is always

present. Future work may focus on the implementation of these additional

features in the proposed dynamic model. The python package in [43] used

in this work to compute the dynamic model of the PSM could be easily used

to model any other serial robot. Moreover, the method of robot control and

data acquisition using python scripts interfacing with ROS can be used for

any other project concerning the dVRK. Finally, this work provides only

an estimation of the interaction wrench at the tip of the end effector. The

obtained wrench estimation could be used as input for the reflection of the

wrench to the MTM arm in a force reflection teleoperation scenario.

44



Bibliography

[1] R. H. Taylor, A. Menciassi, G. Fichtinger, P. Fiorini, and P. Dario, “Med-

ical robotics and computer-integrated surgery,” in Springer handbook of

robotics, pp. 1657–1684, Springer, 2016.

[2] Y. S. Kwoh, J. Hou, E. A. Jonckheere, and S. Hayati, “A robot with

improved absolute positioning accuracy for ct guided stereotactic brain

surgery,” IEEE Transactions on Biomedical Engineering, vol. 35, no. 2,

pp. 153–160, 1988.

[3] G. Deacon, A. Harwood, J. Holdback, D. Maiwand, M. Pearce, I. Reid,

M. Street, and J. Taylor, “The pathfinder image-guided surgical robot,”

Proceedings of the Institution of Mechanical Engineers, Part H: Journal

of Engineering in Medicine, vol. 224, no. 5, pp. 691–713, 2010.

[4] G. R. Sutherland, S. Wolfsberger, S. Lama, and K. Zarei-nia, “The evo-

lution of neuroarm,” Neurosurgery, vol. 72, no. suppl_1, pp. A27–A32,

2013.

[5] J. R. Joseph, B. W. Smith, X. Liu, and P. Park, “Current applications

of robotics in spine surgery: a systematic review of the literature,” Neu-

rosurgical focus, vol. 42, no. 5, p. E2, 2017.

45



[6] R. D. Howe and Y. Matsuoka, “Robotics for surgery,” Annual review of

biomedical engineering, vol. 1, no. 1, pp. 211–240, 1999.

[7] W. L. Bargar, A. Bauer, and M. Börner, “Primary and revision total hip

replacement using the robodoc (r) system.,” Clinical Orthopaedics and

Related Research (1976-2007), vol. 354, pp. 82–91, 1998.

[8] A. Takács, D. Á. Nagy, I. Rudas, and T. Haidegger, “Origins of sur-

gical robotics: From space to the operating room,” Acta Polytechnica

Hungarica, vol. 13, no. 1, pp. 13–30, 2016.

[9] R. Goertz, J. Burnett, and F. Bevilacqua, “Servos for remote manipula-

tion,” tech. rep., Argonne National Lab. Argonne, IL (US), 1953.

[10] L. Cragg and H. Hu, “Application of mobile agents to robust teleopera-

tion of internet robots in nuclear decommissioning,” in Industrial Tech-

nology, 2003 IEEE International Conference on, vol. 2, pp. 1214–1219,

IEEE, 2003.

[11] N. C. Mitsou, S. V. Velanas, and C. S. Tzafestas, “Visuo-haptic interface

for teleoperation of mobile robot exploration tasks,” in Robot and Hu-

man Interactive Communication, 2006. ROMAN 2006. The 15th IEEE

International Symposium on, pp. 157–163, IEEE, 2006.

[12] A. D. Alexander, “Impacts of telemation on modern society,” in On

Theory and Practice of Robots and Manipulators, pp. 121–136, Springer,

1972.

[13] S. DiMaio, M. Hanuschik, and U. Kreaden, “The da vinci surgical sys-

tem,” in Surgical Robotics, pp. 199–217, Springer, 2011.

46



[14] S. Lang, S. Mattheis, P. Hasskamp, G. Lawson, C. Güldner, M. Man-

dapathil, P. Schuler, T. Hoffmann, M. Scheithauer, and M. Remacle, “A

european multicenter study evaluating the flex robotic system in tran-

soral robotic surgery,” The Laryngoscope, vol. 127, no. 2, pp. 391–395,

2017.

[15] G. S. Guthart and J. K. Salisbury, “The intuitive/sup tm/telesurgery

system: overview and application,” in Proceedings 2000 ICRA. Millen-

nium Conference. IEEE International Conference on Robotics and Au-

tomation. Symposia Proceedings (Cat. No. 00CH37065), vol. 1, pp. 618–

621, IEEE, 2000.

[16] J. Marescaux and F. Rubino, “The zeus robotic system: experimental

and clinical applications,” Surgical Clinics, vol. 83, no. 6, pp. 1305–1315,

2003.

[17] A. M. Okamura, “Methods for haptic feedback in teleoperated robot-

assisted surgery,” Industrial Robot: An International Journal, vol. 31,

no. 6, pp. 499–508, 2004.

[18] M. A. Srinivasan and C. Basdogan, “Haptics in virtual environments:

Taxonomy, research status, and challenges,” Computers & Graphics,

vol. 21, no. 4, pp. 393–404, 1997.

[19] N. Enayati, E. De Momi, and G. Ferrigno, “Haptics in robot-assisted

surgery: Challenges and benefits,” IEEE reviews in biomedical engi-

neering, vol. 9, pp. 49–65, 2016.

[20] M. Kitagawa, A. M. Okamura, B. T. Bethea, V. L. Gott, and W. A.

Baumgartner, “Analysis of suture manipulation forces for teleopera-

tion with force feedback,” in International Conference on Medical Image

47



Computing and Computer-Assisted Intervention, pp. 155–162, Springer,

2002.

[21] C. E. Reiley, T. Akinbiyi, D. Burschka, D. C. Chang, A. M. Okamura,

and D. D. Yuh, “Effects of visual force feedback on robot-assisted surgical

task performance,” The Journal of thoracic and cardiovascular surgery,

vol. 135, no. 1, pp. 196–202, 2008.

[22] M. Mahvash, J. Gwilliam, R. Agarwal, B. Vagvolgyi, L.-M. Su, D. D.

Yuh, and A. M. Okamura, “Force-feedback surgical teleoperator: Con-

troller design and palpation experiments,” in Haptic Interfaces for Vir-

tual Environment and Teleoperator Systems, International Symposium

on (HAPTICS), (Reno, NE), pp. 465–471, IEEE, Mar. 2008.

[23] C. R. Wagner and R. D. Howe, “Force feedback benefit depends on

experience in multiple degree of freedom robotic surgery task,” IEEE

Transactions on Robotics, vol. 23, no. 6, pp. 1235–1240, 2007.

[24] D. A. Lawrence, “Stability and transparency in bilateral teleoperation,”

IEEE transactions on robotics and automation, vol. 9, no. 5, pp. 624–

637, 1993.

[25] A. M. Okamura, L. N. Verner, T. Yamamoto, J. C. Gwilliam, and P. G.

Griffiths, “Force feedback and sensory substitution for robot-assisted

surgery,” in Surgical Robotics, pp. 419–448, Springer, 2011.

[26] O. Mohareri, C. Schneider, and S. Salcudean, “Bimanual telerobotic

surgery with asymmetric force feedback: a davinci® surgical system

implementation,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 4272–4277, 2014.

48



[27] G. A. Fontanelli, L. R. Buonocore, F. Ficuciello, L. Villani, and B. Si-

ciliano, “A novel force sensing integrated into the trocar for minimally

invasive robotic surgery,” in IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS), pp. 131–136, 2017.

[28] M. Tavakoli, R. V. Patel, and M. Moallem, “A force reflective master-

slave system for minimally invasive surgery,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), vol. 4, pp. 3077–

3082, IEEE, 2003.

[29] A. Talasaz, A. L. Trejos, and R. V. Patel, “Effect of force feedback on

performance of robotics-assisted suturing,” in 2012 4th IEEE RAS &

EMBS International Conference on Biomedical Robotics and Biomecha-

tronics (BioRob), pp. 823–828, IEEE, 2012.

[30] M. O. Culjat, C.-H. King, M. L. Franco, C. E. Lewis, J. W. Bis-

ley, E. P. Dutson, and W. S. Grundfest, “A tactile feedback system

for robotic surgery,” in Engineering in Medicine and Biology Society

(EMBS), pp. 1930–1934, IEEE, 2008.

[31] U. Seibold, B. Kubler, and G. Hirzinger, “Prototype of instrument for

minimally invasive surgery with 6-axis force sensing capability,” in Inter-

national Conference on Robotics and Automation (ICRA), pp. 496–501,

IEEE, 2005.

[32] S. G. Alletti, C. Rossitto, S. Cianci, E. Perrone, S. Pizzacalla, G. Mon-

terossi, G. Vizzielli, S. Gidaro, and G. Scambia, “The senhance™ surgical

robotic system (“senhance”) for total hysterectomy in obese patients: a

pilot study,” Journal of robotic surgery, vol. 12, no. 2, pp. 229–234, 2018.

49



[33] “davinci research kit ros stack.” Available at: "https://github.com/

jhu-dvrk/dvrk-ros", 2018.

[34] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and S. P.

DiMaio, “An open-source research kit for the da vinci surgical system,”

in International Conference on Robotics and Automation (ICRA), (Hong

Kong, China), pp. 6434–6439, 2014.

[35] “The da vinci research kit wiki.” Available: "https://rsearch.

intusurg.com/index.php/Main_Page", 2018.

[36] A. Kapoor, A. Deguet, and P. Kazanzides, “Software components and

frameworks for medical robot control,” in IEEE International Confer-

ence on Robotics and Automation,ICRA, pp. 3813–3818, 2006.

[37] Z. Chen, A. Deguet, R. H. Taylor, and P. Kazanzides, “Software archi-

tecture of the da vinci research kit,” in Robotic Computing (IRC), IEEE

International Conference on, pp. 180–187, IEEE, 2017.

[38] “User guide: The da vinci reaserch kit,” Intuitive Surgical, Inc., 2014.

[39] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, “Robotics: mod-

elling, planning and control,” Springer, 2009.

[40] G. Fontanelli, F. Ficuciello, L. Villani, and B. Siciliano, “Modelling and

identification of the da vinci research kit robotic arms,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2017.

[41] M. Gautier, “Numerical calculation of the base inertial parameters of

robots,” Journal of Field Robotics, vol. 8, no. 4, pp. 485–506, 1991.

50



[42] M. Gautier and W. Khalil, “Direct calculation of minimum set of in-

ertial parameters of serial robots,” IEEE Transactions on robotics and

Automation, vol. 6, no. 3, pp. 368–373, 1990.

[43] C. D. Sousa and R. Cortesão, “Physical feasibility of robot base iner-

tial parameter identification: A linear matrix inequality approach,” The

International Journal of Robotics Research, vol. 33, no. 6, pp. 931–944,

2014.

[44] C. D. Sousa and R. Cortesao, “Sagerobotics: open source framework

for symbolic computation of robot models,” in Proceedings of the 27th

Annual ACM Symposium on Applied Computing, pp. 262–267, ACM,

2012.

[45] G. Calafiore, M. Indri, and B. Bona, “Robot dynamic calibration: Op-

timal excitation trajectories and experimental parameter estimation,”

Journal of robotic systems, vol. 18, no. 2, pp. 55–68, 2001.

[46] J. Swevers, C. Ganseman, J. De Schutter, and H. Van Brussel, “Ex-

perimental robot identification using optimised periodic trajectories,”

Mechanical Systems and Signal Processing, vol. 10, no. 5, pp. 561–577,

1996.

[47] J. Swevers, C. Ganseman, D. B. Tukel, J. De Schutter, and H. Van Brus-

sel, “Optimal robot excitation and identification,” IEEE transactions on

robotics and automation, vol. 13, no. 5, pp. 730–740, 1997.

[48] P. E. Gill, W. Murray, M. H. Wright, et al., “Numerical linear algebra

and optimization,” vol. 1, Addison-Wesley Redwood City, CA, 1991.

[49] H. Sang, J. Yun, R. Monfaredi, E. Wilson, H. Fooladi, and K. Cleary,

“External force estimation and implementation in robotically assisted

51



52

minimally invasive surgery,” The International Journal of Medical

Robotics and Computer Assisted Surgery, vol. 13, no. 2, p. e1824, 2017.

[50] A. L. Trejos, J. Jayender, M. Perri, M. D. Naish, R. V. Patel, and

R. Malthaner, “Robot-assisted tactile sensing for minimally invasive

tumor localization,” The International Journal of Robotics Research,

vol. 28, no. 9, pp. 1118–1133, 2009.



Appendix A

Python and Matlab Scripts

A.1 Robot Excitation and Data Collection

Here follows the Python script used in the robot excitation experiment.

While the robot is excited in its joints according to the previously computed

optimal excitation trajectory, the joint positions, velocities and torques are

acquired. The data are used later offline to perform the identification of the

dynamic parameters.

# import the necessary libraries:

import rospy # provides Python to ROS interface

import dvrk # dVRK software based on cisst/SAW packages

import numpy # numerical calculus package

import scipy.io # to save and open .mat files for offline analysis

# load the previously computed optimal trajectory:

data = scipy.io.loadmat('Excitation_trajectory.mat')
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q = data['traj_opt']

# define the slave arm to control:

slave1 = dvrk.psm('PSM1')

# initialise position velocity and torque matrices:

current_joint_position = numpy.zeros(q.shape)

current_joint_velocity = numpy.zeros(q.shape)

current_joint_effort = numpy.zeros(q.shape)

# define frequency of reading and writing at 100 Hz:

rate = 100

r = rospy.Rate(rate)

# move arm to initial position before acquiring data:

slave1.move_joint(q[0])

# excite the robot and simultaneously collect data at 100 Hz

for i in range(len(q)):

slave1.move_joint(q[i], interpolate = False)

current_joint_position[i] = slave1.get_current_joint_position()

current_joint_velocity[i] = slave1.get_current_joint_velocity()
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current_joint_effort[i] = slave1.get_current_joint_effort()

r.sleep() # pause so as to have the selected frequency

# save data in a .mat file

Output = {'q' : joint_pos , 'dq' : joint_vel, 'tau' : joint_eff}

scipy.io.savemat('Output_ident.mat',Output)

A.2 Force Comparison Experiment

This code was executed during the experiments with the force sensor.

While the PSM was manipulating, the data relative to joint positions, veloc-

ities, torques and the robot Jacobian were acquired, so as to compute offline

the estimation of the external wrench.

# import the necessary libraries:

import rospy

import dvrk

import numpy

import scipy.io

# define the robot arm

slave1 = dvrk.psm('PSM1')

# define the frequency and the duration of the experiment
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rate = 100

secs = 90

samples = rate*secs

r = rospy.Rate(rate)

# define position, velocity, torque and Jacobian matrices

joint_position = numpy.zeros([samples, 7])

joint_velocity = numpy.zeros([samples, 7])

joint_effort = numpy.zeros([samples, 7])

Jacob_body = numpy.zeros([samples, 6, 6 ])

Jacob_space = numpy.zeros([samples, 6, 6 ])

# acquire data (while manipulating)

for i in range(samples):

print('OK!')

joint_position[i] = slave1.get_current_joint_position()

joint_velocity[i] = slave1.get_current_joint_velocity()

joint_effort[i] = slave1.get_current_joint_effort()

Jacob_body[i] = slave1.get_jacobian_body()

Jacob_space[i] = slave1.get_jacobian_spatial()

r.sleep()

print('done!')

# save data in a .mat file
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OutData1 = {'Q' : joint_pos , 'DQ' : joint_vel, 'Tau' : joint_effort}

OutData2 = {'Jbody' : Jacob_body, 'J_space' : Jacob_spatial}

scipy.io.savemat('F_Joints.mat', OutData1)

scipy.io.savemat('F_Jacob.mat', OutData2)
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Appendix B

Dynamic Modeling

The development of the dynamic model of a robot manipulator plays an

important role in the design of control algorithms, in the simulation of the

robot motion, and in the design of robot prototypes [39]. The objective of

dynamic modeling is to provide the relationship between forces and torques

(τ ) acting on the robot joints and the motion of the joints (q, q̇, q̈).

One method of computing the Dynamic model is through the Lagrange

formulation which comprises the differentiation of the system Lagrangian.

The Lagrangian (L) of a system is the difference between the system’s kinetic

(Ek) and potential (Ep) energy:

L = Ek − Ep (B.1)

The Lagrange formulation of the dynamic model relates the Lagrangian

to the joint torques (τ ):

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= τ (B.2)

where q and q̇ denote the robot joint positions and velocities. The compu-

tation of the system kinetic and potential energy for different types of robotic
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systems can be found in more detailed robotics textbooks [39]. Another well

known method to compute a robot dynamic model is the Newton Euler Al-

gorithm (NEA). Differently from the Lagrange formulation of the dynamic

model, the NEA is a recursive method, meaning that it entails a forward

recursion and a backward recursion. The forward recursion is relative to

the propagation of velocities and accelerations from base of the manipulator

to tip, while the backward recursion regards the propagation of forces and

torques in the structure, from the end effector to the base. As the name

suggests, it is based on the dynamic equilibrium equations, that is the New-

ton equation for linear equilibrium, and the Euler equations for rotational

equilibrium. Considering a generic link i let q, q̇, q̈ be the joint positions

velocities and accelerations, let µ and f be the torques and forces exchanged

at the boundaries of each link. Ri−1
i is the rotation matrix from frame i-1 to

frame i and finally τ i is the torque acting on joint i. The following equations

describe the Newton Euler algorithm:

ωi = (Ri−1
i )T (ωi−1 + q̇iz0) (B.3)

ω̇i = (Ri−1
i )T (ω̇i−1 + q̈iz0 + q̇iωi−1 × z0) (B.4)

ai = (Ri−1
i )Tai−1 + ω̇i × ri−1,i + ωi × (ωi × ri−1,i) (B.5)

aCi = ai + ω̇i × ri,Ci + ωi × (ωi × ri,Ci) (B.6)

f i = R
i
i+1f i+1 +miaCi (B.7)



61

µi = −f i×(ri−1,i+ri,Ci)+R
i
i+1µi+1+Ri

i+1f i+1×ri,Ci+I iω̇i+ωi×(I iωi)

(B.8)

τi = µ
T
i (R

i−1
i )Tz0 + Fviq̇i + Fsisgn(q̇i) (B.9)

where: ωi and ω̇i are the angular velocities and accelerations of the links,

z0 is the axis of rotation of the base frame, ri−1,i is the distance between the

reference frame of link i-1 and link i (according to the Denavit-Hartenberg

convention), ri,Ci is the distance between the center of mass of the link i and

the reference frame of link i, mi and I i are respectively the mass and the

inertia tensor of the i-th link, ai is the acceleration of the origin of reference

frame i and aCi
is the acceleration of the center of mass of link i. The

workflow of the algorithm is schematized in schematized in Fig. (B.1). For

given joint positions, velocities and acceleration the recursive algorithm is

carried out in the following two phases: 1) The forward recursion phase,

where, given the initial conditions ω0, a0−g and ω̇0 (which are respectively

the angular velocity, the linear acceleration and the angulare acceleration of

the base link) equations (B.3), (B.4), (B.5), and (B.6) are used for i = 1 . . . n

to compute ωi, ω̇i, ai and aCi
. 2) The backward recursion phase, where,

with known terminal conditions fn+1 and µn+1, equations (B.7) and (B.8)

are used for i = 1 . . . n to compute f i, µi and equation (B.9) to compute τi.

Since the NEA provides a computationally efficient algorithm, it has been

used throughout this work.
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Figure B.1: Schematic of the Newton Euler Alogrithm.


