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Abstract

Postural assessment is a fundamental aspect for preventing long-term
musculoskeletal disorders (MSDs) due to fatiguing jobs. Operative den-
tistry also belongs to this category and we developed a Computer Vision
approach to automatically analyze the dentist posture during the opera-
tions,so obtaining an evaluation of MSD risks, performed accordingly to
well established assessment criteria such as RULA (Rapid Upper Limb
Assessment). Three different visualization set-ups were analyzed and
compared from a postural point of view. The considered methods were:
naked eyes, medical loupes and surgical microscope. The results show
a significantly better assessment when the microscope is used and they
validate our approach both as a feasible and effective method for postu-
ral assessment in fatiguing jobs and a continuous monitoring method of
the job activity. The whole adopted procedure follows a non-invasive ap-
proach based on Augmented Reality markers tracked from a distant cam-
era. This methodology can be extended for monitoring different working
activities and providing an accurate postural evaluation in order to pre-
vent MSDs.
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Sommario

La valutazione della postura ¢ un aspetto fondamentale per la preven-
zione di disturbi muscolo-scheletrici (DMS) causati da attivita faticose.
Tra queste occupa un posto anche la chirurgia orale: nel nostro lavoro ab-
biamo sviluppato un metodo basato sulle tecniche della Computer Vision
che permette di analizzare la postura del dentista durante le operazioni,
in modo da ottenere una valutazione dei rischi di DMS; quest’ultima es-
eguita sulla base di metodi di valutazione consolidati,come ad esempio
RULA. Tre diverse tecniche di visualizzazione sono state analizzate e
messe a confronto, ovvero: occhio nudo, occhialetti ingrandenti e micro-
scopio chirurgico. I risultati mostrano una valutazione decisamente piu
positiva per le operazioni svolte con il microscopio e convalidano il nos-
tro metodo come applicabile ed efficace per ’osservazione e la valutazione
posturale durante attivita faticose. La procedura segue un approccio non
invasivo basato sull’utilizzo di markers per la realta aumentata tracciati
da una telecamera. Questa metodologia puo essere estesa al monitoraggio

di altre attivita con lo scopo di valutare la postura e prevenire eventuali
DMS.
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Introduction

In this written work we present a system for body posture analysis meant
for monitoring the upper body posture of an operating dentist. The
method used for data acquisition is based onto the operator position 3D
reconstruction, particularly focusing on the upper body. The method im-
plemented is completely non-invasive as it is based on a markers-equipped
t-shirt to be worn by the subject and on two cameras. The goal of this
system is that of obtaining a parametric 3D description of the monitored
body by analyzing successive frames containing the image of the planar
markers attached to the t-shirt and assessing the quality of the postures

assumed during the operations.

The procedure presented in this thesis was requested and developed
for the San Paolo Hospital of Milan, in collaboration with doctor Alberto

Pispero, who’s body posture was evaluated throughout the operations.

We collected the data for 60 surgical operations regarding the removal
of 38 and 48 tooth, also known as wisdom tooth. The data was then

analyzed following an ergonomics assessment method.

The research of a mathematical model for a real object in three dimen-
sions from one or more images is a well known problem in the computer

vision field and we want to present a valid approach which allows us to



reconstruct a human body posture with few requirements in the image
acquisition procedure.

The block diagram shown in figure 1.1 schematizes the different steps
we followed for collecting and elaborating the data in order to achieve

3D reconstruction and the consequent posture assessment.
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Figure 1.1: Block diagram for the posture evalutation procedure

This written work is structured in the following way:

In the second chapter the preliminary theoretical background is pre-
sented. In particular we introduce the mathematical tools and algorithms
necessary to describe the basic elements of projection geometry, camera
modeling and camera calibrations adopted in computer visions in order

to estimate objects position in space.

In the third chapter we discuss about body posture assessment method-
ologies. We introduce some of the key elements necessary for evaluating
the quality of a body posture and the postural aspects that can increment
the risk for musculoskeletal disorders. Besides, in this chapter two of the
most known postural assessment criteria are presented and described.
In particular we discuss about Rapid Upper Limb Assessment (RULA),
adopted in our application, and Novel Ergonomic Postural Assessment

Method (NERPA).

In the fourth chapter we present the developed model for body posture es-

timation, the necessary equipment and setup and the methodology used
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in our data collection and analysis. In particular, in the first part we
show the experimental setup and the arrangement of the operating room
with a short description of the hardware used, in the second one we de-
scribe the training phase in which "teach" our model how to detect the
markers. Then the third part is about the detection phase, with a the
description of the software detection procedure. The fourth and final

part is about the analysis phase.

In the fifth chapter we present the obtained experimental result pro-
cessed through our analysis model. These results have been achieved
from a sample of 60 dental operations: 20 performed with the aid of
a microscope, 20 performed with the aid of dental loupes and 20 with-
out using any magnification tool, just the naked eye. We consider and
compare all the motion history images computed and the relevant angu-
lar values collected in order to contrast the different operating methods
examined in our study. Finally, we use the elaborated data in order to
perform an average postural assessment of the three approaches following
RULA algorithm.

In the sixth and final chapter of the thesis we present the conclusions

of our study.






Theoretical Background

This chapter will be devoted to present the mathematical tools and the
basic algorithms necessary to contextualize this thesis project within the

interdisciplinary field of Computer Vision.

2.1 Camera model

The camera is the instrument through which a 3D object in real space
can be represented as a 2D object in the plane defined as image plane.
The points belonging to the transformed 2D object are the projections
of the 3D points forming the original object. The final result of this
projection operation strongly depends on the technical characteristics of
the employed camera. First of all, it depends on the camera position
and orientation in space. Besides, the projection is affected also by the
focal length of the adopted lenses, which is a measure of how much do
the lenses converge or diverge the rays they collect [1].

The 2D representation in the image plane is the result of the inter-
sections between the image plane itself and the lines connecting the 3D
points of the original object with the optical center of the camera which

coincides with the pinhole camera aperture.



The straight line perpendicular to the image plane intersecting the
optical center is labeled as the principal axis of the camera and the
intersection point between the principal axis and the image plane is the
principal point p = (ps,py). The focal lenght f, i.e. the distance from
the lens at which the observed object is perfectly visible and undistorted,
corresponds to the distance between the optical center and the principal
point in the pinhole camera model.

The model described so far, i.e. the pinhole camera model, makes it

possible to map every point in the 3D real space X = [X,Y, Z]T to the

fX Y

point in the image plane associated to coordinates [*2-, 7=, f]*, as it can

be seen in figure 2.1.
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Figure 2.1: Pinhole camera model

This kind of projection is labeled as a central projection. Central
projections are the projections from a plane to another where the original
point and the projected one lie on the same straight line originated from
a point which does not belong to either plane. The above mapping from
a 3D point to its 2D image is suitable to be expressed in homogeneous
coordinates which increase the dimensions of the points by one but also
allow a compact representation of sequences of transformations. For

instance, the above tranformation can be represented in the following

way:
X X fOOOX
Y—>fY—OfOOY (2.1)
VA B A '
A 0010
1 1

An alternative and more compact representation of the previous pro-
jection matrix is P = diag(f, f,1)[I|0], where I represents the 3x3 iden-
tity matrix and 0 represents the fourth all-zeros column of the projection
matrix. Given X = [X,Y, Z,1]T and x = [f X, fY, Z]T, it is now possibe
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to rewrite 2.1 as:

x = PX (2.2)

The observations made so far rely on the hypothesis that the central
point p = (p,,p,) coincides with the origin of the image plane but it’s
more customary to set the origin of the image plane in one of its edge
points. If this is the case, the image plane coordinates for a 3D point
X are given by [f7X + Das f7y + py, f]. Hence the projection equation in

homogeneous coordinates will now be the following:

X fX+7Z f 0 0 X
% Pz Pz v
= | fY+2Zp, | =]0 f p, O (2.3)
Z Z
Z 00 1 0
1 1
It is now possible to define:
f 0 p 0
K=0 f p, 0 (2.4)
00 1 0

Matrix 2.4 is defined as the calibration matriz of the camera. Hence,

equation 2.3 can in the following more compact form:

x = KX (2.5)
Y¥eam
L == —'—
Yo pe
y Xecam
|
X X

Figure 2.2: Image plane. Origin is set in bottom left corner point



2.1.1 Camera rotations and translations

All the projections seen so far project points from what is defined as the
camera space, a reference system that is totally integral with the camera,
to the image plane. In order to make the camera model more realistic, it
is necessary to take into account the possibility that the camera center
might be translated with respect to the origin of the reference system
and that the camera z-axis coincides with that of the reference system in
use. In other words, for the sake of generality, it is preferred to project
points from world space to the image plan. Therefore, we need to find

the mapping between the two spaces.

‘ Yeam

R, t
%

X

Figure 2.3: Transformation between camera and world space

In general, it is possible to move from one space to the other by means
of a rotation and a translation, as figure 2.3 shows. Hence, given X and
Xecam, respectively representing the homogeneous coordinates array of a

point in the world space and in the camera space, we can write:

Xcam = R(X — C) (2.6)

where C is the coordinates array of the camera center and R is the 3x3
rotation matrix of the camera, both computed with respect to the world
space reference system. In homogeneous coordinates and representing

the transformation matrix in blocks this becomes:
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R -RC

o X (2.7)

Xcam = [

_|rR -rC
1o 1

= N

As a consequence of this generalization, the projection matrix which

maps points from world space to the image plane is now given by:

P = K[R|t] (2.8)

where [R|t] is a 3x4 roto-translational matrix having t = [-RC, 1]

as its fourth column.

Matrix P has nine degrees of freedom: three of them belong to calibra-
tion matrix K, other three correspond to the non-zero values of rotation
matrix R and the last three are the translation coordinates in C. The
three values belonging to matrix K are labeled as intrinsic parameters,
as they are associated with specific characteristics of the camera in use.
The remaining degrees of freedom are the extrinsic parametes and they
are associated with the camera reference system roto-translation with

respect to world space.

2.1.2 CMOS model

The pinhole camera model discussed so far relies on the hypothesis that
the different reference systems share the same sizes for their unity, i.e.
the scale factor from one to another is always equal to one. However,
this is not always the case: it often happens that cameras resize objects
with respect to world space dimensions, according to the size of their
pixels. For instance, this happens with both old Charge Coupled Device
(CCD) and Complementary Metal-Oxide Semiconductors (CMOS) image
sensors. These sensors differ not only for their ways of converting light
into electrons but also for the scale factors adopted for the images. In
particular, CCD sensors may be characterized by not perfectly squared
pixels and this is why we employ a CMOS model.

Given these considerations and labeled as m, and m, the 2D di-
mensions of a pixel in this model, camera calibration matrix K can be

rewritten in the following way:
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Ay 0 Zo 0
K=|0 a, v 0 (2.9)
0 0 1 0

where a, = m, f, ay = my f, o = myp, and yo = myp,.

Since we consider square pixels, m, = m,; therefore the number of
degrees of freedom of the projection matrix P = K[R|t] is now ten.
Besides,for the sake of generality, we introduce a skew factor s between
axes z and y which is another camera intrinsic parameter that modifies

calibration matrix in the following way [2]:

a, S xo O
K=1[0 a, yo 0 (2.10)
0O 0 1 0

This brings the number of degrees of freedom of the calibration ma-
trix to eleven. Anyways, in many applications, the skew factor is null,
suggesting a perfect perpendicularity between the axes in camera space

and bringing back the number of degrees of freedom to ten.

2.2 Projections

Projections are an extremely important mathematical tool which play
a key role in computer vision and graphics. As we have already out-
lined before, a projection is the operation through which it is possible to
represent a 3D object onto a 2D surface, a screen in most of the cases.
There exists a plethora of different kind of projections and some of
them will be now presented in order to prepare the reader to the image

analysis operations performed in this project [3] [4].

2.2.1 Central Projections

All the transformations introduced so far belong to the category of central
projections. These are projections in which the original point and its
image lie on parallel planes and on a straight line that starts from a point
that does not lie on either plane. The bundle of all the projecting rays
has then a point in common, i.e. the center of projection. The projected
image lies onto the image plane and it is the result of the intersections

between the projecting rays and the plane itself. As it is clear, the



Chapter 2. Theoretical Background 11

camera model discussed before strongly relies on central projections: in
particular, with a good approximation, we can treat the camera center
as the center of projection, considering that all the rays cross the center
of its lens.

In mathematical terms a central projection is a linear transformation
from a 3D space to a 2D space, therefore represented by a 3x4 matrix
(when using homogeneous coordinates). A generic 3D point in homoge-
neous coordinates X = [X,Y, Z, W] is mapped onto a 2D point having

homogeneous coordinates x = [z, y, w]T:

X
o %
- P 9211
Y p (2.11)
w
W

From a visual point of view, because of the properties of central pro-
jections, all the 3D points sharing the same X, Y and Z values but with
different W values are mapped onto the same 2D image point. In fact,
all of these points lie on the same straight line that connects the center
of projection and the image point itself.

Since central projections flatten the image and reduce its dimension,
projection matrix P is characterized by a 3x3 non-null block and by an
all zeros fourth column. Besides, if we set the origin [0,0,0,1]7 as the

center of projection, the 3x3 block will become the 3x3 identity matrix.

-\\(xa Yo 129 )

(a,b,c)%"

Figure 2.4: Example of a central projection (in Cartesian coordinates)

It may happen that the object to be projected is bidimensional. In
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this case all of its points belong to a plane, their homogeneous coordinates
can be represented with a 3D array (instead of the usual 4D one) and,
as a consequence, projection matrix becomes a 3x3 matrix and 2.12 can

be rewritten in the following simpler form:

T X
—H| VY (2.12)
w w

This kind of transformation takes the name of projective transforma-

tion.

2.2.2 Projective Transformations

A projective planar transformation maps a 3D homogeneous coordinates
array onto another one. Thus it can be represented as a 3x3 non-singular

matrix:

xll hii hia has Ty
95/2 = |ho1 haa hos T2 (2-13)
' hg1 hsx has] | 3

In a more compact form, we can write: x> = Hx. Matrix H is a
homogeneous matrix, if it gets multiplied by a non-null scale factor, the
transformation performed is not altered; this means that this kind of
matrix is defined up to a multiplicative non-null constant.Therefore this
matrix has eight degrees of freedom, given by the eight independent ratios
between the couples of its nine elements.

A projective transformation preserves collinearity and incidence but
it does not preserve parallelism, length and angle. However, projective
transformations can be further classified. Some of these transformations,

which are of key interest for our project, will be analyzed below.

2.2.2.1 Isometries

Isometries are transformations between metric spaces, i.e. spaces where
a distance measurement has been defined. They owe their name to their
main and most important feature, which is that of preserving distances.

For instance, an Euclidean plane isometry (adopting the Euclidean

distance) maps points from a subspace of R? to a different one preserving
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their relative distances [4].
This kind of transformation can be represented as in the following

matrix form:

x ecos) —sinb t, 1
xh | = |esind cost t, To (2.14)
1 0 0 1 1

where € is a parameter which can be equal to +1 or -1. If e = 1 the
isometry preserves orientation and is labeled as a Euclidean isometry. If
instead € = —1, it inverts the orientation and is labeled as an Euclidean
reflected transformation.

The above transformation has three degrees of freedom, as it can be
described with only three parameters: one for the rotation () and two for
the translation (¢, and ¢,). This kind of isometry is suitable for modeling

rigid objects displacements.

2.2.2.2 Similarities

Two geometrical objects are called similar if one can be obtained from the
other by uniformly scaling (enlarging or reducing), possibly with addi-
tional translation, rotation and reflection. This means that either object
can be rescaled, repositioned, and reflected, so as to coincide precisely
with the other object. If two objects are similar, each is congruent to the
result of a particular uniform scaling of the other.

A similarity (also called a similarity transformation or similitude) of a
Euclidean space is a bijection from the space onto itself that multiplies all
distances by the same positive real number. This kind of transformation

can be represented as in the following matrix form:

x) scosl —ssinf t, 1
zh | = |ssind  scosf t, To (2.15)
1 0 0 1 1

or as in the following more compacted one:

sR t

o (2.16)

where s is the isotropic scaling value. Similarities preserve shapes,

angles, mutual position of the lines and the ration between lengths but
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not the absolute lengths. This kind of transformation has four degrees of
freedom, one more with respect to isometries due to the presence of the

scale factor.

2.2.2.3 Afline transformations

Affine transformations are a subset projective transformations that pre-
serve points, straight lines, and planes. Sets of parallel lines remain
parallel after an affine transformation.

Affine transformations are typically used to correct for geometric dis-
tortions or deformations that occur with non-ideal camera angles.

They can be represented as in the following matrix form:

Ty ain a2 ty| | T
zy | = [an a22 t, Tg (2.17)
1 0 0 1 1

or as in the following more compacted one:

At

NE (2.18)

= Hjr =

An affine transformation has six degrees of freedom

2.2.3 Direct Linear Transformation (DLT) algorithm

A main issue in computer vision is that of estimating the geometric trans-
formation between two images, given the points in the image plane of the
camera. Given the corresponding sets of points x; and x}, the aim is that
of estimating the transform to be applied to x; in order to obtain .
These points belong to two different planes, hence they are represented
by two 3D homogeneous coordinates array. As a consequence, the trans-
formation homography is a 3x3 matrix defined up to a multiplicative
scale factor. The total number of degrees of freedom is then eight but,
since the third element of both points coordinates array is equal to one,
we are interested in computing what maps the first two coordinates of
the arrays, thus reducing the degrees of freedom of the problem. The im-
age points to be analyzed are usually affected by noise. For this reason
several points are used for performing the estimation.

In order to perform the estimation, we implemented the Direct Linear
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Transformation (DLT) algorithm. Its main steps are described in the

following section.

2.2.3.1 The Direct Linear Transformation algorithm

The matrix equation 2 = Hz; can be be rewritten in the cross product
form «; x Hx; = 0. If we label the transposed j-th row of the H matrix

as h?, we can write:

Hz; = | Wiz, (2.19)

T

If we define 2 = («}, 3}, w!)T, the above cross product ca be reformu-

lated as:

yihs wi — wihy x;
z; x Hr; = | wihfz; — 2/hlz; (2.20)
rihoTx; — yihTx;
Knowing that thmZ = zTh; for j = 1,2,3, we have a set of three

equations which be expressed as in the following matrix form:

0" —wiz] yial | | I
wiel 07 —xlal| | hy | =0 (2.21)
—g, w07 hs

This equation can be re-expressed as A;h = 0, where A; is a 3x9
matrix and h a nine-dimensional elements array which contains the nine
elements of matrix H. Among the three equations which form the above
homogeneous linear system, only two are linearly independent; the third
equation can be obtained by a linear combination of the other two. As a

consequence, the set of equations to be solved reduces to:

0wt oyt | ™
_ or T ho =0 (2.22)
3 1 1 1 h3

Now A, a 2x9 matrix. Each correspondence between to two points
produces an A;, which get collected as rows in the higher dimensional
matrix A. Considering four couples of corresponding points, matrix A

has a rank of eight and a non-banal solution for textbfh can be found.
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This solution determines the elements of the homography between the
points up to a scale factor, which can be arbitrarily set by choosing
b = 1.

With more than four corresponding couples of points the problem
becomes over-determined. If the relative positions between corresponding
points is exact for all them we can find an exact solution, otherwise an

approximated one can be found.

2.3 Camera calibration

Camera calibration process consists in obtaining the main camera pa-
rameters in order to remove distortion due to lenses and sensor. These
parameters let us trace where a 3D point from world space is projected

onto the camera sensor.

2.3.1 Calibration methodology

In order to obtain a three-dimensional reconstruction we need to know
how the acquisition system works and the intrinsic and extrinsic charac-

teristics of the camera in use.

2.3.1.1 Intrinsic Parameters

Intrinsic parameters are the features connected with the camera and its
technical characteristics, such as focal length, position of the principal
point and coefficients of optical distortion. We define: the focal length
of the camera lens for both axes (f, f,), the optical center position for
the camera sensor (c,,c,) (both expressed in pixels) and the distortion
coefficients ki, ko, p1, p2. In an ideal camera, a 3D point (X, Y, Z) would
be projected onto coordinates:
Je

[
ZL':X7+CI : y:YEy—i—cy (2.23)

However camera lenses normally distort the image by enhancing the
distance of the points: the more distant the points from the center, the
more it gets distorted. Thus, the vertical stripes near the image borders
appear to be slightly bent. As a consequence, in order to determine

a pixel projection, we must consider the distortion components. Two
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types of distortions (radial and tangential) are considered and they are

represented by the parameters py, po, k1, ko.

2.3.1.2 Extrinsic parameters

Extrinsic parameters are connected with the features that describe the
camera with respect to the external reference system. In order to com-
pute the projective transformation for mapping a point onto an arbitrary
reference system, it is necessary to know the extrinsic parameters. These
include information such as the translation and the rotation of the cam-
era with respect to the origin of the reference system. In other words, the
extrinsic parameters are the parameters of the 3D roto-translation that
maps the camera reference system onto the arbitrary one. The rotation
matrix elements can be obtained from the corresponding parameters by
using Rodrigues rotation formula [5].

By using homogeneous coordinates we express both rotation and
translation of the camera with a 4x4 invertible matrix whose inverse
matrix performs the opposite transform between the same reference sys-

tems.

2.3.2 Calibration targets

The calibration of intrinsic parameters is based on the information ob-
tained from the homographies which connect the corresponding sets of
coplanar points. It is quite common to adopt a regular pattern target
image in order to extract these information. A rectangular pattern of
white and black squares is often suitable.

The main advantage of using this kind of target is that it is easily
identified: its realization does not require high requirements, it can be
produced by any graphic software and printed using a good quality laser
printer.

The single squares or rectangles do not have to be necessarily black
and white but this coloring solution allows a simpler detection of the
corners, essential for the camera calibration. On the other hand it is of
key importance that the target pattern is flat and applied onto a flat and
smooth surface. During calibration process performed in this project. we
printed the pattern on a A4 paper with each square having a side of 23

mm and we attached it to an plastic flat surface.



18

e

Figure 2.5: Example of a calibration pattern with 8 x 5 vertices (9 x 6 squares)

2.3.3 Extraction of the features from the planar pat-

tern

In a planar target like the one described above the information used
for the calibration, is given by the coordinates of the intersection points
between the corners of the squares of the chessboard pattern [6]. The
target has to be completely visible from the camera. The first step of the
extraction process of the coordinates is the conversion of the image in
binary form, which includes converting it in grey scale using an algorithm

based on adaptive threshold.

Defined with I, , ,(z, y) the value of the red, green and blue component
of each pixel in the original image and I,(z,y) the value of luminance
(from 0 to 255), we have that:

I(z,y) = al.(z,y) + Bly(x,y) + (2, y) (2.24)

where (a, 3,7) are the coefficients needed to calculate the luminance
exploiting the radiometric model of the human eye and they respectively
have the value of (0.299, 0.587, 0.114).

Once the grey scale image is obtained, the binarization thresholds can

be computed. Given the mean luminance value of the image p; as

S Ly(z,y)
[ = Z sumivzo yN](J (2.25)
=0

where M and N are the dimensions of the image along x and y di-

rections, expressed in pixels, the threshold value B is computed as:
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B w1, if pg —Th>Th (2.26)
10, if gy —Th<=Th

where Th is a threshold sensibility parameter, estimated to be ap-
proximately equal to ten. A Canny edge detector [7] is then applied to
the image according to the computed threshold: this is a technique, based
on an iterative algorithm, that allows extracting useful structural infor-
mation from the image and dramatically reducing the amount of data to
be processed [8]. When all the edges have been detected, they can be
analyzed in order to detect those ones that form convex quadrangular
polygons. In order to avoid errors, the algorithm automatically removes
all the polygons having a perimeter smaller than a given threshold whose

value depends on the size of the target image.

e
R

Figure 2.6: Edge detection result

Every time the algorithm detects an edge, it stores the coordinates of
its end points. These coordinates can then be sorted in order to uniquely
associate each corner point to a specific position in the chessboard, fol-

lowing a matrix like scheme similar to the one below.

(0,0) (0.n)

\®
/

(m.0) {m,n)

Figure 2.7: Detected points matrix for m x n chessboard pattern
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The sorting algorithm is an iterative procedure: the first step is that
of finding the four points which have the longest distances between each
other, corresponding to the corner points closest to the edges of the chess-
board. The second step is that of determining the points belonging to the
chessboard perimeter by exploiting the prior knowledge of the sizes of the
target in terms of number of squares per dimension. The algorithm then
determines all the edge points coordinates by considering all the inter-
nal perimeters, obtained by iteratively reducing both dimensions by one,
until the last and most central edge point is detected. The coordinates
estimated with this procedure are expressed with a pixel precision but
there exist other algorithms which are able to perform this estimation
even with a sub-pixel precision. For instance, Harris corners detector
can be applied to the already processed image in order to increase the
precision of the coordinates, applying it onto w X w windows centered on

the point previously identified as the corner point.

Figure 2.8: Chessboard target processed with Harris detector

2.3.4 Camera model

Once the planar target has been processed and the necessary information
has been extracted, it is possible to proceed to estimate the intrinsic
parameters of the cameras in use. The basic model adopted is the CMOS
model as described above. Now given a generic point in world space
X = (z,y,2,1), its projection onto the camera plane is given by the

following transformation:
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BX:K[R t]X (2.27)

where K is the intrinsic parameters matrix, § is an arbitrary scale

factor and [ R t ] is the extrinsic parameters matrix.

2.3.5 Homography derived from target

A generic point X belonging to a three-dimensional planar object can be
expressed as (X, Y, k, 1) with k& constant. Assuming k = 0, the previous

equation can be updated as:

X
u e
Blo | =K|r rn r t]] g :[7“1 th] y (2.28)
1
1

where 71, 1o, r3 are the column arrays of the rotation matrix R. Points

X and x are linked by an homography H:

Bx = HX (2.29)

where H = [ ry re t ]

Given the camera image of a planar target, it is possible to estimate
the homography H that can project X onto x. Matrix H is estimated
by determining the homography that minimizes the euclidean distance
between the computed point x and the estimated one, labeled as x. Hence

the estimated homography is given by:

H = argming { Z d(x;, HX;)?} (2.30)

Recalling that H = [ ry ro t ] and that r; and ry are orthonormal,

we can extrapolate the following equations:

ATKTKhy =0 (2.31)

MTK"Kh, = WK TK} (2.32)
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The model of the plane used to estimate H can be expressed by the

following equation:

[ r3 elt ] =0 (2.33)

E € 8

where w = 0 if we consider points at infinite distance and w =1 for
all other cases. This plane intercepts the infinite plane in a line. (ry,0)7
and (r3,0)7 belong to this line. Each point of such a line can then be

expressed as a linear combination of these two points:

T2 .
0

X point is labeled as the circular points, satisfying the equation
XT X, =0, implying that:

ary + bry
0

1

0

+b (2.34)

Xooza[

(ary + bro) T (ary + bry) Va* + b =0 (2.35)

A solution to last equation is b = +ia. This leads to:

7’1:|:i7'2

Xew=a
0

(2.36)

The projections of these points onto the image plane, ignoring the

scale factor, is then given by:

Lo = K(’T‘l + Z‘T‘z) = hl + Zh2 (237)

The point z,, belongs to the absolute conic, described by the equation
w =K TK™! This leads back to the solving equations given above for

extracting hy; and hsy values.

Considering that the homography has eight degrees of freedom, given
the six degrees of freedom of the extrinsic parameters (three for rotation
and three for translation) we deduce that each homography contributes

to define just two intrinsic parameters.
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2.3.6 Extrinsic parameters estimation

Matrix K_7K_; describes the absolute conic of the camera, defined as

the following 3x3 matrix:

1 _ s _ yos—zof
f? I? f3
B=K K .= _ s 21 __s(yos—=zof) _ yo
— —TEIN_1 — f3 f4 f2 f2 f2
2
yoS;gzof _S(yosf—zxof) _ ?_g (yos;:’fof)Q + % +1

(2.38)

where f is the focal length of the camera lenses system and s is the
skew factor. Matrix B is symmetric and can be more synthetically re-

express as the following array:

b= (2.39)

Given this, equation 2.3.5 can now be written as:

hi Bhj = vib (2.40)

where v;; corresponds to the following array:

hirhj
hiahja + hizhj

highyo
hithjs + hizhj
hiahjs + hizhio

hizhys

(2.41)

If we substitute AT K 7K ™'hy = 0 in this array, we end up obtaining

two homogeneous equations:

Vi ) ]:0 (2.42)

(Uu — V22

If we then combine n of these, we obtain a system having the form:
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Vb =0 (2.43)

where V is a matrix of dimension 2n x 6. As mentioned before, the
internal matrix calibration K has 5 degrees of freedom, reduced to 4 in
we consider the model adopted, with the same focal length in the two
directions.Each view lets us to recover just 2 parameters and so we need
at least two views to recover completely the matrix K, ignoring a scale
factor. We can add also another equation to the 2n x 6 to set the skew
value to zero. The solution of the system corresponds to the eigenvec-
tor with the smallest associated eigenvalue. The b array is determined
as the null right space of VT, given the singular value decomposition
SVD(VV!T = UWV”. Once b has been determined, the elements of K

matrix can be computed, according to the following equations:

. BIQBIB - BllB23

= 2.44
" TBuBs - B, (24
B? BisBys — BB
0 = Byy — 213 + yol 1; 13 — B11Ba3) (2.45)
1
OéBll
= 2.46
/ \/311 — Ba — B, (246)
B 3
g Dt (2.47)
el
B 2
20 = % - zf (2.48)

It’s now possible to determine the camera extrinsic parameters, which
describe camera roto-translation with respect to the origin of the world

reference system.
Recalling that H = K [ rory i } and that h K TK 'hy = 0, we
have that:

=K 'h (2.49)

9 = ’)/K_lhg (25(])
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T3 =71 X Ty (251)

t =~K 'hs (2.52)

where 7 is a constant scale factor. Also in this case, as it happened
in the extrapolation for the intrinsic parameters, we need a cost function
to minimize in order to find the parameters that best suit the correspon-

dence between points in world space and points in camera space.

As we mentioned before, a point belongs to the planar target if its

estimated coordinates satisfy the equation:

fc:K[Rt]X (2.53)

We then define the re-projection error as the difference between the
computed coordinates (using the found matrix values) and the detected

ones:

e=X—X (2.54)

Since we are dealing with bidimensional points, Euclidean distance
can be used as error measurement for the points estimation. The re-
projection error can then be defined as the norm of the difference between

the same homogeneous coordinates arrays:

e=||x—x|| (2.55)

This error is suitable to be used as cost function for determining the

parameters of the camera, according to the following formula:

N L
argming g { Z Z l|lz;; — K [ R, t; ] XlHQ} (2.56)

i=1 j=1
The solution to this problem can be obtained by minimizing the given
cost function and applying Nelder-Mead simplex method [9]. In order to
reduce the number of parameters, rotation matrix R; can be expressed as
an array of rotation angles for the reference system axes r;. It is possible

to switch from R; to r; by using Rodrigues rotation formula.
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2.3.7 Radial distortion

Representing the points according to the camera projection equation con-
sidered so far fx = K [ R, t; ] X is not yet the most accurate repre-
sentation of the points measured during the acquisition phase. In fact,
an element that has not been taken into account is the distortion contri-
bution introduced by the adopted cameras. Among the different kinds
of optical distortion, the most relevant one in this kind of application
is the radial one. Radial distortion can mainly occur in two different
ways: "barrel" distortion and "pincushion" distortion, schematized in

the following figure:
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Figure 2.9: Effects of the different kinds of radial distortion

In barrel distortion, image magnification decreases with distance from
the optical axis. The apparent effect is that of an image which has
been mapped around a sphere (or barrel). Fisheye lenses, which take
hemispherical views, utilize this type of distortion as a way to map an
infinitely wide object plane into a finite image area. In a zoom lens barrel
distortion appears in the middle of the lens’s focal length range and is
worst at the wide-angle end of the range. In pincushion distortion, image
magnification increases with the distance from the optical axis. The
visible effect is that lines that do not go through the center of the image
are bowed inwards, towards the center of the image, like a pincushion. A
mixture of the two types of radial distortion, referred to as "mustache"
distortion, may sometimes occur. In this case the resulting image starts
out as barrel distortion close to the image center and gradually turns into
pincushion distortion towards the image periphery, making horizontal

lines in the top half of the frame look like a handlebar mustache [10].
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Mathematically, barrel and pincushion distortion are quadratic, mean-
ing they increase as the square of distance from the center. In mustache
distortion the quartic (degree 4) term is significant: in the center, the
degree 2 barrel distortion is dominant, while at the edge the degree 4
distortion in the pincushion direction dominates. Other distortions are
in principle possible — pincushion in center and barrel at the edge, or
higher order distortions (degree 6, degree 8) — but do not generally occur
in practical lenses, and higher order distortions are small relative to the

main barrel and pincushion effects.

In order to be able to remove or at least attenuate the effects of
radial distortion, it is first of all necessary to determine the parametric
mathematical model that best describes the actual distortion performed

by the adopted camera and estimate the corresponding parameters.

The projected point affected by distortion in the camera plane x; =
(ug,vq, 1) is related to the ideal undistorted point x = (u, v, 1) by the the

following relationship:

rg=1+0, (2.57)

where ry is the radial distance of the distorted point, obtained as
the sum of the undistorted radial distance r and the radial distortion
contribution ¢§,. Photogrammetry studies have defined the standard of
the mathematical structure of the function of radial distortion which can

be described by a polynomial expression:

ra=rf(r) =11+ ki + kor® + kgr® 4 ) (2.58)

with k; being the distortion coefficients. Given x4 = (24, ya, 1) defined

as:

Tq Uq
ya | =K' | v (2.59)
1 1

the radial distance of the distorted point x can now be expressed as :

73 =23+ y; (2.60)

The point distorted coordinates then can be expressed as:
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xq=xf(r) (2.61)

ya=yf(r) (2.62)

As we mentioned before, the strongest contribution in the polynomial
model of radial distortion comes from the quadratic term. Since adopting
a too complex polynomial model may lead to instabilities in the estima-
tion phase, we have decided to consider only the terms up to the fourth

order. Hence, the adopted model is given by:

fr) =14 kar® + kyr! (2.63)

Applying this distortion model to a generic unditorted point x =

(u,v,1), we get the following distorted coordinates:

ug = (u— o) f(r) + o (2.64)
va = (v —y0)f(r) + Yo (2.65)

where radial distortion has been applied, after setting the principal
point of the camera (g, yo) as the center of distortion.

The estimation process for the distortion coefficients k; and ks is
similar to that performed for the other parameters computed so far. The

coefficients are then those which minimize the following cost function:

N

L
argmmkl,lﬁ{ ZZ |zij — aij (K1, ka)|? } (2.66)

i=1 j=1

2.3.8 Linear Optimum Estimator

The two estimators computed so far, one for the camera intrinsic and
extrinsic parameters (2.56) and one for the radial distortion parameters
(2.66) can be combined in order to obtain a full parameters estimation
for the adopted camera. Alternatively, it is possible the estimate the
aforementioned parameters with an iterative algorithm which alternates
steps of estimation of the two groups of parameters until convergence.
Since these approaches have proved to be equivalent in terms of qual-
ity of the found solution, we have decided to adopt the most compact

form of the problem which also has the smallest convergence times.
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N L
argmz'nK,Rhti,khkz{ ZZ |zij — ai; (K, R, £, ki, ko) |2 } (2.67)

i=1 j=1

The minimization of this cost function can be classified as a problem
of bundle adjustment [11]. Exploiting the geometric properties of the
target we can reduce the dimension of the problem of a factor 6/L. This
is possible because a group of L points of the target can be represented
with just 6 parameters 3 of rotation and 3 of translation. A complete
bundle adjustment on N views of L. points would involve a not linear
estimation of 4 intrinsic parameters, 2 coefficients of distortion and N x L
parameters for all the three-dimensional reconstructed points.

The estimator used in this study involves the estimation of:

four intrinsic camera parameters (K);

two distortion coefficients (kq, ks);

e six extrinsic parameters for the rotation matrix (R);

three parameters for the translation array (t);

Minimization is performed applying Nelder-Mead simplex method,
initializing the parameters to some initial values obtained through a pre-
liminary closed-form computation [12]. The initial values of both the
distortion coefficients is set to zero. These settings and this procedure

have proved to provide a good estimation of the camera model.

2.3.9 Calibration using OpenCV

OpenCV (Open Source Computer Vision Library) is an open source com-
puter vision and machine learning software library. It was built to pro-
vide a common infrastructure for computer vision applications and to
accelerate the use of machine perception in the commercial products.

Since an efficient camera calibration is a basic requirement for many
applications, there exists a lot of calibrations tools already available and
OpenCV provides its own algorithm. The OpenCV implementation is
basically the C++ adaption of the Camera Calibration Toolbox available
in Matlab.
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In order to estimate all the camera parameters, a calibration pattern is
needed. OpenCV calibration process adopts a flat checkered rectangular
pattern, very similar to the chessboard pattern considered so far. Besides,
it necessary to be aware of the sizes of the pattern blocks, which need to
be measured in advance and and supplied to the calibration algorithm.
Once these preliminary settings have been set, the next step is that of
capturing several images of the calibration pattern with the camera. The
pattern should be showed to the camera system at different locations and
orientations (provided it is fully visible to the camera), in order to obtain
a more robust and reliable calibration.

In general, the more images are taken for camera calibration, the bet-
ter is the calibration. However, fifteen to twenty images usually provide
good results. Once a sufficiently large sequence of suitable for calibra-
tion images is captured, they can be processed via OpenCV or Matlab
toolbox.

In order to perform an effective calibration, it is necessary to use dif-
ferent pattern perspectives and orientations: at least onefrontal one and
four where the border of the pattern is near the image border. Placing
the pattern near the image border helps a more accurates estimation of
camera distortion coefficients.

The main advantage of the OpenCV implementation is that it pro-
vides automatic detection of all chessboard-corners. Especially with large
calibration image sequences this becomes quite convenient. Besides, the
adopted algorithm simultaneously estimates intrinsic and extrinsic pa-
rameters of the camera.

As output, the program generates a .yml file that can be read and
processed with ArUco, an open source library for camera pose estimation,

written in C++ and based on the use of squared markers [13] [14].

2.4 Markers

A marker system consists of a set of patterns that can be detected by
a computer equipped with a camera and an appropriate detection al-
gorithm. Markers placed in the environment provide easily detectable
visual cues for many applications, including indoor tracking, robot nav-
igation, augmented reality and, in general, all applications where the

relative pose between a camera and an object is required [15].
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Markers can be classified according to different features. One main
distinction is that between active and passive markers and their relative
detection system. Active markers are infrared light emitting elements,
mostly LEDs. Each LED is connected to a led control unit transported
by the object to be tracked and activated stroboscopically by a cable or
telemetric multiplexed signal. The extraction of the markers in active
systems is quite straightforward since there’s high contrast between the
activated markers and the background. Besides, tracking is also made
simple because only one LED at a time is activated. A drawback of
active markers systems is that is their applicability is reduced by the
mechanical restraints imposed by the LED-wiring attached to the subject
of the calibration and tracking process

Passive markers most commonly used in tracking systems, are retro-
reflectors. These markers reflect incoming infrared radiation back in the
direction of the incoming light. More precisely the IR radiation is back-
reflected into a narrow range of angles around the source of the incoming
light. These markers are mostly spheres covered with retro-reflecting
foils, but can also be stickers made from retro-reflecting material.

Passive infrared systems operate by recording the detection of re-
flected light. Despite also in this case the images obtained by cameras
display a pronounced contrast between the markers and the background,
the simultaneous presence of many markers in the images requires the use
of labeling algorithms that allow a unique identification of the markers
along the image sequences. The proximity between two different markers
in the image may sometimes complicate this process.

Marker systems can be classified not only by their different working
systems but in many other ways. A particular distinction that is impor-

tant to make is now that between fiducial and not fiducial markers.

2.4.1 Not-fiducial marker systems

Not-fiducial marker systems consist of markers which carry information
about the object they are attached to but they are not meant to provide
localization information. Bar codes are an example of not fiducial marker
systems. That of encoding information onto a planar surface suitable for
detection with optical techniques is a very common methodology. Two-
dimensional bar codes can be read by using a passive camera instead of

an active laser.
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Figure 2.10: Examples of 1D and 2D not fiducial marker systems

This kind of markers does not perform efficiently, as it is not meant
for it, in large view fields configuration. In particular, the images would
be affected by perspective distortion and, when detected, they do not

provide enough image points for three-dimensional pose estimation.

2.4.2 Fiducial marker systems

Fiducial marker systems consist of different unique patterns that are
mounted in the environment and automatically detected in digital cam-
era images using an accompanying detection algorithm. They are useful
for augmented reality (AR), robot navigation and general applications
where the relative pose between a camera and object is required. Im-
portant parameters for such marker systems is their false detection rate
(false positive rate), their inter-marker confusion rate, minimal detection
size (in pixels) and immunity to lighting variation. The various patterns
should be distinct enough in order not to be confused with the environ-
ment. Ideally, the system should have a library of many unique markers
that can be distinguished one from another and the image processing
should be robust enough to find the markers in situations of uncontrolled
lighting, image noise and blurring, unknown scale, and partial occlusion
[16]. Some examples of fiducial markers are given in figure 2.11.

One of the simplest possible approaches with fiducial markers is that
of using "point-like" markers, such as LEDs, retro-reflective spheres or
planar dots which can be segmented using basic techniques over con-
trolled conditions. Another approach is that of using planar circular
markers which encode identification in circular sectors or concentric rings.

However, circular markers usually provide just one correspondence point
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Figure 2.11: Examples of fiducial marker systems

(the center), requiring the detection of several of them for correct pose

estimation.

Another valid fiducial markers configuration is that of square-based
fiducial marker systems. The main advantage of this approach is that the
presence of four prominent points can be employed to obtain the pose,
while the inner region is used for identification (either using a binary code
or an arbitrary pattern such as a simple image). In the arbitrary pattern
category, one of the most popular systems is ARToolKit, an open source
project which has been extensively used in the last decade, especially in
the academic community [17]. ARToolkit markers are characterized by
a wide black border with an inner image which is stored in a database of
valid patterns. However, despite its popularity, it has some drawbacks.
First, it uses a template matching approach to identify markers, obtaining
high false positive and inter-marker confusion rates. Second, this system
uses a fixed global threshold to detect squares, making it very sensitive
to varying lighting conditions. Most of the square-based fiducial systems

uses binary codes.

The ARTag system is based on the usage of a binary code with re-
dundant bits for error detection. The robustness to lighting and partial
occlusion is improved with respect to ARToolkit thanks to an edge-based
square detection method, outperforming the fixed threshold one. ARTag

uses a binary coding scheme that includes checksum bits for error de-
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tection and correction. It also recommends using its dictionary markers
in a specific order so as to maximize the inter-marker distances. The
main drawback of this approach is that the proposed marker dictionary
is fixed to 36 bits and the maximum number of erroneous bits that can
be corrected is two, independently of the inter-marker distances of the
subset of markers used.

The passive markers adopted in our study are the AR markers: binary
coded square-based fiducial markers that are easy to detect and allow
achieving a fast and precise detection. An AR Marker, like the one used
in ArUco, is a synthetic square marker composed by a wide black border
and a inner binary matrix (which determines its identifier) that can be
easily detected. The black border facilitates a fast detection in the image
and the binary codification allows its identification and the application
of error detection and correction techniques. The marker size determines

the size of the internal matrix.

Figure 2.12: An example of marker adopted in the ArUco library

One of great advantages of this marker system is that, instead of using
a predefined set of markers, it has a method for generating configurable
marker dictionaries (with arbitrary size and number of markers), con-
taining only the number of markers required. The algorithm produces
markers using a criterion that maximizes the inter-marker distances and
the number of bit transitions.

Markers will be used to calculate the extrinsic parameters of the cam-
era so that it will be possible to 3D render the image, given the origin of
the world reference system is located. Since the AR marker is very easy
to detect, real time processing and rendering are achievable but it was
not necessary in our application, hence we preferred storing all the frame

and post-processing them. It must be noted that a marker can be found
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rotated in the environment but the detection process is able to determine
its original rotation, so that each corner is identified unequivocally. An-
other reason behind the choice of such an approach is that it provides an
efficient method for detecting and correcting errors, based on the dictio-
nary obtained. This method allows error correction of a greater number

of erroneous bits compared to the other method previously introduced.

2.4.3 Marker coding

As it was mentioned previously, among the most relevant aspects to con-
sider when designing a markers dictionary there are the false positive and
negative rates, the inter-marker confusion rate and the number of valid
markers. The first two are often tackled in literature using error detec-
tion and correction bits, which, on the other hand, reduce the number of
valid markers. For what concerns the confusion rate, it mainly depends
on the distance between the markers employed. If they are too close,
a few erroneous bits can lead to another valid marker of the dictionary,
and the error could not be even detected. A desirable feature for markers
dictionary is that of having a high number of bit transitions between the
different markers. This makes the markers less likely to be confused with
elements belonging to the environment. In fact, binary codes with only
zeros or ones will be respectively printed as completely black or white

markers which can be easily confused with environment objects.

Figure 2.13: An example of marker coding

In figure 2.13 a square-based marker is displayed. Its internal code
is given by five words composed by five bits each. In total, each word
has only two bits of information out of the five bits available. The other

three are employed for error detection. As a consequence, we can have
up to 1024 different ids.
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The employed coding scheme is a slight variation of Hamming code.
The main difference between them is that the first bit (encoding parity
of bits three and five) is inverted. The reason behind this choice is that
of preventing a completely black rectangle from being a valid marker
id. This helps reducing the likelihood of false positive detection from
environment elements.

As it was mentioned before, ArUco library allows the possibility to
build customized markers dictionaries but in our application this was
not necessary as the pre-computed dictionary "DICT-4x4-50" perfectly
fit the task. This dictionary includes fifty markers, each being encoded
in sixteen bits. The reasons for the choice of this dictionary are different:
first of all, fifty markers are more than enough for our study; second,
with this limited number of markers it is possible to make the detection
process quite fast; lastly, this choice also implies a large inter-marker
distance which is desirable in order to increase error rejections in noisy
acquisitions.

Another advantage of this approach with respect to typical Motion
Capture (MoCap) systems consist in the absence of powered and/or
heavy and cumbersome markers like wearable cameras or accelerome-
ters. Furthermore, every single marker provides much more information
with respect to approaches based on simple reflective markers since for
every marker we are able to accurately estimate its distance from the

camera and its spatial orientation.



Postural Assessment

Worker health is a serious issue in all job categories. Musculoskeletal
disorders, in particular, constitute a major category of worker injury
for many of these categories. The repetitive movements, awkward pos-
tures, and forceful exertions often involved in a work are the leading
causes of this type of injury. To reduce the number of these injuries,
worker activities must be tracked and analyzed. Traditional methods to
measure work activities rely upon manual on-site observations which are
time-consuming and inefficient. To address these limitations, computer
vision techniques for worker motion analysis are proposed to automat-
ically identify non-ergonomic postures and movements without on-site

work interruption [18].

The process of estimation of human body posture is an essential in-
strument for various applications, including medical analyses, domotics,
animation and many more. The computer vision methods for 3D body
posture estimation can be divided in two main categories: marker-based
and and marker-free methods. In a marker-based approach, markers are
attached to the monitored human body giving particular attention to
the most significant body point. These points can be different from one

application to another but they often include the joints and the head, as

37
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they are some of the most movable parts of the body.

On the other hand, in a marker-free approach, human posture is
monitored and analyzed without the aid of markers. Even if they result
less accurate when compared to marker-based approaches, these methods
reveal to be simpler and still quite effective when it comes to locating
significant body points in 3D.

There are several setups that can be used for human posture detec-
tion: the one we decided to adopt provides for the usage of two cameras
without the aid of a depth sensor. Another effective setup contemplates
the usage of a Microsoft Kinect device: this method relies only on one

and an infrared-based depth sensor.

3.1 MSDs risk factors

The problem of recognizing and classifying impostures working postures
comes across as quite complex. In fact, well-controlled epidemiological
studies are few and present knowledge about is mainly based on case
reports and common sense.

In literature, before the early 2000s, improper postures were almost
exclusively associated with physically tiring jobs - such as construction
[18] - in which disorders of the musculoskeletal system are often over-
represented. Poor postures and the physical demands of the job were re-
garded as the causes of the injuries. Only later, the relationship between
ergonomic deficiencies in the workplace and diseases of the musculoskele-
tal system has been discussed [19] and illustrative case reports have been
published [20]. Finally, nowadays it is well known that the risk of muscu-
loskeletal injuries and disorders is also very high for people employed in
occupations involving repetitive movements and uncomfortable positions
[21].

Dentistry is one of the sectors affected by this high musculoskeletal
disorders risk [22|. These disorders can result in pain and dysfunction of
neck, back, hands and fingers.

The most common factors in work-related musculoskeletal injuries

are:

e Repetitive movements;

e Awkward positions;
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e Permanence in the same position for extended periods of time;

Poor postural muscle strength;

Poor flexibility;

Stress;

Infrequent breaks;

The risk for fingers and hand injuries is particularly high only for
some specific procedures which require repetitive movements together
with pressure application. Instead, due to the necessity of keeping the
same position for significant lengths of time, poor posture is a high risk
factor in all procedure. For this reason, we decided to investigate on
head, neck, shoulders and back position during the operations, with the

purpose of tracking all of them and detecting the improper ones.

3.2 Body landmarks

Among the most critical decisions to be made regarding our working ap-
proach there were those regarding the markers positions on the monitored
body,the solution to be adopted for attaching the markers and, above all,
the number of markers to use in order to obtain reliable data for the 3D
reconstruction. For what concerns the positions of the markers, it was
decided to cover all the body landmarks that could be useful for our
model, therefore focusing only on the upper part of the body, from head
to sacrum. In particular, we decided to place two markers on the back
of the surgical cap in order to track the position of the head.

In order to track the upper body, one marker was placed at the bottom
of the neck, two between the shoulder blades following along the spinal
column and three in the lumbar regions also along the spinal column.
Besides, two markers were placed on the back in correspondence of the
clavicles and two more in correspondence of the shoulders. Finally, two
lines of three markers each were set on the back, parallel to the spinal
column marker line, on both sides. The final markers scheme used for
the operations monitoring is shown in figure 3.2.

As it is clear from figure 3.2, the markers are attached on the back of a

white elastic t-shirt to be worn by the dentist during all operations. Each
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base of skull)

L+~ Acromial (point of shoulder)
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“— Dlecranal (back of elbow)
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—— Sacral (between hips)

\
\ Gluteal {butiock)
- Perineal
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and external genitalia)
Femaral {thigh)

Popliteal (back of knee)

T~ Sural (calf)

— Calcaneal (heel)
— Plantar (sole)

Figure 3.1: Posterior view of body regions

Figure 3.2: Adopted markers arrangement

marker was printed on regular paper having a surface of (4.3 x 4.3)cm?

and then applied onto a white plastic rigid plane surface having a surface

of (5 x 5)em?. This choice lets the markers be surrounded by a thin
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white plastic edge which helps the detection of the markers themselves.
In order to attach the markers to the t-shirt some Velcro was sewn on the
back of the t-shirt and stuck on the back of the markers plastic supports.
The final result of these preliminary operations is displayed in the figure
3.3.

Figure 3.3: A picture of the t-shirt used in the operations

The total number of markers in use is then eighteen: sixteen for the
back, the shoulders and the neck and two for the head. This amount
was considered suitable for the study since it allows a good representa-
tion of the upper body posture without making the t-shirt too heavy or

uncomfortable for the monitored operator.

3.3 Postural assessment criteria

During the past fifty years several techniques for assessing physical ex-
posure to work-related musculoskeletal risks have been developed, with
particular emphasis on posture-based methods. The options for postural
assessment methodologies are then various: videotaping and computer-
aided analysis, direct or instrumental techniques, observation-based meth-
ods by pen and paper and various approaches for self-reporting assess-
ment. Advantages and disadvantages of each method have been high-
lighted and discussed in the years [23]. The assessment criterion we de-
cided to adopt is Rapid Upper Limb Assessment, also known as RULA,

which is one of the most employed methods nowadays.
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3.3.1 Rapid Upper Limb Assessment (RULA)

The Rapid Upper Limb Assessment (RULA) method has been developed
by Dr.Lynn McAtamney and Professor E. Nigel Corlett, ergonomists
from the University of Nottingham, England (Dr. McAtamney is now
at Telstra, Australia) [24]. RULA is a postural targeting method for
estimating the risks of workrelated upper limb disorders. A RULA as-
sessment gives a quick and systematic assessment of the postural and
musculoskeletal risks for the examined subject.

The main characteristic of this assessment method is that it uses
numbers to represent postures with an associated coding system. In order
to compute the total RULA score associated with a certain posture, it
is necessary to analyze the different body parts separately, following the
procedures step and assigning to each one of them a partial score which
eventually contributes to compute a final score whose value qualitatively
classifies uncorrectness and risk for such a posture.

The score assigned to a specific posture basically depend on three

factors:
1. naturalness and ease of the position assumed;
2. time spent in the examined position;
3. load to be sustained during the position;

The traditional RULA algorithm uses body posture diagrams and
three different scoring tables: the first one (table A in figure 3.4) is for
wrist posture score with respect to upper and lower arm position; the
second one is for neck, trunk and leg score with respect to wrist and
arm position (table C in figure 3.4); the third one is for trunk posture
score with to neck position (table B in figure 3.4). The human body is
divided in two main groups: one for arm and wrist analysis (left side
in the figure) and the other one for neck, trunk and legs analysis (right
side in the figure). A scoring system is used to assign scores at every
subgroup region in order to compute a final total score for the posture.
Scores are expressed with positive integer values starting from +1: the
lowest the score, the most correct is the assumed position.

As we mentioned before, in addition to the analysis of the posture
recordings, there are several other risk factors taken into account by

RULA for assessing the quality of a posture. In particular, force exertion,
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Figure 3.4: Example of a RULA worksheet

repetition (or frequency) of the same movements and time spent in the

same position. A score is given for muscle employment by evaluating how

frequently the same posture is repeated and it is expressed in occurrences

Another score is attributed to the load to be sustained:

per minute.

it depends not only on the amount of load but also on how long it is
kept; for example, if the weight is less than two kilograms and it is held

intermittently, the score is zero.
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Once all the individual scores related to the different upper body re-
gions are determined, the final RULA score can be computed following
its algorithm. According to the final value obtained, it is possible to in-
dicate if it is necessary to intervene and the level of intervention required
to reduce the risk of MSDs for the operator.

Score Level of MSD Risk

1-2 negligible risk, no action required
3-4 low risk, change may be needed
5-6 medium risk, further investigation, change soon

- very high risk, implement change now

Figure 3.5: Levels of MSD risk according to RULA scores

The reason behind the choice of RULA can be listing pros and cons.

Its positive qualities can be summarized in the following point:

e RULA is ideal for sedentary workers;

e [t is influential in the ergonomics field and it does not require special

equipment;

e [t is quick and easy to complete even without an advanced knowl-

edge in ergonomics;

e RULA scores can already give a general indication of the level of

intervention to be applied for reducing MSD risks.
On the other hand, RULA presents the following limitations:

e [t does not include an assessment for fingers and thumb posture;

e [t doesn’t provide an integrated assessment of all the biomechanical

risk factors;

The method has been tested in a laboratory situations relative to op-
erations involving Visual Display Units [24] but its sensitivity, specificity
and predictive value for quantifying the actual risk for musculoskeletal

injuries has not been assessed yet.
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This work is not meant for proposing a new rule for determining
ergonomics, it will focus on calculating and tracking head, neck, back
and shoulders posture in order to apply RULA criteria. For computing
the score of the remaining subregions examined by RULA algorithm, such
as upper and lower arm, wrist and legs they will be visually estimated by
looking at the frames but without applying a technical method to obtain

exact position values.

3.3.2 Novel Ergonomic Postural Assessment (NERPA)

The Novel Ergonomic Postural Assessment Method (NERPA), as the
name suggests, is a postural assessment method designed for product
processes [25], mainly developed for industrial manual assembly tasks,
frequent in the automotive industry. It is developed with the help of a
digital human model by a 3D CAD tool. This method has some common
points with the RULA method (still the most commonly used in indus-
trial environments), as for example it maintains the original A B,C tables
but it also introduces significant differences for the arms, neck, trunk and
wrists. The angular values of each body region are modified, by updating
RULA method using the most congruous standards. The method devel-
opment is centered on using a Digital Human Model (DHM), integrated
with a 3D product-process environment design in order to assess worker
posture and measure the level of risk.

In order to conduct the ergonomic evaluations in a simulation en-
vironment, it is necessary to define all the resources, including the 3D
geometry of the workstation, a DHM that can cover the range of the
involved population, the 3D geometry of the assembly of parts, and a
definition of all assembly tasks. NERPA method is based on five phases:

1. Collection of workers opinions and records of injuries;

2. Postural analysis implementation by using RULA and NERPA

methods:

3. Evaluation of the possible ergonomic improvements in the modeled

environment defined before;

4. Proposed improvements implementation by using a tracking sys-

tem;
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5. Evaluation of the improvements in reals workstations;

One of the aspects that make NERPA differ from RULA is a different
upper arm posture assessment. In fact, NERPA considers three (instead
of RULA’s four) bending position levels for the arm. This way the an-
gle intervals covered by the levels increase in size avoiding unnecessary
penalization for some common working postures that do not constitute,
a priori, any risks for the worker. In figure 3.6 the NERPA evaluation
table is displayed.

Also trunk and neck posture assessments differ from one method to
the other. In fact, when considering trunk inclinations, the angles inter-
vals are differently classified; in particular: the first one is extended by
ten degrees, the second one by twenty degrees and the last one’s lower
limit is ten degrees higher. For what concerns the neck, NERPA pe-
nalizes neck torsion and side-inclination only if they result higher than
a given threshold.If the neck experiences a torsion or side-inclination
above ten degrees wide, then the neck final score has to be increased by
one. On the other hand, neck frontal bending values are computed as in
RULA algorithm. Lastly, similarly to what it does for the neck posture
evaluation, NERPA allows a fifteen degrees wide wrist inclination before
penalization, differently from RULA.

It has been proved [25] that NERPA can obtain a sixteen percent
accuracy improvement with respect to RULA. This is primarily due to
its implementation through a 3D simulation tool which allows angle ob-

servation and angle and final posture evaluation via software.
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Example of a NERPA assessment worksheet

Figure 3.6






Model and methodology

In this chapter the followed model, its implementation and all the tech-
nical steps necessary to make it properly work are presented. In the first
section we present the full setup of the operating room and a description
of the hardware used. Then the second section describes the actual de-
tection phase of the process, with an explanation of the necessary steps
for the software to acquire the relevant data. Lastly, the analysis phase is
discussed in the third and last section, which also includes a description

of the techniques employed for analyzing the collected data.

4.1 Experimental setup

The main component of our acquisition setup consists in a two-cameras
system used for capturing the frames from which data will be detected.
The cameras adopted are mono-colour C-Mount CMOS digital cameras
and their resolution is 2592 x 2048 pixels. We adopted a 12 millimeters
focal length on the cameras that, despite giving good and readable re-
sults, did not seem to be the optimal choice as it did introduce a bit of
vignetting in the corners of the images. The cameras were installed to

two tripods, displaced at a height of approximately one meter from the
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floor and at a distance of approximately 60 centimeters from the markers
if the an operation was on the left side of the patient, while at a distance
between 1 and 1.5 meters, if the operation 1,5 meter if the record was
on the right side. This difference was due to room space limitations. A

typical operating room arrangement is shown in figures 4.1 and 4.2.

Figure 4.2: Cameras disposition for a right side tooth removal operation

The two cameras in use are powered by Power Over Ethernet (POE)
and for connecting them to our laptop we used a POE Gigabit switch. In
order to save all the frames recorded by the camera we used a notebook
with an Intel i7 processor. Then the frames were stored on a external
hard disk drive connected to the computer by a 3.0 USB connection.

Acquisition rate was not kept constant through all operations but it
was always approximately about 1 frame per second and it was precisely
recorded at every operation. We accepted this range of frame rate (which

could be considered quite low in other posture assessment applications)
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because it was high enough to record the typical kind of movements of
an operating dentist as they are usually circumscribed and slow

A typical frame captured by the camera system and recorded on the
computer displays a posterior view of the operator and of the marker-
equipped white t-shirt worn by him during an operation. An example of

a recorded frame is shown in figure 4.3

Figure 4.3: Example of a recorded frame

After the acquisition of the markers, for every single operation recorded,
data for calibration were acquired by capturing pictures of the chessboard
image used as planar calibration target. These data were stored in order
to be fed to the OpenCV calibration utility [26].

4.2 Detection phase

In order to track the markers, we adopted the ArUco library [13| which is
a minimal library for augmented reality applications based on OpenCV.

The marker detection process of ArUco can be schematized as follows:

1. An adaptive thresholding algorithm is applied for detecting markers

borders;

2. All contours get detected and, therefore, markers are detected,too.
However, now the image needs to be filtered in order to remover

unnecessary detected borders (part 1 of figure 4.4).

3. All the borders outside the area of interest and those characterized

by a too small number of points are removed (part 2 of figure 4.4);
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10.

11.

12.

Detected contours go through a polygonal approximation procedure
and only concave contours with exactly four corners are considered
(part 3 of figure 4.4);

. Corners are sorted following an anti-clockwise order;

Rectangles that result being too close to each other (according to a
given threshold) are detected and some of them are removed. This
is necessary because the adaptive threshold detects both internal
and external borders of the markers and the external ones are the

only ones relevant for our data analysis (part 4 of figure 4.4);
Markers are identified;

Projection perspective is reverse so as to obtain a frontal view of
the markers rectangular area. This can be done thanks to the
projection homography detected in the calibration phase(part 5 of
figure 4.4);

The markers areas are segmented and processed through Otsu’s
algorithm [27|. This algorithm assumes a bimodal distribution of
white and black pixel values and it finds the threshold that maxi-
mizes the extra-class variance and minimizes the the intra-class one
(part 6 of figure 4.4);

Internal code of markers are identified. Every marker has its own
internal code. Markers are divided in a 6 x 6 grid where only the
internal 5 x 5 group of cells contains id information. This is the
first time that the presence of the black borders of the markers
is checked. The internal cells are read by the software algorithm
which checks if they provide a valid code. Sometimes rotations of

the detected markers are necessary before reading the code;

For all the markers correctly identified corners are refined through

a subpixel interpolation process;

Provided camera parameters had already been extracted and fed
to the algorithm, the extrinsic parameters of the markers are com-

puted.



Chapter 4. Model and methodology 53

Figure 4.4: ArUco markers detection steps

4.2.1 Marker detection

The adopted ArUco version is structured in four phases:

1. Detection of marker candidates;
2. Candidate codification check (markers identification);
3. Detected markers filtering;

4. Corner subpixel refinement;

The detection of the 3D coordinates of the marker is possible because,
knowing the camera intrinsic parameters (camera matrix and distortion
coefficients obtained by calibration) and specifying the size of the mark-
ers, the library can return the positions of the markers with respect to
the camera. ArUco uses the class named Marker characterized by the
following features: a vector of four 2D points representing the corners of
the image, its size expressed in meters, the translation and rotation co-
ordinates that connects the center of the marker and the camera system
origin. The 3D mapping information is stored in these last values stored
into variables Twec and Rvec, respectively storing values for 3D transla-
tion and for 3D rotation transform expressed as given by the Rodrigues
formula in a 3 x 3 matrix.

In order to project a 3D point from a reference system centered on a
marker onto the camera reference system, its homogeneous coordinates
vector has to be multiplied by the proper transformation matrix whose

values can be computed from the Tvec and Rvec values. The resulting
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3D point can then be mapped into world space by conveniently applying
the camera matrix. Finally it can be processed for compensating the

image according to the estimated distortion model.

The result of the whole detection procedure is that of obtaining the
position of the markers, stored in the Rvec and Tvec variables. In our
software implementation these values are saved in a text file in order to

allow an easier reuse in the post-detection analysis phase.

4.2.2 3D coordinates computation

The computation of the 3D coordinates of the markers is accomplished by
a different script.The values previously stored in the text file are loaded
in this new script and, using the Rodrigues formula [28], it is possible
to compute the rotation matrix and the translation vector necessary for
the 3D position of the markers which can then be computed according

to the following formula:

T X
=R| Y | +t (4.1)
z A

In our implementation the script outputs two different text files: in
the first one it saves the 3D positions and the t translation vector of each
marker, in the second one it saves the R matrix and the t translation

vector of each marker.

4.3 Analysis phase

The goal of the analysis phase is that of computing as much useful in-
formation as possible from the data obtained in the detection phase. In
order to process the data we used Matlab computing environment which
allowed us not only to compute useful information for postural assess-
ment but also to represent them through visually direct representations
such as the motion history reconstruction of the markers and the 3D

skeleton /body reconstruction.
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4.3.1 Motion history

The motion history image method (MHI) [29] [30] is a technique which
allows representing the markers motion sequence in a compact manner,

by tracing their path through their inter-frames positions differences.

The Matlab script used for computing the motion history graph of
the operations monitored loads the 2D coordinates of the corner points
of the markers from the stored data text file, it then plots the edges of
the markers and colors the markers area with a soft blue shadow. The
more the marker square superimpose on each other, the more intense will
be the blue color in the common location. In order to obtain an equal
map of different blue intensity values for operations having completely
different time durations, a normalization step with respect to operation
durations is applied. Another important information that can be read
from MHIs is about how much displacement was achieved throughout the
operation with respect to the starting reference proper posture. Hence,
the algorithm also displays the reference markers positions by highlight-
ing their edges in red color. An example of MHI obtained through our
script is displayed in figure 4.5.

Figure 4.5: Example of motion history image
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4.3.2 Skeleton 3D reconstruction

The skeleton 3D reconstruction is a process of key importance for the
whole analysis phase as many other analysis steps are based on its re-
sults. The employed algorithm allows a faithful reconstruction of the
body posture of the dentist through the entire surgical operation. The
relative scripts loads the stored 3D coordinate of the markers and is aided
by an interpolation procedure to estimate the bottom neck marker (iden-
tification code 0) for those frames in which it is not properly captured
by the cameras. This can happen due to some random external light
flashes on the marker. We adopted this method because, without the
information of this key marker, we could not connect the head to the
body in the 3D reconstruction. At the end of the script the values of
the positions of the markers in space are plotted and, by connecting the
points, a 3D skeleton reconstruction is built. In order to have a better
graphical representation, we decidef to assign different colors to to the
different body parts connections: the "neck" (namely the connection be-
tween head and body) is represented in green, the backbone in yellow,
the connection between neck and shoulders in black and the marker lines
parallel to the central one and their connection to the spinal column are
represented in two tones of red and blue. A scheme of the color code

adopted is represented in figure 4.6.

Figure 4.6: Scheme of the connections and the colors used to represent them
in the 3D reconstruction algorithm

It is also possible to plot on the same 3D reconstruction image the

vectors representing the markers coordinates systems axes. In figure 4.7
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a sample image produced by the 3D reconstruction script is shown with
the orange lines representing the direction of the z axis for each marker

reference system.

Figure 4.7: Example of 3D skeleton reconstruction

4.3.3 Angular reconstruction

Angular reconstruction is an important data analysis step necessary for
computing the final RULA scores for evaluating posture during the dental
operations. Our study focuses on the upper part of the body, with the
goal of locating neck an trunk positions. In order to obtain their angles,
the angular reconstruction script stars by loading the text file with the
pre-computed values of the 3D positions of the markers.The method we
decided to adopt to calculate the angles is based on the projection of
the 3D points on a sagittal plane passing through spinal column. In
order to estimate the parameters of the sagittal plan we computed a
matrix X with the position coordinates of the spinal column markers,
then we computed its mean value for computing a new matrix Y with
the differences between the X values and the mean. These preliminary

steps are needed to compute the Z matrix, given by the following formula:

Z=YxY (4.2)

We then computed its eigenvalues. Given the equation of a general

plan as:
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ar+by+cz+d=0 (4.3)

where a, b and ¢ are the elements of the eigenvector associated with
the smallest eigenvalue of Z matrix. In order to evaluate the d parame-
ter we imposed the passage through the mean point by substituting its
coordinate in the equation. The estimate plate is then represented in 3D

plot; an example is given in figure 4.8.

Figure 4.8: Representation of the sagittal plane crossing a 3D skeleton recon-
struction

Once the sagittal plane parameters were computed, the coordinates of
the projections of the markers points onto the sagittal plane are computed

according to the following formulas:

Psagittal,id,m = (1 - az)xp - abyp — aczp — ad (44)
Psagittal,id,y = (1 - b2)yp - abxp - bCZp —bd (45)
Piogittatia = (1 — 02)zp — acx, — bey, — cd (4.6)

where z,, y,, 2, are the coordinates of the id marker point. This last
step is useful for evaluating the angle between the vectors connecting
the relevant points on the sagittal plane. Through this computation the
inclination angles expressed in terms of the camera reference system are
computed.

In order to estimate the inclination angle of the neck the sagittal

plane passing through the centers of marker 13 (one of the two head
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markers), marker 0 (neck bottom marker) and one point having same z
and y coordinates as marker 0 center and same z coordinate as marker
13 center was computed. The coordinates of these points were then used
for computing the angle between the vectors connecting the center of
marker 0 with the other two points. The computed value finally was
adjusted to take in considerations the contribution given to it by the
trunk inclination.

Among the other relevant factors for RULA there are trunk’s side-
bending, twist and inclination angles. The procedure to evaluate trunk’s
side-bending angle is similar to that just described: the sagittal plane
passing through the centers of markers 9, 6 and 1, respectively the two
on the lower part of the trunk and the one between shoulder blades. We
then projected the central points of markers 7 and 4 (corresponding to
the shoulders markers) and computed the angle between the vector con-
necting marker 9 with marker 6 and the vector connecting the projections
of marker 7 and marker 4. If the angle is close to 0 degrees, RULA trunk’s
side-bending score is null. In particular the trunk’s side-bending score
is attributed only when this angle is wider than 7 degrees (considering
both possible directions).

In order to evaluate trunk’s twist we exploited the previously com-
puted plane and measured the angles between the vector connecting
marker 7 and marker 4 central points and the normal vector of the plane.
If the estimated angle is close to 90 degrees, the trunk’s twist RULA score
is null. In particular the trunk’s twist score is attributed only when this
angle is bigger or smaller than 90 degrees by at least 5 degrees.

Finally, in order to estimate trunk’s inclination a procedure similar to
the one adopted for neck’s inclination. The sagittal plane passing through
the central points of markers 16 and 0 and through one point having
same x and y coordinates as marker 16 center and same z coordinate
as marker 0 center was determined. The angle between the projections
of the vectors connecting marker 16 with the other two points onto the

sagittal plane was then computed and used as trunk’s inclination angle.






Experimental results

In this chapter we present the results obtained from the analyses by
the models presented in the previous chapter. These results are the
consequence of an analysis of a sample based on 60 surgical operations:
20 using microscope, 20 using loupes and 20 with naked eye. In the first
section we show the postural comparison of the three surgical techniques
using the motion history analysis with respect to the desired position.
In the second section we present the values of the angles regarding the
trunk and the head. In the third and last section we evaluated our results

according to RULA scoring system

5.1 Motion history images comparison

The technique described in previous chapter for estimating the motion
history image of an entire operation gives us a good element of compar-

ison between the different visual aids employed.

Microscope

Figure 5.1 displays a left side operation performed with the aid of a mi-

croscope. The motion history analysis shows that the head and the trunk

61
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are quite static if compared with the results of the other two methods,
as their displacements result shorter. The static is evident because in
the left picture we have a intense blue in some positions and this element
means that the marker has been captured in that position multiple times.
This result is visible also in figure 5.2, displaying a microscope-aided right
side operation: in the right part of the figure the yellow isoline indicates
a high number of marker occurrences upon those points, almost all co-
inciding with the reference posture markers positions, therefore pointing
out that the dentist has frequently kept a similar posture during the

operation.

Figure 5.1: left: MHI in a left side microscope-aided operation; right: corre-
sponding colormap for number of overlapping markers position
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Figure 5.2: left: MHI in a right side microscope-aided operation; right: corre-
sponding colormap for number of overlapping markers position

Figure 5.3: left: MHI in a left side loupes-aided operation; right: corresponding
colormap for number of overlapping markers position

Loupes

In figure 5.3 a motion history example for a loupes-aided left side opera-
tion is shown. It can be seen that both neck and trunk are definitely less
static than what they resulted in microscope-aided operations. However,
the figure also shows that the starting reference position is still often
represented and, therefore, assumed during the entire operation. This

aspect is more visible analyzing the sample right side operation frame
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displayed in figure 5.4.

Figure 5.4: left: MHI in a right side loupes-aided operation; right: correspond-
ing colormap for number of overlapping markers position

Naked eye

In figure 5.5 a motion history example for a left side operation performed
without any magnification tool is shown. What can be assessed by look-
ing at this figure is that the head and the trunk are definitely less static
than they resulted with the other two methodologies. Despite it is dif-
ficult to read how close are the markers positions with respect to the
reference position red squares, it is important to highlight that in this
MHI intense blue areas are quite infrequent if compared with the all the
other MHIs pictures considered so far. This means that marker positions
overlap less frequently, therefore, when operating with naked eye, the
dentist need to vary more often his body posture. Figure 5.5 displays a
naked-eye right side operation: the obtained MHI reconstruction is co-
herent to what we saw for the left side operations. However, in the right
side operation, a slightly higher level of repetition of the same marker

positions is detectable for the bottom back markers.
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Figure 5.5: left: MHI in a left side operation performed with naked eye; right:
corresponding colormap for number of overlapping markers position

Figure 5.6: left: MHI in a right side operation performed with naked-eye; right:
corresponding colormap for number of overlapping markers position

5.2 Angular comparisons

In this section we present the values of the RULA-relevant angles ob-
tained from the analysis of the frames. In order to get a better repre-
sentation and comparison, we decided to group the data by side of the

operation and adopted visual aid. First of all we present the angle values
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with respect to the computed ground position, then we compare these
values with their relative reference position.

The steps necessary for computing these angles have been introduced
in previous chapter. The procedure presented eventually computed the
3D skeleton reconstruction image but in this chapter we focus onto the

numerical results, useful for evaluating RULA scores.

5.2.1 Angle variations with respect to reference po-
sition

Microscope
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Figure 5.7: Neck inclination values during a left side microscope-aided oper-
ation, compared with the reference posture angle (green line)

In figure 5.7 the neck’s inclination angles assumed during an entire
left side microscope-aided operation are represented and the reference
position’s neck inclination value is also represented as a green line. Data
indicate that the dentist kept a quite static neck posture during the
operation as most of detected markers positions are grouped and close to
the reference position angle. Some outliers are also present: they could
be due to noise caused by some aleatory effects, such as a consistent head
displacement from the microscope necessary to grab clinical instruments
or they could be due to a wrong analysis of the algorithm caused by some
light flashing on the marker.

In figure 5.8 there’s a synthetic graph showing the trunk’s inclination,

side-bending and twist angles during the same operation, compared with
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the associated reference posture angles. What can be stated by looking at
these data is that in this kind of operations side-bending is more frequent
and consistent than twisting and we can expect twisting to often not give
any contributions to the final RULA score associated with microscope

operations.
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Figure 5.8: Trunk’s inclination, side-bending and twist angles values during a
microscope-aided operation, compared with the reference posture angles (green
lines)

Figure 5.9 displays the neck inclination values registered during a
right side microscope-aided operation. The graph confirms what seen
already in figure 5.7 and the limited dynamism of the neck with this

operation method.

Loupes

In figure 5.10 the neck’s inclination angles assumed during an entire left
side loupes-aided operation are represented and the reference position’s
neck inclination value is also represented as a green line. Data indicate
a more dynamic behavior of the operator with respect to the previous
methodology. In fact, data points appear to be less close to the reference
position and less grouped, which indicates a more frequent and wide
variations with respect to the reference inclination.

In figure 5.11 there’s a synthetic graph showing the trunk’s inclina-
tion, side-bending and twist angles during the same operation, compared

with the associated reference posture angles. A main difference with
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Figure 5.9: Neck inclination values during a right side microscope-aided op-
eration, compared with the reference posture angle (green line)
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Figure 5.10: Neck inclination values during a left side loupes-aided operation,
compared with the reference posture angle (green line)

respect to the microscope-aided operations is that of a more relevant

presences of twisting angle and, in some cases, of side-bending angle.s

Naked eye

In figure 5.13 there is a graph of the data collected in a left-side oper-
ation performed with naked eyes, regarding the neck inclination angle.
Data suggest that the operator had a quite dynamic behavior during the
operation in comparison to the other two methodologies examined in our

study. In fact, data points appear quite scattered and we cannot out-
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Figure 5.11: Trunk’s inclination, side-bending and twist angles values during
a loupes-aided operation, compared with the reference posture angles (green
lines)

Marker 13 - Operation 27

70 T
-Baseline
o Dental loupes
60 - T
B50F q
bed
=)
(0]
o
£40r- o i
()
3 q
) 2 o ©
> L @ <} -
Z 30 @& %§ %% ) a @
© $ g o @B @ Bo ° " %
> | 8 e%gam oo SGf e Py 00 o 88 o o
C20 1009;? P38 o @ooézf’o 0" 0 Bo® o 5 4
S SRR 1, ol e
[ o js] (] Q.
AP R S i A I T ot
° & & goe 9 8o §5,8,%6 8 o ﬁoo@ ® 0509 Yo o
105 <] oo Ooo © oo o@ “ 6 ° b ]
o % o [ @ & O(Bﬁ & o ©7 so0 N
6 e o o wgpotiars o 8 o &
o
0 i | e e | Pk G BRI ® I
0 100 200 300 400 500 600 700 800

Number of frames

Figure 5.12: Neck inclination values during a right side loupes-aided operation,
compared with the reference posture angle (green line)

line a clear trend in their distribution. This means that the variation of
neck posture is very frequent and that inclination values wider that those

encountered in the other approaches are also more frequent.

Analyzing the bend and twist of the trunk of figure 5.14, we see that
also in this case twisting angle and side-bending angle appear having
more relevant difference values with respect to the reference position.
However, it has to be considered that these values take also into ac-

count the wider and unfrequent movements necessary for catching some
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Figure 5.13: Neck inclination values compared with the reference posture
angle (green line). Data are collected during a left side operation performed
without external visual aids, just naked eyes.
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Figure 5.14: Trunk’s inclination, side-bending and twist angles values during a
naked-eye operation, compared with the reference posture angles (green lines)

instruments.
Finally, figure 5.15 displays the neck inclination values recorded for
a right side operation performed with naked eyes which confirm the be-

havior seen for the left side case.

Comparison

In figures 5.16 and 5.17 there is a recapitalory comparison between the

neck inclination values obtained respectively in a left side and in a right
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Figure 5.15: Neck inclination values compared with the reference posture
angle (green line). Data are collected during a right side operation performed
without external visual aids, just naked eyes.
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Figure 5.16: Comparison between neck inclination angle values recorded with
the three different approaches for left side operations

side operation, using the three different approaches examined. These
operations are the the same left operations considered in figure 5.18 and
5.18 where the probability density function of the neck angle values is
represented. The analyses suggest that the microscope offers the best

solution in terms of low dynamism and angles extension.
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Figure 5.17: Comparison between neck inclination angle values recorded with
the three different approaches for right side operations

Marker 13 - Left Operations

0.1
@ Microscope
0.09 ¢ Dental Loupes
© Naked Eye
0.08

o
o
N

o
o
)

o
o
i

Probability density function
o =)
o o
@ 3]

0.02

-20 -10 0 10 20 30 40 50 60 70
Angular value in degree

Figure 5.18: Probability density function of the distribution of the neck in-
clination angle values recorded with the three different method for left side
operations

5.2.2 Angular distribution

The distribution of the angles is another important aspect to consider
for our evaluation. In figure 5.18 there is a comparison between the dis-
tributions of the neck inclination angles recorded with the three different
methods, regarding left side operations executed on the same day, so with

exactly the same cameras settings.
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Figure 5.19: Probability density function of the distribution of the neck in-
clination angle values recorded with the three different method for right side
operations
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Figure 5.20: Probability density function of the distribution of the neck incli-
nation angle values recorded in all the operations, grouped by methodology

By analyzing these results, we see that the curve relative to microscope-
aided operations suggests us that the operator during this operation
adopts a posture that allows him to keep the neck in a quite static po-
sition with an average inclination angle of around 9 degrees. This is
indicated by the fact that the red Gaussian has a more tight bell curve
and we have an higher probability to have the neck with that inclination.

If we consider the data regarding the operation executed using the
dental loupes, we see that it has also a quite static posture as their bell

curve is not as wide as the naked eye curve, despite being slightly wider
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that the microscope one. Besides, it is important to point out the notable
difference in the average neck inclination values:in particular we have that
the average value for loupes operation is about 27 degrees and that for
naked eyes operations is about 35 degrees.

A comparison between the neck inclination angles values distribu-
tion for the three methods applied to right side operation is given in
figure 5.19. In this case we see that the smallest average neck inclination
angle is associated with loupes methodology, while that for microscope
methodology is a few degrees higher: respectively, 13 and 18 degrees.
These values describe an unusual but realistic situation that could be en-
countered sometimes but which is not reflected in most of the cases. For
what concerns the width of the bell curves, also in this case the naked-eye
curve is the widest one, confirming a higher dynamism required for this
approach. These analyses, collected for all the operations, lead us to the
global probability distribution of the angular values inclinations, shown
in 5.20. We can see that the shapes of the bell curves are coherent with
the results obtained with the sample operations considered so far. The
global trend of the neck inclination angle is that the operator, when using
the microscope, moves the neck less with respect to the other two tech-
niques and keeps an less wide average inclination angle. In particular the
average neck inclination angle values obtained by the total probability
density functions are about 12 degrees for microscope, about 22 degrees

for the loupes and 32 degrees for naked eyes.

5.3 RULA evaluation

In this section we evaluate the three different methods examined by fol-
lowing RULA criteria. In particular, since we focused our analysis on
neck and trunk postures, we evaluate the results through step 9 and 10
of RULA algorithm.

The scores obtained are the following:

e Microscope: the neck score is between 1 and 2 while the trunk score
is 1. By considering the values obtained for twist and side-bending
angles for the trunk, we also assigned a score of 1 for their combined

contribution;

e Loupes: the neck score is between 2 and 3 while the trunk score is

in the range 2-4. Despite the twist and side-bending values for the
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trunk are slightly higher in this case, the score assigned is again 1
for their combined contribution, as their contribution is not strong

enough for a higher score (RULA does not apply half point scores);

e Naked eye: the neck score is 3 and the trunk score is in the range
3-5. The score assigned for twist and side-bending of the trunk is
2, as they both often present a strong contribution in the frames

position.

Analyzing the shape of the bell of the angular distribution presented
in 5.20, we can also give the score accounted in RULA’s step 6 which
regards general muscle use: the score for microscope operations is 1 due
to the fact that the dentist is quite static pfor most of the operations
duration; the score assigned for loupes and naked eye methods is instead

0, despite loupes reveal to be a generally more static approach.






Conclusions

The purpose of this thesis project was that of realizing a reliable posture
detection methodology which could allow a basic 3D body reconstruction
meant to assess the quality of the posture assumed by the operating
dentist during operations with the three visual solutions examined: naked
eye, dental loupes and surgical microscope. The implemented procedure
had to be non-invasive in order to not disturb the operator and it was
applied through the combined use of a markers-equipped t-shirt (to be

worn by the dentist) and two cameras.

We collected the 3D markers position parameters by using this equip-
ment together with a pc and our C++ script based on OpenCV libraries.
Then we sorted them into the three visual aids categories, after separat-
ing those related with right side operations from those related with left
side operations, which, due to the operating room instruments arrange-
ment, required two slightly different setups. With the data collected and
sorted we could proceed to the analysis phase in which the quality of the
postures assumed throughout each operation were evaluated with the aid
of graphical solutions as the motion history images which already allowed
us a qualitative evaluation of the average extension of the movements of

the operator and of his level of dynamism. The other graphical tool

7
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used for analyzing the data was that of 3D skeleton reconstruction which
were the key step necessary for computing the posture assessment scores
contemplated by RULA.

From a comparison of the processed data and the RULA scores ob-
tained by the three different methodologies compared in our study, it
clearly emerged that the visual aid used in the operations by the den-
tist strongly affected his movements and the quality of his posture. In

particular we found the following results for the different visual aids:

e The microscope data analyses suggest that the dentist assumes an
average neck position between 10 and 15 degrees for most of the
operation, the whole motion is quite static and it lies in a small

position interval around the reference position;

e The dental loupes data analyses show that the dentist assumes an
average neck position between 20 and 25 degrees for most of the
operation, the general motion is less static, it introduces more twist-
ing and side-bending factors contributions but it still lies in a small
(despite larger than microscope one’s) position interval around the

reference position;

e The naked eye data analyses show that the dentist assumes an
average neck position between 23 and 30 degrees for most of the
operation, the general motion is quite dynamic and it concerns a
large position interval around the reference position. Besides, both
twist and side-bending factors are increased with respect to the

other two methodologies results;

The results obtained by assessing our data with RULA algorithm also
confirmed the better quality of the general posture assumed during an op-
eration performed with the microscope with respect to loupes and naked
eyes operations. Considering the RULA scores obtained considering only
the upper body evaluation, we could determine that the surgical micro-
scope is the best visual aid in terms of quality of the posture assumed
during the operations. In fact it is the methodology that, according
to RULA, achieves the lowest levele of musculoskeletal disorders risks.
These results are coherent with the starting trend forecasts and with the
general feeling of the doctor. Future developments of this work could in-

volve developing a system for monitoring the movement of the legs,arms
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and wrists during the operations, in order to cover the remaining scores of
the RULA. A possible implementation solution could be through the use
of accelerometers in combination with the ArUco makers. In this way
we could achieve a more accurate posture reconstruction which is the
key element for assessing the quality of human body posture in order to
evaluate and avoid the risk of MSDs. The procedures described and im-
plemented in these project and their possible future improvements could
be usefully applied in many areas of interest of ergonomics, providing an

effective tool for investigation of MSD risks in several job areas.
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