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Abstract

In this dissertation we discuss the occurrence of Fano resonances and bound states
in the continuum in arrays of evanescently coupled dielectric optical waveguides. We
will focus on Fano resonances in static photonic structures, their role in analyzing
particle statistics and in non-Hermitian optical structures.
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Sommario

In questo elaborato discutiamo la comparsa di risonanze di Fano e stati legati nel
continuo in allineamenti di guide d’onda dielettriche in accoppiamento evanescente.
Ci focalizzeremo su risonanze di Fano in strutture fotoniche statiche, il loro ruolo
nell’analizzare la statistica di particelle e su strutture ottiche non Hermitiane.
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Introduction

One of the most important phenomena in physics is resonance.
In mechanical system that can perform, in the absence of damping, free oscillations at
a particular frequency ω0, if we apply to the system a driving force with a frequency
ω, this force will induce a large response in the system when the frequency ω is close
to ω0, providing that the damping is not too large [1]. Frequencies at which the
response amplitude is a relative maximum are known as resonance frequencies of the
system. In other systems phenomena occur which are described as resonance but
depend on interaction between different aspects of the system, not on an external
driver. The phenomenon of resonance is a general physical principle that applies
everywhere and at every level, from classical to quantum mechanical systems.

Resonances are both feared and sought after. Engineers, assembling bridges
and raising high buildings, subject to wind pressure and periodic stress, do their
best to suppress resonances, which, if not carefully taken into consideration, may
bring those structures to a catastrophic end. A nuclear reactor is designed around
the absorption resonances that a neutron on its way from high energies, when born
in the fission of uranium, down to thermal energy, has to avoid, before being useful
again in the chain reaction. Optical fibers, used to transport light signals, are
designed to work in a particular frequency window, in order to minimize absorption
and increase efficiency.

A fundamental field in which resonances played a crucial role in the history of
mankind was absorption of radiation by atoms. Absorption lines were observed in
transitions between bound levels of hydrogen in the interaction with radiation, at
the end of the 19th century, later allowing Niels Bohr to deduce his model of the
atom, which laid the basis of quantum mechanics. The typical shape of the response
curve of these resonances is that of a Lorentzian function, which is symmetric and
centered at the resonant frequency. These are called Breit-Wigner resonances.

However, not all resonances shared these features. Another kind of lineshape
emerged, above the ionization energy, in the continuum, for some noble gases. A
lineshape that was asymmetric and had no explanation. The first to describe these
spectral atomic profiles was Ugo Fano in 1935 [2], a young postdoctoral fellow in
the group of Enrico Fermi, and later, in 1961 [3], in a much more refined work.
He gave an interpretation of these “strange-looking shapes” based on the quantum
mechanical principle of superposition and interference between discrete excited
states and the continuum, sharing the same energy. This second paper by Fano
became one of the most important publications in the physics of the 20th century.
Together with an asymmetric shape, Fano resonances may come with another
interesting feature: destructive interference. Usually, as already discussed, reso-
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2 Introduction

Figure 1: Fano resonance as a quantum interference of two processes: direct ionization of
a deep inner-shell electron and autoionization of two excited electrons followed
by the Auger effect. This process can be represented as a transition from the
ground state |g〉 of an atom either to a discrete excited autoionizing state |d〉
or to a continuum |c〉. Dashed lines indicate double excitations and ionization
potentials. [18].

nances enhance the response of a system, for better or worse. On the contrary, a
Fano resonance, sometimes called an "antiresonance" may slow down the system,
partially or completely, suppressing its dynamics. Two simple examples are given
to elucidate these two characteristics of Fano resonances. First we consider light
interacting with an atom [18]; see Figure 1. A photon of frequency ν interacts with
the atom, which can emit an electron in a process called photoionization. There
are many ways in which this can happen. The simplest one is the excitation of an
inner-shell electron above the ionization threshold, A + ~ν → A+ + e− (Figure 1
(right)). In this process the whole atom, when coupled to the radiation field, goes to
an energy level in the continuum and then emits the electron into the continuum at
that energy. Another process is the excitation of the whole atom to a quasidiscrete
state, in our case two electrons excited from an inner-shell to a higher shell, followed
by the relaxation of one electron transferring its energy to the another one, thus
being emitted, A + ~ν → A∗ → A+ + e− (Figure 1 (left)). This process is called
autoionization. The excited atom finds itself on a level, clearly a bound state, but
above the first ionizing threshold, in the continuum. This process of autoionization
can be considered to couple continuum states of one channel with bound states of
another. Because of the superposition principle of quantum mechanics, whenever
two states are coupled by different paths, interference may occur. And this is the
idea Fano had in mind when he wrote his papers on this argument.
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Figure 2: Resonances of parametrically driven coupled oscillators. (a) Schematic view
of two coupled damped oscillators with a driving force applied to one of them;
(b) amplitude of the forced oscillator |c1| versus frequency, and (c) amplitude
of the coupled oscillator |c2| versus frequency. [18].

But, as already mentioned, Fano resonances are not limited to quantum mechanics.
A relatively simple mechanical system, showing Fano resonance, is composed of two
pendula coupled with a spring, with one of the oscillators driven by a periodic force
of frequency ω0; see Figure 2. The analysis of the system [19] shows that, near its
eigenfrequencies ω1 and ω2, there are two resonance frequencies ω− and ω+ with
different behaviors. As can be seen in Figure 2(b), the resonance at ω− is an usual
symmetric one, which amplifies the oscillation amplitude c1 of the first pendulum.
Something different happens at ω+; the shape of the resonance is asymmetric and
there’s also a dip near it, actually going to zero. The oscillation amplitude of the
first pendulum goes to zero! There is total destructive interference between the
driving force and the influence of second oscillator, two channels that interfere.
Nothing "strange" happens to the second pendulum, as seen in Figure 2(c), since
there’s only one channel.
Another important thing to notice is the narrowness of the Fano resonance, which
will turn out to be extremely useful in sensor applications.

Just like their more popular counterparts, Fano resonances are ubiquitous and
span many areas of physics. We will focus on their appearance in optical structures
made up of waveguides.





Chapter 1

Building the optical structure

Our goal is to build an optical structure where Fano resonance and the rich
seam of physics phenomena connected to it come into play. Having in mind the
scattering experiments with noble gases that stimulated the young mind of Fano,
we need to get hold of both discrete levels and the continuum and couple them
together. The natural starting point is (non-relativistic) quantum mechanics, based
on the Schrödinger equation:

i~
∂

∂t
|ψ(t)〉 =

p̂2

2m
|ψ(t)〉+ V (x̂, t) |ψ(t)〉 (1.1)

which describes the time evolution of the state |ψ(t)〉 of a particle with mass m
in a potential V . The state, everything we know about the particle, lives in an
abstract Hilbert space, a complex vector space endowed with an inner product that
makes it complete in the induced metric. Linear operators, indicated here with
little hats on them, acts on these states. In the position representation, the state
of the particle is the wave function ψ(x, t) = 〈x|ψ(t)〉, a complex-valued function
belonging to L2(R3) over the variable x; the momentum operator becomes −i~∇
and the position operator is simply multiplication by x. The Schrödinger equation
takes the following form

i~
∂

∂t
ψ(x, t) = − ~2

2m
∇2ψ(x, t) + V (x, t)ψ(x, t) (1.2)

The meaning of the wave function, according to Born’s rule, is that its square
modulus, integrated over a volume, is the probability to find the particle in that
volume, at time t.

An analogy with electromagnetism and the intensity of the electromagnetic
field, can be drawn. Consider first a step-index, weakly guiding, single-mode at
the operating wavelength, straight, infinite optical fiber, the only kind we will deal
with. The core, of refractive index na, is circular with radius r and embedded in an
infinite substrate of refractive index nc. This will serve as the basic building block
of the photonic structure.
A Cartesian orthogonal coordinate system Oxyz is placed with the origin at the
center of the core, with the z axis along the fiber. Unit vectors along the positive
directions of the coordinate axes x, y and z, are indicated by ex, ey and ez,
respectively.
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6 Chapter 1. Building the optical structure

A monochromatic wave is propagating in the positive z direction. β0 = β0ez and
ω0 = cβ0 are its wave vector and (angular) frequency in vacuum, respectively.
c is the speed of light in vacuum. The medium is inhomogeneous, with a index of
refraction n(x)

n(x) =

{
nc if x2 + y2 > r2

na if x2 + y2 ≤ r2
(1.3)

Starting from Faraday-Lenz equation, taking the curl of both sides and using
Ampère-Maxwell equation (with no free charges or currents since we are in a
dielectric), the wave equation for the electric field is obtained.

∇2E(x, t)− n2(x)

c2

∂2

∂t2
E(x, t) = 0 (1.4)

The full solution to this equation can be found [6] but we are only interested in an
approximate one. Under the conditions of paraxial approximation, which is well
satisfied by a single mode fiber, and of weak guidance (i.e. na−nc

na
� 1)[4], the scalar

approximation can be used [5]. The x and y components of the electric field (or
whatever two perpendicular linear polarizations one desires in the xy plane, owing
to the axial symmetry of the system around z) decouple. These two indipendent
modes of propagation are called LP01. We write the field in the following way

E(x, t) = α0E(x)ei(β0ncz−ω0t) (1.5)

where α0 is an arbitrary complex constant and E(x) is the time-independent envelope.
After substituting the scalar field in in Eqn. (1.4) we get( ∂2

∂x2
+

∂2

∂y2

)
E(x, t) + α0

∂2E(x)

∂z2
ei(β0ncz−ω0t) + 2iα0β0nc

∂E(x)

∂z
ei(β0ncz−ω0t)

− α0β
2
0n

2
cE(x)ei(β0ncz−ω0t) +

ω2
0n

2(x)

c2
α0e

i(β0ncz−ω0t)E(x) = 0

(1.6)

and neglecting the second order partial derivative with respect to space in the
paraxial approximation ∣∣∣∂2E

∂z2

∣∣∣� β0

∣∣∣∂E
∂z

∣∣∣ (1.7)

we obtain the following equation

i~
∂

∂τ
E(x, y; τ) = − ~2

2~2β2
0n

2
s

∇2
⊥E(x, y; τ) +

n2
c − n2(x)

2n2
c

E(x, y; τ) (1.8)

where τ = ~β0ncz and ∇2
⊥ = ∂2

∂x2
+ ∂2

∂y2
.

This is formally a Schrödinger equation; indeed it is called the optical Schrödinger
equation, with "wave function" E for a fictitious particle of "mass" ~2β2

0n
2
c evolving

in "time" τ in a "potential"

V (x) =
n2
c − n2(x)

2n2
c

' nc − n(x)

nc
(1.9)

The "probability density" will be proportional to the square modulus of E , itself
proportional to the intensity of the field. We have exchanged time evolution with
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Figure 1.1: (a) Two parallel circular dielectric waveguides with axes along the z direction,
perpendicular to the plane xy. (b) Profiles of the uncoupled guided modes
and refractive indices. na and nb are the core indices and nc is the substrate
(clad) index. [6].

space propagation along the fiber axis. As assumed, we have one guided mode,
which is the equivalent to a bound state in a finite potential well with cylindrical
symmetry. The exact shape of the field amplitude, as a function of x and y, can be
calculated [6]. The important characteristics are that the amplitude of the field is
axial symmetric, bell-shaped, maximum at the center and, outside the core of the
fiber, it decays exponentially. Being a mode of the fiber, it does not change during
the propagation, just like the lowest bound energy eigenstate of the quantum well,
which is a stationary state in time.

The next step is to couple two parallel fibers by putting them close enough so
that they can "feel" each other through the overlapping of the respective fields
outside the core. This is called "evanescent coupling". The phenomenon is similar
to the tunneling of an electron between two wells separated by a finite potential
barrier. Referring to Figure 1.1, the fibers have refractive index na and nb. The
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substrate has refractive index nc. The refractive index of the composite waveguide
structure can be written as

n2(x, y) =


n2
a, core a (1.10)
n2
b , core b (1.11)
n2
c , elsewhere (substrate) (1.12)

In coupled-mode theory [6], a general wave propagation in the coupled-waveguide
structure can be approximated, if the two waveguides are not too close to each
other, by

E(x, y, z, t) = A(z)Ea(x, y)ei(βaz−ω0t) +B(z)Eb(x, y)ei(βbz−ω0t) (1.13)

when Ea(x, y)ei(βaz−ω0t) and Eb(x, y)ei(βbz−ω0t) are the only confined modes of prop-
agation of the individual waveguides when they are far apart. βa and βb are the
propagation constants in the two fibers. If the two waveguides do not interact,
when an infinite distance is placed between them, A(z) and B(z) do not depend on
z and each term on the right-hand side of Eqn. (1.13) satisfy the wave equation
separately. To express this in a simple form, let’s define the following quantities

∆n2
a(x, y) =

{
n2
a − n2

c , core a (1.14)
0, elsewhere (1.15)

∆n2
b(x, y) =

{
n2
b − n2

c , core b (1.16)
0, elsewhere (1.17)

Then we can write

n2(x, y) = n2
c + ∆n2

a(x, y) + ∆n2
b(x, y) (1.18)

We can thus say that(
∇2
⊥ +

ω2
0

c2
[n2
c + ∆n2

α(x, y)]
)
Eα(x, y) = β2

αEα(x, y) (1.19)

with α = 1, 2.
The field expressed in Eqn. (1.13) must satisfy the wave equation in the composite
structure (

∇2
⊥ +

ω2
0

c2
[n2
c + ∆n2

a(x, y) + ∆n2
b(x, y)]

)
E = 0 (1.20)

Substituting Eqn. (1.13) into (1.20)(
∇2
⊥E +

∂2A

∂z2
Eaei(βaz−ω0t) + 2iβa

∂A

∂z
Eaei(βaz−ω0t) − β2

aAEaei(βaz−ω0t)

+
∂2B

∂z2
Ebei(βbz−ω0t) + 2iβb

∂B

∂z
Ebei(βbz−ω0t) − β2

bBEbei(βbz−ω0t)
)

+
ω2

0

c2
n2E = 0

(1.21)

Under the assumption of slow variation of the mode amplitudes A(z) and B(z) over
z (paraxial approximation), we neglect the 2nd partial derivatives with respect to
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z. Also, using Eqn. (1.19), we have

∇2
⊥E +

ω2
0

c2
n2E =

(
β2
a −

ω2
0

c2
(n2

c + ∆n2
a) +

ω2
0

c2
n2
)
AEaei(βaz−ω0t)

+
(
β2
b −

ω2
0

c2
(n2

c + ∆n2
b) +

ω2
0

c2
n2
)
BEbei(βbz−ω0t)

(1.22)

Simplifying the refractive indices

∇2
⊥E +

ω2
0

c2
n2E =

(
β2
a +

ω2
0

c2
∆n2

b

)
AEaei(βaz−ω0t)

+
(
β2
b +

ω2
0

c2
∆n2

a

)
BEbei(βbz−ω0t)

(1.23)

Substituting this result into Eqn. (1.21) (without the 2nd partial derivatives) we
have

2iβa
∂A

∂z
Eaeiβaz +

ω2
0

c2
∆n2

bAEaeiβaz + 2iβb
∂B

∂z
Ebeiβbz +

ω2
0

c2
∆n2

aBEbeiβbz = 0 (1.24)

Taking the product of Eqn (1.24) with Ea(x, y)∗ and Eb(x, y)∗, respectively, and
then integrating over the whole plane xy, with the assumption that the two fibers
are not too close together, meaning

∫∫
R2

E∗a · Eb dx dy �
∫∫
R2

E∗a · Ea dx dy (1.25)

∫∫
R2

E∗a · Eb dx dy �
∫∫
R2

E∗b · Eb dx dy (1.26)

and using the normalization condition (since modes form a complete orthogonal
set)

βm
2ω0µ

∫∫
R2

Em · E∗ndx dy = δm,n (1.27)

where µ is the permeability of the medium, we finally arrive at the dynamic equations
for the mode amplitudes A(z) and B(z)


dA

dz
= iκaaA+ iκabBe

i(βb−βa)z (1.28)

dB

dz
= iκbaAe

i(βa−βb)z + iκbbB (1.29)
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Figure 1.2: a) A numerical simulation of a narrow input beam that excites a single
site of a periodically poled lithium niobate waveguide array with a spacing
between waveguides of 15 µm and a wavelength of 1.56 µm. b) Experimental
measurement of the intensity distribution at the output facet of a lithium
niobate waveguide array at 1, 56 µm. [20].

where

κaa =
ω0

4
ε0

∫∫
R2

E∗a ·∆n2
bEa dx dy (1.30)

κbb =
ω0

4
ε0

∫∫
R2

E∗b ·∆n2
aEb dx dy (1.31)

κab =
ω0

4
ε0

∫∫
R2

E∗a ·∆n2
aEb dx dy (1.32)

κba =
ω0

4
ε0

∫∫
R2

E∗b ·∆n2
bEa dx dy (1.33)

and where ε0 is the permittivity of free space. The terms κaa and κbb result from
perturbations in one waveguide due to the presence of the other waveguide and are
generally small with respect to the propagation constants βa and βb, respectively.
We will assume them to be negligible throughout this discussion. κab and κba are
the exchange couplings between the two waveguides. It can be shown, imposing
conservation of energy, that κab = κ∗ba. This coupling phenomenon between modes
is similar to the electron motion in a two-atom molecule. Putting together a large
number of weakly coupled parallel waveguides, the optical analog to single-particle
quantum transport in a quantum wire is realized. In this sense, coupled-mode
theory is like tight-binding approximation in solid state physics. In Figure 1.2 it is
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shown a visualization of what happens when light is launched in a waveguide array;
in Figure 1.2(a) a numerical simulation of the distribution of light is calculated
while, in Figure 1.2(b) an actual measurement of light intensity at the output facet
of an actual structure is presented [20].
Reaching the continuum is now easy. Just extend the array of parallel waveguides
to infinity.
To simulate the discrete states embedded in the continuum, waveguides are side-
couple to the array. It is important to note that the conditions under which
coupled-mode theory is valid, are compatible with the derivation of the optical
Schrödinger equation, so they can be used together.





Chapter 2

Fano resonance and bound states in
the continuum

The optical structure, in which Fano resonances are present, is shown in Figure
2.1(a). In the analysis, a new important feature will emerge, bound states in the
continuum (BIC).
An infinite array of evanescently coupled optical waveguides is side-coupled to N
waveguides |1〉, |2〉, ..., |α〉, ..., |N〉. Coupled-mode theory is assumed to be valid, so
each waveguide is weakly coupled to the next one. κα is the coupling rate between
the side waveguide |α〉 and the waveguide of index nα in the array (α = 1, 2, ..., N),
whereas the coupling rate between adjacent waveguides in the linear array is κ. The
zero index in the array can be chosen arbitrarily; for example, looking at Figure
2.1(a) with N = 4, and choosing n2 = 0, one has n1 = −2, nα=3 = 3 and n4 = 6.

Indicating by bn(z) the field amplitude of light waves trapped in the waveguide
n of the infinite linear array, and by c̃α(z) the field amplitude of light waves trapped
in the side waveguide |α〉, the evolution of modal amplitudes along the spatial
propagation distance z, using Eqns. (1.28) and (1.29), is governed by the following
set of coupled-mode equations:

dbn
dz

= iκ(bn+1 + bn−1) + i
N∑
α=1

καc̃αe
i(βα−β)zδn,nα (n ∈ Z) (2.1)

dc̃α
dz

= iκαbnαe
i(β−βα)z (α = 1, 2, ..., N) (2.2)

where Z is the set of integer numbers. Define

cα(z) ≡ c̃α(z)e−iωαz (2.3)

where ωα = β−βα is the propagation constant mismatch between the side waveguide
|α〉 and the waveguide in the array. We then obtain

i
dbn
dz

= −κ(bn+1 + bn−1)−
N∑
α=1

καcαδn,nα (n ∈ Z) (2.4)

i
dcα
dz

= −καbnα + ωαcα (α = 1, 2, ..., N) (2.5)

13
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Figure 2.1: (a) Optical structure made up of N waveguides. |1〉, |2〉, ..., |N〉, side-
coupled to an infinite array of waveguides. (b) The quantum analogue of
the waveguide structure in (a), with N discrete states coupled to continuum
states.

Typically, light is launched into one of the side waveguides, which is equivalent to
populating one of the corresponding discrete levels; see Figure 2.1(b). Light decays
though evanescent coupling into a featureless (only one waveguide side-coupled
to the array) or structured (more than one waveguide side coupled to the array)
continuum, the same as population on a discrete level decays into the continuum.
To make the analogy between quantum mechanics and optics even more clear, we
perform a change of basis in Eqn. (2.4) and (2.5), going from a Wannier basis to a
Bloch basis. We introduce the amplitude c(k, z) which is a function of the Bloch
wave number k, defined in the first Brillouin zone, −π ≤ k < π, where we have
assumed unit distance between the waveguides in the array:

c(k, z) = − 1√
2π

∑
n∈Z

bn(z)eikn (2.6)

and the corresponding inversion relation

bn(z) = − 1√
2π

∫ π

−π
dk c(k, z)e−ikn (2.7)

We are just borrowing nomenclature and results from solid state physics, since we
are dealing with a periodic structure and, mathematically, everything is formally
the same. Since this array is infinite, k is a continuum variable.
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Multiplying Eqn. (2.4) by eikn and summing over n

∑
n∈Z

i
dbn
dz

eikn = −κ
∑
n∈Z

(bn+1e
ikn + bn−1e

ikn)−
∑
n∈Z

N∑
α=1

καcαe
iknδn,nα

i
d

dz

∑
n∈Z

bne
ikn = −κe−ik

∑
n∈Z

bn+1e
ik(n+1) − κeik

∑
n∈Z

bn−1e
ik(n−1) −

N∑
α=1

καcαe
iknα

i
d

dz

∑
n∈Z

bne
ikn = −κ(e−ik + eik)

∑
n∈Z

bne
ikn −

N∑
α=1

καcαe
iknα

i
d

dz

∑
n∈Z

bne
ikn = −2κ cos k

∑
n∈Z

bne
ikn −

N∑
α=1

καcαe
iknα

i
d

dz
c(k, z) = −2κ cos k(c(k, z)) +

1√
2π

N∑
α=1

καcαe
iknα

(2.8)

and using Eqn. (2.7) in Eqn. (2.5)

i
dcα
dz

= ωαcα +
κα√
2π

∫ π

−π
dk c(k, z)e−iknα (2.9)

we obtain the system
i
dc

dz
= ω(k)c(k, z) +

N∑
α=1

gα(k)cα(z) (2.10)

i
dcα
dz

= ωαcα(z) +

∫ π

−π
dk g∗α(k)c(k, z) (α = 1, 2, ..., N) (2.11)

where
ω(k) = −2κ cos k , gα(k) =

κα√
2π
eiknα (2.12)

If we exchange the spatial coordinate z with time t, Eqns. (2.10) and (2.11) describe
the quantum evolution in time of a system made up of N discrete levels |1〉, |2〉,
..., |N〉 of energy ~ω1, ~ω2, ..., ~ωN , coupled to a continuum (a band) of states |k〉
with energy ~ω(k), ranging from −2~κ to 2~κ. The model describing such a system
is known as Fano-Anderson model, having the following Hamiltonian

Ĥ = ~
N∑
α=1

ωα |α〉〈α|+ ~
∫
dk ω(k) |k〉〈k|+ ~

N∑
α=1

∫
dk (g∗α(k) |α〉〈k|+ gα(k) |k〉〈α|)

(2.13)
where gα(k) is the coupling amplitude between states |α〉 and |k〉 and the integrals
are over the appropriate range. If we expand a general solution |ψ〉 in the complete
set of energy eigenstates

|ψ〉 =
N∑
α=1

cα(t) |α〉+

∫
dk c(k, t) |k〉 (2.14)
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and substitute it inside the Schrödinger equation, assuming orthonormality, such
that 〈α|β〉 = δα,β, 〈α|k〉 = 0 and 〈k|k′〉 = δ(k − k′), we get

i~
∂

∂t
|ψ〉 = i~

N∑
α=1

∂cα
∂t
|α〉+ i~

∫ π

−π
dk

∂c(k, t)

∂t
|k〉 = Ĥ |ψ〉 (2.15)

Ĥ |ψ〉 = ~
N∑
α=1

ωαcα |α〉+ ~
N∑
α=1

∫
dk gα(k)cα |k〉+ ~

∫
dk ω(k)c(k, t) |k〉

+ ~
N∑
α=1

∫
dk g∗α(k)c(k, t) |α〉

(2.16)

Multiplying on the left Eqn. (2.15) by 〈k′| and by 〈β| respectively and renaming
dummy indices β → α and k′ → k, we obtain Eqns. (2.10) and (2.11), in time
t instead of space z. In our optical analogue of the quantum mechanical decay
problem we have replaced time evolution of quantum states with spatial propagation
along the axis z. Fractional power in waveguide |α〉, proportional to |cα(z)|2, plays
the role of population for level |α〉, or the probability that, in a measurement, the
system is found in level |α〉.

An analytical solution of Eqns. (2.10) and (2.11) is generally not possible.
An approximate solution can be found in a simple, but relevant case, which
shows Fano resonance and BIC. The assumption is weak coupling between the
discrete states and the continuum, or, in our optical model, the coupling between
waveguides in the array is stronger than that between the array and the side-coupled
waveguides, i.e. κ � κα. Considering the Eqns. (2.10) and (2.11), we want to
eliminate the amplitudes c(k, z). Start by assuming, without loss of generality,
c(k, z) = f(k, z)e−iω(k)z and cα(z) = fα(z)e−iωαz and substitute into Eqn. (2.10)

i
(∂f
∂z
e−iωz − ifωe−iωz

)
= ωfe−iωz +

N∑
α=1

gαfαe
−iωαz

∂f

∂z
= −i

N∑
α=1

gαfαe
i(ω−ωα)z

Integrating from the initial point at z = 0 up to z, assuming f(k, 0) = 0, meaning
no light is injected in the array of waveguides at z = 0, we get

f(k, z) = −i
∫ z

0

dz′
N∑
α=1

gαfαe
i(ω−ωα)z

Going back to the field amplitudes

c(k, z) = −i
∫ z

0

dz′
N∑
β=1

gβcβe
iω(z′−z)

Substituting this result into Eqn. (2.11), we obtain a system of integrodifferential
equations for the field amplitudes cα(z) in the side waveguides

dcα
dz

= −iωαcα(z)−
N∑
β=1

∫ z

0

dz′Φα,β(z − z′)cβ(z′) (2.17)
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where
Φα,β(z − z′) ≡

∫ π

−π
dk g∗α(k)gβ(k)e−iω(k)(z−z′) (2.18)

are called the "memory functions", which can be calculated for the specific functions
in Eqns. (2.12)

Φα,β(z − z′) = inα−nβκακβJnα−nβ(2κ(z − z′)) (2.19)

where Jn is the Bessel function of order n. For n ∈ Z, with real x, Jn(x) is finite
at the origin (x = 0) and looks roughly like oscillating sine or cosine functions
that decay proportionally to 1/

√
x, although their roots are not generally periodic,

except asymptotically for large x; also, J−n(x) = (−1)nJn(x). We now want to
calculate an approximate expression for the integral in Eqn. (2.17). An analytical
solution to this equation is not easy to find because the process it describes is a
non-Markovian one, meaning that it depends on the solution itself at all previous
positions. Having assumed that κα � κ, for ωα in the continuum and far from
band edges ±2κ, setting cα(z) = qα(z)e−iωαz, we have that qα(x) varies slowly over
the "period" ∼ 1/κ of the memory function (a Bessel function).∫ z

0

dz′Φα,β(z − z′)cβ(z′) =

∫ z

0

dz′Φα,β(z − z′)qβ(z′)e−iωβz
′

(2.20)

Under these assumptions, we make the Markov approximation, in which q(z′) is
replaced by its value at the upper limit of the integral and so it can be taken out∫ z

0

dz′Φα,β(z − z′)qβ(z′)e−iωβz
′
= qβ(z)

∫ z

0

dz′Φα,β(z − z′)e−iωβz′ (2.21)

With the change of variable z − z′ = τ∫ z

0

dz′Φα,β(z − z′)e−iωβz′ =

∫ z

0

dτ Φα,β(τ)e−iωβzeiωβτ

= e−iωβz
∫ z

0

dτ Φα,β(τ)eiωβτ
(2.22)

We finally have an approximate expression for Eqn. (2.17)

dcα
dz
' −iωαcα −

N∑
β=1

∆α,βcβ (2.23)

where

∆α,β =

∫ ∞
0

dτ Φα,β(τ)eiωβτ =

= κακβi
|nα−nβ |

(√
4κ2 − ω2

β + iωβ

)|nα−nβ |
(2κ)|nα−nβ |

√
4κ2 − ω2

β

(2.24)

We begin the analysis of the optical structure when N = 1, with one waveguide
side-coupled to the linear array. Light is launched into the side waveguide and
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decays exponentially into the array. Nothing really interesting is happening. The
governing equation is

dc1

dz
' −(∆11 + iω1)c1 (2.25)

where
∆11 =

κ2
1√

4κ2 − ω2
1

(2.26)

The initial condition, at z = 0, is c1(0) = 1. The solution is simply c1(z) =
e−(∆11+iω1)z. Next we set N = 2, two side-coupled waveguides |1〉 and |2〉. Here we
begin to see Fano resonance and BIC. The system evolves according to the following
coupled equations 

dc1

dz
' −(∆11 + iω1)c1 −∆12c1 (2.27)

dc2

dz
' −∆21c1 − (∆22 + iω2)c2 (2.28)

Setting n1 = 0 and n2 = n0 > 0, we have

∆11 =
κ2

1√
4κ2 − ω2

1

(2.29)

∆22 =
κ2

2√
4κ2 − ω2

2

(2.30)

∆12 = in0κ1κ2

(√
4κ2 − ω2

2 + iω2

)n0

(2κ)n0

√
4κ2 − ω2

2

(2.31)

∆21 = in0κ1κ2

(√
4κ2 − ω2

1 + iω1

)n0

(2κ)n0

√
4κ2 − ω2

1

(2.32)

The system of Eqns. (2.27) and (2.28) is solved, given initial conditions on the
amplitudes, through the standard method of finding the eigenvalues and the corre-
sponding eigenmodes. Population trapping or, equivalently, light in a side-coupled
waveguide not decaying into the array, is linked to the vanishing of the real part of
the corresponding eigenvalue. Physically, this derives from a destructive interference
effect between different decay channels (tunneling paths) of light in waveguides into
the array.

For our purposes, an interesting case arises when the coupling κ1 of waveguide
|1〉 to the linear array is much weaker than the other coupling κ2 of waveguide |2〉.
What we are modeling is the decay of a discrete level in a structured continuum,
which is strongly coupled to the discrete level |2〉. The system of Eqns. (2.27)
and (2.28), in the limit of κ1 � κ2, can be solved for the modal amplitude c1(z)
(following a similar procedure in [15]). Define

c1(z) ≡ s1(z)e−iω1z, c2(z) ≡ s2(z)e−iω1z (2.33)

and substitute it in Eqn. (2.28)

ds2

dz
= −∆21s1 − [∆22 + i(ω2 − ω1)]s2 (2.34)
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Figure 2.2: Fano resonance for N = 2 side waveguides. Normalized decay rate J of light
in waveguide |1〉, weakly coupled to the array in the presence of a strongly
coupled waveguide |2〉, is plotted versus normalized propagation constant
mismatch ω1/κ. Decay rate is normalized to the one in the absence of
waveguide |2〉. Parameter values are: κ1/κ = 0.04, κ2/κ = 0.1, ω2/κ = 0.2
for (a) n0 = 3 and for (b) n0 = 4. The lineshape, around ω1 = ω2, is
asymmetric, a typical sign of a Fano resonance.

since κ1 � κ2 implies ∆12 � ∆22, and s2(0) = 0, since light is launched only in
waveguide |1〉, we can neglect the derivative of s2(z). Thus we have

s2(z) ' − ∆21

∆22 + i(ω2 − ω1)
s1(z) (2.35)

which means
c2(z) ' − ∆21

∆22 + i(ω2 − ω1)
c1(z) (2.36)

Using this result into Eqn. (2.27) we find

dc1

dz
'
[
− (∆11 + iω1) +

∆12∆21

∆22 + i(ω2 − ω1)

]
c1 (2.37)

which, for κ2 = 0 reduces to the case of a single waveguide |1〉 side-coupled to a
featureless continuum. The functional dependence of the decay rate R (the negative
real part in the square brackets of Eqn. (2.37)) of the light in waveguide |1〉 versus
ω1, normalized to its value ∆11 in the absence of waveguide |2〉 is

J ≡ R

∆11

= 1− Re

{
∆12∆21

∆11[∆22 + i(ω2 − ω1)]

}
(2.38)

Typical behaviors of J(ω1) are plotted in Figure 2.2. Notice the asymmetric
shape. This is a Fano resonance. Around ω1 = ω2, with odd n0, a strong peak is
observed (Figure 2.2(a)), thus increasing the decay rate, while, with n0 even, a
strong dip appears (Figure 2.2(b)), decreasing the decay rate. In particular, at
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Figure 2.3: Fano resonance for N = 2 side waveguides. Normalized decay rates J1,2 =
−Re(λ1,2)/∆11 versus normalized propagation constant mismatch ω1/κ for
parameter values κ1/κ = 0.095, κ2/κ = 0.1, ω2/κ = 0.2 and for (a) n0 = 3,
(b) n0 = 4. [7].

ω1 = ω2 for ω2 = 0, J vanishes, leading to a complete suppression of the decay.
Light is trapped in waveguide |1〉, which is the analogous of population trapping.
This is a BIC. The position of waveguide |2〉, with respect to waveguide |1〉, can
enhance or suppress, even completely, light decay in waveguide |1〉. A full solution of
the system of Eqns. (2.27) and (2.28) can be calculated [7], without the restriction
of strong coupling of waveguide |2〉 to the array. With the initial condition of
c1(0) = 1 and c2(0) = 0 we get the following bi-exponential solutions:

c1(z) =
∆11 + λ1 + iω1

λ1 − λ2

eλ2z − ∆11 + λ2 + iω1

λ1 − λ2

eλ1z (2.39)

c2(z) =
(∆11 + λ1 + iω1)(∆11 + λ2 + iω1)

∆12(λ1 − λ2)
(eλ1z − eλ2z) (2.40)

where λ1 and λ2 are the roots of the characteristic polynomial associated to the
matrix of the coefficients of the system

λ2 + (∆11 + ∆22 + iω1 + iω2)λ−∆12∆21 (2.41)
+ (∆11 + iω1)(∆22 + iω2) = 0 (2.42)

The power leakage into the continuum is I(z) = 1− |c1(z)|2 − |c2(z)|2.
Again, asymmetric peaks and different behaviors, for n0 odd or even, are observed;
in Figure 2.3, normalized decay rate J1,2 = −Re(λ1,2)/∆11 is plotted versus ω1. The
asymptotic behavior is basically determined by the "slowest" decaying exponential.
However, strong deviations from a single exponential decay law occur when κ1

becomes comparable to κ2.
Population trapping is achieved when the real part of either λ1 or λ2 vanishes.
When ω1 = ω2 = 0, it is immediate to show that one root vanishes for any even
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Figure 2.4: Light power |c1|2 in waveguide |1〉 versus normalized distance ξ = κz, with
a second waveguide |2〉 placed at (a) n0 = 3 and (b) n0 = 4 sites away from
waveguide |1〉, as shown in the insets. Parameters values are: κ1/κ = 0.28,
κ2/κ = 0.3 and ω1/κ = ω2/κ = 0.2. Solid lines correspond to numerically
computed results. Dashed curves obtained from Eqn. (2.39). Dotted curves
represent the decay one would observe in the absence of waveguide |2〉, i.e.
κ2 = 0. Note that the presence of waveguide |2〉 leads to an acceleration of
the decay in (a) and a deceleration of the decay in (b). [7].

value of n0. In this case we have

c1(z) =
1

1 + (κ2/κ1)2
exp

[
− (κ2

1 + κ2
2)z

2κ

]
+

1

1 + (κ1/κ2)2
(2.43)

c2(z) = − κ1κ2

in0(κ2
1 + κ2

2)

{
1− exp

[
− (κ2

1 + κ2
2)z

2κ

]}
(2.44)

After the transients, the fractional power in waveguides |1〉 and |2〉 is

|c1(∞)|2 =

[
1

1 + (κ1/κ2)2

]2

(2.45)

|c2(∞)|2 =

(
κ1

κ2

)2[
1

1 + (κ1/κ2)2

]2

(2.46)

and the power leaked into the continuum I(∞) = κ2
1/(κ

2
1 + κ2

2). Beyond the
Markovian approximation, only numerical analysis is available. Such results are
shown in Figure 2.4, where the fractional power in waveguide |1〉 is plotted in
solid line versus the (normalized) distance z along the guide, at resonance ω1 = ω2.
Dashed line represents the results with Markovian approximation. Also shown, in
dotted line, the decay law in the absence of the second side-coupled waveguide
|2〉. Notice the expected behavior with odd n0 (Figure 2.4(a)), where we see an
increased acceleration of the decay; on the contrary, with even n0 (Figure 2.4(b))
we see a deceleration of the decay. The case of population trapping, for ω1 = ω2 = 0
and n0 even is shown in Figure 2.5 (with the same meaning as before for solid and
dashed lines).
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Figure 2.5: Fractional light power |c1|2 and |c2|2 in waveguide |1〉 and |2〉, respectively,
versus normalized distance ξ = κz, for the optical structure shown in the
inset. Parameter values are: κ1/κ = κ2/κ = 0.2 and ω1/κ = ω2/κ = 0. Solid
lines represent the numerically computed results, whereas the dashed ones
are obtained from Eqns. (2.43) and (2.44), in the Markovian approximation.
[7].

Under these last conditions, a "steady-state" solution (z →∞) for the coupled
mode equations (2.4) and (2.5) can be written down

bn = 0 for n < 0, n > n0, n = 0, 2, 4, ..., n0 (2.47)

b1 = −κ1

κ
, b3 =

κ1

κ
, b5 = −κ1

κ
, ..., bn0−1 = (−1)n0/2

κ1

κ
(2.48)

c1 = 1, c2 = −(−1)n0/2
κ1

κ2

(2.49)

All the waveguides in the array, with n ≤ 0 and n0 ≥ 0, decouple from the other
waveguides of the structure. This is made possible by the destructive interference
of different tunneling paths. In fact, waveguides in the array at the position n = 0
and n = n0 experience vanishing tunneling rates, −κb1 − κ1c1 and −κbn0−1 − κ2c2,
respectively. This particular state is known as "dark mode state". This state can be
use in an interesting way by changing very slowly, as compared to the characteristic
time scale of the system, the ratio κ1/κ2, so that excitations can be transfered
between the two side waveguides |1〉 and |2〉, thus using the waveguide lattice as a
virtual bus.

On a final note we end the chapter by reporting that these kind of optical
structures can be physically realized by focusing femtosecond laser pulses inside
transparent materials, like glass [21,22]. The coupling constants κ and κα can be
controlled by changing the distance between the waveguides. Different propagation
constant mismatches ωα are achieved by changing the writing speed.



Chapter 3

Particle statistics

We investigate the role of particle statistics in quantum decay processes in the
presence of Fano resonances and BIC through the optical structures built in the
previous chapter; in particular, the infinite array coupled to two side waveguides,
the analogue of a two-level Fano-Anderson model. For now, we’ll stay in the
realm of quantum mechanics and use the same symbols of optics with the usual
correlations. As before, propagation in space in optics is replaced by evolution in
time in quantum mechanics.

As a starting approximation, we will completely disregard the interaction between
the particles and focus on their bosonic or fermionic nature. The Fano-Anderson
model describes a system of two discrete states |1〉 and |2〉, like in two quantum
wells, and a common continuum, an infinite linear quantum wire. The tight-binding
lattice band spans the energy interval −2~κ < E < 2~κ, where κ is the hopping rate
between two adjacent sites of the quantum wire. The energy offsets, from the band
center, of the two states, E1 and E2, are assumed, generally but not necessarily,
to fall inside the continuum, i.e. |E1| < 2~κ and |E2| < 2~κ. We assume again
that the coupling between the states and the continuum is much weaker than the
hopping rate, i.e. κα � κ for α = 1 and 2.. To make apparent the nature of the
particles, we need at least two of them. We place, at t = 0, one particle in state |1〉
and the other in state |2〉.To describe the quantum decay we introduce the survival
probability

Ps(t) = |〈ψ(0)|ψ(t)〉|2 (3.1)

This is clear. According to the rules of quantum mechanics, we are projecting the
final state |ψ(t)〉 onto the initial state |ψ(0)〉 by taking the inner product between
them, resulting in the probability amplitude that the state of the system, at a later
time t, is still in the initial state, at t = 0. Taking the square of the modulus gives
us the desired probability that, at time t, none of the two particles has decayed
into the continuum. The Hamiltonian of the two-level Fano-Anderson model, in
second quantization framework, can be written down immediately [8] from its
"first-quantized" version already used in Eqn. (2.13)

Ĥ =
2∑

n=1

Enâ
†
nân +

∫
dk E(k)ĉ†(k)ĉ(k) +

2∑
n=1

∫
dk
[
gn(k)∗â†nĉ(k) + gn(k)ĉ†(k)ân

]
(3.2)

23
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Figure 3.1: (a) Schematic of two discrete levels, of energy E1 and E2, coupled to a
common continuum. (b) Physical realization of the two-level Fano-Anderson
model based on two quantum wells side-coupled to a tight binding quantum
wire, with hopping rates κ1, κ2 and κ. Adapted from [10].

where ân and â†n are the annihilation and creation operators, respectively, of parti-
cles at the discrete energy level En (n = 1, 2), ĉ(k) and ĉ†(k) are the annihilation
and creation operators, respectively, of particles at energy E(k) in the continuum,
and gn(k) is the spectral coupling function between the nth discrete level and the
continuum; see Figure 3.1.
Creation and annihilation operators commute if they are associated with bosonic
particles and anticommute for fermionic ones.

BOSONS —
[
Â, B̂

]
−

= ÂB̂ − B̂Â

[
ân, â

†
m

]
− = δn,m (3.3)[

ĉ(k), ĉ†(k′)
]
− = δ(k − k′) (3.4)

All other commutators zero (3.5)

FERMIONS —
[
Â, B̂

]
+

= ÂB̂ + B̂Â

[
ân, â

†
m

]
+

= δn,m (3.6)[
ĉ(k), ĉ†(k′)

]
+

= δ(k − k′) (3.7)

All other anticommutators zero (3.8)
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The particle number operator

N̂ =
2∑

n=1

â†nân +

∫
dk ĉ†(k)ĉ(k) (3.9)

commutes with the Hamiltonian, so, since it has no explicit time dependence, its
eigenvalues G are constants of motion. G can only take non-negative integer values
and is the number of particles in the system. The Hamiltonian, being a multi-
particle operator, no longer acts on the simple Hilbert space H of single-particle
quantum mechanics, but on Fock space F , which is the space that includes an
arbitrary number of particles. It can be expressed as the following direct sum

F =
∞⊕
G=0

FG (3.10)

where F0 is the set containing only the vacuum state |0〉 (no particles), F1 is
the usual single-particle Hilbert space and FG, for G > 1, is the symmetrized or
antisymmetrized tensor product of F1, G times. Since the number of particles
is constant, we will not jump between subspaces of F with different number of
particles and so we can consider each subspace separately. For the case of one
particle, G = 1, we are in the single-particle Hilbert space. The state vector can
thus be expanded as

|ψ(t)〉 =
2∑

n=1

An(t)â†n |0〉+

∫
dkΥ(k, t)ĉ†(k) |0〉 (3.11)

where An(t) and Υ(k, t) are the probability amplitudes to find the particle at the
nth discrete level or in the continuum with wave number k, respectively. Everything
is normalized

2∑
n=1

|An(t)|2 +

∫
dk |Υ(k, t)|2 = 1 (3.12)

To find the time evolution of these probability amplitudes, we use the Schrödinger
equation. Having assumed orthonormalization, such that 〈n|n′〉 = δn,n′ , 〈n|k〉 = 0
and 〈k|k′〉 = δ(k − k′), using the appropriate commutation relations to put the
operators in normal order (creation to the left, annihilation to the right) and
remembering that ân |0〉 = 0 and ĉn |0〉 = 0, we get the following equations

i
∂

∂t
An(t) = EnAn +

∫
dk g∗n(k)Υ(k, t) (3.13)

i
∂

∂t
Υ(k, t) = E(k)Υ(k, t) +

2∑
n=1

gn(k)An(t) (3.14)

The result is independent of the bosonic or fermionic nature of the particle, as it
should, since there’s only one particle. Following the same procedure in Chapter 2,
the continuum degree of freedom Υ(k, t) is eliminated in Eqns. (3.13) and (3.14). In
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the Markovian approximation, the time evolution of the discrete degrees of freedom
is

∂

∂t
An(t) =

2∑
n=1

Mn,mAm (3.15)

where the elements of the complex-valued 2 x 2 matrixM are given by

Mn,m = −iEnδn,m −
∫ ∞

0

dτ Φn,m(τ) exp
(iEmτ

~

)
(3.16)

with

Φn,m(τ) =

∫
dk g∗n(k)gm(k) exp

(
− iE(k)τ

~

)
(3.17)

Let’s assume now that the particle starts in one of the two discrete levels, say n0,
at time t = 0, i.e. An(0) = δn,n0 and Υ(k, 0) = 0. We call Sn,n0(t) and Sn0(k, t) the
solutions An(t) and Υ(k, t) to the system of Eqns. (3.13) and (3.14), respectively,
under these initial conditions. Then this is the solution to the system Eqn. (3.15),
given by the exponential matrix

S = exp(Mt) (3.18)

a 2 x 2 matrix with elements Sn,n0(t). The probability amplitude for the particle to
be in the nth bare discrete level at time t, when at time t = 0 it was in the same
discrete level, is simply Sn,n(t) and if we want the probability, we just take the
modulus and square it.
Now we move to the interesting case of two particles. We are now in the symmetrized
(bosons) or antisymmetrized (fermions) part of F1 ⊗F1. Both particles are placed,
at t = 0, in the (bare) discrete levels, one per level. The initial state is then

|ψ(0)〉 = â†1â
†
2 |0〉 (3.19)

Note that, for the case of non-interacting bosons, this is not the lowest energy state
of the system, since every boson should be placed in the lowest discrete level. The
vector state |ψ(t)〉 is obtain by the formal replacement

â†l →
2∑

n=1

Sn,l(t)â
†
n +

∫
dk Sl(k, t)ĉ

†(k) (3.20)

This is reasonable since all the governing equations are linear and so the whole
system is linear. We are simply propagating in time each part of the system through
all possible routes, in pure Feynman’s style. In fact, for this reason the quantities
Sn,l(t) and Sl(k, t) are called propagators. We have then

|ψ(t)〉 =

[
2∏
l=1

( 2∑
n=1

Sn,l(t)â
†
n +

∫
dk Sl(k, t)ĉ

†(k)

)]
|0〉 (3.21)

where Sn,l(t) and Sl(k, t) are the solutions An(t) and Υ(k, t) to the system of Eqns.
(3.13) and (3.14) for the single particle with initial conditions An(0) = δn,l and
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Υ(k, 0) = 0. The survival probability Ps(t) = |〈ψ(0)|ψ(t)〉|2 can be easily calculated
for bosons and fermions, using the correct commutation relations. To simplify a
bit the expression, we do not include all the terms associated with the continuum
degrees of freedom because they vanish. In fact there is always an annihilation
operator of the discrete degrees of freedom that goes through to the right, thus
acting on the vacuum. We have then

〈ψ(0)|ψ(t)〉 =

= 〈0| â2â1

(
S1,1(t)â†1 + S2,1(t)â†2

)(
S1,2(t)â†1 + S2,2(t)â†2

)
|0〉

= 〈0| â2â1

(
S1,1(t)S1,2(t)â†1â

†
1 + S1,1(t)S2,2(t)â†1â

†
2

+ S2,1(t)S1,2(t)â†2â
†
1 + S2,1(t)S2,2(t)â†2â

†
2

)
|0〉

= 〈0| â2â1

(
S1,1(t)S2,2(t)â†1â

†
2 + S2,1(t)S1,2(t)â†2â

†
1

)
|0〉

= 〈0| â2â1

(
S1,1(t)S2,2(t)± S2,1(t)S1,2(t)

)
â†1â

†
2 |0〉

= 〈0|
(
S1,1(t)S2,2(t)± S2,1(t)S1,2(t)

)(
± â†1â1 + 1

)(
± â†2â2 + 1

)
|0〉

= S1,1(t)(S2,2(t)± S2,1(t)(S1,2(t)

(3.22)

where the plus sign is for bosons and the minus sign for fermions. The survival
probabilities are then

P (bos)
s (t) = |S1,1S2,2 + S2,1S1,2|2 = |permS| (3.23)

P (ferm)
s (t) = |S1,1S2,2 − S2,1S1,2|2 = |detS| (3.24)

Having discussed the two-level Fano-Anderson model in the second-quantization
framework, we now move to the optical realm and simulate the decay process of
two indistinguishable particles, mapping time evolution to space propagation.
To simulate the particles we produce two polarization-entangled photons and launch
them into the two side waveguides, one in each waveguide. Let us call â†n,T the
creation operator of photons in the fundamental mode of waveguide |n〉 with
polarization states T = H (horizontal) or T = V (vertical), respectively. The wave
function of the two entangled photons, injected in the waveguides |1〉 and |2〉 at
the plane z = 0, is

|ψ(z = 0)〉 =
1√
2

(
â†1,H â

†
2,V + eiϕâ†1,V â

†
2,H

)
|0〉 (3.25)

The phase ϕ is an adjustable parameter allowing us to simulate, as we’ll sew, both
bosons, for ϕ = 0, and fermions, for ϕ = π. To calculate the state of the two photon
in the optical structure at a generic position z, we just formally make the following
substitution into Eqn. (3.25), as explained in [9] for linear optical systems

â†n,T →
∞∑
j=1

S
(T )
j,n (z)â†j,T (3.26)
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where S(T )
j,n (z) is the amplitude probability that one photon with polarization T ,

injected at z = 0 in the waveguide |n〉, is found in the waveguide |j〉 after a
propagation length z. This amplitude can be calculated from classical coupled-
mode theory describing propagation of (classical) light in the particular optical
structure. We obtain

|ψ(z)〉 =
1√
2

(
∞∑
j=1

S
(H)
j,1 (z)â†j,H

∞∑
j=1

S
(V )
j,2 (z)â†j,V

+ eiϕ
∞∑
j=1

S
(V )
j,1 (z)â†j,V

∞∑
j=1

S
(H)
j,2 (z)â†j,H

)
|0〉

(3.27)

Using the fact that photons are bosons, so the creation and annihilation operators
commute, we find

|ψ(z)〉 =
1√
2

[(
S

(H)
1,1 S

(V )
1,2 + eiϕS

(V )
1,1 S

(H)
1,2

)
â†1,H â

†
1,V

+
(
S

(H)
1,1 S

(V )
2,2 + eiϕS

(V )
2,1 S

(H)
1,2

)
â†1,H â

†
2,V

+
(
S

(H)
2,1 S

(V )
1,2 + eiϕS

(V )
1,1 S

(H)
2,2

)
â†2,H â

†
1,V

+
(
S

(H)
2,1 S

(V )
2,2 + eiϕS

(V )
2,1 S

(H)
2,2

)
â†2,H â

†
2,V

+ . . .
]
|0〉

(3.28)

where we have not written down the terms not interesting to us, meaning those
with operators’ products â†j,H â

†
n,V with either j > 2 or n > 2. The coincidence

probability P (1,1)(z) to find one photon, after a propagation z, in waveguide |1〉
with polarization H and the other photon in waveguide |2〉 with polarization V or
to find one photon in waveguide |2〉 with polarization H and the other photon in
waveguide |1〉 with polarization V , assuming that the amplitude probabilities S(T )

n,j

(for n, j = 1, 2) do not depend on the polarization state, i.e. S(H)
n,j = S

(V )
n,j ≡ Sn,j is

immediately readable from Eqn. (3.28)

P (1,1)(z) =
1

2

∣∣S1,1S2,2 + eiϕS2,1S1,2

∣∣2
+

1

2

∣∣S2,1S1,2 + eiϕS1,1S2,2

∣∣2 (3.29)

For ϕ = 0 and for ϕ = π the coincidence probability has exactly the same functional
form as the survival probability we have found in Fano-Anderson model for bosons
and for fermions, respectively. We will then just call it the survival probability. We
compare this probability with the result for two distinguishable particles: we neglect
the quantum interference by summing the square moduli of each four probability
amplitudes giving distinguishable results, when each particle can be identified

P (dis)(z) = |S1,1S2,2|2 + |S2,1S1,2|2 (3.30)

We set ~ = 1 and call propagation distance as t and no longer as z. With that,
the energies of the bare discrete levels in the Fano-Anderson model correspond
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Figure 3.2: (a) Optical structure made up of two waveguides, marked by their propaga-
tion constant mismatches E1 and E2, side-coupled to an infinite waveguide
array, analogue to two quantum wells coupled to a quantum wire. Param-
eter values are: κ1/κ = 0.05, κ2/κ = 0.2 and E2/κ = 0.1 (b) Survival
probability of a single photon versus normalized detuning (E2 − E1)/κ at
fixed distance t∗ = 200/κ. The usual asymmetric Fano resonance around
E1 = E2 is evident. (c) Survival probability versus normalized detuning
(E2 − E1)/κ at distance t∗ = 60/κ, for two polarization-entangled photons,
launched simultaneously one per side waveguide, in antisymmetric config-
uration, corresponding to ϕ = π (solid line) and symmetric configuration,
corresponding to ϕ = 0 (dashed line), simulating the evolution in time of
two non-interacting fermions and bosons, respectively. (d) Dependence of
the Fano resonance curves on the observation distance t∗ for photons in
antisymmetric configuration (left panel) and symmetric configuration (right
panel). Adapted from [10].
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to the propagation constants mismatches between the side waveguides and the
waveguides in the array. κ, κ1 and κ2 are the hopping or coupling rates. The
variable t represents time or space according to the context in which it’s used.
Consider the structure in Figure 3.2(a). We can analyze this structure ([10]) as
we did in Chapter 2, by launching light into one of the two side waveguides. The
survival probability is plotted versus normalized detuning (E1 − E2)/κ in Figure
3.2(b), where, at a fixed distance, we see, around E1 = E2, a Fano resonance with
the typical asymmetric shape. We now launch two polarization-entangled photons,
one per side waveguide, in the symmetric (bosonic) and antisymmetric (fermionic)
state. In Figure 3.2(c) we see, in dashed line, the bosonic case, with again the
Fano resonance. For fermions, in solid line, something new happens: a complete
suppression of Fano resonance. Such a result is independent of the distance we
observe the phenomenon; Figure 3.2(d) shows this fact by plotting the survival
probability, for fermions (left picture, solid line) and bosons (right picture, dashed
line), at various distances. We interpret these results as the action of Pauli exclusion
principle: two fermions, unlike two bosons, cannot occupy the same level (they
cannot be in the same state) and so one of them, having no place to go, must decay
away into the continuous states. To put this model to the test, we will consider
now a different structure, a semi-infinite array of evanescently coupled waveguides,
side-coupled with two waveguides at the first element of the array, as shown in
Figure 3.3(b) and 3.3(e). The coupled-mode equations that govern the system,
following [14], can be written in Bloch basis |k〉, where 0 ≤ k ≤ π, as

i
dc

dt
= E(k)c(k, t) +

2∑
α=1

vα(k)cα(t) (3.31)

i
dcα
dt

= Eαcα(t) +

∫ π

0

dk vα(k)c(k, t) (α = 1, 2) (3.32)

with

E(k) = −2κ cos k , vα =

√
2

π
κα sin k (3.33)

Everything else has the same meaning as in Eqns. (2.10) and (2.11), with the
following correspondences: t↔ z, Eα ↔ ωα, E(k) = ω(k) = −2κ cos k.
Due to the range of k, we can expand the amplitude c(k, t) in a Fourier series of
sine terms only

c(k, t) = −
√

2

π

∞∑
n=1

bn(t) sin(nk) (3.34)

Upon substitution, starting first from Eqn. (3.31), we obtain

−i
√

2

π

∞∑
n=1

dbn
dt

sin(nk) = 2κ cos k

√
2

π

∞∑
n=1

bn sin(nk)+

√
2

π

2∑
α=1

καcα(t) sin k (3.35)

Multiplying both sides by sin(mk), integrating over k and using the following
relation ∫ π

0

dk sin(nk) sin(mk) =
π

2
δn,m (3.36)
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Figure 3.3: (a) Schematic of two discrete levels, of energy E1 and E2, coupled to a
common continuum, spanning the energy band of width 4κ (~ = 1). (b)
Physical realization of the two-level Fano-Anderson model based on two
quantum wells side-coupled to a tight binding semi-infinite quantum wire,
with hopping rates κ1, κ2 and κ. (e) Photonic structure simulating the model
in (a). Quantum wells are replaced by side-coupled waveguides and the
quantum wire by a semi-infinite array of evanescently coupled waveguides.
(c,d) Survival probability, versus normalized distance κt, for two polarization-
entangled photons, launched simultaneously one per side waveguide, in
antisymmetric configuration, corresponding to ϕ = π (dashed line), and
symmetric configuration, corresponding to ϕ = 0 (solid line), which simulate
the evolution in time of the survival probability for two non-interacting
fermions and bosons, respectively. Distinguishable photons, simulating
distinguishable non-interacting particles, are also considered, shown in dotted
curves. Parameter values are: κ1/κ = κ2/κ = 0.5. E1/κ = 0, E2/κ = 0.8
for (c). E1/κ = E2/κ = 0.8 for (d).
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where m is a positive integer, we get

− idbm
dt

=
2

π

∫ π

0

2κ cos k sin(mk)
∞∑
n=1

bnsin(nk)dk +
2∑

α=1

καcα(t)δm,1 (3.37)

For m = 1

−idb1

dt
=

2

π

∫ π

0

2κ cos k sin k
∞∑
n=1

bnsin(nk)dk +
2∑

α=1

καcα(t)

=
2

π

∞∑
n=1

bn

∫ π

0

κ sin(2k)sin(nk)dk +
2∑

α=1

καcα(t)

=
2

π

∞∑
n=1

bnκ
π

2
δ2,n +

2∑
α=1

καcα(t)

= κb2 + κ1c1 + κ2c2

(3.38)

For m > 1

−idbm
dt

=
∞∑
n=1

4κ

π
bn

∫ π

0

cosk sin(mk)sin(nk)dk +
2∑

α=1

καcα(t)

=
∞∑
n=1

4κ

π
bn

∫ π

0

1

2
[sin(m+ 1)k + sin(m− 1)k]sin(nk)dk +

2∑
α=1

καcα(t)

=
∞∑
n=1

κbn(δn,m+1 + δn,m−1) +
2∑

α=1

καcα(t)

= κ(bm+1 + bm−1) + κ1c1 + κ2c2

(3.39)

Moving on to Eqn. (3.32)

i
dcα
dt

= Eαcα −
2

π
κα

∞∑
n=1

bn

∫ π

0

sin k sin(nk)dk

= Eαcα − κα
∞∑
n=1

bnδ1,n

= Eαcα − καb1 (α = 1, 2)

(3.40)

Putting everything together, we have the dynamic system in Wannier basis

i
db1

dt
= −κb2 − κ1c1 − κ2c2 (3.41)

i
dbn
dt

= −κ(bn+1 + bn−1) (3.42)

i
dc1

dt
= −κ1b1 + E1c1 (3.43)

i
dc2

dt
= −κ2b1 + E2c2 (3.44)
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Figure 3.4: Map of the survival probability Ps as a function of κt and (E2 − E1)/κ for
(a) bosons, and (b) fermions. Parameter values are: κ1/κ = κ2/κ = 0.5 and
E1/κ = 0.8 (Fano interference regime). In (c) the behavior of Ps versus
(E2−E1)/κ is shown at the normalized time t = 8/κ for bosons (solid curve),
fermions (dashed curve) and for distinguishable particles (dotted curve).

where n is a positive integer starting from 1 and labeling the waveguides in the
array. This dynamic system describes exactly the structure in Figure 3.3(b,e). The
waveguide corresponding to n = 1 is the one coupled to the two side waveguides |1〉
and |2〉; everything else has the same meaning as in Eqns. (2.4) and (2.5), with
t↔ z. Performing an analogue analysis as we did for the previous structure (Figure
3.2(a)), we obtain a similar response, shown in Figure 3.3(c), where the survival
probability has been plotted versus time, for parameter values κ1/κ = κ2/κ = 0.5,
E1/κ = 0 and E2/κ = 0.8. An analysis for single particles placed in waveguide
|1〉 or |2〉, for the same parameters, shows complete decay, no BIC. Placing two
particles, we have again complete decay, being faster for fermions (dashed line) than
bosons (solid line). An intermediate behavior is seen for distinguishable particles
(dotted line). At resonance, for E1/κ = E2/κ = 0.8, we see, in Figure 3.3(d),
fractional (not complete) decay for bosons and distinguishable particles, owing
to the existence of a BIC at E = E1 = E2. Fermions show complete decay. To
highlight what happens at this resonance, the survival probability is plotted, in
Figure 3.4(c) versus normalized propagation constant mismatch (E2 − E1)/κ at
fixed normalized distance of t = 8/κ, for bosons (solid line), fermions (dashed line)
and distinguishable particles (dotted line), at parameter values κ1/κ = κ2/κ = 0.5
and E1/κ = 0.8. We see, for fermions, complete suppression of Fano resonance.
A combined graph of these results is shown in Figure 3.4(a) for bosons and (b)
for fermions. An actual experiment [11] has been done to verify these theoretical
results and everything works out as predicted.

A different scenario is revealed if we consider the energy levels E1 and E2 outside
the continuous band. In this case, the Fano-Anderson model allows the existence
of two bound dressed states outside the continuum. One particle, placed in level
|1〉 or |2〉, will show fractional decay and Rabi-like oscillations when E1 is close
to E2. Figure 3.5 shows the behavior for two particles with parameter values
κ1/κ = κ2/κ = 0.5 and E1 = 4κ. Now that we have two dressed levels available,
fermions can be placed in each level without violating Pauli exclusion principle.
The survival probability is plotted versus time at E1 = E2 = 4κ in Figure 3.5(d)
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Figure 3.5: Map of the survival probability Ps as a function of κt and (E2 − E1)/κ for
(a) bosons, and (b) fermions. Parameter values are: κ1/κ = κ2/κ = 0.5
and E1/κ = 4 (Rabi oscillations regime). In (c) the behavior of Ps versus
(E2−E1)/κ at time t = 8/κ is shown, whereas in (d) Ps is plotted versus κt
for E2 = E1. Solid curves: bosons; dashed curves: fermions; dotted curves:
distinguishable particles.

where fractional decay is observed for fermions (dashed line) while for bosons (solid
line) Rabi oscillations emerge. No Rabi oscillations for fermions. An intermediate
behavior for distinguishable particle (dotted line) is also shown. A plot of the
survival probability versus energy difference at fixed time t = 8/κ is shown in Figure
3.5(c) and a combined plot in Figure 3.5(a). A simple analysis can be performed,
following [15], for the two-particle case if we assume that (i) the energies E1 and
E2 of the two levels |1〉 and |2〉 are far outside the continuous band, which means
|E(k)− E1,2| � κ for every possible value of k; (ii) |E(k)− E1,2| � κ1,2 for every
possible value of k; (iii) the detuning |E1 − E2| is small, meaning of the same order
or smaller than ∼ κ2

1/E1; (iv) the coupling constants κ1 and κ2 are of the same
order of magnitude.
Starting from the governing system in Bloch basis (Eqns. (3.31) and (3.32)), we
make the following substitutions

cα(t) = fα(t)e−iĒt (3.45)

c(k, t) = f(k, t)e−iĒt (3.46)

where
Ē ≡ (E1 + E2)

2
+
κ2

1 + κ2
2

E1 + E2

(3.47)

We get from Eqn. (3.31)

i
df

dt
= (E(k)− Ē)f + v1f1 + v2f2 (3.48)

Since at time t = 0 there are no particles in the continuous band (no light is
launched into the array), then f(k, 0) = 0. Also, by assumption, v1,2 �

∣∣E(k)− Ē
∣∣.

It follows that f(k, t) remains small, and at leading order we can neglect the time
derivative in Eqn.(3.48), obtaining

f(k, t) ' v1f1 + v2f2

Ē − E
(3.49)
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Substituting this result in Eqns. (3.32) we get
i
df1

dt
' f1

(
E1 − Ē +

∫ π

0

dk
v2

1

Ē − E

)
+ f2

∫ π

0

dk
v1v2

Ē − E
(3.50)

i
df2

dt
' f1

∫ π

0

dk
v1v2

Ē − E
+ f2

(
E2 − Ē +

∫ π

0

dk
v2

2

Ē − E

)
(3.51)

By the assumptions, we can approximate the integrals as∫ π

0

dk
sin2 k

Ē + 2κ cos k
'
∫ π

0

dk
sin2 k

Ē
=

π

2Ē
(3.52)

which, substituted into the system together with the definition of Ē, gives
i
df1

dt
' f1

(E1 − E2

2
+

2κ2
1

Ē
− κ2

1 + κ2
2

E1 + E2

)
+ f2

2κ1κ2

Ē
(3.53)

i
df2

dt
' f1

2κ1κ2

Ē
+ f2

(E2 − E1

2
+

2κ2
2

Ē
− κ2

1 + κ2
2

E1 + E2

)
(3.54)

The assumptions allow us to approximate Ē in the denominators with E1+E2 ' 2E1
i
df1

dt
' f1

(E1 − E2

2
+
κ2

1 − κ2
2

2E1

)
+ f2

κ1κ2

E1

(3.55)

i
df2

dt
' f1

κ1κ2

E1

+ f2

(E2 − E1

2
+
κ2

2 − κ2
1

2E1

)
(3.56)

To put it more neatly, we rewrite the system in exact form
i
df1

dt
= −∆f1 + +κef2 (3.57)

i
df2

dt
= κef1 + ∆f2 (3.58)

where

κe ≡
κ1κ2

E1

∆ ≡ E2 − E1

2
+
κ2

2 − κ2
1

2E1

(3.59)

The elements of the matrix S can be easily found. The meaning of S1,1(t) is the
probability amplitude to be in state |1〉 at time t when, at t = 0, the state was |1〉.
Since we have removed from the dynamics the continuous band, a general state can
be approximately written as

|ψ(t)〉 = f1(t) |1〉+ f2(t) |2〉 (3.60)

From Eqn. (3.58) we have

f1 =
1

κe

(
i
df2

dt
−∆f2

)
(3.61)
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Substituting this into Eqn.(3.57) we obtain

− d2f2

dt2
− i∆df2

dt
= κ2

ef2 − i∆
dc2

dt
+ ∆2f2

d2f2

dt2
= −(κ2

e + ∆2)f2

The general solution for f2(t) is

f2(t) = A exp(i
√
κ2
e + ∆2t) +B exp(−i

√
κ2
e + ∆2t) (3.62)

The initial conditions, for S1,1, are f1(0) = 1 and f2(0) = 0. From Eqn. (3.62) we
immediately get B = −A. So

f2(t) = 2iA sin(Ωt) (3.63)

where Ω ≡
√
κ2
e + ∆2. Solving for f1(t)

f1(t) =
2iA

κe
(iΩ cos(Ωt)−∆ sin(Ωt)) (3.64)

Using the other initial condition, f1(0) = 1, we have

A = − κe
2Ω

(3.65)

We then have for the matrix element

S1,1 = 〈1|ψ(t)〉 = f1(t) = cos(Ωt) + i
∆

Ω
sin(Ωt) (3.66)

Similarly, for S2,2 the initial conditions are f1(0) = 0 and f2(0) = 1. From Eqn.
(3.62) we have B = 1− A. So

f2(t) = AeiΩt + (1− A)e−iΩt (3.67)

Solving for f1(t)

f1(t) =
1

κe

(
− 2AΩ cos(Ωt) + Ωe−iΩt − 2iA∆ sin(Ωt)−∆e−iΩt

)
(3.68)

The initial condition f1(0) = 0 gives us

A =
Ω−∆

2Ω
(3.69)

It follows that

S2,2 = 〈2|ψ(t)〉 = f2(t) =
Ω−∆

2Ω
eiΩt +

Ω + ∆

2Ω
e−iΩt = cos(Ωt)− i∆

Ω
sin(Ωt) (3.70)

For S2,1 the initial conditions are f1(0) = 1 and f2(0) = 0, the same conditions we
had for S1,1. It follows immediately that f2(t) and A are given by Eqn. (3.63) and
(3.65), respectively. We have then

S2,1 = 〈2|ψ(t)〉 = f2(t) = 2iA sin(Ωt) = 2i
(
− κe

2Ω

)
sin(Ωt) = −iκe

Ω
sin(Ωt) (3.71)
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For S1,2 the initial conditions are f1(0) = 0 and f2(0) = 1, the same conditions we
had for S2,2. It follows immediately that f1(t) and A are given by Eqn. (3.68) and
(3.69), respectively. We have then

S1,2 = 〈2|ψ(t)〉 = f1(t)

=
1

κe

(
− 2AΩ cos(Ωt) + Ωe−iΩt − 2iA∆ sin(Ωt)−∆e−iΩt

)
=

1

κe

(
− 2

Ω−∆

2Ω
Ω cos(Ωt) + Ωe−iΩt − 2i

Ω−∆

2Ω
∆ sin(Ωt)−∆e−iΩt

)

=
1

κe

[
− Ω−∆

2Ω
Ω(eiΩt + e−iΩt) + Ωe−iΩt − Ω−∆

2Ω
∆(eiΩt − e−iΩt)−∆e−iΩt

]

=
1

κe

[
eiΩt

(
∆− Ω

2Ω
Ω +

∆− Ω

2Ω
∆

)
+ e−iΩt

(
∆− Ω

2Ω
Ω + Ω− ∆− Ω

2Ω
∆−∆

)]

=
1

κe

[
eiΩt

∆2 − Ω2

2Ω
+ e−iΩt(Ω−∆)

(
∆− Ω

2Ω
+ 1

)]

=
1

κe

(
eiΩt

∆2 − Ω2

2Ω
+ e−iΩt

Ω2 −∆2

2Ω

)

=
1

κe

(
∆2 − Ω2

2Ω
2i sin(Ωt)

)
= −iκe

Ω
sin(Ωt) = S2,1

(3.72)

To summarize 
S1,1(t) = cos(Ωt) + i

∆

Ω
sin(Ωt) (3.73)

S1,2(t) = S2,1(t) = −iκe
Ω

sin(Ωt) (3.74)

S2,2(t) = cos(Ωt)− i∆
Ω

sin(Ωt) (3.75)

Putting at t = 0 a single particle in state |1〉 or |2〉, the survival probability is

Ps(t) = |S1,1|2 = |S2,2|2 = cos2(Ωt) +
∆2

Ω2
sin2(Ωt) (3.76)

We find Rabi oscillations. Putting two particles, one in state |1〉 and the other in
state |2〉, the survival probability depends on the nature of the particles. For bosons

P (bos)
s (t) = |S1,1S2,2 + S2,1S1,2|2

=

∣∣∣∣cos2(Ωt) +
∆2

Ω2
sin2(Ωt)− κ2

e

Ω2
sin2(Ωt)

∣∣∣∣2
=

(
cos2(Ωt) +

∆2 − κ2
e

∆2 + κ2
e

sin2(Ωt)

)2

(3.77)
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For fermions

P (ferm)
s (t) = |S1,1S2,2 − S2,1S1,2|2

=

∣∣∣∣cos2(Ωt) +
∆2

Ω2
sin2(Ωt) +

κ2
e

Ω2
sin2(Ωt)

∣∣∣∣2
=

(
cos2(Ωt) +

∆2 + κ2
e

∆2 + κ2
e

sin2(Ωt)

)2

= 1

(3.78)

For distinguishable particles

P (dis)
s (t) = |S1,1S2,2|2 + |S2,1S1,2|2

=

∣∣∣∣cos2(Ωt) +
∆2

Ω2
sin2(Ωt)

∣∣∣∣2 +

∣∣∣∣− κ2
e

Ω2
sin2(Ωt)

∣∣∣∣2
= cos4(Ωt) +

∆4 + κ4
e

Ω4
sin4(Ωt) + 2

∆2

Ω2
cos2(Ωt) sin2(Ωt)

(3.79)

We thus have Rabi-like oscillations for bosons and no evolution for fermions, being
stuck in the two bound dressed states. Note that, at ∆ = 0, oscillations for bosons
proceed at a frequency twice the value of that for the single particle case. In fact

P (bos)
s (t; ∆ = 0) = (cos2(Ωt)− sin2(Ωt))2

= (cos(2Ωt))2
(3.80)



Chapter 4

Non-Hermitian photonic structures

The standard structure of quantum mechanics, as developed by Dirac and von
Neumann, can be dated back to the late 1920s, and hinges on the axiom that
Hamiltonians must be Hermitian operators. This ensures real eigenvalues and
unitary evolution in time, thus preserving the norm of the wave function, which
ultimately represents information about the state of the system, and information,
in an isolated system, cannot be lost. Requiring the Hermiticity of the Hamiltonian
provides us with all the correct elements to build a consistent theory which it
has been shown to describe pretty well the world around us. But what happens
if we flip the reasoning around and search for Hamiltonians that could give us
real eigenvalues and conservation of probability, without requiring Hermiticity?
In 1998 a paper by Bender and Boettcher [12] extended quantum mechanics to
non-Hermitian Hamiltonians, the so-called PT-symmetric Hamiltonians. This paper
was followed by a much more refined one in 2007 [13], again by Bender.
In short, a PT-symmetric Hamiltonian is one which is invariant under the operators
P̂ and T̂ .

(P̂ T̂ )−1Ĥ(P̂ T̂ ) = Ĥ (4.1)

Premultiplying by P̂ T̂
Ĥ(P̂ T̂ ) = (P̂ T̂ )Ĥ (4.2)

which means that Ĥ commutes with P̂ T̂ . The parity operator P̂ , responsible for
spatial reflections, is defined through the operations x̂→ −x̂ and p̂→ −p̂, while
the time reversal operator T̂ through x̂→ x̂ and p̂→ −p̂. We can also write

P̂−1x̂P̂ = −x̂ (4.3)
P̂−1p̂P̂ = −p̂ (4.4)
T̂−1x̂T̂ = x̂ (4.5)
T̂−1p̂T̂ = −p̂ (4.6)

Both parity operator and time reversal operator must preserve the canonical
commutation relations, [x̂i, p̂j]− = i~δi,j. In order to do so T̂ , when acted on the
imaginary unit, flips its sign.

T̂−1iT̂ = −i (4.7)

The operator P̂ and T̂ commute. It turns out that P̂ is linear, Hermitian and
unitary, while T̂ is antilinear and antiunitary. Even though the operator P̂ T̂
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commutes with a PT-symmetric Hamiltonian (by definition), they may not share a
common set of eigenfunctions. This is because P̂ T̂ is not a linear operator.
If every eigenfunction of a PT-symmetric Hamiltonian is an eigenfunction of the
operator P̂ T̂ , we say that the PT symmetry is unbroken, otherwise we say it is
broken. PT-symmetric Hamiltonians, in an unbroken PT symmetry, have real
eigenvalues. It is then only a necessary condition, as it is directly shown in [13], for
a system to have an unbroken PT symmetry, that the potential energy operator,
in position representation, obeys V (x) = V ∗(−x). More specifically, the potential
must be even in its real part and odd in its imaginary part.
Having already established a correspondence between quantum mechanics and
optics, it easy for us to build an optical structure with the correct requirements
for a non-Hermitian PT-symmetric Hamiltonian. Looking at the potential in the
optical Schrödinger equation, in the weak guidance approximation, we have

V (x) ' nc − n(x)

nc
(4.8)

We need to introduce an imaginary part for the refractive index n(x) = nR(x) +
inI(x) (with Re(n) ≡ nR and Im(n) ≡ nI), which is associated to absorption
or amplification in the material. This is done by adding suited gain and loss
components to the structure. We thus need to satisfy the following conditions{

nR(x) = nR(−x) (4.9)
nI(x) = −nI(−x) (4.10)

The most simple optical structure we can build, that respects the PT-symmetry, is
shown in Figure 4.1(a). We will follow again the same conventions of Chapter 3,
where time t and space z (propagation along the structure) use the same symbol,
namely t, and Planck constant ~ = 1. We have an infinite array of evanescently
coupled waveguides with coupling rate κ between adjacent waveguides in the array
and a coupling rate κ0 between each side waveguide and the adjacent waveguide
in the array. Notice that now we are calling the waveguides in the array as |n〉,
with n ∈ Z, and the two side waveguides |A〉 and |B〉. Waveguides |A〉 and |B〉
are coupled to waveguide |0〉 and are made of active material, with gain parameter
γ0, providing gain and loss, respectively, to the field in them. Using couple-mode
theory with an exponential growth or decay for amplitudes in |A〉 and |B〉, the
equations governing field amplitudes bn, c̃A and c̃B in array waveguide |n〉 and in
side waveguides |A〉 and |B〉, respectively, are

dbn
dt

= iκ(bn+1 + bn−1) + iκ0c̃Ae
−iω0teγ0tδn,0 + iκ0c̃Be

−iω0te−γ0tδn,0 (4.11)

dc̃A
dt

= iκ0b0e
iω0teγ0t (4.12)

dc̃B
dt

= iκ0b0e
iω0te−γ0t (4.13)

where ω0 = β − β0 is the propagation constant mismatch between side waveguide
|A〉 or |B〉 and the waveguide in the array. Note that we are also including an
exponential e±γ0t in the mode amplitudes for the passive waveguides in the array.
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Figure 4.1: (a) Schematic of a linear infinite waveguide array and two side-coupled
waveguides with optical gain and loss. (b) Spectral transmittance T and (c)
reflectance R versus frequency ω of the incident wave for parameter values
κ0/κ = 0.2, ω0/κ = 0.2, and for γ0/κ = 0 (curve 1), γ0/κ = 0.02 (curve 2)
and γ0/κ = 0.2 (curve 3).
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This is fine, because we are simply applying couple-mode equations (Eqn. (2.1) and
(2.2)) but including these exponentials in the coupling rate between waveguides in
the array and side waveguide. Define{

cA(t) ≡ c̃Ae
−iω0teγ0t (4.14)

cB(t) ≡ c̃Be
−iω0te−γ0t (4.15)

Substituting in the system, we find the familiar coupled-mode equations
i
dbn
dt

= −κ(bn+1 + bn−1)− κ0δn,0(cA + cB) (4.16)

i
dcA
dt

= −κ0b0 + (ω0 + iγ0)cA (4.17)

i
dcB
dt

= −κ0b0 + (ω0 − iγ0)cB (4.18)

with an extra term due to amplification and attenuation. We know very well this
structure, with its dispersion relation, ω(q) = −2κ cos q, where q is the Bloch wave
number in the range −π ≤ q < π. We assume an incident wave, of unit amplitude,
coming from the left, so q > 0. Since the scattering is elastic we look for solutions
of the following form

bn = exp(iqn− iωt) + r̃(w) exp(−iqn− iωt) n ≤ 0

bn = t̃(w) exp(iqn− iωt) n ≥ 0

cA = A exp(−iωt)
cB = B exp(−iωt)

(4.19)

where t̃(ω) and r̃(ω) are the spectral transmission and reflection coefficients for
wave amplitudes (coming from the left). With this ansatz, we are just taking one
component, with a specific wave number, in the usual expansion of the modal
amplitude in the array (see Eqn.(2.7)). From the first two equations in the system
(4.19), for n = 0, we get immediately that t̃ = r̃ + 1. Substituting the ansatz (4.19)
into Eqns. (4.16), (4.17) and (4.18), for n = 0 we find

ωt̃ = −κ(e−iq + r̃eiq + t̃eiq)− κ0(A+B) (4.20)
ωA = −κ0t̃+ (ω0 + iγ0)A (4.21)
ωB = −κ0t̃+ (ω0 − iγ0)B (4.22)

ωt̃ = −κ(e−iq + t̃eiq − eiq + t̃eiq)− κ0(A+B) (4.23)

A =
κ0t̃

ω0 − ω + iγ0

(4.24)

B =
κ0t̃

ω0 − ω − iγ0

(4.25)

Solving for t̃

t̃ω

(
1 +

2κ

ω
eiq +

1

ω

κ2
0

ω0 − ω + iγ0

+
1

ω

κ2
0

ω0 − ω − iγ0

)
= −κe−iq + κeiq (4.26)
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Using the dispersion relation 2κ
ω

= − 1
cos q

and Euler formula

t̃ω

(
1− cos q + i sin q

cos q
+

1

ω

2κ2
0(ω0 − ω)

(ω0 − ω)2 + γ2
0

)
= 2iκ sin q (4.27)

t̃ω

(
i
2κ

ω
sin q +

1

ω

2κ2
0(ω0 − ω)

(ω0 − ω)2 + γ2
0

)
= 2iκ sin q (4.28)

2iκt̃

(
sin q − iκ

2
0

κ

ω0 − ω
(ω0 − ω)2 + γ2

0

)
= 2iκ sin q (4.29)

Since q > 0 then sin q =
√

1− cos2 q =
√

1− ( ω
2κ

)2. We have

t̃(ω) =

√
1− (ω/2κ)2√

1− (ω/2κ)2 − iκ
2
0

κ
ω0−ω

(ω0−ω)2+γ20

(4.30)

Spectral transmittance T (ω) =
∣∣t̃(ω)

∣∣2 and reflectance R(ω) = |r̃(ω)|2 are plotted
in Figure 4.1(b) and (c) for three values of the gain parameter γ0, with parameter
values κ0/κ = 0.2 and ω0/κ = 0.2. For γ0 = 0 (curve 1) we see complete reflection of
the wave for ω = ω0. We have already encountered this structure, at the beginning
of our discussion. The two side waveguides are separated by an even number (zero)
of array waveguides, so we are expecting a Fano resonance and fractional (not
complete) decay of the states |A〉 and |B〉, or no decay at all, as in this case; there
is interference between decay channels, resulting in population trapping. The wave
coming from the left destructively interferes with |A〉 and |B〉 and hits like a wall
at |0〉, therefore bouncing back. When γ0 is slightly increased (curve 2), but still
γ0 � κ, a transmission peak grows in the dip, reaching T = 1, total transmission
at ω = ω0. For strong balanced gain and loss (curve 3) every feature is washed out.
This optical structure is fully analyzed in [16], including various non-linear effects.
So far we have considered only linear systems where reciprocity is the rule; trans-
mittance for waves coming from the left is the same for waves coming from the
right. This is no longer true if we introduce nonlinearity. In particular Kerr-type
nonlinearity, linked to the 3rd order electric susceptibility.
Consider the optical structure in Figure 4.2(a), having two side waveguides, |A〉
with optical gain, coupled at site n = 0 of the array, and |B〉 with optical loss, at
site n = N . PT-symmetry is preserved, but different behaviors are observed for
waves coming from the left and right side. With the usual meaning of the symbols,
coupled-mode equations for the modal amplitudes are easily written

i
dbn
dt

= −κ(bn+1 + bn−1)− κ0(δn,0cA + δn,NcB) (4.31)

i
dcA
dt

= −κ0b0 + (ω0 + iγ0)cA − χ|cA|2cA (4.32)

i
dcB
dt

= −κ0bN + (ω0 − iγ0)cB − χ|cB|2cB (4.33)

where χ measures Kerr nonlinearity in waveguides |A〉 and |B〉. Transmittance
for this model can be computed numerically [17] and the results are plotted in
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Figure 4.2: (a) Schematic of a linear infinite waveguide array and two side-coupled
waveguides with optical gain and loss. (b) Numerically-computed spectral
transmittance T for left (curve 2) and right (curve 1) incidence sides on a
log scale. The amplitude of incident wave, for either left and right incidence
sides, is set equal to one. Parameter values are: κ = 1, γ0 = 0.02, ω0 = 0,
V = 0.5, N = 1, and χ = 0.0125. The wavelength is defined by λ = 2π/q,
where q is the Bloch wave number. ω(q) = −2κ cos q is the dispersion curve
of the tight-binding lattice band. The shadowed area on the right of the
graph, around λ = 4.5, corresponds to a bistable behavior. The horizontal
arrow shows the shift of the Fano resonances due to the Kerr nonlinearity
in waveguides |A〉 and |B〉. Figure (b) is adapted from [17].

Figure 4.2(b) versus inverse wave number 2π/q. Both shape and position of Fano
resonances are different for different directions of the incoming waves, with a red-
shift for the wave coming from the gain side (curve 2) compared to the one coming
from the loss side (curve 1). This non-reciprocal behavior can be exploited to
build optical circuits which block light coming only from one side, known as optical
isolators.
————————————————————————



Conclusions

Fano resonance is characterized by an asymmetric lineshape of resonance profiles,
which arise from the constructive and destructive interference of discrete (resonance)
states with broadband (continuum) states. This phenomenon and the underlying
mechanisms, being common and ubiquitous in many realms of physical sciences
dealing with wave-like phenomena, can be found in a wide variety of quantum
and optical systems, such as quantum dots, photonic crystals, plasmonics, and
metamaterials, to mention a few.

In photonics, a simple and experimentally accessible platform to study Fano
resonances is provided by light transport in arrays of evanescently coupled dielectric
waveguides with defects. Scattering of discretized light by defects emulate the very
basic physical origin of Fano resonances. In this master thesis we focused on some
mathematical and physical aspects of Fano resonances and related phenomena in
waveguide lattices: destructive interference in defect-array systems, Fano resonances
and bound states in the continuum, particle statistics and Fano resonances, and
Fano resonances in non-Hermitian waveguide lattices.

In photonics Fano resonance has attracted a flurry of research interest due to
its asymmetric lineshape, sharp spectral features, and sensitivity to structural and
environmental parameters, characteristics which make them ideal candidates for a
variety of micro and nanophotonic applications such as highly-sensitive all-optical
sensors. Future developments of the forefront research in the field include topological
aspects of Fano resonances and bound states in the continuum, i.e. robustness
arising from topological protection, and non-Hermitian Fano resonances.
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