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SOMMARIO 

 

Nella fase progettuale di un componente meccanico è molto importante tenere in 

considerazione le condizioni in cui esso andrà ad operare, nonché lo stato di sforzo che si 

genera all’interno del componente stesso. Le lastre metalliche forate sono molto utilizzate in 

ambito industriale, nelle più disparate applicazioni, grazie alla loro “semplicità” di 

realizzazione. Sono esempi applicazioni per la dissipazione del calore, come filtri o 

rivestimenti. Anche se le discontinuità geometriche inducono importanti concentrazioni di 

sforzo all’interno dei componenti meccanici, la realizzazione di specifici pattern è in grado di 

migliorare o generare interessanti proprietà meccaniche, quali ad esempio la trasformazione di 

una semplice lastra metallica in struttura auxetica. A questo proposito, il presente studio è volto 

all’analisi delle proprietà meccaniche ottenute tramite l’applicazione di specifici pattern, aventi 

ognuno avente il foro con una specifica forma. Per far questo sono state effettuate una serie di 

analisi numeriche, analizzando una regione rappresentetiva del pattern e applicando la 

periodicità delle Condizioni al contorno. In totale sono stati analizzate sei diverse forme , tra 

le quali la Doppia T e la Clessidra hanno dimostrato di poter garantire interessanti proprietà 

auxetiche, senza introdurre eccessivi fenomeni di concentrazione di sforzo. Queste due forme 

possono essere utilizzate in sostituzione del più classico foro circolare, nelle più differenti 

applicazioni pratiche. 
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ABSTRACT 

 

The stress field in a mechanical component is generally an important phenomenon to consider 

during the design stage. Perforated metallic sheets are widely used in industry, in many 

different applications like film cooling, heat dissipation, filtering and many other, mainly 

thanks to their simple and mass production process. Even though geometrical discontinuity is 

known to induce stress concentration effects within the mechanical component, the perforated 

pattern is able to provide interesting structural properties, like auxetic behavior. For this reason, 

by this study, we investigated the mechanical performance of different void shapes through a 

series of numerical simulations, by defining a representative element for the pattern and 

applying Periodic Boundary Conditions to the model. We have simulated six different hole 

shapes. Among them, the Double T and Hourglass shapes have the ability to introduce auxetic 

property without introducing important stress concentration effects. These two shapes can be 

replaced by the traditional pore shapes like circle, ellipse, and rectangles to reduce the stresses 

in the perforated metal sheets and use the auxetic property for smart applications. 
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1. INTRODUCTION 

Perforated sheets play a major role in various engineering applications for heat transfer, 

filtering, fencing, sunshades, etc. As this study majorly focuses on metal-related perforated 

sheets some of the applications can be classified as per the hierarchy Figure 1.1. 

 

Figure 1.1 Hierarchy of Industries Using Metal Perforated sheets for Various Applications 

Based on these industrial classifications mainly two parameters change according to 

application those are Shape of the perforation and the physical quantities like temperature and 

load applied. But to focus our study we have considered only load based applications, some 

examples are Grain dryers and sorters are affected by continues vibration and cyclic loads used 

in food & beverage industries, similarly, engine and radiator cover used in automobiles are 

influenced by various loads and temperatures as well. So, when perforated metal sheets 

undergo force or vibration, they are affected by the stress concentration factor which is 

dependent on the shape of the pattern. The most common shape widely considered is the 

circular shape and the circumference of the circle attracts the stresses based on the direction of 

loading. In the case of shapes which has edges can be the critical points of failure which are 

independent of the direction of loading. Hence this study has been performed to replace the 

common shapes with new shapes which could provide some interesting mechanical properties, 

without interfering with the stress field of the perforated sheets with better stress distribution 

and load-bearing capacity. 

Considering 2D elements to observe stress field and simplify analysis time we have categorized 

the new shapes in design conditions, with the influence of Size, Profile, Arrangement, Rotation, 

Width and Porosity which influence the stresses and Poisson’s Ratio (section 4.2). Innovation 

has been also added to this analysis by considering auxetic properties in metal sheets with 

intricate patterns. Auxetic properties are manly validated based on the Poisson’s Ratio of the 

material when the load is applied. For easier understanding, we have selected six different hole 

shapes which have supported us to validate our result with evident values of stresses and 

Poisson’s Ratio which will be explained in detail further.  Hence using finite element analysis 

and advanced mechanical design technique we have concluded numerically that we can 

Classification 
Based on 
Industries

Architectural Food & Beverage
Chemical & 

Energy
Material 

Development
Automotive Construction
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increase the durability and reduce faster failure in static load cases by distributing the stresses 

using Double T and Hourglass shapes (similar to reference [1]). 

2. STATE OF THE ART 

The vision to explore this study was the behavior of the 2D structures under static loading 

conditions to improve its stress field distribution and performance indices. The idea was 

supported by some references which helped us to define boundary conditions and guidelines to 

design new patterns. “Farhad Javid’s et al.” [1] describes the application were metallic perforated 

sheets are used as combustion liners, ducts, casings and sealing surfaces for cooling holes of the 

passage of cold air to the turbine blades. Gas turbines are used from driving tanks, jets, 

helicopters to power generation and industrial power users in a variety of power needs. They 

operate at temperatures that exceed the materials ' melting points, so it is necessary to install 

the system's cooling functionality. Film cooling is an efficient method for reducing the 

temperatures of the components and is currently used in many aircraft turbines and many 

turbine engines generating power. Due to the stress caused by temperature variations, these 

cooling holes are highly prone to fatigue failure. Several studies considered optimizing the 

shape of the cooling holes, but most of them focused on the functionality of cooling. Typically 

circular holes were the cooling holes used in these types of structures. But the use of circular 

holes had limitations on the edges of the holes with increased stress concentration factors, 

leading to the failure of cooling holes prior to 100k cycles. They replaced circular holes with 

S-shaped holes in their study and analyzed the results. There was a remarkable change in the 

deformation mechanism and how crack propagates in the case of S-shaped holes. They have 

determined from their analysis that the S shapes experience the low-stress value since the 

mechanism of deformation is found to induce domain rotation between neighboring holes. 

Thus, the cracks initiated at the concentrations of stress along the s-shaped pores are trapped 

in low-stress regions and propagated at a much lower rate.     

They have conducted an experiment using stainless-steel dog-bone samples which were 

fabricated out of 1 mm thick stainless-steel sheets characterized by E = 193 GPa and ν = 0.33. 

A square array of 5 X 5 holes with a center-to-center spacing of 10 mm was embedded in their 

gage section by laser-cutting. Details of the geometry of the sample can be found in Figure 2.1. 

The circular holes have radius R = 0.63 mm, while the S-shaped pores have a length of 6.6 mm 

and a width of 2 mm (see zoom-in in Fig. 2.1 for the details of S-shaped pores). Importantly, 

both samples are characterized by the same porosity in the gage section, ψ = 0.05. 
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According to the reference [1], tests were conducted under strain-controlled conditions using a 

trapezoidal waveform with a frequency of 0.25 Hz. For the planar samples, they used ϵmax applied= 

0.002 and ϵmin applied = 0, while for the cylindrical samples we used ϵmax applied = 0.004 and ϵmin applied 

= 0. The specimen failure was defined at the point when a 90% drop in the maximum load 

(compared to the first cycle) was recorded. 

 

Figure 2.1 Detailed Dimensions of Dog Bone Samples with Circular and S patterns 

For a further deeper understanding of different shapes, we have been assisted by “L. 

Francesconi et al.” Reference [2] which presents an assessment of static and dynamic 

mechanical behavior of low porosity, ductile auxetic metamaterials. Using speckle 

interferometry and digital image correlation, they used full in-plane displacement fields and 

the own modes of different geometric structures to investigate and compare with finite element 

simulations. The results show strong agreement, validation of the theoretical approach used 

and the establishment of a method for testing and quantitative evaluation of the performance 

of negative Poisson ratio structures and metamaterials for various purposes and fields in 

general. According to the author, their findings from this study also increase the knowledge of 

elastic instability in metallic auxetic structures, with further applications in several engineering 

fields that can benefit from combining ductile material qualities with additional characteristics 

typical of these smart structures. 
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2.1. AUXETIC PROPERTY 

According to “Joseph N. Grima and Ruben Gatt” [10] Poisson’s Ratio defines the ratio between 

the transverse strain and axial strain in a loaded material. The extent of deformation a material 

undergoes when it is uniaxially stretched or compressed are quantified through Poisson’s Ratio. 

For most of the conventional materials, the value of Poisson’s Ratio is positive. But the 

Poisson’s Ratio not necessarily to be always positive. The classical theory of elasticity suggests 

that the Poisson’s Ratio of isotropic materials can have the values within -1 to 0.5. and the 

range is wider for orthotropic and anisotropic materials. Negative Poisson’s Ratios have been 

discovered for naturally occurring or man-made metals including foams, polymers, cubic 

lattice, naturally layered ceramics, ferroelectric polycrystalline ceramics, metals, zeolites, etc. 

Various model structures and mechanisms which exhibit negative Poisson’s Ratio include re-

entrant units, rotating rigid units described in Figure 2.2. The materials which exhibit negative 

Poisson’s Ratio are auxetic materials. The auxetic materials exhibit the very unusual property 

of becoming wider when stretched and narrower when compressed.   

   

Figure 2.2 Shows the arrangement of shapes leading to Negative Poisson’s ratio 

Based on Reference [10] Auxetic materials are of interest due to their counterintuitive behavior 

under deformation and enhanced properties. It has been found that auxeticity can be described 

in terms of the geometry of the material system and deformation mechanism when loaded. The 

negative Poisson’s Ratio is a scale-independent property i.e the auxetic behavior could be 

achieved at a macroscopic or microscopic level, or even at the mesoscopic and molecular level. 

These materials demonstrate unique and enhanced mechanical properties compared to 

conventional materials. It has been shown experimentally that the indentation resistance of 

auxetic materials has been enhanced up to four times when compared with their conventional 

equivalent. Other enhanced properties are mechanical hardness, fracture toughness, and 

stiffness based on Reference [14]. In terms of the dynamic performance, auxetic materials also 

show an overall superiority regarding damping and acoustic properties compared to the 

conventional materials. Owing to their easy availability, and desirable mechanical properties, 
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auxetic materials find a broad range of applications in many industrial sectors, especially in 

automotive, aerospace, and marine industries. More and more auxetic materials and structures 

with different microstructures are used to replace conventional counterparts and have achieved 

satisfactory results.   

Today, a variety of auxetic materials and structures have been discovered, fabricated or 

synthesized ranging from the macroscopic down to the molecular levels. The design of 2D 

systems capable of retaining a negative Poisson’s Ratio at low values of porosity remains a 

challenge. Geometrical optimization of 2D structures could lead to the exhibition of auxetic 

properties which is also included in the current study. The combination of various geometry 

optimization leads to an increase in negative Poisson’s Ratio. With some combinations, we 

have also obtained Poisson’s Ratio values which are close to 0. This is also an enhanced 

property of the system that these systems neither get wider nor thinner when stretched or 

compressed. Some applications of auxetic properties which are implemented on high-porosity 

foam structures have been recently introduced, including actuators, sensors, self tunable 

photonic and phononic crystals, smart objects and surfaces, protection devices, enhanced 

shock-absorption devices, self-cleaning filters, and strain amplifiers, etc. We have analyzed 

our study based on the simulation results of the reference, For the sake of simplification and 

clarity they have named their patterns as circle (Fig. 2.2(a)), stop hole (Fig. 2.2(b)), ellipse (Fig. 

2.2(c)) and double-T (Fig. 2.2(d)) were assigned to the four samples referencing the geometry 

of the pores, but neither parametric studies nor optimization analyses have been performed by 

the author to address the shapes selection, minimize the stress concentration, or enhance the 

in-plane stiffness and the buckling strength. The rectangular samples (Fig. 2.2) are of 

dimension 300 mm × 50 mm ×1 mm made of stainless steel were cut using a wire electrical 

discharge machine (EDM) and a computer numerical control (CNC) machine. They used these 

samples for Tensile static tests to compare between Digital Image correlation, speckle 

interferometry, and Finite element analysis. 

Based on Reference [2] the base cells (shown in the four magnified boxes on the right side of 

Fig. 2.3) of each sample follow a square array; the geometrical center of each void is placed 

6.25 mm away from the next one both in the horizontal and in the vertical direction. The four 

samples can all be considered low porosity structures, because they exhibit a level of porosity 

(i.e., the total volume of the voids divided by the total volume of the material), of about 4.55%. 

These structures are analyzed and validated in section 3.1.1 for learning the auxetic property 

of perforated metallic sheets with different void shapes. 
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Figure 2.3 Fabricated samples for testing (a) Circle(b) Stop Hole(c)Ellipse(d) Double T 

The main parameter the author has considered for the comparison of shapes is the displacement 

in horizontal and vertical directions which will be the used to determine the conclusion for best 

auxetic behavior of the patterns which are considered. All tests were performed well within the 

sample elastic limit to avoid local plasticization at feature tips; the constitutive stress-strain 

relationship is considered linear for all presented investigations. The three samples were loaded 

along the longitudinal direction with a maximum displacement of 0.1 mm From a macroscopic 

point of view they look similar, but some important differences are apparent: the displacements 

in the direction orthogonal to the load (U1) differ largely because they are a function of the 

stiffness of the samples and, hence, of the features’ shape and of the tessellation chosen. The 

largest U1 displacements were predictably obtained from the most compliant sample (the 

double-T, Fig. 2.3) 

 

Figure 2.4 Horizontal (a and b) and Vertical (c and d) displacements (reported in millimeters) of 

the double-T sample under a static tensile load 
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According to the Reference [2] the differences in the magnitude of the U1 displacements, the 

three auxetic samples behave, an expansion at the midsection can be detected due to the 

application of a tensile load. It is possible to track the evolution of the Horizontal displacement 

in the central section of the sample; the Experimental displacement maps highlight the jumps 

in the displacement fields due to the interruption of the material continuity caused by the 

presence of the double-T shaped cut. These discontinuities allow the base cells to rotate about 

the ligaments of material that connects them and finally drive the motion of the surface point, 

leading to an auxetic expansion. The estimation of Poisson’s Ratio by the author is by sampling 

displacement at 8 points along each of the four boundaries of the central regions. Each set of 8 

points are averaged (arithmetic mean) to compute the average displacements at the boundaries: 

(ux)L, (ux)R, (uy)T, (uy)B. 

(𝜖𝑥𝑥)  =  
(𝑢𝑥)𝑅 − (𝑢𝑥)𝐿

𝐿0
   ; (𝜖𝑦𝑦)  =  

(𝑢𝑥)𝑅 − (𝑢𝑥)𝐿

𝐿0
 

where L0 is denoting the distance between the top/ bottom and left/ right boundaries in the 

undeformed configuration. The local strain averages are then used to calculate an effective 

Poisson’s Ratio  

ν = 
− (𝜖𝑥𝑥)

(𝜖𝑦𝑦)
 

For designing insights Reference [3] helped us to understand that the Poisson’s Ratio can be 

effectively controlled by changing the aspect ratio of voids. The structure is characterized by 

positive values of the Poisson ratio for low aspect ratios. However, as the aspect ratio increases 

the Poisson ratio's value monotonically decreases and becomes negative. Based on this 

condition they have kept porosity similar and changed the aspect ratio to analyze the behavior 

of the shapes. They have considered circle and ellipse shape to observe the auxetic behavior 

using U1 & U2 displacements through which Poisson ratio can give the result. The author 

describes the aspect ratio in a/b ratio which implies circle has a/b ratio as 1 and the deigned 

ellipse had a/b~30 (above 30 the ellipse will become very pointy which will induce more 

stresses). So, like References [1],[2] they have also performed the static tensile test and 

compared with the simulation results. The results confirm that the void aspect ratio can be used 

effectively to design low porosity structures and Poisson’s Ratio's negative value. The high 

aspect ratio ellipses result in the material characterized by a significant negative value of 

Poisson’s Ratio. For the circular shape, the ratio of the Poisson is still close to the ratio of the 

bulk modulus Poisson, but for the ellipse, it is completely different where the value for an 

infinite structure has approached -0.65. In Figure 2.4 they have displacements of U1 and U2 

for the circular and ellipse shape in their respective aspect ratio. 
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With Figure 2.4 it is clearly evident new shapes can be designed for the same applications 

which can better load bearing capabilities and enhanced auxetic behavior compared to current 

shapes which have a lower fatigue life. Using the approach of References described above and 

mentioned in references section we have developed a numerical analysis which helps us to 

analyze the stress distribution, shape behavior under loading when periodic boundary 

conditions are applied, auxetic behavior and fatigue life of perforated metal sheets. 

 

Figure 2.5 U1 & U2 Displacement plots for circle and ellipse shape 

2.2. PERIODIC BOUNDARY CONDITION 

Periodic boundary conditions are a set of boundary conditions which are used to simulate an 

infinite structure by simply modeling a finite representative volume. A finite representative 

volume is often called a unit cell. In our study, we use PBC to approximate a 10mm X 10mm 

to infinite structures. In periodic boundary conditions, an infinite lattice system is formed 

simply by repeating the simulation box throughout space (as shown in Figure 2.5 ). When a 

molecule leaves the box, one of its images will enter through the opposite face with exactly the 

same way and direction. The molecules in the simulation box will conserve and the system can 

be thought of as having no surface based on Reference [4]. 
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Figure 2.6 A 2-D Periodic Boundary Condition cell 

PBC is a great option to reduce computational time and computational cost in case of modeling 

large structures. Periodic boundary conditions are commonly applied in molecular dynamics, 

dislocation dynamics and material modeling to eliminate the existence of surface and avoid a 

huge number of molecules or large size of simulation. We have followed [4] to define PBC 

equations in our study. Also, we have been some modifications to suit our requirement. A strain 

controlled PBC may be specified by following equations. 

                              u(x+L) = u(x)+  x                                ∀ x ∈ B2
𝛿                                                     (1) 

                              u(x+L) = u(x)                                                                                                        (2) 

                                 t(x+L) = -t(x)                                          ∀ x ∈ B1
𝛿                                             (3) 

where u is the displacement at x,  is the strain applied to the RVE, t is the traction force and 

B1
𝛿 represents the boundary B whose normal is along “1” direction. 

• Constraint Equations 

We apply PBC through linear constraint equation in ABAQUS. Multi-points may be 

constrained by a general linear combination of nodal variables. The summation of the product 

of a coefficient and the corresponding nodal variable is equal to zero. We define a general 

linear homogenous equation  

                                 A1u
P

i + A2u
Q

j + ……………………. + ANuR
k = 0                                       (4) 

Where r is a node, k is the degree of freedom and AN is a constant coefficient that defines the 

relative motion of nodes.  
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• Dummy Node 

To apply PBC using constraint equations described above, one abstract concept of “dummy 

node” is introduced in Abaqus. We rewrite equation (4) by replacing zero by a non-zero value 

u. 

                                 A1uP
i + A2uQ

j + ……………………. + ANuR
k = u                                                   (5) 

• Definition of equation 

 

Figure 2.7 Definition of * Equation 

*Equation 

3                                       ** equation has 3 terms 

Left, 1, 1                          ** left surface node set, dof = 1, coeff = 1 

Right, 1, -1                      ** right surface node set, dof = 1, coeff = -1 

*Equation 

3                                       ** equation has 3 terms 

Left, 2, 1                          ** left surface node set, dof = 2, coeff = 1 

Right, 2, -1                      ** right surface node set, dof = 2, coeff = -1 

10000, 2, 1                      ** dummy node z=10000, dof = 2, coeff = 1        

RVE description as per our study requirement 

                               u1
left + u1

right = 0                                                              (6)    

                               u2
top – u2

bottom = -0.01                                                                       (7) 
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So, we have embedded these equations in a python script (Appendix A) which will be used to 

run in Abaqus module to generate Periodic boundary conditions. The algorithm to generate 

paired nodes for the Circular pattern simulated in Reference [1] is explained below.   

2.3. MANUFACTURING TECHNOLOGY 

Laser drilling has been considered as the best technology when compared to other high 

accuracy machining options. A comparison of basic parameters which influence our shape 

designs is described in Table 2.1. 

Table 2.1  Parameter comparison of Laser Drilling, CNC punch and Waterjet 

Parameters Laser Drilling CNC Punch Waterjet 

Accuracy (mm) ±0.025 ±0.25 ±0.1 

Thickness (mm) 6 8 70 

Cutting Speed 2 m / minute 1600 punches/ minute 50mm / Minute 

Quality of Edge Excellent Fair Excellent 

HAZ Yes No No 

Material 

Distortion 

Cuts by melting, resulting 

in material heat distortion. 

Some distortion 

depends on the 

thickness 

No Distortion 

Process Type Non-Contact Contact Non-Contact 

With the Table above we can infer that laser drilling is the most accurate manufacturing method 

currently which will be used to create shapes based on the numerical analyses described in this 

study. As the applications of these complicated perforations might be the limited speed of 

cutting can be compromised hence faster process like CNC punching won’t be able to create 

shapes which have intricate dimensions. Similarly, waterjet being a non-contact process it is 

very difficult to control the flow of water to create smooth curvatures with smaller dimensions.  

The minimum cut distance considered in our study is 0.1mm and the minimum distance 

between two elements is considered to be 0.2mm which can be achieved using laser drilling 

based on References [11-13]. Considering mass production we have described the types of the 

manufacturing process for perforated metal sheets.  

2.3.1. Types of Manufacturing Process for Perforated Metal Sheet. 

Based on reference [9] there are 3 main manufacturing processes used to create Perforated 

Metal sheets. 
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a) Punch Press  

The majority of Perforated Metal sheets is manufactured with a device called a Punching Press. 

Punch Press machines feature sharp perforation tools that can be customized to desired hole 

size and shape. There are a couple of types of Punch Presses. Wide Punch Presses feature long 

rows of punching rams. When sheet metal, whether plate or coil,  is passed through this 

machine, the rams descend upon the material to strike and perforate entire rows of holes in one 

motion. For this reason, Wide Punch Presses are ideal for punching large amounts of 

perforations at quick speeds. Another Punch Press is the Sectional XY Axis machine. 

Sectional XY Axis Punch Presses do not typically have long rows of perforation tools, unlike 

Wide Punch Presses. Rather, they will feature either a single die or a limited cluster of 

punching rams. Instead of passing sheet metal through this machine, the die or punching ram 

clusters are moved across the stationary material section by section. As you can imagine, this 

method can sometimes be a lengthier process. However, it is optimal for Perforated patterns 

that are non-repetitive or have complex designs. Typically, with either Punch Press method, a 

certain amount of material along the length of the sheet will be reserved as unperforated. This 

is done to create margins or solid blank areas around the edges of the material. 

b) Rotary Pinned Perforation Roller 

As one of the most efficient methods of perforating metal, Rotary Pinned Perforation is a 

popular process for standard Perforated sheets. This method begins with large cylinders 

equipped with sharp, pointed needles along the outside. Sheet metal is then run underneath 

these structures, and as the cylinders rotate the needles continuously punch the sheet passing 

below. In some cases, the needles will be heated in order to melt the metal on the inside of the 

punched holes. This is done to reinforce the rings of the perforations and increase strength. The 

cylinders can be rotated at considerably fast speeds, so Rotary Pinned Perforation is optimal 

for punching numerous identical holes at a quick rate. 

c) Laser Drilling 

Laser Perforation is a process where focused, highly accurate beams burn holes in sheet metal 

beneath them. Lasers are incredibly precise and versatile methods of perforation but can be 

costly and time-consuming for large volumes. 

  

https://www.mcnichols.com/perforated-metal
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3. MODEL VERIFICATION AND DESIGN CONSIDERATIONS 

To begin with our own design and analysis it is very crucial to validate our design procedure 

with similar models or area of interest. We have chosen ABAQUS for our designing and 

analysis of the patterns and also, the filtering of References for our study was performed based 

on this criterion. For validation purpose, we have kept the same material properties and 

boundary conditions to achieve the same result of the Reference referred. With this approach, 

we can understand the design procedure used by various authors and recreate effective designs 

out of it. So, we have validated 3 case studies which will be the foundation of our design 

procedures. 

3.1. CASE STUDIES AND VALIDATIONS 

Selection of References for modal validation was done based on some ground rules. Firstly 

they should be metal perforated sheets with respective shapes of their choice. Secondly, the 

perforated sheets should undergo static tensile loading finite element analysis in ABAQUS 

which will be easier and genuine for comparison purposes. Finally, the main criterion of our 

study is applying Periodic Boundary Conditions (Section 2.2) on the model to limit simulation 

time, so References which use periodic boundary condition will verify our results. 

3.1.1. Case 1: Validating low porosity metallic auxetic structures without periodic 

boundary conditions. 

This validation is based on Reference [2] in which the “ L. Francesconi et al.” is evaluating the 

auxetic behavior of 4 different shapes (showed in Figure 2.1) namely a) Circle b) Stop Hole c) 

Ellipse d) Double T. Author has performed experimental and modal analysis also which we 

won't be considering for our study as it will complicate the scope of designing patterns under 

static loading only.  So, we would replicate the same patterns so as to verify our method and 

accuracy of the software. 

Model Specification 

It’s a 300 x 50 mm stainless steel AISI 304 plates with a modulus of elasticity 200 GPa having 

a yield stress of 200 MPa and Poisson’s ratio of 0.29. Maintaining same porosity level of 4.55% 

the 4 patterns namely a) Circle b) Stop Hole c) Ellipse d) Double T is designed in Abaqus for 

finite element analysis. The author has compared his study with experimental analysis also 

which we won't be considered as our study is based on numerical conclusion and discovery of 

new patterns. The main parameter considered by the author for comparison of patterns is the 
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displacement parameters, as the Finite element analysis is performed in 2D space U1 & U2 

will be the judging parameters. 

Boundary conditions and Meshing Parameters 

All the patterns have the same boundary conditions and meshing parameters for the numerical 

comparison. 0.1 mm displacement has been given to load the model with static loading based 

on the reference [2] with Encastering at the bottom and pulling in Vertical direction. The 

remaining boundaries are considered as traction free. Tetrahedral element shape has been 

chosen with quadratic tetrahedral CPS6 element type applying plane stress condition.  

 

Figure 3.1 Abaqus Part Models with Full-Scaled and Zoomed View designed 

a) Circle 

According to the author this shape won't exhibit auxetic property due to its Poisson’s Ratio 

values which are always positive under static load, hence he didn’t perform any finite element 

analysis on circular patterns. But for our understanding and comparison purpose, we performed 

it to verify the author's conclusion. Hence designing 0.75 mm of circular patterns with 6.25 

mm center to center distance arrangement we have performed the simulation. 

a) Circle   b) StopHole  c) Ellipse   d) Double T 

1) 2) 

3) 4) 



 

22 
 

   

Figure 3.2 Zoomed View of model Stresses, Displacement in X (U1) and Y (U2) directions 

The numerical analysis shows visually that the circular patterns are being stretched into an 

ellipse shape which shrinks the plate inwards hence it's understood that circular patterns cannot 

exhibit auxetic behavior. According to the simulation results we can see in Figure 3.2 that the 

maximum Von Mises stress is 198.1 Mpa which will around the circumference of the pattern 

were the stretching begins and the Critical Area of crack propagation. When understanding 

displacements Horizontal direction is the most crucial one to observe which is U1. According 

to the Figure above we have the maximum displacement of the edges of the plate in the 

Horizontal direction is 0.000265 mm from the center of the plate, which we will use for 

comparison purposes in the upcoming comparison section. Vertical direction displacement 

which is U2 is used to just verify the displacement value to induce tensile loading on the plates. 

According to the author, they won't be considering stresses as their main parameter of control 

as they are more focused into the auxetic property which means they are more interested into 

the displacements in the Horizontal direction. But in our study, we also include the reduction 

of Von Mises stresses also we would be comparing the stress values in the upcoming results. 

Even if the circular shape doesn’t exhibit auxetic property they are the most widely used shape 

to create perforated metallic sheets in various applications. As they are easy to mass produce 

with precise accuracy using any type of mass production processes in which some of them are 

CNC punching, nibbling process, laser drilling, etc. But they have fast crack propagation issues 

when a crack has been initiated which can create multiple failures in the whole metal sheet 

according to Reference [1]. Hence, upcoming shapes can possibly avoid these issues and better 

stress field distribution. 
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b) Stop Hole 

As the name suggested by the author in Reference [2] this pattern has two holes at the ends and 

a strip in between. In Reference [2] they have simulated in Abaqus with the conditions 

mentioned above to observe this pattern auxetic behavior. Hence, we would be able to compare 

our results with the Reference [2] to authenticate our simulation and extract positives to design 

our shapes.  

  

 

 

 

 

 

Figure 3.3 Displacement Comparison in U1 &U2 direction of Stop Hole pattern with Reference 

(Top) and Validation (Bottom) with Von Mises Plot (Right) 

With comparison, we have achieved almost the same result as an author with 3.63% error which 

is due to meshing parameter differences as the author didn’t mention about meshing parameters 

in the reference. According to Reference [2], they have a maximum displacement of Stop Hole 

pattern 0.00171 mm in the Horizontal direction and 0.1 mm in the Vertical direction which is 

the loading direction. Trying to recreate the same values we achieved maximum displacement 

of 0.00208 mm in the Horizontal direction and 0.1 mm in the Vertical direction with 234.8 

MPa Von Mises stress. With these results, the author is evident that stop hole shape exhibits 

Zoomed view for detecting maximum 

stress inducing area 
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auxetic behavior as there is 544% (% increase between 0.00171 and 0.000265 mm) increase of 

displacement value in the Horizontal direction when compared to the circular pattern plate 

(0.000265 mm) shown in Figure 3.2. But when we compare the maximum Von Mises stresses 

of the stop hole pattern in Figure 3.3 with the circular shape in Figure 3.2 there is an increase 

of 36.1 MPa in the stop hole plate. Which infers that even if stop hole pattern exhibit auxetic 

behavior it induces more stresses into the plate. The maximum stress generation (red and green 

regions) is occurring in the area were the stop hole is most stretched which is at the tips of the 

top and bottom circles and in the middle of the strip region as shown in Figure 3.3 zoomed Von 

Mises stress distributions performed in Abaqus. 

c) Ellipse 

Ellipse is formed when the aspect ratio of the circle is changed as stated in Reference [2]. So, 

the author infers that we can achieve auxetic behavior if we tune the aspect ratio of a regular 

ellipse (the ratio between the two major axes). Unfortunately, if we increase the aspect ratio 

really high, we can form really sharp tips in the ellipse which will increase the stress 

concentration factor leading to plasticity and fracture based on Reference [2].  

  

 

 

 

 

 

 

 

Figure 3.4 Displacement Comparison in U1 &U2 direction of Ellipse pattern with Reference (Top) 

and Validation (Bottom) with Von Mises Plot (Right) 

Zoomed view for detecting maximum 

stress inducing area 
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So, we have recreated the ellipse shape in Figure 3.4 with the same aspect ratio of the Reference 

[2] and this time we have acquired the same result as obtained by the author. The Horizontal 

direction maximum displacement of the ellipse plate as shown in Figure 3.4 is 0.00154 mm 

and 0.1 mm is unchanged in the Vertical direction. Similarly as stated above when compared 

to the circular shape (0.000265 mm) there is an increase of 481% (% increase between 0.00154 

and 0.000265 mm) of displacement value in the Horizontal direction which indicates auxetic 

behavior. Considering maximum Von Mises stress the results exhibit in Figure 3.4 is 296.6 

MPa which is 98.5 MPa more when compared to a circular shape in Figure 3.2. This is due to 

the sharp edges of the ellipse (shown in Figure 3.4) inducing more stresses (red and green 

region) in the plate. 

d) Double T 

Based on the authors in Reference [2] justification they have designed this shape with the 

motive to reduce Von Mises stresses in the ellipse shape described in Figure 3.4. As the name 

indicates it has two semi-circular inscriptions at the top and bottom edges which visually looks 

like a ‘T’ alphabet and a strip in between to complete the patterns (shown in Figure 3.5). 

      

 

 

 

 

 

 

 

Figure 3.5 Displacement Comparison in U1 &U2 direction of Double T pattern with Reference 

(Top) and Validation (Bottom) with Von Mises Plot (Right) 

Zoomed view for detecting maximum 

stress inducing area 
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We were able to completely recreate the same maximum displacement value generated by in 

Reference [2] for Double T shape with no error. Upon validation Horizontal direction 

maximum displacement is 0.00235 mm (shown in Figure 3.5) which is 786% (% increase 

between 0.00235 and 0.000265 mm) more when compared to the circular pattern (0.000265 

mm) in Figure 2.2, hence Double T shape also exhibit the best auxetic behavior. The Vertical 

direction maximum displacement is 0.1 mm which is unchanged due to the loading direction. 

We have obtained Maximum Von Mises stresses of  228.5 MPa according to the simulation 

result in Figure 2.5. There is an increase of 30.4 MPa Maximum Von Mises stresses in case of 

Double T pattern, which is due to the maximum stretched area (red and green regions) that is 

at the tips of the top and bottom edges as observed in stress plots in Figure 3.5. 

Comparison of Displacements and Von Mises Stresses 

This section summarises the discussion above where we can establish the best pattern 

exhibiting auxetic behavior of the 4 shapes described in section 3.1.1 and authenticated by the 

Reference [2].  

 

 Graph 3.1 Plots describing Displacements, Maximum Von Mises stresses and Poisson’s 

Ratio of 4 different patterns 
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When we observe in graph 3.1(plotted based on Reference[2] data) the maximum displacement 

in the Horizontal direction is achieved by the Double T shape and which can be verified by the 

Poisson’s Ratio value of -0.832 when compared to other values obtained by other shapes. 

According to author even considering differences in the magnitude of the U1 displacements, 

the three auxetic samples namely Stop Hole, Ellipse and Double T have similar behavior (Figs. 

3.3, 3.4 and 3.5) expansion at the mid-section can be detected by applying a tensile load. The 

evolution of the Horizontal displacement in the central section of the sample can be tracked; 

the experimental displacement maps highlight the jumps in the displacement fields because of 

the interruption of the continuity of the material caused by the presence of the double-T-shaped 

cut. These discontinuities enable the base cells to rotate about the material ligaments that 

connect them and ultimately drive the surface point movement, resulting in an auxetic 

expansion. This effect can be observed in Double T (Fig 3.5) and for the stope hole (Fig 3.3) 

plates, while it is lesser in ellipse shape due to its lower displacements in the Horizontal 

direction. The displacement maps also show that the mechanical response of the base cells of 

the samples is highly non - homogeneous, a factor of some importance in the design of this 

class of structures. It is also evident that the global displacement of the sample in the orthogonal 

direction of the load applicable is produced by the joint participation of all the base cells and 

fostered by the discontinuity formed by the presence and shape of the features. In Figures 3.4 

and 3.5 the contour plots with accentuated gray level scales indicate step changes in the 

displacement gradient in the vicinity of the characteristics and a severe increase/concentration 

of the surface movement around the cuts. Even if the Double T pattern has higher Von Mises 

stress of 30.4 MPa when compared to circular shape according to graph 3.1 which can be 

generated locally in very small areas and can be a trade-off for introducing auxetic properties 

to the material according to the Reference [2]. 

3.1.2. Case 2: Validating the design of porous structures with enhanced fatigue life. 

This case study is based on Reference [1] written by “Farhad Javid et al.” were they have 

addressed with the issue of fatigue failure of perforated sheets with circular patterns due to 

stresses induced due to temperature variations during operations. They have demonstrated both 

experimentally and numerically that the fatigue life of the perforated sheets with circular 

patterns can be greatly enhanced by replacing with S-shaped patterns in the metal sheets. They 

have mentioned that life of metallic sheet with a square array of conventional circular holes is 

<100k cycles, which can be increased up to a million cycles when replaced by these S-shaped 

patterns. To reach these results the author has performed numerical analysis in Abaqus to 

compare Von Mises stresses of both shapes using Periodic Boundary Conditions described in 
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section 2.2. Also, the author has evaluated the normalized stresses by changing the aspect ratio 

of the circle in four different values which gives a better insight into stress distribution in the 

plate while maintaining the same porosity. Moreover, they have also performed crack 

propagation study and experimental analysis which we won't be considering for our validation 

because these will complicate our objective to design and optimize new shapes. 

3.1.2.1. The algorithm to generate paired nodes in a 10 x 10 mm plate. 

As our numerical analysis is mostly based on a 10 x 10 mm plate, we are going to explain the 

procedure to run our python script (Appendix A) using the model in Reference [1]. 

1. To run the python script we need to initially generate the script file of Abaqus which 

contains the Model with constrained dimensions, applied material properties and 

appropriate Meshing with required element type then save the model to generate the 

Abaqus jnl file. 

     

 

 

 Figure 3.6 Procedure to generate Abaqus script with Model and Meshing parameters 

2. Once the .jnl file is generated we can change the extension to .py to convert it to python 

script for inserting our codes in Appendix A.1. At the beginning of the script, we have 

inserted an execution command (execfile (‘AbaqusScriptFunc.py’)) which will run 

function script available in the same folder. 

3. The logic of ‘AbaqusScriptFuc.py’ (Appendix A.2) is it creates two reference points at 

the origin which is basically used to connect Top and Bottom nodes with reference 

point 1 and Left and Right nodes with reference point 2. Then an ‘if’ loop is initiated 

which checks the distance between nodes to ensure they are inside the dimensions and 

then Periodic Boundary Conditions related equations mentioned in section 2.2 are 

applied till every node is constrained.  

Create the Model Apply Material Properties Choose the applicable Meshing 

parameters 
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Figure 3.7 Logic to Connect nodes with Reference points 

4. Once the PBC has been applied we have to give the dimensions of the plate which is 

10 x 10 in terms of coordinates as mentioned in (Appendix A.1). Finally, the 

displacement of reference points has to be given using coordinates to initiate the 

movement of the respective nodes when the job has been run which will give the result 

shown in Figure 3.8 with a low computational time of 1 minute (it can change based on 

various conditions like size of model, shape of patterns, mesh size, load applied). 

 

Figure 3.8 A 10 x 10 mm Plate Simulated in Abaqus with PBC 

3.1.2.2. Validation and Comparison of Porus structures with PBC. 

After understanding the concept of Periodic boundary conditions and implementation in 

Abaqus. We are going to validate numerically “Farhad Javid’s et al.” Reference [1] to 

authenticate our procedure which will support our development of new shape developments 

using the same approach.  

Model Specification 

Author fabricates dogbone samples of 90 x 25 mm shown in Figure 2.1 in chapter 2 for 

experimental purposes and obtained the same results using Finite element analysis in Abaqus 

using PBC by considering a 10 x 10 mm 2D section to reduce computational time as explained 

previously. The Material properties are of stainless steel SS316L with a modulus of elastic 

193,000 MPa, Poisson’s Ratio 0.33 and Yield strength of 205 MPa. Based on Reference [1] we 

Creating Reference Points at origin Connecting Nodes with the Reference 

Points 

Checking distance between the nodes 
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have designed circular shape, S shape and Ellipse shape with 3 aspect ratios maintaining the 

same porosity of 5 %. 

Boundary Conditions and Meshing Parameters 

As discussed above we are going to apply Periodic boundary conditions with Monotonic tensile 

load with applied strain 0.001% in the vertical direction which infers that the length is 10mm, 

so the corresponding displacement is 0.01mm. Similar to the Reference [1] the element shape 

is Quad free with standard quadratic CPS8 element type applied under plane stress condition. 

In section a &b we are going to apply these boundary conditions to validate authors results.  

a) Validation and Shape Influence on Von Mises Stresses 

In this case, the main parameter considered by the author is the normalized stresses as their 

motive is to increase the life of the plate with circular holes based on Reference [1]. Hence, 

they have replaced them with S-shaped patterns to reduce these stresses. 

           

 

Figure 3.9 Numerical analysis and Validation: Distribution of Von Mises stress (normalized by the 

bulk material’s elastic modulus E) for circular (left) and S-shaped (right) holes 

As we can observe from Figure 3.9 our numerical analysis is a perfect match with authors 

results as per the Reference [1]. We have also normalized the Von Mises stresses by dividing 

Reference 

Validation 
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the Von Mises stresses with a modulus of elasticity based on authors approach to observe the 

yield area which can influence crack propagation. With the results shown in Figure 3.9, we can 

clearly see that the maximum normalized stress of S shape which is 58.6 % lower than the 

circular shape. Also, from the contour plots, we can observe that with circular holes the 

deformation mechanism is stretching, while in the S-shaped hole sample it is mostly rotation 

of the domains defined by the pores, which also results in a negative Poisson’s Ratio. We can 

witness the mechanism that results in this remarkable behavior and finds that both the 

deformation mechanism and the way cracks propagate change in the S-shaped pores. More 

specifically, while large portions of the material are highly stretched in structures with circular 

pores, in the case of S-shaped holes, the majority of the structure experiences low-stress values 

as the deformation is found to induce the domain rotation between neighboring holes. As a 

result, the cracks initiated at the concentrations of stress along the S-shaped pores are trapped 

in regions of low stress and propagated at a significantly lower rate based on Reference [1]. 

When we compare the displacement plots in Horizontal & Vertical directions (U1 &U2 

respectively) of both the shapes in Figure 3.10. 

   

  

 Figure 3.10 Displacement plots of Circular shape(top) and S Shape (bottom) 

The maximum displacement of circular shape in the Horizontal direction (U1) is 0.002067 mm 

and 0.01 mm in the Vertical direction (U2) which is the direction of loading. Similarly, the 

maximum displacements of S shape in Horizontal & Vertical directions are 0.006661 mm and 

0.01 mm respectively. So, we know through case study 3.1.1 displacement in the Horizontal 
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direction can detect the auxetic behavior of metallic perforated sheets. In this case, we have an 

increase of 222% in maximum displacement in the Horizontal direction by S-shaped plate when 

compared with the circular shaped plate based on the displacement plots in Figure 3.10. Which 

means that replacing S shape not only reduces stresses of the plate but enhances its previous 

behavior by adding auxetic property. This can be authenticated by the poisons ratio value which 

is -0.67 of S Shape pattern and 0.326 of the circular patterns which prove that the S-Shaped 

plate exhibit auxetic behavior with better load bearing capabilities compared to the circular 

shaped plate.  

b) Validation and Aspect Ratio Influence on Von Mises Stresses 

The second part of Reference [1] is the influence of aspect ratio on the distribution of stresses 

while maintaining the same porosity level. Author has altered the circular shape into three 

different aspect ratios to analyze the behavior of the stresses in a 10 x 10 mm plate using PBC 

described in section 2.2.  So physically when the aspect ratio of a circle is changed it transforms 

into an ellipse. 

 

Figure 3.11 Numerical analysis and Validation: Distribution of Von Mises stress (normalized by 

the bulk material’s elastic modulus E) for different Aspect ratios of circular pattern with Reference 

(Top) and Validation (Bottom) 

According to Figure 3.11, a/b is the ratio between the two major axes of the shape which defines 

the aspect ratio of the pattern. Hence a/b ratio of the circle is 1 and based on Reference [1] we 
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have validated three different aspect ratios which are a/b=9, a/b=18 and a/b=30 respectively. 

Further increase of aspect ratio will make the ellipse tips very sharp which are prone to increase 

stress concentration factor according to Reference [1]. Based on numerical analysis results the 

author indicates that as the aspect ratio of the ellipses increases, the stress pattern in the 

structure changes. The pores are actually found only to locally perturb the displacement field 

in the case of circular holes so that the displacement field typical of the bulk material can be 

easily noticed. In comparison, the elliptical holes array is found to affect the displacement field 

considerably, thus disturbing the linear distribution. We can also discover the effect of aspect 

ratio on auxetic behavior of plates by observing the displacement plots in the Horizontal 

direction (U1) in Figure 3.12.  

    

                 

Figure 3.12 Displacement plots in X Direction (U1) of Ellipse with different aspect ratios 

As discussed previously we have obtained displacements in the Horizontal direction (U1) 

which are can be observed in Figure 3.12. So, when comparing the maximum Horizontal 

direction displacement with the circular shape we have obtained a change in the percentage of 

displacement to determine the influence of aspect ratio on poisons ratio. For a/b=9 it has a 

decrease of -84.4% in maximum displacement comparatively than circular shape displacement 

hence it doesn’t exhibit auxetic behavior, further there is an increase of 90.95% in maximum 

displacement in the Horizontal direction when the aspect ratio is increased to a/b=18 obtaining 

a Poisson ratio value of -0.39. Finally, when the aspect ratio is reached to a/b=27 the maximum 

displacement has increased to a staggering 369.23% achieving the Poisson ratio value of -0.75 

which is the highest when compared to other aspect ratios. With this, we have demonstrated 

that by changing the aspect ratio of voids, the Poisson ratio can be effectively controlled. The 

structure is characterized by positive values of the Poisson ratio for low aspect ratios. However, 

as the aspect ratio increases the Poisson ratio's value monotonically decreases and becomes 

negative. They report an assessment of the Poisson ratio as a function of the pore aspect ratio 

in their study. As a function of aspect ratio, they maintained the porosity and modified the 

shape. The effective Poisson ratio is almost the same as the bulk material at aspect ratios close 

a/b = 9 a/b = 18 a/b = 27 
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to 1. The results show clearly that the aspect ratio a/b of the holes has a strong impact on the 

structure's lateral contraction/expansion. Significant auxetic behavior could be produced in low 

porosity metals if the ratio of void aspect a/b is sufficiently large. Hence, The results confirm 

that the shape aspect ratio can be effectively used to design structures with low porosity and 

the negative value of Poisson’s Ratio. The high aspect ratio ellipses lead to the material 

characterized by a large negative value of Poisson’s Ratio based on Reference [1].  

Comparison of Von Mises Stresses and Poisson’s Ratio 

Based on the validation in section a and b above we are going to compare the results of the 

numerical analysis to conclude authors study based on Reference [1]. Hence, we verify that if 

the circle shape is replaced with ellipse shape & S shape of aspect ratio a/b = 27 will have 

increased load bearing capabilities with additions of auxetic property.  

 

  

Figure 3.13 Normalized Stresses of 10 x 10 mm plate with 3 different shapes 

Reference 

Validation 
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Graph 3.2 Plots describing Maximum Von Mises stresses and Poisson’s Ratio of 3 different 

patterns 

Based on the numerical analysis in Figure 3.13 we have compared them graphically in graph 

3.2 to validate the author's study. With the plots, we can observe that the S-shaped pattern has 

the lowest Maximum Von Mises stresses out of the other two shapes. Even if the structures 

with elliptical and S-shaped holes are characterized by qualitatively similar behaviors the high 

local stresses around the tips of the elliptical holes result in a higher value for Von Mises 

Stresses. Also, in the case of elongated elliptical holes, most of the structure experiences low 

values of stress when compared to a circular shape and the deformation is found to induce 

rotation in the domains between holes. We also note that, as for the case of the S-shaped holes, 

the stress is concentrated around the tips of the ellipses. Such localized stresses are higher for 

the elliptical holes than for the S-shaped pores. This is because the S-shaped pores are designed 

to minimize the curvature at stress concentrated points as per the Reference [1]. When we move 

on to the Poisson’s ratio values in Graph 3.2 the ellipse shape and S shape both exhibit auxetic 

property. Hence replacing circular patterns with S shape and Elliptical patterns can greatly 

increase the fatigue life of the material and can exhibit auxetic behavior in future applications 

to enhance productivity. The proposed structures are also characterized by low porosity, 

making them suitable candidates for many components of gas turbine engines with cooling 

requirements. These components will benefit from the proposed design, since it will greatly 

increase the fatigue life while preserving their low-porosity and, consequently, their cooling 

performance described by the author in Reference [1]. 
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4. SHAPE STUDY AND TOPOLOGY OPTIMIZATION 

All the discussion above was focused on designing new pores shapes which will have better 

stress field distribution and can show auxetic behavior based on a specific application which 

demands such enhancement. Based on references [2], [5-8] we have chosen shapes which can 

be used to investigate and optimized. As discussed in section 3.1.2 we are going to apply the 

same boundary conditions with the similar procedure on the new shapes with the aim to reduce 

Von Mises stresses and enhance auxetic property depending on the pore shape behavior. 

Model Specification 

All the shapes have been designed on a 10 x 10 mm plate with the center to center distance of 

5 mm with 2-dimensional perspectives as it reduces numerical simulation time to analyze shape 

behavior. Based on Reference [1] the adopted material is SS316L stainless steel with a modulus 

of elasticity about 193,000 MPa, Poisson’s Ratio of 0.33 and Yield strength of 205 MPa. In 

our study, we have kept porosity constant depending on the design criterion we are analyzing 

and comparing the pores which are discussed in section 4.2. 

Boundary Conditions and Meshing Parameters 

As discussed above we are going to apply Periodic Boundary conditions (section 2.2) with 

monotonic tensile load with applied strain 0.001% in the Y direction which infers that the 

length is 10mm, so the corresponding displacement is 0.01mm. Based on Reference [1] the 

element type is CPS8 (Quad free 8-node quadratic plane stress element) applied under plane 

stress conditions. Applying these meshing parameters for the 2D void patterns will produce the 

values for the measuring parameters discussed below. 

Measuring Parameters 

Based on References [1-3] we have considered four parameters which can be considered as the 

judging factors. The parameters are the following: 

a) Von Mises Stresses (SMAX) 

Von Mises stress is a value used to determine if a given material will yield or fracture.  The 

Von Mises yield criterion states that if the Von Mises stress of a material under load is equal 

or greater than the yield limit of the same material under simple tension which is easy to 

determine experimentally, then the material will yield. Using Abaqus we will obtain Von Mises 

stresses directly which will be used to calculate stress concentration factor and assist to 

comment regarding the stress field of the pattern. 
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b) Stress Concentration Factor (Kt) 

To calculate the stress concentration factor, we have applied the periodic boundary condition 

on a 10mm X 10mm plain 2D structure as shown in Figure 4.1 and calculated the Von-Mises 

stress of the plain sheet. The value was 193MPa. Then to verify the same we have applied the 

same on a plate with a circle in the center and we have obtained the value of stress concentration 

factor as 2.9 (Kt, hole: 560/193) which is very close to 3. Thus, the procedure for calculating the 

stress intensity factor is validated. 

 

Figure 4.1 Von Mises Stresses of the Plane sheet and Plate with Hole 

c) Poisson’s Ratio (ν) 

Poisson’s Ratio is a measure of the Poisson effect, the phenomenon in which material tends to 

expand in directions perpendicular to the direction of compression. Conversely, if the material 

is stretched rather than compressed, it usually tends to contract in the directions transverse to 

the direction of stretching. But in case of auxetic behavior, when stretched the perpendicular 

sides of the material expand to the applied tension, and when compressed, they shrink in the 

two directions perpendicular to the applied compression as discussed in section 2.1. Hence, 

they have negative value in Poisson’s Ratio. We have calculated Poisson’s Ratio of our model 

based on the distance they have stretched or contracted in Figure 4.2 X & Y are the length of 

the plate before they are stretched and dX & dY are lengths after they are stretched then the 

Poisson ratio will be:  

𝜖𝑥 =  (𝑑𝑋 −  𝑋) ; 𝜖𝑦 =  (𝑑𝑌 −  𝑌) 

Poisson’s Ratio: 𝜈 =  
−𝜖𝑥

𝜖𝑦
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Figure 4.2 Poisson’s Ratio Computation 

d) Critical Area (%) 

The Critical Area is the percentage of the area which is stretched above the yield strength of 

the material. This Critical Area of material which bears most of the load applied on the material 

becomes weaker over time and can initiate cracks which can propagate from one pore to 

another. Hence, measuring Critical Area we can predict crack propagation and take appropriate 

measures to reduce them. We have demonstrated the calculation of the Critical Area in Figure 

4.3 where we have limited the Von Mises stresses between 205 MPa and 0 MPa. Due to which 

we can see the grey area near the circular shapes prone to initialization of cracks, hence the 

area is critical and should be as low as possible. 

         

                    

Figure 4.3 Critical Area Computation 

Hence, the above-discussed parameters will be calculated for all the shapes which we have 

considered for our study. According to the values of parameters, we can decide the suitable 

combination of shape with the approximate arrangement, appropriate porosity and position. 

We will be plotting the values of parameters in graphical formats in upcoming sections for 

comparison purposes and conclude the best combination of shapes for specific applications. 

Before Loading 
After Loading 

Von Mises Stresses without Limiting Von Mises Stresses Limiting Between 

205Mpa and 0 

% of Critical Area is the Black region 
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4.1. SHAPE SELECTION 

Shape selection was performed based on references [2], [5-8] due to reasons depending on the 

shape, material, and behavior. We have considered six shapes for numerical analysis 

categorized into thin structured shapes (Figure 4.4 a,b,c) and thick structured shapes (Figure 

4.4 d,e,f) to maintain porosity for a valid comparison. 

                

           

               

           

Figure 4.4 Selected Shapes for Numerical Analysis 

a) Double T 

This shape is selected based on the reference [2] which we had also discussed and verified in 

section (3.1.1). It can attain auxetic behavior with reduced Von Mises stresses. Hence, we are 

going to observe its influence on measuring parameters discussed above on various design 

conditions. Also, topology optimization will be performed to check the potential to improve 

the mechanical properties of the metallic plates. 

a) Double T b) I Shape c) Z Shape 

d) Triangle e) Hexagon f) Hourglass 
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b) I Shape 

According to reference [5], a novel class of mechanical metamaterials created through the 

introduction of I shaped perforations were proposed and investigated with respect to their 

potential to exhibit a negative Poisson’s Ratio. As they have performed it on metamaterials 

which are composites of metals or plastics, we designed I shape on the metallic plate to examine 

similar behavior. 

c) Z Shape 

Based on reference [6] the author conveys that 2D auxetic materials with the isotropic response 

can be easily realized by perforating a sheet with elongated cuts arranged to form a periodic 

pattern with either six-fold or three-fold symmetry. So, the cut they have chosen was a Z cut 

pattern which we have embedded on our model to enhance our mechanical properties and 

optimize if necessary. 

d) Triangle 

The reason for choosing a Triangle is to understand the influence of the edges on the stress 

concentration factor in metallic plates and finding better design solutions to optimize it. The 

effect of bluntness, the rotation angle of the hole, hole size, and hole shape as significant 

parameters on stress distribution around the holes are studied in reference [7]. Thus, we choose 

Triangle to observe Von Mises stress distribution when Periodic boundary conditions are 

applied. 

e) Hexagon 

Similarly, like the Triangle shape author of reference [7] also included Hexagon to his analysis 

to observe the influence of stress concentration factor when edges are increased and rotated. 

The results presented by the author indicate that due to uniaxial loading, the stress 

concentration factor can be significantly varied by changing the pattern shape, bluntness and 

rotation angle of the hole. The infinite plate containing square and hexagonal holes, for a wide 

range of bluntness, the desirable stress concentration factor is less than the desirable stresses 

of similar plates with a circular hole. 

f) Hourglass 

The inspiration of Hourglass shape was obtained from reference [8] where they have designed 

anti-tetrachiral and re-entrant honeycomb auxetic geometries on composite structures to 

observe auxetic behavior under the influence of temperature. But we are designing the 

Hourglass shape to achieve auxetic behavior under the influence of static loading on metallic 

plates. 
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4.2. INFLUENCE OF PERFORATIONS ON MEASURING PARAMETERS BASED 

ON DESIGN CONDITIONS 

Based on the evidence reported in the references [1-8] we have tested the shapes described in 

section 4.1 with a set of design conditions which will give us the context to judge on the 

behavior of shapes and to comment on the best possible design combination. The load 

conditions and meshing parameters are discussed in section 4.1 which is the same for all the 

design conditions. 

4.2.1. Increase in Size. 

Size of the pattern is really an important factor to be considered while designing a perforated 

metallic sheet. To evaluate this condition we considered three different sizes values in which 

shapes are designed 2x2, 4x2 and 6x2 space respectively. Basically, they are small, medium 

and large sizes of shapes (Figure 4.5) are designed to observe their influence on the parameters 

when periodic boundary conditions are applied. 

       

 

 

 
 

 

 

 

 

Small  Medium Large 

Double T shape in alternate arrangement 

Z shape in alternate arrangement 

Triangle in alternate arrangement 
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Figure 4.5 Numerical Analysis of shapes in different sizes 

  

  

Graph 4.1 Bar Plots of parameters based on different sizes 

0.30

0.07

-0.45

0.27

0.10

-0.56

0.26

0.03

-0.57

0.31

0.02

-0.71

0.24

-0.06

-0.70

Small Medium Large

POISSON’S RATIO

Double T Z shape Triangle Hexagon Hourglass

651 561 483

2358

2991

2272

830

3842

3275

653

1667

1248

805
648

409

Small Medium Large

SMAX

Double T Z shape Triangle Hexagon Hourglass

3.37 2.90 2.50

12.22

15.50

11.77

4.30

19.91

16.97

3.38

8.64

6.47

4.17
3.36

2.12

Small Medium Large

KT

Double T Z shape Triangle Hexagon Hourglass

14.87

7.45

3.05

16.15

8.61

2.72

15.60

8.66

1.70

16.58

6.71

1.88

9.60

7.90

1.16

Small Medium Large

CRITICAL AREA%

Double T Z shape Triangle Hexagon Hourglass

Hexagon in alternate arrangement 

Hourglass in alternate arrangement 



 

43 
 

Based on numerical analyses we have plotted the parameters in Graph 4.1 which we can use to 

predict the effect of size on the perforated metallic plate. When we observe the Poisson’s Ratio 

value the large-sized patterns achieve most negative values when compared to small and 

medium size patterns. But large size patterns will be restricted to specific arrangements only 

when compared to small and medium-sized patterns. The best auxetic behavior in case of thin 

structured shapes is Z shape (Poisson’s Ratio -0.56) and thick structured shapes were 

dominated by Hexagon & Hourglass shape (Poisson’s Ratio -0.71 & 0.70 respectively).  

Now if we analyze the stresses induced by the patterns the Z shape and Triangle shape induce 

very high stresses due to the sharp edges at the tips which increment the Von Mises stresses 

when size is increased based on the Graph 4.1. But in a large size, the Critical Area percentage 

is the least meaning that they are less prone to crack propagation when compared to small and 

medium-sized patterns. The best reliable shape in case of bearing static loads in case of thin 

structured shapes is the Double T shape and Hourglass shape achieved the least stress value in 

case of thick structured shapes. Hence, we can state that large-sized shapes can be applied on 

perforated sheets based on the application considered to achieve best auxetic behavior with 

least stresses, but if the arrangement of patterns is a priority then medium sized can be 

considered as they have respectable stress values with very less Poisson’s Ratio values. We 

can now neglect the small-sized shapes as their parameter values are not reliable. 

4.2.2. Influence of Arrangement. 

The arrangement of patterns is greatly influenced by the direction of loading, as we are applying 

the load in the Vertical direction, we are going to analyze three configurations of arrangements 

considering medium-sized patterns which are Horizontal, Vertical and alternate configurations 

as shown in Figure 4.6. Based on this we can decide the configuration suited best when loading 

direction is known. 

  

 

 

Vertical Configuration  Horizontal Configuration  Alternate Configuration  

Double T shape  
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Figure 4.6 Numerical Analysis of shapes in different configurations 
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Graph 4.2 Bar Plots of parameters based on different configurations 

Based on the numerical analysis on three configurations we have plotted the parameter values 

in Graph 4.2. We can observe the Poisson’s Ratio plot which clearly depicts that alternate 

configuration gives the least Poisson’s Ratio values when compared to other two configurations 

for most of the shapes except the Z shape which has lower value in a Horizontal configuration. 

The best auxetic behavior is achieved by the thin structured shape is the Double T shape which 

has Poisson’s Ratio of 0.07 in an alternate configuration. In case of thick shaped structure, we 

have Hourglass shape with Poisson’s Ratio of -0.06 which is best among the bunch 

demonstrating auxetic behavior. 

When we observe in perspective of stresses Z shape and triangle has very high Von Mises 

stresses as well as stress concentration factor which increases from Vertical till the alternate 

configurations. The least stresses have been achieved by thin structured shape is Double T with 

a stress concentration factor of 2.18 and 8.66% of the Critical Area in a Horizontal 

configuration because it distributes the stresses Horizontally to the patterns nearby when 

compared to other two configurations. In case of thick structures shape, Hourglass shape 

presents the least Critical Area of 7.4% and a stress concentration factor of 2.66 which might 

be a little higher when compared to Hexagon shape which has stress concentration factor 2.59 

in the Vertical configuration, but we can trade off with Von Mises stresses with a Critical Area 

for better stress field distribution.  

Hence overall the configuration of the patterns depends on the shapes we choose based on the 

application we demand. In our study Double T, Hourglass and Hexagon shapes have the best 

results in all the three configurations.  
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4.2.3. Influence of Profile. 

Based on the discussion above we have observed that with slight profile changes we can reduce 

Von Mises stresses in some shapes which have sharp edges. So, we have performed profile 

changes to four shapes namely Triangle, Hexagon, Hourglass and Z Shape with increased fillet 

size to remove sharp edges. We have considered medium-sized shapes with an alternate 

configuration for observing the change in parameters due to profile change as shown in Figure 

4.3. 
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e Configuration 

Hexagon Shape in Alternate Configuration 

Hourglass Shape in Alternate Configuration 
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Figure 4.7 Numerical Analysis of shapes with Profile changes 

  

  

Graph 4.3 Bar Plots of parameters based on the Influence of Profile 

Based on Numerical analysis of shapes we have chosen for Profile change we have obtained 

Graph 4.3 with measuring parameters. Based on the Graphs we can observe the Von Mises 

Stresses (SMAX) and stress concentration factor (KT) have a drastic difference when compared 

with older profiles, especially for Triangle, Hexagon, and Z shapes. Which means that adding 

bigger fillets can reduce the stresses influence in the metallic perforated sheets. But there is 

just a slight decrease in the Hourglass shape when compared with the older profile. 
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If we observe the Poisson’s Ratio and Critical Area values, there is a significate increase due 

to the change in profile especially in Triangle shape when compared to other shapes. Which 

infers that shape edges have greater Poisson’s Ratio values and lower Critical Area but with 

higher stress values. Hence, if stresses are more priority then adding bigger fillets will reduce 

considerable stresses with the sacrifice of lesser Poisson’s Ratio value. 

4.2.4. Influence of Rotation. 

Rotating patterns in different angles can impact the parameters and distribution of stresses from 

one pattern to another. Hence, we have analyzed and compared our shapes in four different 

angles at 450, 900, 1350 and 1800 as shown in Figure 4.8. Based on this we can decide if the 

rotation of shapes is necessary for improvising our parameter values. In Figure 4.8 we have 

demonstrated only two shapes (Double T and Triangle) due to space considerations.  

 

 

 

                                           

 

                                         

Rotation angles considered 

450 Rotation of Double T Pattern 900 Rotation of Double T Pattern 

1350 Rotation of Double T Pattern 1800 Rotation of Double T Pattern 
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Figure 4.8 Numerical Analysis of shapes with Rotation of patterns 
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Graph 4.4 Plots of parameters based on the Influence of Rotation 

With the parameter plots obtained above, we can see that except Z shape and triangle shape the 

values of 450 and 1350 are identical for all the plots above as they are just mirror replicate of 

each other. Most of the shapes (except Z shape) have higher stress values at 450 and 1350 angles 

because of the bridge of Critical Area between the edges are in an angular connection based on 

the stresses distribution in Figure 4.8 which induces more stresses than a straighter Critical 

Area as in 900 and 1800 contour plots. Hence, when the gap between the edges of patterns can 

initiate cracks if they are placed in inclined angles for most of the shapes. 

The Poisson’s Ratio is lowest when we the shapes are placed in 1800 angle for most shapes 

except for the Hexagon and Z shape. Hexagon shape has lower poisons ratio in 450 angles and 

Z shape has in 1350 angle. So, angular placement of patterns is not recommended if the direction 

of loading is in Horizontal or Vertical directions. 
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4.2.5. Influence of Width between Patterns. 

This design condition was considered to judge the behavior of stresses when we alter the width 

of the plate while keeping the height constant, which also means we alter the distance between 

pattern because of periodic boundary conditions. So, numerical analysis is performed in four 

different width conditions which are 3x10 mm, 5x10 mm, 8x10 mm and 10x10 mm (Width x 

Height) as shown in Figure 4.9. We only considered the Von Mises stresses as a comparable 

parameter because other parameters can’t be compared because the dimensions of the plate are 

changing. We will be demonstrating numerical analysis of two shapes only due to space 

constraints in Figure 4.9, Von Mises stresses of all 6 shapes are compared in Graph 4.5.  

                           

                                    

 

                                     

                                          

                                     

 

3x10 mm plate with Double T shape 5x10 mm plate with Double T shape 

 

8x10 mm plate with Double T shape 

 

10x10 mm plate with Double T shape 

 

3x10 mm plate with Hourglass shape 

 

5x10 mm plate with Hourglass shape 
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Figure 4.9 Numerical Analysis of shapes with Influence of Width 

 

Graph 4.5 Plots of maximum Von Mises Stresses based on the Influence of Width 

Based on numerical analysis on the influence of width we have obtained the maximum Von 

Mises stresses which have been plotted in Graph 4.5. We can observe that the thick shapes 

which are Hourglass, Hexagon and Triangle induce fewer stresses when compared to thin 

shapes which are Double T, I shape and Z shape based on width analysis. The influence of 

width reduces with increase in width based on the plots obtained in Graph 4.5, we can clearly 

observe that the stresses plots become straight when the width is increased from 3mm to 10mm. 

Also, there is a reduction of stresses with an increase in width which infers that the closer the 

patterns they can induce more stresses locally than they are far apart. This analysis was 

considered based on medium sized shapes with only 1 pattern if we consider more patterns the 

stresses might change depending on the shape. 
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4.2.6. Influence of Porosity using Patterns. 

All the design conditions above were performed with constant porosity value as they influence 

the measuring parameters considerably. But we are going to analyze with an increase in 

porosity we can observe positive aspects to design our metallic perforated sheets to have better 

stress filed distribution. To conduct this analysis we have considered two shapes (Double T, 

Hourglass) with six range of porosity values three for thick structured shape and three for a 

thin structured shape. So, we have designed with 6%, 23.6% and 47.2% for Hourglass shape 

(thick structured shaped), then 1%, 4% and 8% for Double T shape (thin structured shape) as 

shown in Figure 4.10.  

                                                                       

 

                                                                      

                                                                            

 

                                                                      

Figure 4.10 Numerical Analysis of shapes with Influence of Porosity 
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Graph 4.6 Bar plots of measured parameters with the Influence of Porosity 

Based on the numerical analysis of the two shapes we have obtained the bar plots of the 

measuring parameters in Graph 4.6. If we observe the Von Mises stresses (SMAX) and Stress 

concentration factor (KT) with an increase in porosity the stresses decreases in both Double T 

and Hourglass shapes. It may be because the stresses are shared by a number of patterns which 

increases in numbers based on porosity incrementation. But in case of Critical Area for thick 

structured shape (Hourglass), it is clearly evident that it decreases with the increase of porosity 

but that’s not the case with the thin structured shape (Double T) it is fluctuating which depends 

on the behavior of patterns. Hence, Hourglass shape has obtained the least stresses at 47.2% 

porosity and Double T shape has obtained least stresses at 8% porosity based on Graph 4.6. 

If we observe Poisson’s Ratio value for both the shapes it behaves in an unpredictable manner 

which seems to be dependent on the profiles of the shapes. We have obtained negative 

Poisson,s ratio of -0.37 for the Hourglass shape at 23.6% porosity value and for Double T 

shape, we have obtained 0.286 Poisson’s Ratio value at 8% porosity which is its least value. 

Hence Porosity fluctuates the Poisson’s Ratio value so we should fix the porosity value when 

comparing the Poisson’s Ratio values. 

4.3. TOPOLOGY OPTIMIZATION 

Topology optimization is a mathematical method that optimizes material layout within a given 

design space, for a given set of loads, boundary conditions and constraints with the goal of 

maximizing the performance of the system. After performing numerical analysis on various 

design conditions discussed above we have understood the pattern behavior on the measuring 

parameters. But, using Topology optimization we are going to analyze the capability of our 

shapes to reach its maximum performance with slight changes keeping the same load 

conditions and meshing parameters. 
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Optimization constraints 

Using Abaqus Topology optimization module we can perform the optimization on our models 

with specific design constraints to obtain the preferred Topology. So keeping stresses as the 

variable to be lowest and volume being the control parameter we performed the optimization 

process for all our shapes. We have controlled the optimization with a volume reduction of 

40%, 30%, 25%, and 20% which gave us four solutions and we have finalized 25% volume 

reduction will be the most preferred solution. The Topology optimized results are as follows:    

                                                                         

a) Double T 

                                                            

Figure 4.11 Topology Optimization of Double T Shape 

We can observe there is a decrease of Maximum Von Mises stresses from 958.7 MPa to 628.3 

MPa in a modified shape. But there is an increase in Critical Area than the original shape with 

a very slight change in Poisson’s Ratio from 0.33 to 0.326. 

b) Z Shape 

  

Figure 4.12 Topology Optimization of Z Shape 

Based on the solution obtained by Topology optimization for Z shape we have a drastic profile 

change to H shape which has reduced Maximum Von Mises stresses from 1408 MPa to 750.9 

MPa. Also, the Poisson’s Ratio value has dropped from 0.309 to 0.284 with increased Critical 

Area. 

 

 

Original Shape Topology Optimization Modified Shape 
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c) Triangle 

 

Figure 4.13 Topology Optimization of Triangle Shape 

The solution provided by the Topology analysis for the triangle shape was not reliable as it has 

increased the Maximum Von Mises stresses from 736.9 MPa to 843.5 MPa with a slight 

decrease of Poisson’s Ratio and increase Critical Area. 

d) Hexagon 

  

Figure 4.14 Topology Optimization of Hexagon Shape 

Hexagon shape Topology optimization results have reduced Von Mises stresses from 592.3 

MPa to 424.7 MPa without a change in Poisson’s Ratio. There is a slight increase in Critical 

Area at the edges on the plate based on Modified shape numerical analysis. 

e) Hourglass 

  

Figure 4.15 Topology Optimization of Hourglass Shape 

The Hourglass shape Topology Optimization has increased the Von Mises stresses from 655 

Mpa to 722 Mpa with a slight change in Poisson’s Ratio and increased Critical Area. 

So based on the solutions obtained by Topology optimization above we can observe that the 

software has removed material were the stresses were maximum. Through which we reshaped 

it using curvy profiles to distribute those localized stresses which have given such complex 
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shapes. Except for the Triangle and Hourglass, shape gave the maximum Von Mises stresses 

were reduced considerably with very less effect on Poisson’s Ratio and Critical Area. But the 

best solution which can be retained is the modification of Z shape to H shape which has a huge 

reduction of stress values and its distribution. The main disadvantage of these modifies shape 

would be the machining process with such complex profiles and tighter tolerances. Hence, 

depending on the application demand only then these Modified shapes can be accepted. 
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5. CONCLUSION 

The aim of this study was analyzing 2D perforated patterns using Periodic Boundary 

Conditions to have better stress field and enhance its mechanical properties for its usage in 

various applications. Before designing new shapes and analyzing them we understood the 

measuring parameters (discussed in chapter 4) used to evaluate and validate them by two case 

studies discussed in section 3.1.1 and 3.1.2. The first case study (section 3.1.1) gave us insight 

regarding the auxetic behavior of four different shapes and the computation of Poisson’s Ratio 

through the horizontal and vertical displacements. The second case study (section 3.1.2) which 

was based on porous structures stress study using Periodic Boundary Conditions introduced us 

to the measuring parameters related to perforated patterns and the stress distribution of a 

metallic perforated plate under the influence of static tensile load.  

Consequently, we selected pore shapes based on references [2, 5-8] and tested them in six 

design conditions. Beginning with the Influence of size (section 4.2.1) it was observed that the 

large-sized shapes were giving the most negative values of Poisson’s Ratio when compared to 

the small and medium-sized shapes. Also, most of the shapes exhibited lower Von Mises 

stresses in large size when compared to lower sizes except the Triangle shape whose stresses 

incremented with the increase in size because of its edges which were becoming sharper with 

the influence of size. Then moving on to the influence of arrangement (section 4.2.2) we 

understood the connection between the direction of loading and arrangement of patterns. Our 

load being in the vertical direction we got lower Poisson’s Ratio values described in Graph 4.2 

in horizontal and alternate configurations compared to the vertical configuration of patterns. 

But, Von Mises stresses and Critical Area was depending on the shape in which Double T, 

Hexagon, and Hourglass gave us the best results in all the three configurations. Further, we 

studied the influence of profile (section 4.2.3) were the sharper edges of Triangle, Hexagon, 

Hourglass and Z shape was removed with large fillets which reduced their stresses considerable 

but with the sacrifice of Poisson’s Ratio based on Graph 4.3. Which means that fillets or 

circular profiles reduces the auxetic effect in the perforated metal sheets and increases the 

Critical Area. Rotating the patterns (section 4.2.4) in four different angles made us aware 

regarding the stress distribution of near edges changes with the angle of patterns. The Von 

Mises stresses were higher in 450 and 1350 angles due to the flow of stresses from edge to edge 

between the patterns in angular stress distribution when compared with 900 and 1800 contour 

plots. Analyzing the distance between the patterns (section 4.2.5) by reducing the width of the 

plate thicker shapes (Hourglass, Hexagon, and Triangle) exhibited lower Von Mises stresses 
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when compared to thinner shapes (Double T, Z Shape and I Shape). The influence of the width 

on the stresses reduces with the increase in width which infers that the closer the patterns they 

can induce more stresses locally than they are far apart. The final design condition was based 

on the Influence of Porosity (section 4.2.6) which highly changes the measuring parameters. 

So, with an increase in porosity, we observed a decrease in Von Mises stresses for Double T 

and Hourglass shapes but the Poisson’s Ratio was clearly dependent on the pore shape behavior 

because of that it was fluctuating. 

The final possibility to optimize the shapes we choose was to apply topology optimization 

which was based on stress reduction by changing the volume of the plate. The solutions 

obtained was dependent on the shapes in which the Triangle and Hourglass shape gave the 

maximum Von Mises stresses were reduced considerably with very less effect on Poisson’s 

Ratio and Critical Area. But the best solution which can be retained is the modification of Z 

shape to H shape which has a huge reduction of stress values and its distribution. Moreover, 

solutions obtained by topology optimization will increase the complexity of machining the 

patterns which will hamper the manufacturing cost. 

Hence, based on the results of numerical analysis of our shapes on all design conditions (section 

4.2) we discussed the most satisfying results with some trade-offs we have achieved Double T 

pattern in case of thin structures shapes and Hourglass pattern in case of the thick structured 

pattern. Both these patterns will improve the stress field distribution of perforated metallic 

sheets with low-stress values with enhanced auxetic behavior for the applications they are 

demanded. 
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7. APPENDIX A 

 

PYTHON CODES 

A.1. Code to insert dimensions, create a reference point and apply displacement 

control on the plate. 

#Execution conmmand for 'AbaqusScriptFunc.py' file 1 
Mdb() 2 
execfile('AbaqusScriptFunc.py') 3 
################################################################################## 4 
#CREATE PERIODIC BOUNDARY CONDITIONS 5 
################################################################################## 6 
mdb.models['Model-1'].rootAssembly.Set(edges=( 7 
    mdb.models['Model-1'].rootAssembly.instances['Instance-1'].edges,), 8 
name='PerBound') 9 
#Plate dimensions are 10x10 mm , so our cordinates are (0,10),(10,0) 10 
(CoorFixNode,NameRef1, NameRef2)=PeriodicBound2D(mdb,'Model-11 
1','PerBound',[(0.0,10),(10,0.0)],) 12 
################################################################################## 13 
#CREATE STEP AND APPLY BC 14 
################################################################################## 15 
mdb.models['Model-1'].StaticStep(name='Step-1', nlgeom=ON, previous='Initial') 16 
#Apply boundary conditions on reference nodes 17 
DefMat=[(UNSET,0.01),(UNSET,UNSET)] 18 
mdb.models['Model-1'].DisplacementBC(amplitude=UNSET, createStepName='Step-1',  19 
    distributionType=UNIFORM, fieldName='', fixed=OFF, localCsys=None, name= 20 
    'BC-REF-1', region=Region(referencePoints=( 21 
    mdb.models['Model-1'].rootAssembly.instances[NameRef1].referencePoints[1],  22 
    )), u1=DefMat[0][0], u2=DefMat[0][1], ur3=UNSET) 23 
mdb.models['Model-1'].DisplacementBC(amplitude=UNSET, createStepName='Step-1',  24 
    distributionType=UNIFORM, fieldName='', fixed=OFF, localCsys=None, name= 25 
    'BC-REF-2', region=Region(referencePoints=( 26 
    mdb.models['Model-1'].rootAssembly.instances[NameRef2].referencePoints[1],  27 
    )), u1=DefMat[1][0], u2=DefMat[1][1], ur3=UNSET) 28 
mdb.models['Model-1'].DisplacementBC(amplitude=UNSET, createStepName='Step-1',  29 
    distributionType=UNIFORM, fieldName='', fixed=OFF, localCsys=None, name= 30 
    'BC-FIXNODE', region=Region( 31 
    nodes=mdb.models['Model-1'].rootAssembly.instances['Instance-32 
1'].nodes.getByBoundingSphere(center=CoorFixNode, radius=0.001)), u1=0.0, u2=0.0, 33 
ur3=0.0) 34 
  35 
################################################################################## 36 
#JOB AND RUN 37 
################################################################################## 38 
mdb.Job(atTime=None, contactPrint=OFF, description='', echoPrint=OFF,  39 
    explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,  40 
    memory=90, memoryUnits=PERCENTAGE, model='Model-1', modelPrint=OFF,  41 
    multiprocessingMode=DEFAULT, name='Job-1', nodalOutputPrecision=SINGLE,  42 
    numCpus=1, queue=None, scratch='', type=ANALYSIS, userSubroutine='',  43 
    waitHours=0, waitMinutes=0) 44 
mdb.jobs['Job-1'].submit(consistencyChecking=OFF) 45 

A.2. Applying Periodic Boundary Conditions to the model 

#FUNCTION TO APPLY PERIODIC BOUNDARY CONDITIONS IN 2D 1 
#mdb: model database 2 
#NameModel:  A string with the name of your model 3 
#NameSet:  A string with the name of your set (for a faster script, this set  4 
#  should only contain those nodes that will have periodic boundary 5 
conditions applied to them) 6 
#LatticeVec: An array with the lattice vectors, for example [(1.0, 0.0), (1.0, 7 
1.0)] for a square lattice 8 
def PeriodicBound2D(mdb,NameModel,NameSet,LatticeVec): 9 
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    from part import TWO_D_PLANAR, DEFORMABLE_BODY 10 
    #Create reference parts and assemble 11 
    NameRef1='RefPoint-0'; NameRef2='RefPoint-1' 12 
    mdb.models[NameModel].Part(dimensionality=TWO_D_PLANAR, name=NameRef1, type= 13 
        DEFORMABLE_BODY) 14 
    mdb.models[NameModel].parts[NameRef1].ReferencePoint(point=(0.0, 0.0, 0.0)) 15 
    mdb.models[NameModel].Part(dimensionality=TWO_D_PLANAR, name=NameRef2, type= 16 
        DEFORMABLE_BODY) 17 
    mdb.models[NameModel].parts[NameRef2].ReferencePoint(point=(0.0, 0.0, 0.0)) 18 
    mdb.models[NameModel].rootAssembly.Instance(dependent=ON, name=NameRef1,  19 
        part=mdb.models[NameModel].parts[NameRef1]) 20 
    mdb.models[NameModel].rootAssembly.Instance(dependent=ON, name=NameRef2,  21 
        part=mdb.models[NameModel].parts[NameRef2]) 22 
    #Create set of reference points 23 
    mdb.models[NameModel].rootAssembly.Set(name=NameRef1, referencePoints=( 24 
        25 
mdb.models[NameModel].rootAssembly.instances[NameRef1].referencePoints[1],)) 26 
    mdb.models[NameModel].rootAssembly.Set(name=NameRef2, referencePoints=( 27 
        28 
mdb.models[NameModel].rootAssembly.instances[NameRef2].referencePoints[1],)) 29 
    #Get all nodes 30 
    nodesAll=mdb.models[NameModel].rootAssembly.sets[NameSet].nodes 31 
    nodesAllCoor=[] 32 
    for nod in mdb.models[NameModel].rootAssembly.sets[NameSet].nodes: 33 
        nodesAllCoor.append(nod.coordinates) 34 
    repConst=0 35 
    #Find periodically located nodes and apply equation constraints 36 
    ranNodes=range(0,len(nodesAll)) #Index array of nodes not used in equations 37 
constraint 38 
    for repnod1 in range(0,len(nodesAll)): 39 
        stop=False   #Stop will become true when equation constraint is 40 
made between nodes 41 
        Coor1=nodesAllCoor[repnod1]  #Coordinates of Node 1 42 
        for repnod2 in ranNodes: #Loop over all available nodes 43 
            Coor2=nodesAllCoor[repnod2] #Coordinates of Node 2 44 
            dx=Coor2[0]-Coor1[0]; dy=Coor2[1]-Coor1[1] #X and Y Distance 45 
between nodes 46 
            for comb in range(0,len(LatticeVec)): #Check if nodes are located 47 
exactly the vector lattice apart 48 
                if int(round(1000.0*(LatticeVec[comb][0]-dx)))==0: 49 
                    if int(round(1000.0*(LatticeVec[comb][1]-dy)))==0: 50 
                        #Correct combination found 51 
                        #Create sets for use in equations constraints 52 
                        mdb.models[NameModel].rootAssembly.Set(name='Node-1-53 
'+str(repConst), nodes= 54 
                            55 
mdb.models[NameModel].rootAssembly.sets[NameSet].nodes[repnod1:repnod1+1]) 56 
                        mdb.models[NameModel].rootAssembly.Set(name='Node-2-57 
'+str(repConst), nodes= 58 
                            59 
mdb.models[NameModel].rootAssembly.sets[NameSet].nodes[repnod2:repnod2+1]) 60 
                        #Create equations constraints for each dof 61 
                        for Dim1 in [1,2]: 62 
                            63 
mdb.models[NameModel].Equation(name='PerConst'+str(Dim1)+'-'+str(repConst), 64 
                         terms=((1.0,'Node-1-'+str(repConst), Dim1),(-1.0, 65 
'Node-2-'+str(repConst), Dim1) , 66 
                                (1.0, 'RefPoint-'+str(comb), Dim1))) 67 
                        repConst=repConst+1 #Increase integer for naming 68 
equation constraint 69 
                        ranNodes.remove(repnod1)#Remove used node from available 70 
list 71 
                        stop=True  #Don't look further, go to following node. 72 
                        break 73 
            if stop: 74 
                break 75 
    #Return coordinates of free node so that it can be fixed 76 
    return (nodesAll[ranNodes[0]].coordinates, NameRef1, NameRef2) 77 


