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Abstract

In this study a numerical code for the simulation of turbulent channel flows
with non-planar moving walls is presented. The solid boundaries of the chan-
nel are immersed within the frame of a fixed non-body-conformal Cartesian
grid. Spatial discretization of the incompressible Navier-Stokes equations
(in primitive variables) is performed using second-order accurate finite dif-
ferences. A three-step Runge-Kutta method is applied in conjunction with
a fractional step technique for time advancement. The key novelty of the
numerical technique lies in an innovative implementation of the Immersed
Boundary Method (IBM). No-slip boundary conditions on immersed solid
walls are enforced through an interpolation-free procedure applied to the
discrete momentum equation.
The ability of the flow solver to resolve a complex turbulent channel flow in
the presence of moving walls is tested by simulating a peristaltic actuator for
turbulent skin-friction drag reduction. In accordance with existing results, a
downstream traveling peristaltic wave of wall deformation is proved to allow
for large drag reduction rates. Further, under some sets of parameters, a
full relaminarization of the flow is observed.

Keywords— Immersed Boundary Method, Turbulence, Flow control, Skin-
friction drag reduction, Peristalsis





Sommario

Nel presente studio viene presentato un codice numerico per la simulazione
di correnti turbolente attraverso canali confinati da pareti non piane e dotate
di movimento. I contorni solidi del canale sono immersi in una griglia carte-
siana che rimane fissa durante la simulazione. La discretizzazione spaziale
delle equazioni incomprimibili di Navier-Stokes (in variabili primitive) viene
eseguita attraverso differenze finite del secondo ordine. Uno schema Runge-
Kutta a tre passi è utilizzato insieme ad uno schema di tipo fractional step
per l’avanzamento temporale delle equazioni discrete. L’elemento di inno-
vazione del seguente codice è rappresentato da una particolare implemen-
tazione del metodo dei contorni immersi. Le condizioni di adesione sui con-
torni solidi del dominio sono imposte attraverso l’aggiunta di un termine
correttivo all’equazione della quantità di moto in forma discreta. La proce-
dura risulta relativamente semplice in quanto non richiede alcuna forma di
interpolazione.
L’efficacia del metodo numerico è testata simulando il funzionamento di un
attuatore peristaltico per la riduzione di resistenza d’attrito turbolenta. In
accordo con risultati già presenti in letteratura, viene dimostrata l’efficacia
di questo dispositivo nel promuovere la riduzione di resistenza. Inoltre, per
alcuni gruppi di parametri di attuazione, si osserva una completa rilaminar-
izzazione della corrente.

Parole chiave— Metodo dei contorni immersi, Turbolenza, Flow control,
Riduzione di resistenza turbolenta, Peristalsi



Chapter 1

Introduction

A great span of real-world applications has to face with fluid flows that are
almost always turbulent. Wall-bounded turbulent flows are characterized by
a large skin-friction drag caused by the near-wall coherent structures which
are responsible for turbulent production. Consequently, turbulence has a sig-
nificant impact on the power spent for vehicle’s locomotion and for pumping
liquids through pipelines. Considerable savings, in terms of fuel costs and
environmental impact, could be attained if an effective strategy were devel-
oped to take advantage of fluid-dynamics and reduce the skin-friction drag.
During recent years great efforts have been spent in this direction: passive
flow control strategies (such as riblets) have been intensively investigated
and proved to lead up to 7% − 8% drag reduction rates ([51]), while active
control strategies showed even better performances in weakening turbulence
and allowing for large drag reduction rates. Among the numerous active
control techniques, those involving pre-determined traveling waves are very
attractive because of their simplicity and efficacy ([31], [30], [35]).

Direct numerical simulations (DNS) have been the primary tool for the
investigation and the development of new flow control techniques in wall-
bounded turbulent flows. However, the computational cost required is ex-
tremely high, limiting the applicability of DNS only to low Reynolds num-
ber flows. Hence, parallel to the development of new flow control strategies,
there’s the interest in designing and implementing efficient computational
flow solvers. On this respect immersed boundary methods (IBM) are attrac-
tive as they allow for accurate flow simulations in the presence of complex
solid boundaries (either stationary or moving) and retain a relatively low
computational cost ([32], [18]).

The present study aims at adapting an already existing IBM flow solver
(developed by Paolo Luchini) for the simulation of turbulent channel flows
with non-planar moving walls. Further, an application to the active flow
control method of streamwise traveling waves of wall deformation (peristal-
sis) is presented.

1



1. Introduction 2

After this brief introductory section, the work is organized as follows:

• Chapter 2 furnishes a short introduction to the nature of turbulent
flows and the standard approaches to the study of the subject;

• Chapter 3 reviews motivations and approaches to the theme of tur-
bulent flow control for skin-friction drag reduction. Further, control
strategies involving streamwise waves of actuation are presented in
some detail;

• Chapter 4 is intended to give a detailed description of the immersed-
boundary flow solver. First, a general overview is given, starting from
the governing equations and their spatial and temporal discretization.
Later, the treatment of solid immersed boundaries is presented. In
the final part of the chapter some aspects on the structure of the nu-
merical code, along with measured parallel scaling performances, are
presented;

• Chapter 5 presents the application of the numerical method to the
flow control strategy of streamwise traveling waves of wall deforma-
tion. First, the setup of the numerical experiments is reported. Then,
some details about the averaging techniques used to ascertain statisti-
cal flow quantities are discussed. Later, the results obtained from the
simulations are presented; initially flow characteristics are explained,
then drag reduction effects are discussed;

• Chapter 6 reports the concluding remarks of the work and discusses
some possible future developments.



Chapter 2

General background

2.1 Turbulent flows

It could be argued that turbulent flows represent the most important fluid
flows encountered in the physical world. Turbulence is indeed fundamental
for explaining many different natural phenomena and it is largely exploited
by a great variety of engineering applications. Even though turbulent flows
surround our everyday’s life, a precise and accepted definition of turbulence
still lacks. Nevertheless, it is commonly agreed to refer to turbulent flow as
a fluid motion displaying certain peculiar characteristics. Namely, it could
be stated that all turbulent flows are, in some way, chaotic, unpredictable
and random. In fig.2.1 it is represented the turbulent wake behind a bul-
let traveling at a subsonic speed in still air. It can be noticed the high
complexity of the flow-field: apparently many different scales are involved
contemporarily in the fluid motion. Large structures, comparable to the
wake width, down to small eddies, almost indistinguishable to the picture
resolution, are readily recognized in the figure.

Further, another feature of great importance is that turbulent flows en-
hance significantly transfer and mixing of heat, mass and momentum. While
at times this comes as an advantage that can be exploited to favor mixing
of chemical reactants or enhance heat transfer, at other times the same
feature should be reduced as much as possible to overcome, for example,
the large wall shear stress exhibited by wall-bounded turbulent flows. On
this respect, it should be also emphasized that turbulence is an extremely
dissipative phenomenon and, as such, it requires energy to survive.

The origin of turbulence as a well-established branch of fluid dynam-
ics may be traced back to the pioneering work of Osborne Reynolds [42],
who recognized the important competing roles of fluid inertia and viscos-
ity in promoting flow transition from laminar to turbulent. He established
that the flow behavior could be characterized by the value of a simple non-

3



2. General background 4

Figure 2.1: Turbulent wake behind a bullet traveling at subsonic speed in
still air. From [6]

dimensional parameter, called Reynolds number, defined as:

Re =
U L

ν
(2.1)

where U and L are, respectively, appropriate reference velocity and length
scales of the geometry and ν is the kinematic viscosity of the fluid. It can
be stated that the Reynolds number represents a sensitivity parameter of
the flow with respect to the propagation and amplification of disturbances
[39]. Broadly speaking, the larger the Reynolds number, the more the flow
is likely to develop instabilities that can quickly bring it to a fully developed
turbulent state. Importantly, the vast majority of fluid flows of practical
interest is characterized by very large Reynolds numbers; hence one may be
led to the conclusion that, in fluid dynamics, laminar flow is the exception,
not the rule [14]. Only in particular circumstances length scales are so small
and viscous effects are so significant that it is likely to encounter a stable
laminar flow (for instance, a notable exception is microfluidic).

Along with this relevant, yet practical, matter, research on turbulence is
also motivated by the intriguing nature of the subject. A representative, of-
ten quoted, caption on this respect is due to R. Feynman, who asserted that
“turbulence is the most important unsolved problem of classical physics”.
Even though turbulence research has made a great stride forward, the feeling
concealed in Feynman’s assertion is still considered valid by many authors
[5].

A brief review of the classical approaches to the analysis of turbulent
flows is presented in the following section.



2. General background 5

2.2 Method of analysis

Governing equations

Turbulent flows, as well as laminar flows, are governed by the well-known
Navier-Stokes equations. The present work is concerned only with incom-
pressible flows and, in this case, the equations of motion read:

∂u

∂t
+ (u ⋅ ∇)u = −∇p + ν∇2u (2.2a)

∇ ⋅ u = 0 (2.2b)

where u represents the velocity, p is the pressure (divided by the fluid den-
sity) and ν is the kinematic viscosity of the fluid. Eq.2.2a simply states
Newton’s second law applied to a fluid element, while eq.2.2b represents the
incompressibility constraint. It is known that pressure appears inside the
governing equations 2.2 simply as a Lagrange multiplier needed to enforce
the incompressibility constraint eq.2.2b. Thus, in these circumstances, the
Navier-Stokes equations 2.2, along with proper initial and boundary con-
ditions, represent a closed system of deterministic equations governing the
fluid motion.

It is remarkable how the whole complexity of a turbulent flow-field (for
instance, fig.2.1) is entirely embedded into the same set of equations that
also governs the perfectly ordered motion of a laminar flow.

Statistical approach

As consequence of inevitable small perturbations (in boundary and initial
conditions for example), together with an acute sensitivity to these pertur-
bations, different realizations of a same turbulent flow experiment give rise
to macroscopically different time histories of any flow variable.

Fig.2.2 shows the record of the streamwise component of velocity in the
turbulent wake of a cylinder invested by a uniform flow. The velocity is
measured at a fixed location x0 downstream the cylinder. As it is evidenced
in the figure, two different realizations of the same experiment give two
different records for the magnitude of the streamwise velocity component.
Nonetheless, from the figure it can be envisaged that, even if each realization
is different, the mean value of the streamwise velocity component is the same
for the two experiments.

More generally, it can be stated that turbulent flow statistics are repeat-
able (on the contrary, any single actual realization of a turbulent flow-field is
not). Consequently, any predictive theory in turbulence shall be statistical
in nature. Thus, it is natural to seek for the equations governing the statis-
tics of the flow. Particularly, once that a suitable averaging operator has
been defined, the flow-field can be decomposed into its mean and fluctuating
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Figure 2.2: A cylinder is invested by a uniform flow and a turbulent wake
forms behind it. The plot represents the records of the streamwise component
of velocity at a fixed location downstream the cylinder for two nominally
identical realizations. From [5]

contributions. Namely,
u = u + u′ (2.3)

Here the overbar indicates the averaged velocity field and the prime indicates
the fluctuation. The application of this decomposition to eq.2.2 and the
successive averaging of the result lead to the Reynolds averaged Navier-
Stokes equations (RANS) that govern the evolution of the mean flow. In a
similar manner, equations are also found for higher order statistics.

Unfortunately, this seemingly hopeful approach has a brief shortcoming:
equations for flow statistics are always not closed, meaning that there are
more unknowns than equations. As a matter of fact, additional heuristic
hypotheses need to be invoked to solve the problem. This is known as
the closure problem of turbulence and it implies that any statistical theory,
based on this approach, will never be rigorous [5].

Thus, on the one hand, the flow-field u appears to be random and unpre-
dictable in nature, yet its evolution is always governed by a set of perfectly
deterministic equations. On the other hand, statistics of u are indeed re-
producible, but the equations governing their evolution are not known in a
closed form.

Numerical simulations

Thanks to the ever growing computational power of modern computers,
numerical simulations have become standard practice in engineering appli-
cations. In fluid dynamics two different approaches can be distinguished: di-
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rect numerical simulations (DNS) and computational fluid dynamics (CFD).
The latter is used here to refer to all those numerical methods that aim at
finding numerical approximations to the equations governing the statistics
of the flow (RANS equations). Due to the closure problem, these meth-
ods need to rely heavily on modeling of the unknown terms. Consequently,
the accuracy of any result is strongly dependent on the goodness of the
closure model. Nonetheless, CFD is still the only available numerical tool
when flows of interest for engineering applications come at play. Despite
the importance, the present work is not concerned with CFD, but only with
DNS.

Conceptually, DNS are easy to understand: starting from a proper initial
condition and employing appropriate boundary conditions, Navier-Stokes
equations 2.2 are integrated numerically to give a particular realization of the
flow-field. However, the computational cost required is extremely high. In
fact, accurate and reliable results are obtained only if all the representative
scales of motion are resolved appropriately. The flow domain should be large
enough to contain eddies of the size comparable to the geometry length-scale
and, in the meantime, grid spacing should guarantee that all the dissipative
scales of motion are captured. It is well known that separation between these
two scales is an increasing function of the Reynolds number. Analogous
conclusion applies for time scales: the turn-over time of small dissipative
eddies becomes smaller as the Reynolds increases. On the other hand, the
flow should be simulated for a sufficiently long time in order to acquire
meaningful statistics. As a result, DNS become soon unfeasible for Reynolds
number flows of practical interest. However, DNS are a precious tool for
turbulent research where they are applied to moderate Reynolds number
flows in simple geometries. On this respect, the level of accuracy attained
with DNS can hardly be reached by any other experimental technique.



Chapter 3

Flow control

3.1 Movitations

Turbulence has the property of enhancing heat transfer and mixing of mass
and momentum. For wall-bounded turbulent flows, increased mixing of mo-
mentum in the near-wall region results in a wall shear stress larger than a
comparable laminar flow would have.
Turbulence is a highly dissipative phenomenon: at the smallest scales of mo-
tion, viscosity performs deformation work that dissipates the kinetic energy
of turbulent fluctuations. Thus, if no external energy is supplied, turbu-
lence decays spontaneously. For wall-bounded flows, however, turbulence is
not seen to decay, meaning that energy is continuously supplied to turbu-
lence. It turns out that this is done at the expenses of the mean flow. As
a consequence, the energy that needs to be spent to drive a fluid through
a duct or to push a vehicle through a fluid medium is greater when fluid
motion involves turbulence. Enormous savings, in terms of fuel costs and
environmental impact, could be achieved if only a proper technology were
developed to reduce energy losses due to turbulence. Therefore, research on
turbulent drag reduction is a highly active field.

3.2 Coherent structures and wall cycle

Wall-bounded turbulent flows exhibit patterns of coherent motion. An in-
trinsic difficulty in studying the coherent dynamics of a turbulent flow is
that an accepted definition of coherent motion does not exist. According to
Robinson [44], it can be defined as a “three-dimensional region of the flow
over which at least one fundamental flow variable exhibits significant corre-
lation with itself or with another variable over a range of space and/or time
that is significantly larger than the smallest scale of the flow”. Based on this
definition, Robinson provides a useful categorization of coherent structures
typically encountered in a turbulent boundary layer in the absence of a mean

8



3. Flow control 9

Figure 3.1: Quasi streamwise vortices, sweeps and ejections

pressure gradient. Namely, these are:

• Low-speed streaks (LSS) in the viscous sub-layer;

• Low-speed fluid ejections from the wall;

• High-speed fluid sweeps toward the wall;

• Quasi-streamwise vortices (QSV) and other vortical structures of var-
ious forms (hairpins, horseshoes).

Experimental and numerical studies of coherent structures have proved the
significance of fluid sweeps and ejections in turbulent production (i.e. pro-
duction of turbulent kinetic energy in the near-wall region). Indeed, they
are responsible for the high likelihood of negative uw events that contribute

positively to the turbulent production P = −uw dU
dz in the buffer region of

the turbulent boundary layer.
The dominant vortical structures identified in the near-wall region are

the so-called quasi-streamwise vortices (i.e. vortical structures whose axis
is almost aligned with the mean stream direction). These usually appear
as counter-rotating couples and are used to explain both low-speed streaks
and fluid sweeps and ejections. As shown in fig.3.1, QSVs are responsible
for ejecting low-speed fluid away from the wall and for sweeping high-speed
fluid toward the wall. A low-speed region is consequently induced in the
space between the two vortices.
LSS which dominate the viscous sub-layer appear as long structures: they
are aligned prevalently with the streamwise direction and are spaced con-
stantly with each other. LSS are visualized with help of fig.3.2, where they
appear as elongated black areas. In the same figure, grey-colored regions
represent vortical structures. Their existence is intuitively explained by the
presence of QSV; however, it seems that QSVs do exist because of complex



3. Flow control 10

Figure 3.2: Visualization of low speed streaks (black) and vortical structures
(grey). From [45]

non-linear instabilities that arise during the evolution of LSS. This very
complex phenomenon that governs the dynamics of LSS and QSV has been
intensively studied and it is called wall cycle. Schoppa and Hussain ([45])
use results of DNS to interpret different mechanisms by which vortical struc-
tures (QSV) are generated from LSS. Even though it has not been deeply
understood yet, it is accepted that the wall cycle represents the fundamen-
tal mechanism by which turbulence can sustain itself at the expenses of the
mean flow.

3.3 Flow control strategies

During recent years, significant efforts have been spent on designing efficiently-
working flow control strategies for drag reduction. Namely, these can be
divided into passive and active strategies. Passive strategies usually employ
structured roughness such as riblets to interact with near-wall turbulence
and don’t require any external energy input. However, maintenance and
scalability with Reynolds number pose severe limitations on the applicabil-
ity of these techniques. Active control strategies, on the other hand, aim at
reducing drag by performing some sort of actuation on the fluid flow and
consequently need external energy to be supplied. A predetermined con-
trol can be implemented, or a more complex feedback control can be used.
In the latter case, significant complexity is usually encountered in practical
implementations.

The key relation governing the skin-friction drag coefficient for a fully-
developed channel/pipe flow can be found by the direct integration of the
Navier-Stokes equations [9]. For a plane channel, this results in:

CF =
6

Reb
+ 6∫

1

0
(1 − z)(−u′w′)dz (3.1)

This identity indicates that the skin friction coefficient can be divided into
two contributions: the first is the well-known laminar contribution, while
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the second is a weighted average of the Reynolds shear stress (RSS) −uw.
Being 1 − z the weighting (here z is the distance from the wall), the most
significant turbulent contribution to the friction drag comes from near-wall
RSS. Thus, be the control passive or active, a good strategy should aim at
suppressing as much as possible the RSS in the near-wall region. To this end,
either passive or active predetermined control using wavy surfaces appear
as attractive. A brief review (based on [8]) of flow control strategies with
wavy walls is presented in the following sections.

3.4 Passive strategies: compliant surfaces

Figure 3.3: Compliant surface. An isotropic thin plate is suspended by
springs attached to a rigid basement

A compliant surface (or wall) can be defined as a deformable surface
whose deformation is passively driven by the adjacent flow. The most
straightforward model considers an isotropic compliant surface composed
by a thin deformable plate attached to a rigid basement by springs (see
fig.3.3). Following [13], the equation governing the vertical displacement η
of the plate can be written as:

bρ
∂2η

∂t2
+ d

∂η

∂t
+B

∂4η

∂x4
− T

∂2η

∂x2
+K η = f (3.2)

Where b is the plate thickness, ρ is the plate density, d represents the damp-
ing, B is the flexural rigidity of the plate, T is the pre-stress longitudinal
tension, K represents the stiffness of the springs and f is the wall-normal
stress induced by the adjacent fluid-flow. Namely, f is a forcing produced
by the pressure and normal stresses fluctuations. More cumbersome mod-
els exist, involving anisotropic plates and non-orthogonal oriented springs
[3]. A compliant surface, coupled with turbulent flow, usually undergoes
deformation in the form of streamwise traveling waves [27]. In [11], this
wall deformation is seen to be effective in producing near-wall regions with
negative distributions of Reynolds shear stress. However, in that study, only
small drag reduction rates were achieved (8%).

In general, designing a compliant surface, capable of interacting favor-
ably with the near-wall turbulence, requires the determination of all param-
eters in eq.3.2 so that the characteristic frequency of the plate matches that
of turbulence [8].
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Despite the evident advantages (i.e. no external power required), in-
tensive DNS studies ([7], [11] ) have been performed and proved that drag
reduction effect by passive compliant surfaces is marginal, non-universal and
still questionable.

3.5 Active strategies: streamwise traveling waves
of blowing and suction

Figure 3.4: Blowing and suction streamwise traveling wave

The control strategy of traveling waves of blowing and suction was first
proposed by Min et al. in [31] based on the implication of the identity 3.1.

Actuation at the wall consists in prescribing a wall-normal velocity in
the form:

w = a cos[k(x − c t)] (3.3)

Where a represents the wall-velocity amplitude, k the wave number and c
is the phase speed. Both the upper and lower walls of the channel are fixed
and rigid; a sketch of the geometry is presented in fig.3.4.

A linear analysis, equivalent to that in [31], is reported by Mamori et al.
in [29]. They consider a base laminar flow subject to small perturbations.
A drag increment is predicted by inserting first-order solutions inside the
eq.3.1. Namely, drag reduction is found for all upstream traveling waves.
Since the reference condition is a laminar flow, it is asserted that sub-laminar
drag can be achieved for a flow at a fixed bulk Reynolds number. However,
it is recalled that the net power required for pumping and controlling the
flow always exceeds that of the base flow (as proved in [12] and [1]).

In the absence of a base flow, traveling waves of blowing and suction
always determine a net pumping from the wall in the direction opposed to
the wave propagation ([16]). Pumping is generated by the combined action
of wall actuation and a viscous effect. The former entrains fluid particles
into a circular motion, while the latter is responsible for an asymmetry in
the forward and back motions of the fluid particle. This asymmetry has
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Figure 3.5: Friction drag reduction by upstream traveling waves. From [31]

the overall effect of producing a net pumping in the direction opposed to
the wave propagation. Hoepffner and Fukagata also provide a temptative
mechanism for relating drag reduction with this pumping effect. Namely,
for an upstream traveling wave, a net flux in the downstream direction is
produced by the pumping. As a consequence, the mean pressure gradient
required to drive the flow at a constant rate is reduced. Further, the spatial
average of the RSS, weighted by the distance from the wall, is proportional to
the mean pressure gradient ([10]). Hence, the pumping-induced reduction in
the mean pressure gradient reflects as a weakening in the RSS distribution in
the near-wall region and, ultimately, in a weakening of turbulent production.

The efficacy of traveling waves of blowing and suction is also confirmed
for fully turbulent flows in [31]. In fig.3.5 it is shown the effect of two
different upstream traveling waves on the friction drag D. However, the
stability analysis of Lee et al. [23] shows that upstream traveling waves
(i.e. those determining also sustained sub-laminar drag) do not promote
the stability of the flow. On the contrary, downstream traveling waves with
a phase speed exceeding the centerline velocity are found to have a stabilizing
effect. Further investigations by Moarref and Jovanovic [33] and by Lieu et
al. [25] reveal that the stabilizing effect of downstream traveling waves can
be exploited to relaminarize a turbulent channel flow.

The parametric study of Mamori et al. [30] explores the range of pa-
rameters of the traveling waves of blowing and suction. Maps of the drag
reduction rate relative to Reτ = 110 and Reτ = 300 is shown in fig.3.6.
For downstream waves (c > 0) large drag reduction rates can be attained
for proper ranges of wavelengths. Further, Mamori et al. point out that,
for certain sets of parameters, downstream traveling waves lead to a stable
relaminarization of the flow.
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Figure 3.6: Drag reduction rate as function of wave parameters. λ is the
wave-length and ulam is the bulk velocity of the laminar flow. (a) Reτ = 110;
(b) Reτ = 300. From [30]

3.6 Active strategies: streamwise traveling waves
of wall deformation

Figure 3.7: Streamwise traveling wave of wall deformation

Results obtained with traveling waves of blowing and suction are attrac-
tive. Nonetheless, the implementation of actual devices is still complicated
with the available technology. A seemingly hopeful alternative could be that
of replacing waves of blowing and suction with traveling waves of actual wall
deformation (fig.3.7). In the latter case, walls could be driven by a smaller
number of actuators.

In the analysis of Hoeppfner and Fukagata [16] a pumping effect, induced
by wall actuation, is observed for streamwise traveling waves of wall defor-
mation. The pumping acts in the same direction as the wave propagates: a
downstream traveling wave produces pumping in the downstream direction.
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Recalling the effect of the pumping phenomenon (suggested in [16] and ex-
plained in the previous section), it is natural to expect drag reduction for
downstream traveling waves. Further, stability analyses [23], [33] and [25]
suggest that downstream traveling waves should promote the stability of the
flow.

First observations of the beneficial effects on friction drag of traveling
waves of wall deformation are found in the experimental work of Taneda and
Tomonari [48]. They study the turbulent boundary layer that develops over
a moving wavy surface in connection with the swimming motion of fishes.
Mainly, they found that for phase speeds exceeding the external uniform
stream velocity, the flow tends to laminarize (locally).

Also related to the swimming motion of fishes is the work of Shen et
al. [47]. They study the turbulent boundary layer over a traveling wavy
wall for different phase speeds. Namely, they confirm the positive effect on
turbulence suppression promoted by waves whose speed exceeds the mean
velocity of the external flow. However, they emphasize that this is a local

Figure 3.8: Vortex structure. c
U = 0, (a); c

U = 1.2, (b). From [47]

effect, as can be observed in fig.3.8. The figure shows vortex structures for
a stationary (fig.3.8(a)) and a moving wave (fig.3.8(b)).

A recent parametric study of traveling waves of wall deformation is re-
ported by Nakanishi et al. in [35]. They consider a reference plane channel
flow at Reτ = 180 driven at a constant flow rate. The control is enforced
through:

w = a cos[k(x − ct)] at z = −
a

kc
sin[k(x − ct)] (3.4)

Here a is the wall velocity amplitude, k is the wave number and c is the
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Figure 3.9: Time traces of the mean pressure gradient found in [35]

phase speed. Only in-phase motion is considered for the lower and upper
walls of the channel (peristalsis). The deformation amplitude a

kc is always
comparable to the thickness of the viscous sub-layer of the uncontrolled
flow. As stressed out in [16], this is a necessary condition for attaining
the pumping effect induced by wall actuation. As expected, drag reduction
is achieved for all the downstream traveling waves (c > 0) while a drag
increase is attained for upstream traveling waves (c < 0). The parameter
used to ascertain drag reduction is the mean pressure gradient used to force
the flow through the channel at a constant rate. Fig.3.9 depicts the time
traces of the mean pressure gradient of some specific cases reported in [35].
In the figure four different behaviors are evidenced. Starting from above,
it can be stated that (curves in the figure should be compared to the no
deformation case):

• case20 (upstream wave, c < 0) determines a drag increase;

• case6 (downstream wave, c > 0) determines a drag reduction;

• case11 (downstream wave, c > 0) determines a significant drag reduc-
tion (close to the laminar value);

• case12 (downstream wave, c > 0) is unstable.

Of particular interest is case11: in this case, not only drag reduction is
achieved, but the flow is seen to relaminarize during the simulation. This
can also be noticed by the close value of the mean pressure gradient to the
laminar limit (depicted in the figure by a dotted line).



Chapter 4

Numerical method

The numerical method, as well as the programming language used for its
implementation, was first conceived and developed by Paolo Luchini. This
numerical strategy offers a new way of dealing with immersed boundaries
on a non-body-conforming cartesian grid, retaining great simplicity of im-
plementation and good parallel scaling features. The same code has already
been validated with existing data in the literature and proven to be reli-
able when dealing with immersed non-moving boundaries. The extension
to the more general case of moving boundaries is the primary concern of
the present work and will be explained in what follows. More precisely, this
section focuses on the description of the numerical technique with partic-
ular attention to the general moving boundaries case and the issues that
naturally arise with it.

4.1 Governing equations

The reference geometry considered is that of a plane channel flow, i.e., a flow
confined between two flat walls of infinite extension separated by a distance
of 2δ∗ (fig.4.1). Here and in what follows, an asterisk is used to denote
physical quantities expressed in dimensional form. The flow is assumed to
be unsteady, viscous and incompressible, thus, Navier-Stokes equations, in
non-dimensional form, read:

∂uj

∂t
+
∂uiuj

∂xi
+
∂p

∂xj
−

1

Re

∂2uj

∂xixi
= Fj j = 1,2,3 (4.1a)

∂ui
∂xi

= 0 (4.1b)

where xi are the Cartesian coordinates, ui are the corresponding velocity
components, p is the pressure, Fj is a forcing term and Re is the Reynolds

number defined as Re = U∗h∗

ν∗ . Note that summation is implied over all re-
peated indices. Here, x1 = x, x2 = y and x3 = z coordinates are aligned,

17
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Figure 4.1: Reference channel flow geometry

respectively, with the streamwise, spanwise and wall-normal directions. All
physical variables are non-dimensionalized using an appropriate velocity U∗

and a length reference scale h∗. Particularly, lengths in eq.4.1 are made di-
mensionless using the half channel height so that the reference length scale
h∗ appearing in the Reynolds number definition corresponds to δ∗. The
forcing term Fi appearing in eq.4.1 is needed to drive the flow through the
channel and, hence, it is assumed that only F1 is different from zero since
the mean flow is aligned with the streamwise coordinate. According to [41],
three different approaches can be employed for the simulation of turbulent
flows through channels; namely these are constant flow-rate (CFR), constant
pressure gradient (CPG) and constant power input (CPI) strategies. The
first two are, by far, the most popular, while the latter represents quite a
novelty introduced in [15]. In a CFR simulation, the forcing F1 is found from
the uniform (in space) mean pressure gradient that needs to be adjusted, at
each time instant, to keep the flow-rate at a prescribed value. On the other
hand, with the CPG approach, the flow is driven by a constant (in time)
mean pressure gradient, while the flow-rate is left free to change. Finally,
in the CPI strategy, what is kept constant is the product of flow-rate and
mean pressure gradient. In the present study, the CFR approach is adopted;
as explained in [41], a natural choice when dealing with constant flow-rate
simulations is to choose, as reference velocity U∗, the mean bulk velocity U∗

b .
The same choice is made here, so that all the velocities components in eq.4.1
are made dimensionless using U∗

b and the Reynolds number corresponds to

Reb =
U∗b δ

∗

ν∗ .
The reference geometry in fig.4.1 depicts a channel confined by two flat walls;
however, in general, solid boundaries of the channel will be represented by
arbitrary non-planar and, possibly, time-dependent surfaces on which no-
slip boundary conditions must be enforced. Moreover, the computational
domain measures Lx and Ly in the streamwise and spanwise directions re-
spectively, where periodic boundary conditions are also applied to simulate
the infinite extension of the channel.



4. Numerical method 19

Finally, eq.4.1 must be coupled with a proper initial condition which, in the
present code, may be given either as an external input flow field or directly
initialized at the beginning of the simulation by the code itself. In the latter
case, the initial velocity profile is laminar.

4.2 Discretization

Spatial discretization

One of the main advantages given by the immersed boundary technique is
the fact that, for such methods, solid boundaries are fully immersed within
the computational grid that, therefore, is not body fitted (i.e. grid nodes
don’t lie on the surface of the boundaries). As a consequence, grid genera-
tion is made trivial, and it is performed once and for all at the beginning of
a simulation. The code presented here takes advantage of this feature and
performs the spatial discretization of eq.4.1 on a fixed Cartesian grid us-
ing standard second order-accurate centered finite differences. Furthermore,
the code collocates fluid-dynamic variables in a staggered fashion within
the computational domain. This approach is the same as considering two
distinct non-overlapping grids shifted of half grid-spacing from each other.
An example is shown in fig.4.2 for a bidimensional case. Staggered grids
are standard practice when dealing with the numerical approximation of
Navier-Stokes equations using finite differences schemes on Cartesian grids
([36]).
Uniform spacing is adopted for streamwise and spanwise directions, while

clustering is possible for the wall-normal direction. Such characteristic is
exploited to save memory during execution: only wall-normal coordinates
are stored, while streamwise and spanwise locations are easily computed
whenever needed.

Time advancement

Numerical integration of governing equations is performed using a fractional
step approach. More precisely, within a given time-step, the momentum
equation (eq.4.1a) is first advanced in time without taking care of the in-
compressibility constraint (eq.4.1b). The latter is enforced during the so-
called projection step: the velocity field gets projected onto the solenoidal
vector-field, and, in the meantime, the pressure is updated accordingly.
The time-scheme chosen for time advancement is a fully explicit third-order
Runge Kutta method; the time-step is divided into three sub-steps, during
which the fractional step technique is applied independently. Hence, the
procedure can be summarized as follows:
given the velocity ukix,iy,iz at the sub-step k, at a grid location (ix, iy, iz),
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Figure 4.2: Example of 2D staggered grid. Red squares pressure, blue and
green arrows velocity components

the intermediate velocity ûk+1
ix,iy,iz, at the next sub-step (k + 1), is found:

ûk+1
ix,iy,iz =ukix,iy,iz + αk∆tLNL(u

k
ix,iy,iz) + βk∆tLNL(u

k−1
ix,iy,iz)+

(αk + βk)∆t [F
k
−G(pk)]

(4.2)

where αk and βk are the coefficients of the Runge Kutta method and LNL(⋅)
is the operator containing the linear L(⋅) and non linear NL(⋅) disctretized
operators of eq.4.1a (namely, LNL(⋅) = L(⋅) + NL(⋅)). Linkewise, G(⋅)

is the discretized gradient operator. The intermediate velocity, computed
using eq.4.2, is then projected onto the field of divergence-free vectors using:

uk+1
ix,iy,iz = ûk+1

ix,iy,iz −G(φk+1
ix,iy,iz) (4.3)

where the pseudo-pressure φ is found from the numerical solution of the
following Poisson equation:

∇
2φk+1

= ∇ ⋅ ûk+1 (4.4)

The linear system that arises from the discretization of eq.4.4 is solved em-
ploying a fast iterative in-line SOR technique. Finally, the pressure field is
updated using:

pk+1
ix,iy,iz = p

k
+

φk+1
ix,iy,iz

(αk + βk)∆t
(4.5)
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Figure 4.3: Example of solid boundaries immersed within a fixed Cartesian
grid

4.3 Immersed solid boundaries

IB techniques

Immersed boundary (IB) methods refer to a broad family of numerical
strategies conceived for simulating the presence of boundaries inside a fluid
domain. One of the first appearances of these techniques is due to C. Peskin
who, in [37], introduces an IB procedure for the 2-dimensional calculation
of blood flow inside mitral valves. Since then, a large variety of methods
have been proposed for studying fluid-flow phenomena of different nature;
typical applications are simulations of the interaction of fluids with solid
rigid bodies (for instance [52], [50], [49]) or elastic bodies ([37], [38]) and
multi-phase flows ([40]).
The basis on which these methods stand is that physical boundaries are im-
mersed within a fixed Cartesian, non-body-conformal, grid. An example can
be visualized in fig.4.3. A particular procedure is then employed to enforce
boundary conditions, and this usually requires a modification of the govern-
ing equations in the close vicinity of an interface. An apparent advantage
is that mesh generation becomes an easy task, as it can be performed once
and for all at the beginning of a calculation, without caring about neither
the location nor the complexity of the boundary.

On the other hand, for numerical methods that rely on standard body-
conformal grids, mesh generation requires, usually, a significant computa-
tional effort and involves either complex coordinates transformation or cum-
bersome discretization operators. On this respect, the advantage brought
about by IB strategies is even more evident when dealing with non-stationary
boundaries as, for standard body-fitted methods, grid generation must be
performed at each time-step. Conversely, grid resolution may have a better
behavior for body-conformal meshes rather than Cartesian grids. As stated
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in [18], when geometries with steep gradients and high curvatures are in-
volved local grid refinement cannot be performed with Cartesian methods.
This has severe consequences on how grid size scales with Re number. As
explained in [32], it can be shown that the ratio of Cartesian to body-fitted
grid sizes is of the order O(Lδ )

2, where L is a representative length-scale of
a solid body, and δ is the boundary layer thickness. Since δ increases with
increasing Re, the ratio becomes very large for high Re number flows and,
consequently, a given resolution would require an exceedingly large Carte-
sian grid. It is also stressed out that this fact does not directly imply a
higher computational cost because, as the size of the grid increases, a more
significant number of mesh nodes lies inside the body and, therefore, the
calculation is not needed for an increasingly larger number of points. Of
course, this depends on the considered geometry and nothing general can
be stated.
Even though significant differences exist among all the available IB methods,
a common feature is that interfaces between fluids and solids (or between
different fluids) are mimicked by introducing a forcing term inside the gov-
erning equations. More specifically, following [32], IB techniques can be
broadly divided into two categories based on the forcing being applied ei-
ther to the continuous or discrete form of the governing equations. Methods
falling in the first group are well suited for simulating fluid flows interac-
tions with elastic bodies while they usually give rise to stiff problems when
applied to flows around rigid moving boundaries.

Boundary conditions on solid moving walls

The numerical code, used in this study, implements a fairly innovative IB
strategy that applies no-slip boundary conditions on solid walls through a
correction of the governing equations in their discrete form. The same tech-
nique was proven to be successful for the simulation of flows over stationary
wavy walls [26]. The present work aimed to extend this IB methodology to
the case of moving walls; an explanation of the general boundary treatment
is reported in the following.

In the current implementation, solid boundaries are represented by the
upper and lower walls of the channel, as in fig.4.3. It is assumed that the
shape of the two walls is known in analytical form. Hence, at any time
instant, the solid boundary of the channel is defined by:

⎧⎪⎪
⎨
⎪⎪⎩

z = ηl(x, y, t) lowerwall

z = ηu(x, y, t) upperwall
(4.6)

In the present study, the walls of the channel are free to move only in the
z direction (i.e. in the wall-normal direction of the reference channel in
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fig.4.1). The velocity of a point lying on the surface of the boundary is
given by:

⎧⎪⎪
⎨
⎪⎪⎩

UUU l = wl(x, y, t) ẑzz lowerwall

UUUu = wu(x, y, t) ẑzz upperwall
(4.7)

Where wl and wu are the time-derivatives of ηl and ηu, respectively, and ẑzz
is the unit wall-normal vector.

No-slip boundary conditions are applied at the solid boundary of the
channel; with respect to a fixed frame of reference, the velocity of the fluid at
a given point on the solid boundary must equal the velocity of the boundary
at the same point. More precisely:

⎧⎪⎪
⎨
⎪⎪⎩

u(x, y, z, t) = v(x, y, z, t) = 0 ; w(x, y, z, t) = wl(x, y, t) at z = ηl(x, y, t)

u(x, y, z, t) = v(x, y, z, t) = 0 ; w(x, y, z, t) = wu(x, y, t) at z = ηu(x, y, t)

(4.8)
In the present numerical method, boundary conditions 4.8 are enforced on
the intermediate velocity û during time advancement of the momentum
equation 4.2. This imposition is straightforward for all grid points lying
precisely on the immersed boundary. However, the grid is Cartesian and
non-body-conformal, thus grid nodes rarely lie on the boundary surface.
The procedure applied for the fulfillment of condition 4.8 is presented in the
following.

IB procedure: a two-dimensional example

It is helpful to consider a two-dimensional example of a channel where a
non-null vertical velocity is prescribed at the solid boundary. At first mo-
mentum equation is advanced in time, using eq.4.2, for all grid nodes inside
the fluid domain, without taking into account no-slip boundary conditions.
For the sake of simplicity, the explicit Euler method will be used in place
of the Runge-Kutta method. Consider the grid node (ix, iz) in fig.4.4. The
vertical velocity w at time-step n + 1 is computed as:

w̃n+1
ix,iz = w

n
ix,iz +∆t [L(wnix,iz) +NL(w

n
ix,iz,w

n
ix,iz) −Gz(p

n
ix,iz)] (4.9)

Here, a ∼ indicates that the velocity in eq.4.9 is advanced without enforcing
the boundary condition w =WIB on the boundary. In fact, all terms inside
the square brackets are computed without accounting for the exact location
of the boundary interface. To overcome this inconsistency, a corrective term
is applied to eq.4.9; further, based on the fact that very close to a solid wall
the leading contribution to momentum balance is due to the viscous term, a
correction is applied only to the linear term L(⋅). If the grid-node of wix,iz
lied precisely on the boundary surface, discretization of the viscous term of
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Figure 4.4: Numerical stencil intersecting the solid boundary

eq.4.1 would read:

L(wix,iz) =
1

Reb
[
wix−1,iz +wix+1,iz

∆x2
+
WIB +wix,iz+1

∆z2
− (

2

∆x2
+

2

∆z2
)wix,iz]

(4.10)

However, this is incorrect because eq.4.10 does not account for the actual
location of the boundary. Conversely, a more appropriate way of computing
L(wix,iz) is:

L(wix,iz) =

1

Reb
[
wix−1,iz +wix+1,iz

∆x2
+
WIB

δ∆z
+
wix,iz+1

∆z2
− (

2

∆x2
+

1

∆z2
+

1

δ∆z
)wix,iz]

(4.11)

The correction C is added to eq.4.9 in the form:

wn+1
ix,iz = w̃

n+1
ix,iz −∆tC (4.12)

where C is deduced by comparing eq.4.10 with eq.4.11. The correction can
be written in the form:

C = c1wix,iz − c2WIB (4.13)

Where, in this particular example:

c1 = c2 =
1

Reb
(

1

δ∆z
−

1

∆z2
) (4.14)
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Figure 4.5: Channel flow confined between two streamwise-traveling waves
of wall deformation. Arrows represent wall velocity

Furthermore, the correction 4.13 is conveniently computed using the velocity
field already updated at time-step n+1, so that eq.4.12 can be solved directly
for wn+1

ix,iz:

wn+1
ix,iz =

w̃n+1
ix,iz

1 + c1∆t
+

c2∆t

1 + c1∆t
WIB (4.15)

It should be noticed that, as δ → 0 (i.e. as the point (ix, iz) lies closer
and closer to the boundary), the term c1 = c2 →∞ and, therefore, the first
term on the right hand side of eq.4.15 tends to vanish while the second one
approaches the boundary velocity WIB. On the other hand, if δ = ∆z, then
the point (ix, iz−1) lies exactly on the boundary and no correction is applied
(as c1 = c2 = 0).

The extension to the three-dimensional case is quite straightforward. It
should be stressed out that the IB treatment just explained requires only
the knowledge of the relative distance grid-node - boundary for all the nodes
whose numerical stencil intersects the boundary. Naturally, this information
must be updated at each time-step in the case of non-stationary walls.
Another remark is that corrective coefficients differ for each component of
the velocity if discretization is performed on a staggered grid. In fact, in
that case, the numerical stencil is distinct for each velocity component.
As previously explained, the original numerical code was conceived for the
simulation of flows over stationary walls; this situation is readily recovered
in eq.4.15 by simply setting WIB = 0.

4.4 Issues with moving boundaries

In the view depicted so far, a solid rigid boundary is immersed within the
frame of a fixed staggered Cartesian grid and, if a motion is prescribed, it
moves changing its position relative to grid nodes. An issue that usually
appears with IB methods for simulating fluid-flows interactions with non-
stationary rigid solid bodies is the birth of spurious force oscillations [28],
[46] and [24].

This problem was also experienced with the numerical procedure used
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Figure 4.6: Observed oscillations in the mean pressure gradient

in the present work. Mainly, temporal fluctuations in the mean pressure
gradient were observed. For instance, consider the channel configuration
reported in fig.4.5 where the flow is confined by two streamwise-traveling
waves of wall deformation. This is a particular example of the flow-control
strategy presented in the next chapter. The time trace of the mean pres-
sure gradient that drives the flow is represented in fig.4.6 for wall-actuation
parameters: deformation amplitude h = 0.1, wall-velocity amplitude a = 0.4,
wave-number k = 2 and phase-speed c = 2. Grid employed in the example
is nx = 256 (streamwise), ny = 128 (spanwise) and nz = 96 (wall-normal);
time-step size ∆t = 0.0196. Large amplitude oscillations are clearly visible
in the figure.
Following [24], oscillations in computed flow variables should be attributable
to the fact that, during the motion of the immersed-boundary, grid nodes
get continuously either covered or cleared by the solid boundary. In return,
this is likely to cause:

• a temporal discontinuity of velocity for grid nodes that get covered by
wall motion;

• a spatial discontinuity of pressure for nodes that get freed by wall
motion

However, both these possibilities have been checked with the present nu-
merical technique and no effect was observed on oscillations. As a matter
of fact, the method allows for a smooth transition velocity nodes that get
covered by the wall; on the other hand, pressure nodes were also found to
have no influence on observed fluctuations.
Another possible source of oscillations is reported in [46], where it is pointed

out that fluid-volume conservation is the primary cause of spurious temporal
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Figure 4.7: Fluid volume variation due to boundary motion. Boundary at:
, t; , t + ∆t. Light blue, fluid; blue, freshly cleared cells; grey,

solid boundary; dark-grey, freshly covered cells

oscillations in fluid-dynamic variables. Indeed, as the solid boundary moves,
a variable number of grid cells gets either cleared or covered by it, giving rise
to instantaneous variations of the total fluid volume. This inconvenience has
a straightforward solution for finite volume methods, as it is easier to enforce
volume conservation for each numerical cell cut by the boundary [21]. On
the other hand, for finite differences schemes, it is less clear how to assure
the enforcement of this constraint. Nonetheless, an ad-hoc solution for the
cases studied in this work has been found by merely setting a restriction
on the time-step size. Consider the situation represented in fig.4.7; it is as-
sumed that a numerical cell belongs to the fluid-phase if its u-velocity node
lies outside the solid wall. Thus, cells in the figure are colored according
to this definition. Now, during a time-step of arbitrary size, wall motion
clears and covers a different number of velocity nodes, hence varying the
total of cells considered in the fluid region. Fig.4.7 should clarify this situa-
tion. Since wall motion is known a priori, the time-step size can be chosen
so that, for a given grid-spacing, wall movement clears and covers the same
number of velocity nodes during each temporal iteration. More precisely,
for a sinusoidal wave of wall deformation, traveling at a phase speed c, the
following condition must be satisfied:

c∆t

∆x
= n (4.16)

where n is an integer greater than one and ∆x is the streamwise grid-
spacing. The effect of this choice on the time trace of the mean pressure
gradient of the previous example is shown in fig.4.8.
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Even though condition 4.16 sets a strict limitation, space is left for tuning
of grid resolution and temporal accuracy. Nonetheless, this artifice cannot
be considered a general solution to the problem, as a condition in the form
of 4.16 can’t be found for a more complex wall motion. Thus, an essential
task for future development is that of finding a new way to overcome the
issue.

4.5 Code structure

The numerical method reviewed in the previous sections is implemented
in the CPL programming language (a high-level language conceived and
developed by Paolo Luchini for his own research). The code is very concise
and consists of four different files, namely:

• undwall.cpl

• timestep.cpl

• iofiles.cpl

• parallelbcs.cpl

• parallelbcs.h

The main script is undwall.cpl; it contains the time-loop through which
temporal iteration is performed. At each cycle the following tasks are suc-
cessively executed:
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• coefficients for the IB method are computed, using the subroutine
calcimbc, based on the position of the walls at the current time-step;

• the sub-steps of the Runge-Kutta method are performed through three
consecutive calls at the subroutine timestep;

• output is printed out; this consists of current iteration, external time,
mean pressure gradient in the streamwise and spanwise directions and
the current Courant number;

• finally, the current flow-field is (possibly) saved.

The subroutine calcimbc, used for the computation of the IB coeffi-
cients, is defined inside the file undwall.cpl. Its original version allowed
only the treatment of the lower wall of the channel, and thus, an extension
was developed for this study to allow arbitrary shapes for both the top and
lower walls. In practice, the subroutine uses two separate boolean functions
(one for each wall) that return a true value if a given grid-point lies inside
the boundary. This requires the shape of both walls to be known in an-
alytical form. At each call to calcimbc, IB coefficients are computed for
all the solid boundaries and are stored in 2-dimensional arrays whose ele-
ments are pointers to 1-dimensional arrays and whose size corresponds to
the extension of the grid in the x− y plane. Therefore, at each (ix, iy) loca-
tion, a 1-dimensional array stores the coefficients for all those grid-nodes (in
the undeformed-wall normal direction) in the fluid-phase whose numerical
stencil intersects the boundary. Three separate arrays are needed for each
wall: one per velocity component. It must be stressed-out that IB coeffi-
cients must be updated at each time-step when non-stationary boundaries
are considered, while the case of fix walls requires this computation only at
the beginning of the simulation.

The file timestep.cpl contains the subroutine responsible for time march-
ing named, as a matter of fact, timestep. The latter has a quite general
form, in the sense that it requires as input only another subroutine which
specifies the numerical scheme used for time advancement. Tasks performed
by timestep are as follows:

• time advancement of the momentum equation through the subroutine
linestep;

• projection of the intermediate velocity field onto the space of solenoidal
vectors and pressure update through the pressurelinestep subrou-
tine;

• correction of the velocity field in order to guarantee a constant flowrate
and corresponding update of the mean pressure gradient needed to
drive the flow.
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More precisely, linestep advances momentum equation for all the ve-
locity components and all grid nodes (in the fluid-phase) at a fixed location
in the x − y plane. An external loop, defined in the core of the subroutine
timestep, calls linestep for all grid-locations in the horizontal plane and,
hence, velocity update is achieved for all points.
On the other hand, pressurelinestep implements an efficient in-line SOR
algorithm for the iterative solution of the linear system arising from the
discretization of eq.4.4. The unknown scalar field φ is arranged following
a red-black ordering in the x − y plane; an external loop, defined in the
timestep subroutine, cycles successively on all black and red locations for
a user-defined number of times. Thanks to this sorting (as a matter of
fact, red-black columns in the horizontal plane), updating the column of
unknowns at a location (ix, iy) in the plane requires only an inversion of a
tridiagonal system of size nz (being nz the number of cells in z direction) at
each iteration. The velocity field is conveniently updated at each iteration
as well and, in return, there’s no need to store in memory the entire φ scalar
field explicitly. Correspondingly, also the pressure field at a given column
in z direction is updated during each call to the subroutine.

Finally, flowrate adjustment is performed at the end of the timestep

subroutine. This is achieved by first computing the difference between the
actual and the imposed flowrate; the lack or excess in mean bulk velocity
is then consequently ascertained and used to update both the velocity field
and the mean pressure gradient needed at the successive time-step to drive
the flow. Of course, this operation is not performed for a CPG simulation
(i.e. at constant pressure gradient).

iofiles.cpl collects all the subroutines needed for input and output
purposes. Through a USE call to iofiles.cpl from the main script the
initial flow-field is set up. The latter can be either given as an external
input or initialized as a laminar flow profile by the program itself.
An output is realized in two different ways using subroutines savefield

and output. The former allows saving the entire flow-field on an external
file, while, the latter prints out, on the standard output, simple information
about each iteration.

Finally, periodic boundary conditions and parallel execution are made
possible by the two files parallelbcs.cpl and parallelbcs.h. Schedul-
ing and communication between two or more machines are realized through
these two files. Nonetheless, they are also needed for serial executions, be-
cause subroutines for enforcing periodic boundary conditions are contained
in parallelbcs.cpl.
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Figure 4.9: Communication between domain partitions

4.6 Parallel strategy and scaling performances

In order to reduce execution time as much as possible, the program can be
run in parallel between multiple machines. In practice, the computational
domain can be partitioned in different pieces by cutting it along the stream-
wise and spanwise directions. Governing equations are then advanced at
each time-step almost independently for all the partitions. This approach
is possible and convenient because just few information needs to be shared
among separate portions of the domain. Fig.4.9 clarifies this fact; mainly, it
is shown a view, in the x−y plane, of a domain divided into four pieces. For
each partition, a different machine is assigned, namely cpu1, cpu2, cpu3, and
cpu4. Since information is shared only through the boundaries of adjacent
domain pieces, it comes clear that cpu1 and cpu4 don’t communicate as well
as cpu2 and cpu3.
During a given time-step, the update of the flow-field is first performed for
the interior of each partition, while, only when surrounding domain por-
tions have all been updated, the boundary is treated. For this purpose, as
well as for periodic boundary conditions enforcement, ghost boundaries are
employed.

To asses parallel scaling performances and to determine the optimal
setup to run the program on a specific architecture, a set of measurements
was carried out. Particularly, this was realized on a computational mesh, of
size nx = 400, ny = 350, nz = 250, chosen according to the required resolution
of all the cases tested in the present work. All the measures reported in the
following refer to an A2 KNL partition on the Marconi cluster at Cineca
laboratories. The key index of scalability performances of a numerical code
is the speed-up, which is defined as the ratio of serial to parallel wall-clock
times required for the execution of a defined task. Here this is considered
to be:



4. Numerical method 32

0 10 20 30 40 50 60 70

N
Tot

0

5

10

15

20

25

30

35

S

Ny=1

Ny=2

Ny=4

S=N
Tot
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S =
∆ts
∆tp

(4.17)

where ∆ts and ∆tp are the times needed for the execution of ten tempo-
ral iterations using a serial and a parallel (with p machines) configurations
respectively. The ideal characteristic for speed-up would be a linear law, as,
in such a case, a parallel run with p machines would imply a time reduc-
tion by a factor p with respect to serial execution. The measured speed-up
is reported in fig.4.10; it can be noticed that the numerical code has good
scaling features only up to a limited number of machines.
Another critical parameter is the efficiency of the scaling, defined as:

E =
p

S
(4.18)

again, being p the total number of machines of a configuration and S
the corresponding speed-up. For an ideal linear scaling, the efficiency would
be equal to one. Fig.4.11 reports the measured efficiency of the code; as
expected from the previous plot, efficiency degrades quite rapidly with in-
creasing the number of machines.
Given the previous plots, the optimal configuration for parallel execution
should be chosen to have the highest value of speed-up along with the max-
imum possible efficiency. Considering this, and also taking into account
actual execution wall-clock times (reported in fig.4.12), the setup chosen
was that deploying p = 16 with Nx = 4 and Ny = 4 (where Nx and Ny
are the numbers of machines in streamwise and spanwise directions). This
configuration allowed for a speed-up of about 9.5 along with an efficiency of
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approximately 60% and a total time per iteration of about 14 seconds.
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Chapter 5

Numerical experiments
definition and results

A series of direct numerical simulations (DNS) were performed in order to
assess the adequacy of the numerical method, presented in the previous
chapter, of dealing with immersed moving boundaries. To this end, the
interesting flow-control strategy, presented by Nakanishi, Mamori and Fuk-
agata in [35], was taken as reference for comparing results obtained with
the current immersed boundary numerical technique applied to the same
problem. The proposed flow-control methodology aims at reducing the drag
in a fully developed channel flow by enforcing a pre-determined wall mo-
tion. Particularly, the latter is realized in the form of streamwise-traveling
wave trains of wall deformation. More precisely, the two flat walls of a plane
channel are perturbed in space with the following time-dependent sinusoidal
law:

⎧⎪⎪
⎨
⎪⎪⎩

zb = −
a
k csin [k(x − ct)] lowerwall

zt = 2 + a
k csin [k(x − ct)] upperwall

(5.1)

Channel’s geometry can be visualized with the help of fig.5.1. No slip
boundary conditions that must be enforced at the two walls follow directly
from 5.1 and can be written as:

⎧⎪⎪
⎨
⎪⎪⎩

u = 0, v = 0, w = a
k ccos [k(x − ct)] for z = zb

u = 0, v = 0, w = − a
k ccos [k(x − ct)] for z = zt

(5.2)

Hence, the flow-control strategy is realized through a combined action of
wall deformation and wall-normal velocity enforcement at the solid bound-
ary of the channel. Note that this is different from the control technique of
traveling waves of blowing and suction proposed in [31], where only wall-
normal velocity is imposed at the two walls of the channel.

35
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Figure 5.1: Channel’s geometry

Characterizing parameters of wall actuation are the amplitude of wall ve-
locity a, the wave number k and the phase speed c. Under a certain set of
these parameters, it is shown in [35] that such wall motion can be exploited
fruitfully for controlling the flow and reducing the total force needed for
driving the fluid through the channel. Particularly, with their numerical
experiments, they identified two different situations in which drag reduction
occurred: the first can be termed as ordinary drag reduction, the second is
called relaminarization instead. The former is characterized by a flow that
remains turbulent for the whole experiment, while, in the latter, drag reduc-
tion is brought about by a transition phenomenon that leads the turbulent
flow to reach a laminar state. This feature is of great interest for flow-control
purposes as it allows for significant drag reduction rates. In [1] and [12] it
is indeed proved that the lowest attainable total power consumption needed
for driving and controlling a constant flow rate channel flow is found when
the considered flow is laminar. Thus, relaminarization appears as the ulti-
mate goal for drag reduction purposes.
All the simulations carried out in this study aimed at reproducing the phe-
nomena just explained in order to set validation for the current numerical
immersed boundary method. To this purpose, a total of eight simulations
were performed replicating cases presented in [35] plus a reference plane
channel flow needed for comparison.
Setup of numerical experiments and results will be explained in the following
of this chapter.

5.1 Numerical experiments definition

The reference geometry considered is that of a plane channel flow with the
two walls separated by a distance of 2δ∗. Hereafter an asterisk will be
used to denote a dimensional quantity. All physical variables are made
dimensionless using the mean bulk velocity U∗

b and the half channel-height

δ∗ and, therefore, the Reynolds number of interest is Reb =
U∗b δ

∗

ν∗ . Here ν∗
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represents the kinematic viscosity of the fluid. The (dimensionless) mean
bulk velocity is defined as:

Ub =
1

2
∫

2

0
ūdy. (5.3)

where ū is the mean velocity profile in the channel. As explained in [41],
this choice of reference variables is practically convenient for constant-flow
rate simulations, and thus the same choice was adopted for this study where
all simulations were carried out at a fixed flow-rate.
The sizes adopted for the computational box in the streamwise and span-
wise directions are, respectively, Lx = 4π and Ly = 2π; moreover, the flow
was assumed to be periodic in these directions. The bulk Reynolds number
chosen for the experiments, following what done in [35], was Reb = 2800,

corresponding to a friction Reynolds number of Reτ =
u∗τ δ

∗

ν∗ ≈ 180 with re-

spect to the plane channel case. The friction velocity is defined as u∗τ =
√

τ∗w
ρ∗ ,

where τ∗w is the mean total shear stress at the wall and ρ∗ is the fluid density.
Analogously, it is also defined the viscous lengthscale δ∗ν = ν∗

u∗τ
. Hereafter,

following the usual convention, all physical quantities expressed in viscous
units are denoted by a + superscript.
The grid chosen for the simulations was nx = 400 (streamwise), ny = 350
(spanwise) and nz = 260 (wall-normal) with uniform spacing.
Starting from an initial interpolated fully turbulent flow field at the same
Reynolds number, all the simulations were run up to reaching 1000 external
time units (e.t.u.) and sampling was performed every 10 e.t.u. in order to
guarantee a fair statistical accuracy. An external time unit is here defined

according to the current non-dimensionalization convention, i.e. t = t∗
U∗b
δ∗ .

Each numerical experiment differs from the others by the set of parame-
ters used to determine the control action defined through eq.5.1 and eq.5.2.
Tab.5.1 collects the values of control parameters a, k and c for all the simu-
lated cases. In the table are also reported the maximum amplitude of wall
deformation height = a

kc , the size of the time-step used ∆t and the number
of the corresponding case found in [35]. Before proceeding with the exposi-
tion of computed results, a final remark on the size of the time-steps used is
due. As explained in the previous chapter, the employed immersed bound-
ary method suffers from spurious oscillations of computed fluid-dynamic
variables arising from a violation of volume conservation when an arbitrary
boundary motion is enforced. A remedy to this issue was found for the
particular wall motion employed in this study; namely, this reduces to the
simple condition 4.16 that merely sets a constraint on the time-step size
once that streamwise spacing ∆x and wall phase-speed c are assigned. The
condition is here reported for clarity:

c∆t

∆x
= 1 (5.4)
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Case a k c Max wall height ∆t Corresponding case in [35]

ref. 0 0 0 0 0.03142 ”

01 0.3 2 2 0.075 0.01571 8

02 0.3 4 2 0.0375 0.01571 9

03 0.4 2 2 0.1 0.01571 11

04 0.2 1 2 0.1 0.01571 4

05 0.2 2 2 0.05 0.03142 5

06 0.2 4 2 0.025 0.03142 6

07 0.3 1 2 0.15 0.01571 7

Table 5.1: Wall actuation parameters

Since the grid size was fixed for all simulations, the time-step needed for
each case was computed using the above relation (values can be found in
tab.5.1). With this choice, neither oscillations nor numerical instabilities
were observed.

5.2 Averaging

Computation of mean flow properties is usually performed using suitable
averaging operators that should be chosen according to the geometric char-
acteristics of the considered flow. For a plane channel, a space average can
intuitively be defined thanks to the two homogeneous directions (spanwise
y and streamwise x); more specifically, considering a generic flow variable
q(x, y, z, t), space averaging can be performed through:

qxy(z, t) =
1

LxLy
∫

Lx

0
∫

Ly

0
q(x, y, z, t)dxdy (5.5)

The quantity qxy, which depends on wall-normal coordinate z and time, can
be further averaged in time by using the following definition:

q(z) = lim
T→∞

1

T
∫

T

0
qxy(z, t)dt (5.6)

Hereafter, if not otherwise specified, an overbar will be used to denote a
quantity averaged both in the x − y plane and time. The two averages thus
defined lead to the well-known Reynolds decomposition of the flow-field,
namely:

q(x, y, z, t) = q(z) + q′(x, y, z, t) (5.7)

where q′(x, y, z, t) denotes the turbulent random fluctuation.
A different situation is encountered when a flow, confined by two streamwise-
periodic wavy walls (as those defined by 5.1), is considered, for the stream-
wise direction is not homogeneous anymore. On the other hand, standard
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averaging can still be performed in the spanwise direction. This is exactly
the case faced in the present study, where the channel walls are defined
by 5.1. In such a case, following [43], a given quantity can be split into a
three-components decomposition as:

q(x, y, z, t) = q(z) + q̃(φ(x, t), z) + q′′(x, y, z, t) (5.8)

where q̃ and q′′ are the periodic and random components respectively. The
former is a function of the wall phase φ(x, t) = k(x−ct), while the latter is a
random perturbation of turbulent nature. Collecting these two contributions
into the turbulent fluctuation q′, the usual two-components decomposition
can be recast:

⎧⎪⎪
⎨
⎪⎪⎩

q(x, y, z, t) = q(z) + q′(x, y, z, t)

q′(x, y, z, t) = q̃(φ(x, t), z) + q′′
(5.9)

According to [43], another space averaging operator, called phase average,
can be defined as follows:

⟨q (x, t)⟩ = lim
N→∞

1

N

N

∑
n=0

q(φ + nλ, z) (5.10)

here λ represents the wavelength of the wavy wall. The symbol ⟨⋅⟩ will be
used in the following to denote phase-averaged quantities.
Applying 5.10 to 5.8 it can be shown that a phase-averaged quantity, at a
given z coordinate and time instant t, consists of a constant part plus a
periodic contribution induced by the wavy wall. More precisely:

⟨q(x, y, z, t)⟩ = q(z) + q̃(φ(x, t), z) (5.11)

Hence, the following decomposition of the flow-field naturally arises:

q(x, y, z, t) = ⟨q(φ(x, t), z)⟩ + q′′(x, y, z, t) (5.12)

Averaging operators and flow decompositions just explained will be used
throughout the chapter for studying mean-flow properties of all the con-
trolled cases, similarly to what done in [35], [47] for streamwise-traveling
wall deformation waves, [30] in the context of blowing-and suction waves
and [4] [17] for flows over stationary wavy walls.

5.3 Reference case

Results regarding the plane channel flow are discussed first. This case is of
great importance as it sets a reference with which the behavior of the flow,
observed in all other simulations, can be compared.
A comparison of the computed viscous units with those established by Kim,
Moin and Moser for the same flow in their famous paper [22] is reported in
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Reτ uτ δν U+

b

Present 177.032 0.06323 0.005649 15.82

Kim et al. 178.12 0.06398 0.005614 15.63

Table 5.2: Computed viscous units

	0

	2

	4

	6

	8

	10

	12

	14

	16

	18

	20

	1 	10 	100

u+

z+

Figure 5.2: Mean velocity profiles: ◯, computed mean-velocity ; , law
of the wall

tab.5.2. From the table a little discrepancy between computed and reference
viscous units can be observed; the cause may be addressed to the different
numerical approach used (in [22] a spectral method was adopted), along
with differences in grid resolution; yet, the results obtained were considered
satisfying for the purpose of the present study. Using the computed value
of the viscous length δν , the grid resolution in wall units is found to be:
∆x+ ≈ 5.6, ∆y+ ≈ 3.2 and ∆z+ ≈ 1.5.
Mean flow field properties are obtained by applying the averaging both in
space and in time using eq.5.5 and eq.5.6. Computed mean flow quantities
will be now presented.
Fig 5.2 is a semi-logarithmic plot of the mean streamwise velocity profile as
a function of the distance from the lower wall. Velocity is normalized by the
friction velocity utau and the wall-normal coordinate z is expressed in wall
units; only the lower half of the velocity profile is represented in the figure.
On the same plot it is also drawn the classical law of the wall for the viscous
sub-layer and the logarithmic region. More precisely, these are defined by
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the analytical expressions:

⎧⎪⎪
⎨
⎪⎪⎩

u+ = z+ viscous sublayer

u+ = 1
K log z

+ +A log region

where the values of the Von Karmann constant K and A are set according
to [22]: 1

K = 2.5, A = 5.5. The computed velocity profile exhibits a visible
logarithmic region for z+ > 30 whose slope is largely in agreement with that
suggested in [22]. A small discrepancy is however evidenced in the mag-
nitude of the velocity in the same region, while conformity is found in the
viscous sub-layer (z+ < 6) between the computed profile and the analytical
curve.
Root-mean-square (r.m.s.) turbulence intensities urms, vrms and wrms, nor-
malized by the friction velocity uτ , are reported in fig.5.3 as function of the
distance from the lower wall. Profiles found are symmetric with respect to
the channel centerline, indicating that sampling was sufficient to assure a
good statistical accuracy. Expressed in wall units, the location of the peak
of the streamwise turbulence velocity fluctuation urms is found at z+ ≈ 13
and its value is urms ≈ 2.6, a result which is in accordance with the expec-
tations.
The Reynolds shear stress −u′w′ is represented in fig.5.11; the symmetry of
the curve with respect to the centerline and an accentuated linear behavior
in the middle region of the channel can be appreciated and are symptoms
of the statistical equilibrium of the flow.
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Even though small discrepancies were observed between the computed ref-
erence plane case and results presented in [22], this simulation was still
considered satisfying for the purpose of the present study.

5.4 Relaminarization

Relaminarization was observed with three different cases, namely case01,
case02 and case03 (see tab.5.1 for actuation parameters). These correspond
to cases 8, 9 and 11 of Fukagata et al. where relaminarization occourred as
well.
The first figure presented here, fig.5.5, shows the time trace of the turbu-

lent kinetik energy 1
2 (⟨u′u′⟩ + ⟨v′v′⟩ + ⟨w′w′⟩) for cases 01, 02, 03 and for the

reference plane channel flow. As can be expected, the transition from tur-
bulence is never-quite-attained completely, as it is seen from the figure that
the turbulent kinetic energy (t.k.e) tends asymptotically to zero without
never vanishing completely. Nonetheless, in practice, an arbitrary threshold
can be considered and the flow may be said “fully laminar” once that the
t.k.e. reaches values smaller than that threshold. For instance, in the present
study, it was found that, at t ≈ 350 e.t.u., the t.k.e. of all relaminarization
cases was already three orders of magnitude less than that of the plane ref-
erence case. Of course, this is just an operational convention employed to
make a practical distinction between turbulent and laminar flows.
The turbulent to laminar transition of the flow can be visualized with the

help of fig.5.6, which depicts some flow field visualizations for the represen-
tative relaminarization case03. Namely, on the left column (figures b, d
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Figure 5.5: Time trace of the mean turbulent kinetic energy: , flat
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and f), instantaneous color contours of the streamwise velocity component
at different time instants are represented at the cross section of the channel
where the phase φ = k(x − ct) of the wall is zero. This location corresponds
to the position where wall velocity is maximum. These figures should be
compared to the representative flow-field in the cross section of the channel
for the plane reference case in fig.5.6a. On the other hand, on the right
column (figures c, e and f), computed mean velocity profiles, for both plane
channel and case03, are compared with each other and with the laminar
Poiseuille profile at different streamwise locations and at different time in-
stants. Color contours in the figures represent the instantaneous Reynolds
shear stress distribution −u′w′ in the channel.
For the plane channel, fig.5.6a shows vortical structures in the entire flow
field, especially in the close vicinity of the walls where these structures as-
sume a typical streaky shape. A similar vortical arrangement, even though
somewhat weakened, can also be observed in fig.5.6b, which represents the
flow at an early stage of the relaminarization process (t = 23). It can be
noticed a clear vertical alignment of the velocity in the proximity of the
walls induced by actuation; in that region, the fluid is pumped away from
the walls and vortical structures seem to be pushed away as well. Following
the evolution of the flow, at t = 157 (fig.5.6d) there appears to be a highly
ordered pattern of the velocity close to the walls and no signs of large vor-
tical structures are visible in that region. Nonetheless, some irregularities
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Figure 5.6: Flow visualization for case03. Left column: color contours of
the streamwise velocity component in the y − z plane at φ = 0; (a), plane
channel; (b), t = 23; (d), t = 157; (f), t = 628. Right column: mean veloc-
ity profiles at different streamwise locations: , case 03; , plane
channel; , laminar Poiseuille; color contours represent istantaneous
Reynolds shear stress −u′w′ at time instants (c), t = 23; (e), t=157; (f),
t=628
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can still be observed in the central area of the channel. After a sufficiently
long time, also these residual irregularities eventually disappear everywhere,
leaving a perfectly ordered flow that may be termed as laminar. This situ-
ation is depicted in fig.5.6f for the flow field at t = 628.
From figures on the right column of fig.5.6, it can be noticed that wall ac-
tuation has a significant impact on Reynolds shear stress, especially close
to the walls, where its distribution displays a regular pattern that becomes
more evident as time evolves. Boundary motion induces the Reynolds shear
stress distribution to peak in the proximity of the walls and to have a very
small magnitude elsewhere. The highly regular pattern in the Reynolds
stress distribution close to the walls is clearly visible observing the flow field
at a later stage of the relaminarization process, for instance at t = 628 in
fig.5.6g.
Starting from fig.5.6c, which refers to the flow-field at t = 23, mean velocity
profiles at different streamwise locations closely resemble the mean velocity
profile of the reference case, in that they all are characterized by a flattened
shape and a steep gradient close to the walls. On the other hand, a more
rounded profile can be observed at time t = 157 in fig.5.6e. As the relami-
narization process takes place, mean velocity profiles tend to become very
similar in shape to the laminar Poiseuille profile (i.e. a parabola). This is
evident at time t = 628 (fig.5.6g), where computed and analytical laminar
profiles seem to match closely in the central region of the channel, whereas,
close to the walls, differences in shape are apparent. Some reverse flow can
also be noticed in the proximity of the crests of the walls. As explained in
[16], this phenomenon is due to the boundary movement that is responsible
for carrying fluid particles around in closed loop tracks. Observing mean
velocity profiles, it can also be pointed out that flow-rate is not conserved
locally, as it is apparent that it varies at different streamwise locations.
However, the flow-rate averaged in the entire channel was enforced to be
constant at each time instant by the numerical strategy.

The evolution of the mean flow profile at different streamwise locations
is also reported for case01 in fig.5.7. The three figures refer to time instants
t = 23, t = 157 and t = 628. Profiles of the uncontrolled case and the
laminar channel are also reported for comparison. Similar observations to
case03 hold; it is evident how the relamnarization process modifies the mean
velocity from a flattened curve to a rounded profile that closely matches the
Poiseuille profile.

For case01 fig.5.8 reports the color contours of the turbulent kinetic
energy (t.k.e.) at time instants t = 23, t = 157 and t = 628. Note that the
range of the colorbar is adapted in each figure. Initially, at t = 23, the t.k.e
is more intense in the near-wall region, especially in the trough of the wave.
As time passes, at t = 157, the peak of the t.k.e. is reduced in intensity and
it is shifted toward the central region of the channel. Later, at t = 628, the
t.k.e. has an extremely low magnitude everywhere in the channel. Peaks of



5. Numerical experiments definition and results 46

	0

	0.5

	1

	1.5

	2

	0 	1 	2 	3 	4 	5 	6

z

x

(a)

	0

	0.5

	1

	1.5

	2

	0 	1 	2 	3 	4 	5 	6

z

x

(b)

	0

	0.5

	1

	1.5

	2

	0 	1 	2 	3 	4 	5 	6

z

x

(c)

Figure 5.7: Mean velocity profiles at different streamwise locations for
case01. (a), t = 23; (b), t=157; (c), t=628
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(a) (b)

(c)

Figure 5.8: Color contours of the turbulent kinetic energy for case01. (a),
t = 23; (b), t=157; (c), t=628

small magnitude are found in the close proximity of the two walls.

5.5 Fully turbulent cases

With the term ordinary drag reduction, authors of [35] referred to cases in
which drag reduction, with respect to the plane reference case, was achieved,
but no relaminarization effects were observed. The same was found in the
present study for case04, case05, case06 and case07 (which correspond to
cases 4, 5, 6, 7 in [35]).
Fig.5.9 represents mean velocity profiles of case04, obtained by application
of the phase and time averages (eq.5.10 and eq.5.6), at different streamwise
locations. In the figure it is also reported the mean velocity profile for the
reference plane case for comparison. As it can be noticed, computed profiles
have a characteristic flattened shape, suggesting that the flow remains tur-
bulent for the entire simulation. Differently from case03 (fig.5.6), here no
evident reverse flow is visible, despite the fact that both cases share the same
wall deformation amplitude (see tab.5.1)). Conversely, also in this case, the
local flow-rate is seen to vary along the channel, as it is clear in the figure
that different mean-velocity profiles have a different area.

Exploiting the phase average defined in eq.5.10, the flow field can be
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Figure 5.9: Mean velocity profiles at different streamwise locations: ,
case 04; , plane channel

decomposed using eq.5.12, namely:

u(x, y, z, t) = ⟨u(φ, z)⟩ + u′′(x, y, z, t) (5.13)

where, again, φ = k(x − ct) is the phase of the wave and u′′ is the turbulent
random fluctuation.
Root-mean-square turbulence intensities profiles, normalized by the mean

bulk velocity, are plotted in fig.5.10 for case04 (left column, figures: a, c,
e and g) and case06 (right column, figures: b, d, e, f and h). Each fig-
ure corresponds to a different location along the streamwise direction of the
channel. In each plot, r.m.s. turbulent velocity fluctuations of the reference
plane channel flow are also reported for comparison. Mainly, as it can be
noticed, actuation has a visible effect on turbulence fluctuations in the re-
gion close to the channel’s wall. However, different behaviors are evidenced
at different stations along the channel. Broadly speaking, for case04, tur-
bulence intensities appear weakened at φ = 0 (5.10a), where wall velocity
is maximum, and at φ = 3

2π (5.10g), which corresponds to the crest of the
wave, where wall velocity is zero. On the other hand, little no effect is visible
at φ = π (5.10e), where wall velocity is minimum, while, at π

2 (i.e. at the
trough of the wave, 5.10c), a slight increase in the peak of the streamwise
turbulent velocity fluctuation is found.
The presence of the wall has the intuitive effect of shifting profiles away
from the mean wave axis z = 0; as a consequence, also peaks of turbulence
intensities result shifted accordingly. Differently from case04, it is now ob-
served that wall actuation has a visible weakening effect, close to the wall, on
turbulence intensities at all streamwise locations for case06 (right column
figures in 5.10). Thus, wall motion of case06 appears to be more capa-
ble of weakening turbulence, if compared to actuation of case04. Random
Reynolds shear stress − ⟨u′′w′′⟩ (RSS) profiles, normalized by the squared
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Figure 5.10: Root-mean-square turbulent velocity fluctuations at different
streamwise locations for case04 (left column) and case06 (right column).
Case 04 and Case 06: , urms; , vrms; , wrms. Plane
channel: , urms; , vrms; , wrms
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Figure 5.11: Random Reynolds shear stress profiles for case04 (left) and
case06 (right). , φ = 0; , φ = π

2 ; , φ = π; , φ = 3
2π;

, plane channel

mean bulk velocity, are depicted in fig.5.11 for both case04 (a) and case06.

In each figure, a dashed line represents RSS (−u′w′) for the reference case,
while solid lines of different colors correspond to RSS profiles at different
locations (namely, φ = 0, φ = π

2 , φ = π and φ = 3
2π). Comparing the two

images, it is evident how wall actuation of case06 is more capable of reducing
random RSS (with respect to the reference case) at all different phases of
the wall. In fact, a tangible RSS reduction is only evident in case04 at φ = 0
and φ = π

2 . However, what is remarkable in both cases is that a negative RSS
is observed close to the wall at φ = π. The very same phenomenon is also
reported in the reference paper [35], where it is stressed out the importance of
this occurrence on the drag reduction mechanism. Their argument stands on
the solid basis that the skin friction coefficient in a fully developed turbulent
channel can be written as:

CF =
6

Reb
+ 6∫

1

0
(1 − z)(−u′w′)dz (5.14)

This identity comes from the integration of the Navier-Stokes equations and
its derivation can be found in [9] and [2]. Notably, eq.5.14 states that the skin
friction coefficient in a turbulent channel equals that of a laminar channel
plus a contribution which is exclusively due to turbulence. The latter is, as a
matter of fact, a weighted average of the mean RSS in the channel in which
the weight is represented by the distance from the wall. Thus, occurrences
of locally negative RSS have an intuitive beneficial effect in reducing the
skin friction drag coefficient, especially when they appear in a region close
to the channel’s wall. Note also the strong implication of eq.5.14: if the
second term on the right-hand side of the equation could be made negative,
the drag in the channel would achieve a sub-laminar value. This assertion
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Figure 5.12: Random Reynolds shear stress color contours. (a), case04;
(b), case05; (c), case06

was indeed proved to be correct in [31], where sub-laminar drag was attained
employing traveling waves of blowing and suction. Hence, confidence that
the same result can also be achieved with the present control strategy is
tangible. However, it must be recalled that, as mathematically proved in
[12] and [1], laminar flow sets a lower bound on the total power required to
drive the flow which cannot be surpassed even when a sub-laminar drag is
attained in the channel.
Fig.5.12 represents color contours of random RSS in the x−z plane (at fixed
y = π) for case04, case05 and case06. All the figures represent only the
lowe half of the channel. Even though the fluid-solid interface is not easily
distinguishable, thin regions of negative RSS in the near-wall region are
observed in all the figures. Similar findings were also observed for all other
cases, providing good evidence of the positive effect of streamwise travelling
waves in promoting the appearance of near-wall negative RSS.

5.6 Drag reduction

The ultimate goal of applying a control action, such as that presented by far,
is that of achieving drag reduction with respect to a reference configuration.
Hence, it arises the necessity of defining a suitable index capable of providing
an actual measure of the drag reduction performance.
First, a distinction between different sources of drag should be taken into
account; in a plane channel flow driven at constant flow-rate, the only source
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of drag is that due to friction at the two walls of the channel.
A natural index, usually employed, is the friction drag coefficient defined,
according to the current choice of reference variables, as:

Cf =
τ∗w

1
2ρ

∗U2∗
b

=
2

Reb

dū

dz
(5.15)

where τ∗w is the friction shear stress at the wall and ρ∗ and µ∗ are, respec-
tively, the density and the viscosity coefficient of the fluid. It is recalled that
all dimensional quantities are denoted with an asterisk.
On the other hand, when a channel flow confined by wavy or, more gen-
erally, rough walls is of concern, also pressure drag must be accounted for.
Thus, it is legitimate to define the total drag coefficient CD as made up of
two contributions, namely:

CD = Cf +CDP (5.16)

where Cf is the skin friction drag coefficient, due to the viscous shear stress
at the wall, and CDP is the pressure drag coefficient. As reported in [34],
these two terms can be defined by:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Cf =
1

1
2
ρ∗U2∗

b
∫S(τττn) ⋅ e1dS

CDP = 1
1
2
ρ∗U2∗

b
∫S(−pn) ⋅ e1dS

where τττ is the viscous stress tensor, e1 is the streamwise unit vector, and n
is the unit normal vector to the channel’s boundary surface S.
In the present study, a slightly different parameter has been employed for
measuring and comparing drag performances of different controlled flows. In
particular, the mean pressure gradient, adjusted at each time-step to drive
the flow at a constant rate, was used to measure the total drag felt by the
flow. As stated in [19], the mean pressure gradient that is needed to pump
the flow at a fixed volume rate is defined as the total drag force acting on
the fluid divided by the channel’s volume.
Even though the relation with the total drag coefficient is straightforward,
its computation was not performed in this work.
Fig.5.13 presents the runtime-measured time traces of the mean pressure
gradient found for all the controlled cases along with that of the plane refer-
ence case. In the same figure, it is also showed the theoretical laminar value
computed from the exact solution of the Poiseuille plane channel. More
precisely, the latter is found to be:

−
dP

dx
=

3

Reb
= 1.0714 ⋅ 10−3 (5.17)

Namely, in the figure, two different behaviors are distinguished. It is clear
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Figure 5.13: Time traces of the mean stramwise pressure gradient: ,
reference; , case01; , case02; , case03; , case04;

, case05; , case06; , case07; , laminarPoiseuille

that in case04, case05, case06 and case07, drag reduction is achieved at
the statistical steady state, for the average measured value of the mean pres-
sure gradient is less than that corresponding to the uncontrolled channel;
however, the flow remains turbulent for the entire time of the simulation, as
already discussed in the preceding section of this chapter. Signs of turbu-
lence are also evident in the time-trace of the mean pressure gradient, which
is made up of a mean value plus unpredictable turbulent fluctuations.
On the other hand, case01, case02 and case03 display an easily distinguish-
able behavior, if compared to other curves in the figure. With these cases
relaminarization was indeed observed and, as it can be noticed, the trace
of the pressure gradient appears as a smooth curve. A significant reduc-
tion in the required pumping force per unit volume (i.e. the mean pressure
gradient) is achieved for all three relaminarization cases, but a consider-
able distance from the limiting laminar value is still seen. This difference
might be explained by two arguments: first, the curved shape of the wavy
walls produces a pressure drag; second, the pumping effect induced by the
peristaltic motion of the walls is hidden inside the measured value of the
pressure gradient. This is caused by the procedure by which the volume
force, needed to pump the flow, is computed during the simulation. As a
consequence, the mean pressure gradient reported in fig.5.13 is made up of
two contributions: the external pressure jump, actually required to drive



5. Numerical experiments definition and results 55

	1

	10

	100

	1 	10 	100

a+
/(k

+ c
+ )

2π/(k+c+)

61%

57%

59%

15%

7%

28%

20%

61%

57%

59%

15%

7%

28%

20%

Figure 5.14: Drag reduction rate map as function of actuation parameters.
Green circles, relaminarization cases; blue circles, ordinary drag reduction
cases. Numbers represent drag reduction rates DR%

the flow, and a contribution due to the peristaltic pumping.
To the purpose of assessing drag reduction perormances of different wall

actuation strategies, the drag reduction rate DR can be defined as done in
[20]. Particularly:

DR =
Gp0 −Gp

Gp0
(5.18)

where Gp0 and Gp are the time-averaged mean pressure gradients for the
uncontrolled and controlled flows respectively.

Fig.5.14 represents a map, similar to that reported in [35], that displays
the computed drag reduction rates for all cases in terms of the actuation

Case Relaminarization DR%

01 yes 61

02 yes 57

03 yes 59

04 no 15

05 no 7

06 no 28

07 no 20

Table 5.3: Measured drag reduction rates. Green cells indicate relaminar-
ization cases
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parameters a, k and c expressed in wall units. As explained in [34] in the
context of rough walls, viscous units should be based on the friction velocity
defined taking into account the total stress at the wall (thus both friction
and pressure contributions should be accounted for). The same convention
was adopted in the present study.

There is a good qualitative agreement between the drag reduction per-
formances presented in this section with those found in [35]. Stable relami-
narization occurred under the same set of actuation parameters reported by
Nakanishi et al. and large drag reductions were observed with these cases.
For all other cases the flow remained turbulent for the entire simulation and
weaker drag reductions were measured. However, a direct quantitative com-
parison of the rates of drag reduction with data reported in [35] reveals a
considerable difference. In their work, the drag reduction rate is computed
from the actual external pressure gradient used to pump the flow. In the
present study, the measured value of the pressure gradient is polluted by the
pumping induced by wall actuation; thus it is the sum of two contributions:
one comes from the external pressure jump (enforced to drive the flow), the
other is the peristaltic pumping contribution (induced by wall motion).



Chapter 6

Conclusions

In the present study, an existing flow-solver for the simulation of turbu-
lent channel flow over stationary rough walls has been adapted to simulate
the presence of non-planar moving solid boundaries. Specifically, only a
wall-normal motion of the walls has been considered. The method performs
a spatial discretization on a fixed, non-body-conformal, Cartesian grid us-
ing second-order accurate finite differences. Time advancement is realized
using a fractional-step technique and employing a three-step Runge-Kutta
method. No-slip boundary conditions on the solid boundary of the channel
are enforced through a direct correction to the discrete momentum equation
without resorting to any complex interpolation procedure.

The described numerical method has been employed for the simulation
of turbulent flow through a peristaltic actuator. The latter consists of a
channel of indefinite extension (in the streamwise and spanwise directions)
controlled via streamwise traveling waves of wall deformation. In particular,
the channel surfaces deform only in-phase along the streamwise direction
with a prescribed sinusoidal law.

The Reynolds number (based on the mean bulk velocity) for all the
simulations was Reb = 2800, corresponding to a friction Reynolds number
Reτ = 180 for the uncontrolled channel (i.e. plane channel). The results
obtained are in good agreement with those of Nakanishi et al. in [35]. In
their study the peristaltic actuation leads to drag reduction for all the waves
traveling downstream at a phase-speed exceeding the speed of the mean flow.
Moreover, for some sets of parameters, they report a full relaminarization
of the flow. The same qualitative behavior has been observed in the present
study; for cases 01, 02 and 03 (corresponding to relaminarization cases 8, 9
and 11 of Nakanishi et al.) a stable relaminarization of the flow occurred.

For all other cases studied in the present work, the flow has been ob-
served to remain turbulent for the entire simulation. However, measures of
the mean pressure gradient used to drive the flow at a constant rate show
that drag reduction is achieved with respect to the uncontrolled reference

57
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case. Unfortunately a direct quantitative comparison of the drag reduction
rates with data reported by Nakanishi et al. reveals a considerable disagree-
ment. In their study the drag reduction rate is computed from the actual
external mean pressure gradient enforced to drive the flow through the chan-
nel. Conversely, in the present study the mean pressure gradient used to
compute the drag reduction rate is made up of two contributions: the first
is due to the external pumping force used to drive the flow; the second is a
sub-product of wall actuation and is termed as peristaltic pumping. The dis-
agreement between the computed drag reduction rates might be addressed
to the polluting presence of the peristaltic pumping on the measure of the
mean pressure gradient.

Based on the current definition of the drag reduction rate, the peristaltic
actuator has been proved to be highly effective in weakening turbulence and
leading to drag reduction rates up to 61% for relaminarization case01 and
up to 28% for the fully turbulent case06.

Motivated by these findings, a further intensive parametric study of the
peristaltic actuator would be of great interest. It is not clear indeed what is
the effect of each actuation parameter on drag reduction performances and
the relaminarization phenomenon. Moreover, a future investigation should
be aimed at assessing the Reynolds number dependence; relaminarization
occurred easily in the cases tested in this study because of the relatively
low Reynolds number considered. However, it is natural to expect that the
destabilizing effect of turbulence may eventually overcome the stabilizing
effect of the traveling waves as the Reynolds number increases. Up to what
Reynolds number relaminarization occurs is then a question of significant
importance.

Finally, a future implementation of the numerical method, allowing for
more complex and arbitrary wall motions, would lead to an entirely new set
of research scenarios. Along with this, it comes the necessity of finding an
appropriate way for enforcing volume conservation without any restriction
on the time-step size/grid spacing, like that adopted in the present work.



Bibliography

[1] T. Bewley. A fundamental limit on the balance of power in
a transpiration-controlled channel flow. Jou. of Fluid Mechanics,
632:443–446, 2009.

[2] T. Bewley and O. Aamo. A ‘win–win’ mechanism for low-drag tran-
sients in controlled two-dimensional channel flow and its implications
for sustained drag reduction. Jou. of Fluid Mechanics, 499:183–196,
2004.

[3] P. W. Carpenter and P. J. Morris. The effect of anisotropic wall com-
pliance on boundary-layer stability and transition. Journal of Fluid
Mechanics, 218, 1990.

[4] P. Cherukat, Y. Na, and T. Hanratty. Direct numerical simulation of
a fully developed turbulent flow over a wavy wall. Theoret. Comput.
Fluid Dynamics, 11:109–134, 1998.

[5] P. A. Davidson. Turbulence: An Introduction for Scientists and Engi-
neers. Oxford University Press, USA, 2004.

[6] M. V. Dyke. An Album of Fluid Motion. Parabolic Press, Inc., 12th
edition, 2008.

[7] T. Endo and R. Himeno. Direct numerical simulation of turbulent flow
over a compliant surface. Journal of Turbulence, 3, 01 2002.

[8] K. Fukagata. Drag reduction by wavy surfaces. Jou. of Fluid Science
and Technology, 6:2–13, 2011.

[9] K. Fukagata, K. Iwamoto, and N. Kasagi. Contribution of reynolds
stress distribution to the skin friction in wall-bounded flows. Physics
of Fluids, 14:L73–L76, 2002.

[10] K. Fukagata, K. Iwamoto, and N. Kasagi. Contribution of reynolds
stress distribution to the skin friction in wall-bounded flows. Physics
of Fluids, pages 73–76, 2002.

59



BIBLIOGRAPHY 60

[11] K. Fukagata, S. Kern, P. Chatelain, P. Koumoutsakos, and N. Kasagi.
Evolutionary optimization of an anisotropic compliant surface for tur-
bulent friction drag reduction. Journal of Turbulence, 9, 2008.

[12] K. Fukagata, K. Sugiyama, and N. Kasagi. On the lower bound of net
driving power in controlled duct flows. Physica, 238:1082–1086, 2009.

[13] P. Garrad, A.D.and Carpenter. A theoretical investigation of flow-
induced instabilities in compliant coatings. Journal of Sound and Vi-
bration, 85:483–500, 1982.

[14] J. L. L. H. Tennekes. A first course in turbulence. MIT Press, 1972.

[15] Y. Hasegawa, M. Quadrio, and F. B. Numerical simulation of turbulent
duct flows at constant power input. Jou. of Fluid Mech., 750:191–209,
2014.

[16] J. Hoepffner and K. Fukagata. Pumping or drag reduction? Jou. of
Fluid Mechanics, 635:171–187, 2009.

[17] J. Hudson, L. Dykhno, and T. Hanratty. Turbulence production in a
flow over a wavy wall. Experiments in Fluids, 20:257–265, 1996.

[18] G. Iaccarino and R. Verzicco. Immersed boundary technique for tur-
bulent flow simulations. Appl. Mech. Reviews, 56:331–347, 2003.

[19] S. Kang and H. Choi. Active wall motions for skin-friction drag reduc-
tion. Physics of Fluids, 12:3301–3304, 2000.

[20] N. Kasagi, Y. Hasegawa, and F. K. Toward cost-effective control of wall
turbulence for skin friction drag reduction. Advances in Turbulence XII,
Springer Proceedings in Physics, 132:189–200, 2009.

[21] J. Kim, D. Kim, and H. Choi. An immersed-boundary finite-volume
method for simulations of flow in complex geometries. Jou. of Comp.
Physics, 171:132–150, 2001.

[22] J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed
channel flow at low reynolds number. Jou. of Fluid Mechanics, 177:133–
166, 1987.

[23] C. Lee, T. Min, and J. Kim. Stability of a channel flow subject to wall
blowing and suction in the form of a traveling wave. Physics of Fluids,
20:101513, 2008.

[24] J. Lee, J. Kim, H. Choi, and K. Yang. Sources of spurious force oscilla-
tions from an immersed boundary method for moving-body problems.
Jou. of Comp. Physics, 230:2677–2695, 2011.



BIBLIOGRAPHY 61

[25] B. K. Lieu, R. Moarref, and M. R. Jovanovic. Controlling the onset
of turbulence by streamwise travelling waves. part 2. direct numerical
simulation. Journal of Fluid Mechanics, 663:100–119, 2010.

[26] P. Luchini. Immersed-boundary simulations of turbulent flow past a
sinusoidally undulated river bottom. Europ. Jou. of Mech. B/Fluids,
55:340–347, 2016.

[27] H. Luo and T. Bewley. Accurate simulation of near-wall turbulence over
a compliant tensegrity fabric. SPIE Smart Structures and Materials,
5757, 2005.

[28] H. Luo, H. Dai, P. Ferreira de Sousa, and B. Yin. On the numerical
oscillation of the direct-forcing immersed-boundary method for moving
boundaries. Computer and Fluids, 56:61–76, 2012.

[29] H. Mamori, K. Fukagata, and J. Hoepffner. Phase relationship in lam-
inar channel flow controlled by traveling-wave-like blowing or suction.
Physical Review E, 81:046304, 2010.

[30] H. Mamori, K. Iwamoto, and A. Murata. Effect of the parameters of
traveling waves created by blowing and suction on the relaminarization
phenomena in fully developed turbulent channel flow. Physics of Fluids,
26, 2014.

[31] T. Min, S. Kang, J. Speyer, and J. Kim. Sustained sub-laminar drag in
a fully developed channel flow. Jou. of Fluid Mechanics, 558:309–318,
2006.

[32] R. Mittal and G. Iaccarino. Immersed boundary methods. Ann. Review
of Fluid Mech., 37:239–261, 2005.

[33] R. Moarref and M. R. Jovanovic. Controlling the onset of turbulence
by streamwise travelling waves. part 1. receptivity analysis. Journal of
Fluid Mechanics, 663:70–99, 2010.

[34] E. Mori, M. Quadrio, and K. Fukagata. Turbulent drag reduction by
uniform blowing over a two-dimensional roughness. Flow, Turbulence
and Combustion, 99:765–785, 2017.

[35] R. Nakanishi, H. Mamori, and K. Fukagata. Relaminarization of turbu-
lent channel flow using traveling wave-like wall deformation. Int. Jou.
of Heat and Fluid Flow, 35:152–159, 2012.

[36] S. V. Patankar. Numerical heat transfer and fluid flow. McGraw-Hill
Inc., New York, US, 1 edition, 1980.

[37] C. Peskin. Flow patterns around heart valves: a numerical method.
Jou. of Comp. Physics, 10:252–271, 1972.



BIBLIOGRAPHY 62

[38] C. Peskin. The immersed boundary method. Acta Numerica, pages
479–517, 2002.

[39] S. B. Pope. Turbulent flows. Cambridge University Press, 1 edition,
2000.

[40] A. Prosperetti and G. Tryggvason. Computational methods for multi-
phase flow. Cambridge University Press, 2009.

[41] M. Quadrio, B. Frohnapfel, and Y. Hasegawa. Does the choice of the
forcing term affect flow statistics in DNS of turbulent channel flow?
European Jou. of Mech. B/Fluids, 56:286–293, 2016.

[42] O. Reynolds. An experimental investigation of the circumstances which
determine whether the motion of water shall be direct or sinuous, and
of the law of resistance in parallel channels. Philosophical Transactions
of the Royal Society of London, 174:935–982, 1883.

[43] W. Reynolds and A. K. M. F. Hussain. The mechanics of an organized
wave in turbulent shear flow. Jou. of Fluid Mechanics, 41:241–258,
1970.

[44] S. Robinson. Coherent motions in the turbulent boundary layer. Ann.
Review of Fluid Mech., 23:601–639, 1991.

[45] W. Schoppa and F. Hussain. Coherent structure dynamics in near-wall
turbulence. Fluid Dynamics Research, 26:119–139, 2000.

[46] J. Seo and R. Mittal. A sharp-interface immersed boundary method
with improved mass conservation and reduced spurious pressure oscil-
lations. Jou. of Comp. Physics, 230:7347–7363, 2011.

[47] L. Shen, X. Zhang, D. Yue, and M. Triantafyllou. Turbulent flow over
a flexible wall undergoing a streamwise travelling wave motion. Jou. of
Fluid Mechanics, 484:197–221, 2003.

[48] S. Taneda and Y. Tomonari. An experiment on the flow around a
waving plate. Journal of the Physical Society of Japan, 36:1683–1689,
1974.

[49] Y. Tseng and J. Ferziger. A ghost-cell immersed boundary method for
flow in complex geometry. Jou. of Comp. Physics, 192:593–623, 2003.

[50] H. Udaykumar, R. Mittal, P. Rampunggoon, and A. Khanna. A sharp
interface cartesian grid method for simulating flows with complex mov-
ing boundaries. Jou. of Comp. Physics, 174:345–380, 2001.

[51] P. Viswanath. Aircraft viscous drag reduction using riblets. Progress
in Aerospace Sciences, 38:571–600, 2002.



BIBLIOGRAPHY 63

[52] T. Ye, R. Mittal, H. Udaykumar, and W. Shyy. An accurate cartesian
grid method for viscous incompressible flows with complex immersed
boundaries. Jou. of Comp. Physics, 156:209–240, 1999.


