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Abstract 

 

The increasing use of renewable energy sources necessitates accurate 

forecasting models for generation scheduling. Amongst the renewable sources, 

solar and wind have gained acceptance and are being increasingly used in 

distributed generation. The main problem with these sources is the 

dependence of their power output on natural environmental parameters which 

are difficult to predict. Along with the discussion, focusing on the solar power, 

this thesis addresses the problem of estimation of the Solar Radiation (SR). 

Different setups of the time series model, and with their combinations with 

the weather forecast services using ensemble methods have been evaluated in 

medium-term prediction of the day-ahead regional SR. Moreover, several 

considerations including Support Vector Machine methods are also adopted 

at this stage, to cluster data. At the end, the validation of the approach is 

performed by using a SR data from a meteorological station and its nearby 

meteorological service which both situated in Northern Italy. 
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Chapter 1  

Introduction 

1.1 Motivation 

The focus on renewable energy sources is increasing tremendously, which 

motivates studies concerning the integration of renewable sources like wind 

and solar into existing energy systems. When the conventional sources are 

used for power generation, the generation is predominantly controlled by the 

machine ratings and generation capacity of the plant. Hence, there is a lesser 

need for short term generation forecasting. But in case of power generation 

from renewable energy sources, the generation is uncertain because the 

weather is erratic, and the generation depends heavily on weather conditions. 

Thus, there is a dire need to build forecast models for the generation in order 

to have better generation scheduling. Therefore with greater penetration of 

renewable sources in power generation, the focus is shifting towards generation 

forecasting (1) (2) (3). Considering the advantages of solar energy as a 

sustainable energy, power prediction for photovoltaic installations is a decisive 

factor. Thus, development and research on solar power has been rising year 

by year. The predictions are used to optimize usage of the solar energy and 

provide reasonably accurate knowledge of the solar resource availability at 

any location (4). Since the generation of power from solar energy is very 

erratic due to its heavy dependence on weather, seasonal changes, 

geographical location, time of the day, orientation and position of panel, etc., 
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the forecasting methods may not give uniformly efficient results for all regions. 

A ubiquitously efficient forecast system, minimizing errors on the behavioral 

patterns of wind and solar energy has become a major subject matter of study 

for researchers across the globe (5). Hence there is a need to critically examine 

the seasonality and the nature of the data to determine the models that can 

be satisfactorily used for prediction of solar power generation. 

There are two ways to address the issue of solar prediction. One is by creating 

very complex models which best describe nature. Such models are used by 

Meteorological departments for weather forecasts. Computations are highly 

complex, and a very powerful computer is used to solve the differential 

equations involved. The other method is to use statistical data and predict 

solar irradiance to a lower accuracy as compared to the former method but 

with less computational requirements.  

In this thesis has been studied a few methods to improve the performance of 

an existing very complex predictor using time series data of a measured solar 

irradiance to shrink the gap between the accuracy of the empirical methods 

(very complex and expensive) and statistical ones (less complex and cheaper). 

1.2 Background Studies 

In the past, various studies in field of solar energy were conducted. In an 

attempt to assess solar irradiance, multiple classes of models such as regressors 

in logs, seasonal autoregressive integrated moving average (SARIMA), 

transfer functions, artificial neural networks (ANN), and hybrid models have 

been tested and compared each other. 
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Some of these studies demonstrate that the success of SARIMA models is 

attributable to its ability to capture the cycles more effectively than the other 

methods (6). For example in (6) is shown the evidence of the efficiency of 

SARIMA models with respect to the others in evaluating the 60-minutely and 

10-minutely averaged global horizontal irradiance related to 13 and 15 days 

periods in two winters and two summers. In (7) an attempt to estimate the 

global horizontal solar irradiance was done and the result of a comparison 

between a few models brought the evidence that neural networks or hybrid 

models in some cases can improve at very high resolutions on the order of 5 

min while SARIMA models have strong ability to capture the diurnal cycle 

more efficiently. 

It is intuitive that a strong factor that makes solar radiation change in time 

is the presence of the clouds above the area in which it is measured or 

predicted. Thus, the idea to involve in some way the contribution of the cloud 

in the prediction should be profitable. In (8) and (9) some experiment in such 

sense has been done and it is clearly expressed the benefits of using cloud 

coverage predictions for predicting the solar irradiance. In (9) a solution using 

a sky-image-based cloud estimation and a solar irradiance drop using back 

projection is studied and the accuracy of the prediction improved. 

In (10) many solar irradiance forecasting models have been developed, such 

as time series models like ARIMA, satellite data based models, sky images 

based model, ANN models and wavelet analysis based models. Here it is stated 

that for forecasting horizon from 5 min to 4 hours ARIMA presents the best 

accuracy and that cloud imagery and hybrid model can improve the 

forecasting when solar irradiance present strong variability. 
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For a long-term forecasting the authors in (11) developed new methods for 

forecasting appropriately the monthly climate data in Indonesia. In particular, 

they studied three main forecasting methods which are Autoregressive 

Integrated Moving Average (ARIMA), Feed Forward Neural Networks 

(FFNN), and an averaging method for ensemble ARIMA, FFNN, and 

ARIMA-FFNN. The results showed that ARIMA yields more accurate 

forecast in training datasets than other methods, whereas the best method in 

testing datasets is FFNN, and as a conclusion very complex methods do not 

necessarily produce more accurate forecast than simpler one. Thus, once again 

it is stated that ARIMA works better for short-term forecasting while a 

reliable method for medium/long-term forecasting could be a Machine 

Learning method. But, according to (12) and (13) (14) (15) (16) (17) (18) 

Machine Learning methods require often large amount of data, have high 

computational cost, and high dependence on feature selection.  

Nowadays, researchers reserved more attention on trying to combine a few 

models to possibly exploit the benefits of each one. For example, in (12) a 

new ensemble method for day-ahead regional photovoltaic (PV) power 

forecasting with hourly resolution has been proposed. Predicting efficiently 

the photovoltaic power require a good prediction of solar radiation, which is 

one of the most influent variables that regards photovoltaic power. The 

method utilizes open weather forecast and power measurement data, this 

prediction method is processed within a set of historical data with similar 

meteorological data (temperature and irradiance), and astronomical date 

(solar time and earth declination angle). Further, clustering and blending 

strategies are applied to improve its accuracy in regional PV forecasting. The 

method introduces robustness comparing it with other models which are the 
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North American Mesoscale Forecast System, the Global Forecast System, and 

the Short-Range Ensemble Forecast. Thus, combining historical data-driven 

predictors with machine learning ones could bring benefits. 

1.3 Aims and Objectives 

Considering the background studies and the fact that the goal here is to 

improve the accuracy of a medium-term prediction provided by a forecasting 

service, the aim of this study has been set mainly to analyze and possibly 

discover the potentiality of a few version of SARIMA models, some hybrid 

models that tries to exploit even the available prediction of cloud coverage, 

and ensemble models in predicting the available solar irradiance with respect 

to the prediction provided by the same complex model of a forecasting service. 

1.4 Thesis Structure 

The thesis is organized as follows:  

• Chapter 2 gives an outline of the nature of the data available. 

• Chapter 3 gives a detailed explanation of the various time series models 

tested and their main properties are discussed. 

• Chapter 4 describes the ensemble methods tested. 

• Chapter 5 describes the Auto Regressive Integrated Moving Average with 

eXogenous input (ARIMAX) model with the introduction of a clustering 

process performed by a Support Vector Machine (SVM). 
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• Chapter 6 describes the method to evaluate the goodness of each model 

and shows the results comparing them with the one provided by the 

prediction of the forecasting service and each other. 

• Chapter 7 gives some conclusion of the work and some possible future 

ones. 
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Chapter 2  

Data description  

The most important part of developing a good predictor is to understand the 

nature of the data, their properties such as quality, correlations with the 

variable to predict and statistical properties. Thus, choosing the model 

structure most able to exploit the available data. 

The available data in this thesis are all regarding a northern zone of Italy 

which is Vipiteno, Trentino Alto Adige.  

The available data are: 

• Measurement of solar radiation [W/m2] 

• Prediction of solar radiation by a forecasting service [W/m2] 

• Prediction of cloud coverage % by a forecasting service 

2.1 Solar radiation measured 

Fundamental concepts 

In the field of solar power supply the most significant measures are the energy 

delivered and the intensity. The solar irradiance is the rate at which the solar 

energy reaches a unit area at the earth’s surface. The unit of measurement for 

solar irradiance is Watt per meter square [W/m2]. The solar irradiation is 
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instead the integration or summation of the solar irradiance over a time period 

as follows: 

� =  � ����	�
�

�  

where I(t) is the solar irradiance at time t, t1 and t0 are the two limits of a 

time interval in which the solar irradiation is computed. The most common 

units of measurement of solar irradiation H are Joule per meter square (J/m2) 

or Watt-hours per meter square (Wh/m2). (19) 

 

Data available 

The data are collected by a meteorological station situated in Vipiteno which 

is at  948 meters over the level of the sea and at the geographic 

coordinates 46°53′N 11°26′E. 

The available measurements of solar radiation are for a period that goes from 

1st January 2014 00:15 to 2nd August 2018 1:00 with a sample time of 15 

minutes. (Figure 1) 

The quality of the data is good considering that there are just a few brief 

missing periods in the order of some half-hours and a few values considered 

outliers considering the nature of the data itself. 
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Figure 1 Solar radiaiton data 

2.1.1 Missing data and outliers 

Outliers 

In this work, a value in the dataset has been considered outlier if: 

• is different from 0 W/m2 in the hours after the actual hour of sunset and 

before the actual hour of sunrise with a tolerance for that region and for 

the corresponding season 

• is strongly higher than the typical maximum solar radiation in W/m2 in 

that region and in that period of the year 

To recognize every outlier in the data set an ad-hoc function was developed 

in MATLAB environment. A brief explanation of the mentioned function 

follows. 

The function is called sunsetsunrise_italy(date,value) that takes as input the 

date and the value of a sample in the dataset, computes, for that date in the 

format “dd/mm/yyyy/ hh:mm” and based on the values of latitude, longitude 
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and altitude of the geographic location 46°53′N 11°26′E, the exact sunset 

and sunrise time, and a  Nan value is substituted to the respective value if 

the following condition is fulfilled: 

�� [����(�) ≥  �
����. ����(�) +  �] ∧ [����(�) ≤ �
�����. ����(�) − �] ∧ [���
�(�) > 0] 

where 
 is a tolerance value that in this case has been set to 1-hour. The 

function sunsetsunrise_italy(date,value) to compute the right sunset and 

sunrise time uses another function sunrise(lat,lon,alt,tz,dte) on the MATLAB 

library. A detailed explanation can be found reading (20) and (21). 
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Missing values 

The dataset, as mentioned, presents some missing values caused by various 

phenomena such as equipment malfunction and interruptive maintenance of 

the sensors. 

Thus, before studying the main statistical properties of the data, the entity 

of missing samples has been evaluated. 

The missing data are in most of the cases of a few values in a short period of 

time (hours), so they have been replaced performing a linear interpolation 

process with the closest values. More in details, given two known points of a 

dataset ���, ��� and ���, ���, the linear interpolant is the straight line between 

these points. So, a value y of a point ��, �� inside the interval of the two 

known points is: 

� = �� + �� − ��� �� − ���� − �� 

A more detailed explanation and a computation of the maximum error that 

the method can introduce can be read in (22) and in Rolle’s Theorem proof 

(23). 

2.1.2 Resampling the dataset for our purpose 

The goal of this work is to investigate the possibility to perform a better 

prediction of 1-day ahead solar radiation divided in 8 samples (3h each) with 

respect to the forecasting service predictor. Thus, the vector of measurement 

has been resampled from 15 minutes to 3 hours sample time to be used 

together with the other datasets. The resampling process consists on 
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considering just the samples corresponding to the dates dd/mm/yyyy hh:mm 

with: 

ℎℎ = �01; 04; 07; 10; 13; 16; 20; 22�;   = �00�; 
discarding then all the others. 

 

Shape of the data 

The data is shaped in MATLAB in a matrix that contains as a first column 

the vector of the dates d in the format expressed in the last paragraph and as 

a second column the corresponding value x of solar radiation in W/m2: 

!"#$%&��� =  ' 	
 �
	
(� �
(�⋮ ⋮	* �*
+        � = 1,2, … , -    

where N is the total number of samples available. 

A quick example is shown in Figure 2. 

 

Figure 2 Example solar radiation matrix 
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2.2  Solar radiation prediction of the meteorological 

forecast service (CISMA) 

CISMA is a private engineering center that develops environmental models. 

The predictions are performed by mean of a numerical model called WRF 

(Weather Research and Forecasting). 

Data available 

Every 3 hours the prediction till a day ahead is updated. A day-prediction 

includes 8 predictions (3 hours lagged each) after the date that has been 

generated. 

The predictions available are related to the solar radiation between the 29th 

June 2016 at 1:00 and 2nd August 2018 1:00. For simplicity in Figure 3 is 

represented just the data of the first step ahead prediction (3 hours later the 

generation date). 

As it can be easily noticed there are some missing periods, that are: 

• From 15th June 2017 10:00 to 29th June 2017 7:00 

• From 18th August 2017 19:00 to 6th September 2017 13:00 

• From 5th December 2017 19:00 to 12th February 2018 19:00 

• From 30th May 2018 10:00 to 20th June 2018 7:00 

• From 22th June 2018 22:00 to 28th June 2018 13:00 

• From 9th July 2018 10:00 to 10th July 2018 13:00 
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Figure 3 Prediction of solar radiation CISMA 

Shape of the data 

The data is shaped in MATLAB as a matrix in which the first column is the 

vector of dates that indicates the time of the first prediction sample (3 hours 

after the generation), and the remaining columns are the predictions of solar 

radiation for the whole day after in exactly 8 samples ./0 (3h lag each) as 

depicted below: 

!"12345��� =  ⎣⎢⎢
⎡ 	
 .̂
|
;� .̂
(�|
;� ⋯ .̂
(=|
;�	
(� .
(�|
 .̂
(>|
 ⋯ .̂
(=|
⋮ ⋮ ⋮ ⋯ ⋮	4 .̂4|4;� .̂4(�|4;� ⋯ .̂4(=|4;�⎦⎥⎥

⎤      � = 1, … , B 

where M is the number of samples. 

The missing periods just described are represented in the matrix by a Nan 

value that differently from the measured solar radiation cannot be replaced 

with anything, cause the missing intervals are sometimes in the order of 
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months, so it has been decided to just do not consider those periods in the 

work. 

For clearness an example of the structure of the matrix is shown in Figure 4. 

 

Figure 4 Example of Solar radiation prediction CISMA matrix 

2.3 Cloud coverage prediction of the meteorological 

forecast service CISMA 

The source of the data and the structure of the predictions are the same 

depicted in 2.2 so 1-day ahead divided in the whole 8 samples included (3h 

each). The value predicted consists in cloud coverage expressed in 10 levels. 

Each level corresponds to a degree of coverage that can have a maximum of 

100 (complete covered sky) to a minimum of 0 (clear sky). All levels inside 

the bounds can assume values in the following vector: 

�0 11 22 33 44 56 67 78 89 100� 
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Data available 

The prediction available are between the 8th November 2016 at 07:00 and 2nd 

August 2018 1:00 with some missing predictions (the same of the solar 

radiation ones in 2.2). For simplicity in Figure 5 is represented just the data 

of the first step prediction to let the reader see the shape of the prediction 

and notice the missing values. As it can be noticed the availability of this 

data is the smallest. 

 

 

 

 

Figure 5 Cloud coverage prediciton CISMA   
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Shape of the data 

The shape of the matrix is the same as the one of solar radiation mentioned 

in 2.2. 

FGH12345��� =  ⎣⎢⎢
⎡ 	
 Î
|
;� Î
(�|
;� ⋯ Î
(=|
;�	
(� Î
(�|
 Î
(>|
 ⋯ Î
(=|
⋮ ⋮ ⋮ ⋯ ⋮	J ÎJ|J;� ÎJ(�|J;� ⋯ ÎJ(=|J;�⎦⎥⎥

⎤      � = 1, … , K 

where P is the number of samples. 

For clearness an example of the structure of the matrix is shown in Figure 

6. 

 

 

 

Figure 6 Example of cloud coverage prediction CISMA matrix 



 

18 

 

Chapter 3  

Statistical models for forecasting 

Dealing with the prediction of solar radiation is a hard challenge because, as 

mentioned in Chapter 1 is strongly dependent to weather conditions. 

The process could be studied using very complex mathematical models or by 

means of statistical models, that are heavily less computationally expensive. 

A statistical model is a mathematical model that exploits a set of historical 

data to calibrate its parameters and generate some sample data regarding the 

future. 

The very first step is to choose a model structure able to generate the most 

precise prediction possible. Thus, in order to find a good structure 

considering even the computational effort (complexity of the model), it has 

been chosen to start analyzing first a simple prediction model and then 

trying to raise the complexity and judge the improvements that they would 

be able to introduce in terms of prediction error. 
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Setting calibration and validation datasets 

In order to evaluate properly the goodness of a prediction model it is 

fundamental dividing the available dataset in two parts: 

• Calibration dataset 

• Validation dataset 

The calibration dataset has the function to calibrate the model parameters 

and the validation one is to test the same model with the computed 

parameters and build up the prediction error. 

The choice of the percentage (length) of data used for calibration and 

validation is very important because, from one side, more data to calibrate 

the model is dedicated, more the parameters goes to the optimal value, in fact 

it can be demonstrated that N → ∞ , with N number of samples used to 

calibrate the parameters, leads to the prediction error computed using those 

parameters to be asimtotically white noise (optimal predictor) (24). From the 

other side instead, considering that N is finite (we do not have infinite amount 

of data available), choosing a larger calibration dataset means shorter 

validation dataset that could lead to having few data to evaluate the model. 

In particular, it has been chosen to validate each model with a validation 

dataset of at least one year, to catch the behavior of the predictors in each 

season at least once. The final choice has been to dedicate the data from 2th 

of August 2017 1:00 to 2th of August 2018 1:00 for validation, and the 

remaining part is used for calibration as shown in Figure 7. 

The same validation data set has been used to evaluate the goodness of each 

tested model. 
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Figure 7 Division Calibration and Validation dataset 

 

3.1 Auto Regressive Integrated Moving Average model 

(ARIMA)  

As a first approach it has been tested the Auto Regressive Integrated 

Moving Average model (ARIMA). 

The ARIMA is a class of models that takes as input a stationary process 

and returns the forecast of the same process. Any non-seasonal time series 

that exhibits patterns and is not a random white noise can be modeled with 

ARIMA models. 

It is characterized by 3 terms: p, d, q where p is the order of the Auto 

Regressive term, q is the order of the Moving average term and d is the 

number of differencing required to make the eventually non-stationary time 

series a stationary one. 
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The form of an ARIMA(p,D,q) is: 

∆Dyt=c+ϕ1∆
Dyt−1+…+ϕp∆

Dyt−p+εt+θ1εt−1+…+θqεt−q 

Where ∆Dyt denotes a Dth differenced time series, and εt is an uncorrelated 

innovation process with mean zero. 

In lag operator notation, Liyt=yt−i. it can be wrote the ARIMA(p,D,q) model 

as: 

ϕ∗(L)yt=ϕ(L)(1−L)Dyt=c+θ(L)εt 

where ϕ∗(L) is an unstable AR operator polynomial with exactly D unit 

roots. 

You can factor this polynomial as ϕ(L)(1−L)D, where 

ϕ(L)=(1−ϕ1L−…−ϕpL
p) is a stable degree p AR lag operator polynomial 

(with all roots lying outside the unit circle). Similarly, 

θ(L)=(1+θ1L+…+θqL
q) is an invertible degree q MA lag operator polynomial 

(with all roots lying outside the unit circle). (25) 

 

Stationary process 

A time series is weakly stationary if the mean and the variance are constant 

and finite. Differently, a non-stationary process has time variant mean and 

variance. 

Formally, a stochastic process O
 is strictly stationary of order n if any n-

tuple ���, �>, … , �P�, where k ϵ ℤ, the following holds: 

RST� ,…,STU V�
� , … , �
UW =  RST�XY ,…,STUXY V�
�XY , … , �
UXYW, 
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i.e. if the joint distribution functions of {O
� , O
[ , … , O
U} and {O
�XY , O
[XY , … , O
UXY} are the same. 

For a real-valued process the mean function is defined as µ
 =  ^�O
� and the 

variance function is _
> = ^��O
 − µ�>�. 
A natural estimator of the mean of a single realization of process O
  � =1,2, … -; is: 

Ò =  1- a O

*


b�  

And the variance of  Ò is: 

cde�Ò� =  1->  a a Ffc�O&, O
�*
&b�

*

b�  

where  

Ffc�O
, O
(g� = ^��O
 −  µ��O
(g − µ�� 
 

3.1.1 Deseasonalization process for calibration dataset 

As mentioned, the stationarity of the input signal (historical data) is very 

important to guarantee a good result of the prediction in this type of model. 

Thus, considering the strong seasonality shape of the data of solar radiation, 

a deseasonalization process is needed on the calibration dataset, because 

otherwise the model would catch the poles at the frequencies of the seasonal 

terms and not the random process. 

The signal can be divided in two parts: 
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���� = .��� +  h��� 
• .��� = .�� + ij�   k ϵ Z    Seasonality (deterministic signal) with period 

T 

• h���  Random part (not deterministic signal) 

T in this specific case is easy to catch because of the nature of the data itself. 

It can be a day, and a year due to the repeating of the seasons. 

To understand which is the most relevant T  to our purpose (daily 

predictions), and so to make the signal stationary, the autocorrelation 

function (ACF) and the partial autocorrelation function (PACF) have been 

computed and analyzed for 60 lags. A detailed explanation on how to perform 

ACF and PACF can be found in (26). 

Figure 8 and Figure 9 show respectively the result of ACF and PACF, and it 

is clear that the data has a strong periodicity of a day, because the ACF and 

the PACF show peaks at each 8 lags (1 day with 3h sample time). 

 

Figure 8 Autocorrelation Function of Solar radiation measurements 
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Figure 9 Partial Autocorrelation Function of Solar radiation measurements 

Thus, the signal must be made stationary before to be used to calibrate any 

model. 
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Seasonality computation by differentiating (ARI) 

In order to remove the seasonality from the process, a possible strategy (the 

most used in literature) is to differentiate the data with the same data at 8 

lags behind, it means that each value in the dataset as been differentiated by 

the value of the instant regarding the day before: 

�k��� =   ���� − ��� − i�    � = 1,2, … , - − i       i = 8;      - = lm noe .d pqo. 

Figure 10 shows the signal before the differentiation process (figure above) 

and after (figure below). It is easily noticeable that the yearly periodicity is 

not removed. To do a more precise analysis the ACF and PACF has been 

performed again for the differentiated signal �k���, and as it can be noticed in 

Figure 11 the ACF does not have significant peaks beyond the 8th lag anymore 

and so, the daily seasonality is to consider removed, while the yearly one is 

not. But, considering that the prediction horizon in this work is 1-day, yearly 

seasonality does not affect relevantly the calibration of the parameters because 

it is considered a slowly-varying process compared with the daily one and so 

other differentiations are considered unnecessary. 
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Figure 10 Solar radiation measurements and deseasonalized solar radiation (differentiating) 

 

Figure 11 ACF and PACF of Deseasonalized Solar radiation (differentiating) 
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Seasonality computation by averaging (SAR) 

Computing the random signal using the strategy just explained (by 

differentiating) has a weakness. If the day before the one we must predict was 

a cloudy one, we basically are removing a seasonality that does not reflect the 

real typical behavior without the clouds. So, to solve this problem a different 

approach to deseasonalize the data has been followed too. The objective was 

to build a data-based signal that reproduce as precisely as possible the 

deterministic part of the data to be then removed from the complete signal 

to obtain the random process. To realize it, a good strategy would have been 

computing for each sample (each 3 hours) the mean of all the data 

corresponding to the same date. For example, if we want to compute the 

typical value of the 1st of January at 13:00, we should compute the mean value 

of all the 1st of January at 13:00 of each year we have available. The problem 

with this strategy is that it requires a big amount of years of data, because if, 

for example, we have just 4 years available and 1 or 2  1st of January was 

cloudy, or rainy, or foggy, the mean is dropping down and the typical value 

of a sunny day of 1st of January at 13:00 is compromised. 

Thus, considering that we have just 4 years available, the approach followed 

consists on selecting from the calibration dataset the samples belonging to 

each month and separating them. Then, having the data of each month, the 

values corresponding to the same hour of the day of that month are averaged 

forming the mean profile of the month analyzed. The procedure is done for all 

the 12 months obtaining the typical profile of a year. 

Kr�i� =  a �r,s�i�lt%u&r
Pvwxyz

sb�  
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where i is the hour of each day, �r,s is the solar radiation measured of the of 

the day { = 1, … , lt%u&r of the month | = 1, … ,12 . 

Putting the vector found together in a column vector the profile of the year 

is: 

K =  �K� K> ⋯ K�>�} 

Now that the seasonality is estimated, the random part of the data is obtained 

removing the seasonality from the original data: 

�k��� = ���� − K��� 
The Figure 12 shows the original data above and the deseasonalized one 

below. 

 

Figure 12 Solar radiation measurements and deseasonalized solar radiation (averaging) 
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As before ACF and PACF are computed to the signal �k��� = ���� − K��� 
obtaining Figure 13, and for the identical reason just explained the signal is 

considered stationary and ready to be used to calibrate the models. 

 

Figure 13 ACF and PACF of Deseasonalized Solar radiation (averaging) 

 

 

3.1.2 Order choice 

After the time series has been made stationary, the next step is to determine 

whether AR or MA terms are needed to correct any autocorrelation that 

remains in the differenced or deseasonalized series of solar radiation data. 
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 The literature proposes a systematic way to set the orders of AR and MA 

terms by looking at ACF and PACF of the differenced time series. 

The rules used are: 

• If the PACF of the differenced series displays a sharp cutoff and/or the 

lag-1 autocorrelation is positive, then consider adding an AR term to the 

model. The lag at which the PACF cuts off is the indicated number of AR 

terms. (27) 

• If the ACF of the differenced series displays a sharp cutoff and/or the lag-

1 autocorrelation is negative, then consider adding an MA term to the 

model. The lag at which the ACF cuts off is the indicated number of MA 

terms. (27) 

Considering these rules and taking a look on the Figure 11 and Figure 13 the 

model suggested is an ARIMA with AR(8) and MA(8). 

Actually, after an idea was made through these rules a few simulation has 

been done and was discovered that the introduction of the MA terms does 

not introduce any improvement in terms of prediction error, and so the model 

chosen in order to avoid unnecessary complexity is an ARIMA(8,8,0) with the 

no MA terms. 

3.1.3 Mathematical representation and choice of identification 

criterion 

The mathematical representation of the predictor is then the following: 

⌈��� − ℎ� ⋯ ��� − 1�⌉ = ���� − ℎ� ⋯ ��� − 1�� �d�� ⋯ d��⋮ ⋱ ⋮d�� ⋯ d�� � 
� = 1,2, … , - − ℎ        ℎ = 8 
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Where �� is the prediction, � is the data deseasonalized, - the number of 

samples and ℎ the prediction horizon. 

In order to identify the parameters a Prediction Error Minimization (P.E.M) 

technique has been adopted. 

Thus, the following loss function has been used: 

�*��, i� =  1- − ℎ a ����� − ����|� − i; ���>           *

b�(�  

where � − i indicates the last available sample and i = 1,2, … ,8; 
Defining ����} =  � −��� − ℎ� … −��� − 1�⋮ ⋱ ⋮−��- − ℎ� … −��-� �  as the matrix of the data, 

���� =  � ���� … ��� + ℎ − 1�⋮ ⋱ ⋮��- − ℎ� … ��-� �    and   � =  �d�� ⋯ d��⋮ ⋱ ⋮d�� ⋯ d�� �   �he loss 

function in a compact notation become: 

�*��� =  1- − ℎ a ����� −   ����}��>  *

b�(�  

Minimizing the loss function means finding the parameters that bring the 

derivative of the loss function to zero. 

��*����� ��b��� = 0 

Thus,    

��*����� =  − 2- − ℎ a �����*;�

b�(� ����� −   ����}��� =  0    
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 ⇒    � a ��������}*;�

b�(� �  �  =   � a ��������*;�


b�(� � 
The matrix ∑ ��������}*;�
b�(�  is square and non-singular, so it is invertible. 

It can be computed the matrix of the parameters: 

��* =  � a ��������}*;�

b�(� �;� � a ��������*;�


b�(� � 
This method is called Least Squares Identification technique. (28) 

3.2 Auto Regressive with eXogenous input (ARX) 

Considering the availability of the prediction of solar radiation and cloud 

coverage provided by the forecasting service CISMA, a more sophisticated 

model exploiting those data can be developed. The idea is to use a future data 

inside the ARIMA model as an eXogenous input and see if it helps to improve 

the accuracy of the prediction. The computation strategy of the parameters 

is similar to the one of ARIMA discussed in 3.1.3. 

3.2.1 Study of stationarity of the eXogenous input 

As explained in 2.2 and in 2.3 the shape of the predictions provided by the 

forecasting service is: 

m�12345��� =  ⎣⎢⎢
⎡ 	
 m�
|
;� m�
(�|
;� ⋯ m�
(=|
;�	
(� m�
(�|
 .̂
(>|
 ⋯ m�
(=|
⋮ ⋮ ⋮ ⋯ ⋮	4 m�4|4;� m�4(�|4;� ⋯ m�4(=|4;�⎦⎥⎥

⎤      � = 1, … , B 

with B the number of available samples. 
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To understand the type of seasonality to be removed the ACF and PACF has 

been evaluated for solar radiation obtaining Figure 14, and the daily 

seasonality is evident as expected. 

 

Figure 14 ACF of solar radiation prediciton CISMA 

In order to deseasonalize even the eXogenous input the seasonality by 

averaging computed in 3.1.1 has been removed from each prediction obtaining 

the deseasonalized eXogenous input. 

3.2.2 Order choice 

The order of the AR part of this model has been chosen according to the same 

concepts studied for ARIMA (ACF and PACF plots) in 3.1.2 while for the 

order of X terms has been decided to exploit every prediction sample available 

in each instant, so exactly 8 values that results in 8 parameters. 
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3.2.3 Mathematical representation and choice of identification 

criterion 

The model in a mathematical representation is the following: 

 � ����|� − 1�⋮���� + ℎ − 1|� − 1��} =   ���� − ℎ�⋮��� − 1��} �d�� ⋯ d��⋮ ⋱ ⋮d�� ⋯ d�� � +  � m���|� − 1�⋮m��� + ℎ − 1|� − 1��} �n�� ⋯ n��⋮ ⋱ ⋮n�� ⋯ n�� � 
Where �� is the prediction, � is the deseasonalized measurement, m� is the 

eXogenous input deseasonalized and ℎ the prediction horizon. 

The identification technique used is equivalent to the Least Squares 

described in section 3.1.3. 

If it is assumed that the predictor returns the correct future data, it can be 

formulated the following system of equations: 

O =  �� 

where                          O =  � ���� ⋯ ��� + ℎ − 1�⋮ ⋱ ⋮��- − ℎ� ⋯ ��-� � ;     

            � =  � ��� − ℎ� ⋯ ��� − 1� m���� ⋯ m��� + ℎ − 1�⋮ ⋱ ⋮ ⋮ ⋱ ⋮��- − 2ℎ� ⋯ ��- − ℎ� m��- − ℎ� ⋯ m��-� �; 

� =  �d�� ⋯ d�� n�� ⋯ n��⋮ ⋱ ⋮ ⋮ ⋱ ⋮d�� ⋯ d�� n�� ⋯ n���}
 

The system is overdetermined and the matrix � is not invertible because it 

is rectangular and not squared. 

To solve this problem, can be left-multiplied the right and the left side of 

the equation O =  ��   by �} obtaining   �}O =  ��}��� ; 
The matrix ��}�� is squared and invertible, thus: 
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�� =  ��}��;��}O 

It can be proven that the resulting parameter matrix �� is the same of the 

one obtained with the classical Least square’s technique. (28) 

In this work has been tried multiple variants of this model, one taking as 

eXogenous input m� the prediction of solar radiation, another one taking the 

prediction of cloud coverage, and the last one using both. 

3.3 ARX using solar radiation and cloud coverage 

predictions 

Introduction 

The amount of solar irradiance that reaches the ground and so the 

photovoltaic panel is strongly affected by the intermittency of cloud cover. 

Trivially, the sun is covered by the clouds and so the surface irradiance drops 

due to attenuation of the direct component. As (8) states though the surface 

irradiance in some cloud condition can even increase since some clouds tend 

to enhance diffused radiation. 

According to the authors of the document (8) Numerical Weather Prediction 

Models (NWP) can give accurate predictions in the range of 6 hours to several 

days. Predictions using satellite images outperform NWP models but in the 

range from 30 minutes to 6 hours. Thus, in order to be precise in predicting 

the solar irradiance a good prediction of cloud coverage must be performed. 

This fact gave the idea to consider the cloud prediction up to 1 day ahead as 

an input for our model. 
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Mathematical representation and identification criteria 

The mathematical representation varies slightly in the following way: 

� ����|� − 1�⋮���� + ℎ − 1|� − 1��} =   ���� − ℎ�⋮��� − 1��} �d�� ⋯ d��⋮ ⋱ ⋮d�� ⋯ d�� � +  � m�3���|� − 1�⋮m�3��� + ℎ − 1|� − 1��} �n�� ⋯ n��⋮ ⋱ ⋮n�� ⋯ n�� � +
 � m�1����|� − 1�⋮m�1���� + ℎ − 1|� − 1��} �I�� ⋯ I��⋮ ⋱ ⋮I�� ⋯ I�� �                     
Where �� is the prediction, � is the data deseasonalized, m�3� is the 

deseasonalized prediciton of solar radiation provided by CISMA, m�1�� is the 

prediction of cloud coverage and ℎ the prediction horizon. 

m�1�� has not been deseasonalized because it does not have any correlation 

with the daily seasonality and so it is stationary by itself. 

The identification procedure is the same of the one described in the section 

3.2.3 except the shape of the matrices � and �, that are in this case: 

� =  � ��� − ℎ� ⋯ ��� − 1� m�3���� ⋯ m�3��� + ℎ − 1� m�1����� ⋯ m�1���� + ℎ − 1�⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮��- − 2ℎ� ⋯ ��- − ℎ� m�3��- − ℎ� ⋯ m�3��-� m�1���- − ℎ� ⋯ m�1���-� � 

       � =  �d�� ⋯ d�� n�� ⋯ n�� I�� ⋯ I��⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮d�� ⋯ d�� n�� ⋯ n�� I�� ⋯ I���}
 

Where - is the number of samples available for all the data at the same 

time, ℎ is the prediction horizon, m�3� is the solar radiation prediction of 

CISMA, and m�1�� the cloud coverage prediction of CISMA. 

And thus, the parameter estimated is given by: 

�� =  ��}��;��}O 
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Chapter 4  

Ensemble methods 

Introduction 

Different types of forecasting models have been tested in the research, each 

type, in most of the cases, is able to capture different aspects of the 

information available on the data for the prediction with respect to another. 

For this reason, can be worth exploiting the benefits that each model can 

offer. Thus, researchers are constantly working on this field and Ensemble 

forecasting is one of relatively modern method discovered. According to 

Fengxia Zheng and Shouming Zhong in (29), forecasting accuracy can be 

improved through the combination of multiple individual forecasts. In (11) 

the ensemble development consists on averaging the results of two predictions, 

while in (29) a linear combination of the predictions is performed. 

As F. Zheng and S. Zhong in (29) state, the weight of each objective is 

computed minimizing the distance from the measurements. 

In this chapter similar methods have been tested and will be discussed. 

The schematic representation of the averaging method ensemble is illustrated 

in Figure 15, and the one of the linear combination one in Figure 16. They 

are for simplicity represented as the combination of just two models, but the 

combination could be extended easily to l models. 
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Figure 15 Ensemble method representation (averaging) 

 

Figure 16 Ensemble method representation (linear combination) 

 

4.1 Ensemble using the prediction obtained by the 

model ARIMA in 3.1 and solar radiation prediction 

(CISMA) 

Averaging method 

The first ensemble ES1 consists on averaging the results of the Auto 

Regressive model discussed in 3.1 and the prediction of solar radiation 

provided by the forecasting service in 2.2.  

To do so, the vector of Solar radiation measurements has been reshaped in 

the following format (the same of the format of the output of each predictor): 
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O =  � ���� ⋯ ��� + ℎ�⋮ ⋱ ⋮��- − ℎ� ⋯ ��-� � 

where - is the number of the predicted samples and ℎ is the prediction 

horizon. The equation of the ensemble ES1 is then the following: 

^!1�|, {� = �O�5��|, {� + O�12345�|, {�2 � rb�,..,*sb�,…,� 

Where O�5��|, {� is the prediction obtained by the predictor ARIMA of section 

3.1 and O�12345�|, {� the prediction of solar radiation of CISMA. 

 

Linear combination method 

The idea of the linear combination of the two predictors is a mathematical 

way to understand how much faith each predictor deserves with respect to 

another one. So, the second ensemble ES2 is computed with the idea to find 

a parameter � that fulfill as precisely as possible the following equation: 

 �O�5� + �1 − ��O�12345  = O 

 O�12345 = � O�12345�1,1� ⋯ O�12345�1, ℎ�⋮ ⋱ ⋮O�12345�-, 1� ⋯ O�12345�-, ℎ��, 

O�5� = � O�5��1,1� ⋯ O�5��1, ℎ�⋮ ⋱ ⋮O�5��-, 1� ⋯ O�5��-, ℎ��. 

  O = � ���� ⋯ ��� + ℎ�⋮ ⋱ ⋮��- − ℎ� ⋯ ��-� � 

where - is the number of the predicted samples and ℎ is the prediction 

horizon. 
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In order to compute the parameter � all the data have been divided in 

calibration and validation part and the same procedure as the equivalent of 

Least Squares explained previously has been adopted, thus: 

�� =  ��}��;��}Ѱ 

where   � =  O�5��%  −  O�12345�%     and    Ѱ = O�%  −  O�12345�%  
The parameter has been calibrated using the calibration dataset and 

validated with the remaining part in the following way: 

^!2 =  �� O�5�¡%  + �1 − ���O�12345¡%  
The result is finally compared with O¡%  and the error evaluated. 

 

4.2 Ensemble using the prediction obtained by the 

model ARX in 3.2 and solar radiation prediction 

(CISMA) 

The ensembles ES3 and ES4 are computed with the exact same idea of the 

one in 4.1 but while the predictor in input for ES1 and ES2 was O�5�, in this 

one is O�5�¢, which is the result of the predictor proposed in the paragraph 

3.3. 

Thus, the predictors are: 

^!3�|, {� = �O�5�¢�|, {� + O�12345�|, {�2 � rb�,..,*sb�,…,� 

with averaging method  
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and the following for the linear combination approach as 4.1: 

                        ^!4 =  £� O�5�¢¡%  + V1 − £�WO�12345¡%  
with £� computed in the following way: 

£� =  ��}��;��}Ѱ 

where   � =  O�5�¢�%  −  O�12345�%     and    Ѱ = O�%  −  O�12345�%       
where the subscript “cal” means the calibration part of the data. 

The result is compared with O¡%  as before and the error evaluated, where 

the subscript “val” means the validation part of the data. 
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Chapter 5  

Auto Regressive with eXogenous 

input with labels concept 

The basic idea of Ensemble methods as said, is to try to exploit the benefits 

of each model combining more than one method. The idea of using labels for 

the prediction is a smarter way to exploit the characteristics of each model 

used, because the label concept basically refers to find a rule that is able to 

judge the characteristic of a prediction, and exploit it to use the model that 

best behave in the found situation. In this chapter, two strategies are 

investigated.  In  5.1 the predictions are labeled as “Good day” and “Bad 

Day” in terms of accuracy of the prediction, while in 5.2 the goal is to predict 

the state of the day after within two possible states: Sunny day and Cloudy 

day. 

In 5.3 another version of 5.2 is proposed, which uses just the predictions of 

cloud coverage to set the label that at this time is divided within three states: 

Sunny day, Medium clear sky day and Cloudy day.  

5.1 Labels Good and Bad prediction day 

The goodness of the ARX models discussed in the previous chapters has a 

strong dependency on the goodness of the prediction made by the forecasting 
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service (CISMA). Thus, a possible idea was to understand when and why the 

predictor of CISMA makes a wrong prediction and try to develop a model 

that sets the parameters based on that. To do so, it has been initially analyzed 

the prediction error of the solar radiation predictions of CISMA, and then its 

possible correlation with the solar radiation and cloud coverage predictions 

was investigated. The idea of introducing labels consist on judging the 

prediction of each day by CISMA comparing it with the measurement of solar 

radiation of the same day and labeling it as a “Good prediction day” or a 

“Bad prediction day” based on the criteria explained in the next section. 

Then, using the label data just generated, calibrate a Support Vector Machine 

(SVM) model to let it predict the label of the day after given the one of the 

day before. After that, the idea is to use the predicted label to switch from a 

dedicated model (GDARX – Good Day ARX) to the other (BDARX Bad Day 

ARX). 

5.1.1 Labels Good and Bad prediction predicted by a Support 

Vector Machine (SVM) 

Basic theoretical concepts on Support Vector Machine for 

Binary Classification 

The literature (30) states that if we must predict a data that has exactly 

two classes the SVM for binary classification can be used. An SVM classifies 

data by finding the best hyperplane that separates all data points of one 

class from those of the other class. The best hyperplane for an SVM means 

the one with the largest margin between the two classes. Margin means the 

maximal width of the slab parallel to the hyperplane that has no interior 
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data points.  

The support vectors are the data points that are closest to the separating 

hyperplane; these points are on the boundary of the slab. The Figure 17 

illustrates these definitions, with + indicating data points of type 1, and – 

indicating data points of type –1.  

 

Figure 17 Support Vector Machine representation 

 

The data for training is a set of points (vectors) xj along with their 

categories yj. For some dimension d, the xj ∊ Rd, and the yj = ±1. The 

equation of a hyperplane is: 

¥��� = �¦£ + n = 0 

The following problem defines the best separating hyperplane (i.e., the 

decision boundary). Find β and b that minimize ||β|| such that for all data 

points (xj,yj) 

�s¥V�sW ≥ 1 

The support vectors are the xj on the boundary, those for which 

�s¥V�sW = 1 

A more detailed theoretical concepts of SVM can be seen in (30). 
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Label estimation procedure 

In order to develop the vector of labels briefly explained in the last paragraph 

the following procedure was followed and implemented in MATLAB 

environment. 

The first step was to define a rule to judge each day predicted by the 

forecasting service CISMA. Considering that the prediction consists on 

predicting 1 day ahead every 3h as explained before, the Normalized Root 

Mean Square Error of each sample of the prediction has been computed. 

Initially the data of measurements �3� are reshaped in the way to let them fit 

with the shape of the prediction m�3�, so: 

O = � ���� ⋯ ��� + ℎ�⋮ ⋱ ⋮��- − ℎ� ⋯ ��-� � 

and                       m�3� =  � m�3���� ⋯ m�3��� + ℎ�⋮ ⋱ ⋮m�3��- − ℎ� ⋯ m�3��-� � 

where - is the total number of samples and ℎ the prediction horizon. 

The NRMSE of each sample (3h) is computed as follows: 

oeë ©$tª«�|� = ¬∑ ���|, {� − m�3��|, {��>8�sb�max{��|, {�}rb�,…*sb�,…,�
 

But, whereas the goal is to judge as said the goodness of the prediction of 1 

day of CISMA and not each 3h, the mean of the values of oeë ©$tª«  

corresponding to the same day of the year has been computed and it generates 

the vector oeë ©$t�vwx containing the mean of the Normalized Root Mean 

Square Error of each day. 



 

46 

 

oeë ©$t�vwxVit%uW =  �∑ oeë ©$tª«V{�it%u�Wl&%#¨ $&Yvwx � 

where it%u is the kth day ,   {�it%u� the indexes of the errors that belongs to 

the kth day and l&%#¨ $&Yvwx  is the amount of {�it%u� that each error has. 

The rule to set a label for each value of the just found vector respects the 

following criteria: 

|¥ °oeë ©$t�vwxVit%uW° ≥ ±  ⇒  GdnoqVit%uW = 0 �"³d	 	d� "� oq.o ⇒  GdnoqVit%uW = 1 �"´ff	 	d�"� µℎoeo ± = 20; 
The value of the threshold ± is arbitrary, it has been chosen in the way that 

the algorithm would not consider too many days as “Good” compared with 

“Bad” ones (it would mean that it is too permissive), and too many “Bad” 

days with respect to “Good” ones (it would mean too pretentious). 

The idea now, is to calibrate an SVM that is able, as precisely as possible, 

to predict the label of a day given the label of the day before and the mean 

of the prediction of cloud coverage for the day after. It has been tried to 

calibrate the SVM using also the prediction of solar radiation of the 

forecasting service CISMA, but it returns a less precise result, so it was not 

considered later. 

So, in order to be put in the calibration vectors of the SVM, the vector of 

mean cloud coverage for each day FGH#$%P�vwx has been computed. 

FGH#$%Pª«�|� =  ∑ �¶0·¸¹�r,s����sb�                  

 and 
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FGH#$%P�vwxVit%uW =  �∑ FGH#$%Pª«V{�it%u�Wl&%#¨ $&Yvwx � 

where it%u is the kth day ,   {�it%u� the indexes of the cloud values that 

belongs to the kth day and l&%#¨ $&Yvwx  is the amount of {�it%u� that each 

cloud value has. 

Now, all the vector needed to calibrate and validate the label’s predictor 

(SVM) are available. 

To do so, the usual calibration and validation division is made 

(Gdnoq�% , FGH#$%P�vwxºw» ,Gdnoq¡%  and FGH#$%P�vwx¼w» � for both of vector 

and the matrices O and ½ are defined in the following way: 

 

½�%  =  ¾ Gdnoq�% �it%u� FGH#$%P�vwxºw» ¿it%u�%  + 1À⋮ ⋮Gdnoq�% �-�%  − 2� FGH#$%P�vwxºw»�-�%  − 1� Á; 

O�%  = �Gdnoq�% �it%u + 1�⋮Gdnoq�% �-�%  − 1��; 

with -�%  is the number of calibration samples and it%u = 1,2 … , -�% . 
X and Y are used to train the SVM model by means of the function in 

MATLAB fitcsvm(Xcal,Ycal). 

Once calibrated the SVM model, the validation data set ½¡%  computed with 

the same criteria as the calibration one is used to generate the vector of 

predicted labels qdnoq¨©$t. 

½¡%  =  � Gdnoq¡% �it%u� FGH#$%P�vwx¼w» Vit%u + 1W⋮ ⋮Gdnoq¡% �-¡%  − 2� FGH#$%P�vwx¼w» �-¡%  − 1�� 
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with -¡%  is the number of validation samples and it%u = 1,2, … , -¡% . 
The vector qdnoq¨©$t is computed in MATLAB as follows: 

qdnoq¨©$t = peo	|I��!ÂB#Ãt$ , ½¡% �  
Finally, each label predicted is compared respectively with the observed one 

and the error is evaluated in the following way: 

oeeÄ % = l��	|¥¥{qdnoq3Æ4�i� − qdnoq�i�} ≠ 0�-¡%  100 = 14%;          
i = 1,2, … , -¡% ;  

5.1.2 ARX models depending on labels (GDARX – BDARX) 

The models to be calibrated are with the same identical structure of the 

ARX of the section 3.2.3 but they have dedicated parameters depending on 

the label as Figure 18 illustrates. 

 

Figure 18 GB-ARX representation  

The mathematical representation of GD-ARX and BD-ARX then is: 

� ����|� − 1�⋮���� + ℎ − 1|� − 1��} =   ���� − ℎ�⋮��� − 1��} �d�� ⋯ d��⋮ ⋱ ⋮d�� ⋯ d�� � +  � m�3���|� − 1�⋮m�3��� + ℎ − 1|� − 1��} �n�� ⋯ n��⋮ ⋱ ⋮n�� ⋯ n�� � +
 � m�1����|� − 1�⋮m�1���� + ℎ − 1|� − 1��} �I�� ⋯ I��⋮ ⋱ ⋮I�� ⋯ I�� �                 � = 1,2, … , - − ℎ;       
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where - is the number of samples to predict and ℎ is the prediction horizon 

(8 samples, 1 day), m�3� and m�1�� respectively the prediction of solar 

radiation of CISMA and the prediction of cloud coverage of CISMA. 

 

Calibration of the models 

To calibrate the models the same procedure of Least Squares is followed but 

different calibration datasets are used. For the model GD-ARX the 

calibration dataset is composed by days with “Good day” label, and for BD-

ARX just by days with “Bad day” label. 

Doing this, we obtain two matrices of parameters ��È� and ��É�. 

��È� =  �d´H11 ⋯ d´H1ℎ n´H11 ⋯ n´H1ℎ I´H11 ⋯ I´H1ℎ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮d´Hℎ1 ⋯ d´Hℎℎ n´Hℎ1 ⋯ n´Hℎℎ I´Hℎ1 ⋯ I´Hℎℎ
�j

 

��É� =  �d³H11 ⋯ d³H1ℎ n³H11 ⋯ n³H1ℎ I³H11 ⋯ I³H1ℎ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮d³Hℎ1 ⋯ d³Hℎℎ n³Hℎ1 ⋯ n³Hℎℎ I³Hℎ1 ⋯ I³Hℎℎ
�j

 

 

Once the label is predicted by the SVM model in each prediction instant the 

parameter to use for that specific prediction is chosen following the criteria: 

|¥ Gdnoq¨©$tVÊt%u���W = 0    ⇒     �� =  ��É� oq.o |¥ Gdnoq¨©$tVÊt%u���W = 1    ⇒     �� =  ��È� 

where � the date to predict and Êt%u��� is the day corresponding to the date �. 
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5.2 Label Sunny-Cloudy prediction by SVM method 

Once evaluated the result of the prediction in 5.1.2, has been noticed that the 

predictor makes wrong predictions more likely when it does not recognize 

perfectly if the day to predict will be sunny, medium clear sky or cloudy. 

Thus, the idea was to use a similar system to predict the label of the next 

prediction with the algorithm of Support Vector Machine with two classes. 

The label can assume this time the following two states: 

• Sunny day 

• Cloudy day 

Then once the label is predicted, it will be used to add the deterministic part 

of the signal (the one studied in 3.1.1) multiplied by a constant parameter 

that model a typical Sunny day, or a typical Cloudy day of the corresponding 

period of the year.  

 

Label estimation procedure 

As a first step a classifier for each day of the measured solar radiation has 

been developed. It evaluates for each sample its label. The classifier takes as 

input a day and it compares its maximum value of solar radiation with the 

maximum value of the corresponding typical day. 

Using a threshold � evaluates the label in the following way: 

|¥ SRmax{	d�} ≥ � SRmaxÍ	d�
u¨r�% Î      ⇒     Gdnoq�	d�� = 1 �!mll�� oq.o |¥ SRmax{	d�} < � SRmaxÍ	d�
u¨r�% Î   ⇒     Gdnoq�	d�� = 0 �Fqfm	�� 
Where � has been set to 0.7. 
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Using this criteria, the labels for solar radiation measurements are computed 

and we call it GdnoqS��� with � = 1, … , -. 

GdnoqS��� is divided in calibration part (to calibrate the SVM) and validation 

part (to test the SVM) with the same length of the ones to calibrate and 

validate the models. 

The SVM model is calibrated using the following calibration matrices: 

½�%  =  � GdnoqS�% ��� FGH#$%P�vwxºw»�� + ℎ�⋮ ⋮GdnoqS�% �-�%  − ℎ� FGH#$%P�vwxºw»�-�% � �; 

O�%  = �GdnoqS�% �� + ℎ�⋮GdnoqS�% �-�% � �; 

Where -�%  is the number of samples of calibration ℎ the prediction horizon 

and FGH#$%P�vwxºw» the same as 5.1.1. 

So, as in 5.1.1 using the MATLAB function fitcsvm(Xcal,Ycal) the SVM is 

calibrated. 

Once calibrated the SVM model, the validation dataset ½¡%  is used to 

obtain the predicted labels qdnoq¨©$t in the following way: 

qdnoq¨©$t = peo	|I��!ÂB#Ãt$ , ½¡% �  
 

½¡%  =  � Gdnoq¡% �it%u� FGH#$%P�vwx¼w» Vit%u + 1W⋮ ⋮Gdnoq¡% �-¡%  − 2� FGH#$%P�vwx¼w» �-¡%  − 1�� 

with -¡%  is the number of validation samples and it%u = 1,2, … , -¡% . 



 

52 

 

Finally, each label predicted is compared respectively with the observed one 

and the error is evaluated in the following way: 

oeeÄ % = l��	|¥¥{qdnoq3Æ4�i� − qdnoq�i�} ≠ 0�-¡%  100 = 23%;          
i = 1,2, … , -¡% ;  
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ARX model depending on labels Sunny-Cloudy (SCARX) 

As explained in the introduction of the paragraph, the label here is used to 

choose to add a typical Sunny day or a typical Cloudy day of that period to 

the prediction, using the model ARX in 3.3 with the same parameters. The 

typical Cloudy day has been chosen as 70% of a Sunny one. 

 

 

5.3 Label Sunny-Medium-Cloudy prediction by cloud 

coverage predictions 

The solution in 5.2 (with the classes “Sunny day” and “Cloudy day”) has the 

limitation of having just two possible states, and this imply to do not model 

properly every state in the middle of Sunny one and Cloudy one. To solve 

partially that limitation a solution with three possible states has been tried.  

In this model the label can be: Sunny day, Medium clear sky day and Cloudy 

day and it is predicted just evaluating the mean value of the predictions of 

cloud coverage of the day after. To do it, the following rule has been set: 

|¥ CLDÓÔÕÖÍit%uÎ ≥ �#%×     ⇒     GdnoqÍit%uÎ = 1 �!mll�� oq.o |¥ CLDÓÔÕÖÍit%uÎ < �#rP    ⇒     GdnoqÍit%uÎ = −1 �Fqfm	�� oq.o |¥   �#rP ≤ CLDÓÔÕÖÍit%uÎ < �#%×  ⇒     Gdnoq�	d�� = 0 �Bo	|m � 
With  �#%× = 70 and �#rP = 30 

The error in predicting the label is computed as: 
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oeeÄ % = l��	|¥¥{qdnoq1���i� − qdnoq�i�} ≠ 0�-¡%  100 = 28,99%;          
i = 1,2, … , -¡% ;  

ARX model depending on labels Sunny-Medium-Cloudy 

(SMCARX) 

The model used to perform the prediction is the ARX in 3.3 with the 

identical parameters. A similar procedure of 5.2 to add the typical profile is 

used, but this time having three states has been computed the typical 

profile for each possible state, that in particular it resulted to multiply the 

typical Sunny profile to 0.5, 0.8 and 1 respectively for Cloudy day, Medium 

clear sky day and Sunny day. 
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Chapter 6  

Results Analysis 

6.1 Prediction Error Analysis 

Introduction 

Today, there is a debate regarding the best metrics for evaluating the accuracy 

of a forecast in the industry. Some researches have been done for this purpose 

as said in (31) (32) (33) (34), but as (35) says “at present there is no industry-

wide standard performance metric”. The metric to evaluate the prediction 

error of each model depends on the purpose for which is developed.  Several 

well accepted metrics are summarized in (35). The common indicators though 

are Root Mean Square Error (RMSE), Mean Percentage Error (MPE), Mean 

Absolute Percentage Error (MAPE) and Mean Bias Error (MBE). Each of 

them can catch different characteristics of a model. Really important is also 

studying the distribution of the prediction error, that means evaluating its 

mean value and its variance. 

The Mean Percentage Error (MPE) indicates the average ratio of deviations 

to the actual values while the Mean Absolute Percentage Error (MAPE) 

simply takes the absolute value of the MPE. The Mean Biased Error (MBE) 

provides information on the long-term performance, over/under-estimation of 

the model in the long run. The Root Mean Square Error instead, due to its 
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definition may read a high value even if only a single measurement has high 

deviation from its model generated counterpart. 

In this precise case it has been used a normalized version of the RMSE 

(NRMSE). 

It has been decided to use just the NRMSE%, MPE and MAPE because the 

analysis of this thesis is a short/medium-term one and so MBE is not 

considered. 

The definitions of the errors are in general: 

BK^ =  1-¡%  a �O�r − OrOr � ;*¼w»
r(�  

BÙK^ =  1-¡%  a �O�r − OrOr � ;*¼w»
r(�  

-"B!^ = ¬ 1-¡%  ∑ VO�r − OrW>*¼w»r(�max �O�, … , O*¼w»�  

Considering though that the prediction horizon is 8 lags in this case and so 

each prediction is formed by 8 values, the metrics to judge the whole 

prediction are particular and are explained below. 

 

Normalized Root Mean Square Error for 1 day prediction 

horizon 

The RMSE is computed for each prediction separately, obtaining a vector of 

RMSEs and then the -"B! 
̂Ã
% is computed as the mean of the RMSEs 

computed for each prediction. 
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"B!^gÚÛÜv�i¨©$t� =  Ý18 aVO�r�i¨©$t� − Or�i¨©$t�W>�
rb�  

where i¨©$t is the k-th prediction, | represents the lag-ahead of the prediction, O�r is the predicted value and finally Or is the measured value. 

-"B! 
̂Ã
% = 1-¡%  ∑ Þ"B!^gÚÛÜv�|�ß*¼w»rb�max �O�, … , O*¼w»� 100 

where -¡%  is the total number of the predictions. 

 

Mean Percentage Error (MPE) and Mean Absolut Percentage 

Error (MAPE) 

The same approach is followed so the BK^ and BÙK^ are computed for each 

prediction separately and their mean is calculated obtaining BK 
̂Ã
 and BÙK 
̂Ã
. 
BK^gÚÛÜv�i¨©$t� =  18 a �O�r�i¨©$t� − Or�i¨©$t�Or�i¨©$t� � ;�

rb�  

BK 
̂Ã
 = �*¼w» ∑ ÞBK^gÚÛÜv�|�ß*¼w»rb� ; 

BÙK^gÚÛÜv�i¨©$t� =  18 a �O�r�i¨©$t� − Or�i¨©$t�Or�i¨©$t� � ;�
rb�  

BÙK 
̂Ã
 = �*¼w» ∑ ÞBÙK^gÚÛÜv�|�ß*¼w»rb� ; 
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Forecast Error Distribution 

As mentioned, studying the statistical properties of a prediction permits also 

to evaluate a predictor. In this section are presented some methods for 

estimating a confidence interval around a forecast. 

One characteristic that a predictor should guarantee is that the forecast O�r�à� is unbiased. It means that it must satisfy the following equation: 

^áO�
�à�â =  ^�O
�à�� 
where O
�à� is the time series. 

This imply that ^áO�
�à� − O
�à�â = 0  so the mean of the prediction error ±ã̂ =  O�
�à� −  O
�à� should be near zero. 

Furthermore, in the case the predictor is fitted correctly it should apply 

that: 

±ã̂ =  O�
�à� −  ^�O
�à�� − ä 

where ä is white noise by assumption and so an unpredictable process. 

Said this, if   ^áO�
�à� −  O
�à�â  and  ä  are uncorrelated then: 

Âde�±ã̂� = Âde å^áO�
�à� − O
�à�âæ + Âde�ä� =  _ç>�à� +  _è> 

And therefore, the variance of the error in estimating the future value O
�à� 
is the sum of two different variances, the variance caused by the estimation 

of the mean _ç>�à� and the one of the noise _è>. 

Considering that the statistical model was not calibrated with N → ∞ 

samples the parameters are not perfectly correct and so the model is not 

perfectly correct as well, this imply that ±ã̂ could be not white noise. 
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It is obvious that more the prediction error is close to be white noise, more 

the predictor is precise. 

The sample standard deviation can be evaluated given N samples of forecast 

errors {±r}rb�,..,*, and it is given by: 


é =  ê∑ �±r − ±�̅>*rb�- − p  

Where ± ̅is the sample average of the error and p the number of parameters. 

The value of 
é�  is the estimation of the variance of _é> from the data, and it 

includes _ç>�à� and _è>. 

So, it is assumed for example that the noise comes from a normal 

distribution, a confidence interval of 95% estimation of the forecast can be 

approximated by: 

O�
�à� ± 1.96 
é�  

Because the prediction horizon is 8 samples ahead and so 1 day in this work 
é�  will be the mean of the deviations of each time step ahead prediction. 

 

6.2 Evaluation of the models and comparisons 

As discussed in 6.1 section, the NRMSE, MPE, MAPE and a statistical 

analysis is performed to each model described in the thesis and the results 

have been compared each other. Further, some example situations are showed 

to explain the pros and the cons introduced of each model.  



 

60 

 

6.2.1 Errors generated 

In Table 2 and Table 3 can be seen the computed errors explained in 6.1 for 

each model. The notation used is explained in Table 1. 

 

Model Notation Model  

AR Auto Regressive Integrated Moving Average (ARIMA) in 3.1 Differentiating 

SAR Auto Regressive Integrated Moving Average (ARIMA) in 3.1 with Mean Seasonality 

ARX1 Auto Regressive with eXogenous Input (ARX) using SRCISMA in 3.2 

ARX2 Auto Regressive with eXogenous Input (ARX) using CLDCISMA in 3.2 

ARX3 Auto Regressive with eXogenous Input (ARX) using SRCISMA, CLDCISMA in 3.3 

GB-ARX ARX models depending on labels (GDARX – BDARX) in 5.1.2 

SC-ARX ARX model depending on labels Sunny-Cloudy Error! Reference source not found. in 5.2 

SMC-ARX ARX model depending on labels Sunny-Medium-Cloudy in 5.3 

ES1 Ensemble Averaging Method using AR and SRCISMA in 4.1 

ES3 Ensemble Averaging Method using ARX3 and SRCISMA in 4.2 

ES2 Ensemble Linear Combination Method using AR and SRCISMA in 4.1 

ES4 Ensemble Linear Combination Method using ARX3 and SRCISMA in 4.1 

Table 1  Notation of the models   
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Model Name NRMSEmodel MPEmodel MAPEmodel íîïðñòóô NRMSECISMA MPECISMA MAPECISMA íîïõö÷øù 

AR 10.3493 2.6681 3.0783 139.4476 10.0521 0.9083 1.3700 138.1636 

SAR 9.5298 0.7855 1.3309 122.1070 10.0521 0.9083 1.3700 138.1636 

ARX1 8.8227 1.0220 1.4588 117.0115 10.0521 0.9083 1.3700 138.1636 

ARX2 9.8074 0.9427 1.5213 128.8778 10.0521 0.9083 1.3700 138.1636 

ARX3 8.5977 0.5539 1.2068 114.2489 10.0521 0.9083 1.3700 138.1636 

GB-ARX 8.5326 2.1709 2.6356 115.4249 10.0521 0.9083 1.3700 138.1636 

SC-ARX 8.6574 0.7057 1.2946 119.3020 10.0521 0.9083 1.3700 138.1636 

SMC-ARX 8.7357 0.6022 1.2578 120.8326 10.0521 0.9083 1.3700 138.1636 

ES1 8.8778 1.7882 2.1140 119.8642 10.0521 0.9083 1.3700 138.1636 

ES3 8.9365 0.7290 1.2368 122.7573 10.0521 0.9083 1.3700 138.1636 

Table 2  Errors of each model validation 1 

 

Model Name NRMSEmodel MPEmodel MAPEmodel íîïðñòóô NRMSECISMA MPECISMA MAPECISMA íîïõö÷øù 

ES2 8.8801 1.6725 2.0140 129.9167 10.0518 0.7481 1.1616 140.0572 

ES4 8.6891 0.3713 1.1396 128.7043 10.0518 0.7481 1.1616 140.0572 

Table 3 Errors of each model validation 2 

 

6.2.2 Results comments 

The results highlighted in Table 2 and Table 3 are separated cause the ones 

in Table 3 are computed using a slightly shorter validation dataset due to the 

need to use part of the predictions made by the predictors used for the 

ensembles to calibrate the related parameter for the linear combination.  

Interpreting the meaning of the errors, some intuitive comments can be done.  

Each predictor presented, apart AR, works better than the one of the 

forecasting service CISMA in terms of NRMSE, MPE, MAPE and standard 

deviation 
é� . 
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Comparing the models in terms of NRMSE, the best one results to be the GB-

ARX one but apparently it is the worst after the AR in terms of MPE and 

MAPE. These considerations suggest that the model GBARX does not make 

extremely wrong predictions as the ones with higher NRMSE because of the 

label system that predicts when the prediction will be “Bad” and tries to 

adjust it, but it is less precise when the others work relatively well cause 

sometimes the label results to be wrong, this is stated cause the NRMSE is 

really sensitive to relatively big errors considering that it makes the square of 

the prediction error, so strong errors are highlighted. In MPE and MAPE 

instead strong errors are weighted as the lighters and so they suggest that a 

prediction that have smaller MPE and MAPE behave better in general. 

In terms of MPE and MAPE the best models, considering the ones in Table 

2 first, are in descending order ARX3, SMC-ARX and ES3, while the model 

GB-ARX, ES1 and AR are ones that have it the highest. In particular, GB-

ARX has a higher MPE and MAPE because in the days in which the predicted 

label is wrong the model predicts with the wrong parameters that makes the 

error increase. 

In terms of standard deviation 
é�  the best six models in descending order are: 

ARX3, GBARX, ARX1, SCARX, ES1 and SMCARX and every model is 

better than CISMA. 

Considering these intuitive considerations, the model that best fit with the 

data is ARX3, and the improvements introduced with respect to CISMA are 

highlighter in Table 4. 
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Improvement% INRMSE% IMPE% IMAPE% Iíî% 

ARX3/CISMA 14.4686% 39.0179% 11.9124 17.3090 

Table 4  Table of improvements % of the best method ARX3 compared with CISMA 

The average improvement introduced is 20.677 %, so, a great improvement. 

6.2.3 Prediction error analysis and comparison between the 

most interesting models 

In this subsection some statistical analysis is performed to the prediction 

errors highlighting the main properties and some pros and cons introduced by 

the different approaches followed. 

 

AR vs SAR 

As depicted in Table 2 SAR, with respect to AR, introduce strong 

improvements on each error analyzed. The structure of the model is the same 

while the only difference is on deseasonalization process and on re-adding the 

seasonality on the prediction. AR, as expected, makes strong errors when the 

weather from a day to another changes, for example if the day before was 

cloudy, AR most likely predict the day after as a cloudy one, it works well 

instead if the weather remains similar from a day to the following. In Figure 

19 an example of the different behavior of the two model is shown. In the 24th 

of October of 2017 SAR can track better the measurements than AR, the 

weather evidently changes from the day before to the day after and AR add 

wrongly the profile of the day before, which was cloudy while the day after 

was not. The same happens in the 22th of October of 2017, but this time the 
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day before was sunny while the day after was cloudy, AR then, overestimates 

the solar radiation of the day after while SAR does it less. In Figure 20 instead 

the ACF of both prediction errors of 1 day-lag is shown, both are pretty much 

white noise, but the ACF of the prediction error of AR presents a negative 

peak at 8th and 16th lag, so there is a small correlation, this means that the 

model is not optimum. 

 

 

Figure 19 Example of predictions AR vs SAR for comparison 
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Figure 20 ACF of prediciton error of AR vs SAR for comparison 

 

ARX1 vs ARX2 vs ARX3 

In these models the eXogenous inputs are involved, as explained before ARX1 

just exploit the predictions of CISMA of solar radiation, ARX2 just the ones 

of cloud coverage and ARX3 both. In the example of Figure 21 are highlighted 

the different behavior of the models. It can be noticed that ARX2 with respect 

to the others has the weakness that if the cloud prediction is wrong, the 

prediction error increases a lot, while the others are less dependent upon it, 

cause depends also on the predictions of solar radiation. The 26th of October 

of 2017 the weather was medium clear sky while the cloud prediction says it 

is clear sky, in fact the prediction of ARX2 overestimates the solar radiation. 

The day after is a cloudy day and again the prediction of cloud coverage says 
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medium clear sky and makes the ARX2 overestimate again. ARX3 exploiting 

both future data can track better than all the others the solar radiation 

measurements. 

 

Figure 21 Example of predictions ARX1 vs ARX2 vs ARX3 vs CISMA for comparison 

 

 

SMC-ARX vs SC-ARX 

These two models share the idea to predict the label of cloudiness of the day 

to be predicted, we remind that SC-ARX divide the label state of each day in 

Sunny and Cloudy and use a SVM model to predict them, while SMC-ARX 

divide the label in Sunny, Medium, Cloudy day and does not use a SVM to 

predict them, but just the mean value of the prediction of cloud coverage. 
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Standing  to the results of NRMSE, MPE and MAPE, the SC-ARX exceeds 

the quality of SMC-ARX in term of NRMSE but does not for both the other 

errors. 

This suggests that dividing the label in three levels leads to slightly improve 

the accuracy when the prediction of the label of the corresponding day is 

right, but when the label is wrong makes higher errors. 

 

Figure 22 Example of predictions SC-ARX vs SMC-ARX for comparison 

In Figure 22 can be seen that in the 16th of September 2017 for example the 

predictor of the label of SC-ARX does not have the ability to predict that the 

day is really cloudy while SMCARX does cause the third level. It helps to 

predict that the solar radiation in that situation will be smaller. In the day 

after, both SC-ARX and SMC-ARX predict that the day will be a sunny one 
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and the results of the predictors are overlapped cause the structure and the 

parameters of the ARX are the same. At the same time the predictor of the 

label of SMC-ARX has more probability to make a wrong prediction on the 

label (about 30% of error against 23% of SC-ARX one), and if the choice is 

wrong the error of the prediction will be higher than the one of SC-ARX. This 

behavior is shown in the errors computed as well. 

The ACFs of the prediction errors depicted in Figure 23 shows that there are 

some peaks on each multiple of 8th lag for three days, this is probably due to 

a recurrent error provoked by the label prediction system. 

 

Figure 23 ACF of predictions errors SC-ARX vs SMC-ARX for comparison 
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ARX3 vs GB-ARX 

It has been decided to compare in particular these two models because even 

though ARX3 has an higher NRMSE it also has very lower MPE and MAPE, 

this can be attributed at the fact that when the prediction of the label “Good 

day prediction” or “Bad day prediction” is correct a dedicated model is used 

that responds in the proper way while ARX3 does not.  

In Figure 24 is shown a case in which the prediction of the label for that day 

is correct and it is “Bad”, it can be noticed that while ARX3 overestimates 

the solar radiation as CISMA does, the model GB-ARX tracks well the solar 

radiation and makes a lighter error. 

 

Figure 24 Example of predictions ARX3 vs GB-ARX vs CISMA for comparison 
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In Figure 25 instead, the dual case in which the prediction of the label for 

that day is “Bad” while it should not is shown. It can be noticed that when 

the prediction of label is wrong the model GB-ARX for that day has less 

accuracy with respect to ARX3. 

 

Figure 25 Example of predictions ARX3 vs GB-ARX vs CISMA for comparison 

The analysis of ACF of both the prediction errors of both models (as shown 

in Figure 26) leads to the consideration that the prediction errors are white 

noise and so the model are optimum. 
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Figure 26 ACF of predictions errors of ARX3 vs GB-ARX for comparison 
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Chapter 7  

Conclusions 

As said in the introduction of the thesis, exactly in the background studies in 

1.2, pushing in the direction of predicting the solar radiation with a day-ahead 

prediction horizon using data-driven models as ARIMA combined with 

complex predictors as CISMA (ARX1, ARX2, ARX3 and Ensembles) and 

some hybrid model such as ARIMA combined with machine learning methods 

(SVM) bring better accuracy in the predictions. 

In particular, each model has some pros and some cons. Every model 

presented in the thesis outperforms the one of the forecasting service 

CISMA except for AR. Some model work even better than ARX3, which is 

evaluated as the best one, but just in some particular situations. For 

example SC-ARX and SMC-ARX solve partially the problem of predicting a 

sunny or cloudy day adding the right typical profile, but they makes higher 

error in the days in which the prediction of the label are wrong, and 

considering that the percentage of error of the label for SC-ARX is 23,21% 

and the one of SMC-ARX is 28,99% the improvement with respect to ARX3 

are marginal but still consistent for CISMA ones. Regarding GB-ARX, it 

exceeds the accuracy of the predictions of ARX3 when the prediction of 

CISMA of solar radiation (which is based on) is very inaccurate, but at the 

same time introduces bigger errors in the days in which the label predicted 

is wrong. The percentage of error for the labels here is 14,63%. Thus, in the 
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same way it does not introduce several improvements to ARX3 but still 

outperforms CISMA. The Ensemble methods bring all pretty good results, 

in particular the ES4, which is a linear combination of ARX3 and CISMA in 

this way ^!4 =  £� O�5�¢ + V1 − £�WO�12345 but in general still not better then 

ARX3. 

ARX3 works well almost under every aspect and so it has been considered 

finally the best one with a percentage of improvement of 20.677% with 

respect to CISMA. (which is the mean of the improvements% in Table 4). 

 

Future Works 

It has been noticed the potentiality of combining very different typologies of 

models. Considering what explained in 6.2.3, the models have different 

qualities. A good way to proceed could be investigating on a particular 

Ensemble method that recognizes as precise as possible the situations to use 

a model rather than another. Furthermore, it could be worth to investigate 

to some more methods to predict the labels with a higher accuracy permitting 

the introduced models to work in its own ideal situation. Thus, future research 

lines include the integration with more sophisticated clustering techniques 

(different ensemble for different clusters), the exploitation of other 

meteorological data like humidity, temperature and wind speed, the 

correlation with predictions made in neighboring sites, working with different 

sampling time and prediction horizon to fit different applications. 

Further, a better way to compute the seasonality can be investigated. One 

possibility can be using an empirical formula able to compute exactly the solar 

radiation that invests a certain zone in each period of the year. It would 
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improve every method studied in this project, because everyone is based on 

removing and re-adding the seasonality. So, a higher accuracy on the 

seasonality computed imply a higher accuracy of each predictions. 

As stated in the introduction of the thesis, the accuracy of the prediction of 

solar radiation can affect drastically the efficiency of Photovoltaic Power 

generation systems. So, it can be evaluated the impact of the increased 

accuracy of the predictions of solar radiation by mean of the proposed methods 

on the prediction of PV power and so as a consequence the impact of the 

improvements of PV power predictions on the context of microgrids and 

energy market balancing. 
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