
Politecnico di Milano

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Scienze e Tecnologie Aerospaziali

Performance Study of an Immersed Boundary DNS Code
applied to the Flow around a Confined Circular Cylinder

candidato: Gregorio Frassoldati
matricola 876004

relatore: Professor Maurizio Quadrio

Tesi Magistrale in Ingegneria Aeronautica

Anno Accademico 2017/2018

Ringraziamenti

Desidererei ringraziare tutti coloro che hanno preso parte, direttamente o
indirettamente, agli sforzi e al lavoro che hanno portato al compimento di
questa tesi e del mio percorso di studi. Un primo ringraziamento va al Pro-
fessor Maurizio Quadrio, un maestro presente quando richiesto, pronto e
puntuale nelle sue risposte, e diretto nelle sue osservazioni; mi ha sempre
dato modo di poter riflettere su me stesso e sul mio lavoro in modo chiaro e
senza giri di parole.
In secondo luogo vorrei ringraziare i suoi collaboratori, che mi hanno sostenuto
e risposto quando le domande mi sembravano troppe e troppo difficili; quindi
grazie di cuore a Jacopo, Alessandro e Vanessa.
Assieme a loro, non posso dimenticarmi di chi mi ha sostenuto dietro le
quinte di questo lavoro: la mia famiglia, i miei amici e i miei affetti tutti.
Ai miei genitori, un modello di riferimento per quanto riguarda l’impegno
e l’etica professionale, va un pensiero speciale. Alle mie sorelle e ai miei
nipoti una menzione d’onore per il percorso di crescita che continuano a
condividere con me.
A Myriam, che mi ha accompagnato e sostenuto in questi mesi dandomi
serenità e fiducia, va un caldo ringraziamento per avermi sopportato fin qui.
Ai compagni di studio con cui ho condiviso il carico di questi anni va un un
ultimo pensiero, ed in particolare all’amico Claudio, in memoria delle serate
estive (e non) tra birra, patatine fritte, derivate ed integrali.

1

Sommario

La presente tesi è stata redatta ed affrontata cercando di perseguire un
duplice scopo; di investigazione e ricerca fluidodinamica cos̀ı come, al con-
tempo, di studio prestazionale delle indagini numeriche effettuate.
In questa trattazione è stato studiato il problema della corrente turbolenta
attorno ad un cilindro, confinato tra due pareti parallele di un canale piano
periodico. L’elevato bloccaggio, oltre che la presenza stessa del corpo tozzo
all’interno di un channel flow, contribuiscono a rendere il presente studio
peculiare per il problema trattato e dunque per la fenomenologia della cor-
rente.
Il problema è stato affrontato mediante simulazione numerica diretta, utiliz-
zando due software profondamente diversi per algoritmi risolutivi ed elabo-
razione delle superfici. I risultati sono stati confrontati al fine di verificare
se e quanto sia possibile un guadagno prestazionale in termini di costo com-
putazionale utilizzando uno schema a contorni immersi, con il fine ultimo
di migliorare le odierne possibilità di affrontare simulazioni DNS a fini di
ricerca.
Questo confronto ha riguardato anche i risultati fluidodinamici delle simu-
lazioni, mettendo in luce limiti e possibilità di entrambi i codici.
Difatti, il riferimento fornito da un codice opensource, verificato e ampia-
mente diffuso come OpenFOAM, ha permesso di portare avanti un confronto
critico; le sue prestazioni ed il suo funzionamento sono stati analizzati e com-
parati a quelli di un codice a contorni immersi innovativo (chiamato CPL).
Questo ha reso possibile evidenziare delle strategie più efficienti o più ac-
curate, sia dal punto di vista della gestione del calcolo parallelo, che nella
risoluzione delle equazioni di Navier-Stokes.

1

1parole chiave: simulazione numerica diretta, contorni immersi, corpo tozzo, bloccag-
gio, cilindro, CFD, turbolenza, scia

2

Abstract

Aim of the present thesis is both to investigate a particular flow and to study
the performace of the numerical analysis.
The work consists in the study of the flow around a circular cylinder - con-
fined within a periodical channel flow. The high blockage ratio - due to the
presence of the body between the two confining walls - contributes to make
peculiar the phenomena taking place.
The problem has been addressed via direct numerical simulation using two
different softwares. These two programs differ in two important features:
the algorithms used for solving the differential equations and the method
used to process the surfaces.
The main objective is to verify if a performance gain is achievable using
an immersed boundary scheme. Therefore, the computational cost of an
immersed boundary code as well as of a classical one - OpenFOAM - was
evaluated. The results are comprehensive of the analysis of the paralleliza-
tion in both codes.
OpenFOAM indeed provided a useful reference for the flow study and the
computing perfomance. It represents the current state of the art and it was
used compared to the immersed boundary code - called CPL. This compari-
son included the results of the study of the fluid dynamics phenomena. This
englightened the advantages and disadvantages of both softwares in terms
of efficiency and accuracy.
The ultimate purpose is to develop the current possibilities to carry on DNS
simulations in academic and industrial research.

2

2keywords: DNS, Immersed Boundary, bluff body, blockage ratio, cylinder, CFD,
turbulence, wake

3

List of Figures

2.1 Geometry of the domain object of the study: edges (top pic-
ture) and surfaces (bottom picture) 17

2.2 Brief scheme of a circular cylinder wake behaviour as a func-
tion of the Reynolds number 19

3.1 magnification of the cells structure on the cylinder surface,
y-normal section of the OpenFOAM simulation’s domain . . . 23

3.2 nodes and cells of the staggered grid on the x-y plane 29
3.3 Example scheme of the three regions near the cylinder surface 31
3.4 seven points stencil representing the discrete laplacian 32

4.1 Time-averaged velocity field, from time 200 to 300, y-section 39
4.2 Time-averaged velocity field, from time 200 to 300, z-section . 40
4.3 velocity magnitude variance 41
4.4 velocity magnitude variance 42
4.5 velocity magnitude at time = 200, starting time for the data

acquisition . 43
4.6 velocity magnitude at time = 200, starting time for the data

acquisition . 44
4.7 velocity magnitude as a function of time 46
4.8 Time-averaged pressure field, from time 200 to 300 48
4.9 Time-averaged pressure field, from time 200 to 300 49
4.10 variance of the pressure field 50
4.11 variance of the pressure field 51
4.12 pressure field at time = 200, starting time for the data acqui-

sition . 52
4.13 pressure field at time = 200, starting time for the data acqui-

sition . 53
4.14 pressure difference as a function of time 54
4.15 mean fields profile at 1D downstream the cylinder surface . . 56

4

4.16 mean fields profile at 3D downstream the cylinder surface . . 57
4.17 mean fields profile at 5D downstream the cylinder surface . . 58
4.18 lines location . 59
4.19 standard deviation profile at 1D downstream the cylinder surface 60
4.20 standard deviation profile at 3D downstream the cylinder surface 61
4.21 standard deviation profile at 5D downstream the cylinder surface 62

5.1 Seconds per iterations as a function of the number of cores,
for both CPL and OpenFOAM 68

5.2 speedup trend comparison . 70

5

List of Tables

2.1 main articles published about confined cilinders’ wake 16

3.1 brief schematic comparison of the two codes 35

5.1 computational time per iteration of the different setups 69
5.2 Comparison of gains of the IB code in different geometries

addressed by serial simulations 71

6

Contents

1 Introduction 9
1.1 Direct Numerical Simulations 9
1.2 Structure and reasons of the investigation 11

2 Problem definition 12
2.1 Literature bibliographic references 12

2.1.1 ‘Numerical Investigations of Flow Over a Confined
Circular Cylinder’ . 13

2.1.2 ‘A Numerical Analysis of Fluid Flow around Circular
and Square Cylinders’ 13

2.1.3 ‘A numerical investigation of wall effects up to high
blockage ratios on two-dimensional flow past a con-
fined cylinder’ . 13

2.1.4 ‘Numerical study of the blockage effects on viscous
flow past a circular cylinder’ 14

2.1.5 ‘Stability of weak confined wake behind a cylinder in
fully developed turbulent channel flow’ 14

2.2 Introductive formulation of the problem 15
2.3 General Setup of the Problem 17
2.4 Ideal results . 18

3 Description of the two numerical codes 21
3.1 OpenFOAM . 21

3.1.1 Discretization . 22
3.1.2 Solver . 23
3.1.3 Imposed conditions . 25
3.1.4 Parallelization logics 25

3.2 CPL . 26
3.2.1 Solver . 27

7

3.2.2 Discretization . 28
3.2.3 Imposed conditions . 32
3.2.4 Parallelization logic 34

4 Results 36
4.0.1 Expected results . 36

4.1 Visualizations . 38
4.1.1 Velocity . 38
4.1.2 Pressure . 47
4.1.3 Mean fields profile . 56
4.1.4 Standard deviation profile 59

5 Performance of the codes 64
5.1 Computational runtime as a function of the number of cores . 64

5.1.1 Hardware . 66
5.1.2 Results . 66

6 Conclusions and future developments 72

8

Chapter 1

Introduction

Goal of this study is to apply an innovative method to the flow analysis in
the specific scenario of the flow around a circular cylinder.
The main focus concerns the time gain in terms of computational cost by
the immersed boundary DNS algorithm in comparison to a classical one.
The literature available about the phenomena confirms the results here ac-
quired. This fact validates the consistency of a new algorithm to run direct
numerical simulations. The data here reported would also represent a useful
database, since this type of flow is still marginally addressed by numerical
research.
Between the codes chosen to pursue this comparison, OpenFOAM is used
as standard whilst CPL is the immersed boundary code.

1.1 Direct Numerical Simulations

There are two types of flows in nature: laminar flows and turbulent flows.
The latter concerns a large part of the nowadays fluid dynamics research.
Turbulent flows are in fact the most diffuse type of flows and the most in-
teresting in industrial applications.
Navier-Stokes equations - which govern the (newtonian) fluid dynamics - do
not present an analytical solution in turbulent situations. As explained in
[15], this means that the fluid motion cannot be predicted beforehand, as
only its statistics can be. Computational fluid dynamics is a common way
to deal with these problems. However, into current engineering problems
the Reynolds number is high enough to make the discretization incredibly
dense and - thus - the computational cost intolerable.

9

A high computational cost is unbearable in industries or wherever the
time is a key factor. That is why the most part of nowadays studies per-
formed in industries and technological-frameworks address this problem
modeling the turbulence. This reduces the computational cost in return
for a less accurate solution. These models necessarily imply some sort of
time-averaging, even when just for the smaller turbulence structures (like in
large eddy simulations). That choice jeopardizes the possibility to investi-
gate the physical phenomena at the base of turbulent flows.
Large eddy simulations are indeed widely spreading wherever a better reso-
lution or a more reliable time-changing database is needed. Their advantage
with respect to Reynolds Averaged Navier-Stokes equations simulations - or
their unsteady version, URANS - are remarkable. This also comes with an
acceptable increase in computational cost, since the turbulence structures
most expensive to solve - the smaller ones - are modeled.
However, this again comes with the impossibility to study many of the tur-
bulence features, which are related to small scales structures interacting with
surfaces, boundaries and so on.

The main strategy available nowadays to study the flow’s instantaneous
data are direct numerical simulations. This type of simulations avoids the
modeling phase and proceeds by discretization in order to have an accurate
and reliable solution. The discretization must be refined enough to capture
all the turbulence scales.
The Reynolds number used in this very study - as it will be explained - is
higher than other similar past DNS studies, but still distant from the tech-
nological range. Indeed this is not the immediate purpose of this project.

DNS are today an academic research tool, and their outcome is - among
others - mainly referred to geometries interesting theoretical-wise. Never-
theless, the accuracy of these simulations can be valuable in every scientific
environment, and innovative techniques - as the immersed boundary method
- could represent an essential tool from the progress viewpoint. Moreover,
new pioneering studies have already started to apply this strategy into a
diverse variety of problems.

10

1.2 Structure and reasons of the investigation

The investigation in this study has been realized through the editing of two
DNS codes - OpenFOAM and CPL - , making them suitable to solve the
same problem. They were programmed with the same mesh refinement and
with the very same setup. From the results computed in the two simulations
a comparison has been carried out, trying to examine the reasons beneath
the differences between them.
One purpose was indeed to validate the simulations, in order to proceed with
a second comparison on the performaces. The main objective of the whole
project although would be the analysis of an advanced methodology, the
immersed boundary method, when applied to the study of the flow around
a bluff body.
The time gain this type of method should guarantee would be an important
achievement. Of course this has to come with the accuracy of the results
obtained with the direct simulation.

11

Chapter 2

Problem definition

2.1 Literature bibliographic references

The scientific literature references in this peculiar area are both rare and di-
verse. Some of the papers collected in the editing of this thesis represented
an important starting point. In this section we will analyze the elements
more focused on this particular subject.
A brief comparison of the references can be found in tab. 2.1 at the end of
this section.

The resemblance of these studies regards mainly the Reynolds number
investigated and the blockage ratio of the setup.
The Reynolds number (Re) is a dimensionless quantity, defined as the ratio
of inertial forces to viscous forces. It comes in handy when it is needed to
predict flow patterns in various flow situations. As a matter of fact, the
same domain can present different types of flows as this parameter change
value.

Re =
U · δ
ν

(2.1)

As depicted in (2.1), the inertial forces are represesented by the product
of a reference velocity U and a reference length δ. On the other hand, the
viscous forces are represented by the cinematic viscosity ν.
The blockage ratio can be defined as β = D/2h, D being the diameter of
the cylinder and h the semi-height of the channel.

12

2.1.1 ‘Numerical Investigations of Flow Over a Confined Cir-
cular Cylinder’

In [11], the flow around a confined cylinder has been studied. The value of
the blockage ratio is 0.5. The investigation has been carried through a DNS
study performed on OpenFOAM. The dimensions of both the cylinder and
the surrounding domain resemble the ones of our study. In these simulations
the highest Reynolds number investigated is equal to 500.

A quantitative analysis of the flow investigates lift and drag coefficients
- as well as Strouhal number - as a function of the Reynolds number. The
phenomena generated by the interaction between the cylinder wake and the
boundary layer of the walls have been briefly described.
The vortex shedding phenomenon have been described also related to the
deformed structures that the blocking effects generates.
In [11] is also interesting to analyze the criteria used in OpenFOAM to dis-
cretize the domain and solve the governing equations.

2.1.2 ‘A Numerical Analysis of Fluid Flow around Circular
and Square Cylinders’

[19] focused on the behaviour of the wake behind cylinders. Its study val-
idates a numerical setup and building procedure for this kind of problems.
However, its conclusion - although validated via literature references - have
been reached with a RANS study (performed on ANSYS Fluent). This
makes these results less relevant and useful with respect to other studies.
The cylinder shape effects were briefly investigated to enlighten the differ-
ent phenomena between circular and square section. However, the most
interesting section contains the results the wake length as a function of the
Reynolds number.

2.1.3 ‘A numerical investigation of wall effects up to high
blockage ratios on two-dimensional flow past a confined
cylinder’

The results of [17] are just qualitatively useful in this study. In fact, the
two-dimensional setup prevents the simulation to develop physical phenom-
ena close to the ones which this study addresses.
Nevertheless, there are some interesting results about the transition from

13

symmetric to asymmetric vortex shedding as the blockage ratio varies.

2.1.4 ‘Numerical study of the blockage effects on viscous flow
past a circular cylinder’

In [1] the finite element technique was used for the solution of steady and
unsteady flows around a circular cylinder at Re = 106 for blockage ratios of
0.05, 0.15 and 0.25. It is shown that the flow remains steady in the form of
two standing vortices behind the cylinder. The size of the vortices is seen
to be reduced by the increase in blockage ratio. Differently, the separation
angle increases with the blockage ratio.
The most interesting results concern the blockage effects for the accuracy of
the results of a numerical solution. When meshes with high blockage ratios
are used for the reduction of computational time required, the values of the
parameters may be considerably different from those of an unbounded solu-
tion.

2.1.5 ‘Stability of weak confined wake behind a cylinder in
fully developed turbulent channel flow’

[10] investigates the instability of turbulent wake flow in a confined turbu-
lent channel. Confined wakes are found to retain their mean velocity profile
for a considerable downstream distance.
The basic aim of this paper was to investigate the correlation between the
turbulence in the wake region and the inflection points in the wake region
using stability theory, and d/h = 0.2 was chosen.
The numerical results aren’t particularly useful though, since they were ob-
tained by solving the Orr-Sommerfeld equation. Anyway, the experimental
results are interesting and were obtained by introducing organized distur-
bances in the wake and tracking these downstream.

14

2.2 Introductive formulation of the problem

Into the channel in which our simulation takes place, it is straight-forward
to define a cartesian coordinate system. The streamwise coordinate will be
x, the spanwise y and the wall normal coordinate will be z. The velocity
components along these directions will thus be called u, v and w; the veloc-
ity vector will be recalled as u.

It has to be specified that in the case of a channel flow at constant
flow rate the relevant Reynolds number becomes the so-called bulk Reynolds
number.

Re =
U · δ
ν
→ ReB =

UB ·D
ν

(2.2)

This is the case of our simulation. As presented in (2.2), the reference
velocity is the bulk velocity (UB). It can be defined as the average velocity
of the single exact velocities at different locations in the same cross-section
of the flow. Moreover, the characteristic length becomes D - the cylinder’s
diameter.
This nomenclature being established, the governing equations of the system
can be written in a handy way. In the simulations is considered an incom-
pressible flow and the problem is addressed non-dimensionally. Therefore,
it will be used a version of the Navier-Stokes equations like the one reported
in (2.2). The system consists in the mass conservation equation and the
momentum equation.

∇ · u = 0

∂u
∂t

= −u · ∇u−∇p+ 1
Re
∇2u + F

15

Author Paper Blockage ratio Reynolds
number

Method

Anagnosto-
poulos et al.

Numerical
study of the
blockage
effects [...] [1]

0.05 - 0.25 106 irrotational
numerical
simulation

Yuce et al. A numerical
analisys of
fluid flow
around [...]
[19]

0.125 2 - 4 · 106 RANS

Sahin et al. A numerical
investigation
of wall effects
[...] [17]

0.1 - 0.9 0 - 280 velocity-
only finite
volumes
simulation

Kumar et al. Stability of
weak con-
fined wake
behind a [...]
[10]

0.1 14200 experimental
and theoreti-
cal

Mathupriya
et al.

Numerical
Investiga-
tions of Flow
Over a [...]
[11]

0.5 200 - 500 DNS

Table 2.1: main articles published about confined cilinders’ wake

16

2.3 General Setup of the Problem

The general setup is built as a classical, periodical and smooth-surfaced
channel flow, in which a bluff body is built-in. The numerical simulation
treats the flow directly, without any modeling.
The bluff body is a circular cylinder and it is confined with an high blockage
ratio. The peculiar flow around the body at a turbulent Reynolds is the
main focus of the study. The cylinder axis is directed spanwise, along the
y-axis. The incompressible flow motion is treated in a non-dimensional way,
and peculiar boundary conditions are adopted inside the carried DNS.

Geometry The geometry is made out of two parts. The first one is a
classical-layout channel with the streamwise coordinate x as main dimen-
sion. The upper and lower walls are considered physical walls. The second
part is a cylinder whose axis is spanwise-oriented. More in depth, the chan-
nel has dimensions 6π x 8D x 2D x D, D being the characteristic length of
the cylinder - the diameter. As can be seen in 2.1, the cylinder is placed
at 1/6 of the length of the channel, symmetrically with respect to the wall-
normal dimension.

Figure 2.1: Geometry of the domain object of the study: edges (top picture)
and surfaces (bottom picture)

The problem is addressed by the codes in a non-dimensional way, con-
structing the domain with a diameter D = 1, thus making the total height
of the channel equal to 2 and the whole domain 6π x 8 x 2. A Reynolds

17

number equal to 750 is imposed in both simulations.
The reference length here coincides with the diameter D, thus making the
blockage ratio equal to D/(2h) - as h is conventionally half of the total height
of the channel. In our geometry the blockage ratio is equal to 0.5 which is a
rather high value, also compared with other studies performed in this field.
It leads to particular and characteristic phenomena in the structure of the
wake.

Fluid Dynamics Quantities The results presented in this work are ob-
tained with conveniently imposed values of UB = 1, D = 1 and Re = 750.
It can be derived from (2.2) that the non-dimensional cinematic viscosity
will be equal to ν = 1/750.
This bulk velocity value is streamwise oriented; this is particularly relevant
since the flow is bound by a Constant Flow Rate (CFR) condition, imposed
indeed through the UB on the entire domain.
It is worth reminding that here units of measure have no physical meaning.
The goal to achieve was the similarity in the behaviour of the flow garanteed
by the sole value of the Reynolds number. However, the very first simula-
tion performed on OpenFOAM had the reference viscosity of air at 20◦C
(thus ν = 1.5x10−5[m2/s]); the geometry was built trying to maintain a
UB
D ratio similar to the one present in CPL - therefore D = 0.1125[m] and
UB = 0.1[m/s]. This would have meant a comparison of results which would
not have been as direct as the one we’re portraying here.

Boundary Conditions In streamwise and spanwise directions the bound-
ary conditions are periodical - cyclic on OpenFOAM - . Wall boundary con-
ditions are imposed over the physical surface of the upper and lower surfaces
of the confining box, as well as on the cylinder surface.
Concretely, the wall boundary condition translates into no-slip condition for
velocity and a zero gradient condition for pressure.

2.4 Ideal results

A bluff body can be defined as a body that presents separated flow over a
substantial part of its surface. This comes as a result of its shape with re-
spect to the incident flow, if not its overall shape. The section perpendicular

18

Figure 2.2: Brief
scheme of a cir-
cular cylinder
wake behaviour
as a function
of the Reynolds
number

to the main direction of the flow determines the reference surface and the
reference shape of the body.
Both simulations gave back a flow description coherent with the structures
and phenomena expected from the theoretical results. In particular, the
flow around a cylinder for Reynolds numbers around 750, is expected to
present a large separation behind the body, with the periodic detachment
of turbulent eddies.

Without interferences from the nearby walls we would normally see tur-
bulent eddies detaching from the cylinder surface at a periodical vortex
shedding frequency, giving the wake a precise and organized structure. The
word ”organized” has to be managed carefully though, since from the the-
ory it is well known that the flow develops a turbulent wake starting from

19

Reynolds numbers close to 300.
Indeed, from Reynolds about 200 the formation of large scale instabilities
transform the unsteady, periodical wake into turbulent. In this situation,
the Von Karman wake still holds, with the difference that the eddies are not
anymore laminar. Further on, increasing the Reynolds number, even small
scale instabilities arise.
Ideally speaking, the separation point where the vortices generate is ex-
pected to be seen on the lateral surface of the cylinder at about 80 degrees
with respect to the mean velocity direction.
These phenomena are generally recollected while considering the vortex pair-
ing. Along with that, we expect the laminar boundary layer separation to
generate a turbulent sheet: the shear layer separates, the transition to tur-
bulent takes place and then the vortex originates. As explained in [6], the
vortex tubes are generated from the vortex sheets decay because of the
Kevin-Helmholtz instability.

However, it is important to recall that from this ideal situation we can
foresee only a few preliminary characteristics. There are many important
features which will determine a very different situation from the ideal one;
the periodic boundary conditions, the presence of the walls and the blockage
ratio are the most important.

20

Chapter 3

Description of the two
numerical codes

In this study two different codes have been used. The first one - OpenFOAM
- represents the current state of the art in the scientific landscape, whereas
the latter one - CPL - is internally developed and profoundly innovative.
They address the problem and its solving process in different ways. The dif-
ferences regard the geometry ad surfaces management, the solving schemes
and even parallelization and processors communication. These differences
make CPL’s performances superior in comparison with OpenFOAM’s, mak-
ing the immersed boundary method a concrete enhancement in solving tech-
niques.
From the viewpoint of direct simulations, this represents an important and
needed progress.

3.1 OpenFOAM

Originally born as a partial differential equations solver, OpenFOAM (Open
Field Operation And Manipulation is one of the most valid softwares avail-
able nowadays for computational fluid dynamics. It consists essentially in a
C++ toolbox, it is conveniently opensource and completely editable in its
libraries and codes, thus allowing for an (expert) user tailor-made changes
for the current problem. Furthermore it provides a full integration with the
graphic software Paraview, a programmable and useful tool to data visual-
ization (see [9] for further details).
Thanks to its opensource nature, it possesses a widespread and constantly-

21

updated library, making it suitable for the most diverse variety of problems.
It goes withouth saying that the choice between all of these possibilities
must be driven by a thorough knowledge of the problem to be analyzed.

3.1.1 Discretization

Surface management The surface management is in OpenFOAM a pro-
cedure made out of several consecutive steps. At first, the user needs to
build a sorrounding box that has to comprehend internally the entire do-
main object of study. In this part, the box is built with a staggered cartesian
subdivision of the space, using the tool BlockMesh. Many possibilities are
available here to build the geometry more suitable for the case. Here the
user has to specify the discretization, the eventual melding between different
boxes, as well as the intended boundary conditions for the surfaces the box
is made out of.
Then follows the introduction of all the objects that the user desires inside
the domain; the most direct method is the construction of an ascii-written
stl file.
The last part is the usage of SnappyHexMesh, a meshing tool in which the
stl can be placed inside the domain, the desired parts can be considered
inside or outside the field and so on. This utility proceeds by two steps. At
first the geometry is refined where specified - still as cartesian cells, with
CastellatedMesh - and then, the final mesh is refined and made out of hex-
aedral cells.
Here is possible to specify the desired resolution, smoothing criteria and
geometrical tresholds.
In this study the first mesh build via BlockMesh has dimensions 6πx8x2 and
cells 400x170x100, for a total 6.8M cells.

22

Figure 3.1: magnification of
the cells structure on the
cylinder surface, y-normal
section of the OpenFOAM
simulation’s domain

Then the stl file of the cylinder was comprehended via SnappyHexMesh
and positioned at 1/6 of the streamwise total length. Its surface was refined
with a level of refinement equal to 2, meaning that each surface cell has
been discretized one time into 4 sub-cells (as indicated through the nCells-
BetweenLevels OpenFOAM variable). Then the entire mesh encountered
the final refinement into hexaedral cells.

3.1.2 Solver

OpenFOAM is provided with many possibilities in terms of resolution schemes
and simulation types. It contains several laminar schemes, RANS schemes,
LES schemes and even a DNS dedicated option - suitable only for cubic
domains, dnsFoam.
Through the editing of its dictionaries the user can choose the options that
suit the most his needs. In particular, to run a DNS simulation for this study
was necessary, in the turbulenceProperties dictionary, to specify a laminar
type of simulation. This way the program would not model any of the flow
structures, whatever the scale. Of course in order to do this in a proper
manner, the resolution needs to be high enough to capture all the turbu-
lence scales.

The pimpleFoam solver pimpleFoam is an incompressible, transient
solver which can include turbulence models as well as customized finite vol-
ume options. It requires mandatorily two input fields, kinematic pressure
and velocity. Its algorithm, called indeed pimple combines two different
OpenFOAM algorithms, them being piso and simple.
The piso (Pressure Implicit with Splitting of Operators) algorithm is de-
signed to solve Navier-Stokes equations in unsteady problems and is made

23

out of various steps. After the setting of boundary conditions, the dis-
cretized momentum equation is solved to compute an intermediate velocity
field, making possible the computation of mass fluxes at the cells faces.
Then the pressure equation is solved and take place the correction of mass
fluxes and velocities on the basis of the pressure field. Then the boundary
conditions are updated and the time step increased and the loop ends; of
course the central steps of the algorithm are repeated the necessary number
of time to correct for non-orthogonality.
The simple (Semi-Implicit Method for Pressure Linked Equations) algo-
rithm starts with the construction of the momentum equations. Then,
differently from the piso algorithm, it operates a under-relaxation of the
momentum matrix before solving the momentum equations for velocities.
From here, it constructs and solves the pressure equation, the correction of
the flux takes place and the pressure itself is under-relaxed. Finally, the
velocity is corrected through the pressure solution; here as well, of course,
in case the convergence is not reached, the central steps are repeated before
proceeding with the time step. Here, however, the momentum corrector
step is perfomed only once (differently to what happens in piso). See [7] for
further details.
The pimple algorithm combines the best of both methods in a dynamic way
in order to increase its time performance without sacrifing accuracy.

FvSolutions and FvSchemes In OpenFOAM there is the possibility to
edit the choice of the scheme used to solve the partial differential equations.
This can be done once the solver has been specified, if the most suitable
choice for the current simulation is not the default one.
In our specific case, through the library FvSolutions, the schemes chosen
were GAMG (Generalized geometric-Algebraic Multi-Grid) for the pres-
sure, with a DICGaussSeidel (Diagonal Incomplete-Cholesky/LU with Gauss-
Seidel) smoother. For the velocity it has been used a smoothSolver - a solver
that uses a smoother - with a symGaussSeidel (symmetric Gauss-Seidel)
smoother (see [4] for further details).
Then through FvSchemes it was possible to set the numerical schemes to be
used for each single finite difference calculation. For the gradient, laplacian
and divergence operators the designed schemes were different applications of
the linear Gauss scheme - namely a stardard finite volume discretization of
Gaussian integration with a linear interpolation of values from cell centres
to face centres. The backward scheme - transient, second order implicit,

24

partially unbounded - was chosen for the time derivatives.

3.1.3 Imposed conditions

Conditions It is important to enlighten one aspect about this flow: it
takes long time to bring it up to speed. The turbulence must develop suf-
ficiently in order to observe its structures and phenomena. In order to do
this, the simulation has been carried on for about 30 time units, without the
imposition of the CFR condition and with a uniform velocity and pressure
field. In the entire domain the initial conditions were u =(1 0 0)T and p
= 0.
Then the CFR condition, with UB = 1, was imposed from that istant on and
the simulation proceeded for 200 time units. It is worth reminding that the
turbulence has no memory, this meaning that a turbulent flow does not pos-
sess characteristic determined by what generated its turbulent structures.
Therefore, with a streamwise max lenght of 18.85 (6π) and being the ve-
locity bulk imposed with unitary value, 200 time units were enough for the
flow to reach capacity and steady statistics.

Implementation In OpenFOAM it is possible to edit ad-hoc libraries
whenever the standard ones are not suitable to the specific needs of the
simulation. Imposing the CFR condition onto the domain is one of those
situations. Therefore, a particular library called FvOptions was edited and
included into the system directory - which is the directory contanining the
simulation main features.
Specifically, the edited version of this dictionary provides a correction based
on the pressure gradient, acting through a momentum term to force the flow
rate to be constant. The purpose is to reach a reference average velocity -
UB - on the whole domain.
An adjustable timestep was considered during the simulation, as specified
inside the ControlDict, the dictionary dedicated to simulation control.

3.1.4 Parallelization logics

On OpenFOAM, when running a simulation in parallel, the geometry must
first be decomposed into individual geometries for each MPI process. These
separate geometries are connected together with special processor boundary

25

patches.
The utility here used for decomposition, called decomposePar, is a common
method to decompose domains and subsequently distribute the fields. In
its dedicated dictionary, decomposeParDict, it is required a certain group of
specifications since OpenFOAM offers a variety of decomposition methods
and routines. If a decomposition method requires additional configuration
controls, these can be specified in a dedicated dictionary.
For the concerns of this study, the so-called simple decomposition was good
enough; it comprehends as input the number of subdomains and the number
of processors in each direction (x/y/z). A basic geometry like ours can be
efficiently managed this way.

Moreover, it is worth mentioning that the reconstruction process has to
be explicitly carried via the reconstructPar utility; in our comparison this is
a secondary but still important issue. In fact, running a parallel simulation
on OpenFOAM yields to as many directories as the number of processors,
and the output results are saved there. It is a proper domain decomposition
that takes place, with new boundary conditions generated so that each core
can run its own simulation. In order to rebuild a whole set of results, the
reconstructPar utility is needed. The more processors the simulation was
split onto, the more time this operation requires.

3.2 CPL

The CPL language is a programming language developed by professor Paolo
Luchini of University of Salerno. It is an high-level language based on the C
language, with an intuitive and innovative syntax and memory management.
It is inherently designed for direct numerical simulations and the code used
in this very study is structured in various libraries, each one appointed for
a specific task.
Even though it does not really consists of a structured software but instead
of libraries, executable files and a specific makefile utility, for sake of sim-
plicity we will generically refer to CPL as to the ensemble of codes edited in
this language.
Through the compiler is thus possible to build, from five different mod-
ules, the code to run the simulation. Inside the parallelbcs modules (paral-
lelbcs.cpl and parallelbcs.h) the definitions of the parallel algorithms and
boundary conditions are found. Inside iofiles.cpl the input and output

26

phases are treated, both in terms of initial field (when present) and be-
tween different time steps. timestep.cpl manages the resolution scheme and
then the main module - cylinder.cpl - defines and run the simulation, gath-
ering all other utilities and subroutines.

3.2.1 Solver

The DNS code, through a particular version of the immersed boundary
method, is able to simulate an incompressible flow around a solid object
confined inside a channel. The geometry of both the channel and the object
can be specified inside the code itself. One of the distinguishing aspect is
that the governing equations are solved into physical space; this way the in-
troduction of Fourier transform is avoided. Thus the solver takes advantage
of the simplicity of second order finite differences.
The solving scheme proceeds with an algorithm which subdivides each tem-
poral step into substeps, in order to simplify the numerical complexity as-
sociated with the operator; this type of scheme is called operator-splitting.
More in depth, we consider the forcing term F at right hand side of (3.1)
necessary in order to make the fluid flow through the channel; in our non
dimensional formulation the term represents a force per unit of volume.

∂u

∂t
= −u · ∇u−∇p+

1

Re
∇2u + F (3.1)

The temporal discretization is based with the Runge-Kutta scheme (or
the Adams-Bashforth when specified); the Kutta’s third order method di-
vides each timestep into three sub-steps assigning each one of them a co-
efficient. The spatial discretization takes place on the staggered cartesian
grid built by the IB method; the implemented scheme is the second order
finite differences. These methods together govern the time progress of the
simulation through the computation of the discrete derivatives (see [16] for
further details).
During the resolution, firstly the velocity is obtained solving the momen-
tum equation; in fact, all velocity terms (apart from the time derivative)

27

are computed at the previous step, thus making the velocity explicit. Since
all non-linear terms are referred to the previous-step-computed variables,
the solution of the equation can now be calculated via Gauss substituion,
since we have a (peculiar) linear system of equations. The pressure however,
remains explicit.
Here takes place the second part of the scheme: the velocity solution just
computed is substituted into the continuity equation, thus leading to an
equation where the pressure is the only unknown; the adimensionalized pres-
sure equation.

∇2p = ∇(−u · ∇u + F) (3.2)

This equation can be discretized to become a discrete laplace equation,
that is then resolved through the so-called pressure correction.

3.2.2 Discretization

The domain discretization is fundamental to define the finite differences used
to solve the numerical version of the governing equation.
In the CPL’s simulation it has been considered a staggered cartesian dis-
cretization of the domain, which leads to a mesh made of cubic cells.

More in depth, the velocity components are defined halfway between
the nodes in which the pressure field is evaluated and cosidered. After the
temporal and spatial discretization (exploiting them with the kroenecker δij ,
defined equal to one if i=j, 0 otherwise) we get the first part of the resolution
system in the form of:

28

Figure 3.2:
nodes and
cells of the
staggered
grid on the
x-y plane

un+1
j (ixj+1/2)−un+1

j (ixj−3/2)

2∆xj
= 0

un+1
k = unk −∆tunj

unk (ixj+1−δjk/2)−unk (ixj−1−δjk/2)

2∆xj
+

+∆t
Re

unk (ixj+1−δjk/2)−2unk+unk (ixj−1−δjk/2)

∆x2j
+

−∆tp
n+1/2(ixk+1)−pn+1/2(ixk+1)−pn+1/2(ixk−1)

2∆xk
+ ∆tF n

k

k=1,2,3

The unknowns here are the velocity at the next step and the pressure at
the next half-step (namely xn+1

k and pn+1/2).
That being said, the resolution of this first part (via Gauss linear substi-
tution) provide us the velocity from the momentum equation, and then,
substituting that into the continuity equation, as already explained we’re
left with the pressure equation, in which the pressure remains the only un-
known.
Its discretization leads to a discrete Laplace equation, solved through the so
called pressure correction:

29

pn+1/2(ixk + 1)− 2pn+1/2 + pn+1/2(ixk − 1)

∆x2
k

=

=
1

2∆xk
[−unj (ixk + 1− δjk/2)(

∂uk
∂xj

)n(ixk + 1/2)+

+ unj (ixk − 1− δjk/2)(
∂uk
∂xj

)n(ixk − 3/2) + Fnk (ixk + 1)− Fnk (ixk − 1)]

(3.3)

The immersed boundary method The immersed boundary method
has been first introduced by Peskin in [13] and is nowadays a useful tool for
the treatment of fluid-structure interaction problems. The code requires a
staggered cartesian grid, built without considering the immersed boundary
of all the surfaces nor the geometry of the body inside of the box. The
general idea is to modify the governing equations in the proximity of the
solid contour as to consider the relative position of the boundary and the
staggered grid.
Here lies the biggest liability of this method, namely the lower resolution
control with respect to the boundary-fitted method. Of course this down-
side comes with an important advantage, which is the incredibly low memory
usage; since the grid is staggered, there is no need to archive all cells and
points position, and also the resolution of the equations will require, thanks
to this fact, a much much lower random access memory by the computing
machine.

The discretized equations (3.2.2) (3.3) need the introduction of a cor-
rection of the forcing term, since it is there induced the contribution of the
surfaces’ presence. Since the walls are not coordinate fitted, their bound-
aries are not known in terms of nodes from pressure and velocity.
The method therefore must proceed correcting the linear system with coeffi-
cients related and determined by the relative position between the staggered
cartesian grid and the contour of the body. The influence will be considered

30

as to include the non-slip condition.

In the immersed boundary method version here implemented takes ad-
vantage of a linear interpolation between the grid points where the solution
is computed and the points of the contour, then considering an interpolated
solution to compute the governing equation’s residual.

Figure 3.3: Example scheme of the three regions near the cylinder surface

More in detail, the method ideally divides the domain into three distinct
regions, as depicted in 3.3. One region is away from walls, where the calcu-
lation can be performed without any boundary corrections; one lies where
the calculation needs to be corrected as to include the interaction between
fluid and solid wall; the last one lies inside the body. It is worth mentioning
that once the code initiates the computation and evaluates the geometry,
the code recognizes the points of the third region and exclude them from
further calculations eliminating the values of the fields on them.

The present case application The residual computed in the equation is
considered in an implicit form in order to ensure stability, and so, insted of

31

modifying the forcing term directly, in our specific case the surface presence
is denoted into the coefficients of a unknown. The unknown considered is the
discrete laplacian term, in which, as the surface approaches, the correction
coefficient increases cancelling off the unknown (since it is the denominator
of the term).

The linear interpolation yield to the possibility of a better approxima-
tion, instead of a stepped treatment of the surface; in order to do so, the
discrete laplacian evaluation proceeds through a bisection algorithm. In-
deed, considering it into our finite cartesian grid, its computation depends
on the fields’ value found on each of the seven points composing it.

Figure 3.4: seven points stencil repre-
senting the discrete laplacian

Then, considering the geome-
try of our bluff body (namely a
cylinder indefinite and straighted-
axis along y), it is straightforward to
comprehend why the variability of
the values along the laplacian arms
is contemplated along the x and z
axes.

Therefore, the code itself is im-
plemented in such a way that only
the x and z coordinates can vary as
to include the possibility of the pres-
ence of solid walls along their direc-
tions. Whenever, along those axes,
a solid contour approaches, the bi-

section algorithm evaluates on each of the arms of the laplacian its relative
position and then calibrates the correction coefficient along those arms which
encounter the surface.

3.2.3 Imposed conditions

The conditions imposed on the CPL simulation were the most possible close
to the ones implemented within the OpenFOAM simulation.

32

Conditions The conditions imposed at the beginning of the data produc-
tion were an already developed and operational turbulent flow, characterized
by a constant flow rate condition inside the domain, periodic boundary con-
ditions streamwise and spanwise and variable time step (∆t).

Implementation To generate the initial conditions for the flow, it has
been created one specific utility, called ”interp.cpl”. This utility generates a
executable file which takes as input a turbulent flow of a generic geometry
and interpolates and stretches its fields into the selected domain, in terms
of cells and points, dimensions of the channel, coordinates and so on. It
also takes into account the desired viscosity (which, as already said, in CPL
represents the inverse of the Reynolds number). This allowed the simulation
to start from an already developed turbulent situation; then the data pro-
duction started after 200 time units and went on for 100 time units saving
the results on a unitary basis.

As to impose the constant flow rate condition, a subroutine was imple-
mented and inserted within the ”timestep.cpl” utility, which contains all
the time-solving and discretization tools needed by the main code to pro-
ceed with the simulation.
The subroutine proceeds by two quantities (UFR and VFR) which have to
be specified at the beginning, and then considers them as a reference to
correct the flowrate evaluated at each time step (along both streamwise and
spanwise directions); the difference between them is then considered to gen-
erate correction terms that through a momentum quantity will modify the
pressure gradient in the domain.
Of course the solid surfaces are firstly considered as to maintain the correct
boundary conditions on walls surfaces as the simulation goes on.
It is worth mentioning that whenever the CFR condition is not specified
during the initial and boundary conditions, the code proceeds considering a
constant pressure gradient simulation (CPG).

In order to exploit the code maximum performance, via evaluation of
the cfl number, a variable time step was implemented inside the code. The
Courant– Friedrichs– Lewy condition is a necessary condition for conver-
gence while solving numerically partial differential equations (as Navier-
Stokes are). In the numerical analysis of explicit time integration schemes,
it states that the time step must be less than a certain value (namely, the

33

CFL number) as to avoid incorrect results. The numerical domain of depen-
dence of any point in space and time (as determined by initial conditions
and the solving scheme) must include the analytical domain of dependence
(wherein the initial conditions have an effect on the exact value of the solu-
tion at that point); in essence, this ensures that the scheme can access the
information required to form the solution.
This way the maximum value for ∆t can be computed and the simulation
speed up its resolution. Starting from an externally specified maximum
value for the cfl number (a conservative value of 0.5 was considered in our
case), each time step the code evaluates its instant value and then compute
the ∆t as a ratio between the two quantities.

3.2.4 Parallelization logic

The code comprehends the dictionaries parallelbcs.cpl and parallelbcs.h that
allows and governs the parallelization of the calculation. They allow the
main code to to split the grid along x and y (streamwise and spanwise) and
it is written as to minimize the data exchange between processors.

The communication between cores has indeed been optimized: each sin-
gle core starts solving the inner part of its grid portion, whilst in the mean-
time it communicates with the other processors the informations about the
boundaries. Then, in a latter moment, it will solve the outer portion. In-
deed, the algorithm manage the communication in such a way that each
single processor will be able to compute the second order differences of the
solving scheme, and this sequence of steps it has been proven to be the most
efficient.

Moreover, CPL has the intrinsic capability to produce a single, unified
output. Contrarily to what OpenFOAM does, the fields data are in fact
produced into whole, all-domain comprehending output files. This, together
with the possibility to edit completely and easily the saving criteria (for
example iteration based rather than time based), is a straightforward ad-
vantage with respect to the OpenFOAM’s functioning.
In the overall requested time for one simulation, the simplicity of this code
allows to avoid complex and non-negligible operations, increasing its perfo-
mances under the whole time-saving perspective.

34

Code Surface
management

Paralleliza-
tion logic

Main
advantages

Main
disadvantages

OpenFOAM Boundary-
fitted

ad hoc util-
ities for
decomposi-
tion and
recomposition,
MPI running

Complete,
reliable and
opensource

not very user-
friendly w.r.t.
other
widespread
softwares

CPL Immersed-
boundary

inbuilt and
automatic
logic for de-
composition,
recomposition
and logic

Task-
oriented,
efficient

requires a
profound
editing for
new domains’
studies

Table 3.1: brief schematic comparison of the two codes

35

Chapter 4

Results

The simulation of the flow around a confined cylinder was comprehensive of
a large data recollection. Moreover, post processing operations have been
performed in order to evaluate the phenomena taking place and compare
the results given by the two codes.

4.0.1 Expected results

The periodic boundary conditions consist in a numerical stratagem where
the flow exiting from one boundary surface will re-enter from its coupled sur-
face. In the present case, the flow exiting from one of the x-normal surfaces
re-enters from the other one and the same happens for the two y-normal
surfaces.
In the study of turbulent flows, this type of boundary condition is usually
implemented in order to study the development of wall turbulence and its
phenomena in channel flow studies. In our case we wanted to study the pe-
riodic features in a handy and reliable way. Therefore a full speed condition
had to be reached in order to develop a consistent state of turbulence.
This was ensured in our case by the periodic boundary conditions along with
the turbulent initial conditions.

The blockage ratio in our study is particularly elevated, as already said:
0.5 represents the fact that the perpendicular surface of the object that the
flow encounters is half of all the channel’s transversal area.
It is straightforward to comprehend that this fact will profoundly affect the
behaviour of the flow. The region of the domain where the flow is bound to
pass, through the section between the cylinder and the two physical walls,

36

will indeed act - firstly - as a convergent. Hence the flow will experience
a sensible acceleration and decrease in pressure. This will hold until the
widest perpendicular section of the cylinder - the central one - is reached by
the flow.
There the area available for the flow to pass is at its minimum, similarly to
the throat section of a nozzle. After that, the cross-sectional area available
starts to increase progressively, leading to a divergent-like behaviour, gener-
ating the opposite phenomenon: a velocity decrease and a pressure increase.

Therefore, the phenomena taking place along the bluff body wake only
partly reflects the linear and neat ones explicated above.
The acceleration of the flow entails the structure of the streamlines to realign
and also the local Reynolds number to increase. We can clearly observe from
the visualizations that the consequences of this phenomenon will reflect also
on the shear layers of the bottom and top walls.

These boundary layers are turbulent and proceeding downstream they
will detach, generating a complex interaction with cylinder’s own detached
shear layer. This interaction will reflect on the increased, unsteady, three-
dimensional turbulence characterizing the wake.
The main features described in the literature are present, but slightly dif-
ferent in some cases.
The harmonic pattern generating on the cylinder along y-axis direction is
observable in its first expressions. The vortex shedding phenomenon, along
with its characteristic frequencies, is present but not straightforward observ-
able as it would be in a case with less developed three-dimensional structures.

Among the several data graphs and visualizations disposed from now
on, it can be recollected the turbulence structure in the flow. In particular,
the mean profiles data help our understanding of the wake behaviour down-
stream the cylinder. The decay of the largest scales of turbulence is easily
observable, and the decrease in the kinetic energy content can be derived
from there.
The three dimensional phenomena influence the data recollection giving a
very convoluted and twisted behaviour of the instantaneous quantities, de-
noting the complexity of the eddies’ time-changing disposition.

37

Data collection The database was acquired saving the fields at each time
unit of both simulations. The simulations proceeded from instant 200 to 300;
therefore one hundred instantaneous fields constitute the available data.
All the data reported in the visualizations have been processed and obtained
from those saved fields. The mean fields and the standard deviation fields
have been computed over 100 time units as reference.

4.1 Visualizations

The first thing to consider is that the immersed boundary code does not
build the geometry of the domain around the cylinder, as already said. It
will be then immediate to understand that, while in OpenFOAM visualiza-
tions the cylinder’s body is not part of the domain, in CPL visualization it
will be. All fields are null inside of it, and therefore the viewer should be
able to identify it.
The most part of the visualizations displayed below pertains to sections ef-
fectuated in the middle of the domains’ dimensions along y and z axes.

All the quantities here reported in figures are non dimensional and scaled
with the reference quantities used to implement the equations from their
original version.
For the very same reason, the eventual presence of negative pressure values
is not an index of incorrect simulations - nor, of course, of negative pressure
inside the domain.

4.1.1 Velocity

Mean field is represented in the figures 4.1 4.2. The differences between the
two codes’ results are just qualitative, as can be seen from the mean profiles
shown latter in this chapter.

38

(a) Time-averaged velocity field cpl, y-section

(b) Time-averaged velocity field openfoam, y-section

Figure 4.1: Time-averaged velocity field, from time 200 to 300, y-section

The solver implemented in OpenFOAM requires the imposition of a di-
verse set of tolerance parameters and smoothing utilities, whose action can
be detected into the different variance field present in the domain.

39

(a) Time-averaged velocity field cpl, y-section

(b) Time-averaged velocity field openfoam, z-section

Figure 4.2: Time-averaged velocity field, from time 200 to 300, z-section

The variance for CPL is represented in fig. 4.4, while for OpenFOAM
is depicted in fig. 4.3. OpenFOAM provides a runtime evaluation of the
variance, and the standard deviation data have to be computed in the post
processing phase. A comparative view of the standard deviation results can
be found at paragraph Mean fields profile. The utilities that compute vari-
ance and standard deviation for CPL data has been implemented ad hoc in
a handy way, thanks to the programming language’s elevated plasticity.

40

(a) variance of velocity, y-section, cpl

(b) variance of velocity, y-section, openfoam

Figure 4.3: velocity magnitude variance

41

(a) variance of velocity, z-section, cpl

(b) variance of velocity, z-section, openfoam

Figure 4.4: velocity magnitude variance

Instant fields are briefly reported below in fig. 4.5 4.6 as to represent the
flow structures and phenomena.
It is worth recalling that this data are instantaneous and therefore con-
cern a single instant in the flow time history. Giving the turbulent nature of
the current, it is embedded that differences are encountered between the two
codes, as they are between different moments in the same simulation as well.

42

(a) y-normal section, cpl simulation

(b) y-normal section, openfoam simulation

Figure 4.5: velocity magnitude at time = 200, starting time for the data
acquisition

The possibility of finding different range of velocities in different sections
of the same simulation at the same time confirms the unsteady convoluted
behaviour of the flow.
It is however important to recall that the data agree on the description of
turbulent structures as well as on the values of the velocity field and their
location in space.

43

(a) z-normal section, cpl simulation

(b) z-normal section, openfoam simulation

Figure 4.6: velocity magnitude at time = 200, starting time for the data
acquisition

The time 200 has been chosen as an example, given that the simulation
is unsteady and therefore any instantaneous rendering has the same value
reporting these time-changing quantities.
From fig. 4.5 4.6 can be seen that the flow’s velocity magnitude encounters
big variation inside the domain. We can observe the highest values, around
3.0, develop into the convergent section of the domain; this is three times the
reference value of UB. These high velocities then proceed downstream gen-
erating the biggest scales eddies, which persist before decaying into smaller

44

scales eddies for about 5 times the characteristic length maximum. The
persistency of these structures is influenced by the presence of the confining
walls, as reported in [10].
Of course, along with that we can spot the velocity reaching its minimum
values in the recirculatory area just behind the body. In the stagnation
points the velocity is particularly low, as expected, but into the recircula-
tion caused by the flow separation, the area of minimum velocity (around
0) is way wider and developed.
The flow then rapidly evolve into a turbulent flow analogous with the one
that can be observed inside classical channel flow studies.

45

Probe The velocity evolution in the recirculatory area have been studied
also by a probe located 1D downstream the cylinder’s side (fig 4.7).
This position in particularly relevant in the evaluation of the wake’s be-
haviour and therefore a comparison between the two codes can be performed.

(a) cpl simulation

(b) openfoam simulation

Figure 4.7: velocity magnitude as a function of time

We can see an overall similar behaviour although the instantaneous vari-
ation of this value are different from one simulation to another. This could
represent a limited database acquisition, as the statistics behaviour depicted

46

in fig. 4.19 can confirm.

4.1.2 Pressure

The mean field reported in fig. 4.8 4.9 has been evaluated with a time-
averaging operation. All the same reasoning carried on in the paragraph
about velocity visualization still holds for the pressure field.
It’s important to describe how the pressure field evolves in the cylinder’s
wake. We can identify the recirculatory region for its low values, around
-3 for instant fields, around -2.5 for mean fields. The pressure increase ex-
pected from the diverging action of the cylinder side is therefore spoiled by
the turbulence phenomena, reflecting the behaviour proper of a bluff body.

47

(a) Time-averaged pressure field cpl, y-section

(b) Time-averaged pressure field openfoam, y-section

Figure 4.8: Time-averaged pressure field, from time 200 to 300

48

(a) Time-averaged pressure field cpl, z-section

(b) Time-averaged pressure field openfoam, z-section

Figure 4.9: Time-averaged pressure field, from time 200 to 300

The variance results for CPL in fig. 4.11 are aligned with the velocity
ones, as well as the variance results of OpenFOAM’s simulation in fig. 4.10.

49

(a) pressure variance, cpl, y-section

(b) pressure variance, openfoam, y-section

Figure 4.10: variance of the pressure field

50

(a) pressure variance, cpl, z-section

(b) pressure variance, openfoam, z-section

Figure 4.11: variance of the pressure field

Instant fields are reported in fig. 4.12 4.13 for the very same condition
portraied for the velocity fields. Where narrow regions of low pressure are
spotted, there lies the core of swirling structures.
We can easily recognize the stagnation points in front of the cylinder, dif-
fused all over the surface front side. There the flow reaches its minimum
velocity values whilst the pressure fields reaches its highest ones.
From the mean pressure field can be recognized the area where the biggest
eddies, generated in the vortex shedding phenomenon, encounters just be-
hind the limit of the recirculatory area. In that area, from the instantaneous

51

field visualization, we can also observe the pressure reach its minimum val-
ues in those points where the center of large eddies is located.

(a) y-normal section, cpl simulation

(b) y-normal section, openfoam simulation

Figure 4.12: pressure field at time = 200, starting time for the data acqui-
sition

As was found into the velocity visualizations, along the y axis it is pos-
sible to observe that the vortex detachment is a three-dimensional phe-
nomenon, and the y-dimension is developed enought to evaluate the first
harmonic realizations of that.

52

(a) z-normal section, cpl simulation

(b) z-normal section, openfoam simulation

Figure 4.13: pressure field at time = 200, starting time for the data acqui-
sition

Pressure difference The difference of pressure before and after the cylin-
der have been evaluated thorough all simulation; the unsteady nature of the
flow make this values interesting to be viewed as a function of time. This
in fact gives us the opportunity to study turbulent phenomena taking place
in the cylinder wake development and is an important index to evaluate the
drag.
In order to obtain the results shown in 4.14, we chose two reference surfaces.
The first one lies at 1D upstream of the cylinder’s side, the other 1D down-

53

stream; of course both of them are oriented x-normal.

(a) cpl simulation

(b) openfoam simulation

Figure 4.14: pressure difference as a function of time

To compute these results the pressure has been integrated over the sur-
face and then normalized with the area. The results show time changing
values for both simulations but also a relevant difference in range.
The non negligible variations in time suggests the presence of large, evolving
turbulent structures, instead of a sole small scale turbulence, whose action
would have been less unsteady when averaged on the whole surface.

54

However, as expected by the theory, the pressure difference trend varies
along a certain high value (1.85 more or less), resembling the almost costant
behaviour of the high drag coefficient of a bluff body.
This values can be compared with 4.8 to better comprehension.

55

4.1.3 Mean fields profile

Through the paraview filter PlotOverLine, it was possible to collect the mean
velocity magnitude profile and the mean pressure profile.
Starting from the temporal averaged fields - whose visualizations were re-
ported before in this chapter - it was possible to select certain locations
where plot the mean profiles.

(a) velocity

(b) pressure

Figure 4.15: mean fields profile at 1D downstream the cylinder surface

56

(a) velocity

(b) pressure

Figure 4.16: mean fields profile at 3D downstream the cylinder surface

57

(a) velocity

(b) pressure

Figure 4.17: mean fields profile at 5D downstream the cylinder surface

The selected locations are of course the same for both OpenFOAM and
CPL: centered along y axis, parallel to the z axis, these lines are found at
1/3/5 times the cylinder’s diameter downstream with respect to the cylinder
rear side, respectively.

It can be easily observed that the mean profiles coincide almost perfectly.
The chosen locations for these evaluations are particularly relevant from the
turbulence viewpoint; in fact, in those location the cylinder wake evolves

58

rapidly. For example, as can be seen from the plots, at 1D downstream the
cylinder (fig. 4.15), it is present a wide recirculatory region. That region
indeed coincide with smaller values of velocity magnitude, while on the sides
of the channel the velocity is higher. This results confirm our expectations,
since in this region the most external parts of the channel still possess a
velocity field accelerated by the blocking effect.
Proceeding downstream, the largest turbulence structures decay progres-
sively from fig. 4.16 to fig. 4.17, leading to a smaller scale turbulence.
We can observe this phenomenon by the increasing flatness of the velocity
profile, which represents the mixing action taking place in the wake. Of
course this behaviour still holds going on downstream. This perfectly re-
flects the channel mean velocity profile which become more and more flat,
resembling the expected turbulence mean velocity profile for a turbulent
channel flow. Confined channel flows - with developed turbulence - are in
fact characterized by a flat velocity profile.

4.1.4 Standard deviation profile

Figure 4.18: lines location

Through the par-
aview filter PlotOver-
Line, it was possible
to collect the pro-
files for the standard
deviation of both
pressure and veloc-
ity magnitude.
The chosen positions
and the plotting lines
are of course the
same as in the pre-

vious paragraph; these profile visualizations, along with those, will help the
understanding of the surface visualizations found before in this chapter.

59

(a) velocity

(b) pressure

Figure 4.19: standard deviation profile at 1D downstream the cylinder sur-
face

60

(a) velocity

(b) pressure

Figure 4.20: standard deviation profile at 3D downstream the cylinder sur-
face

61

(a) velocity

(b) pressure

Figure 4.21: standard deviation profile at 5D downstream the cylinder sur-
face

It is straight-forward to observe that here, in spite of what observed for
the mean fields, we have a different behaviour for the two simulations. This
was foreseeable from the variance visualizations shown before in this chap-
ter, but these graphs can confirm our analysis.
These differences in fig. 4.19 4.20 4.21 could be due to the smoothing action
of the OpenFOAM solver, which acts cutting off the highest instantaneous
values of the fields, mining the standard deviation computation. However it

62

is important to enlighten that the main reason is - with all probability - a
limited data acquisition during the simulations.
The smaller values indicate a less sparse database for the discrete values of
velocity and pressure, leading the simulations to different statistics in terms
of skewness, probability distribution and so on.

63

Chapter 5

Performance of the codes

In this chapter the computational time results are evaluated, for both the
codes and following different strategies.

5.1 Computational runtime as a function of the
number of cores

The computational runtime is a key factor in computational fluid dynamics.
Its values can determine whether or not a scheme or a method would be ap-
plied in the resolution of a problem; therefore into the technological world,
the time factor influence new fields of research, the abandonment of a strat-
egy and the spreading of new solutions.
As it is already been said, this factor is the main reason why the direct
numerical simulations are still barely used outside academic research, even
though they provide accurate and time-changing results.

It is then immediate to comprehend why an improvement in this way
could represent an important step forward, in particular for the study of
bluff bodies (which are particularly relevant in the engineering industry and
problems).

Reference quantities The main reference value to be evaluated is the
time per step. It represents the amount of seconds needed by the code to
advance of one step during the solving process.
On this parameter is based our performance study as well as the comparison

64

between the two codes.
The ratio between the time per step for a serial calcutation and a parallel
calculation is called speed-up parameter and is depicted in eq. 5.1. It would
be namely defined as the ratio between the time required to complete 100
iterations in two cases, of course giving the very same result.

Sp =
∆tserial

∆tparallel
(5.1)

Its value will of course vary along with the number of cores on which
the computation is carried on, giving a curve which represents the ratio at
which the code perfomance increase parallelizing the simulation.

Time step progression The time step progression is treated differently
in the two codes.
The OpenFOAM dictionaries have been analyzed in the third chapter, and
the chosen solvers have been described. These dictionaries have been edited
in order to improve the performance, after some tests carried out in order
to make the best choice possible.
In particular it has been chosen the pimpleFoam solver for the resolution
and time progression. The tolerances set into the fvSolution dictionary are
reported in the following schemes - as well as a brief recap of the used
schemes.

For the pressure:

• solver GAMG;

• tolerance 1e-5;

• relTol 0.01;

• smoother DICGaussSeidel;

For the velocity:

• solver smoothSolver;

• smoother symGaussSeidel;

65

• tolerance 1e-05;

• relTol 0.1;

In the CPL simulation the chosen time progression scheme was the
Runge-Kutta 3. It is a multistep scheme which divides each timestep into 3
parts to advance.
Because of this, the time that will reported further on in this chapter are
related to the time needed for each one of the single sub-steps in comparison
with one pimpleFoam step.

5.1.1 Hardware

The hardware used for this study (both the field-data production and the
performance analysis) is the Marconi new Tier-0 system, co-designed by
Cineca and based on the Lenovo NeXtScale platform, based on Intel Xeon
Phi family alongside with Intel Xeon processor E5-2600 v4 (see [2] for fur-
ther details).
The utilized part was a single node of the section A2, added at the start
of 2017, equipped with the next-generation of the Intel Xeon Phi product
family (Knights Landing), based on a many-core architecture, enabling an
overall configuration of about 250 thousand cores with computational power
of approximately 11Pflop/s. The system architecture provides each node
with 68-cores Intel Xeon Phi 7250 CPU (Knights Landing) at 1.40 GHz and
16 GB/node of MCDRAM and 96 GB/node of DDR4.
To measure and evaluate the parallel speedup and performance, the num-
ber of requested cores was increased each time, whilst the RAM requested
remained always equal to 86000 MB (the highest possible value for batch
submitted jobs).

5.1.2 Results

The first thing worth precising is that the performed study is called strong
scaling, namely the process where the number of cores changes over a preter-
mined discretized domain. More in depth, the total number of cells com-
posing the domain is finite and fixed, and therefore whenever the number of
processors increases, the fewer cells each processor will manage.
In order to have the most comprehensive and reliable data, the results have

66

been evaluated in different configurations and following different strategies.
It is also important to remind that the geometry object of this study is
characterized by 6.8 million cells which derive from the discretization of a
global domain with dimensions 6πx8x2 refined with 400x170x100 cells on
each of its dimensions respectively.

Data acquisition In order to collect the temporal data inherent to each
calculation, it has been followed the following process:

• modify the code as not to include any postprocessing utility

• modify the saving logics of the code in order to avoid any undesired
input/output operations corrupting the computational time measure-
ment

• start the computation from a full speed solution for a certain amount
of timesteps

• register the time to complete the first round

• start the computation from a operational condition solution for a cer-
tain amount of timesteps (smaller than the first one)

• register the time to complete the second round

• compute the difference between the two measurements as to cancel out
the initial field reading operations and other unavoidable operations

• divide the neat measure by the number of iterations considered

The measurements here reported have been carried on multiple times,
as to find eventual systematic errors and then evaluate an average between
the single results.
In fact a certain liability of the time measures is inevitable, since running the
very same application two times will give two different results. In order to
limit this effect, also the time for iteration was computed on a large amount
of timesteps before dividing it (e.g.: 100 iterations for the cpl measurements).

67

The performance of the parallelization is related to the scaling strategy,
which determines the surface amount between subdomains. This parameter
is in fact a relevant factor, determining a reduction in the code performance
whether it is too high.
The single sub-domains related to each core should have a shape closer to
a cubic one, improving the ratio between volume and surface of each one of
them.
Therefore, the parallelization along the y-axis is not as profitable as the one
along x. This way, the advantage of increasing the number of cores is soon
overcomed by the time needed for the communication between them.

DNS codes comparison Below is reported the graph for the time per
iteration comparison between the two DNS codes, for the optimized geom-
etry setting of the parallelization logic.

Figure 5.1: Seconds per iterations as a function of the number of cores, for
both CPL and OpenFOAM

The results presented in fig. 5.1 are referred only to the computational
time needed, meaning the required seconds per step. For the CPL code,
the time has been obtained letting the simulation start from a operational
field (at time 205 precisely) and, after a few iterations, measuring the time
needed for one hundred interations. Measuring the time for two hundred
iterations and than subtracting the one needed for one hundred, it was pos-

68

sible to subtract the time used by the machine to read the initial field and
initiate the calculations. It is then immediate to divide the result by one
hundred and then find the seconds per iteration.

In order to have a better evaluation of the results, the data of figure 5.1
are also reported in 5.1. There can be also found the gain ratio between
them.

The parallelization logic has been optimized for these final measures. Dif-
ferent and diverse attempts have been carried on for each setting of cores,
on both OpenFOAM and CPL, in order to compare their performances at
their very best setup. For example, the time per iteration needed with 4
cores was computed for all the possible setups; 2 processors along x and 2
along y, or 4 along x and 1 along y, and finally 1 along x and 4 along y.
At 12 cores the computational time per iteration was lower with a config-
uration of 6 cores along x and 2 along y. Before this value, keeping the
simulation serial along the y-axis was the best choice. However, this differ-
ence with respect to the x-scaling results would probably hold on for bigger
numbers of cores.

nCores CPL OpenFOAM gain ratio

1 8.4” 91.1” 10.9

2 4.4” 45.0” 10.2

4 2.1” 24.9” 11.9

6 1.8” 15.0” 8.3

8 1.6” 12.1” 7.6

10 1.3” 10.2” 7.8

12 1.0” 8.1” 8.1

Table 5.1: computational time per iteration of the different setups

From this results it is immediate to evaluate the behaviour of the speedup

69

H

Figure 5.2: speedup trend comparison

parameter as a function of the number of processors.
It can be seen from fig. 5.2 that the perfomance of the codes are globally
aligned, and that the overall time gain is about the same. The cpl speedup
perfomances are not initially linear, with the curve slope changing sensibly
at the beginning of the graph. However, as the number of cores increases we
can notice that the ratio coincides with the one found in the OpenFOAM
calculation.

The behaviour outlined in the graph is very close to linear, giving at the
first stages of parallelization a conveniently predictable behaviour.
Moreover, we can conclude that the cutting-edge advantage given by the
immersed boundary method is reliable and concrete. In fact, the cpl code
continues to increase its perfomance increase for larger number of proces-
sors, echoing the OpenFOAM’s behaviour.

The trend highlightened by fig. 5.1 then ensures that the better perfor-
mances will hold whatever the structure employed to run the simulation.

Further comparison It is important to specify that the performance of
the codes are also bound to the geometry of the domain. Indeed, along
with the previous results, two other sets of measures have been computed
to compare these two softwares.

70

A comparison of time gains for serial calculations has been performed, start-
ing from a reduced geometry - 20 x 3 x 2 - discretized with about the same
refinement - 400 x 100 x 100 cells. Two types of simulation have been carried
on from this setup in order to study the features which influence the most
the results.
In the first one a cylinder was built-in the channel, whilst in the second
one the domain was just a classical - empty - channel flow. Both simula-
tions started with an already developed turbulent initial condition, with a
Reynolds number of 750.
The studies started from the beginning, redifining all the geometry param-
eters and optimizing both codes for either simulations.
The results briefly reported in tab. 5.2 are referred to the required seconds
per iteration.

— CPL OpenFOAM gain ratio

bluff-body 4.8” 66.4” 13.8

empty-
channel

3.0” 110.4” 36.8

Table 5.2: Comparison of gains of the IB code in different geometries ad-
dressed by serial simulations

It is clear from these results that the geometry largely affects the im-
mersed boundary performance, since each spatial dimension has to be scanned
from the code affecting the usage of memory and the coordinate structures.
In fact the immersed boundary strategy can be edited to proceed differently
each time, depending on the shapes to be considered, as explained in the
third chapter. This fact of course affects its performance, as it is clear from
these last results.

71

Chapter 6

Conclusions and future
developments

In this study a comparison between two different codes have been carried
out.
The two codes have different solvers for the governing equation, different
methods for the surface management, different parallelization schemes. In
particular, an immersed boundary method - CPL -have been compared in
both performace and field results with respect to a classical one - Open-
FOAM.

Moreover, the study investigates a particular flow, in a non-trivial ge-
ometry.
The observed turbulence structures are consistent with the literature re-
viewed.
However, the results about the flow patterns suggest a limited sample for
the data acquisition.
Mean fields are indeed coincident with one another although the second
central moments differs in a non-negligible way. Therefore, it is difficult to
evaluate the accuracy of the simulations.

The performance study carried out underlines a relevant time gain for
the immersed boundary code. The gain ratio is about one order of mag-
nitude; however, on this specific architecture, the parallel performances of
CPL hold until a smaller number of cores.

72

Bibliography

[1] P. Anagnostopoulos, G. Iliadis, and S. Richardson, Numerical
study of the blockage effects on viscous flow past a circular cylinder,
International Journal for Numerical Methods in Fluids, (1996).

[2] Athlassian-News, Cineca - hpc. https://wiki.u-gov.it/

confluence/SCAIUS/, 2019.

[3] A. Ben and H. Dou, Simulation and stability study of the flow around
a cylinder in infinite domain, Procedia Engineering, (2015).

[4] CFD-Direct-Ltd, Cfd direct. https://www.cfd.direct/openfoam/,
2015-2019.

[5] J. G. Chen, Y. Zhou, R. A. Antonia, and T. M. Zhou, Char-
acteristics of the turbulent energy dissipation rate in a cylinder wake,
Journal of Fluid Mechanics, (2017).

[6] P. A. Davidson, Turbulence: An Introduction for Scientists and En-
gineers, Oxford University Press, 2004.

[7] ESI-Group, Opencfd ltd. https://www.openfoam.com/

documentation/, 2016-2018.

[8] E. L. Houghton and P. W. Carpenter, Aerodynamics for Engi-
neering Students, Butterworth Heinemann, 2003.

[9] Kitware, Paraview. https://www.paraview.org/, 2019.

[10] T. V. Kumar, P. K. Sen, S. Veeravalli, and M. Kumar, Stability
of weak confined wake behind a cylinder in fully developed turbulent
channel flow, Procedia Engineering, (2015).

73

https://wiki.u-gov.it/confluence/SCAIUS/
https://wiki.u-gov.it/confluence/SCAIUS/
https://www.cfd.direct/openfoam/
https://www.openfoam.com/documentation/
https://www.openfoam.com/documentation/
https://www.paraview.org/

[11] P. Mathupriya, L. Chan, H. Hasini, and A. Ool, Numerical in-
vestigations of flow over a confined circular cylinder, in Australasian
Fluid Mechanics Conference, 2018.

[12] C. Monti, Metodo dei contorni immersi per la simulazione numerica
diretta di correnti turbolente su pareti non piane, master thesis, 2016.

[13] C. Peskin, The immersed boundary method, Acta Numerica - 11, 2002.

[14] M. Pinelli, Dns of a turbulent channel flow over a rough wall, master
thesis, 2017.

[15] S. B. Pope, Turbulent Flows, Cambridge University Press, 2000.

[16] A. Quarteroni, Numerical Models for Differential Problems,
Springer, 2014.

[17] M. Sahin and R. G. Owens, A numerical investigation of wall ef-
fects up to high blockage ratios on two-dimensional flow past a confined
circular cylinder, (2004).

[18] A. E. P. Veldman, Boundary layers in fluid dynamics, 2009.

[19] M. I. Yuce and D. A. Kareem, A numerical analysis of fluid flow
around circular and square cylinders, Journal, (2016).

74

	Introduction
	Direct Numerical Simulations
	Structure and reasons of the investigation

	Problem definition
	Literature bibliographic references
	`Numerical Investigations of Flow Over a Confined Circular Cylinder'
	`A Numerical Analysis of Fluid Flow around Circular and Square Cylinders'
	`A numerical investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined cylinder'
	`Numerical study of the blockage effects on viscous flow past a circular cylinder'
	`Stability of weak confined wake behind a cylinder in fully developed turbulent channel flow'

	Introductive formulation of the problem
	General Setup of the Problem
	Ideal results

	Description of the two numerical codes
	OpenFOAM
	Discretization
	Solver
	Imposed conditions
	Parallelization logics

	CPL
	Solver
	Discretization
	Imposed conditions
	Parallelization logic

	Results
	Expected results
	Visualizations
	Velocity
	Pressure
	Mean fields profile
	Standard deviation profile

	Performance of the codes
	Computational runtime as a function of the number of cores
	Hardware
	Results

	Conclusions and future developments

