
stefano cherubin

C O M P I L E R - A S S I S T E D D Y N A M I C P R E C I S I O N
T U N I N G

[June 28, 2019 at 16:11 – XXXI cycle]

[June 28, 2019 at 16:11 – XXXI cycle]

C O M P I L E R - A S S I S T E D D Y N A M I C P R E C I S I O N T U N I N G

phd candidate : stefano cherubin

supervisor : prof . giovanni agosta

PhD thesis in Information Technology

Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano

June 2019 – XXXI cycle

[June 28, 2019 at 16:11 – XXXI cycle]

Stefano Cherubin: Compiler-Assisted Dynamic Precision Tuning, c© June
2019

[June 28, 2019 at 16:11 – XXXI cycle]

Dedicated to the loving memory of my lost soul.

1989 – 2019

[June 28, 2019 at 16:11 – XXXI cycle]

[June 28, 2019 at 16:11 – XXXI cycle]

A B S T R A C T

Given the current technology, approximating real numbers with finite-
precision is unavoidable. Determining which finite-precision repre-
sentation to exploit for each variable in the program is a difficult
task. To face this problem, several precision mix solutions have been
proposed so far in the state-of-the-art. However, the best precision mix
configuration may vary at runtime along with input data.

In this thesis we aim at suggesting two effective approaches to solve
the precision tuning problem. The first approach follows the static
precision tuning paradigm, i.e. it generates a single mixed precision
version from the original code, which is designed to be used in place
of the original version. We later allow the possibility of changing
the input conditions that may affect the best precision mix configura-
tion. To solve this problem we propose a novel approach and a new
toolchain that automitizes a large portion of this process. We present
each component of the toolchain, and we provide guidelines to use
them properly. We refer to this second approach as dynamic precision
tuning.

We evaluate the static and the dynamic precision tuning solutions
on a set of high performance computing and approximate computing
benchmarks. We show how the dynamic precision tuning toolchain
can be used – under certain conditions – also for static precision
tuning. Our second toolchain is capable of achieving good results in
terms of performance gain while maintaining acceptable precision loss
threshold. In the future we aim at further improving this toolchain to
extend its applicability to other use cases. Additionally, we highlight
which improvements on the current toolchain may provide greater
benefits on the quality of the output.

vii

[June 28, 2019 at 16:11 – XXXI cycle]

S O M M A R I O

La precisione finita è una approssimazione dei numeri reali inevita-
bile con la attuale tecnologia. Determinare quale rappresentazione a
precisione finita sia meglio sfruttare per ciascuna variabile nel pro-
gramma è un compito difficile. Per risolvere questo problema, diverse
soluzioni per determinare un adeguato mix di precisione sono state
proposte finora nello stato dell’arte. Tuttavia, la miglior configurazione
di mix di precisione può variare durante l’esecuzione assieme ai dati
in ingresso.

In questa tesi proponiamo due approcci efficaci per risolvere il pro-
blema di determinare miglior il mix di precisione. Il primo approccio
riflette il paradigma di determinazione statica della precisione, ossia
genera dal codice originale un singolo mix di precisione, il quale dovrà
poi essere usato al posto della versione originale. Successivamente
ammettiamo la possibilità di avere cambiamenti delle condizioni di
ingresso che possano inficiare la miglior configurazione di mix di
precisione. Per risolver questo problema proponiamo un approccio
innovativo e una nuova toolchain per automatizzare larga parte di que-
sto processo. Noi introduciamo ciascun componente della toolchain,
e forniamo linee guida per usarla in modo appropriato. Chiamiamo
questo secondo approccio dynamic precision tuning.

Valutiamo le soluzioni di static e dynamic precision tuning su un
insieme di benchmark per high performance computing e calcolo
approssimato. Mostriamo come la toolchain per dynamic precision tu-
ning può essere usata, sotto certe condizioni, anche per static precision
tuning. La nostra seconda toolchain è capace di raggiungere buoni
risultati in termini di miglioramento delle performance alla stessa
soglia di perdita accettabile di precisione. In futuro auspichiamo di
migliorare ulteriormente questa toolchain per estenderne la applicabi-
lità ad altri casi d’uso. Inoltre, evidenziamo quali miglioramenti sulla
attuale toolchain possono garantire i maggiori benefici sulla qualità
del risultato.

viii

[June 28, 2019 at 16:11 – XXXI cycle]

R E L E VA N T P U B L I C AT I O N S

We present an handout summary of the contribution of this PhD thesis
over the state-of-the-art. We summarize the works we authored that
are later mentioned in this thesis.

• Tools for reduced precision computation: a survey
S. Cherubin, G. Agosta
Currently under review.
In this work we survey the state-of-the-art of precision tuning
techniques and tools.

• Implications of Reduced Precision in HPC: Performance, En-
ergy and Error
S. Cherubin, G. Agosta, I. Lasri, E. Rohou, O. Sentieys
International Conference on Parallel Computing (ParCo).
Bologna, Italy. September 2017 [22]
In this work we re-purpose a source-to-source compiler to per-
form static precision tuning. In particular, we evaluate the effect
of using fixed point data types on HPC-like computer architec-
tures.
This work is the result of a collaboration with INRIA Rennes.

• Embedded Operating System Optimization through Floating
to Fixed Point Compiler Transformation
D. Cattaneo, A. Di Bello, S. Cherubin, F. Terraneo, G. Agosta
21st Euromicro Conference on Digital System Design (DSD).
Prague, Czech Republic. August 2018. [17]
In this work we experiment a compiler-level approach to floating
point to fixed point conversion. In particular, we compare the
results achieved by using a dedicated compiler plugin for the
conversion, with respect to those achieved by performing such
conversion manually.

• libVersioningCompiler: An easy-to-use library for dynamic
generation and invocation of multiple code versions
S. Cherubin, G. Agosta
SoftwareX, Volume 7

January – June 2018 [21]
In this work we introduce a C++ library to ease the exploita-
tion of the dynamic compilation paradigm. In particular, we test
this library on the continous optimization use case, and on the
optimization of a legacy code base.

ix

[June 28, 2019 at 16:11 – XXXI cycle]

• Continuous Program Optimization via Advanced Dynamic Com-
pilation Techniques
M. Festa, N. Gervasoni, S. Cherubin, G. Agosta
Proceedings of the 10th Workshop on Parallel Programming and
Run-Time Management Techniques for Many-core Architectures
and the 8th Workshop on Design Tools and Architectures For
Multicore Embedded Computing Platforms.
Valencia, Spain. January 2019. [47]
In this work we extend the dynamic compilation library to im-
plement the Just-In-Time compilation paradigm. We evaluate the
benefits of performing Just-In-Time compilation with respect to
standard dynamic compilation approach, and with respect to
the use of a state-of-the-art C++ interpreter.

• TAFFO: Tuning Assistant for Floating point to Fixed point Op-
timization
S. Cherubin, D. Cattaneo, A. Di Bello, M. Chiari, G. Agosta
IEEE Embedded Systems Letters.
April 2019. [23]
In this work we propose a framework to guide the user in the
task of static precision tuning. It is based on the conversion
from floating to fixed point, which is performed on the interme-
diate representation of the program within the compiler. This
framework is packaged as a set of compiler plugins.

• Dynamic Precision Autotuning with TAFFO
S. Cherubin, D. Cattaneo, A. Di Bello, M. Chiari, G. Agosta
Currently under review.
In this work we introduce the concept of dynamic precision
tuning as a particular case of continous program optimization.
We describe a methodology based on the TAFFO framework,
and on the dynamic compilation library libVersioningCompiler.

x

[June 28, 2019 at 16:11 – XXXI cycle]

In an ideal world,
programming languages and compilers are boring.

They do what users expects.
They exhibit the same behavior with and without optimizations,

at all optimizations levels, on all hardware.
"Boring", however, is surprisingly difficult to achieve [. . .].

— Nötzli, Andres and Brown, Fraser [112]

A C K N O W L E D G M E N T S

First of all, we thank our advisor prof. Agosta. Not only he represented
a wise guide during our doctoral studies, he was – and he currently is
– a good friend.

Creating a productive and stimulating environment is far from
something that can be defined as an easy task, we thus want to thank
the whole research group we spent our life in during the last years.
Uncountable times we spent nights over days fighting together for the
same cause, or the same deadlines.

Last and least of this list we want to thanks our institution. Odd
and peculiar, with all its services and inefficiencies, clever flexibility
and meaningless restrictions, it allowed us to improve ourselves from
a professional and from a personal point of view.

There is one more category of people we did not explicitly thank.
Underlining their importance in our life is not a thing we can do in
a few lines of this section, we prefer to omit the list of people who
represented more than something to us because they already know
how much we care about them and they know we prefer to manifest
our gratitude in person.

That’s all for the acknowledgments, we hope the reader will enjoy
the content of this thesis. Thanks to anyone who will find useful our
work and will continue pushing our research forward. In the end, this
is the reason why we are doing this.

xi

[June 28, 2019 at 16:11 – XXXI cycle]

[June 28, 2019 at 16:11 – XXXI cycle]

C O N T E N T S

1 introduction 1

2 theoretical background 5

2.1 Data Types . 6

2.1.1 Fixed point Data Types 7

2.1.2 Floating point Data Types 8

2.2 Errors . 10

2.3 The Process of Reduced Precision Computation 12

3 state-of-the-art 15

3.1 Scope of the Tool . 15

3.2 Program Analysis . 17

3.2.1 Static Approaches 18

3.2.2 Dynamic Approaches 19

3.3 Code Manipulation . 20

3.3.1 The Generality Problem 20

3.3.2 A Technological Taxonomy 21

3.4 Verification . 29

3.4.1 Static Approaches 29

3.4.2 Dynamic Approaches 30

3.5 Type Casting Overhead 31

3.6 A Comparative Analysis 33

3.6.1 Functional Capabilities 33

3.6.2 Portability Characteristics 36

4 effective precision tuning solutions 41

4.1 Static Precision Tuning 44

4.1.1 A source-to-source solution 44

4.2 Dynamic Precision Tuning 48

4.2.1 TAFFO . 48

4.2.2 Precision Tuning Policies 57

4.2.3 libVersioningCompiler 60

4.2.4 Combining the Continuous Optimization Toolchain 71

5 case studies 75

5.1 Implications of Reduced Precision Computing in HPC 76

5.1.1 Issues with Vectorization 76

5.1.2 Experimental Evaluation 77

5.2 Embedded Operating System Optimization using TAFFO 82

5.2.1 About Miosix . 82

5.2.2 Experimental Evaluation 83

5.2.3 Result Analysis 86

5.3 Static Precision Tuning using TAFFO 91

5.3.1 Experimental Setup 91

5.3.2 Benchmarks . 91

5.3.3 Model Construction 92

xiii

[June 28, 2019 at 16:11 – XXXI cycle]

xiv contents

5.3.4 Result Discussion 93

5.4 Dynamic Compilation 95

5.4.1 Geometrical Docking Miniapp 95

5.4.2 OpenModelica Compiler 96

5.5 Dynamic Precision Tuning using TAFFO 97

5.5.1 Benchmarks . 97

5.5.2 Experimental Setup 98

5.5.3 Result Discussion 98

6 conclusions 105

bibliography 107

a dynamic compilation insights 125

a.1 Adding JIT compilation to libVC 125

a.1.1 Providing JIT APIs via LLVM 126

a.1.2 Evaluation . 126

a.1.3 Other JIT implementations 128

[June 28, 2019 at 16:11 – XXXI cycle]

L I S T O F F I G U R E S

Figure 2.1 Bit partitioning for the fixed point data types . 7

Figure 2.2 Bit partitioning for floating point data types . 9

Figure 4.1 Software components for static and for dynamic
precision tuning 42

Figure 4.2 Static precision tuning: SW components 45

Figure 4.3 Dynamic precision tuning: SW components . . 49

Figure 4.4 Compilation pipeline using the clang compiler
front-end with and without TAFFO. 50

Figure 4.5 Component schema of the TAFFO framework 51

Figure 4.6 Simplified UML class diagram of libVC . . . 62

Figure 4.7 libVC configuration and usage steps 64

Figure 5.1 Instruction mix for the selected PolyBench bench-
marks. 79

Figure 5.2 GeCoS: Normalized time-to-solution 80

Figure 5.3 GeCoS: Normalized energy-to-solution 80

Figure 5.4 GeCoS: Error vs time-to-solution 81

Figure 5.5 Miosix scheduler: data flow analysis 85

Figure 5.6 Miosix: Average scheduling speedup on MiBench 87

Figure 5.7 Miosix: Average scheduling speedup on Hartsone 88

Figure 5.8 Static tuning with TAFFO: Measured and esti-
mated speedup 92

Figure 5.9 Static tuning with TAFFO: Measured speedup 93

Figure 5.10 Dynamic tuning with TAFFO: Measured Error 99

Figure 5.11 Dynamic tuning with TAFFO: Impact of con-
stant propagation 101

Figure 5.12 Dynamic tuning with TAFFO: Impact of con-
stant propagation on mixed precision 102

Figure 5.13 Dynamic tuning with TAFFO: Measured speedup103

Figure 5.14 Dynamic tuning with TAFFO: Measured avg
speedup . 104

Figure a.1 Compile time with different libVC compiler
implementations 128

Figure a.2 Aggregated compile + run time with different
libVC compiler implementations 129

Figure a.3 Compile + run time JITCompiler vs Cling . . 132

Figure a.4 Aggregated compile + run time JITCompiler

vs Cling . 133

Figure a.5 Speedup libVC using JITCompiler vs Cling . 134

xv

[June 28, 2019 at 16:11 – XXXI cycle]

L I S T O F TA B L E S

Table 3.1 Tool Capabilities Synopsis 34

Table 3.2 Tool Implementation Synopsis 37

Table 3.3 Tool Release Synopsis 39

Table 4.1 Performance comparison statically vs dynami-
cally optimized counting sort example. 71

Table 5.1 Static tuning with TAFFO: Quality of the result 94

Table 5.2 Dynamic tuning with TAFFO: Overhead 104

L I S T I N G S

Listing 4.1 ID.Fix Annotation Example 45

Listing 4.2 Before GeCoS Source-To-Source 46

Listing 4.3 After GeCoS Source-To-Source 47

Listing 4.4 Example of C code annotated for TAFFO . . . 52

Listing 4.5 Example of TAFFO code conversion 56

Listing 4.6 Counting Sort Algorithm 59

Listing 4.7 Static vs dynamic counting sort benchmark . . 68

Listing 4.8 Example of loop over kernel 72

Listing 4.9 Example of parameterized TAFFO annotation 72

Listing 4.10 libVC setup host code using TAFFO Compiler 73

Listing 5.1 Floating-point SAXPY kernel (C) 76

Listing 5.2 Fixed-point SAXPY kernel (asm) 77

Listing 5.3 Fixed-point SAXPY kernel, unsigned mul . . . 77

Listing 5.4 Fixed-point SAXPY kernel after post-processing 77

Listing 5.5 Extract of the Miosix scheduler source code. . 84

xvi

[June 28, 2019 at 16:11 – XXXI cycle]

1
I N T R O D U C T I O N

Since the early days of automatic computing machines, the problem
of representing infinite real numbers in a limited memory location
represents one of the most important scientific challenges. Turing
defines the concept of computable number in 1936 [155]. Long before
the advent of modern computers, Church and Turing demonstrated
that only certain classes – and not the whole set – of real numbers can
be computed by a machine [28]. Thus, given the current technology,
approximating real numbers with finite-precision is unavoidable. This
approximation – as any approximation – introduces errors in the
computation.

The effect of this error can be mitigated by increasing the precision
of the computation. The precision level represents a trade-off between
error and memory space. However, the error could be avoided only
by using an infinite memory, which is not possible.

The problem of computing using finite precision operand is not
limited to the precision of the result, which has to be finite as well.
Indeed, the error introduced on the input eventually propagates and
magnifies throughout the automatic computation. Nowadays the auto-
matic computing systems scaled up to a point where keeping track of
the error propagation is unfeasible without dedicated tools.

The research branch of computer science that deals with the trade-
off between error and other performance metrics is named Approximate
Computing [162]. It proposes several techniques whose focus range
from the hardware level to the software level of the automatic com-
puting system.

In our work we focus on one specific approximate computing tech-
nique: precision tuning. With precision tuning we aim at leveraging
the trade off between the error introduced in the computation and
the performance of the application by changing the representations of
the real numbers in the application. This technique leads towards two
different goals: error minimization, and performance maximization.
We present two examples to highlight the importance of each of these
goals.

On large scale automatic computing systems, the numerical sensi-
tivity magnifies. As a consequence, during recent years, an increasing
share of applications which embraced parallelism to scale up in perfor-
mance, started to focus also on the numerical precision problem [141].
Such applications must guarantee that an increased level of paral-
lelization does not increase the error in the computation. We can use
precision tuning to find which is the most efficient number represen-

1

[June 28, 2019 at 16:11 – XXXI cycle]

2 introduction

tation that can satisfy a given precision requirement. In this way it is
possible to use large precision data types only in a restricted portion
of the application.

Another point of view to look at the error-performance trade-off
originates from the request for performance improvements on error-
tolerant applications. Large classes of applications – such as media
streaming and processing applications – can trade off unnecessary pre-
cision to improve performance metrics. The precision tuning approach
uncovers optimization opportunities by exploiting lower precision
data types with respect to the original implementation in different
portions of the application.

These two goals are actually two sides of the same coin. The user
specifies the requirement, and the precision tuning provides a mix of
data types that satisfies the requirement while minimizing a given
cost function. This cost function represents the degradation of the
performance metric we want to improve by trading off some precision
during the computation. Traditionally, users aim at improving the
throughput of their applications. Thus, the most used cost function
is the execution time. However, other systems may have different
requirements. Indeed, in the internet of things domain the device
battery lifetime is often a critical aspect that developers have to take
into account. In such systems it is more common to use the system
energy consumption as cost function. Hardware developers, instead,
push to minimize the area occupied by the computational unit on their
circuits. All the methodological considerations on precision tuning do
not depend on the cost function we aim at minimizing.

Precision tuning, as many other approximate computing techniques,
is a delicate task that may change the semantics of the program. Thus,
developers traditionally apply it manually to always keep the control
over the approximation level. This approach does not scale well with
the complexity of the program, and neither it does with respect to the
size of the program. Automatic tools can ease the process. However,
due to the implications of this approximation – which are largely
application dependent – no holistic tool can effectively apply precision
tuning without any human supervision or input. According to the
nature and to the form of the information that the user can provide
to the tool, different tools and frameworks have been proposed to
automatize one or more stages of the precision tuning process.

problem definition Precision tuning manipulates the original
application by replacing the original representation of real numbers
with a different one. This process typically moves the needle of the
trade off towards performance improvement or towards quality im-
provement. There exists corner cases when a change in the represen-
tation of real numbers causes both a performance improvement and
a quality improvement. The opposite case, i.e. changes that cause a

[June 28, 2019 at 16:11 – XXXI cycle]

introduction 3

performance and quality degradation, is more common. The prob-
lem of precision tuning entails the problem of defining metrics and
methodologies to measure the quality of the application output, and
to measure the application performance. As the name may suggest,
tuning is about finding the best level for a given knob. The definition
of which knobs – real numbers in the program – need to be tuned
and which levels – representation methods or data types – are allowed
for each knob are challenges that each precision tuning tool has to
address.

scope of the thesis In our work we consider two different
approaches to precision tuning: the static and the dynamic ones. On
one hand, static precision tuning entails the ahead of time analysis
and verification of the program to obtain a single mixed precision
version. On the other hand, dynamic precision tuning involves the
continuous adaptation of the mixed precision version at runtime, thus
generating multiple mixed precision versions. These two approaches
share a large common ground of challenges that have to be addressed.
We analyze such challenges in this thesis along with the solutions that
have been proposed in the literature so far. We discuss strong and
weak points for each of the proposed solutions. In this thesis we aim
at providing an overview of the differences between the well-known
static precision tuning approach and the dynamic precision tuning one,
which represents the main contribution of this thesis. In particular, we
compare such approaches in terms of methodological requirements
and proposed toolchains.

organization of the thesis Precision tuning is a complex
process which requires a set of code analysis and code transformation
tools. We introduce a selection of theoretical background concepts in
Chapter 2. Several proposals have been presented in the state-of-the-
art to improve the automation of such process. We present a survey of
the state-of-the-art in Chapter 3. We subsequently propose effective
solutions to perform precision tuning in Chapter 4. We distinguish
between two toolchain structures to perform of precision tuning: static
(Section 4.1) and dynamic (Section 4.2) ones. Most of the work in
the state-of-the-art focuses on static precision tuning. We present a
dynamic precision tuning solution by combining different software
components we developed. Therefore, we first introduce each software
component, and we later discuss their composition to implement
dynamic precision tuning. We show in Chapter 5 the experimental
evaluation and validation of the tools we developed, and those of the
precision tuning solutions we introduced. Finally, in Chapter 6 we
draw some conclusions.

[June 28, 2019 at 16:11 – XXXI cycle]

[June 28, 2019 at 16:11 – XXXI cycle]

2
T H E O R E T I C A L B A C K G R O U N D

The content of this
Chapter has been
submitted for
publication in the
journal ACM
Computing
Surveys and it is
currently under
revision.

Numerical representation methods were designed to have a meaning-
ful subset of existing numbers mapped in a finite memory location.
These methods introduce a trade-off between the required number
of bits and the cardinality of the subset of numbers which can be
exactly represented. The remaining numbers can either be ignored or
approximated. Regardless of the representation method, in fact, only
2n distinct numbers can be exactly represented, where n is the number
of bits in the operands.

Given a fixed n available in the machine, integer numbers are usually
represented exactly in the range [0; 2n− 1] or [−2n−1; 2n−1− 1] whereas
the rest of the numbers are not considered. When the result of a
computation that uses such representation exceeds those ranges, the
representation of the result is not defined. This is the case of the
overflow and underflow problem.

Due to the nature of real numbers, every representation method is
susceptible not only of overflow and of underflow, but also of round-
off errors. In the case of real numbers, given r1, r2 ∈ R such that
r1 < r2, there exists infinite other numbers r′ such that r1 < r′ < r2.
Since it is impossible to represent infinite different numbers using
a finite memory, it is common practice in number representation
methods to approximate a number r′ that does not have an exact
representation with the representation of another real number. This
alternative representation is defined by the representation method and
it is chosen to minimize a cost function, which usually depends on a
combination of the approximation error and of the implementation
cost.

A representation method can be seen as a function F(r) that maps
a real value r to its finite-precision representation. This function is
defined for all the values r ∈ R within the range bounds of the
representation method, and it has a co-domain cardinality at most
equal to 2n.

In general purpose computing, the most popular way to represent
real numbers is via the floating point IEEE-754 standard [71]. With
this standard, a number is described by a sign, a mantissa, and an
exponent. The IEEE-754 standard provides partitions of the available
bits among mantissa and exponent – depending on the total number
of available bits – thus implementing a trade-off between precision
and range of the representation.

Whilst IEEE-754 is extremely effective and popular, its implementa-
tion is much more complex than that of integer arithmetic operations.

5

[June 28, 2019 at 16:11 – XXXI cycle]

6 theoretical background

Indeed, there are at least two dimensions across which it is possible
to select the best trade-off among range, precision, and performance.
First, every representation, IEEE-754 included, is available in multiple
sizes. Smaller sized representations have limited range and precision,
but may, under appropriate implementations, provide opportunities
for increased throughput – e.g., by allowing vector operations on small
size numbers instead of scalar, large size number operations – or for
reduced energy consumption – by selecting smaller, and therefore less
energy-hungry, hardware implementations. Second, by using less com-
plex representations – such as fixed point – it is possible to leverage
less complex hardware units, possibly leading to reductions in energy
consumption.

These trade-offs have been traditionally exploited in embedded
systems, where the emphasis is on low-energy devices – e.g., for
long-running, battery-powered sensors. As a consequence, researchers
proposed design methodologies where algorithms are initially de-
signed with high-level tools such as Matlab, using precise floating
point representations, and they are later manually re-written using
fixed point representations [93]. A large amount of domain knowledge
is required in this case, since the small integers’ limitations in range
and precision used in such systems force the developer to finely tune
the representation, possibly readjusting it in different phases of the
algorithm.

More recently, customized precision [137] has emerged as a promis-
ing approach to improve power/performance trade-offs. Customized
precision originates from the fact that many applications can tolerate
some loss in quality during computation, as in the case of media pro-
cessing (audio, video and image), data mining, machine learning, etc.
Error-tolerating applications are increasingly common in the emerging
field of real-time HPC [163].

Given the increased interest in customized precision techniques, and
given the error-prone and time-consuming nature of the adaptation
and tuning processes, several techniques, and associated tools, have
been proposed to help developers select the most appropriate data
representation (See, e.g. FRIDGE [74], Precimonious [133], CRAFT [85]).
This way they are now able to automatically or semi-automatically
adapt an original code, usually developed using a high-precision
data type – e.g., IEEE-754 double precision floating point – to the
selected lower-precision type. Such tools may target different hardware
solutions, ranging from embedded microcontrollers to reconfigurable
hardware to high-performance accelerators.

2.1 data types

To overcome the inaccuracy problem, which is intrinsic to finite pre-
cision computation, several proposals have been made. The most

[June 28, 2019 at 16:11 – XXXI cycle]

2.1 data types 7

common one consists in multiple-word data types [51], which allow
an arbitrary number of machine words to be used for the storage of
a single value. This technique is named Multiple Precision or Arbitrary
Precision [8].

Arbitrary precision implementations such as ARPREC [8], MPFR [51],
MPFUN2015 [7] come with explicit control over the desired accuracy.
This poses no upper bound to the accuracy employed in the computa-
tion. Therefore, there is no numerical reference to measure the error
introduced by using a reduced precision data type. On the contrary,
symbolic analysis [144] can derive error functions without a numerical
reference, but they are difficult to be interpreted by programmers.
Hence, it is common practice to agree on a data type to be the refer-
ence for benchmarking. By reduced precision computation we refer to the
use of data types that have less precision than the reference data type,
which is usually provided by the algorithm designer. The set of data
types considered in reduced precision computation is heterogeneous
and diverse from one tool to another. Below we shortly introduce
theoretical background and naming conventions regarding data types.

2.1.1 Fixed point Data Types

A fixed point number is a tuple < sign, integer, f ractional > that
represents a real number defined in Equation 2.1.

(−1)sign ∗ integer. f ractional (2.1)

A fixed number of digits is assigned to sign, integer, and fractional
within the data type format. As integer data types can be signed or
unsigned, in fixed point numbers the sign field can be omitted or can
be part of the representation, such as two’s complement. This is the
case of unsigned fixed point numbers, which represent the absolute
value of the real number defined in Equation 2.1.

The majority of hardware implementations treat fixed point num-
bers as integer numbers with a logical – not physical – partitioning
between integer and fractional part. Such bit partitioning is defined at
compile time. Figure 2.1 illustrates two examples of bit partitioning.

sign
integer
fractional

s_fixed<9,7>

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

u_fixed<7,9>

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2.1: Bit partitioning for signed and unsigned fixed point data types.

[June 28, 2019 at 16:11 – XXXI cycle]

8 theoretical background

An evolution of the fixed point representation as presented in Equa-
tion 2.1 is the dynamic fixed point representation. Dynamic fixed point
representations have a fixed number of digits for the whole number –
like the plain fixed point representation – however, they allow to move
the point in order to implement a trade-off range/precision.

As the representation of fixed point data types resembles the repre-
sentation of integer numbers, it is common to have architectures reuse
the implementation of the integer arithmetic unit also for fixed point
operations. In these cases, there is no hardware constraint that forces
a clear separation between integer and fractional. Thus, the support for
dynamic fixed point data types comes at no cost. From now onward
we consider only dynamic fixed point representations.

The type cast among fixed point data types aims at aligning the
position of the point in the representation via a signed shift operation.
This move is also known as scaling. The most common arithmetic
operations – e.g. addition, subtraction, multiplication, and division –
are implemented by using the corresponding operations for a standard
integer data type. Indeed, only in the case of multiplication and
division additional scaling is required after the operation.

One of the most basic tools in support of programmers working
with fixed point representations is the automatic insertion of scaling
operations. Usually this feature is implemented via the definition of a
C++ class to represent the fixed point data type. Hence, proper C++
operators can be defined with a scaling operation for that class at every
operation and type cast. Nowadays the automatic scaling, which was
initially described in [75], is a key feature in all of the relevant tools
in the literature. Although tools may differ in their implementation,
the perception of data type abstraction is guaranteed for the users.
Thus, the programmer can consider fixed point representations imple-
mented over integers representations as data types for real numbers
disregarding implementation details and architectural differences.

2.1.2 Floating point Data Types

A floating point number is a tuple < sign, mantissa, exponent > that
represents a real number defined in Equation 2.2.

(−1)sign ∗mantissa ∗ bexponent (2.2)

The base b of the representation is an implicit constant of the number
system. In our work we focus on floating point representations where
the b is equal to 2, and the mantissa (or significand), the sign and the
exponent are represented in the binary system. A fixed number of
digits is assigned to sign, mantissa, and exponent within the data type
format.

Figure 2.2 illustrates the bit partitioning for the most used floating
point data types. The initial IEEE standard for floating-point arith-

[June 28, 2019 at 16:11 – XXXI cycle]

2.1 data types 9

sign
exponent

mantissa

bfloat16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IEEE-754 binary16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IEEE-754 binary32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IEEE-754 binary64

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Figure 2.2: Bit partitioning for the bfloat16, binary16, binary32, and
binary64 floating point data types.

metic [70] defines the format for single and double floating point
numbers using 32 and 64 bit respectively. The last revision of the
IEEE-754 standard [71] introduces a 128 bit format named binary128

as basic format – also known as floating point quadruple precision –
while it renames the previous format as binary32 and binary64. As
hardware implementations of floating point units working on the basis
of the binary128 standard are costly in terms of area and complexity,
they have been implemented only on very specific hardware platforms
– e.g. [87, 91]. Therefore, the 128 bit arithmetic operations are often
emulated via 64 bit arithmetic units and they do not represent a fair
baseline from the energy and performance point of view.

Other data types which provide an improved accuracy over the
binary64 data type have been proposed. The most relevant one is
certainly the double extended floating point precision, which is a
data format resembling the IEEE-754 binary64 data type. It features
the same number of exponent bits and a larger number of mantissa
bits for a total of 80 bit width. Hardware units implementing this
format are also known as x87 architectures [72]. It was discussed in
[105] that the precision of computation declared as double extended

actually depends on the compiler register allocation. Indeed, even
when compilers use native 80 bit registers, they force a downcast of
the values to spill from 80 bit registers into 64 bit memory locations
when all the 80 bit registers are saturated. The evolution of computer
architectures towards the exploitation of the SIMD parallel paradigm
did not favor the exploitation of this data type, as its width is not an
integer power of 2. The use of the x87 unit is deprecated in the more
common x86_64 architecture.

[June 28, 2019 at 16:11 – XXXI cycle]

10 theoretical background

Although the revision of the IEEE-754 standard defines only five ba-
sic floating point formats – binary32, binary64, binary128, decimal64,
and decimal128 –, it provides guidelines and definitions for other
floating point binary interchange formats. Indeed, it suggests also a
binary16 interchange format – also known as half precision. This
format, which was originally intended for data storage only, is nowa-
days investigated for arithmetic computation [121, 127]. Since GPU
hardware manufacturers began to provide native support for binary16
floating point arithmetic computations, tools to explore the benefits of
such data format started to appear. We classify such tools separately
from those working on IEEE-754 basic data types.

Another notable exception from the IEEE-754 standard is the recently-
introduced bfloat16 floating point data type [6]. This is heavily in-
spired by the binary32 format. Indeed, it is derived by truncation:
it uses only 7 mantissa bits instead of the 23 mantissa bits of the
IEEE-754 binary32. This representation was originally designed to be
used in deep-learning dedicated hardware. It allows fast type casting
from and to the original binary32 format.

2.2 errors

Since we rely on finite-precision representations of numbers, we can
incur in several types of error. We briefly discuss the most relevant
ones.

arithmetic overflow The arithmetic overflow is an error re-
lated with integer numbers. In particular, it occurs whenever an in-
struction is attempting to save to a memory location an integer value
that exceeds the range of values that can be represented with the
available number of digits in the given memory location. The re-
sult of the arithmetic operation that generates an overflow error is
implementation-dependent. In the most common case, only the least
significant bits of the number are stored in the destination memory
location. This is the case of a wrapping overflow. The most notable al-
ternative is the saturating overflow, which entails the saturation of the
exceeding value to the boundary value of the range of values that can
be stored in the destination memory location.

representation mismatch The origin data type can allow sym-
bols – other than real numbers – to be represented in its number
system without a counterpart in the reduced precision data type. In
this situation, whenever we replace the origin data type with the re-
duced precision one, we talk about representation mismatch. This is
the case of ±∞, and NaN that have a representation in the IEEE-754

floating point standard data types. There is instead no equivalent in
most of the fixed point representations.

[June 28, 2019 at 16:11 – XXXI cycle]

2.2 errors 11

round-off The round off error derives from the truncation we are
forced to apply to represent a real number using finite precision. The
round off error depends on the data type we use. Given two elements
F(r1), F(r2) of a representation of a subset R on n bits, such that there
is no other F(r′) with F(r1) < F(r′) < F(r2) in the representation, the
distance |F(r2)− F(r1)| gives a measure of the approximation with
which numbers in the range [r1, r2] can be represented. From this idea,
the function ulp(x) – Unit in the Last Place – can be defined for every
point representation method and it can be used as an error measure.
In the case of floating point numbers, the function ulp(x) is defined
as the distance between the closest straddling floating point numbers
a and b such that a ≤ x ≤ b and a 6= b, assuming that the exponent
range is not upper bounded [68]. We can generalize the ulp definition
by considering the Goldberg’s definition [59] of the function ulp(x) for
a representation method with radix β, precision p extended to reals as
in Equation 2.3 [109].

If |x| ∈ [βe, βe+1), then ulp(x) = βmax (e,emin)−p+1 (2.3)

We call machine epsilon εM = ulp(1) of a given data type the smallest
distance between 1 and its successor that can be represented with the
given data type. Fixed point representations have a fixed round off
error εr, f ixed = εM, f ixed which is equal to their own machine epsilon.
On the contrary, floating point representations have a variable round
off error ulp f loat(x) which depends also on the value x itself, and not
only on the data type representation.

The trade-off introduced by reduced precision computation can
be applied to a large variety of use cases. In all these cases, the
quality degradation of the output must stay within given bounds
and it is not an easy task to provide such guarantees. We consider as
quality degradation introduced by the reduced precision computation
the difference ε = |outputorig − outputmix| between the output of
the original version of the program outputorig and the output of the
reduced precision version of the program outputmix. Although there
are approaches, such as the code rewriting implemented by Xfp [36],
that aim at minimizing the representation error on the output without
changing the data type, the most challenging aspects of precision
tuning involve the possibility to exploit data types which are different
from the original version of the program. Indeed, the problem of
finding safe bounds for quality degradation entails the analysis of the
propagation of the initial round off errors across all the intermediate
values of the program. Each intermediate value of the program may
have a different data type, which has its own machine epsilon and
round off error formulation.

To this end, it is possible to compare the output of one or more
executions of the reduced precision version of the code against the
output of the original version. Although this profiling approach gives

[June 28, 2019 at 16:11 – XXXI cycle]

12 theoretical background

a precise quantification of the error, it strictly depends on the input
test set.

To ensure limits on the error bounds, it is possible to perform a static
data flow analysis on the source code. Such analysis, which provides
guarantees on the error bounds for every possible input, have also
limits. In particular, it is impossible to obtain numerical error bounds
on iterative and recursive algorithms whose bounds depend on the
input data.

2.3 the process of reduced precision computation

In this section we outline the main stages that tools addressing reduced
precision computation need to tackle in order to provide an effective
support. Reduced precision computation is not simply about changing
the data type in the source code with the Find-and-Replace button of
any text editor. It is a more complex technique that presents several
challenges, from the architectural to the algorithmic ones.

The process of precision tuning consists in a finite number of steps,
each one representing a problem that has been addressed in the state-
of-the-art:

1. Identify potential precision/performance trade-off opportunities
in the given application.

2. Understand the boundaries of this trade-off.

3. Perform the code patching to replace the original code region
with an equivalent one that exploits a reduced precision data
type.

4. Verify the quality degradation.

5. Evaluate the overhead due to the introduction of type casting
instructions.

scope The noise tolerance that allows us to apply approximate
computing techniques is a property of the individual algorithm, and
it is not uniformly distributed among the whole program. Different
regions of the program typically implement distinct algorithms. The
Pareto principle applied to computer science states that only a re-
stricted portion of the application is performance critical. Therefore,
the identification of potential trade-offs should focus on those critical
code regions, whilst the rest of the application code can be ignored.

analysis Once the code regions of interests have been identified,
the program has to be analyzed to characterize its error sensitiveness
with respect to changes in the data type. This analysis usually entails
the computation or the estimation of the dynamic range of each

[June 28, 2019 at 16:11 – XXXI cycle]

2.3 the process of reduced precision computation 13

variable in the program. From this piece of information it is possible
to allocate a data type to each variable such that the performance of
the code is improved and the introduced error remains within a given
threshold.

code manipulation The code patching is the precision tuning
step in which the actual reduced precision version is generated. This
aspect is mostly considered an implementation detail and several
research tools do not invest great effort in it. However, the code manip-
ulation approach determines the portability of the tool to real-world
scenarios. This challenge can be addressed with different solutions,
which are better suited for different use cases. Indeed, any tool for
precision reduction needs to be aware of both the source language
and the target platform of the compilation process it is part of. On
the source language side, this requirement is mostly due to the need
to cope with best practices in different domains, such as embedded
systems or high performance computing. On the target side, different
platforms implement the arithmetic unit using different architectures.
Thus, each of them provides different trade-off opportunities. As a re-
sult, the tool needs to be well aware of the properties of each platform,
or able to deduce them in some way.

error bounds The verification of the error introduced by the
use of a reduced precision data type comes unavoidably after the
allocation of the data types for the code regions of interest. The goal of
this step is to validate the precision mix and to accept it or to reject it
with a given threshold, which is usually associated to an output value.
This threshold can be expressed in terms of ulp, absolute numeric
value, or relative value. In case of rejection it is possible to – partially
or fully – change the precision mix in the regions of interest and
evaluate it again.

type casting overhead The quest for reduced precision com-
putation often entails the search for the smaller data type to use for
each region of the program. However, the change of the data type in a
code region requires to convert the data from the original precision
version to the new data type before the reduced-precision code region.
The same process is needed for restoring the original precision after
that code region. These conversions insert a set of type casting opera-
tions, which result in additional overhead for the reduced precision
version of the application. In the case of large data to be processed,
this overhead is not negligible. The performance improvements due
to the precision/performance trade-off have to overtake the cost of
data conversion. The use of a very heterogeneous set of data types
within the same region of code increases the overhead. For this reason,
a uniform data type selection reduces the impact of this overhead.

[June 28, 2019 at 16:11 – XXXI cycle]

14 theoretical background

The estimation of the type casting overhead during the data type
allocation is still an open challenge that has been poorly addressed in
the literature.

[June 28, 2019 at 16:11 – XXXI cycle]

3
S TAT E - O F - T H E - A RT

The content of this
Section has been
submitted for
publication in the
journal ACM
Computing
Surveys and it is
currently under
revision.

Researchers with different scientific backgrounds and with different
objectives contributed to the literature on reduced precision computa-
tion. Even though they proposed tools and approaches to solve some
of the problems described in Section 2.3, their contribution was not al-
ways focused on the reduced precision computation itself. Researchers
often use this technique as a mean to reach a more complex goal.
In this chapter we briefly describe the most relevant works from the
reduced precision perspective.

3.1 scope of the tool

It is important to identify which portions of the program can be
approximated and which ones should keep using the original precision
level. This problem can be addressed with different approaches.

The most trivial approach consists in ignoring the concept of code
regions. The tool analyzes the whole application code and provides
a suggested data type allocation for each value in the program. This
approach allows the tool to find the global optimum solution. It is
the case of formal verification tools – such as GAPPA [38] – and
holistic frameworks – such as the one implemented by PetaBricks [4].
Besides them, many other tools adopt the whole program analysis
approach. Examples are Autoscaler for C [79], the approach proposed
by Menard [99], GAPPA [38], PROMISE [62, 63], SHVAL [84], the
binary mode of CRAFT [85], and the method proposed by Rojek [129].
However, the whole program analysis approach is likely to lead to long
processing time due to the exponential amount of possible precision
solutions. Another weak point of this approach is the difficulty that
static analysis techniques face when they have to process a large code
base. In fact, the static conservative approach is likely to diverge or to
provide over-approximations of the results, which are too large to be
actually useful on large programs.

On the contrary, the annotation-based approach asks the end-user to
manually specify which regions of the code have to be considered for
precision tuning and which ones should not. These annotations can be
implemented in several ways. Precimonious [133] uses external XML
description files to declare which variables in the source code should
be explored and which data types have to be investigated. Other tools
define a custom annotation language that mixes with the original
programming language. In particular, ID.Fix [22] relies on as scoped
pragma declarations in the source file, FRIDGE [74], CRAFT [85] (using

15

[June 28, 2019 at 16:11 – XXXI cycle]

16 state-of-the-art

variable mode), FloPoCo [44], and FlexFloat [149] implement custom
C++-like data types. In particular, these tools act only on the variables
declared with the tool-specific data types. Rosa [35] and Daisy [32] use
a custom contract-based programming model. The annotation-based
approach forces the tool to investigate only the critical region(s) of
the program and thus it allows to save processing time, which can
be spent on more accurate analysis. On one hand, the effort of the
user in manually annotating the source code is paid back by improved
scalability with respect to the size of the code base. On the other
hand, this approach does not fit use cases where the size of the critical
section is particularly large. Additionally, a fine-grained annotation
process requires the end-user to have a deep domain knowledge of
the application.

A higher level approach to the definition of the scope of the tool
consist in the selection of the computational-intensive kernel function.
This approach is typically adopted by tools that operate on hardware-
heterogeneity-aware programming languages, such as OpenCL. The
tool mentioned in [111] relies on an already existing domain specific
language to describe which is the OpenCL kernel that has to be
analyzed. Although the main focus of the framework mentioned in [3]
are OpenCL kernels too, they process the whole computational kernel
and do not expose any hook to the end-user.

Another approach which requires user intervention is the expression-
based approach. Tools of such kind are designed to work on individual
expression. The end-user is supposed to manually extract the expres-
sions they are interested in from the program, have them processed
by the tool, and take care of combining the results. These are typically
analysis tools that do not apply any code manipulation. This is the
case of Xfp [36], which is a tool for floating point to fixed point conver-
sion. Other examples are FPTuner [25] – which is an analysis tool that
provides precision allocation for an input floating point expression –
and PRECiSA [154], which is an error estimation tool.

An ultimately automatic approach consists in performing a profile
run of the application to identify the hot code regions, which may espe-
cially benefit by the performance/precision trade-off. HiFPTuner [65]
combines a static data flow analysis with a dynamic profiling on
the source code. It builds a hierarchical representation of the data-
dependencies in the program. In this graph the initial static analysis
creates the hierarchical structure whereas the dynamic profiling high-
lights the hottest dependencies.

A similar approach is the so-called Dynamic Precision Scaling [164],
which defines the concept of dynamic region. These regions are delim-
ited according to runtime conditions of the program and may not be
mapped on a specific region of source code.

[June 28, 2019 at 16:11 – XXXI cycle]

3.2 program analysis 17

3.2 program analysis

Precision tuning is supposed to provide the most performing data
type for each value. The use of a reduced precision data type can
introduce several errors: round off error, cancellation error, overflow
errors, and representation mismatch. The precision loss in the pre-
cision/performance trade off determines the round off error. There
are cases when the cancellation error can be considered acceptable
and other where the precision tuning tool should either track the
dynamic precision requirements in the preliminary analysis, or ver-
ify the absence of cancellation error via a subsequent precision mix
validation. The representation mismatch error does not happen when
the precision options are limited to the IEEE-754 data types. When the
precision tuning considers also other floating point and fixed point
data types, the representation mismatch error may be neglected due
to its erratic and infrequent nature. On the opposite, in these cases
overflow errors must be avoided. Thus, the analysis always have to
provide safe bounds for the dynamic range of each value.

A considerable share of precision tuning tools just apply a trial-
and-error paradigm to precision tuning, such as CRAFT [85], Prec-
imonious [133], PROMISE [62], and others [3, 111, 129]. They lower
the precision of the values in the program and observe the error on
the output of a testing run. These approaches select a precision mix
to evaluate without any knowledge on the dynamic range of values.
Among these tools, there are some [111] that perform a full-factorial ex-
ploration of the possible precision mix. Other tools – e.g. CRAFT [85],
Precimonious [133], and PROMISE [62] – implement search algorithms
to explore the space of possible precision mix more efficiently. As long
as the list of data types that are candidates to be allocated to each
value is relatively short (e.g. only IEEE-754 data types) and the space
to be explored is sufficiently smooth, greedy algorithms can be used
to reach a good-enough suboptimal solution. Thus, the preliminary
analysis can prove to be slower than a trial-and-error approach. How-
ever, this approach does not scale with the number of possible number
representation that can be used. Furthermore, discontinuities in the
program can trick a greedy algorithm into a local optimum, which
may be considerably distant from the global optimum.

The goal of the preliminary analysis of the program is to provide
a fine-grained description of the precision requirements in the code
regions of interest. This description allows the precision tuning tool
to significantly reduce the space of possible data types admitted for
each intermediate value. The end-user may want to provide as little
information as possible to the precision tuning tool. Thus, the precision
tuning tool usually receives as input either a set of annotation over the
input values either an input batch which is representative of the typical
workload of the application. Respectively, the precision tuning tool can

[June 28, 2019 at 16:11 – XXXI cycle]

18 state-of-the-art

statically propagate the annotation metadata to all the intermediate
values in the program, or it can instrument the application to profile
the dynamic range of the program variables. The literature describes a
large variety of approaches to program analysis. We can classify them
into static analysis and dynamic analysis.

3.2.1 Static Approaches

Static analyses extract additional knowledge from the program source
code without testing it with input data. They can propagate partial
information from a portion of the code, such as input data, to the rest
of the program, or they can characterize the program by adding new
metadata which can be used to improve the precision/performance
tradeoff.

Xfp [36] uncovers expressions equivalent to the input ones whose
fixed point implementation have a lower error in terms of ulp. It
exploits genetic programming to generate alternative expressions
according to a known set of rewriting rules. Xfp reaches a sub-optimal
solution without performing an exhaustive exploration. Rosa [34, 35]
is a source-to-source compiler that provides a precision mix for a
given program on real values. It considers fixed point data types (8,
16, 32 bit) as well as floating point data types (binary32, binary64,
binary128, and a floating point extended format with 256 bit width).
Rosa introduces a contract-based programming paradigm based on
the Scala functional programming language. For each expression,
Rosa asks the programmer to provide a pre-condition statement that
describes the range of values expected as input. By running a static
analysis on the intermediate values, Rosa provides safe approximations
of range bounds for nonlinear real-value expressions. In particular,
Rosa initially computes safe ranges using interval arithmetic [106].
Then, it applies a binary search using the Z3 [39] Satisfiability Modulo
Theories (SMT) solver to check if the range could be tightened. The
approach implemented in Rosa [35] has been extended in Daisy [32]
by integrating the rewriting capabilities of Xfp [36]. Additionally,
Daisy improves with respect to Rosa by using a different SMT solver –
dReal [56] instead of Z3.

Salsa [30] asks the end-user to annotate the source code with the
range of expected initial values. Then, it statically analyzes the inter-
mediate representation of the program to propagate these metadata to
all intermediate values. More precisely, it performs an inter-procedural
value range analysis based on interval arithmetic [106].

A combined approach between interval arithmetic and affine arith-
metic [145] is adopted also in hardware/software codesign environ-
ments, such as Minibit [114]. However, both interval arithmetic and
affine arithmetic can lead to over-conservative ranges. Indeed, Minibit+
allows the user to select whether to run a static analysis or a dynamic

[June 28, 2019 at 16:11 – XXXI cycle]

3.2 program analysis 19

profiling-based analysis. Static approches have been proposed in the
literature to tighten these conservative output ranges. They mainly
suggest to apply iterative refinement methods to the result of interval
arithmetic and affine arithmetic. In particular, Kinsman and Nicol-
ici [76] refine the ranges using a binary search until an SMT-solver
is not able to demonstrate the validity of a stricter interval. Pang
et al. [119] refine the ranges using Arithmetic Transform [118]. The
resulting analysis is faster with respect to the SMT-based approach.

3.2.2 Dynamic Approaches

Autoscaler For C [79] performs an explorative run over the original
floating point code to obtain an estimation of the dynamic range
for each variable. This range estimation analysis is built upon the
SUIF [161] compiler by instrumenting its intermediate representation.
The goal is to find the smaller data width required by the algorithm
for hardware implementation. While in the case of area optimization
there are no limitations on the number of bits that are supposed to
be used, in the case of performance optimization for general purpose
computing the number of bits is usually a multiple of 8 – which is the
number of bits in a byte.

Other dynamic analysis works aim at improving already existing
precision tuning frameworks. The approach suggested by Menard
et al. [99] provides an improved methodology to determine the bit
width of the fixed point data type – in addition to an optimized
code generation – for the FRIDGE [74] framework. In their work they
describe a methodology to generate multiple data flow graphs from
the target application using the SUIF [161] compiler framework. For
each block of such data flow graphs, their approach involves the
separate profiling of the input values. After the profiling, a static data
flow analysis propagates the information about the dynamic range
within the rest of the block.

Blame Analysis [134] is a dynamic technique which aims at reducing
the space of variables involved in a precision mix exploration. This
analysis extends the Precimonious [133] tool and – as for Precimonious –
it acts on the LLVM [86] intermediate representation. Blame Analysis
instruments the LLVM bitcode to create a shadow execution environ-
ment which tracks the evolution of floating point values at runtime.
The result of the Blame Analysis does not contain the dynamic range of
values, it only highlights the variables whose precision minimization
had no impact on the output. Thus, it provides a list of variables which
can be safely ignored for the purpose of searching the best precision
mix.

There are tools and analyses in the literature that aims at detecting
overflow errors at runtime. They modify the original program by
wrapping instructions that may lead to overflow errors with dynamic

[June 28, 2019 at 16:11 – XXXI cycle]

20 state-of-the-art

a check. This approach has been explored at source-level [42], at
binary-level [14], and at compiler-level [128]. However, these works
only detect overflow errors and do not focus on precision tuning.

Other relevant analysis have been proposed in the literature. Al-
though they do not focus on the range of values, they provide in-
formation on the sensitivity of the output with respect to variable
approximations. ASAC [130] automatically inserts an annotation to
define an input data as approximable or non-approximable. Its approach
is based on the observation of the perturbation of the output cor-
responding to a perturbation of the input variables. Whilst ASAC
has been designed for generic approximate computing techniques,
a similar tool – named ADAPT [101] – specifically targets floating
point precision tuning. ADAPT is based on algorithmic differentiation
(AD) [110]. According to its approach, the programmer selects which
variables in the source code should be analysed. The tool performs
a profile run using AD APIs from CoDiPack [135] (or Tapenade [69],
depending on which is the source language) to estimate the sensi-
tivity of the program with respect to each of the selected floating
point variables. ADAPT produces an error model that can be used to
estimate the effect of a precision lowering on a given variable. This
sensitivity analysis approach assumes that the application to be tuned
is always differentiable, and that the algorithmic derivative of the
variable can be used as a proxy for the sensitivity of the program.
Such assumptions prevent the code that can be tuned to contain even
simple discontinuities, such as conditional statements.

3.3 code manipulation

The code manipulation is the core part of a scalable reduced precision
tool. It allows to automatically apply the precision mix to the target
code regions of interest. However, it is often considered only as an
implementation detail or as an engineering problem. For this reason
several state-of-the-art tools do not implement code conversion fea-
tures at all. This lack prevents real-world scenarios where applications
have a large code base to adopt such tools.

3.3.1 The Generality Problem

Any other tool that aims at providing a reduced precision version of
the input code needs to be aware of both the source language and the
target platform of the compilation process it is part of.

On the source language side, this requirement is mostly due to the
need to cope with best practices in different scenarios. For example,
embedded systems programmers typically write their code in C, with
C++ being an emerging solution. However, many algorithms are ini-
tially designed in Matlab or similar high-level languages, and tools

[June 28, 2019 at 16:11 – XXXI cycle]

3.3 code manipulation 21

supporting precision reduction could be inserted in the Matlab-to-C
conversion step instead of in the C-to-assembly step. In High Perfor-
mance Computing, the scenario is not too different, with C++ and
FORTRAN being heavily used, but other application domains might
require different languages.

On the target platform side, different platforms provide different
trade-offs. As a result, the tool needs to be keenly aware of the proper-
ties of each platform, or it needs to be able to deduce them in some
way. On the one hand, the use of smaller data types requires the use of
less complex – and thus more energy efficient – hardware platforms.
On the other hand, it allows complex architectures to exploit more
aggressively the SIMD parallelism through data vectorization. Which
one is the most beneficial aspect depends on the target platform. In
the embedded system domain it is common to have architectures with
limited or no support for floating point computation, whereas in high
performance computing the goal is to maximize the data parallelism.

As a result, in embedded systems the goal is typically to avoid the
use of software emulation of large data types, especially when target-
ing microprocessors not endowed with a floating point unit, typically
of ultra-low power platforms. In such platforms, the conversion is
almost always beneficial, if reasonable accuracy can be obtained. In
higher-end embedded systems, where floating point units are avail-
able, a conversion to fixed point may not be desirable. Still, even in
these cases, limiting the data size to binary16 or binary32 floating
point may be useful.

In high performance computing, the main goal is to reduce power
consumption and to increase parallelism. The binary16 representation
finds its main application here, whereas the main impact of moving
the computation from floating point to fixed point is given by the
ability to exploit higher degrees of Single-Instruction Multiple-Data
(SIMD) parallelism via vector instructions.

Consequently, tools tend to focus on one type of target platform.
Source-to-source tools in particular need to have information about
the target platform, whereas tools implemented as part of a compiler
framework can leverage the target information already available as
part of the back-end.

3.3.2 A Technological Taxonomy

When it comes to start writing new software and configure a program-
ming toolchain, developers rarely focus on tools whose purpose is to
enable or optimize reduced precision computation. Therefore, such
tools have been specialized to target already existing programming
toolchains. The technological approach followed by each of those tools
reflects the needs and the integration requirements of the program-
ming environment they were originally developed for. We classified

[June 28, 2019 at 16:11 – XXXI cycle]

22 state-of-the-art

the technological approaches present in literature in five different
categories:

1. Tools that accept as input a program written in a valid human-
readable programming language and that produce as output
another version of the same program written in a valid human-
readable programming language. In our discussion we consider
only tools that emit the same programming language they ac-
cept as input. These tools are also known as source-to-source
compilers.

2. Tools based on Binary modification or instrumentation. Such
tools operate on machine code which can directly be executed
by the hardware.

3. Compiler-level analyses and transformations which are imple-
mented as compiler extension or customizations. Such tools are
executed as intermediate stages of the process that compiles
program source code into machine-executable code.

4. Custom programming environments which involve complex
ad-hoc toolchains that require a dedicated programming or code
generation paradigm.

5. Other kinds of tools and utilities with specific purposes.

3.3.2.1 Source-to-Source Compilers

The source-to-source compilers are best-suited for those use cases
where there is the need for an automatic code replacement with
human supervision. A source-to-source approach is recommended
whenever optimizations other than precision tuning are scheduled to
be applied after the precision tuning.

Autoscaler For C [79] is a source-to-source compiler that complies
with the ANSI C programming language. It converts every variable
to fixed point by using a data size which guarantees the absence of
overflow. The conversion applies within their compiler, which is built
upon the Stanford University Intermediate Format (SUIF) compiler
system [161]. Although the output of Autoscaler For C is ANSI C, which
is portable to different architectures, it specifically targets digital signal
processors without hardware floating point units.

A compiler-aided exploration of the effects of reduced precision
computation involving native binary16 code is described in [111]. The
core of their toolchain is a source-to-source compiler, which is based
on an aspect-oriented domain specific language. It creates multiple ver-
sions of the OpenCL source code with different precision mix through
LARA DSL aspects [124]. This precision mix tuning tool explicitly
targets OpenCL kernels for GPU architectures with hardware support
for binary16-based vector data types.

[June 28, 2019 at 16:11 – XXXI cycle]

3.3 code manipulation 23

Salsa [30] is a source-to-source compiler written in Ocaml whose
purpose is to improve the accuracy of a floating point program without
via source-level code transformations. It features both intra-procedural
and inter-procedural code rewriting optimizations.

Xfp [36] is a tool for floating point to fixed point conversion which
selects the fixed point implementation that minimizes the error with
respect to the floating point implementation. As an exhaustive rewrit-
ing of the expression with different evaluation orders is unfeasible, Xfp
exploits genetic programming to reach a sub-optimal implementation.

Rosa [34, 35] is a source-to-source compiler that provides a precision
mix for a given program on real values. Rosa operates on a subset of
the Scala programming language. It also introduces a contract-based
specification language to allow the programmer to describe proper
preconditions and precision requirements for each function. It parses
such specifications and then allocates a data type for each Real value –
placeholder for any value that can be either floating or fixed point – in
the function. Rosa internally exploits the Z3 SMT solver [39] to process
the precision constraints derived from the program accuracy speci-
fications. The source code of Rosa is available at [31]. Real2Float [94]
exploits a similar approach. In particular, they rely on global semidefi-
nite programming optimization instead of SMT solvers. It relies on the
semidefinite programming solver SDPA. The source code of Real2Float
is available at [95].

Daisy [32] is a source-to-source compiler derived from Rosa [35].
It supports Scala and C programming languages. Daisy implements
also code rewriting optimization from [36] and [117]. It explores code
alternatives that may improve accuracy. The evolutionary algorithm
that Daisy uses to evaluate the code alternatives is provided by the
Xfp tool [36]. The source code of Daisy is available at [37].

PROMISE [62, 63] is a tool that provides a subset of the program
variables which can be converted from binary64 to binary32. It is
based on the delta debugging search algorithm [167] – which reduces
the search space of the possible variables to be converted. PROMISE
is written in Python and it relies on the CADNA software [73] to im-
plement the Discrete Stochastic Arithmetic verification in C, C++, and
Fortran program source code. The output of PROMISE is a program
which implements the best precision mix found by the tool.

3.3.2.2 Binary Modification

This kind of tools does not need to access the source code of the
application as they work directly on the machine-executable code.
Binary patching tools are particularly useful whenever the source
code of the application cannot be accessed or modified. However, just
as these tools are unbound from the program source language, they
have a very strict focus on a specific binary format. Therefore, binary
instrumentation tools are designed to work only on a given computer

[June 28, 2019 at 16:11 – XXXI cycle]

24 state-of-the-art

architecture, and the porting to other architectures may require a
significant effort.

To detect the effect of digit cancellation in floating point code,
[83] provide a description of a binary instrumentation tool which
reports digit cancellation events at runtime. This tool is based on the
Dyninst [15] and on the Intel Pin [92] binary instrumentation libraries.

The same authors later presented in [85] a whole framework –
named CRAFT – which aims at minimizing the instructions that ex-
ploit the binary64 format by replacing them with equivalents based
on the binary32 format. CRAFT is based on machine code instru-
mentation, and it performs binary code patching for Intel X86_64

architectures. The whole CRAFT framework is mostly written in C++.
It initially instruments the target application executable file and then
it provides a set of mixed precision configurations. Later, it evaluates
the mixed precision versions on a given input test set to find the most
promising one in terms of error and performance. It is based on the
Dyninst [15] binary instrumentation library. Although the original im-
plementation of the CRAFT framework – called binary mode – relies on
binary instrumentation, authors recently added an experimental vari-
able mode which allows the end user to restrict the scope of the tool to
variables defined in the source code. This variable mode of CRAFT re-
lies on the Typeforge tool [136] from the Rose compiler framework [125]
to perform source-to-source translation on C/C++ applications. The
CRAFT framework is available online as free software [80].

SHVAL is an open-source [81] library to perform the Shadow Value
analysis described in [84]. It simulates the execution of a floating
point program that exploits the binary64 as it was executed using a
different data type. The described implementation supports the emu-
lation of the binary32 and the binary128 data types. It also supports
binary64 emulation for verification purposes. In particular, SHVAL
instruments the binary code of a floating point program to measure
the inaccuracy introduced by the floating point rounding. It inserts a
shadow execution flow which runs coupled with the original program
without interfering with its values. This shadow execution is used as
a reference to compare the result of the original program. Thus, it
exploits higher accuracy with respect to the original program. It allows
several precision levels to be tested with this approach, even though
they are not natively supported by the target architecture thanks to the
GNU MPFR arbitrary precision library [51], which can emulate larger
data types, such as the binary128. SHVAL is based on the the Intel Pin
binary instrumentation library [92]. The Shadow Value Analysis, which
originally targets only x86_64 architectures [81, 84], has been extended
in [96, 97] to demonstrate its portability on a Raspberry Pi 3.

[June 28, 2019 at 16:11 – XXXI cycle]

3.3 code manipulation 25

3.3.2.3 Compiler-level Transformations

They operate within the standard compilation flow of the target appli-
cation. Therefore, it is relatively easy to integrate them in the develop-
ment process of the target application. They work on the intermediate
representation of the program which is built internally by the compiler
infrastructure they rely on. The user is typically not asked to revise
the output of the precision tuning tool, as it is not in a human-friendly
form.

Precimonious [133] is a tool based on the customization of the
LLVM [86] compiler framework which aims at suggesting the most
efficient precision mix within a given error threshold. Precimonious
accepts as input a C program and produces a description of the sug-
gested precision mix as output. It exploits LLVM-IR bitcode files to test
various versions of the code. Thus, such bitcode files can be saved for
later reuse. It supports the standard C data types float, double, and
long double, which respectively implement the binary32, binary64,
and the 80-bit double extended precision data type. Precimonious is
being used as a reference framework for further related works. In par-
ticular, Blame Analysis [131, 134], and HiFPTuner [65] are preliminary
analysis that aims at reducing the search space of Precimonious. The
source code of Precimonious is available online at [132].

A framework for automated accuracy reduction is described in [3].
The goal of this work is to reduce the memory impact of floating
point values by using smaller data types. The presented work is based
on the LLVM [86] compiler framework. This framework supports
three classes of real number representations: IEEE-754 formats – more
specifically binary32, and binary16 –, mantissa-truncated data types –
which are obtained by truncating mantissa bits from the basic IEEE-754

data types, such as bfloat16 –, and IEEE-754-style data types – which
are data types with variable bit width but constant ratio between the
number of mantissa bits and that of exponent bits. It extends LLVM
with the custom defined data types and transparently converts the
floating point values. As the target hardware is not guaranteed to
support the custom defined data types, the proposed approach entails
wrapping every memory access instruction to unpack and to pack the
data from and to such data types. Although this approach is target
independent, it is particularly relevant for architectures where the
cache and the memory size are critical. In the case of HPC accelerators
– e.g. GPU – a reduced memory footprint may allow to run a higher
number of parallel jobs.

Verificarlo [41] is an analysis tool designed to estimate the round
off errors. It instruments the LLVM-IR of the program to substitute
the IEEE-754 floating point arithmetic operations with equivalent
instructions based on Monte Carlo Arithmetic. Verificarlo is available
online at [166].

[June 28, 2019 at 16:11 – XXXI cycle]

26 state-of-the-art

3.3.2.4 Custom Environments

Whenever the technical implementation of the precision tuning utilities
require a complex chaining of multiple tools, the application develop-
ment and precision tuning processes are likely to be customized to
reflect the environment requirements.

FRIDGE [74] is a comprehensive hardware/software codesign envi-
ronment that provides analysis and code conversion tools. The whole
environment is composed of a source-to-compiler, a simulation envi-
ronment, and an additional software component to determine the fixed
point parameters. It simulates the effect of the fixed point operations
on the hardware description via its own simulation system – called
HYBRIS. FRIDGE accepts as input programs written in ANSI-C with
floating point variables and it produces as output an equivalent code
which exploits fixed point arithmetic. For simulation and evaluation
purposes it features a VHDL and an assembly back-end. FRIDGE is
designed to support digital signal processors (DSPs) without hardware
floating point units.

More recently the focus of hardware/software codesign environ-
ments moved from DSPs to FPGAs. Minibit+ [114] provides bit-width
optimization analysis and precision mix features for FPGA-specific
applications. It improves over the previous Minibit [88] tool by allow-
ing the synthetization of a floating point hardware unit in addition
to the fixed point one. This additional option allows the framwork to
preserve accuracy in cases of extremely costly fixed point implementa-
tion alternatives. The whole framework is built upon the BitSize [55]
code analysis framework.

ADAPT [101] is an analysis tool for floating point precision tuning.
It is based on algorithmic differentiation [110]. ADAPT is shipped as
a C++ library that has to be compiled along with the application to be
tuned. Their approach is composed by two steps. First, the program-
mer selects which variables in the source code should be subject of
analysis. The tool performs a profile run to estimate the sensitivity
of the program with respect to each of the selected floating point
variables. Later, it iteratively reduces the precision of the program
variables by one precision step – e.g. from binary64 to binary32 –
starting from the variable which is estimated to have the least impact
on the degradation of the output. ADAPT stops when the estimated
error reaches the tolerance threshold. The source code of ADAPT is
available online under the GPLv3 license [100].

PRECiSA [108, 154] is an error estimation environment. It consists in
an abstract interpretation framework that defines an analysis which is
parametric over a set of input-predicated conditions. PRECiSA is based
on the definitions of the basic floating point (hardware and software)
standard [12, 102] via the SRI’s Protoype Verification System [115]. It
supports the basic floating point data types according to the definitions
available in the SRI Prototype Verification System. The source code is

[June 28, 2019 at 16:11 – XXXI cycle]

3.3 code manipulation 27

available online at [152]. It can also be used as an online service via
web page [153].

FPTuner [25] is an analysis tool based on Symbolic Taylor Expansion
which is able to provide a precision mix allocation of values that
keep the error within a given bound. It supports binary128, binary64,
and binary32 data types. FPTuner is based on the Gelpia [2] global
optimizer, which provides bounds to the expressions processed by FP-
Tuner. Gelpia is capable to leverage SIMD parallelism via the GAOL [60]
library for interval arithmetic. Finally, a solver library is required to
obtain the best precision mix allocation. To this end FPTuner relies on
Gurobi [66] and on the FPTaylor [144] error estimation tool. FPTuner
targets mainly the scientific computing domain. However, it is limited
to conditional-free expressions. FPTaylor is open source [143] and it
can also be used as a standalone tool. Authors open sourced their tool
at [24].

PetaBricks [4] is a programming language that exposes the concepts
of accuracy metric and accuracy guarantee to the programmer. The im-
plementation of a library function can be defined multiple times with
different precision or accuracy specifications. The library user can
specify which level of accuracy guarantee to use in his code. There
are potentially infinite different implementations at different accuracy
levels: they might differ for data types as well as for the algorithm im-
plementation. PetaBricks has its own compiler and setup environment.
The latter features an autotuner framework that explores the accuracy
of the several implementations during a training phase and selects
the most suitable for runtime. The PetaBricks environment implements
a closed-loop system where an autotuner profiles the application at
deploy time. The application runs in tight coupling with the autotuner,
which observes the program output and decides at runtime which
code version the program should use. The PetaBricks approach enables
the automatic multithreading parallelization of the code via compiler
transformations. The effectiveness of this approach is demonstrated
on a multi-core platform.

An emerging approach is the so-called Transprecision technique
which consists in tuning the accuracy of the computational kernel at
runtime. This approach allows the precision level to be tightly coupled
with the current state of the application, and with the input data.
The work presented in [89] introduces Transprecision for iterative re-
finement algorithms. It employs binary32, binary64, and binary128

data types. This work guarantees the convergence of the the iterative
algorithm, as every source of inaccuracy introduced by the described
approach is proven not to impact on the convergence of the refinement.
It targets HPC-like computing cores featuring x86_64 architectures.

A proof of concept for DPS – acronym for Dynamic Precision Scal-
ing, which is meant to be the porting to reduced precision of the
more well-known concept of Dynamic Voltage and Frequency Scaling

[June 28, 2019 at 16:11 – XXXI cycle]

28 state-of-the-art

(DVFS) – is described in [164]. The purpose of DPS is to run the pro-
gram on reduced-precision floating point functional units whenever
the data can tolerate the degradation, and to dynamically switch to
the original floating point data types when there is the need to pre-
serve the accuracy. The proof-of-concept implementation features an
offline profiler, a runtime monitor, and an accuracy controller soft-
ware component. The DPS system continuously monitors the quality
of the output at runtime. The accuracy controller component runs a
regulator which adjusts the precision level according to the feedback
from the monitor. The described implementation of the offline profile
and the accuracy controller are based on the approximate computing
framework iACT [103]. The runtime monitor is emulated via binary
instrumentation of load/store instruction in the binary to export per-
formance counters. The reduced-precision floating point functional
units should be obtained by reducing the number of mantissa bits
from the binary64 and binary32 floating point data types.

3.3.2.5 Other Notable Tools and Methods

The literature related to precision tuning presents a large variety
of works. However, not all of them can be classified in any of the
aforementioned categories. In particular, we highlight utilities and
tools with a very specific purpose, which are particularly interesting
for precision tuning.

FlexFloat [149] is an emulation Transprecision framework for variable
width floating point data types. It supports any configuration of
exponent bit width and mantissa bit width for floating point data types
smaller than 32 bit. It can be used to evaluate the functional effects
of custom-defined floating point data types. The goal of this work is
to implement ultra low-power architectures featuring transprecision
floating point hardware units. Two different implementations are
available online: a full featured one [148] and a lightweight version
with only precision analysis [49].

FloPoCo [44] is a framework written in C++ that generates VHDL
code to design custom arithmetic data path of floating point cores. It
provides to the hardware designer C++ classes to represent custom
floating point units. It is designed to provide a high level abstraction
of the design of floating point units with custom bit width of mantissa
and exponent. FloPoCo generates a synthetizable hardware description
according to the parameters specified via C++ code. The source code
of FloPoCo is available at [43].

A machine-learning based method for the dynamic selection of the
precision level for GPU computation is presented in [129]. It imple-
ments a modified version of the random forest algorithm to decide
whether a variable type should be binary32 or binary64 floating point.
The proposed approach prune the less promising branches of the ex-
ploration tree to reduce the number of code versions to test. The work

[June 28, 2019 at 16:11 – XXXI cycle]

3.4 verification 29

presented in [129] strictly fits the single use case presented in the pa-
per, which is a GPU application that implements a 3D stencil iterative
algorithm.

3.4 verification

Once the precision tuning tool processed the program and generated
a reduced precision version of it, the tool should provide guarantees
on the maximum degradation of the output quality. The metric that is
used to describe the output quality is typically application-dependent.
The most common use case involves the end-user specifying a thresh-
old of maximum acceptable degradation. Such threshold may be zero
when the user aims at maximizing performance without any quality
degradation. Just as the preliminary program analysis, the verification
methodologies can be either static or dynamic, depending on whether
they need to execute the mixed precision version to be verified or not.

The literature on software verification is rich of research works
on this field, as it captures interest from the software engineering
research area [57]. Thus, the problem of estimating a safe upper bound
of the error introduced in the computation by the use of certain data
types has widely been addressed by dedicated tools. Along with
the verification procedures adopted by precision tuning tools, in this
Section we also survey relevant verification-specific works which can
be related to reduced precision computation.

3.4.1 Static Approaches

Static approaches compute a worst-case scenario of the error projection
on the output without the need to exhaustively test every input case.
The conservative approach of the static analyses may lead to extremely
large error bounds, which eventually can degenerate in no information
or useless partial information. Whenever static analyses do not diverge,
they can provide a formal proof of the output, which is required by
the use cases whose errors must not reach the given threshold – such
as safety-critical systems.

Salsa [30] employs on a set of rewriting rules to minimize the error
in a given program. In this case – given a correct set of rewriting rules
– the final version of the program is proven correct by construction.
Although the rewriting engine of Xfp [36] exploits a similar methodol-
ogy, the final evaluation of the mixed precision version is based on a
profile run.

In the case of the contract-based programming paradigm – such
as in the Rosa [34, 35] and Daisy [32] tools – the precision allocation
follows the user-defined constraints. The solution of such constraints
is typically provided by an automatic SMT solver. Therefore, also in
the case of these tools, the error introduced in the final mixed precision

[June 28, 2019 at 16:11 – XXXI cycle]

30 state-of-the-art

version stays within the given threshold by construction. A similar
approach, implemented in Real2Float [94], uses semidefinite program-
ming optimizations instead of SMT-based solutions. Real2Float is able
to provide error bounds with proof of correctness for Ocaml programs.

FPTaylor [144] is an error-estimation tool which relies on symbolic
Taylor expansion. It approximates the floating point expression with
its first order Taylor expansion, and it uses the second order term
as an upper bound for the error. Is is also used by the FPTuner [25]
as key component of the verification process for the mixed precision
versions. This approach works properly on floating point expressions
that are smooth enough to be polynomially approximated. In the case
of discontinuities, the approximation may not fit the real error.

A different symbolic analysis is implemented in PRECiSA [108,
154]. This tool implements a symbolic static analysis for computing
provably-sound over-approximation of floating point round-off errors.
It takes as input an expression defined over real values, and predicates
on the input values. The output of the PRECiSA analysis [108, 154] is
a set of tuples < eb, cond > where eb is the estimated error bound and
cond is the set of validity conditions for eb. In addition to the error
bounds, PRECiSA provides also the verification lemmas to prove the
correctness of such bounds.

GAPPA [38] is a tool based on interval arithmetic and forward error
analysis which is able to provide formally verified error bounds. The
GAPPA input language allows expressions on real values with floating
point and fixed point data types. The former are built-in data types
whereas the latter need to have their parameters manually specified –
e.g. data width and rounding mode. The source code of GAPPA has
been published online at [98].

A similar approach based on affine arithmetic [145] has been imple-
mented within Fluctuat [61]. This analysis tool provides error bounds
for algorithms implemented via IEEE-754 floating point data types,
and hints about their numerical accuracy.

Although its focus is not on precision tuning, the Astrée [29] analysis
tool can prove effective also in this domain. Astrée is a static analyzer
which is able to ensure the absence of several categories of runtime
errors. Among such categories, all possible floating point rounding
errors are considered.

3.4.2 Dynamic Approaches

Dynamic approaches compare the result of the reduced precision ver-
sion to be tested with a more accurate version of the program. It is
common practice to generate an executable version of the reduced pre-
cision version and run it on a representative input set. This is the case
of tools like Autoscaler for C [79], Precimonious [133], HiFPTuner [65],
and CRAFT [85].

[June 28, 2019 at 16:11 – XXXI cycle]

3.5 type casting overhead 31

Although the approach followed by SHAVAL [84] is not significantly
different from the one previously mentioned, it should be analysed in
more details. It is in fact able to instrument the executable code of the
application to be analyzed. Then, SHAVAL traces the evolution of the
variables at runtime. In particular, it inserts an independent data flow
in the program to replicate the original operations, having this shadow
execution based on a data type which is more precise with respect to
the original one. The goal of SHAVAL is not related to verification of
mixed precision version. Rather its goal is to empirically measure the
error dependent on the data type used in the program to represent
the real values using a larger-precision data type as reference.

Researchers also proposed probabilistic methodologies to perform
reliable profiling of the mixed precision version to compute the error
bounds with a certain degree of confidence. PROMISE [63] estimates
the error bounds using Discrete Stochastic Arithmetic [159]. It executes
each arithmetic operation 3 times using a random rounding mode – 0.5
probability of rounding up, 0.5 probability of rounding down. Another
floating point rounding error estimation tool based on probabilistic
analysis is Verificarlo [41]. It replaces the arithmetic instructions based
on the IEEE-754 floating point standard with equivalents based on
Monte Carlo Arithmetic [122].

Other tools do not produce a fully-working executable version, but
only perform emulation or simulations of the mixed precision version
instead. This approach is typical of design and prototyping tools, such
as FRIDGE [74], and FlexFloat [149]. In the context of hardware simu-
lation, the FRIDGE [74] verification system performs a simulation of
the fixed point operations. Its own simulation system – called HYBRIS
– allows the framework to collect the precision profiles of the mixed
precision hardware designs with a bit-level accuracy. FlexFloat [149]
emulates the functional behavior of custom transprecision data types
on generic by means of other floating point standards, such as IEEE-
754 data types. Both FRIDGE and FlexFloat require the end-user to
provide an input set to test the configuration on.

More in general, the verification and validation of a mixed preci-
sion configuration can be also applied at runtime, in a closed-loop
control-system way. Precision autotuning frameworks, such as the one
proposed for Dynamic Precision Scaling [164] and for the PetaBricks [4]
runtime monitor system, follow this approach. These works measure
the quality of the output while the system is in production and adjust
the precision when the runtime conditions change.

3.5 type casting overhead

The strict implementation of the data width minimization may lead
to a very heterogeneous precision mix. This is particularly the case of
fixed point representations. Every type mismatch in the data flow of

[June 28, 2019 at 16:11 – XXXI cycle]

32 state-of-the-art

the program requires performing a type cast operation before continu-
ing the execution of the program. The overhead introduced by type
cast operations may overtake the benefits of using the smaller data
types. It follows that the minimization of the data type width does
not guarantee performance improvements. A dynamic performance
profiling can instead solve this problem. Indeed, whenever the preci-
sion tuning system validates the benefits of a data type variation by
executing the code, the measurement includes also the type casting
overhead. Examples of this approach are implemented in FRIDGE [74],
Precimonious [133], CRAFT [85], and PetaBricks [4]. Although perfor-
mance profiling solves this problem, a representative profiling run
on each code version may not always be possible. This limitation is
possibly due to the time required to perform it, which can exceed
the time budget that a programmer is willing to allocate to precision
tuning.

To overcome this problem, it is possible to estimate the overhead by
measuring the number of type cast instructions introduced in the code,
or by using other similar heuristics. This is a promising approach that
has been explored only by few tools in the literature. In particular,
Autoscaler for C [79] and the approach suggested by [99] iteratively
optimize the fixed point code by reordering instructions to collapse the
shift operations whenever possible. FPTuner exposes to the end-user
a threshold on the number of type cast that the tool is allowed to
insert in the code. However, this parameter is hard to hand-tune for
the end-user. Daisy [32] uses the number of type cast operations in a
cost function that estimates the profitability of the precision lowering.
HiFPTuner [65] adopts a hierarchical-based approach to minimize the
number of type cast operations. It builds a data-dependency tree and
it tries to assign the same data type to all values in the same cut of the
tree.

[June 28, 2019 at 16:11 – XXXI cycle]

3.6 a comparative analysis 33

3.6 a comparative analysis

In this section we summarize the most relevant contributions to the
state-of-the-art. We compare tools and approaches over a fixed set of
functional capabilities and portability characteristics. Functional capabili-
ties represent the core of the research innovation represented by tools
and approaches in the state-of-the-art. Let us define portability charac-
teristics as the implementation details and the features of the tool that
practically enable it to fit to a given use case. The effectiveness of each
work depends on the combination of advanced functional capabilities
and wise implementation choices.

3.6.1 Functional Capabilities

For each work, Table 3.1 describes the following capabilities:

scope of the tool or analysis

analysis to discover properties of the algorithm

overhead handling to mitigate the effect of type cast operations at
runtime

validation approach to calculate error bounds

guarantees provided by the validation

In Table 3.1 we distinguish tools whose scope is the whole program
(P), from the ones that allow to restrict the scope to a user-defined
portion of the whole program (U) or to a single computational kernel
(K). The capability to limit the scope of the analysis (or of the trans-
formation) can turn out to be fundamental in the case of, for instance,
very large and complex programs. The focus of the reduced precision
computation should be only on the most computationally intensive
kernel whereas precision tuning typically brings little or no benefit
to the input/output routines, and other marginal code. This way it
becomes possible to avoid the additional time and space complexity
of the problem which is generated by the marginal portion of code of
the program. However, there exists use cases – e.g. the full repurpose
of an application to support an architecture with different arithmetic
units – where it may be desirable to act on the whole program without
having to specify explicit bounds.

A preliminary analysis stage can help precision tuning tools to
expand the knowledge on the code by uncovering properties or by
propagating partial knowledge about some values in the program
to the rest of the code being analyzed. Depending on which type of
information the precision tuning tool is able to exploit, and depending
on which type of information is available before the processing, a pre-
liminary analysis can be performed statically (S) – by only processing

[June 28, 2019 at 16:11 – XXXI cycle]

34 state-of-the-art

Table 3.1: Tool Capabilities Synopsis

Tool / Approach Scope Prelim. Ovh Valid. Guarantees

Name Anal. Handl. Method

ADAPT [101] U D none P none

Angerd et al. [3] K – – – none

ASAC [130] U D – – none

ASTRÉE [29] P – – S F

Autoscaler for C [79] P none R P none

CRAFT [85] (binary mode) P none P P none

CRAFT [85] (variable mode) U none P P none

Daisy [32] U S C S F

DPS [164] U D none A none

FlexFloat [149] U – – P none

FloPoCo [44] U – – – none

Fluctuat [61] P – – S F

FPTaylor [144] P – – S F

FPTuner [25] P D L S F

FRIDGE [74] U none P P none

GAPPA [38] P – – S F

HiFPTuner [65] P M H P none

Menard et al. [99] P D R P none

Minibit+ [114] P S, D C P F

Nobre et al. [111] K none P P none

PetaBricks [4] P none P A none

Precimonious [133] U none P P none

PRECiSA [108] P – – S F

PROMISE [62] P none none S prob.

Real2Float [94] P – – S F

Rojek [129] P none none P none

Rosa [35] U S none S F

Salsa [30] P S none S F

SHVAL [84] P – P P none

Verificarlo [41] U – – D prob.

Xfp [36] P S none P none

[June 28, 2019 at 16:11 – XXXI cycle]

3.6 a comparative analysis 35

the code and the user input – or dynamically (D) – by running the
original version of the program. Singular cases reported in Table 3.1
are HiFPTuner [65], which implements a mixed approach (M) between
static and dynamic analysis, and Minibit+ [114], which allows the
end-user to select whether to use a static or dynamic approach. This
preliminary analysis step is particularly important for tools that deal
with fixed point representations, as the position of the point can be
different for each intermediate variable. In Table 3.1 we denote with
none precision tuning tools that do not perform any preliminary anal-
ysis and that directly start processing the code without any attempt to
extract additional pieces of information. We distinguish tools where a
preliminary analysis is not applicable – because their purpose is not
to generate a mixed precision version of the code – and we denote
them with a dash symbol.

The use of smaller data types does not necessarily imply a reduction
in the execution time. Although the reduced precision data type can
prove to be more efficient to compute, there are side effects of the
precision reduction that impact on the overall code performance. The
most important side effect is the introduction of the type cast oper-
ations. Such operations convert variables from a larger to a smaller
data type, and vice-versa. A precision mix that minimizes the data
size of the variables does not guarantee that the required type cast
operations have a limited impact. Indeed, it may happen that the over-
head given by the type cast instructions overcomes the benefits of the
reduced precision data type. Among the other side effects of changing
the data type it is worth mentioning the increased heterogeneity of
the data types within the computational kernel, which may lead to
fewer vectorization opportunities for architectures that support SIMD
instructions. In Table 3.1 we can observe that usually the overhead
introduced by the change in the data type is not considered by the
precision tuning tools. The most common approach to evaluate the
effect of such overhead is to profile (P) the mixed precision version.
Static approaches aim at the reduction of shift operations in the code
(R), limiting the number of type cast operations with a threshold (L), or
using a cost function (C) to weight their impact in the mixed precision
version. HiFPTuner [65] exploits a hierarchical based approach (H) to
minimize a priori the number of type cast instructions in the mixed
precision code. As for the preliminary analysis, a dash symbol means
that this capability is not amenable to consideration.

Even though the quality of the output can be lowered to improve the
time-to-solution or the energy-to-solution of the application, this qual-
ity degradation has to be bound within acceptable limits to preserve a
meaningful computation. Different applications have different require-
ments on the quality of the output. E.g. media streaming applications
require the output to be limited on the average case, whilst equation
solvers require that the error at each step of the computation stays

[June 28, 2019 at 16:11 – XXXI cycle]

36 state-of-the-art

within a given threshold. Methodology to verify the error bounds can
be static (S) or dynamic (D). Some tools for reduced precision com-
putation provide a formal proof (F) – or a probabilistic test (prob.) to
verify – that the error is less then a given value in the worst case. Other
tools perform an explorative profile run (P) of the reduced precision
versions using a significant input test set that verifies whether the re-
sult is acceptable. Another approach consists in a continue monitoring
of the output quality by sampling it, and by dynamically adjusting
the precision level at runtime (A).

3.6.2 Portability Characteristics

The evaluation of generality and portability capabilities of each tool
or approach is not easy. We rely on the known implementations of the
previously mentioned works to structure two tables that can help the
reader understand which tool can suit which use case. In particular,
Table 3.2 reports the following implementation details for each work:

input language of the tool.

output language of the tool.

data types supported or considered by the tool.

Although an approach can be extended or generalized, what matters
for its usability are the features that its implementation supports. The
most common approach to precision tuning is a proper replacement of
the data type in variable declaration at source code level. It follows that
the tool’s input and output languages limit its implementations. Even
though tools and approaches may work at binary level to be source-
language independent, they are bound to a given binary format, which
usually depends on the architecture type. An intermediate approach
consists in operating the precision tuning within the compiler. In this
case the limits to the usability concern the compiler’s capabilities
and not the tool’s ones. Some other tools work by abstracting the
description of the program via a custom defined description language.
Those tools require the user to manual port the program from the
source programming language to the input language accepted by the
tool. Similarly, the user has to convert the output of the tool from a
precision mix description to a program implementation.

Most of the tools that automatically provide a precision mix only
focus on the most popular data types, which are usually IEEE-754-
compliant floating point data types. In Table 3.2 we denote with
fixed the capability to deal with fixed point representations, while we
generally denote with IEEE754 the capability to support the binary32,
binary64, and binary128 data types from the IEEE-754 standard.

1 SHVAL supports IEEE754, MPFR, Unums, and Posits by default. It also allows the
user to extend this framework to support custom data types

[June 28, 2019 at 16:11 – XXXI cycle]

3.6 a comparative analysis 37

Table 3.2: Tool Implementation Synopsis

Tool / Approach Input Output Considered

Name Language Language Data Types

ADAPT [101] C/C++/Fortran description IEEE754

Angerd et al. [3] LLVM-IR LLVM-IR binary32, custom

ASAC [130] LLVM-IR LLVM-IR binary64, binary32

ASTRÉE [29] C description IEEE754

Autoscaler for C [79] ANSI-C C++ fixed

CRAFT [85] (binary mode) x86 bin x86 bin binary64, binary32

CRAFT [85] (variable mode) C/C++ C/C++ binary64, binary32

Daisy [32] Scala/C Scala/C IEEE754, fixed

DPS [164] – – custom

FlexFloat [149] C++ C++ custom

FloPoCo [44] C++ VHDL user-defined

Fluctuat [61] C, ADA description IEEE754

FPTaylor [144] expression description IEEE754

FPTuner [25] expression expression IEEE754

FRIDGE [74] ANSI-C C++ fixed

GAPPA [38] Gappa Col/HOL IEEE754, fixed

HiFPTuner [65] C description IEEE754

Menard et al. [99] C, ARMOR C fixed

Minibit+ [114] ASC/C/C++ description fixed, binary32

Nobre et al. [111] OpenCL OpenCL IEEE754, binary16

PetaBricks [4] PetaBricks C++ –

Precimonious [133] LLVM-IR description IEEE754

PRECiSA [108] PVS PVS proof IEEE754

PROMISE [62] C/C++ C/C++ binary64, binary32

Real2Float [94] Ocaml description IEEE754, custom

Rojek [129] CUDA CUDA binary64, binary32

Rosa [35] Scala Scala IEEE754, fixed

Salsa [30] C C IEEE754

SHVAL [84] x86 bin x86 bin several1

Verificarlo [41] LLVM-IR LLVM-IR IEEE754

Xfp [36] Matlab Matlab fixed

[June 28, 2019 at 16:11 – XXXI cycle]

38 state-of-the-art

As the input language can be a limit to the tool usability, which
platform a given tool targets is enforced by the technological structure
of the tool itself. Most of the source-to-source compiler tools can be
considered platform independent, whereas the binary instrumentation
and the hardware/software codesign tools are strictly bound to a
given architecture type.

Other solutions specifically focus on particular use cases or archi-
tectures. The hardware/software codesign tools for Digital Signal
Processors (DSP) focus on the ANSI-C programming language. They
accept C as input and they all produce C or C-like source code. The
verification tools, such as PRECiSA [154] and GAPPA [38], produce
proof lemmas that can be verified as output. The tools proposed by
Nobre et al. [111] and by Rojek [129] operate on GPU kernels by
using OpenCL/CUDA programming languages whereas Angerd et
al. [3] propose a GPU-oriented approach while working within the
intermediate representation of the compiler. FlexFloat [149] is designed
to emulate code for Ultra Low Power (ULP) architectures via C++
code encapsulation. The original version of CRAFT [82] is source-
programming-language independent as it operates at binary level on
Intel x86 architectures. Although in its newer variable mode the tool’s
scope can be controlled by the end user, it loses the source-language
portability.

In Table 3.3 we classify tools and approaches based on the the plat-
form they support. In the case of tools that run on general purpose
computers but that are specifically designed to support the develop-
ment of a particular architecture, we report the target architecture.
In particular, we consider the following additional characteristics for
each tool:

target platform the tool runs on, or it is designed for.

framework the tool is built upon.

license the tool is released under.

The literature on tools for reduced precision computation dates
back to the 1990s and some of those tools are still relevant in the
current state-of-the-art. Among them there are tools that have been
maintained and kept updated by private companies and/or open
source communities. Other tools and approaches that did not received
much attention are based on frameworks and/or technologies which
may have become obsolete during the years. The proper setup to make
such tools interact with a modern toolchain may require additional
effort to satisfy software dependencies. For each tool, we report in
Table 3.3 the framework their implementation is based on, and which
license their source code has been released under (if any). No license
is indicated for works that onlny describe methodologies.

Even though there are tools in the state-of-the-art that solve most
of the challenges presented in Section 2.3, there is no tool that can

[June 28, 2019 at 16:11 – XXXI cycle]

3.6 a comparative analysis 39

Table 3.3: Tool Release Synopsis

Tool / Approach Target Base Licensing

Name Platform Framework

ADAPT [101] analysis CoDiPack, Tapenade GNU GPL v3

Angerd et al. [3] GPU LLVM 3.5 proprietary

ASAC [130] analysis LLVM proprietary

ASTRÉE [29] generic – proprietary

Autoscaler for C [79] DSP SUIF proprietary

CRAFT [85] (binary mode) x86 Dyninst GNU LGPL v3

CRAFT [85] (variable mode) generic Rose compiler GNU LGPL v3

Daisy [32] generic dReal, Z3 BSD-2 Clause

DPS [164] simulation iACT –

FlexFloat [149] ULP – FSF Apache v2

FloPoCo [44] FPGA – FSF AGPL

Fluctuat [61] analysis – proprietary

FPTaylor [144] analysis – MIT

FPTuner [25] x86 Gurobi 6.5 MIT

FRIDGE [74] DSP HYBRIS proprietary

GAPPA [38] analysis – CeCILL

HiFPTuner [65] generic LLVM proprietary

Menard et al. [99] DSP SUIF, CALIFE –

Minibit+ [114] FPGA BitSize proprietary

Nobre et al. [111] GPU – proprietary

PetaBricks [4] generic PetaBricks MIT

Precimonious [133] generic LLVM 3.0 BSD-3 Clause

PRECiSA [108] analysis SRI’s PVS NASA

PROMISE [62] generic CADNA for C/C++ GNU LGPL v3

Real2Float [94] generic NLCertify, SDPA CeCILL

Rojek [129] GPU – proprietary

Rosa [35] generic Z3 BSD-2 Clause

Salsa [30] generic – proprietary

SHVAL [84] x86 Intel Pin GNU LGPL v2.1

Verificarlo [41] generic LLVM GNU GPL v3

Xfp [36] generic – proprietary

[June 28, 2019 at 16:11 – XXXI cycle]

40 state-of-the-art

properly solve all of them. In particular, the problem of avoiding
a priori the overhead of type cast to consume the benefits of the
mixed precision versions is poorly explored. The implementation of a
tool that can be applied to several use cases is also an open issue as
nowadays no de facto standard is available in the state-of-the-art.

[June 28, 2019 at 16:11 – XXXI cycle]

4
E F F E C T I V E P R E C I S I O N T U N I N G S O L U T I O N S

As we previously discussed in Chapter 3, the problem of precision
tuning has been addressed from diverse and heterogeneous points of
view. We have already discussed the differences between the various
tools and approaches in the state-of-the-art in terms of functional
and portability characteristics. We now focus on the components
that are common among the previously mentioned proposals. In this
chapter we discuss in detail the structure of two distinct solutions
adopted to perform precision tuning. Such solutions can be used to
apply precision tuning in different points of the software design flow
depending on the goal we want to pursue.

Precision tuning can be performed either statically or dynamically.
Static precision tuning produces a single mixed precision version that
runs for every possible input data. Dynamic precision tuning adapts
the mixed precision version to varying runtime conditions such as
resource availability and input data. Despite many similarities between
those two processes, they present different challenges and thus they
require a slightly different toolchain structure. Figure 4.1 summarizes
the components required by static and by dynamic precision tuning.

Static mixed precision tuning is performed once for every appli-
cation and it is considered part of the system design. Indeed, such
precision tuning tools can be part of wider hardware/software co-
design environments. The base component of every mixed precision
tool is a set of data type representations. The IEEE-754 standard of-
fers a selection of widely supported floating point representations.
However, fixed point representations are usually implemented either
as signed or as unsigned integers representations. Once a floating
point or fixed point representation has been consolidated, there is the
need to consistently change the data type in the application. This code
conversion can be performed on the source code of the application,
on the binary machine code, or at an intermediate level within the
compiler. Different variables in the code may require to be converted
to different data types. The analysis of the application that has to be
tuned usually involves a profiling phase to empirically measure the
range of possible values that each variable can assume at runtime.
This profiling phase needs to run a sufficiently large input set to cover
all the relevant branches in the application. The complexity of this
task scales up exponentially with the number of variables that have
to be tracked, and with the number of control-flow statements in the
application. Thus, this analysis requires a large amount of time for
real-world applications.

41

[June 28, 2019 at 16:11 – XXXI cycle]

42 effective precision tuning solutions

Analysis

Code Manipulation

Verification

IEEE-754
fix_p<I,F>

float_p

(a) Static precision tuning components.

Analysis

Code Manipulation

Verification

Dynamic Integration Tuning Policy

IEEE-754
fix_p<I,F>

float_p

(b) Dynamic precision tuning components.

Figure 4.1: Software components required to effectively perform static (4.1a)
and dynamic (4.1b) precision tuning.

Dynamic mixed precision tuning is a recurring task that gets in-
voked multiple times while the application is running. In this case, the
precision tuning is considered as a possible code transformation that
performs continuous program optimization. Thus, the re-configuration
overhead must be minimized. While the selection of the set of sup-
ported floating and fixed point number representations is not different
from the static precision tuning, in this case the code conversion tool
either supports the dynamic generation of a mixed precision ver-
sion, or it should rely on ahead-of-time compilation techniques. Thus,
Figure 4.1b introduces a Dynamic Integration component that is not
present in the static case. Another difference with respect to the static
precision tuning lies in the Tuning Policy: this software component
decides which mixed precision version should be used at runtime and
when to dynamically generate a new mixed precision version. The
profiling phase of the analysis of the application is performed with a
reduced input test set, or it is replaced by heuristics or static analysis

[June 28, 2019 at 16:11 – XXXI cycle]

effective precision tuning solutions 43

to further reduce the overhead. Similarly to the analysis, the verifica-
tion phase is also considered as part of the overhead resulting from
the generation of a new mixed precision version. Therefore, different
verification techniques are recommended with respect to the static
precision tuning.

In the rest of this chapter we are going to present two solutions to
perform precision tuning. The first one is designed for static precision
tuning, whilst the second one performs dynamic precision tuning.

[June 28, 2019 at 16:11 – XXXI cycle]

44 effective precision tuning solutions

4.1 static precision tuning

The content of this
Section has been

presented in
International

Conference on
Parallel Computing

(ParCo). Bologna,
Italy. Sep 2017. [22]

Static precision tuning does not present any runtime overhead, as it
provides a mixed precision code version at design time.

In this section we propose a floating to fixed point conversion so-
lution that can be classified as a technology enabler according to the
taxonomy presented in Chapter 3. Fixed-point representations are
typically used in hardware design, where the width can be arbitrarily
chosen for each value, on a per-bit basis. Since the widths of the in-
teger and fractional parts are fixed and pre-computed, they must be
carefully chosen to limit the precision loss. For a given computation,
this task is accomplished by assessing the dynamic range (minimum
and maximum) of its input values, and by propagating these ranges
through all intermediate values – in a data-flow manner – to the results.
The analysis phase does not have strict time bounds. Therefore, to pro-
file the dynamic range for each variable, it is recommended to employ
representative input data sets and to run the application several times.
Based on all ranges, an appropriate fixed-point representation that
minimizes the added noise is selected. When using general-purpose
processors, on the contrary, the actual bit-widths are constrained by
the underlying hardware, typically the width of registers. In prac-
tice, such containers are 16-bit, 32-bit or 64-bit wide. Still, the cost of
floating-point arithmetic, even in optimized hardware implementa-
tions, is high enough to make it worth investigating the benefits of
fixed-point operation even in the context of high performance com-
puting. Thus, we use a parametric fixed point representation as target
data type.

To allow the programmer to retain a good control during the design
phase we propose to exploit a source-to-source compiler as a code ma-
nipulation component. This kind of tool provides a description of the
mixed precision version which is ideally written in a language familiar
to the programmer. Although there are exceptions that insert language
extensions to enable features not supported by the original language,
those extensions usually aim at preserving the code readability.

The verification procedure is highly application dependent. When-
ever it is not possible to define an output quality metric, we rely on
relative error metrics by using the original full-precision version of the
application as reference.

Figure 4.2 summarizes the component description for this proposed
solution.

4.1.1 A source-to-source solution

Our proposed solution takes advantage of the programmers’ appli-
cation domain knowledge of the nature of the processed values. In
particular, we rely on source code annotations written by the program-

[June 28, 2019 at 16:11 – XXXI cycle]

4.1 static precision tuning 45

fix_p<I,F>

Code Manipulation

Analysis Verification

GeCoS
source-to-source

compiler

ID.Fix
profiling tool

Compare
Relative Error

Figure 4.2: Software components for static precision tuning.

Listing 4.1: ID.Fix Annotation Example

input :

#pragma VARIABLE_TRACKING v a r i a b l e
f o r (i n t i =0 , i <10 , i ++) {

v a r i a b l e = i ;
}

output :

variable_min = 0

variable_max = 9

mer (we consider as input a valid C/C++ source file) to know which
variables should be converted to fixed-point. The input annotations
for a simple example are shown in Listing 4.1.

Then, we perform a value range propagation analysis to propagate
the value range information from annotated variables along data-
dependence chains, thus inferring the value range for each variable
involved in the computation. The output of this analysis is a fully
annotated C/C++ source code having the dynamic range of each
variable annotated in their declaration. To perform the value range
propagation analysis, we re-purposed the GeCoS1 framework [40,
50, 120]. GeCoS was originally designed as an hardware/software
codesign environment. In particular, the ID.Fix [142] plugin for GeCoS
is the component that tracks the dynamic range of the annotated
variables via an automatic instrumentation of the code. We modified
the data type allocation to enforce the use of a data width multiple of
the word size for the specific architecture.

From the value ranges, it is then possible to compute the number of
bits needed for the representation of the integer part of the fixed-point

1 http://gecos.gforge.inria.fr

[June 28, 2019 at 16:11 – XXXI cycle]

http://gecos.gforge.inria.fr

46 effective precision tuning solutions

representation. The width of the fractional part is then obtained as the
difference between the architectural constraint on the total bit size and
the size of the integer part.

The GeCoS source-to-source compiler takes then care of replacing
the annotated floating-point variables with their fixed-point equivalent.
It also adds to the original source code the utility functions to perform
data type conversions from floating-point to fixed-point and vice versa.

The output of this stage is a new version of the kernel source
code exploiting fixed-point computation instead of floating-point com-
putation. The fixed-point code can then be compiled as a standard
C++ source file using any compiler compliant with the C++11 stan-
dard. We developed a C++ library [20] that defines a template type
FixedPoint<integer_bits,fractional_bits> with operators prop-
erly defined to make its use convenient.

Listing 4.2: Before GeCoS Source-To-Source

def ine SIZE1 10

2 # def ine SIZE2 10

4 #pragma VARIABLE_TRACKING m tmp foo
double m[SIZE1] [SIZE2] ;

6

double tmp ;
8

double foo ;
10

foo = 0 ;
12 f o r (s i z e _ t i = 0 ; i < SIZE1 ; ++ i) {

f o r (s i z e _ t j = 0 ; j < SIZE2 ; ++ j) {
14 i f (m[i] [j] > m[j] [i]) {

foo = foo + m[i] [j] ∗ m[j] [i] ;
16 tmp = m[i] [j] ;

m[i] [j] = m[j] [i] ;
18 m[j] [i] = tmp ;

}
20 }

}

In the case of our running examples, the output of the source-to-
source compilation process for our running example is shown in
Listing 4.3 for the input of Listing 4.2.

[June 28, 2019 at 16:11 – XXXI cycle]

4.1 static precision tuning 47

Listing 4.3: After GeCoS Source-To-Source

def ine SIZE1 10

2 # def ine SIZE2 10

4 double m[SIZE1] [SIZE2] ;
FixedPoint <3 ,29 > m_fixp [SIZE1] [SIZE2] ;

6

double tmp ;
8 FixedPoint <3 ,29 > tmp_fixp ;

10 double foo ;
FixedPoint <8 ,24 > f o o _ f i x p ;

12

convert2DtoFixP <double , SIZE1 , SIZE2 >(m, m_fixp) ;
14

f o o _ f i x p = 0 ;
16 f o r (s i z e _ t i = 0 ; i < SIZE1 ; ++ i) {

f o r (s i z e _ t j = 0 ; j < SIZE2 ; ++ j) {
18 i f (m_fixp [i] [j] > m_fixp [j] [i]) {

FixedPoint <8 ,24 > _s2s_tmp_foo_0 ;
20 _s2s_tmp_foo_0 = m_fixp [i] [j] ∗ m_fixp [i] [j] ;

f o o _ f i x p = f o o _ f i x p + _s2s_tmp_foo_0 ;
22 tmp_fixp = m_fixp [i] [j] ;

m_fixp [i] [j] = m_fixp [j] [i] ;
24 m_fixp [j] [i] = tmp_fixp ;

}
26 }

}
28

conver tSca larToFloat <double >(foo_f ixp , foo) ;
30 convert2DToFloat <double , SIZE1 , SIZE2 >(m_fixp , m) ;

[June 28, 2019 at 16:11 – XXXI cycle]

48 effective precision tuning solutions

4.2 dynamic precision tuning

Dynamic precision tuning is a form of continuous program optimiza-
tion that entails the reconfiguration at runtime of the main application
itself.

The reconfiguration happens every time the runtime conditions
significantly vary. Tuning the threshold on the runtime conditions
triggering the reconfiguration is a task that depends on the reconfigu-
ration time and on the benefits that the mixed precision version brings.
We obviously want to maximize the benefits of the mixed precision
version. However, dynamic precision tuning adds reconfiguration time
in the equation, and this overhead needs to be minimized. Indeed, we
prefer to exploit a suboptimal mixed precision version whenever its
setup is significantly faster with respect to the optimal mixed precision
version.

The need for a quick reconfiguration time changes the structure of
the precision tuning toolchain originally employed for static precision
tuning. In particular, the profiling phase should be replaced by a static
analysis, the source-to-source compilation stage should be replaced by
a compiler-level transformation, and the validation can be performed
by a static estimation of the error bounds rather than by a reference-
based error verification.

In the dynamic precision tuning structure we also introduce a dy-
namic integration component, which has no corresponding equivalent
in the static precision tuning structure. This component is the joint
point between the precision tuning process and the continuous pro-
gram optimization paradigm. The main application should be able to
reconfigure itself multiple times via the dynamic integration system.

Given this abstract description of the required components, we pro-
pose a dynamic precision tuning solution, whose structure is summa-
rized in Figure 4.3. Our solution is based on the dynamic compilation
library libVersioningCompiler and on the compiler-level Tuning
Assistant for Floating point to Fixed point Optimization TAFFO.

4.2.1 TAFFO

The content of this
Subsection has been

accepted for
publication in the

journal Embedded
Systems Letters.

Floating to fixed point conversion is a key task in the field of embed-
ded application design. Since it is generally performed manually, it can
incur in delays and potentially in additional errors. No existing open
source tool is mature enough for industry adoption, and most of them
have little hope of achieving production status, as they are designed
as primary research tools, thus employing compiler frameworks that,
differently from llvm and gcc, do not benefit from industry-grade
maintenance. Moreover, developers’ needs and habits evolve over
time. In recent years the popularity of ANSI C as main development
language is decreasing in favor of more expressive programming lan-

[June 28, 2019 at 16:11 – XXXI cycle]

4.2 dynamic precision tuning 49

Analysis

Code Manipulation

TAFFO
LLVM Compiler Plugin

Verification

TAFFO
Static Estimation of

Error Bounds

Dynamic Integration

libVersionigCompiler Input Classification

Tuning Policy

IEEE-754
fix_p<I,F>

TAFFO
Annotation-Based

Value Range Analysis

Figure 4.3: Software components for dynamic precision tuning.

guages [58]. The quest for tools that can support an increasingly large
number of languages is still an open challenge. To bridge these gaps,
we introduce Tuning Assistant for Floating point to Fixed Point Optimiza-
tion – TAFFO. This is a toolset that automatically converts computation
from floating point to fixed point, and that tunes the precision of the
resulting fixed point code according to the application goals. TAFFO
leverages programmer hints to understand the characteristics of the
input data, and performs the conversion to the appropriate data types.
The tools are robust enough to support automated conversion for com-
plex C++ benchmarks without rewriting the computational kernels
into less expressive languages, such as ANSI C.

TAFFO is a flexible and lightweight framework. Flexibility comes
from the capability to address an arbitrary large number of source
languages. Although an approach based on static analysis provides
less strict bounds on the runtime values, the achieved result is proved
to be safer with respect to profile-based approaches, which depend
on input representatives. Moreover, the combination of profile-based
approaches with whole-program analysis proved to be extremely
time-consuming [134].

The implementation of TAFFO does not require any modification
of the standard compiler toolchain. As shown in Figure 4.4, TAFFO
introduces new compiler passes without modifying neither the existing
compiler passes nor the compiler front-end – as most competitors
do [32, 35, 74, 79].

The complexity of finding the best precision mix for a given program
grows exponentially with the number of values to be tuned and with
the possible precision levels. An exhaustive exploration is feasible
only with a small number of values, and with a reduced selection
of precision levels. Although the space of possible solutions is wide,
a large portion of it is composed of precision mix permutations of

[June 28, 2019 at 16:11 – XXXI cycle]

50 effective precision tuning solutions

Source code

clang front-end

Annotated LLVM-IR

ASM

Annotated Source code
Programmer Annotations

Normalization

Target-Independent Opt.

Target-Dependent Opt.

Back-end

Mixed Precision ASM

Annotation Propagation

Feedback Estimation

Code Conversion

Value Range Analysis

Figure 4.4: Outline of the compilation pipeline using the clang compiler
front-end with and without TAFFO. We highlight with red arrows the TAFFO
pipeline stages. Yellow elements refer to source code and the compiler front-
end. Blue elements refer to passes of the optimizer. Finally, the green element
represents the compiler back-end.

[June 28, 2019 at 16:11 – XXXI cycle]

4.2 dynamic precision tuning 51

Annotation
propagation

Value Range
Analysis

Data Type
Allocation

Code
Conversion

Feedback
Estimation

Check
improvementN

Y

0101
1011
0100
0111

reduced precision
LLVM bitcode

Figure 4.5: Component schema of the TAFFO framework, highlighting the
control loop driven by the performance/error prediction carried
out in the Feedback Estimation component.

marginal code. These code versions can be safely removed from the
exploration. To this end, we rely on the programmer’s knowledge
of the application. We ask the programmer to restrict the scope of
TAFFO’s analysis and transformation via annotations on the source
code. The annotation-based approach is a common practice in compiler
construction to forward pieces of information towards further compiler
stages. We use compiler metadata to keep information about the range
of possible values for each variable. TAFFO requires the user to specify
the range only on the input values. Our framework makes sure these
values gets propagated to all the intermediate values. We then decide
the allocation of data types and – in case of fixed point – the position
of the point for each value. This process takes place in the intermediate
representation of the compiler. Thus, we allow each intermediate value
to be represented with a potentially different data format.

After the code conversion, we evaluate the converted code to check
if it actually represents an improvement with respect to the baseline.
This process – called Feedback Estimation – entails both a functional and
a performance evaluation. The error bounds are computed via a data
flow analysis whilst the performance is estimated via a previously
computed platform-dependent performance model.

The structure of TAFFO is summarized in Figure 4.5. A detailed
description of each component of TAFFO follows.

annotations Annotations specify which portion(s) of the code
should be analyzed for precision tuning. The insertion of annotate
attributes is natively supported by the clang compiler. Thus, there is
no need to extend the compiler front-end for any language extension.
This approach holds also with other front-ends for the llvm compiler
infrastructure.

[June 28, 2019 at 16:11 – XXXI cycle]

52 effective precision tuning solutions

Listing 4.4: Example of annotated C code where the programmer is asking to
transform the variables a and b to a fixed point, and is providing
the value range for the c variable.

f l o a t a _ _ a t t r i b u t e ((annotate (" t a f f o 20 12 "))) ;
f l o a t b _ _ a t t r i b u t e (

(annotate (" t a f f o 7 25 signed 0 . 4 0 . 9 1e−8"))) ;
f l o a t c _ _ a t t r i b u t e ((annotate (" range 0 . 0 5 1 0 "))) ;

As shown in Listing 4.4, the programmer may specify additional
parameters to TAFFO. Indeed, the annotation on line 3 adds the value
range, and the value uncertainty. In addition to the fixed point format,
it is also possible to add the value range and the value uncertainty, as
the annotation on line 3. If the programmer defines only the range,
TAFFO can derive the most appropriate fixed point format on its own.
It is possible to convert the computations whose result is used by the
annotated variable by using "force_taffo" instead of "taffo".

value range analysis After the propagation of the annotations,
we run a data flow analysis based on interval arithmetic [107] to
propagate the value ranges to all the intermediate values defined in
the llvm-ir. We recall that llvm-ir is a low-level representation in
which every compound expression is split into their minimal terms.
Thus, we are able to analyze and propagate the precision requirements
for each term of the compound expressions.

We denote with the symbol ⊥ an undefined range, and with the
symbol > the limit we allow to be represented in the range of a
variable. In our case study, we limit them to be the smallest/largest
value that can be represented by a 32 bit integer variable, whereas
in the general case > is defined based on the available data type in
the target architecture. The data flow analysis is initialized by the
range as defined in the annotations. In particular, we define the set
of ranges available at initialization time as the InSet of the root node
of the Control Flow Graph, InSet0. All other InSets are initialized to
undefined values:

InSetI = {ri = ⊥|vi ∈ V}

where V is the set of all variables.
To define the data flow equations for our analysis, we need to

introduce the definition of an operator t to combine two sets of
ranges A = {rA

i |vi ∈ V} and B = {rB
i |vi ∈ V}:

A t B = {< m̂in(lA
i , lB

i), ˆmax(uA
i , uB

i) > |rA
i ∈ A ∧ rB

i ∈ B}

[June 28, 2019 at 16:11 – XXXI cycle]

4.2 dynamic precision tuning 53

where

ˆmax(x, y) =

x if y = ⊥

y if x = ⊥

max(x, y) otherwise

and m̂in is defined in the same way.
We can now introduce the following equations, characterizing a

forward data flow analysis:

InSetI =
⊔

J∈pred(I)

OutSetJ (4.1)

OutSetI = InSetI \ kill(I) ∪ gen(I) (4.2)

where the gen and kill sets are defined as follows:

gen(I) =

genfmul(I) if I is fmul

genfadd(I) if I is fadd
(4.3)

kill(I) = {ri|i ∈ de f (I)} (4.4)

where the gensets genfadd(I) and genfmul(I) are defined as follows:

genfadd(I) = {ri =< lfadd, ufadd > |i ∈ de f (I)} (4.5)

genfmul(I) = {ri =< lfmul, ufmul > |i ∈ de f (I)} (4.6)

where

lfadd = ∑
j∈use(I)

lj

ufadd = ∑
j∈use(I)

uj

lfmul = min
j,k∈use(I)∧j 6=k

(lj ∗ lk, uj ∗ lk, uk ∗ lj, uj ∗ uk)

ufmul = max
j,k∈use(I)∧j 6=k

(lj ∗ lk, uj ∗ lk, uk ∗ lj, uj ∗ uk)

Essentially, the transfer equation replaces the range of the defined
variable(s) with a combination of the ranges of the variables used as
inputs for the operation that generates the new value, according to the
operation class. In the above equation, we only report the definition of
gen(I) when I is fadd or fmul, which is sufficient for our case study,
but the definition can be trivially extended to other floating point
operations. It is worth noting that the definition of the lI and uI terms
of Equation 4.5 and Equation 4.6 – and for each generic floating point
instruction I – must be slightly modified to include the values of >
and ⊥, thus the operations saturate to > and accept ⊥ as a neutral
element.

We provide a sketch of the proof of convergence for the data flow
analysis.

[June 28, 2019 at 16:11 – XXXI cycle]

54 effective precision tuning solutions

Lemma 1. The data flow analysis defined by equations 4.1 and 4.2 con-
verges.

Proof. The proof is derived from the following properties. Monotonicity:
the operations on ranges never reduce them. Bounded cardinality: the
ranges are bounded by the definition of >, which acts as an absorbing
value for all operations. Halt: the analysis halts when a fixed point is
reached, which at most happens when the all ranges are set to >.

In the general workflow of our solution, the data flow analysis we
have just defined is used to perform a llvm-ir-level evaluation of the
code to be converted. The nbits values found through this analysis are
then used to annotate every variable – if it was not already annotated.

These concepts can be extended to consider also procedure invo-
cations. In particular, our implementation performs inter-functional
analysis of the program across all the functions defined in the trans-
lation unit being analyzed. To retain a fine-grained control over the
precision requirements we handle multiple call sites using the same
function by cloning the function being invoked.

Intra-functional control flow operations – such as loops – are han-
dled by relying on compile-time knowledge whenever it is possible –
i.e. loop bounds known at compile time – or by asking the end-user to
provide a safe bound to the number of iterations.

data type allocation and code conversion Given the pre-
viously computed annotations, we can derive the data width required
by each intermediate value. Let ri =< l, u > be the range of the vari-
able vi with lower bound l and upper bound u. Equation 4.7 relates
the range of a variable with the minimum bit width required.

nbits =

dlog2 max(abs(l), abs(u))e l ≥ 0

dlog2 max(abs(l), abs(u))e+ 1 l < 0
(4.7)

Our solution transforms the llvm-ir as if a type change was per-
formed in the original source code. Integer and fractional parts are
logically partitioned so as to prevent a priori any overflow problem.
The transformation generates code to perform the computation with
fixed point arithmetic alongside the already existing floating point
code. We allocate a separate memory location for the fixed point
values. The code conversion process supports the inter-procedural
transformation of memory operation on scalar, array, and pointers val-
ues via load, store, and getelementptr instructions. By their nature,
the conversion of constants – both literals and in-memory constants –
do not require any memory duplication.

Function calls are handled via duplication of the function in the
llvm-ir. We apply the same code conversion procedure to the cloned
function as if its parameters were annotated by the programmer.

[June 28, 2019 at 16:11 – XXXI cycle]

4.2 dynamic precision tuning 55

When the code conversion pass meets an instruction with an un-
known conversion – as in the case of calls to an external function – it
restores the original data type and it leaves that instruction unchanged.
This fallback behavior guarantees a strong preservation of the program
semantic.

In the absence of fallbacks, all the uses of the floating point values
should have been replaced by their fixed point equivalent. Finally, we
schedule a Dead Code Elimination (DCE) optimization pass from the
llvm compiler infrastructure, which safely removes all the floating
point instructions – including the allocas.

Listing 4.5 shows snippets of the source code from the gramschmidt
benchmark from the PolyBench/C benchmark suite, its translation to
llvm-ir, and the corresponding fixed point equivalent llvm-ir after
the code conversion.

feedback estimation We evaluate the mixed precision llvm-ir
bitcode with two metrics. First, we run a static error propagation
analysis to project the truncation error we introduced with the fixed
point computation on the output. The propagation is performed by
representing the absolute error associated to each llvm-ir instruction
by means of affine forms [48], combined with the intervals resulting
from the value range analysis (c.f. [35]). This approach allows us to
keep track of each single error source, exploiting error cancellation
when possible.

An affine form is the representation of a variable x as

x = x0 +
n

∑
i=1

xiεi,

where x0 is the central value, and each εi is a noise symbol of magnitude
xi. Each noise symbol is a symbolic variable representing a single error
source. Affine forms are combined with the intervals resulting from
the value range analysis, as detailed in [35]. In this setting, to each
instruction x we associate a range rx and an error ex, represented
as a zero-centered affine form. Sum and subtraction are performed
term-wise on the magnitudes of corresponding noise symbols. This
allows us to exploit the possible cancellation of errors due to the same
noise symbol. The error of a mul instruction with operands x and y is
computed as

x× y = (rx + ex)(ry + ey)

= rx × ry + rx × ey + ry × ex + ex × ey.

Division is treated similarly, that is a multiplication by the inverse of
the divisor.

Non-linear operations such as mathematical functions from the C
standard library are treated with linear approximations, as suggested
in the state-of-the-art [33, 48]. Whenever it is possible we exploit

[June 28, 2019 at 16:11 – XXXI cycle]

56 effective precision tuning solutions

C
source

code

1
[
.
.
.
]

2
P
O
L
Y
B
E
N
C
H
_
2
D
_
A
R
R
A
Y
_
D
E
C
L
(
A
,
D
A
T
A
_
T
Y
P
E
,
M
,
N
,
m
,
n
)
;

3
P
O
L
Y
B
E
N
C
H
_
2
D
_
A
R
R
A
Y
_
D
E
C
L
(
R
,
D
A
T
A
_
T
Y
P
E
,
N
,
N
,
n
,
n
)
;

4
P
O
L
Y
B
E
N
C
H
_
2
D
_
A
R
R
A
Y
_
D
E
C
L
(
Q
,
D
A
T
A
_
T
Y
P
E
,
M
,
N
,
m
,
n
)
;

5
[
.
.
.
]

6
n
r
m
=
S
C
A
L
A
R
_
V
A
L
(
0
.
0
)
;

7
[
.
.
.
]

89

1
0

n
r
m
+
=
A
[
i
]
[
k
]
*
A
[
i
]
[
k
]
;

1
1

1
2

1
3

[
.
.
.
]

1
4

1
5

1
6

1
7

R
[
k
]
[
k
]
=
S
Q
R
T
_
F
U
N
(
n
r
m
)
;

1
8

1
9

2
0

2
1

[
.
.
.
]

2
2

R
[
k
]
[
j
]
+
=
Q
[
i
]
[
k
]
*
A
[
i
]
[
j
]
;

2
3

[
.
.
.
]

l
l
v

m
-
i
r

before
conversion

[
.
.
.
]

%
A
.
a
d
d
r
.
i
4
1
=
a
l
l
o
c
a
[
2
4
0
x
f
l
o
a
t
]
*
,
a
l
i
g
n
8

%
R
.
a
d
d
r
.
i
4
2
=
a
l
l
o
c
a
[
2
4
0
x
f
l
o
a
t
]
*
,
a
l
i
g
n
8

%
Q
.
a
d
d
r
.
i
4
3
=
a
l
l
o
c
a
[
2
4
0
x
f
l
o
a
t
]
*
,
a
l
i
g
n
8

[
.
.
.
]

s
t
o
r
e
f
l
o
a
t
0
.
0
0
0
0
0
0
e
+
0
0
,
f
l
o
a
t
*
%
n
r
m
.
i
,
a
l
i
g
n
4

[
.
.
.
]

%
m
u
l
.
i
5
6
=
f
m
u
l
f
l
o
a
t
%
3
6
,
%
4
0

[
.
.
.
]

%
4
3
=
l
o
a
d
f
l
o
a
t
,
f
l
o
a
t
*
%
n
r
m
.
i
,
a
l
i
g
n
4

%
c
a
l
l
.
i
5
9
=
c
a
l
l
f
l
o
a
t
@
s
q
r
t
f
(
f
l
o
a
t
%
4
3
)
#
4

s
t
o
r
e
f
l
o
a
t
%
c
a
l
l
.
i
5
9
,
f
l
o
a
t
*
%
a
r
r
a
y
i
d
x
1
7
.
i
,
a
l
i
g
n
4

[
.
.
.
]

%
a
d
d
6
0
.
i
=
f
a
d
d
f
l
o
a
t
%
8
0
,
%
m
u
l
5
5
.
i

[
.
.
.
]

l
l
v

m
-
i
r

after
conversion

1
[
.
.
.
]

2
%
A
.
a
d
d
r
.
i
4
1
.
f
i
x
p
=
a
l
l
o
c
a
[
2
4
0
x
i
3
2
]
*
,
a
l
i
g
n
8

3
%
R
.
a
d
d
r
.
i
4
2
.
f
i
x
p
=
a
l
l
o
c
a
[
2
4
0
x
i
3
2
]
*
,
a
l
i
g
n
8

4
%
Q
.
a
d
d
r
.
i
4
3
.
f
i
x
p
=
a
l
l
o
c
a
[
2
4
0
x
i
3
2
]
*
,
a
l
i
g
n
8

5
[
.
.
.
]

6
s
t
o
r
e
i
3
2
0
,
i
3
2
*
%
n
r
m
.
i
.
f
i
x
p
,
a
l
i
g
n
4

7
[
.
.
.
]

8
%
5
9
=
s
e
x
t
i
3
2
%
5
2
t
o
i
6
4

9
%
6
0
=
s
e
x
t
i
3
2
%
5
8
t
o
i
6
4

1
0

%
6
1
=
m
u
l
i
6
4
%
5
9
,
%
6
0

1
1

%
6
2
=
a
s
h
r
i
6
4
%
6
1
,
1
0

1
2

%
6
3
=
t
r
u
n
c
i
6
4
%
6
2
t
o
i
3
2

1
3

[
.
.
.
]

1
4

%
6
7
=
l
o
a
d
i
3
2
,
i
3
2
*
%
n
r
m
.
i
.
f
i
x
p
,
a
l
i
g
n
4

1
5

%
6
8
=
s
i
t
o
f
p
i
3
2
%
6
7
t
o
f
l
o
a
t

1
6

%
6
9
=
f
d
i
v
f
l
o
a
t
%
6
8
,
1
.
0
2
4
0
0
0
e
+
0
3

1
7

%
c
a
l
l
.
i
5
9
=
c
a
l
l
f
l
o
a
t
@
s
q
r
t
f
(
f
l
o
a
t
%
6
9
)
#
4

1
8

%
7
0
=
f
m
u
l
f
l
o
a
t
1
.
0
2
4
0
0
0
e
+
0
3
,
%
c
a
l
l
.
i
5
9

1
9

%
c
a
l
l
.
i
5
9
.
f
a
l
l
b
a
c
k
=
f
p
t
o
s
i
f
l
o
a
t
%
7
0
t
o
i
3
2

2
0

s
t
o
r
e
i
3
2
%
c
a
l
l
.
i
5
9
.
f
a
l
l
b
a
c
k
,
i
3
2
*
%
7
5
,
a
l
i
g
n
4

2
1

[
.
.
.
]

2
2

%
1
3
4
=
a
d
d
i
3
2
%
1
3
3
,
%
1
2
7

2
3

[
.
.
.
]

Listing
4.

5:C
om

p
arison

betw
een

the
sou

rce
cod

e
of

the
gram

schm
idt

benchm
ark

of
P

olyB
ench/

C
4.

2,of
its

l
l
v

m
-
i
r

cod
e

before
the

conversion
to

fixed
point,and

its
LLV

M
IR

code
after

the
conversion

to
fixed

point.T
he

sam
e

line
num

bers
correspond

to
the

sam
e

point
in

the
code

in
alllistings.In

the
fi

rst
snip

p
et,the

p
ass

has
converted

the
storage

sp
ace

to
fi

xed
p

oint.In
the

second
snip

p
et,the

p
ass

has
converted

an
im

m
ed

iate
constant

to
fi

xed
p

oint
at

com
p

ile
tim

e.In
the

third
snip

p
et,the

f
m
u
l

instru
ction

is
rep

laced
by

a
m

ore
com

p
lex

fi
xed

p
oint

equ
ivalent.In

the
fou

rth
snip

p
et,the

call
to

s
q
r
t
f

–
w

hich
d

oes
not

have
a

fi
xed

p
oint

equ
ivalent

–
has

been
hand

led
by

the
fallback

algorithm
.In

the
last

snippet,the
f
a
d
d

instruction
w

as
replaced

by
an

integer
a
d
d.

[June 28, 2019 at 16:11 – XXXI cycle]

4.2 dynamic precision tuning 57

the llvm facilities to unroll loops, in order to analyze the error they
introduce. The unrolling is performed on a copy of the loop, which is
discarded after the analysis.

The second evaluation is based on a platform-dependent perfor-
mance model. The goal of this step is to estimate the impact of the type
cast overhead, and the performance gain due to the precision lowering.
To this end, we train a performance model using code statistics before
and after the code conversion. We rely on machine-learning tools from
Scikit-learn [123] to analyze the impact of the introduction and
removal of different instructions. We identify 26 classes of llvm-ir
instructions that can be used as features in statistical learning. For each
class, the relevant feature is the change in instruction frequency from
the floating point version of the code to its mixed precision version. As
the target response, we consider the ratio Tf ix/Tf lt between the execu-
tion times of the fixed point conversion and that of the original code.
We use the results of the conversion of a set of small computational
kernels as the training set for a range of ensemble classification and
regression methods (random forests, extremely randomized trees, bag-
ging meta-estimators on decision trees and k-neighbors classification
and regression, AdaBoost and gradient trees). We consider the most
stable approach among these candidates to build the final performance
estimation model.

4.2.2 Precision Tuning Policies

In a dynamic environment, the application processes several batches
of input data and it can decide whether to keep the same kernel
version running or to change it. For simplicity we assume a sequential
application. This argument, however, can also be ported in the parallel
case by implementing the decision process on each processing element.
The precision tuning policy is the algorithm that controls the trade off
between code reuse and exploration of new versions.

Depending on the assumptions that hold for the code generation
and verification, the problem that the policy has to solve can be largely
different. In our dissertation we distinguish three cases:

ahead of time generated and verified The mixed precision
code versions are generated before the execution of the applica-
tion. The verification of their accuracy is performed offline.

runtime-generated non-verified The mixed precision code
versions can be generated during the execution of the appli-
cation. The verification of the accuracy has to be performed by
running the mixed precision versions multiple times with the
workload of the application.

runtime-generated verified The mixed precision code versions
can be generated during the execution of the application. The

[June 28, 2019 at 16:11 – XXXI cycle]

58 effective precision tuning solutions

verification of the accuracy can either be performed statically or
by profiling it with a fixed number of input samples.

In the first case the precision tuning policy has to characterize and
to classify each input batch and to decide which statically generated
mixed precision versions need to be exploited to process the given in-
put batch. Thus, the algorithm should implement an input partitioning
and a suitability ranking for each input class. The input partitioning
is intrinsically an application-dependent problem whereas ranking
code versions according to a linear combination of known metrics is
a problem which has been already solved in the state-of-the-art by
autotuning tools such as mARGOt [54].

In the second case the precision tuning policy does not know in
advance which version is most suitable for each input class. This can
be discovered by selecting and executing one or more times the version
itself. Hence, the suitability ranking has to be generated online. This is
an optimization problem where the reward associated to a version for
a given input class depends on the version’s suitability for that input.
The policy should explore the mixed precision versions to eventually
achieve a stable suitability ranking for each input class. To this end,
the algorithm has to minimize the regret function that represents the
difference between the reward associated to the optimal version and
the sum of rewards associated to the versions that have been selected.
This problem is also known in the literature as the multi-armed bandit
problem [158].

In the third case the precision tuning policy can decide to gener-
ate a new version on-the-fly. The suitability of such version can be
discovered within a constant time by its generation. This is the case
of TAFFO-generated versions. In our proposed solution we define
a policy which provides an input partitioning based on the work-
load equivalence function for each target platform. In this situation,
it is possible to define a priori which parameters should be used to
generate the optimal version for the given input class.

workload equivalence The workload equivalence function is
the component that properly partitions the input space into classes
which can be considered equivalent from a continuous optimization
point of view. In particular, all the input batches that belong to the
same input class must:

1. share the same hardware resource requirements;

2. share the same input and output format;

3. share the same verification metrics and methods;

4. have a defined ratio between their problem sizes.

The first two constraints guarantee that two batches from the same
input class can be processed using the same platform-optimized kernel

[June 28, 2019 at 16:11 – XXXI cycle]

4.2 dynamic precision tuning 59

version. The latter ones enforce that the execution statistics for those
input batches can be fairly compared in terms of output quality and
performance per input size.

Additional desirable similarities between elements of the same
partition sets given by the equivalence function are:

5. kernel code coverage;

6. kernel memory footprint;

7. accuracy requirements.

These properties minimize the distance between elements of the same
partition measured in terms of the quality of the output and of the
performance metrics. Indeed, a good workload equivalence function
classifies in the same class input batches that are indistinguishable
from the application profile point of view.

The workload equivalence function is required to partition the input
into classes which are large enough to allow the optimization time to
be paid back by the performance improvements.

a simple example An illustrative example is offered by the con-
tinuous program optimization on the well-known sorting algorithm
counting sort, whose implementation is shown in Listing 4.6.

Listing 4.6: C++ implementation of the counting sort algorithm

1 void s o r t (s td : : vector < i n t 3 2 _ t > &array , const i n t 3 2 _ t
min , const i n t 3 2 _ t max) {

const s i z e _ t my_range_size = max − min ;
3 std : : vector < s i z e _ t > my_counter (my_range_size) ;

s td : : f i l l (my_counter . begin () , my_counter . end () , 0) ;
5

f o r (s i z e _ t i = 0 ; i < array . s i z e () ; i ++) {
7 my_counter [array [i] − min]++;

}
9

auto i t = array . begin () ;
11 f o r (i n t 3 2 _ t i = min ; i < max ; i ++) {

const s i z e _ t increment = my_counter [i − min] ;
13 std : : f i l l _ n (i t , increment , i) ;

s td : : advance (i t , increment) ;
15 }

re turn ;
17 }

The presented implementation is not platform dependent. The input
and the output are defined only by the signature of the function. There
is no other input from – neither output to – external sources, such
as the file system or external memory locations. The quality of the
output is given by a comparison function between the elements to be

[June 28, 2019 at 16:11 – XXXI cycle]

60 effective precision tuning solutions

sorted, which is defined statically for every input. The problem size is
defined by the number of elements in the data structure that need to
be ordered, which in the counting sort example is a vector. Thus, the
ratio between problem sizes is a function defined for every non-zero
input size.

The above mentioned requirements hold for every input of the
target function. Thus, every workload equivalence function satisfies
them. For the counting sort example we focus only on the desirable
design features of the equivalence function.

Let us analyze the behaviour of this algorithm. First, the counting
sort algorithm linearly iterates over the input batch. Later, it iterates
over the range of possible input values. As the the input batch does
not affect the code coverage, we are going to ignore this aspect in the
design of the workload equivalence function. The memory footprint
of the algorithm strictly depends on the min and on the max input
parameters. Those values are good candidates to be considered as
possible input partitioning criteria. The counting sort implementation
presented in Listing 4.6 is properly defined for integer values and it
can not deal with any real value data type. Accuracy requirements
can be analyzed by analyzing which is the smallest integer data type
that can be used for processing the input batch. However, no floating
point nor fixed point precision tuning technique can be applied here.

In the case of counting sort algorithm we propose a workload
characterization and partitioning based only on the min and on the
max values. The function should equally classify all the diverse input
batches that have the same min and max values.

4.2.3 libVersioningCompiler

The content of this
Subsection has been

published in the
journal SoftwareX.

[21]

Designing and implementing High Performance Computing (HPC)
applications is a difficult and complex task that requires mastery of
several specialized languages and performance-tuning tools; however,
this prerequisite is incompatible with the current trend that opens HPC
infrastructures to a wider range of users [78, 168]. The current model
that sees the HPC center staff directly supporting the development
of applications will become unsustainable in the long term. Thus, the
availability of effective APIs and programming languages is crucial to
provide migration paths towards novel heterogeneous HPC platforms
as well as to guarantee the developers’ ability to work effectively on
these platforms.

Profile-guided code transformations at compile-time usually pro-
vide a good optimization level in a general-purpose scenario. On
the contrary, in HPC scenarios where large data sets are employed, a
proper profiling may be unfeasible. In these cases, which are becoming
more and more common [126], dynamic approaches can prove more
effective. The practice of improving the application code at runtime

[June 28, 2019 at 16:11 – XXXI cycle]

4.2 dynamic precision tuning 61

through dynamic recompilation is known as continuous program op-
timization [46, 77, 113]. Although it has been studied for more than
a decade, very few people adopt it in practice since it is difficult to
perform manually, and, when performed automatically, it can compro-
mise software maintainability. At the same time, autotuning is used
both to tune software parameters and to search the space of compiler
optimizations for optimal solutions [11]. Autotuning frameworks can
select one of a set of different versions of the same computational
kernel to best fit the HPC system runtime conditions, such as sys-
tem resource partitioning, as long as such versions are generated at
compile time. Few of these frameworks are actually able to perform
continuous optimization, and those that support it do so only through
specific versions of a dynamic compiler [9, 18] or through cloud-based
platforms [27].

libVersioningCompiler (abbreviated libVC) can be used to per-
form continuous program optimization using simple C++ APIs. libVC
allows different versions of the executable code of computational ker-
nels to be transparently generated on the fly. Continuous program
optimization with libVC can be performed by dynamically enabling
or disabling code transformations, and changing compile-time pa-
rameters according to the decisions of other software tools such as a
generic application autotuner.

description of the software The goal of libVC is to allow
C/C++ compute kernels to be dynamically compiled multiple times
while the program is running, so that different specialized versions of
the code can be generated and invoked. This capability is especially
useful when the optimal parametrization of the compiler depends on
the program workload. In these cases, the ability to switch at runtime
between different versions of the same code can provide significant
benefits, as shown in [19, 150].

Indeed, in general-purpose code it is preferable to profile the ap-
plication to statically generate the most efficient versions ahead of
time. However, in HPC code the execution times are usually so long
that a profiling run may not be an attractive choice. On the contrary,
libVC enables the exploration and tuning of the parameter space of
the compiler at runtime, while the program is performing useful work.

libVC considers as valid compute kernels any C-like procedure
or function that can be compiled to object code. There is just one
constraint that should be enforced on the compute kernel: it must
respect C linkage rules. This means that no name mangling should be
applied to the compute kernel itself. Within our model, the Compiler

is the tool used to compile the compute kernel, and the Version is
the configuration passed to the compilation task. We assume to work
with deterministic Compilers. In this scenario, a Version produces at

[June 28, 2019 at 16:11 – XXXI cycle]

62 effective precision tuning solutions

Version

+getId() : std::string

+compile() : bool

- id: std::string

- optionList : std::list<Option>

+prepareIR() : bool

- genIRoptionList : std::list<Option>

- optOptionList : std::list<Option>

- functionName: std::vector<std::string>

- fi leName_src: std::vector<std::string>

- fi leName_IR: std::string

- fi leName_IR_opt : std::string

- fi leName_bin: std::string

- handle : void*

- compiler : std::shared_ptr<Compiler>

+getSymbol(const int index) : void*

SystemCompiler

ClangLibCompiler

SystemCompilerOptimizer

Option

+getTag() : std::string
+getValue() : std::string
+getPrefix() : std::string

- tag: std::string
- value : std::string
- prefix : std::string

Compiler

+getId() : std::string

+getOptionString(o :Option) : std::string

+hasOptimizer() : bool

- id: std::string

logFile : std::string

libWorkingDirectory : std::string

+generateIR(
 src : std::vector<std::string>,
 func : std::vector<std::string>,
 versionID : std::string,
 options : std::list<Options>) : std::string

+runOptimizer(
 src : std::vector<std::string>,
 versionID : std::string,
 options : std::list<Options>) : std::string

+generateBin(
 src : std::vector<std::string>,
 func : std::vector<std::string>,
 versionID : std::string,
 options : std::list<Options>) : std::string

+loadSymbol(
 bin : std::string,
 func : std::vector<std::string>) : void*

+hasIRSupport() : bool

Clang JIT

Figure 4.6: Simplified UML class diagram of libVC

most one executable code. No executable code is generated when the
specified configuration is invalid.

The libVC source code is available under the LGPLv3 license. It is
compliant with the C++11 standard and it comes with configuration
files to ease the setup by using the CMake build system.

The minimum required CMake version is 3.0.2. The build system
automatically checks the presence of the optional dependencies LLVM

and libClang, whose version must be greater than 6.0.0. Whenever
these dependencies are not satisfied, some features are automatically
disabled during the library installation. Please refer to the official code
repository2 for a detailed and exhaustive list of dependencies.

Figure 4.6 shows a simplified UML class diagram of this software.
It is possible to identify three main classes in the source code. The
simplest class, which is called Option, represents each of the flag and
parameters that are passed to libVC in order to compile a version of a
computing kernel.

The Compiler abstract class defines the interface that allows the host
application to interact with Compiler implementations. libVC pro-
vides up to four possible implementations for the Compiler abstract

2 https://github.com/skeru/libVersioningCompiler

[June 28, 2019 at 16:11 – XXXI cycle]

https://github.com/skeru/libVersioningCompiler

4.2 dynamic precision tuning 63

class: SystemCompiler, which relies on system calls to external com-
pilers that are already installed in the host system; SystemCompiler-
Optimizer, which is an extension of a SystemCompiler that also sup-
ports external optimization tools (such as the LLVM optimizer opt);
ClangLibCompiler, which exploits the compiler-as-a-library paradigm
through the Clang APIs3; and ClangJIT, which implements the Just-
In-Time compiler paradigm via Clang. The main difference between
the compiler-as-a-library paradigm and the just-in-time compiler on –
which are respectfully implemented by the ClangLibCompiler and the
ClangJIT classes – consists in the interaction between the compiler and
the host application. With the former approach the host application
invokes the compiler as any other dynamic library. Whereas, with
the latter approach the host application removes the overhead of per-
forming a call to an external library API and embodies the compiler
capabilities in its own executable code. Please note that ClangLib-

Compiler and ClangJIT are installed only if the optional LLVM and
libClang dependencies are satisfied.

The last important class is the Version class, which represents a
set of compute kernels defined in a specific list of source files, with
a given compiler configuration. A Version object is compiled with
the chosen Compiler using an ordered list of Options. It contains a
unique identifier, references to Compiler and Options used to compile
it, and references to the files that are generated by the Compiler

while compiling the Version. The configuration of a Version object is
immutable throughout the lifetime of that object. The Version class
also provides APIs to control the stages of the compilation process: it
is possible to create a Version object and postpone the execution of
the selected Compiler to a later stage.

libVC provides an easy-to-use interface that can be employed to
perform the dynamic compilation of the kernel, and to load compiled
Versions as C-like function pointers. libVC itself does not provide any
automatic selection of which Version should be executed. The decision
of which Version is the most suitable for a given task is left to policies
defined by the programmer or other autotuning frameworks such as
mARGOt [54] or cTuning [53]. Figure 4.7 illustrates the configuration An introductory

video about libVC is
available online at
https://youtu.

be/1p8IajxOgoY.

and the exploitation paradigm of a Version object step by step.
libVC comes in two different flavors: with detailed low-level APIs

and with simple high-level APIs. The latter is optimized for the most
common use cases, they exploit the default system compiler and do not
support any external optimization tool, whereas low-level APIs allow a
more fine grained setup and support split-compilation techniques [26];
hence, the resulting source code is slightly more verbose.

The typical usage of libVC involves different stages. The first task
must be the declaration and initialization of the Version-independent
tools, such as Compilers and Version builders, which are helper ob-

3 http://clang.llvm.org/docs/Tooling.html

[June 28, 2019 at 16:11 – XXXI cycle]

https://youtu.be/1p8IajxOgoY
https://youtu.be/1p8IajxOgoY
http://clang.llvm.org/docs/Tooling.html

64 effective precision tuning solutions

libVC

clangAsLib
LLVM

clang

gcc

...

optional

clang JIT

.cpp

.cpp
.hpp

.cpp

running program

(a) We start from a C++ host application, which is linked against libVC.

libVC

clangAsLib
LLVM

clang

gcc

...

optional

clang JIT

.cpp

.cpp
.hpp

.cpp

running program

kernel.cpp

source
file

setup1

(b) During the setup of a Version object, the host application specifies the
source file, ...

Figure 4.7: libVC configuration and usage steps

[June 28, 2019 at 16:11 – XXXI cycle]

4.2 dynamic precision tuning 65

libVC

clangAsLib
LLVM

clang

gcc

...

optional

clang JIT

.cpp

.cpp
.hpp

.cpp

running program

kernel.cpp

source
file

setup1
c
o
m
p
il
e
r=

g
c
c

(c) ... the desired compiler implementation, ...

libVC

clangAsLib
LLVM

clang

gcc

...

optional

clang JIT

.cpp

.cpp
.hpp

.cpp

running program

kernel.cpp

source
file

setup1

c
o
m
p
il
e
r=

g
c
c

-O3-fopenmp

(d) ... the desired compilation options, ...

Figure 4.7: libVC configuration and usage steps

[June 28, 2019 at 16:11 – XXXI cycle]

66 effective precision tuning solutions

libVC

clangAsLib
LLVM

clang

gcc

...

optional

clang JIT

.cpp

.cpp
.hpp

.cpp

running program

kernel.cpp

source
file

setup1

c
o
m
p
il
e
r=

g
c
c

-O3-fopenmp
-D
va
rP
i=
3.1

4

-D
p
iv
o
t=
5

(e) ... such as constants defined at compile time.

libVC

clangAsLib
LLVM

clang

gcc

...

optional

clang JIT

.cpp

.cpp
.hpp

.cpp

running program

kernel.cpp

source
file

setup1

c
o
m
p
il
e
r=

g
c
c

-O3-fopenmp
-D
va
rP
i=
3.1

4

-D
p
iv
o
t=
5

compile

2

(f) Once the Version object has been finalized, the host application explicitly
triggers the compilation step via the libVC APIs.

Figure 4.7: libVC configuration and usage steps

[June 28, 2019 at 16:11 – XXXI cycle]

4.2 dynamic precision tuning 67

libVC

clangAsLib
LLVM

clang

gcc

...

optional

clang JIT

.cpp

.cpp
.hpp

.cpp

running program

kernel.cpp

source
file

setup1
c
o
m
p
il
e
r=

g
c
c

-O3-fopenmp
-D
va
rP
i=
3.1

4

-D
p
iv
o
t=
5

compile

2

load function pointer

3

(g) libVC provides a function pointer to the host application to invoke the
dynamically generated executable code.

libVC

clangAsLib
LLVM

clang

gcc

...

optional

clang JIT

.cpp

.cpp
.hpp

.cpp

running program

kernel.cpp

source
file

setup1

c
o
m
p
il
e
r=

g
c
c

-O3-fopenmp
-D
va
rP
i=
3.1

4

-D
p
iv
o
t=
5

compile

2

load function pointer

3
save / load

(h) The host application can also decide whether and when to offload the
already generated Version object to the mass memory.

Figure 4.7: libVC configuration and usage steps

[June 28, 2019 at 16:11 – XXXI cycle]

68 effective precision tuning solutions

jects designed to properly setup a Version configuration. Low-level
APIs allow the programmer to customize one or more Compiler imple-
mentations. High-level APIs expose a special function to transparently
perform this task; it is required to be invoked just once in the whole
process lifetime. After that, it is possible to proceed to the Version

configuration. The programmer can, by using low-level APIs, dynami-
cally forge and arrange Options, set the chosen Compilers, manipulate
file and kernel names to identify the code to be compiled. The Version

builder is the component which allows this low-level setup. Once the
Version builder has its fields filled up, it can be finalized to generate a
Version object. High-level APIs receive all these parameters and pro-
duce a Version object in a single function call. High-level APIs limit
the configuration to one Version at a time while low-level APIs allow
the parallel configuration of multiple Versions. Once a Version object
is finalized, it has to be compiled. The compilation task is activated
by the programmer through a dedicated API. It may trigger more
than one sub-task when it involves split-compilation techniques. In
the absence of compilation errors, and regardless of which APIs are
being used, at the end of this stage libVC generates a binary shared
object. From this same shared object libVC loads function pointer
symbols, which points to the kernels.

The target kernels may include other files or refer to external sym-
bols. libVC will act just as a compiler invocation and will try to resolve
external symbols according to the given compiler and linker options.

libVC defers the resolution of the compilation parameters to run-
time. The only piece of information that is needed at design-time is
the prototype of the kernel, which has to be used for a proper function
pointer cast. Additionally, libVC provides hooks to enable tracking
and versioning of the compiled versions.

illustrative examples libVC can be exploited to apply a wide
range of optimizations through the dynamic compilation.

In this section we show and discuss a generic use case of continuous
program optimization performed through libVC. Listing 4.7 illustrates
the dynamic adaptation of a counting sort algorithm to the data work-
load. In particular, the counting sort implementation is specialized
through recompilation using libVC every time the min and max value
of range of the data to be sorted change. When the min and max values
of the range of the data are known at compile-time it is possible to
perform array allocation and loop optimizations more efficiently.

Listing 4.7: Benchmark of a statically linked kernel performing counting sort
against a dynamically compiled version of the same kernel using
libVC high-level APIs

1 // libVersioningCompiler High -Level API header file

include " versioningCompiler/ U t i l s . hpp"
3

// define kernel signature

[June 28, 2019 at 16:11 – XXXI cycle]

4.2 dynamic precision tuning 69

5 typedef void (∗ k e r n e l _ t) (s td : : vector < i n t 3 2 _ t > &array) ;

7 vc : : v e r s i o n _ p t r _ t getDynamicVersion (i n t 3 2 _ t min , i n t 3 2 _ t max) {
// version configuration using libVC - start

9 const std : : s t r i n g k e r n e l _ d i r = PATH_TO_KERNEL;
const std : : s t r i n g k e r n e l _ f i l e = k e r n e l _ d i r + " kernel . cpp " ;

11 const std : : s t r i n g functionName = " vc_sor t " ;
const vc : : o p t _ l i s t _ t o p t _ l i s t = {

13 vc : : make_option ("−O3") ,
vc : : make_option ("−std=c++11 ") ,

15 vc : : make_option ("−I "+ k e r n e l _ d i r) ,
vc : : make_option ("−D_MIN_VALUE_RANGE="+std : : t o _ s t r i n g (min)) ,

17 vc : : make_option ("−D_MAX_VALUE_RANGE="+std : : t o _ s t r i n g (max)) ,
} ;

19 vc : : v e r s i o n _ p t r _ t vers ion = vc : : c rea teVers ion (k e r n e l _ f i l e ,
functionName , o p t _ l i s t) ;

// version configuration using libVC - end

21

// version compilation - start

23 k e r n e l _ t f = (k e r n e l _ t) vc : : compileAndGetSymbol (vers ion) ;
i f (f) {

25 re turn vers ion ;
}

27 // version compilation - end

re turn n u l l p t r ;
29 }

31 i n t main (i n t argc , char const ∗argv []) {
const std : : vector <std : : pair <int , in t > > data_range = {

33 std : : make_pair<int , in t > (0 , 2 5 6) ,
s td : : make_pair<int , in t > (0 , 5 1 2) ,

35 std : : make_pair<int , in t > (0 , 10 24) ,
} ;

37 const s i z e _ t d a t a _ s i z e = 1000000000 ;

39 // initialize libVersioningCompiler

vc : : v c _ u t i l s _ i n i t () ;
41

f o r (const auto range : data_range) {
43 TimeMonitor t ime_monitor_ref ;

TimeMonitor time_monitor_dyn ;
45 TimeMonitor time_monitor_ovh ;

47 // running reference version - statically linked

f o r (s i z e _ t i = 0 ; i < i t e r a t i o n s ; i ++) {
49 // produce workload to process

auto wl = WorkloadProducer< i n t 3 2 _ t > : : get_WL_with_bounds (range .
f i r s t , range . second) ;

51 const auto meta = wl . getMetadata () ;
t ime_monitor_ref . s t a r t () ;

53 s o r t (wl . data , meta . minVal , meta . maxVal) ; // call reference

t ime_monitor_ref . stop () ;
55 }

57 // measuring overhead of preparing a new version - start

time_monitor_ovh . s t a r t () ;
59 auto v = getDynamicVersion (range . f i r s t , range . second) ;

k e r n e l _ t my_sort = (k e r n e l _ t) v−>getSymbol () ;
61 time_monitor_ovh . stop () ;

// measuring overhead of preparing a new version - end

63

// running dynamic version - dynamically compiled

65 f o r (s i z e _ t i = 0 ; i < i t e r a t i o n s ; i ++) {
// produce workload to process

67 auto wl = WorkloadProducer< i n t 3 2 _ t > : : get_WL_with_bounds (range .
f i r s t , range . second) ;

[June 28, 2019 at 16:11 – XXXI cycle]

70 effective precision tuning solutions

time_monitor_dyn . s t a r t () ;
69 my_sort (wl . data) ; // just a call to a function pointer

time_monitor_dyn . stop () ;
71 }

73 // consider average time -to-solution

std : : cout << range . second << " " << time_monitor_ref . getAvg ())
75 << " " << time_monitor_dyn . getAvg ())

<< " " << time_monitor_ovh . getAvg ()) << std : : endl ;
77 }

re turn 0 ;
79 }

Listing 4.7 reveals the several stages of the compilation flow of
libVC. In the main function, an initialization is needed before using
libVC. This is done in line 40 using a simple API invocation. From
line 8 to line 20 we see how to configure a new Version for dynamic
compilation. The following lines (22 - 27) perform the actual dynamic
compilation. It is possible to notice in line 69 the call to the dynamically
compiled kernel, which is very similar to the call to a statically linked
kernel (line 53).

As proof of concept, we tested the benefits of continuous program
optimization implemented with libVC by comparing the time-to-
solution of the statically linked kernel against a dynamically compiled
version of the same kernel, as shown in listing 4.7. We compiled both
the statically linked and the dynamically compiled kernels using the
same compiler and the same optimization level. A full project using
code from listing 4.7 is available on GitHub4. We run this example
to sort an array of 1 billion 32-bits integers. The platform used to
execute the experiment is a supercomputer NUMA node that features
two Intel Xeon E5-2630 V3 CPUs (@2.4 GHz) with 128 GB of DDR4

memory (@1866 MHz) on a dual channel memory configuration.
Table 4.1 shows that dynamically compiled kernels always perform

better with respect to the reference statically linked implementation.
We define as range size the difference between max and min values of
the range of the data to be sorted. We observe an important speedup
when the range size is smaller than 8192 possible values. In those cases
the main part of the speedup comes from a more efficient memory
allocation of the array in the dynamically compiled kernels. We also
notice that the overhead of dynamically compiling a new Version is
not related to the range size. This overhead can be absorbed within
3 iterations when the range size is small, and within less than one
thousand iterations in the worst case.

It is also possible to use libVC to dynamically compile and run
several functions or the same function with different options. A more
complex example of usage of libVC which exploits these features can
be found on GitHub5 where we dynamically compile and run the full
PolyBench/C [165] benchmark suite within the same C++ program.

4 https://github.com/skeru/countingsort_libVC

5 https://github.com/skeru/polybench_libVC

[June 28, 2019 at 16:11 – XXXI cycle]

https://github.com/skeru/countingsort_libVC
https://github.com/skeru/polybench_libVC

4.2 dynamic precision tuning 71

Table 4.1: Experimental results of Time-To-Solution (TTS) averaged over 100

executions on a Ubuntu x86_64 system. Kernels were compiled
using gcc 5.4.0 with optimization level -O3.

Range TTS TTS speedup overhead payback

size reference libVC

[elements] [ms] [ms] [%] [ms] [iterations]

256 2831.33 2368.12 19.56 1355.99 3

512 2822.84 2352.27 20.00 1345.25 3

1024 2820.67 2347.28 20.17 1356.86 3

2048 2831.92 2351.99 20.41 1361.37 3

4096 2914.13 2440.47 19.41 1353.05 3

8192 3967.59 3966.21 0.03 1354.12 982

16384 5168.64 5163.51 0.10 1370.82 268

32768 6459.75 6430.77 0.45 1358.26 47

4.2.4 Combining the Continuous Optimization Toolchain

Given the previously described components, we can build upon them a
toolchain to properly perform continuous optimization using dynamic
precision tuning. We start from a generic application and we describe
step by step the procedure to achieve our goal.

First, we need to clearly identify which are the bounds of the most
computationally-intensive application kernel. The application kernel
is a function or a set of functions that process data without focusing on
I/O operation, error recovery, or corner case handling. Whenever the
application does not clearly highlight a set of functions that matches
these requirements, it should be refactored to allow the application
kernel to be isolated from the rest of the source code of the application.
This set of functions will be the target of our optimization.

After the kernel identification, we need to make sure it processes
a finite amount of data per iteration. Whenever the application is
designed to process a variable amount of data, we recommend to
group the input in batches of similar input data. We consider for
similarity within the batch similar input properties, common data,
spatial and temporal data locality. We thus suggest to rewrite the
application to resemble the code pattern shown in Listing 4.8.

Once the shape of the kernel has been defined according to the
previous steps, we can focus on its content. We start to characterize the
kernel and to design the workload equivalence function. We annotate
the source code of the kernel with the information required by TAFFO
coherently with the precision requirements of the kernel for each
input class. In case of different requirements, for each input class we

[June 28, 2019 at 16:11 – XXXI cycle]

72 effective precision tuning solutions

Listing 4.8: Iteration over application kernel for each input batch.

1 void kernel (const f l o a t ∗ batch) {
2 const f l o a t pivot = batch [0] ;
3 // ...

4 }
5

6 i n t main (i n t argc , char∗argv []) {
7 // ...

8 while (hasInput ()) {
9 f l o a t ∗ batch = fetchData () ;

10 kernel (batch) ;
11 }
12 // ...

13 }

Listing 4.9: Example of parameterized TAFFO annotation of the kernel.

1 // kernel.cpp

2 # i f defined (MIN) AND defined (MAX)
3 # def ine PIVOT_RANGE " range ("MIN" , "MAX") "
4 # e l s e
5 # def ine PIVOT_RANGE
6 # endi f
7

8 extern "C"
9 void kernel (const f l o a t ∗ batch) {

10 f l o a t pivot _ _ a t t r i b u t e (annotate (PIVOT_RANGE)) ;
11 pivot = batch [0] ;
12 // ...

13 }

suggest to parameterize the annotations, as in the example shown in
Listing 4.9.

It is worth of noticing that the refactoring and adjustments applied
to the application should have not modified nor the functional nor
the extra-functional behavior of the application. Indeed, the TAFFO
annotations are simply ignored by the compiler when the TAFFO
plugins are not scheduled for execution on the application code.

The first invasive edit on the original application is the introduction
of the dynamic compilation of the kernel. To this end we exploit the
APIs provided by libVersioningCompiler. In particular, we setup
a Version object to dynamically compile all the source files required
by the kernel of the application – not the whole application – using
clang as a compiler and opt as a code optimizer.

Later we introduce the TAFFO optimization stages. More specifi-
cally, we select a split-compilation approach where the generation of

[June 28, 2019 at 16:11 – XXXI cycle]

4.2 dynamic precision tuning 73

Listing 4.10: Example of libVC setup to perform dynamic compilation using
TAFFO toolchain.

1 // main.cpp

2 const std : : s t r i n g functionName = " kernel " ;
3 const std : : s t r i n g fileName = " . . / kernel . cpp " ;
4 typedef void (∗ s i g n a t u r e _ t) (const f l o a t ∗) ;
5

6 vc : : compi ler_ptr_ t t a f f o = vc : : make_compiler<vc : :
TAFFOCompiler > () ;

7

8 vc : : v e r s i o n _ p t r _ t prepareVersion (const f l o a t ∗ batch) {
9 vc : : Version : : Bui lder b ;

10 b . _functionName . push_back (functionName) ;
11 b . addSourceFi le (fileName) ;
12 b . addDefine ("MIN" , batch [0]) ;
13 b . addDefine ("MAX" , batch [0]) ;
14 b . _compiler (t a f f o) ;
15 vc : : v e r s i o n _ p t r _ t v = b . bui ld () ;
16 re turn v ;
17 }
18

19 i n t main (i n t argc , char∗argv []) {
20

21 // ...

22 while (hasInput ()) {
23 f l o a t ∗ batch = fetchData () ;
24 vc : : v e r s i o n _ p t r _ t v = prepareVersion (batch) ;
25 v−>compile () ;
26 s i g n a t u r e _ t kernel = (s i g n a t u r e _ t) v−>getSymbol () ;
27 kernel (batch) ;
28 }
29 // ...

30 }

the intermediate representation is performed with a minimal set of
code optimizations (-O1), TAFFO operates on the llvm-ir, and finally
clang compiles to shared object the final version using the higher
optimization level available (-O3). In the example in Listing 4.10 the
explicit invocation of the TAFFO optimization stages is encapsulated
within the vc::TAFFOCompiler compiler implementation, which we
designed to simplify user experience.

We replicate the setup of the Version object for each input class
defined by the workload equivalence function. Ideally every different
Version should have different precision requirements. With respect to
the example in Listing 4.10 we suggest to add memoization techniques
to avoid the re-compilation of the kernel multiple times for the same
input class. Such techniques can be either applied manually or via
automatic tools [139, 147].

[June 28, 2019 at 16:11 – XXXI cycle]

74 effective precision tuning solutions

Finally, in addition to the precision tuning optimization, we can
add to the code generation stage other compile-time options to enable
code transformations that are known to be effective for each specific
input class. Examples of such code transformation are function spe-
cialization via constant propagation or control-flow simplification [21],
and approximate computing techniques such as loop perforation or
memoization [140]. The effect of such code transformations heavily de-
pends on the input data and on the application kernel itself. A deeper
discussion on this topic can be found in dedicated surveys [104, 162].
Therefore, in our work we do not investigate – nor we aim at suggest-
ing – the profitability conditions for any code transformation other
than precision tuning.

[June 28, 2019 at 16:11 – XXXI cycle]

5
C A S E S T U D I E S

In this chapter we present a series of experimental campaigns that
validated the individual tools, and the methodologies presented in
Chapter 3. These results have either been published or submitted for
publication in peer-reviewed workshops, conferences and journals.

Section 5.1 discusses the evaluation of static precision tuning us-
ing a source-to-source translation solution on a set of microkernel
benchmarks.

Section 5.2 introduces the exploitation of TAFFO to perform static
precision tuning on a limited code base such as the scheduling proce-
dures of a real-time operating system.

Section 5.3 evaluates the TAFFO toolchain for static precision tuning
using a well-known approximate computing benchmark suite, which
contains applications with pre-defined metrics to measure the quality
of the result.

Section 5.4 discuss a few use cases where libVersioningCompiler

proved to be effective to perform continuous program optimization. A
deeper comparative analysis focusing on the Just-in-Time compilation
paradigm in libVC is provided in Appendix a.1.

Section 5.5 provides a deep evaluation of the whole dynamic com-
pilation process using three approximate computing benchmarks.

75

[June 28, 2019 at 16:11 – XXXI cycle]

76 case studies

5.1 implications of reduced precision computing in hpc

The content of this
Section has been

presented in
International

Conference on
Parallel Computing

(ParCo). Bologna,
Italy. Sep 2017. [22]

In this section we present the effects of the source-to-source static
precision tuning solution described in Section 4.1 in a case study of
simple linear-algebra kernels run in an High Performance Computing
environment.

As the source-to-source code transformation to enable fixed point
representations introduces instruction pattern which are not usually
not considered by modern x86_64 compiler backends, compiler opti-
mization presets – such as the optimization level – may fail to improve
the code performance and may instead worsen them.

5.1.1 Issues with Vectorization

The GCC 5.4.0 and Clang 4.0.0 compilers are not designed to effi-
ciently vectorize kernels for the x86_64 architecture when the fixed-
point conversion is applied. In particular, sign extension and shift
operations that are introduced when performing fixed-point multipli-
cations are not handled automatically by the vectorizers.

Listing 5.1: Floating-point SAXPY kernel written in C

void saxpy (const f l o a t a , f l o a t x [] , const f l o a t y []) {
f o r (i n t i = 0 ; i < LEN; ++ i) {

y [i] = a ∗ x [i] + y [i] ;
}
re turn ;

}

This problem can be clealy explained using the saxpy kernel as an
example. Listing 5.1 shows the C version of such kernel. Listing 5.2
shows the fixed point version of the saxpy kernel, compiled with GCC

5.4.0 to assembly code. It is possible to see that several unpacking
instructions are generated to perform the shift operation, which the
compiler generates as an independent instruction.

However, it is possible to use the pmulhw from the MMX vector
extension to replace the 16-bit shift, as shown in Listing 5.4. A similar
solution can be applied in the case of 32-bit operands: it is possible to
replace the 32-bit shift by expressing the multiplication as a sequence
of pmuldq and pshufd instructions.

Since the implementation of the vectorizer is beyond the scope of this
work, we did not apply this set of optimizations for the experimental
evaluation.

[June 28, 2019 at 16:11 – XXXI cycle]

5.1 implications of reduced precision computing in hpc 77

Listing 5.2: Fixed-point SAXPY kernel, compiled with baseline GCC

. L34 :
movdqa (%rdx) , %xmm2

movdqa %xmm3, %xmm1

addq $16 , %rax
addq $16 , %rdx
pmullw %xmm2, %xmm1

movdqa %xmm1, %xmm0

pmulhw %xmm3, %xmm2

punpckhwd %xmm2, %xmm1

punpcklwd %xmm2, %xmm0

psrad $16 , %xmm1

psrad $16 , %xmm0

movdqa %xmm0, %xmm2

punpcklwd %xmm1, %xmm0

punpckhwd %xmm1, %xmm2

movdqa %xmm0, %xmm1

punpcklwd %xmm2, %xmm0

punpckhwd %xmm2, %xmm1

punpcklwd %xmm1, %xmm0

paddw −16(%rax) , %xmm0

movaps %xmm0, −16(%rax)
cmpq %rax , %rcx
j n e . L34

Listing 5.3: Fixed-point SAXPY ker-
nel with unsigned multi-
plication, compiled with
baseline GCC

. L34 :
movdqa (%rdx) , %xmm0

addq $16 , %rax
addq $16 , %rdx
pmullw %xmm1, %xmm0

paddw −16(%rax) , %xmm0

movaps %xmm0, −16(%rax)
cmpq %rcx , %rax
j n e . L34

Listing 5.4: Fixed-point SAXPY ker-
nel after post-processing,
integer multiplication re-
stored

. L34 :
movdqa (%rdx) , %xmm0

addq $16 , %rax
addq $16 , %rdx
pmulhw %xmm1, %xmm0

paddw −16(%rax) , %xmm0

movaps %xmm0, −16(%rax)
cmpq %rcx , %rax
j n e . L34

5.1.2 Experimental Evaluation

hardware setup The platform used to run the experiments is a
NUMA node with two Intel Xeon E5-2630 V3 CPUs (@2.4 – 3.2 GHz
Turbo) for a total of 16 cores, with hyper threading enabled and
128 GB of DDR4 memory (@1866 MHz) on a dual channel memory
configuration. The selected hardware is therefore representative of
modern supercomputer nodes. The operating system is Ubuntu 16.04

with version 4.4.0 of the Linux kernel. We rely on the performance
power settings with Turbo Boost activated to effectively drive all of the
CPU cores up to 3.2 GHz from the base clock of 2.4 GHz. The compiler
in use is GCC 5.4.0.

We collected for each kernel two performance indicators (Time-To-
Solution and Energy-To-Solution), as well as the error with respect
to the reference version and the instruction mix. Performance mea-
surements are averaged over 100 executions for each same kernel.
Time-To-Solution is measured using the clock() API from the stan-
dard C++ sys/time.h. Energy-To-Solution is measured using the Intel
RAPL (Running Average Power Limit), a set of hardware counters pro-

[June 28, 2019 at 16:11 – XXXI cycle]

78 case studies

viding energy and power information. These counters are updated
automatically by the hardware. Linux provides an interface to read
the counter values. Intel defines a hierarchy of power domains, where
the top-level domain is the package. In our experiment we consider
Energy-To-Solution the ∑all

i Energypackage,i. Note that RAPL does not
map energy to processes therefore, Energypackage,i represents the en-
ergy consumed by the package i as a whole. We used a controlled and
unloaded machine for our experiments to guarantee that the energy
consumption is due to the benchmarks we run.

We measured the error on the output of each kernel with respect to
the highest data precision, which is floating-point quadruple-precision
(128 bits). To measure the instruction mix we rely on Intel Software
Development Emulator (SDE), a Pin tool [92] that produces instruction
traces and classifies them into categories.

benchmarks PolyBench/C is a collection of benchmarks consist-
ing of regular kernels written in C language. We evaluated our ap-
proach over a subset of the linear algebra family of PolyBench/C [165].
The subset is chosen based on the ability of the compiler to vectorize
the code, which directly impacts the speedups that can be achieved
with fixed-point arithmetic. The benchmarks that can be fully vector-
ized are: floyd-warshall, atax, jacobi-1d, jacobi-2d.

floyd-warshall Shortest path in a weighted graph

atax Matrix Transpose and Vector Multiplication

jacobi-1d 1-D Jacobi stencil computation

jacobi-2d 2-D Jacobi stencil computation

PolyBench defines five presets of input data sizes for each bench-
mark: mini, small, medium, large, extralarge. In these experiments,
measurements in terms of error, energy, and time are obtained by
exploiting the medium data-set size.

The set of benchmarks is characterized by the instruction mix re-
ported in Figure 5.1. The four benchmarks show a variety of floating-
point instruction mixes, ranging from floyd-warshall, which has
almost only additions, to atax which has a more balanced mix of
additions and multiplications. The jacobi-1d and jacobi-2d kernels
fall in the middle.

analysis of results With the above described setup, we col-
lected for each benchmark measures for the following metrics: time-to-
solution, energy-to-solution, and error. We report the time-to-solution
and energy-to-solution normalized with respect to the execution of the
quadruple-precision floating-point version of each benchmark, which
provides the greatest accuracy, but also the slowest time-to-solution

[June 28, 2019 at 16:11 – XXXI cycle]

5.1 implications of reduced precision computing in hpc 79

 0

 20

 40

 60

 80

 100

jacobi-1d jacobi-2d atax floyd-warshall

%
 o

f
to

ta
l
fp

 i
n
st

ru
ct

io
n
s

Instruction Mix

Addition
Multiplication
Other

Figure 5.1: Instruction mix for the selected PolyBench benchmarks.

and the largest energy-to-solution. For what concerns the error, we
report the relative solution error (or relative forward error), defined as
follows:

η =

∥∥Aapprox − A
∥∥

F
‖A‖F

where ‖A‖F is the Frobenius matrix norm:

‖A‖F =

√√√√ m

∑
i=1

n

∑
j=1

a2
i,j

As it can be seen from Figure 5.2, different benchmarks achieve
maximum performance with different approximation solutions.

In particular, for atax, we obtain the best performance/error trade-
off using 32-bit fixed-point arithmetic, as with 16-bit fixed-point arith-
metic it is impossible to find a good compromise between the need
to preserve precision for small numbers and the need to provide a
sufficiently large number of integer part bits to avoid overflows. On
the other hand, 32-bit fixed-point arithmetic provide a major speed-up
at only a limited cost in precision.

For floyd-warshall, 16-bit fixed-point arithmetic are sufficient for a
reasonably good precision, and provide a good boost in performance.
The algorithm does not include multiplications, so impacts on both
metrics are more limited than in other cases.

For jacobi-1d and jacobi-2d, 16-bit fixed-point arithmetic is inef-
ficient due to limited opportunities to vectorize. Indeed, the 16-bit
fixed-point becomes slower than 32-bit fixed-point arithmetic, as sim-
ilar operations are used, but more conversion overhead is incurred.
32-bit fixed-point arithmetic, on the other hand, provide a reasonable
boost to performance while incurring in reasonable error.

[June 28, 2019 at 16:11 – XXXI cycle]

80 case studies

atax
floyd-w

a
rshall

jacobi-1d
jacobi-2d

0

0,2

0,4

0,6

0,8 1

N
orm

alized T
im

e To S
olutio

n

float

int

short

Figure
5.

2:N
orm

alized
tim

e-to-solu
tion

for
each

benchm
ark

and
data

type,norm
alized

to
the

sam
e

benchm
ark

w
ith

dou-
ble

precision
floating-point

arithm
etic.

atax
floyd-w

a
rshall

jacobi-1d
jacobi-2d

0

0,2

0,4

0,6

0,8 1

N
orm

alized E
nergy To S

olu
tion

float

int

short

Figure
5.

3:N
orm

alized
energy-to-solution

for
each

benchm
ark

and
data

type,norm
alized

to
the

sam
e

benchm
ark

w
ith

dou-
ble

precision
floating-point

arithm
etic.

[June 28, 2019 at 16:11 – XXXI cycle]

5.1 implications of reduced precision computing in hpc 81

0,00% 0,50% 1,00% 1,50% 2,00% 2,50%
0

0,2

0,4

0,6

0,8

1

FLOYD-WARSHALL

double

float

int

short

relative error

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

0,00% 0,10% 0,20% 0,30% 0,40% 0,50% 0,60%
0

0,2

0,4

0,6

0,8

1

ATAX

double

float

int

relative error

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

0,00% 0,20% 0,40% 0,60% 0,80% 1,00% 1,20% 1,40% 1,60%
0

0,2

0,4

0,6

0,8

1

JACOBI-1D

double

float

int

short

relative error

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

0.00% 0.50% 1.00% 1.50% 2.00%
0

0.2

0.4

0.6

0.8

1

JACOBI-2D

double

float

int

short

relative error

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

Figure 5.4: Relative solution error vs time-to-solution

It is important to note that the approximation also needs to be
taken into account, as with fixed-point, and sometimes also with low-
precision floating-point, there is typically a price to pay. The graphs in
Figure 5.4 plot the relative solution error against the time-to-solution
for each benchmark to highlight Pareto-optimal solutions. The graph
shows that, while for jacobi-1d and jacobi-2d there is a single Pareto-
optimal solution (32-bit fixed-point), for atax and floyd-warshall

there are two (single-precision floating-point and either 32-bit or 16-bit
fixed-point). Therefore, a solution can be selected based on the target
relative solution error.

Figure 5.3 reports the normalized energy-to-solution for each bench-
mark and data type, normalized to the double precision version. In
general, energy to solution is strongly related to time to solution. In
most cases, the energy saving is more limited than the performance
improvement, though. The only exception is floyd-warshall, which
differs from the other benchmarks for a distinctly lower use of mul-
tiplications. This difference in the instruction mix is reflected in the
energy to solution, which is also lower than in other benchmarks when
compared to time to solution.

[June 28, 2019 at 16:11 – XXXI cycle]

82 case studies

5.2 embedded operating system optimization using taffo

The content of this
Section has been

presented in
Euromicro DSD

2018 [17].

The structure of TAFFO is well suited to perform dynamic precision
tuning. Before proceeding to evaluate it in this task, we demonstrate
its effectiveness in the static case. In this section we discuss the floating
to fixed point conversion of the implementation of the scheduler of
the Miosix

1 embedded real-time operating system. We compare the
TAFFO approach with the original floating point implementation, a
hand-tuned fixed point one, and a solution based on a C++ library for
fixed-point arithmetic.

5.2.1 About Miosix

Miosix is a real time OS targeting embedded system. It has been
ported to embedded systems hardware platforms ranging from wire-
less sensor network nodes to development and evaluation boards.
It runs also on wearable devices such as smartwatches, and control
boards for experimental sounding rockets of the Skyward program2.
The kernel is used as a platform for academic research, such as to
design clock synchronization solutions [151] and schedulers.

Miosix design aims at satisfying three main requirements: hardware
variety, software compatibility, and rapid prototyping of new kernel
modules. It supports hardware ranging from performance-oriented
systems to resource-constrained and real-time systems. Miosix pro-
vides support for C and C++ standard libraries, and for POSIX threads.
Moreover, it is based on a small C++ kernel which provides a proper
separation of concerns among its component. The resulting operating
system structure is simple enough to allow researchers to quickly
implement prototypes of new features and test them on a working
system.

In this work we focus on Miosix operating system applied to em-
bedded and real-time applications. From an architectural point of
view the kernel of Miosix is built upon the hardware board support
package (BSP). Whilst there are kernel modules that have to inter-
act with the BSP, the scheduler exploits only the APIs provided by
the kernel. Three different pluggable implementations of the sched-
uler are shipped with Miosix. This design decision allows embedded
system developers and researchers to fairly compare different schedul-
ing algorithms by switching among the available implementations at
compile-time. For performance reasons, scheduler switching is done
using C++ compile-time polymorphism. More schedulers can be im-
plemented and plugged in Miosix however, in this work we only
consider the available implementations.

1 https://miosix.org
2 https://www.skywarder.eu

[June 28, 2019 at 16:11 – XXXI cycle]

https://miosix.org
https://www.skywarder.eu

5.2 embedded operating system optimization using taffo 83

Focusing on the scheduler, the kernel supports different scheduling
algorithms, one of which is based on control theory [93] and uses float-
ing point operations. This scheduler is the subject of our optimization.
The goal of the control-based scheduler is to guarantee on average to
each task the CPU share the programmer assigned to it. Scheduling is
performed in rounds, at the end of which a control-theoretical regula-
tor is run to compute the next execution time for each task, using the
time previously used by tasks to provide feedback.

For each task, a floating point variable alfa represents its CPU
share set point. Listing 5.5 shows the most important portions of the
code of the regulator. Two different operations involve computations
on alfa. The IRQrecalculateAlfa() function is called whenever the
CPU distribution requirements change. It partitions the scheduling
round among threads. It gives a higher share to those with higher
priority whilst it keeps the invariant ∑t∈T alfat = 1 where T is the set
of tasks to be scheduled. The function IRQrunRegulator() is instead
called by the context switch interrupt service routine, and implements
the control theoretical regulator.

To be able to guarantee that no overflows will occur in the fixed point
computation, we perform a range analysis of the algorithm. Figure 5.5
shows the analysis result, restricted to the relevant part of the Miosix

scheduler. Certain variables such as the measured CPU time burst of
each tasks have well defined ranges, while for the maximum number of
tasks and priorities we set a limit to 64 for the fixed point conversion.

Based on these assumptions it is possible to compute the initial
range of values for each of the involved variables.

5.2.2 Experimental Evaluation

We compare TAFFO against three other alternatives: a fixed point C++
header library, a manual porting of the algorithms from floating point
to integer arithmetic, and the original floating point implementation.
In the rest of this section we refer to TAFFO solution as the llvm pass
version.

We call reference version the implementation that exploits floating
point variables and arithmetic. Note that for architectures without
hardware floating point support, Miosix relies on the default gcc

software floating point emulation support.
We also generate a manually ported and optimized version of the

original algorithm, using only integer arithmetic. We refer to this
optimized version as the manual version.

Finally, we also convert the floating point code into fixed point
equivalent code by exploiting a template-based C++ library that pro-
vides an implementation of both signed and unsigned fixed point
data types. This is an open-source library 3 which is designed for ap-

3 source code available at https://github.com/skeru/fixedpoint

[June 28, 2019 at 16:11 – XXXI cycle]

https://github.com/skeru/fixedpoint

84 case studies

Listing 5.5: Relevant portions from the source code of the Miosix kernel
which implements a I+PI regulator to assign burst times to threads in a
preemptive multitasking environment. Notice the usage of floating point
variables. This code has been sightly edited for clarity and brevity.

void ControlScheduler : : IRQreca lcu la teAl fa ()
2 {

Thread ∗ i t ;
4 unsigned i n t sumPriori ty =0 ;

f o r (i t = t h r e a d L i s t ; i t ; i t = i t −>schedData . next)
6 sumPriori ty +=

i t −>schedData . p r i o r i t y . get () + 1 ;
8

i f (sumPriori ty ==0)
10 re turn ;

12 f l o a t base = 1 . 0 / sumPriori ty ;
f o r (i t = t h r e a d L i s t ; i t ; i t = i t −>schedData . next)

14 i t −>schedData . a l f a = base ∗
((f l o a t) (i t −>schedData . p r i o r i t y . get () + 1)) ;

16

r e i n i t R e g u l a t o r =true ;
18 }

/* ... */

20 s t a t i c void IRQrunRegulator (bool a l l T h r d s S a t)
{

22 i n t eTr=SP_Tr−Tr ;

24 i n t bc = bco + (i n t) (krr∗eTr−krr∗ z r r ∗eTro) ;
i f (! a l l T h r d s S a t || bco > bc)

26 bco=bc ;
bco=min<int >(max(bco , −Tr) , bMax∗ t h r e a d L i s t S i z e) ;

28

f l o a t nextRoundTime = Tr + bco ;
30 eTro=eTr ;

Tr =0 ;
32 Thread ∗ i t ;

f o r (i t = t h r e a d L i s t ; i t ; i t = i t −>schedData . next) {
34 //Recalculate per thread set point

i t −>schedData . SP_Tp=
36 i t −>schedData . a l f a ∗ nextRoundTime ;

//Run each thread internal regulator

38 i n t eTp =
i t −>schedData . SP_Tp − i t −>schedData . Tp ;

40 i n t b =
i t −>schedData . bo + eTp ;

42 //saturation

i t −>schedData . bo =
44 min (max(b , bMin∗multFactor) , bMax∗multFactor) ;

// burst allocated for the task =

46 // curInRound ->schedData.bo / multFactor

}
48 }

/* ... */

50 s t a t i c i n t SP_Tr ; // Set point of round time

s t a t i c i n t Tr ; // Round time

52 s t a t i c i n t bco ; // Old burst correction

s t a t i c i n t eTro ; // Old round time error

54 /* ... */

c l a s s ControlSchedulerData
56 {

/*...*/

58 C o n t r o l S c h e d u l e r P r i o r i t y p r i o r i t y ;
i n t bo ; // burst time

60 f l o a t a l f a ; // Sum of all alfa=1

i n t SP_Tp ; // Processing time set point

62 i n t Tp ; // Real processing time

Thread ∗next ; // Next thread in list

64 } ;

[June 28, 2019 at 16:11 – XXXI cycle]

5.2 embedded operating system optimization using taffo 85

+ *

priority #threads burst

* *

*

alfa

[0;63] 5 bit [0;64] 6 bit [0;8191] 13 bit

1 1 bit

[1;64] 6 bit

[0;4096] 12 bit

[0;524224] 19 bit

2 2 bit

[0;1048448] 20 bit

[0;4294443008] 32 bit

Figure 5.5: Data flow analysis of the floating point values used in a fragment
of the Miosix scheduler. For each node we report the range and
the minimum data width required.

proximate computing purposes in HPC [22] as part of the ANTAREX
project [138, 139]. We refer to this version as the C++ lib version.

All the aforementioned conversion approaches require the software
developer some effort to be applied. We quantify such effort in terms
of newly inserted or modified lines of code (LOCs). The manual version
requires a complete rework of the scheduler component. It represents
the most costly solution in terms of LOCs to be modified. The C++ lib
solution requires the insertion of 10 LOCs, and the modification of 6
LOCs. The llvm pass solution requires the insertion of attributes near
the floating point variables to characterize their initial value range. This
procedure costs 9 LOCs and represents the lowest-effort solution. It is
worth noting that the llvm pass solution satisfies the elision property,
i.e. when the conversion pass is not explicitly enabled the source code
represents valid C++ code using floating point arithmetic.

hardware setup We selected two representative off-the-shelf
development boards among those supported by Miosix, one without
floating point hardware support, and one with single precision floating
point hardware support:

f207 An STM3220G-EVAL board featuring a 120MHz ARM Cortex
M3 microcontroller without hardware floating point support.
This board has 1 MByte of on-chip flash memory from which
code is executed, and 2 MByte of off-chip SRAM used for the
kernel and application data.

[June 28, 2019 at 16:11 – XXXI cycle]

86 case studies

f469 An STM32F469I-DISCO board featuring a 168MHz ARM Cor-
tex M4 microcontroller which has hardware support for single
precision floating point. This board has 2 MByte of on-chip flash
memory from which code is executed, and 16 MByte of off-chip
SDRAM used for the kernel and application data.

lpc2138 A development board featuring a 59MHz ARM7TDMI mi-
crocontroller without hardware floating point support, using
the ARM 32 bit instruction set rather than the mixed 16/32 bit
instruction encoding Thumb2 instruction set of the other two
boards. The board has 512 KB of on-chip flash memory from
which code is executed, and 32 KB of on-chip SRAM.

software setup For each board we run two series of experiments.
We run all of the above mentioned versions of the scheduler with the
Hartstone uniprocessor benchmark suite [160] and with benchmarks
from the MiBench suite [67]. We rely on the official compiler of the
Miosix toolchain, which is gcc 4.7.3 with some minor patches to the
standard library, and on its default compiler optimization set enabled
by the -O3 optimization level. Our solution compiles only the scheduler
component via clang 4.0.0 with the same optimization level, and it
integrates the compiled scheduler within the original Miosix compiler
toolchain. To measure the time spent in the scheduling functions
that have been affected by the transformation, we added a device
driver that interfaces with a hardware timer/counter. The counter
was clocked at the maximum frequency possible, corresponding to
a timestamping resolution of two CPU clock cycles. To measure the
execution time of the whole benchmark, we instead relied on standard
C++ library APIs.

5.2.3 Result Analysis

We recall that TAFFO relies on the llvm compiler framework and
it uses clang as compiler frontend for the C++ language. However,
Miosix is ordinarily compiled using a slightly customized gcc toolkit.
Thus, in Figure 5.7 we use the reference version compiled with gcc as
baseline to measure the speedup of the other versions. On the other
hand, as gcc and clang are different compilers as for design and
implementation, we use both of them to compile the other versions to
evaluate the performance differences due solely to the compiler.

We find that both clang and gcc produce code with negligible
performance differences, except in two cases. First, the reference version
is generally slower when compiled with clang than with gcc due
to the differences between the architectural model used by llvm and
gcc. Second, the IRQrecalculateAlfa function in the C++ lib version
is slower when compiled with gcc with respect to the same code when
it is compiled using clang, because we observe different machine-

[June 28, 2019 at 16:11 – XXXI cycle]

5.2 embedded operating system optimization using taffo 87

clang
reference

clang
c++lib

clang
manual

gcc
c++lib

gcc
manual

clang
pass

version

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

sp
ee

du
p

f469
f207
lpc2138

(a) Speedup of IRQrunRegulator during the MiBench benchmark.

clang
reference

clang
c++lib

clang
manual

gcc
c++lib

gcc
manual

clang
pass

version

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

sp
ee

du
p

f469
f207
lpc2138

(b) Speedup of IRQrecalculateAlfa during the MiBench benchmark.

Figure 5.6: Average speedup of the fixed point versions of the
IRQrunRegulator and IRQrecalculateAlfa methods compared to their ref-
erence version compiled with gcc, measured during the execution of the
MiBench benchmark. The speedup has been computed as the average execu-
tion time of one call to each non-reference version, divided by the average
execution time of one call to the reference version.

[June 28, 2019 at 16:11 – XXXI cycle]

88 case studies

clang
reference

clang
c++lib

clang
manual

gcc
c++lib

gcc
manual

clang
pass

version

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

sp
ee

du
p

f469
f207
lpc2138

(a) Speedup of IRQrunRegulator during the Hartstone benchmark.

clang
reference

clang
c++lib

clang
manual

gcc
c++lib

gcc
manual

clang
pass

version

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

sp
ee

du
p

f469
f207
lpc2138

(b) Speedup of IRQrecalculateAlfa during the Hartstone benchmark.

Figure 5.7: Average speedup of the fixed point versions of the
IRQrunRegulator and IRQrecalculateAlfa methods compared to their ref-
erence version compiled with gcc, measured during the execution of the
Hartstone benchmark. The speedup has been computed as the average exe-
cution time of one call to each non-reference version, divided by the average
execution time of one call to the reference version.

[June 28, 2019 at 16:11 – XXXI cycle]

5.2 embedded operating system optimization using taffo 89

independent optimizations. In particular, the C++ lib version creates
a multiplication with two 64 bit integers operands. Those operands
are 32 bit values which have been sign-extended to avoid precision
loss. clang optimizes this pattern of multiplication to a 32 bit by 32

bit operation with a 64 bit result, whilst gcc does not. Indeed, gcc

produces a 64 bit by 32 bit multiplication with a 64 bit result. Thus,
the use of clang over gcc gives a slight advantage in very specific
conditions while it becomes a disadvantage in other conditions. For
this reason we show data both for clang and gcc.

When it comes to using the execution time as a quality indicator,
the most important method to consider is IRQrunRegulator, as it runs
every scheduling round.The IRQrecalculateAlfa method is run only
once every workload change. Thus, it has a minor impact on real-world
applications.

In Figure 5.6a and in Figure 5.7a we show the speedups measured
on IRQrunRegulator. Values refer to the average time spent while
executing IRQrunRegulator. We run each version 10 times and we
report the speedup measured on the median value. We observe the
speedup achieved by the fixed point representation is consistent across
the two sets of benchmarks. We get a slowdown on the f469 board
as that board has support for hardware floating point, and thus we
are effectively measuring the overhead intrinsic to fixed point com-
putations. On the f207 board, we measure a consistent speedup of
roughly 1.5 to 1.8 times for all fixed point versions. Among the fixed
point implementations, the C++ lib version and the pass version are
equivalent, and they place only sightly below the manual version.
Finally, the lpc2138 board is the one which benefits of the highest
speedup, roughly up to 3.3 times. This is due to the ARM7TDMI CPU
architecture, which features a more limited pipelining with respect to
the Cortex architecture.

In Figure 5.6b and in Figure 5.7b we show the speedups measured
on IRQrecalculateAlfa. Similarly to the previous case, the results are
consistent across the two set of benchmarks. On the f207 and lpc2138

boards the fixed point versions achieve speedups of roughly 1.2 times
(for the f207 board) and roughly 1.7 times (for the lpc2138 board). We
also achieve small speedups for the f469 board, up to 1.1 times. The
C++ lib version compiled with gcc is an outlier because of a missed
optimization, as previously discussed. Overall, the manual version
always sightly exceeds both the C++ lib version and the pass version,
due to inter-procedural optimization performed by hand.

The assembly code generated by the C++ lib version compiled with
clang and the code generated by the llvm pass version are identical
for all the boards, except for very small optimizations. Performance-
wise, the difference between these two versions is always less than the
timer resolution.

[June 28, 2019 at 16:11 – XXXI cycle]

90 case studies

Finally, we evaluate the fixed point based solutions over the func-
tional properties of the scheduler being discussed, which must not be
invalidated. To this end we compare the quality metrics reported by
the Hartstone benchmark, which represent the number of iterations
before at least one thread misses a deadline. These indicators are
consistent with the reference version for every fixed point version.

[June 28, 2019 at 16:11 – XXXI cycle]

5.3 static precision tuning using taffo 91

5.3 static precision tuning using taffo

The content of this
Section has been
published in the
journal Embedded
Systems
Letters [23].

In this section we evaluate TAFFO on a set of approximate computing
benchmark applications.

5.3.1 Experimental Setup

We evaluate TAFFO on two different types of hardware: an HPC-like
computer architecture and an embedded systems’ development board:

amd a server NUMA node featuring four Six-Core AMD Opteron
8435 CPUs (@2.6 GHz, AMD K10 microarchitecture), with 128

GB of DDR2 memory (@800 MHz);

f207 An STM3220G-EVAL board (f207) featuring a 120MHz ARM
Cortex M3 microcontroller without hardware floating point sup-
port. This board has 1 MByte of on-chip flash memory from
which code is executed, and 2 MByte of off-chip SRAM used for
the kernel and application data.

We rely on version 6.0 of the llvm compiler framework, and on
clang as compiler front-end – aligned with the same version. We
collected time measures on the AMD node via the clock_gettime API
of Ubuntu 16.04 LTS operating system, whilst on the f207 node we
exploited the times API of the Miosix [90] real-time operating system.

5.3.2 Benchmarks

To assess the effectiveness of TAFFO we exploit the set of CPU applica-
tions from the AxBench [163] benchmark suite, which is composed of
representative error-tolerant applications (a key feature, since we need
to objectively assess the precision impact of our transformation). The
benchmark suite provides metrics to measure the quality of the result
for each application. In particular, Blackscholes, FFT, and Inversek2j use
the average relative error (ARE); Jmeint uses miss rate (MR); K-means
and Sobel use the root mean square error (RMSE) of the image. We do
not consider the JPEG Encoding benchmark application as it does not
feature any floating-point intensive computational kernel.

All the experiments on the AMD node use the largest data set
available in the AxBench benchmark suite. Due to hardware mem-
ory constraints, on the f207 node we used the largest data set from
AxBench that could fit the memory. In particular, input images for
K-means and Sobel have been scaled down to 256 × 256 resolution,
Blackscholes runs on the 10K data set, FFT uses the 65536 data set,
Inversek2j uses the 100K data set, and Jmeint uses the 10K data set.

[June 28, 2019 at 16:11 – XXXI cycle]

92 case studies

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Tfix/Tflt ratio

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tu

al
 T

fix
/T

flt
 ra

tio blackscholes

fft

inversek2j

jmeint

kmeans

sobel

Figure 5.8: Comparison between measured and estimated Tf ix/Tf lt ratio
using a Bagging ensemble method to boost the accuracy of a K
Neighbor regressor.

5.3.3 Model Construction

We selected the PolyBench/C benchmark suite [165] as training set
for the performance model of the feedback estimator. For each kernel
of PolyBench/C we prepare and run three different versions: vanilla,
optimized, and mixed. The vanilla version exploits only floating point
computations using the binary32 data format from the IEEE-754 stan-
dard [71]. The optimized version is obtained by converting to fixed
point computation the whole kernel via TAFFO framework. Finally,
the mixed version is obtained by randomly converting a section of the
kernel to exploit fixed point computation, and explicitly forcing the
rest of the kernel to use floating point computation as in the vanilla
version. We consider only mixed versions that feature at least one type
cast in the kernel. For each version we consider a set of features com-
prising the instruction count per class of instructions, relative to the
original float point version. The response metric selected for regressor
estimation is the ratio Tf ix/Tf loat between the execution times of the
converted and original version of the code. Based on the outcome of
the training and of the test, we select a Bagging ensemble [13] using
k-neighbors estimators as the base estimators, which proved more
stable than the other candidates.

We validate the selected Bagging ensemble of k-neighbors estima-
tors, trained on the PolyBench/C benchmark suite, on the AxBench

benchmarks. Figure 5.8 shows the comparison between prediction

[June 28, 2019 at 16:11 – XXXI cycle]

5.3 static precision tuning using taffo 93

Blackscholes FFT Inversek2j Jmeint Kmeans Sobel
Benchmark

0

1

2

3

4
Sp

ee
du

p
f207
AMD

Figure 5.9: Measured speedup (Tf lt/Tf ix) of the mixed precision versions
over the reference floating point implementation.

and actual values. Although for some benchmarks the prediction is
inaccurate (FFT, Inversek2j), only in one case it leads to an incorrect
classification. The regression on the execution time ratio provides a
useful tool to understand the effectiveness of the prediction, and may
in the future be used to better tune the conversion. We expect the
accuracy of the predictor to improve by using real-world applications
instead of small kernel benchmarks for model training.

5.3.4 Result Discussion

Figure 5.9 shows the measured speedup achieved by the mixed pre-
cision versions created by TAFFO with respect to the corresponding
floating point reference implementations. The only application that
does not benefit from the mixed precision approach is Inversek2j,
whereas all the other benchmarks show speedups ranging from 12.5%
to 366.8% on the HPC AMD node. Although the speedup is not as
important as in the AMD platform, the trend is confirmed also on the
embedded system f207 node – with the exception of Jmeint, which has
only 0.02% speedup.

Table 5.1 shows the impact of the error introduced by the precision
reduction on the output, for all applications. K-means and Sobel ap-
plications do not have a single-value output. We did not show the
absolute error for those applications, as it is locally pointless, and it
has to be compared on the whole output. In all the other cases, when
we compare the absolute error computed on the output against the

[June 28, 2019 at 16:11 – XXXI cycle]

94 case studies

Table 5.1: Quality of the result for the mixed precision versions according to
the AxBench metrics

Benchmark Error f eedback Errorabs Errorrel metric

Blackscholes 0.005579455 0.00000006 0.4502% ARE

FFT 0.079661725 0.02281871 1.2478% ARE

Inversek2j 0.0005 0.0000485 0.0051% ARE

Jmeint 0.09673511 0.01654037 0.0118% MR

K-means - - 2.8583% RMSE

Sobel - - 0.0316% RMSE

error provided by the static feedback estimation, we can observe that
the feedback error prediction is always conservative.

[June 28, 2019 at 16:11 – XXXI cycle]

5.4 dynamic compilation 95

5.4 dynamic compilation

The content of this
Section has been
published in the
journal SoftwareX.
[21]

libVC is a software tool that supports the generation and execution
of multiple versions of C++ kernels. This means that libVC allows a
wider range of users to adopt continuous optimization practices by
generating workload-dependent specializations of one or more kernels.
Accordingly, libVC enables the development of autotuning techniques,
as well as the comparison of different autotuning algorithms within a
neutral platform with any desired compiler. By providing the option
to select multiple compilers, libVC can be easily adopted by industrial
users, such as supercomputing centers, as they are often constrained
to vendor-specific compilers.

libVC is used within the European project ANTAREX [137, 138],
which aims at expressing the capability of applications to self-adapt
to runtime conditions (we call this practice autotuning) through a
Domain Specific Language (DSL) and at providing runtime manage-
ment and autotuning support for applications that target green and
heterogeneous HPC systems up to Exascale. The application function-
ality is expressed through C/C++ code (possibly including legacy
code), whereas the non-functional aspects of the application, includ-
ing parallelization, mapping, and adaptivity strategies are expressed
through the DSL developed in the project. The application autotuning
is delayed to the runtime phase, where the software knobs (application
parameters, code transformations and code variants) are configured ac-
cording to the runtime information that is retrieved from the execution
environment. libVC serves to dynamically provide code transforma-
tions and code variants in the ANTAREX tool flow. The ANTAREX
consortium includes two major European supercomputing centers, as
well as industrial users in the automotive and bioinformatics applica-
tion domains.

5.4.1 Geometrical Docking Miniapp

To assess the impact of the proposed tools on a real-world application
we employ a miniapp developed within the ANTAREX project [138]
to emulate the workload of the geometric approach to molecular dock-
ing. This class of application is useful in the in-silico drug-discovery
process, which is an emerging application of HPC, and consists in
finding the best fitting ligand molecule with a pocket in the target
molecule [10]. This process is performed by approximating the chemi-
cal interactions with the proximity between atoms.

We processed a database of 113161 ligand molecule-pocket pairs.
The platform used to execute the experiment is a supercomputer
NUMA node that features two Intel Xeon E5-2630 V3 CPUs (@2.4 GHz)
with 128 GB of DDR4 memory (@1866 MHz) on a dual channel mem-
ory configuration. The evaluation of every ligand molecule-pocket

[June 28, 2019 at 16:11 – XXXI cycle]

96 case studies

pair is independent with respect to the other pairs. Therefore, we
implemented an MPI-based version of the same miniapp. The input
dataset is partitioned among the slave processes.

The initial code base was developed by another team at Politecnico
di Milano. We integrated the code which is executed by each slave
process with libVC, as for the serial version. It took one hour of work
to integrate the miniapp source code with the libVC. The integration
required to add or modify a total of 60 lines of code over an original
code size of 1300 lines of code, which is less than 5% of the code size.

The baseline miniapp took 4354.95 seconds before the integration.
After the integration the miniapp took 1783.93 seconds – including
the overhead for dynamic compilation – for a speedup of 2.44× with
respect to the baseline. The speedup is achieved by exploiting code
specialization on geometrical functions.

Although the overhead of performing dynamic compilation on
every parallel process slows down the running time, the speedup we
obtained in the serial version of the miniapp is confirmed also in the
parallel case. We run the MPI-based miniapp using 4, 8, 16, and 32
parallel processes. We obtained a speedup of 2.39×, 2.24×, 1.99×, and
1.63× respectively.

5.4.2 OpenModelica Compiler

To assess the impact of the proposed tools on a legacy code we employ
the C code which is automatically generated by a state-of-the-art com-
piler for Modelica. Modelica is a widely-used object-oriented language
for modeling and simulation of complex systems. OpenModelica [52]
is an open source compiler for the Modelica language. It translates
Modelica code into C code, which is later compiled with clang and
linked against an external equation solver library.

As test case, we simulated a transmission line model [16] of 1000
elements. We modified the C and Makefile code automatically gen-
erated by the OpenModelica compiler to integrate the simulation C
source code with libVC and properly compile it. It took two hours of
work to integrate the automatically generated code with the libVC.
The integration required to add or modify a total of 65 lines of C code
and 5 lines of Makefile code over an original code size of 633390 lines
of code, which is less than 0.015% of the code size.

The baseline code took 374.25 seconds before the integration. After
the integration the simulation took 295.00 seconds – including the
overhead for dynamic compilation – for a speedup of 1.27× with
respect to the baseline. The speedup is achieved by recompiling the
C code which implements the model description by using a deeper
optimization level (-O3) with respect to the default one (-O0). In this
case, the compilation time that it is spent on optimizations is widely
paid back by a faster execution time

[June 28, 2019 at 16:11 – XXXI cycle]

5.5 dynamic precision tuning using taffo 97

5.5 dynamic precision tuning using taffo

The content of this
Section has not been
submitted for
publication yet. We
thank Daniele
Cattaneo and
Michele Chiari who
helped with the
technical
development and
experimental
campaign.

In this section we evaluate TAFFO in the dynamic precision tuning
toolchain on a set of approximate computing benchmark applications.

5.5.1 Benchmarks

To assess the effectiveness of TAFFO we exploit a subset of CPU appli-
cations from the AxBench [163] benchmark suite, which is composed
of representative error-tolerant applications. All the experiments use
the largest data set available in the AxBench benchmark suite. The
benchmark suite provides metrics to measure the quality of the re-
sult for each application. A detailed description of the considered
benchmarks follows.

k-means This benchmark implements the K-means machine learn-
ing algorithm to perform clustering on image files. We consider as
input batch a single image file and we partition the input batches
according to the number of pixels of the image. We thus generate
a new version of the mixed precision code for each different image
resolution. This benchmark uses the root mean square error (RMSE)
of the output image as error metric and we set 1% as acceptable error
threshold.

sobel This benchmark implements the Sobel edge detection filter
on image files. As for the previous case, we consider as input batch
a single image file and we partition the input batches according to
the number of pixels of the image. We thus generate a new version
of the mixed precision code for each different image resolution. This
benchmark uses the root mean square error (RMSE) of the output
image as error metric and we set 1% as acceptable error threshold.

black-scholes This benchmark implements a mathematical model
of a financial market. It prices financial options according to their pa-
rameters, namely the call option price C, the current stock price S, the
strike price K, the risk-free interest rate r, the time to maturity t, and
volatility σ. We consider as input batch a single option to be priced
and we partition the input batches according to the values of their
parameters and relations between them. In particular, we distinguish
options with low volatility (σ < 0.5) and high volatility (σ ≥ 0.5). A fur-
ther classification we apply is based on the ratio ρ between strike price
and current stock price. We distinguish between low ratio (ρ < 0.95),
average ratio (0.95 ≤ ρ < 1.10), and high ratio (≥ 1.10). This benchmark
uses the average relative error (ARE) as error metric and we set 1% as
acceptable error threshold.

[June 28, 2019 at 16:11 – XXXI cycle]

98 case studies

5.5.2 Experimental Setup

We evaluate TAFFO on two HPC-like hardware architectures:

amd a server NUMA node featuring four Six-Core AMD Opteron
8435 CPUs (@2.6 GHz, AMD K10 microarchitecture), with 128

GB of DDR2 memory (@800 MHz);

intel-x a server NUMA node that features two Intel Xeon E5-2630

V3 CPUs (@1.2 GHz) in powersave mode with Intel Turbo Boost
disabled, with 128 GB of DDR4 memory (@1866 MHz) on a dual
channel memory configuration;

intel-i a server node featuring one Intel i3-8350K CPU (@4 GHz),
with 32 GB of DDR4 memory (@2.4 GHz).

We rely on version 6.0 of the llvm compiler framework, and on clang

as compiler front-end – aligned with the same version. For each
benchmark we generate the llvm-ir, we dynamically compile it with
and without using the TAFFO toolchain. The last stage of the dynamic
compilation of the llvm-ir uses the maximum code optimization level
(-O3).

We collect time measures on the via the clock_gettime API of
the Linux kernel. To limit the system noise we leave the machines
unloaded. Furthermore, for each time measure we run the experiment
21 times and we consider only the median value.

5.5.3 Result Discussion

The function specialization allows the compiler to propagate as con-
stants the values which are common to all the elements of the input
class, including TAFFO range annotations.

functional evaluation The TAFFO static evaluation of the
mixed precision version guarantees that the error is under the 1%
threshold for the Sobel, and the K-means benchmarks – for all input
classes – and for the Blackscholes benchmark – only in the class with
high volatility and average ratio. According to our approach, whenever
the mixed precision version does not guarantee to a sufficient pre-
cision, the compiler should use the original version. In the rest of
this section we discuss functional and performance evaluation for
the Blackscholes benchmark limited to the case of the input class that
passes the accuracy test. Figure 5.10 shows the measured error of the
mixed precision versions with respect to the floating point versions.
The measured error is always under the threshold.

the constant propagation contribution The dynamic
compilation approach allows us to combine the constant propaga-
tion with the precision reduction approach. We measure the effect of

[June 28, 2019 at 16:11 – XXXI cycle]

5.5 dynamic precision tuning using taffo 99

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36

Image

0.0

0.2

0.4

0.6

0.8

1.0
RM

SE
 [%

]

(a) K-means

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36

Image

0.0

0.2

0.4

0.6

0.8

1.0

RM
SE

 [%
]

(b) Sobel

200K
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r [
%

]

(c) Blackscholes

Figure 5.10: Measured Error of the mixed precision versions over the corre-
sponding floating point implementation for each input batch.

[June 28, 2019 at 16:11 – XXXI cycle]

100 case studies

the constant propagation without precision reduction by comparing
the dynamically compiled version against with constant propagation
against the equivalent original version. Figure 5.11 shows minimal
variations which range from 0.14% speedup to 3.3% slowdown. We
consider these variations not significant and mostly due to system
noise. However, the impact of the constant propagation is evident
when applied to the mixed precision version. Figure 5.12 shows that
for the Sobel benchmark there is a considerable speedup – up to 12%
– while for other benchmarks the variations are not relevant, as in
the original version. Although the speedup is achieved only in one
benchmark, the constant propagation in the mixed precision versions
is used also as a mean to propagate TAFFO annotations, which impact
on the functional behavior of the applications.

dynamic precision reduction In the rest of this section we
compare the dynamically generated reduced precision with constant
propagation version against the dynamically generated original preci-
sion version with constant propagation. Figure 5.13 shows the speedup
achieved by the mixed precision version for each input batch. For the
sake of clarity we report the aggregated value for the whole dataset
in the case of the Blackscholes benchmark. Figure 5.14 summarizes the
speedup information by averaging them for every benchmark. We
notice impressive speedups on every benchmark – always greater than
100% except for the Blackscholes benchmark on the AMD architecture –
up to more than 400% on the AMD architecture. The image processing
applications (K-means and Sobel) have greater benefits on the AMD
architecture, whilst the Intel-X architecture which feature the slower
– but also the most floating-point optimized – processor architecture
provides the lower speedup.

overhead discussion The dynamic precision tuning approach
we propose implies an overhead of dynamic (re-)compilation that has
to be paid every time we want to generate a new version, which means
once every input class. We define as payback time the number of input
batches that the application have to process absorb the overhead due
to the additional compilation stage. In the context of the dynamic
precision tuning approach we propose, this parameter represents
also the minimal cardinality of each input class to expect a global
speedup in the real-world application. We report in Table 5.2 for
each benchmark on every architecture, the dynamic compilation time
(inclusive of the TAFFO optimization stages), the time the application
takes to process a single input batch, and the payback time. We notice
that the payback time is similar between the AMD and the Intel-i
architectures, while it is considerably higher on the Intel-X architecture.
This difference is due to the compiler performance, which is one order
of magnitude slower on the latter architecture.

[June 28, 2019 at 16:11 – XXXI cycle]

5.5 dynamic precision tuning using taffo 101

1.2 1.0 0.8 0.6 0.4 0.2 0.0
Speedup [%]

Intel-X

AMD

Intel-i

(a) K-means

3.0 2.5 2.0 1.5 1.0 0.5 0.0
Speedup [%]

Intel-X

AMD

Intel-i

(b) Sobel

0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Speedup [%]

Intel-X

AMD

Intel-i

(c) Blackscholes

Figure 5.11: Measured speedup of the dynamically compiled floating point
versions with constant propagation over the corresponding float-
ing point implementation.

[June 28, 2019 at 16:11 – XXXI cycle]

102 case studies

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Speedup [%]

Intel-X

AMD

Intel-i

(a) K-means

0 2 4 6 8 10 12
Speedup [%]

Intel-X

AMD

Intel-i

(b) Sobel

0.0200 0.0175 0.0150 0.0125 0.0100 0.0075 0.0050 0.0025 0.0000
Speedup [%]

Intel-X

AMD

Intel-i

(c) Blackscholes

Figure 5.12: Measured speedup of the dynamically compiled mixed preci-
sion versions with constant propagation over the corresponding
mixed precision implementation.

[June 28, 2019 at 16:11 – XXXI cycle]

5.5 dynamic precision tuning using taffo 103

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36

Image

0

20

40

60

80

100

120

140

160
Sp

ee
du

p
[%

]

Intel-X AMD Intel-i

(a) K-means

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36
Image

0

100

200

300

400

Sp
ee

du
p

[%
]

Intel-X AMD Intel-i

(b) Sobel

200K
Dataset

0

20

40

60

80

100

120

Sp
ee

du
p

[%
]

Intel-X AMD Intel-i

(c) Blackscholes

Figure 5.13: Measured speedup (Tf lt/Tf ix − 1) of the mixed precision ver-
sions over the corresponding floating point implementation for
each input batch.

[June 28, 2019 at 16:11 – XXXI cycle]

104 case studies

kmeans sobel blackscholes
Benchmark

0

100

200

300

400

Sp
ee

du
p

[%
]

Intel-X AMD Intel-i

Figure 5.14: Measured speedup (Tf lt/Tf ix − 1) of the mixed precision ver-
sions over the corresponding floating point implementation geo-
metrically averaged over all input batches.

Table 5.2: Dynamic recompilation time overhead.

compilation application Payback

time [ms] time [ms] [#batch]

K-means

Intel-X 20005.7343 38.7263 466

AMD 1274.9577 33.9045 24

Intel-i 477.1484 10.7302 36

Sobel

Intel-X 29085.8714 21.1992 542

AMD 1792.8637 15.9999 30

Intel-i 680.7878 5.1892 41

Blackscholes

Intel-X 17609.8000 0.2005 ·10−3 8.23 ·107

AMD 1132.2300 0.2456 ·10−3 5.98 ·106

Intel-i 408.2600 0.0535 ·10−3 6.56 ·106

[June 28, 2019 at 16:11 – XXXI cycle]

6
C O N C L U S I O N S

In this thesis we discussed the problem of finding the best finite-
precision data type given user-defined accuracy requirements. We
presented a survey of tools and techniques to automatize the process
of precision tuning process. We considered two different approaches
to precision tuning: ahead of time tuning of a single precision mix
configuration to be used during the whole program execution, and
continuous adaptation of the precision mix configuration during the
program execution. We name them respectively static and dynamic
precision tuning.

We proposed an effective approach to apply static precision tuning,
that is currently the most popular approach in the state of the art.
We evaluated two different solutions: one source-to-source toolchain
and one compiler-based toolchain. In particular, we re-purposed a
tool – GeCoS – initially designed for hardware/software co-design,
to target general purpose applications. Although we achieved perfor-
mance improvements on a small set of high performance computing
benchmarks, we encountered issues in the compilation process, as the
compiler did not properly vectorize fixed point code. Then, we decided
to move the code manipulation process from the source level into the
compilation process, and we designed, and developed a compiler-
based precision tuning solution (TAFFO). We evaluated TAFFO on
a suite of high performance computing benchmarks and on a set of
error-tolerant applications. The results we achieved highlight two sig-
nificant improvements over the previous approach. First of all TAFFO
allowed us to reduce the precision on complex applications with lim-
ited effort. Second, the compiler-based solution was able to leverage
the compiler code transformation and optimization capabilities to
generate a more efficient machine code. As a side note, we improved
also the maintanability of the precision tuning solution by shipping it
as a set of plugins for the llvm compiler framework.

The effective adoption of dynamic precision tuning is still an open
issue, for which we designed and suggested a solution from a compiler
perspective. In particular, we envisioned, designed, and proposed a
solution for this problem. We implemented a toolchain to automati-
cally apply the application-independent components of our solutions
and we provided guidelines to effectively implement the application-
dependent components. The toolchain is composed of a dynamic
compilation component (libVC), a compiler-level code manipulation
pass (TAFFO), a set of static code analysis and verification passes (also
part of TAFFO), and a tuning policy based on input classification. We

105

[June 28, 2019 at 16:11 – XXXI cycle]

106 conclusions

separately evaluated libVC and TAFFO on several high performance
and embedded systems use cases. We later evaluated the whole dy-
namic precision tuning toolchain on a set of approximate computing
benchmarks.

future works Our solutions are optimized for the case of user-
driven optimizations, which require the user to have domain knowl-
edge on the application being tuned. This scenario is traditionally com-
mon in the high performance computing and emmbedded systems
domains, where the end user is typically the application developer or
someone close to them. However, it is increasingly frequent to differen-
tiate concerns linked to the application development from those linked
to the application optimization. We plan to improve the automation of
the whole precision tuning approach by implementing a profile-based
alternative to the manual annotation step. To this end we envision a
profile run of the application kernel which automatically inserts in
the source code the proper TAFFO annotations. This profiling phase
enters the toolchain just a stage before the generation of llvm-ir to
be parsed by TAFFO both for the static and for the dynamic precision
tuning approaches.

Additionally, we aim at improving the initial dynamic precision
toolchain from a qualitative perspective. First, we want to improve
the value range analysis and feedback estimation components of
TAFFO to provide stricter bounds on the runtime values and on the
output error, which are over-estimated by the conservative framework.
This improvement can be applyed by using more sophisticated static
analysis techniques that are able to handle loops.

An ultimate extension to the feedback estimation component would
be the integration of the state-of-the-art tools to estimate the through-
put of a program within the performance estimation model. An exam-
ple of such tool is the recently developed llvm Machine Code Analyzer
(llvm-mca), which seems profitable for our use case as it benefits from
the architecture model defined in the llvm compiler infrastructure.
However, llvm-mca still presents strong limitations – e.g. data depen-
dencies in cross-loop iterations are not recognized, and the x86_64 is
the only fully supported architecture model. Although these issues
prevent us from using llvm-mca on the benchmarks we target, we
believe that the llvm community will soon fill these gaps.

[June 28, 2019 at 16:11 – XXXI cycle]

B I B L I O G R A P H Y

[1] Giovanni Agosta, Stefano Crespi Reghizzi, Paolo Palumbo,
and Martino Sykora. “Selective compilation via fast code anal-
ysis and bytecode tracing.” In: Proceedings of the 2006 ACM
Symposium on Applied Computing. SAC ’06. Dijon, France, 2006,
pp. 906–911. isbn: 1-59593-108-2. doi: 10.1145/1141277.1141488.

[2] Jean-Marc Alliot, Nicolas Durand, David Gianazza, and Jean-
Baptiste Gotteland. “Finding and Proving the Optimum: Co-
operative Stochastic and Deterministic Search.” In: Proceedings
of the 20th European Conference on Artificial Intelligence. ECAI’12.
Montpellier, France, 2012, pp. 55–60. isbn: 978-1-61499-097-0.
doi: 10.3233/978-1-61499-098-7-55.

[3] Alexandra Angerd, Erik Sintorn, and Per Stenström. “A Frame-
work for Automated and Controlled Floating-Point Accuracy
Reduction in Graphics Applications on GPUs.” In: ACM Trans.
Archit. Code Optim. 14.4 (Dec. 2017), 46:1–46:25. issn: 1544-3566.
doi: 10.1145/3151032.

[4] Jason Ansel, Yee L. Wong, Cy Chan, Marek Olszewski, Alan
Edelman, and Saman Amarasinghe. “Language and compiler
support for auto-tuning variable-accuracy algorithms.” In: In-
ternational Symposium on Code Generation and Optimization (CGO
2011). 2011, pp. 85–96. doi: 10.1109/CGO.2011.5764677.

[5] John Aycock. “A Brief History of Just-in-time.” In: ACM Com-
puting Surveys 35.2 (2003), pp. 97–113. issn: 0360-0300. doi:
10.1145/857076.857077.

[6] BFLOAT16 – Hardware Numerics Definitions. Tech. rep. Intel Cor-
poration, 2018. url: https://software.intel.com/sites/
default/files/managed/40/8b/bf16-hardware-numerics-

definition-white-paper.pdf.

[7] David H. Bailey. A thread-safe arbitrary precision computation
package (full documentation). Tech. rep. 2017.

[8] David H. Bailey, Hida Yozo, Xiaoye S. Li, and Brandon Thomp-
son. ARPREC: An arbitrary precision computation package. Tech.
rep. 2002.

[9] Protonu Basu, Samuel Williams, Brian Van Straalen, Leonid
Oliker, Phillip Colella, and Mary Hall. “Compiler-based code
generation and autotuning for geometric multigrid on GPU-
accelerated supercomputers.” In: Parallel Computing 64.Sup-
plement C (2017). High-End Computing for Next-Generation
Scientific Discovery, pp. 50 –64. issn: 0167-8191. doi: 10.1016/
j.parco.2017.04.002.

107

[June 28, 2019 at 16:11 – XXXI cycle]

https://doi.org/10.1145/1141277.1141488
https://doi.org/10.3233/978-1-61499-098-7-55
https://doi.org/10.1145/3151032
https://doi.org/10.1109/CGO.2011.5764677
https://doi.org/10.1145/857076.857077
https://software.intel.com/sites/default/files/managed/40/8b/bf16-hardware-numerics-definition-white-paper.pdf
https://software.intel.com/sites/default/files/managed/40/8b/bf16-hardware-numerics-definition-white-paper.pdf
https://software.intel.com/sites/default/files/managed/40/8b/bf16-hardware-numerics-definition-white-paper.pdf
https://doi.org/10.1016/j.parco.2017.04.002
https://doi.org/10.1016/j.parco.2017.04.002

108 bibliography

[10] Andrea R Beccari, Carlo Cavazzoni, Claudia Beato, and Gabriele
Costantino. “LiGen: a high performance workflow for chem-
istry driven de novo design.” In: Journal of chemical information
and modeling 53.6 (2013), pp. 1518–1527. issn: 1549-9596. doi:
10.1021/ci400078g.

[11] Siegfried Benkner, Franz Franchetti, Hans Michael Gerndt, and
Jeffrey K Hollingsworth. “Automatic Application Tuning for
HPC Architectures (Dagstuhl Seminar 13401).” In: Dagstuhl
Reports 3.9 (2014), pp. 214–244. issn: 2192-5283. doi: 10.4230/
DagRep.3.9.214.

[12] Sylvie Boldo and Cesar Munoz. A High-Level Formalization of
Floating-Point Number in PVS. Tech. rep. NASA Langley Re-
search Center, 2006.

[13] Leo Breiman. “Bagging Predictors.” In: Machine Learning 24.2
(1996), pp. 123–140. issn: 1573-0565. doi: 10.1023/A:1018054314350.

[14] David Brumley, Tzi-cker Chiueh, Robert Johnson, Huijia Lin,
and Dawn Song. “RICH: Automatically Protecting Against
Integer-Based Vulnerabilities.” In: (Jan. 2007). doi: 10.1184/
R1/6469253.v1".

[15] Bryan Buck and Jeffrey K. Hollingsworth. “An API for Runtime
Code Patching.” In: The International Journal of High Performance
Computing Applications 14.4 (2000), pp. 317–329. doi: 10.1177/
109434200001400404.

[16] Francesco Casella. “Simulation of large-scale models in model-
ica: State of the art and future perspectives.” In: LINKÖPING
ELECTRONIC CONFERENCE PROCEEDINGS. 2015, pp. 459–
468.

[17] Daniele Cattaneo, Antonio Di Bello, Stefano Cherubin, Fed-
erico Terraneo, and Giovanni Agosta. “Embedded Operating
System Optimization through Floating to Fixed Point Compiler
Transformation.” In: 21st Euromicro Conference on Digital System
Design (DSD). Vol. 00. Prague, Czech Republic, 2018, pp. 172–
176. isbn: 978-1-5386-7377-5. doi: 10.1109/DSD.2018.00042.

[18] Howard Chen, Jiwei Lu, Wei-Chung Hsu, and Pen-Chung Yew.
“Continuous Adaptive Object-Code Re-optimization Frame-
work.” In: Advances in Computer Systems Architecture. Ed. by
Pen-Chung Yew and Jingling Xue. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 241–255. isbn: 978-3-540-30102-8.
doi: 10.1007/978-3-540-30102-8_20.

[19] Yang Chen, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin,
Liang Peng, Olivier Temam, and Chengyong Wu. “Evaluating
Iterative Optimization Across 1000 Datasets.” In: Proceedings
of the 31st ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’10. Toronto, Ontario, Canada:

[June 28, 2019 at 16:11 – XXXI cycle]

https://doi.org/10.1021/ci400078g
https://doi.org/10.4230/DagRep.3.9.214
https://doi.org/10.4230/DagRep.3.9.214
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1184/R1/6469253.v1"
https://doi.org/10.1184/R1/6469253.v1"
https://doi.org/10.1177/109434200001400404
https://doi.org/10.1177/109434200001400404
https://doi.org/10.1109/DSD.2018.00042
https://doi.org/10.1007/978-3-540-30102-8_20

bibliography 109

ACM, 2010, pp. 448–459. isbn: 978-1-4503-0019-3. doi: 10.1145/
1806596.1806647.

[20] Stefano Cherubin. fixedpoint. https://github.com/skeru/
fixedpoint. Accessed: 2018-07-04. 2017.

[21] Stefano Cherubin and Giovanni Agosta. “libVersioningCom-
piler: An easy-to-use library for dynamic generation and invo-
cation of multiple code versions.” In: SoftwareX 7 (2018), pp. 95

–100. issn: 2352-7110. doi: 10.1016/j.softx.2018.03.006.

[22] Stefano Cherubin, Giovanni Agosta, Imane Lasri, Erven Ro-
hou, and Olivier Sentieys. “Implications of Reduced-Precision
Computations in HPC: Performance, Energy and Error.” In:
Parallel Computing is Everywhere. Vol. 32: Advances in Parallel
Computing. International Conference on Parallel Computing
(ParCo), Sep 2017. Bologna, Italy, 2018, pp. 297 –306. isbn:
978-1-61499-842-6. doi: 10.3233/978-1-61499-843-3-297.

[23] Stefano Cherubin, Daniele Cattaneo, Michele Chiari, Antonio
Di Bello, and Giovanni Agosta. “TAFFO: Tuning Assistant
for Floating to Fixed point Optimization.” In: IEEE Embedded
Systems Letters (2019), pp. 1–1. issn: 1943-0663. doi: 10.1109/
LES.2019.2913774.

[24] Wei-Fan Chiang, Mark S. Baranowski, Ian Briggs, and Zvonimir
Rakamarić. FPTuner: Rigorous Floating-Point Mixed-Precision Tuner.
https://github.com/soarlab/FPTuner. Accessed: 2018-08-20.
2017.

[25] Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev,
Ganesh Gopalakrishnan, and Zvonimir Rakamarić. “Rigorous
Floating-point Mixed-precision Tuning.” In: Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming
Languages. POPL 2017. Paris, France, 2017, pp. 300–315. isbn:
978-1-4503-4660-3. doi: 10.1145/3009837.3009846.

[26] A. Cohen and E. Rohou. “Processor virtualization and split
compilation for heterogeneous multicore embedded systems.”
In: Design Automation Conference. 2010, pp. 102–107. doi: 10.
1145/1837274.1837303.

[27] Jeremy Cohen, Thierry Rayna, and John Darlington. “Under-
standing Resource Selection Requirements for Computationally
Intensive Tasks on Heterogeneous Computing Infrastructure.”
In: Economics of Grids, Clouds, Systems, and Services. Ed. by José
Ángel Bañares, Konstantinos Tserpes, and Jörn Altmann. Cham:
Springer International Publishing, 2017, pp. 250–262. isbn: 978-
3-319-61920-0. doi: 10.1007/978-3-319-61920-0_18.

[28] B. Jack Copeland. “The Church-Turing Thesis.” In: The Stanford
Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Spring 2019.
Metaphysics Research Lab, Stanford University, 2019.

[June 28, 2019 at 16:11 – XXXI cycle]

https://doi.org/10.1145/1806596.1806647
https://doi.org/10.1145/1806596.1806647
https://github.com/skeru/fixedpoint
https://github.com/skeru/fixedpoint
https://doi.org/10.1016/j.softx.2018.03.006
https://doi.org/10.3233/978-1-61499-843-3-297
https://doi.org/10.1109/LES.2019.2913774
https://doi.org/10.1109/LES.2019.2913774
https://github.com/soarlab/FPTuner
https://doi.org/10.1145/3009837.3009846
https://doi.org/10.1145/1837274.1837303
https://doi.org/10.1145/1837274.1837303
https://doi.org/10.1007/978-3-319-61920-0_18

110 bibliography

[29] Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux, and Xavier Rival. “The AS-
TRÉE Analyzer.” In: Proceedings of the 14th European Conference
on Programming Languages and Systems. ESOP’05. 2005, pp. 21–
30. isbn: 978-3-540-31987-0. doi: 10.1007/978-3-540-31987-
0_3.

[30] Nasrine Damouche and Matthieu Martel. “Salsa: An Automatic
Tool to Improve the Numerical Accuracy of Programs.” In:
Automated Formal Methods. Vol. 5. AFM 2017. 2017, pp. 63–76.
doi: 10.29007/j2fd.

[31] Eva Darulova. Rosa, the real compiler. https://github.com/
malyzajko/rosa. Accessed: 2018-08-21. 2015.

[32] Eva Darulova, Einar Horn, and Saksham Sharma. “Sound
Mixed-precision Optimization with Rewriting.” In: Proceedings
of the 9th ACM/IEEE International Conference on Cyber-Physical
Systems. ICCPS ’18. Porto, Portugal, 2018, pp. 208–219. isbn:
978-1-5386-5301-2. doi: 10.1109/ICCPS.2018.00028.

[33] Eva Darulova and Viktor Kuncak. “Trustworthy Numerical
Computation in Scala.” In: SIGPLAN Not. 46.10 (Oct. 2011),
pp. 325–344. issn: 0362-1340. doi: 10.1145/2076021.2048094.

[34] Eva Darulova and Viktor Kuncak. “Sound Compilation of Re-
als.” In: Proceedings of the 41st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. POPL ’14. San
Diego, California, USA, 2014, pp. 235–248. isbn: 978-1-4503-
2544-8. doi: 10.1145/2535838.2535874.

[35] Eva Darulova and Viktor Kuncak. “Towards a Compiler for
Reals.” In: ACM Trans. Program. Lang. Syst. 39.2 (Mar. 2017),
8:1–8:28. issn: 0164-0925. doi: 10.1145/3014426.

[36] Eva Darulova, Viktor Kuncak, Rupak Majumdar, and Indranil
Saha. “Synthesis of Fixed-point Programs.” In: Proceedings of
the Eleventh ACM International Conference on Embedded Software.
EMSOFT ’13. Montreal, Quebec, Canada, 2013, 22:1–22:10. isbn:
978-1-4799-1443-2.

[37] Eva Darulova et al. daisy. https://github.com/malyzajko/
daisy. Accessed: 2018-08-21. 2018.

[38] Marc Daumas and Guillaume Melquiond. “Certification of
Bounds on Expressions Involving Rounded Operators.” In:
ACM Trans. Math. Softw. 37.1 (Jan. 2010), 2:1–2:20. issn: 0098-
3500. doi: 10.1145/1644001.1644003.

[39] Leonardo De Moura and Nikolaj Bjørner. “Z3: An Efficient
SMT Solver.” In: Proceedings of the Theory and Practice of Soft-
ware, 14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. TACAS’08/ETAPS’08.

[June 28, 2019 at 16:11 – XXXI cycle]

https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.29007/j2fd
https://github.com/malyzajko/rosa
https://github.com/malyzajko/rosa
https://doi.org/10.1109/ICCPS.2018.00028
https://doi.org/10.1145/2076021.2048094
https://doi.org/10.1145/2535838.2535874
https://doi.org/10.1145/3014426
https://github.com/malyzajko/daisy
https://github.com/malyzajko/daisy
https://doi.org/10.1145/1644001.1644003

bibliography 111

Budapest, Hungary, 2008, pp. 337–340. isbn: 3-540-78799-2,
978-3-540-78799-0.

[40] Gaël Deest, Tomofumi Yuki, Olivier Sentieys, and Steven Der-
rien. “Toward Scalable Source Level Accuracy Analysis for
Floating-point to Fixed-point Conversion.” In: International
Conference on Computer-Aided Design (ICCAD). 2014, pp. 726–
733.

[41] Christophe Denis, Pablo de Oliveira Castro, and Eric Petit.
“Verificarlo: Checking Floating Point Accuracy through Monte
Carlo Arithmetic.” In: 2016 IEEE 23nd Symposium on Computer
Arithmetic (ARITH). 2016, pp. 55–62. doi: 10.1109/ARITH.2016.
31.

[42] Will Dietz, Peng Li, John Regehr, and Vikram Adve. “Under-
standing Integer Overflow in C/C++.” In: ACM Trans. Softw.
Eng. Methodol. 25.1 (2015), 2:1–2:29. issn: 1049-331X. doi: 10.
1145/2743019.

[43] Florent de Dinechin. FloPoCo. http://flopoco.gforge.inria.
fr. Accessed: 2018-08-27. 2018.

[44] Florent de Dinechin and Bogdan Pasca. “Designing Custom
Arithmetic Data Paths with FloPoCo.” In: IEEE Design & Test
of Computers 28.4 (2011), pp. 18–27. issn: 0740-7475. doi: 10.
1109/MDT.2011.44.

[45] Gilles Duboscq, Thomas Würthinger, and Hanspeter Mössen-
böck. “Speculation Without Regret: Reducing Deoptimization
Meta-data in the Graal Compiler.” In: Proceedings of the 2014 In-
ternational Conference on Principles and Practices of Programming
on the Java Platform: Virtual Machines, Languages, and Tools. Cra-
cow, Poland, 2014, pp. 187–193. isbn: 978-1-4503-2926-2. doi:
10.1145/2647508.2647521.

[46] Brian Fahs, Todd Rafacz, Sanjay J. Patel, and Steven S. Lumetta.
“Continuous Optimization.” In: Proceedings of the 32Nd An-
nual International Symposium on Computer Architecture. ISCA ’05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 86–97.
isbn: 0-7695-2270-X. doi: 10.1109/ISCA.2005.19.

[47] Marco Festa, Nicole Gervasoni, Stefano Cherubin, and Gio-
vanni Agosta. “Continuous Program Optimization via Ad-
vanced Dynamic Compilation Techniques.” In: Proceedings of
the 10th Workshop on Parallel Programming and Run-Time Man-
agement Techniques for Many-core Architectures and the 8th Work-
shop on Design Tools and Architectures For Multicore Embedded
Computing Platforms. PARMA-DITAM ’19. Valencia, Spain, 2019,
2:1–2:6. isbn: 978-1-4503-6321-1. doi: 10.1145/3310411.3310415.

[June 28, 2019 at 16:11 – XXXI cycle]

https://doi.org/10.1109/ARITH.2016.31
https://doi.org/10.1109/ARITH.2016.31
https://doi.org/10.1145/2743019
https://doi.org/10.1145/2743019
http://flopoco.gforge.inria.fr
http://flopoco.gforge.inria.fr
https://doi.org/10.1109/MDT.2011.44
https://doi.org/10.1109/MDT.2011.44
https://doi.org/10.1145/2647508.2647521
https://doi.org/10.1109/ISCA.2005.19
https://doi.org/10.1145/3310411.3310415

112 bibliography

[48] Luiz Henrique de Figueiredo and Jorge Stolfi. “Affine Arith-
metic: Concepts and Applications.” In: Numerical Algorithms
37.1 (2004), pp. 147–158. issn: 1572-9265. doi: 10.1023/B:

NUMA.0000049462.70970.b6.

[49] Goran Flegar, Florian Scheidegger, and Vedran Novakovic.
FloatX. https : / / github . com / oprecomp / floatx. Accessed:
2018-08-06. 2018.

[50] Antoine Floc’h et al. “GeCoS: A framework for prototyping
custom hardware design flows.” In: International Working Con-
ference on Source Code Analysis and Manipulation (SCAM). 2013,
pp. 100–105.

[51] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick
Pélissier, and Paul Zimmermann. “MPFR: A Multiple-precision
Binary Floating-point Library with Correct Rounding.” In:
ACM Trans. Math. Softw. 33.2 (June 2007). issn: 0098-3500. doi:
10.1145/1236463.1236468.

[52] P. Fritzson, P. Aronsson, A. Pop, H. Lundvall, K. Nystrom,
L. Saldamli, D. Broman, and A. Sandholm. “OpenModelica
- A free open-source environment for system modeling, sim-
ulation, and teaching.” In: 2006 IEEE Conference on Computer
Aided Control System Design, 2006 IEEE International Conference
on Control Applications, 2006 IEEE International Symposium on
Intelligent Control. 2006, pp. 1588–1595. doi: 10.1109/CACSD-
CCA-ISIC.2006.4776878.

[53] Grigori Fursin, Anton Lokhmotov, and Ed Plowman. “Col-
lective Knowledge: towards R&D sustainability.” In: Proceed-
ings of the Conference on Design, Automation and Test in Europe
(DATE’16). 2016, pp. 864–869.

[54] Davide Gadioli, Gianluca Palermo, and Cristina Silvano. “Ap-
plication autotuning to support runtime adaptivity in multicore
architectures.” In: Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), 2015 International Confer-
ence on. IEEE. 2015, pp. 173–180.

[55] Altaf Abdul Gaffar, Oskar Mencer, and Wayne Luk. “Unifying
bit-width optimisation for fixed-point and floating-point de-
signs.” In: 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines. 2004, pp. 79–88. doi: 10.1109/
FCCM.2004.59.

[56] Sicun Gao, Soonho Kong, and Edmund M. Clarke. “dReal:
An SMT Solver for Nonlinear Theories over the Reals.” In:
Automated Deduction – CADE-24. 2013, pp. 208–214. isbn: 978-
3-642-38574-2.

[June 28, 2019 at 16:11 – XXXI cycle]

https://doi.org/10.1023/B:NUMA.0000049462.70970.b6
https://doi.org/10.1023/B:NUMA.0000049462.70970.b6
https://github.com/oprecomp/floatx
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776878
https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776878
https://doi.org/10.1109/FCCM.2004.59
https://doi.org/10.1109/FCCM.2004.59

bibliography 113

[57] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamen-
tals of Software Engineering. 2nd. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2002. isbn: 0133056996.

[58] GitHub Inc. The state of the Octoverse: Top Languages over Time.
https://octoverse.github.com/projects. Online, accessed
Feb 12, 2019.

[59] David Goldberg. “What Every Computer Scientist Should
Know About Floating-point Arithmetic.” In: ACM Comput.
Surv. 23.1 (Mar. 1991), pp. 5–48. issn: 0360-0300. doi: 10.1145/
103162.103163.

[60] Frédéric Goualard. GAOL (Not Just Another Interval Library).
http://frederic.goualard.net/#research- software. Ac-
cessed: 2018-08-26. 2001.

[61] Eric Goubault and Sylvie Putot. “Static Analysis of Numerical
Algorithms.” In: Static Analysis. Ed. by Kwangkeun Yi. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 18–34. isbn:
978-3-540-37758-0.

[62] Stef Graillat, Fabienne Jézéquel, Romain Picot, François Févotte,
and Bruno Lathuilière. Auto-tuning for floating-point precision
with Discrete Stochastic Arithmetic. Tech. rep. 2016.

[63] Stef Graillat, Fabienne Jézéquel, Romain Picot, François Févotte,
and Bruno Lathuilière. “Numerical validation in quadruple
precision using stochastic arithmetic.” 2018. url: https://hal.
archives-ouvertes.fr/hal-01777397.

[64] Matthias Grimmer, Manuel Rigger, Roland Schatz, Lukas Stadler,
and Hanspeter Mössenböck. “TruffleC: Dynamic Execution of
C on a Java Virtual Machine.” In: Proceedings of the 2014 Inter-
national Conference on Principles and Practices of Programming on
the Java Platform: Virtual Machines, Languages, and Tools. PPPJ
’14. Cracow, Poland, 2014, pp. 17–26. isbn: 978-1-4503-2926-2.
doi: 10.1145/2647508.2647528.

[65] Hui Guo and Cindy Rubio-González. “Exploiting Commu-
nity Structure for Floating-point Precision Tuning.” In: Pro-
ceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis. ISSTA 2018. Amsterdam, Nether-
lands, 2018, pp. 333–343. isbn: 978-1-4503-5699-2. doi: 10.1145/
3213846.3213862.

[66] Gurobi Company. Gurobi Optimization. http://www.gurobi.
com. Accessed: 2018-08-26. 2018.

[67] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.
Mudge, and R. B. Brown. “MiBench: A free, commercially
representative embedded benchmark suite.” In: Proceedings
of the Fourth Annual IEEE International Workshop on Workload

[June 28, 2019 at 16:11 – XXXI cycle]

https://octoverse.github.com/projects
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
http://frederic.goualard.net/#research-software
https://hal.archives-ouvertes.fr/hal-01777397
https://hal.archives-ouvertes.fr/hal-01777397
https://doi.org/10.1145/2647508.2647528
https://doi.org/10.1145/3213846.3213862
https://doi.org/10.1145/3213846.3213862
http://www.gurobi.com
http://www.gurobi.com

114 bibliography

Characterization. WWC-4. 2001, pp. 3–14. isbn: 0-7803-7315-4.
doi: 10.1109/WWC.2001.990739.

[68] John Harrison. “A Machine-Checked Theory of Floating Point
Arithmetic.” In: Theorem Proving in Higher Order Logics. 1999,
pp. 113–130. isbn: 978-3-540-48256-7. doi: 10.1007/3- 540-
48256-3_9.

[69] Laurent Hascoet and Valérie Pascual. “The Tapenade Auto-
matic Differentiation Tool: Principles, Model, and Specifica-
tion.” In: ACM Trans. Math. Softw. 39.3 (2013), 20:1–20:43. issn:
0098-3500. doi: 10.1145/2450153.2450158.

[70] IEEE Computer Society Standards Committee. Floating-Point
Working group of the Microprocessor Standards Subcommittee.
“IEEE Standard for Binary Floating-Point Arithmetic.” In: AN-
SI/IEEE Std 754-1985 (1985), pp. 1–14. doi: 10.1109/IEEESTD.
1985.82928.

[71] IEEE Computer Society Standards Committee. Floating-Point
Working group of the Microprocessor Standards Subcommit-
tee. “IEEE Standard for Floating-Point Arithmetic.” In: IEEE
Std 754-2008 (2008), pp. 1–70. doi: 10.1109/IEEESTD.2008.
4610935.

[72] Intel Corporation. Intel 64 and IA-32 Architectures Software De-
veloper’s Manual. Vol. 1. 2018. Chap. 8.

[73] Fabienne Jézéquel and Jean-Marie Chesneaux. “CADNA: a li-
brary for estimating round-off error propagation.” In: Computer
Physics Communications 178.12 (2008), pp. 933–955. issn: 0010-
4655. doi: https://doi.org/10.1016/j.cpc.2008.02.003.

[74] H. Keding, M. Willems, M. Coors, and H. Meyr. “FRIDGE: A
Fixed-point Design and Simulation Environment.” In: Proceed-
ings of the Conference on Design, Automation and Test in Europe.
DATE ’98. Le Palais des Congrès de Paris, France, 1998, pp. 429–
435. isbn: 0-8186-8359-7.

[75] Seehyun Kim, Ki-Il Kum, and Wonyong Sung. “Fixed-point
optimization utility for C and C++ based digital signal process-
ing programs.” In: IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing 45.11 (1998), pp. 1455–1464.
issn: 1057-7130. doi: 10.1109/82.735357.

[76] Adam B. Kinsman and Nicola Nicolici. “Finite Precision bit-
width allocation using SAT-Modulo Theory.” In: 2009 Design,
Automation Test in Europe Conference Exhibition. 2009, pp. 1106–
1111. doi: 10.1109/DATE.2009.5090829.

[77] Thomas Kistler and Michael Franz. “Continuous Program Op-
timization: A Case Study.” In: ACM Trans. Program. Lang. Syst.
25.4 (July 2003), pp. 500–548. issn: 0164-0925. doi: 10.1145/
778559.778562.

[June 28, 2019 at 16:11 – XXXI cycle]

https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1007/3-540-48256-3_9
https://doi.org/10.1007/3-540-48256-3_9
https://doi.org/10.1145/2450153.2450158
https://doi.org/10.1109/IEEESTD.1985.82928
https://doi.org/10.1109/IEEESTD.1985.82928
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/https://doi.org/10.1016/j.cpc.2008.02.003
https://doi.org/10.1109/82.735357
https://doi.org/10.1109/DATE.2009.5090829
https://doi.org/10.1145/778559.778562
https://doi.org/10.1145/778559.778562

bibliography 115

[78] Bastian Koller, Nico Struckmann, Jochen Buchholz, and Michael
Gienger. “Towards an Environment to Deliver High Perfor-
mance Computing to Small and Medium Enterprises.” In: Sus-
tained Simulation Performance 2015. Springer, 2015, pp. 41–50.
isbn: 978-3-319-20340-9.

[79] Ki-Il Kum, Jiyang Kang, and Wonyong Sung. “AUTOSCALER
for C: an optimizing floating-point to integer C program con-
verter for fixed-point digital signal processors.” In: IEEE Trans-
actions on Circuits and Systems II: Analog and Digital Signal Pro-
cessing 47.9 (2000), pp. 840–848. issn: 1057-7130. doi: 10.1109/
82.868453.

[80] Michael O. Lam. CRAFT: Configurable Runtime Analysis for Floating-
point Tuning. https://github.com/crafthpc/craft. Accessed:
2018-11-23. 2018.

[81] Michael O. Lam. Shadow Value Analysis Library (SHVAL). https:
//github.com/crafthpc/shval. Accessed: 2019-03-27. 2018.

[82] Michael O Lam and Jeffrey K Hollingsworth. “Fine-grained
floating-point precision analysis.” In: The International Journal
of High Performance Computing Applications 32.2 (2016), pp. 231–
245. doi: 10.1177/1094342016652462.

[83] Michael O. Lam, Jeffrey K. Hollingsworth, and G. W. Stewart.
“Dynamic Floating-point Cancellation Detection.” In: Parallel
Computing 39.3 (2013), pp. 146–155. issn: 0167-8191. doi: 10.
1016/j.parco.2012.08.002.

[84] Michael O. Lam and Barry L. Rountree. “Floating-point Shadow
Value Analysis.” In: Proceedings of the 5th Workshop on Extreme-
Scale Programming Tools. ESPT ’16. Salt Lake City, Utah, 2016,
pp. 18–25. isbn: 978-1-5090-3918-0. doi: 10.1109/ESPT.2016.10.

[85] Michael O. Lam, Jeffrey K. Hollingsworth, Bronis R. de Supin-
ski, and Matthew P. Legendre. “Automatically Adapting Pro-
grams for Mixed-precision Floating-point Computation.” In:
Proceedings of the 27th International ACM Conference on Interna-
tional Conference on Supercomputing. ICS ’13. Eugene, Oregon,
USA, 2013, pp. 369–378. isbn: 978-1-4503-2130-3. doi: 10.1145/
2464996.2465018.

[86] Chris Lattner and Vikram Adve. “LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation.” In: Pro-
ceedings of the International Symposium on Code Generation and
Optimization: Feedback-directed and Runtime Optimization. CGO
’04. Palo Alto, California, 2004, pp. 75–. isbn: 0-7695-2102-9.

[87] Hong Q. Le, J. A. Van Norstrand, B. W. Thompto, J. E. Moreira,
D. Q. Nguyen, D. Hrusecky, M. J. Genden, and M. Kroener.
“IBM POWER9 processor core.” In: IBM Journal of Research and

[June 28, 2019 at 16:11 – XXXI cycle]

https://doi.org/10.1109/82.868453
https://doi.org/10.1109/82.868453
https://github.com/crafthpc/craft
https://github.com/crafthpc/shval
https://github.com/crafthpc/shval
https://doi.org/10.1177/1094342016652462
https://doi.org/10.1016/j.parco.2012.08.002
https://doi.org/10.1016/j.parco.2012.08.002
https://doi.org/10.1109/ESPT.2016.10
https://doi.org/10.1145/2464996.2465018
https://doi.org/10.1145/2464996.2465018

116 bibliography

Development (2018), pp. 1–1. issn: 0018-8646. doi: 10.1147/JRD.
2018.2854039.

[88] Dong-U. Lee, Altaf Abdul Gaffar, Ray C. C. Cheung, Oskar
Mencer, Wayne Luk, and George A. Constantinides. “Accuracy-
Guaranteed Bit-Width Optimization.” In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 25.10

(2006), pp. 1990–2000. issn: 0278-0070. doi: 10.1109/TCAD.
2006.873887.

[89] JunKyu Lee, Hans Vandierendonck, Mahwish Arif, Gregory
D. Peterson, and Dimitrios S. Nikolopoulos. “Energy-Efficient
Iterative Refinement using Dynamic Precision.” In: IEEE Journal
on Emerging and Selected Topics in Circuits and Systems (2018),
pp. 1–14. issn: 2156-3357. doi: 10.1109/JETCAS.2018.2850665.

[90] Alberto Leva, Martina Maggio, Alessandro V. Papadopou-
los, and Federico Terraneo. Control-Based Operating System De-
sign. Institution of Engineering and Technology, 2013. isbn:
1849196095, 9781849196093.

[91] Cedric Lichtenau, Steven Carlough, and Silvia M. Mueller.
“Quad Precision Floating Point on the IBM z13.” In: 2016 IEEE
23nd Symposium on Computer Arithmetic (ARITH). Vol. 00. 2016,
pp. 87–94. doi: 10.1109/ARITH.2016.26.

[92] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim Hazelwood. “Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation.” In: Proceed-
ings of the 2005 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. PLDI ’05. Chicago, IL, USA,
2005, pp. 190–200. isbn: 1-59593-056-6. doi: 10.1145/1065010.
1065034.

[93] Martina Maggio, Federico Terraneo, and Alberto Leva. “Task
scheduling: a control-theoretical viewpoint for a general and
flexible solution.” In: Transactions on Embedded Computing Sys-
tems 13.4 (2014), pp. 1–22.

[94] Victor Magron, George Constantinides, and Alastair Donaldson.
“Certified Roundoff Error Bounds Using Semidefinite Program-
ming.” In: ACM Trans. Math. Softw. 43.4 (Jan. 2017), 34:1–34:31.
issn: 0098-3500. doi: 10.1145/3015465.

[95] Victor Magron and Tillmann Weisser. NLCertify: a Formal Non-
linear Optimizer: Project Files. https://forge.ocamlcore.org/
frs/?group_id=351. Accessed: 2019-06-07. 2017.

[96] Ramy Medhat. Shadow Value Analysis Library (SHVAL). https:
//github.com/ramymedhat/shval. Accessed: 2018-11-23. 2017.

[June 28, 2019 at 16:11 – XXXI cycle]

https://doi.org/10.1147/JRD.2018.2854039
https://doi.org/10.1147/JRD.2018.2854039
https://doi.org/10.1109/TCAD.2006.873887
https://doi.org/10.1109/TCAD.2006.873887
https://doi.org/10.1109/JETCAS.2018.2850665
https://doi.org/10.1109/ARITH.2016.26
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/3015465
https://forge.ocamlcore.org/frs/?group_id=351
https://forge.ocamlcore.org/frs/?group_id=351
https://github.com/ramymedhat/shval
https://github.com/ramymedhat/shval

bibliography 117

[97] Ramy Medhat, Michael O. Lam, Barry L. Rountree, Borzoo
Bonakdarpour, and Sebastian Fischmeister. “Managing the
Performance/Error Tradeoff of Floating-point Intensive Ap-
plications.” In: ACM Trans. Embed. Comput. Syst. 16.5s (2017),
184:1–184:19. issn: 1539-9087. doi: 10.1145/3126519.

[98] Guillaume Melquiond. https://gforge.inria.fr/projects/
gappa/. Accessed: 2018-10-16. 2018.

[99] Daniel Menard, Daniel Chillet, François Charot, and Olivier
Sentieys. “Automatic Floating-point to Fixed-point Conversion
for DSP Code Generation.” In: Proceedings of the 2002 Inter-
national Conference on Compilers, Architecture, and Synthesis for
Embedded Systems. CASES ’02. Grenoble, France, 2002, pp. 270–
276. isbn: 1-58113-575-0. doi: 10.1145/581630.581674.

[100] Harshitha Menon and Michael O. Lam. ADAPT: Algorithmic
Differentiation for Floating-Point Precision Tuning. https://github.
com/LLNL/adapt-fp. Accessed: 2019-03-27. 2018.

[101] Harshitha Menon, Michael O. Lam, Daniel Osei-Kuffuor, Markus
Schordan, Scott Lloyd, Kathryn Mohror, and Jeffrey Hittinger.
“ADAPT: Algorithmic Differentiation Applied to Floating-point
Precision Tuning.” In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Anal-
ysis. SC ’18. Dallas, Texas, 2018, 48:1–48:13.

[102] Paul S. Miner. Defining the IEEE-854 Floating-Point Standard in
PVS. Tech. rep. NASA Langley Research Center, 1995.

[103] Asit K Mishra, Rajkishore Barik, and Somnath Paul. “iACT:
A software-hardware framework for understanding the scope
of approximate computing.” In: Workshop on Approximate Com-
puting Across the System Stack. WACAS. 2014.

[104] Sparsh Mittal. “A Survey of Techniques for Approximate Com-
puting.” In: ACM Computing Surveys 48.4 (Mar. 2016), 62:1–
62:33. issn: 0360-0300. doi: 10.1145/2893356.

[105] David Monniaux. “The Pitfalls of Verifying Floating-point Com-
putations.” In: ACM Transactions on Programming Languages and
Systems 30.3 (2008), 12:1–12:41. issn: 0164-0925. doi: 10.1145/
1353445.1353446.

[106] Ramon E Moore. Interval analysis. Vol. 4. Prentice-Hall Engle-
wood Cliffs, NJ, 1966.

[107] Ramon E Moore et al. Introduction to interval analysis. Siam,
2009.

[108] Mariano Moscato, Laura Titolo, Aaron Dutle, and César A.
Muñoz. “Automatic Estimation of Verified Floating-Point Round-
Off Errors via Static Analysis.” In: Computer Safety, Reliability,
and Security. Springer International Publishing, 2017, pp. 213–
229. isbn: 978-3-319-66266-4.

[June 28, 2019 at 16:11 – XXXI cycle]

https://doi.org/10.1145/3126519
https://gforge.inria.fr/projects/gappa/
https://gforge.inria.fr/projects/gappa/
https://doi.org/10.1145/581630.581674
https://github.com/LLNL/adapt-fp
https://github.com/LLNL/adapt-fp
https://doi.org/10.1145/2893356
https://doi.org/10.1145/1353445.1353446
https://doi.org/10.1145/1353445.1353446

118 bibliography

[109] Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-
Pierre Jeannerod, Mioara Joldes, Vincent Lefèvre, Guillaume
Melquiond, Nathalie Revol, and Serge Torres. “Definitions and
Basic Notions.” In: Handbook of Floating-Point Arithmetic. 2018,
pp. 15–45. isbn: 978-3-319-76526-6. doi: 10.1007/978-3-319-
76526-6_2.

[110] Uwe Naumann. The Art of Differentiating Computer Programs:
An Introduction to Algorithmic Differentiation. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 2012.
isbn: 161197206X, 9781611972061.

[111] Ricardo Nobre, Luís Reis, João Bispo, Tiago Carvalho, João M.
P. Cardoso, Stefano Cherubin, and Giovanni Agosta. “Aspect-
Driven Mixed-Precision Tuning Targeting GPUs.” In: Proceed-
ings of the 9th Workshop on Parallel Programming and Run-Time
Management Techniques for Many-core Architectures and the 7th
Workshop on Design Tools and Architectures For Multicore Em-
bedded Computing Platforms. PARMA-DITAM ’18. Manchester,
United Kingdom, 2018, pp. 26–31. doi: 10 . 1145 / 3183767 .

3183776.

[112] Andres Nötzli and Fraser Brown. “LifeJacket: Verifying Precise
Floating-point Optimizations in LLVM.” In: Proceedings of the
5th ACM SIGPLAN International Workshop on State Of the Art in
Program Analysis. SOAP 2016. Santa Barbara, CA, USA, 2016,
pp. 24–29. isbn: 978-1-4503-4385-5. doi: 10 . 1145 / 2931021 .

2931024.

[113] Dorit Nuzman, Revital Eres, Sergei Dyshel, Marcel Zalmanovici,
and Jose Castanos. “JIT Technology with C/C++: Feedback-
directed Dynamic Recompilation for Statically Compiled Lan-
guages.” In: ACM Trans. Archit. Code Optim. 10.4 (Dec. 2013),
59:1–59:25. issn: 1544-3566. doi: 10.1145/2541228.2555315.

[114] William G. Osborne, Ray C. C. Cheung, José G. F. Coutinho,
Wayne Luk, and Oskar Mencer. “Automatic Accuracy-Guaranteed
Bit-Width Optimization for Fixed and Floating-Point Systems.”
In: 2007 International Conference on Field Programmable Logic and
Applications. 2007, pp. 617–620. doi: 10.1109/FPL.2007.4380730.

[115] Sam Owre, John M. Rushby, and Natarajan Shankar. “PVS: A
prototype verification system.” In: International Conference on
Automated Deduction. CADE-11. 1992, pp. 748–752. isbn: 978-3-
540-47252-0.

[116] Michael Paleczny, Christopher Vick, and Cliff Click. “The
Java

TM
hotspot Server Compiler.” In: Symposium on Java

TM
Vir-

tual Machine Research and Technology Symposium. Vol. 1. JVM’01.
Monterey, California, 2001, pp. 1–1.

[June 28, 2019 at 16:11 – XXXI cycle]

https://doi.org/10.1007/978-3-319-76526-6_2
https://doi.org/10.1007/978-3-319-76526-6_2
https://doi.org/10.1145/3183767.3183776
https://doi.org/10.1145/3183767.3183776
https://doi.org/10.1145/2931021.2931024
https://doi.org/10.1145/2931021.2931024
https://doi.org/10.1145/2541228.2555315
https://doi.org/10.1109/FPL.2007.4380730

bibliography 119

[117] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and
Zachary Tatlock. “Automatically Improving Accuracy for Float-
ing Point Expressions.” In: SIGPLAN Not. 50.6 (2015), pp. 1–11.
issn: 0362-1340. doi: 10.1145/2813885.2737959.

[118] Yu Pang and Katarzyna Radecka. “Optimizing imprecise fixed-
point arithmetic circuits specified by Taylor Series through
Arithmetic Transform.” In: 2008 45th ACM/IEEE Design Au-
tomation Conference. 2008, pp. 397–402. doi: 10.1145/1391469.
1391574.

[119] Yu Pang, Katarzyna Radecka, and Zeljko Zilic. “An Efficient
Hybrid Engine to Perform Range Analysis and Allocate Integer
Bit-widths for Arithmetic Circuits.” In: Proceedings of the 16th
Asia and South Pacific Design Automation Conference. ASPDAC
’11. Yokohama, Japan, 2011, pp. 455–460. isbn: 978-1-4244-7516-
2. doi: 10.1109/ASPDAC.2011.5722233.

[120] Karthick Nagaraj Parashar, Daniel Menard, and Olivier Sen-
tieys. “Accelerated Performance Evaluation of Fixed-Point Sys-
tems With Un-Smooth Operations.” In: Transactions on Computer-
Aided Design of Integrated Circuits and Systems 33.4 (Apr. 2014),
pp. 599–612.

[121] Heejoung Park et al. “Design and Implementation and On-
Chip High-Speed Test of SFQ Half-Precision Floating-Point
Adders.” In: IEEE Transactions on Applied Superconductivity 19.3
(2009), pp. 634–639. issn: 1051-8223. doi: 10.1109/TASC.2009.
2019070.

[122] Douglass Stott Parker. Monte Carlo Arithmetic: exploiting ran-
domness in floating-point arithmetic. Tech. rep. University of Cal-
ifornia (Los Angeles). Computer Science Department, 1997.

[123] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python.”
In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[124] Pedro Pinto, Tiago Carvalho, João Bispo, and João M. P. Car-
doso. “LARA As a Language-independent Aspect-oriented Pro-
gramming Approach.” In: Proceedings of the Symposium on Ap-
plied Computing. SAC ’17. Marrakech, Morocco, 2017, pp. 1623–
1630. isbn: 978-1-4503-4486-9. doi: 10.1145/3019612.3019749.

[125] Dan Quinlan. “ROSE: COMPILER SUPPORT FOR OBJECT-
ORIENTED FRAMEWORKS.” In: Parallel Processing Letters 10.02n03

(2000), pp. 215–226. doi: 10.1142/S0129626400000214.

[126] Daniel A. Reed and Jack Dongarra. “Exascale Computing and
Big Data.” In: Communications of the ACM 58.7 (June 2015),
pp. 56–68. issn: 0001-0782. doi: 10.1145/2699414.

[June 28, 2019 at 16:11 – XXXI cycle]

https://doi.org/10.1145/2813885.2737959
https://doi.org/10.1145/1391469.1391574
https://doi.org/10.1145/1391469.1391574
https://doi.org/10.1109/ASPDAC.2011.5722233
https://doi.org/10.1109/TASC.2009.2019070
https://doi.org/10.1109/TASC.2009.2019070
https://doi.org/10.1145/3019612.3019749
https://doi.org/10.1142/S0129626400000214
https://doi.org/10.1145/2699414

120 bibliography

[127] Manuel Richey and Hossein Saiedian. “A new class of floating-
point data formats with applications to 16-bit digital-signal
processing systems.” In: IEEE Communications Magazine 47.7
(2009), pp. 94–101. issn: 0163-6804. doi: 10.1109/MCOM.2009.
5183478.

[128] Victor Hugo Rodrigues Raphael Ernani andSperle Campos and
Fernando Magno Quintão Pereira. “A fast and low-overhead
technique to secure programs against integer overflows.” In:
Proceedings of the 2013 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). 2013, pp. 1–11. doi:
10.1109/CGO.2013.6494996.

[129] Krzysztof Rojek. “Machine learning method for energy re-
duction by utilizing dynamic mixed precision on GPU-based
supercomputers.” In: Concurrency and Computation: Practice and
Experience 0.0 (2018), pp. 1–12. doi: 10.1002/cpe.4644.

[130] Pooja Roy, Rajarshi Ray, Chundong Wang, and Weng Fai
Wong. “ASAC: Automatic Sensitivity Analysis for Approximate
Computing.” In: Proceedings of the 2014 SIGPLAN/SIGBED Con-
ference on Languages, Compilers and Tools for Embedded Systems.
LCTES ’14. Edinburgh, United Kingdom, 2014, pp. 95–104. isbn:
978-1-4503-2877-7. doi: 10.1145/2597809.2597812.

[131] Cindy Rubio-Gonzalez and Cuong Nguyen. Shadow Execution.
https://github.com/corvette-berkeley/shadow-execution.
Accessed: 2019-03-27. 2015.

[132] Cindy Rubio-Gonzalez and Cuong Nguyen. Precimonious. https:
//github.com/corvette-berkeley/precimonious. Accessed:
2018-08-25. 2016.

[133] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen,
James Demmel, William Kahan, Koushik Sen, David H. Bailey,
Costin Iancu, and David Hough. “Precimonious: Tuning As-
sistant for Floating-point Precision.” In: Proceedings of the Inter-
national Conference on High Performance Computing, Networking,
Storage and Analysis. SC ’13. Denver, Colorado, 2013, 27:1–27:12.
isbn: 978-1-4503-2378-9. doi: 10.1145/2503210.2503296.

[134] Cindy Rubio-González, Cuong Nguyen, Benjamin Mehne, Koushik
Sen, James Demmel, William Kahan, Costin Iancu, Wim Lavri-
jsen, David H. Bailey, and David Hough. “Floating-point Pre-
cision Tuning Using Blame Analysis.” In: Proceedings of the
38th International Conference on Software Engineering. ICSE ’16.
Austin, Texas, 2016, pp. 1074–1085. isbn: 978-1-4503-3900-1. doi:
10.1145/2884781.2884850.

[June 28, 2019 at 16:11 – XXXI cycle]

https://doi.org/10.1109/MCOM.2009.5183478
https://doi.org/10.1109/MCOM.2009.5183478
https://doi.org/10.1109/CGO.2013.6494996
https://doi.org/10.1002/cpe.4644
https://doi.org/10.1145/2597809.2597812
https://github.com/corvette-berkeley/shadow-execution
https://github.com/corvette-berkeley/precimonious
https://github.com/corvette-berkeley/precimonious
https://doi.org/10.1145/2503210.2503296
https://doi.org/10.1145/2884781.2884850

bibliography 121

[135] Max Sagebaum, Tim Albring, and Nicolas R. Gauger. “High-
Performance Derivative Computations using CoDiPack.” In:
CoRR abs/1709.07229 (2017). arXiv: 1709.07229. url: http:
//arxiv.org/abs/1709.07229.

[136] Markus Schordan. Typeforge. https : / / github . com / rose -

compiler/rose-develop/tree/master/projects/typeforge.
Accessed: 2019-04-01. 2019.

[137] Cristina Silvano, Giovanni Agosta, Andrea Bartolini, Andrea
R Beccari, Luca Benini, João Bispo, Radim Cmar, João MP
Cardoso, Carlo Cavazzoni, Jan Martinovič, et al. “AutoTuning
and Adaptivity appRoach for Energy efficient eXascale HPC
systems: the ANTAREX Approach.” In: Proceedings of the 2016
Conference on Design, Automation & Test in Europe. DATE ’16.
Dresden, Germany, 2016, pp. 708–713. isbn: 978-3-9815370-6-2.

[138] Cristina Silvano, Giovanni Agosta, Stefano Cherubin, Davide
Gadioli, Gianluca Palermo, Andrea Bartolini, Luca Benini, Jan
Martinovič, Martin Palkovič, Kateřina Slaninová, et al. “The
ANTAREX approach to autotuning and adaptivity for energy
efficient HPC systems.” In: Proceedings of the ACM Interna-
tional Conference on Computing Frontiers. CF ’16. Como, Italy:
ACM, 2016, pp. 288–293. isbn: 978-1-4503-4128-8. doi: 10.1145/
2903150.2903470.

[139] Cristina Silvano et al. “The ANTAREX tool flow for monitoring
and autotuning energy efficient HPC systems.” In: International
Conference on Embedded Computer Systems: Architectures, Model-
ing, and Simulation (SAMOS). SAMOS ’17. Pythagorion, Greece,
2017, pp. 308–316. doi: 10.1109/SAMOS.2017.8344645.

[140] Cristina Silvano et al. “Autotuning and Adaptivity in Energy Ef-
ficient HPC Systems: The ANTAREX Toolbox.” In: Proceedings
of the 15th ACM International Conference on Computing Frontiers.
CF ’18. Ischia, Italy, 2018, pp. 270–275. isbn: 978-1-4503-5761-6.
doi: 10.1145/3203217.3205338.

[141] Cristina Silvano et al. “The ANTAREX domain specific lan-
guage for high performance computing.” In: Microprocessors
and Microsystems 68 (2019), pp. 58 –73. issn: 0141-9331. doi:
10.1016/j.micpro.2019.05.005.

[142] N. Simon, D. Menard, and O. Sentieys. “ID.Fix-infrastructure
for the design of fixed-point systems.” In: University Booth of
the Conference on Design, Automation and Test in Europe (DATE).
Vol. 38. 2011. url: http://idfix.gforge.inria.fr.

[143] Alexey Solovyev. FPTuner: Rigorous Floating-Point Mixed-Precision
Tuner. https://github.com/soarlab/FPTaylor. Accessed:
2019-06-06. 2018.

[June 28, 2019 at 16:11 – XXXI cycle]

http://arxiv.org/abs/1709.07229
http://arxiv.org/abs/1709.07229
http://arxiv.org/abs/1709.07229
https://github.com/rose-compiler/rose-develop/tree/master/projects/typeforge
https://github.com/rose-compiler/rose-develop/tree/master/projects/typeforge
https://doi.org/10.1145/2903150.2903470
https://doi.org/10.1145/2903150.2903470
https://doi.org/10.1109/SAMOS.2017.8344645
https://doi.org/10.1145/3203217.3205338
https://doi.org/10.1016/j.micpro.2019.05.005
http://idfix.gforge.inria.fr
https://github.com/soarlab/FPTaylor

122 bibliography

[144] Alexey Solovyev, Charles Jacobsen, Zvonimir Rakamarić, and
Ganesh Gopalakrishnan. “Rigorous Estimation of Floating-
Point Round-off Errors with Symbolic Taylor Expansions.”
In: FM 2015: Formal Methods. Ed. by Nikolaj Bjørner and Frank
de Boer. 2015, pp. 532–550. isbn: 978-3-319-19249-9.

[145] Jorge Stolfi and Luiz Henrique de Figueiredo. “An Introduction
to Affine Arithmetic.” In: Trends in Applied and Computational
Mathematics 4.3 (2003), pp. 297–312. issn: 2179-8451. doi: 10.
5540/tema.2003.04.03.0297.

[146] Sun Microsystems Java team. The Java
TM

HotSpot Virtual Ma-
chine, v1.4.1. Tech. rep. 2006.

[147] Arjun Suresh, Erven Rohou, and André Seznec. “Compile-time
Function Memoization.” In: Proceedings of the 26th International
Conference on Compiler Construction. CC 2017. Austin, TX, USA,
2017, pp. 45–54. isbn: 978-1-4503-5233-8. doi: 10.1145/3033019.
3033024.

[148] Giuseppe Tagliavini. FlexFloat. https://github.com/oprecomp/
flexfloat. Accessed: 2018-08-06. 2018.

[149] Giuseppe Tagliavini, Stefan Mach, Davide Rossi, Andrea Marongiu,
and Luca Benini. “A transprecision floating-point platform for
ultra-low power computing.” In: 2018 Design, Automation Test
in Europe Conference Exhibition (DATE). 2018, pp. 1051–1056.
doi: 10.23919/DATE.2018.8342167.

[150] Michele Tartara and Stefano Crespi Reghizzi. “Continuous
Learning of Compiler Heuristics.” In: ACM Trans. Archit. Code
Optim. 9.4 (Jan. 2013), 46:1–46:25. issn: 1544-3566. doi: 10.1145/
2400682.2400705.

[151] Federico Terraneo, Alberto Leva, Silvano Seva, Martina Maggio,
and Alessandro Vittorio Papadopoulos. “Reverse Flooding:
Exploiting Radio Interference for Efficient Propagation Delay
Compensation in WSN Clock Synchronization.” In: 2015 IEEE
Real-Time Systems Symposium. RTSS. San Antonio, Texas, USA,
2015, pp. 175–184. doi: 10.1109/RTSS.2015.24.

[152] Laura Titolo, Mariano Moscato, Marco Feliu, and Cesar Muñoz.
PRECISA: Program Round-off Error via Static Analysis. https:
//github.com/nasa/PRECiSA. Accessed: 2018-10-09. 2017.

[153] Laura Titolo, Mariano Moscato, Marco Feliu, and Cesar Muñoz.
PRECISA: Program Round-off Error via Static Analysis. http://
precisa.nianet.org. Accessed: 2018-10-09. 2017.

[154] Laura Titolo, Marco A. Feliú, Mariano Moscato, and César
A. Muñoz. “An Abstract Interpretation Framework for the
Round-Off Error Analysis of Floating-Point Programs.” In:
Verification, Model Checking, and Abstract Interpretation. Springer

[June 28, 2019 at 16:11 – XXXI cycle]

https://doi.org/10.5540/tema.2003.04.03.0297
https://doi.org/10.5540/tema.2003.04.03.0297
https://doi.org/10.1145/3033019.3033024
https://doi.org/10.1145/3033019.3033024
https://github.com/oprecomp/flexfloat
https://github.com/oprecomp/flexfloat
https://doi.org/10.23919/DATE.2018.8342167
https://doi.org/10.1145/2400682.2400705
https://doi.org/10.1145/2400682.2400705
https://doi.org/10.1109/RTSS.2015.24
https://github.com/nasa/PRECiSA
https://github.com/nasa/PRECiSA
http://precisa.nianet.org
http://precisa.nianet.org

bibliography 123

International Publishing, 2018, pp. 516–537. isbn: 978-3-319-
73721-8.

[155] Alan Mathison Turing. “On computable numbers, with an
application to the Entscheidungsproblem.” In: Journal of Math
58 (1936), pp. 345–363. doi: 10.1112/plms/s2-42.1.230.

[156] V Vasilev, Ph Canal, A Naumann, and P Russo. “Cling – The
New Interactive Interpreter for ROOT 6.” In: Journal of Physics:
Conference Series 396.5 (2012), p. 052071.

[157] Vlad Vergu and Eelco Visser. “Specializing a Meta-Interpreter:
JIT Compilation of DynSem Specifications on the Graal VM.” In:
Proceedings of the 15th International Conf. on Managed Languages
& Runtimes. ManLang ’18. Linz, Austria, 2018, 16:1–16:14. isbn:
978-1-4503-6424-9. doi: 10.1145/3237009.3237018.

[158] Joannès Vermorel and Mehryar Mohri. “Multi-armed Bandit
Algorithms and Empirical Evaluation.” In: Machine Learning:
ECML 2005. 2005, pp. 437–448. isbn: 978-3-540-31692-3.

[159] Jean Vignes. “Discrete Stochastic Arithmetic for Validating
Results of Numerical Software.” In: Numerical Algorithms 37.1
(2004), pp. 377–390. issn: 1572-9265. doi: 10.1023/B:NUMA.
0000049483.75679.ce.

[160] Nelson H. Weiderman and Nick I. Kamenoff. “Hartstone Unipro-
cessor Benchmark: Definitions and experiments for real-time
systems.” In: Real-Time Systems 4.4 (1992), pp. 353–382. issn:
1573-1383. doi: 10.1007/BF00355299.

[161] Robert P. Wilson et al. “SUIF: An Infrastructure for Research on
Parallelizing and Optimizing Compilers.” In: ACM SIGPLAN
Notices 29.12 (Dec. 1994), pp. 31–37. issn: 0362-1340. doi: 10.
1145/193209.193217.

[162] Qiang Xu, Todd Mytkowicz, and Nam Sung Kim. “Approxi-
mate Computing: A Survey.” In: IEEE Design Test 33.1 (2016),
pp. 8–22. issn: 2168-2356. doi: 10.1109/MDAT.2015.2505723.

[163] Amir Yazdanbakhsh et al. “AxBench: A Multiplatform Bench-
mark Suite for Approximate Computing.” In: IEEE Design Test
34.2 (2017), pp. 60–68. issn: 2168-2356. doi: 10.1109/MDAT.
2016.2630270.

[164] Serif Yesil, Ismail Akturk, and Ulya R. Karpuzcu. “Toward
Dynamic Precision Scaling.” In: IEEE Micro 38.4 (2018), pp. 30–
39. issn: 0272-1732. doi: 10.1109/MM.2018.043191123.

[165] Tomofumi Yuki. “Understanding PolyBench/C 3.2 kernels.”
In: International workshop on Polyhedral Compilation Techniques
(IMPACT). 2014.

[June 28, 2019 at 16:11 – XXXI cycle]

https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1145/3237009.3237018
https://doi.org/10.1023/B:NUMA.0000049483.75679.ce
https://doi.org/10.1023/B:NUMA.0000049483.75679.ce
https://doi.org/10.1007/BF00355299
https://doi.org/10.1145/193209.193217
https://doi.org/10.1145/193209.193217
https://doi.org/10.1109/MDAT.2015.2505723
https://doi.org/10.1109/MDAT.2016.2630270
https://doi.org/10.1109/MDAT.2016.2630270
https://doi.org/10.1109/MM.2018.043191123

124 bibliography

[166] Universite de Versailles St-Quentin-en Yvelines. https : / /

github.com/verificarlo/verificarlo. Accessed: 2019-06-07.
2018.

[167] Andreas Zeller and Ralf Hildebrandt. “Simplifying and iso-
lating failure-inducing input.” In: IEEE Transactions on Soft-
ware Engineering 28.2 (2002), pp. 183–200. issn: 0098-5589. doi:
10.1109/32.988498.

[168] W. Ziegler, R. D’Ippolito, M. D’Auria, J. Berends, M. Nelissen,
and R. Diaz. “Implementing a “one-stop-shop” providing SMEs
with integrated HPC simulation resources using Fortissimo
resources.” In: eChallenges e-2014 Conference Proceedings. 2014,
pp. 1–11.

[June 28, 2019 at 16:11 – XXXI cycle]

https://github.com/verificarlo/verificarlo
https://github.com/verificarlo/verificarlo
https://doi.org/10.1109/32.988498

a
D Y N A M I C C O M P I L AT I O N I N S I G H T S

a.1 adding jit compilation to libvc

The content of this
Section has been
presented in
PARMA-DITAM
’19 workshop.
Valencia, Spain. Jan
2019. [47]

Dynamic compilation techniques allow to compile source code into
executable code after the software itself has been deployed. Whenever
important runtime conditions or checkpoints are met, a dynamic
re-configuration of the software system may entail a dynamic (re-
)compilation of its source code to apply a different set of optimization
which better fit the incoming workload. Dynamic compilation can be
performed via ad-hoc software hypervisors, via dynamic generation
and loading of software libraries, or via the integration of a compiler
stack within the adaptive software system itself.

The former approach has difficulty in maintaining both the hypervi-
sor and the code to use it. This approach requires a deep knowledge of
the hypervisor system, and an accurate configuration over the software
system.

The dynamic generation and loading of software libraries are platform-
dependent solutions that requires fine tuning of the compiler config-
uration at deploy time. Moreover, this approach requires to access
and to manage additional persistent memory space to handle the
dynamically-generated shared objects. This problem has a non-trivial
impact on HPC infrastructures, as such systems usually aims at mini-
mizing the access to persistent memory due to its intrinsic high-latency.
Although libVC APIs [21] simplify the configuration of compiler set-
tings, the limitation given by the memory access of a compiler in-
vokation still persists. The JIT paradigm does not suffer from these
problems since it does not create any persistent object and it integrates
the full compiler functionalities within the adaptive application.

principles of just-in-time compilation In JIT compilation,
a fragment of code (usually a function or method) is only compiled
when it is first executed. The main issue with JIT compilation is that, at
each new function encountered, a compilation latency is experienced,
leading to potentially large start-up times.

JIT compilers combine some properties of static compilation, typ-
ically the performance of the generated code, with other properties
which are typical of interpreters, such as the ability to leverage run-
time knowledge about the program (runtime constant, control flow)
or portability. In the context of continuous optimization, JIT compila-
tion is a key enabler: it replaces compiled code fragments with new
versions tuned to different parameters rather than recompiling the

125

[June 28, 2019 at 16:11 – XXXI cycle]

126 dynamic compilation insights

entire program. It is worth noting that, while a JIT generally does not
preserve the compiler code, this is not a limitation in the context of
HPC systems. Here, a given application may run over a long time, but
may be invoked only a few times, thus making the persistance of the
optimized code less relevant.

a.1.1 Providing JIT APIs via LLVM

In this work, we leverage the libVC framework, which provides APIs
to enable dynamic compilation and re-use of code versions. It features
three different implementation of compiler APIs: SystemCompiler,
SystemCompilerOptimizer, and ClangLibCompiler.

The first two solutions need to be configured to properly interact
with external compilers already deployed on the host machine. The
latter implements the Compiler as a library paradigm, and therefore
needs llvm to be installed in the host machine. We extend libVC with
JITCompiler, an additional implementation for the Compiler interface,
with the aim of providing true JIT compilation capabilities.

To pursue continuity with the original implementation of libVC,
we base our implementation of JITCompiler on the llvm compiler
framework. In particular, we support the generation of llvm-ir bitcode
files, the optimization of such intermediate representation, and the
compilation of it into executable code. Whilst the bitcode generation
and optimization are implemented similarly to the Clang as a library
paradigm, the generation of executable code is extremely different
and it represents the core of the JITCompiler approach. To achieve
such improvement we leverage llvm’s On-Request-Compilation (ORC)
APIs. Our new libVC compiler implementation allows us to parse the
bitcode files and to elevate them to their in-memory representation.
The freshly imported llvm Module objects are then passed as argu-
ments to the core llvm ORC API handle addModule, which actually
starts the JIT compilation process. Similar APIs allow us to fetch one
or more symbols from the jitted code and use them in the same way
libVC provides function pointers to the host code, so they will be able
to access the dynamically compiled version of the code via indirect
function calls. Like the other compiler implementations defined in
libVC, we provide a mechanism to control the memory footprint of
the dynamic compilation framework by exposing knobs to offload and
to reload from the memory the dynamically compiled modules. This
approach is fully compliant with the state-of-the-art libVC paradigm
to perform continuous optimization.

a.1.2 Evaluation

We evaluate our implementation of the llvm-based JIT compiler by
comparing its capabilities with the alternatives which are already

[June 28, 2019 at 16:11 – XXXI cycle]

a.1 adding jit compilation to libvc 127

available within libVC [21]. Our solution exposes the same APIs as
the other compiler implementations within libVC. Thus, the usability
of this compiler, and its fitness to continuous optimization use cases
corresponds to those of its alternatives. In this section, we focus on two
main performance indicators, namely code quality and compilation
time. To this end, we compare our solution against the other libVC
compiler implementations over the well-known PolyBench/C bench-
mark suite [165]. We use this benchmark suite as a proxy to validate
the effectiveness of our approach as it is particularly representative
of the typical HPC workload. In fact, it contains kernels from several
application domains, such as linear algebra, data mining, and image
processing, which are the core emerging areas in the HPC world.

The platform to run the experiments is representative of modern
supercomputer nodes. The selected hardware is a NUMA node with
two Intel Xeon E5-2630 V3 CPUs (@3.2 GHz) for a total of 16 cores, with
hyper threading enabled and 128 GB of DDR4 memory (@1866 MHz)
on a dual channel memory configuration. The operating system is
Ubuntu 16.04 with version 4.4.0 of the Linux kernel. The experiments
run with the machine completely unloaded from other user processes.

We base our tests on the official libVC testing setup for Poly-
Bench/C1. We configured libVC to use the following compilers:

systemcompiler default host compiler (gcc version 5.4.0)

systemcompileroptimizer clang and opt, version 6.0.1

clanglib libclang version 6.0.1

jitcompiler our solution, based on llvm version 6.0.1

We configure each compiler to run with the same set of compiler
options, i.e. we specify only the optimization level -O3. We rely on the
MEDIUM dataset size, and on the default initialization routines which
are defined by the PolyBench/C benchmark suite for each kernel. All
kernels use the IEEE-754 floating point double precision data type for
the computation.

code quality We expect to have the same code quality given by
the same compiler with the same compiler options. To verify this asser-
tion we compile and run the PolyBench/C benchmarks and we report
in Figure a.2 runtime and compilation time for each benchmark. The
run time of the different code versions generated by libVC compilers
is not significantly influenced by the chosen compiler alternative. On
the contrary, this choice becomes relevant for the compilation time.
Figure a.1 bar chart highlights how the JITCompiler compiler perfor-
mance outstands the other clang-based alternatives. This is confirmed

1 PolyBench/C benchmark suite integrated with libVC https://github.com/skeru/

polybench_libVC

[June 28, 2019 at 16:11 – XXXI cycle]

https://github.com/skeru/polybench_libVC
https://github.com/skeru/polybench_libVC

128 dynamic compilation insights

Total compilation time using libVC alternatives

sys sysopt libclang jit
0

0.5

1

1.5

2

2.5

Ti
m

e
 (

m
s)

#104

Figure a.1: Compilation time of each kernel of the PolyBench/C benchmark
suite with different implementation alternatives from libVC.

by every benchmark in the polybench suite on IEEE-754 double preci-
sion type data. Thus, the code quality is not significantly influenced
by the compiler choice.

compilation time The main overhead that applies to continous
program optimization via dynamic compilation is given by the com-
pilation time. As the code quality is not influenced by the chosen
compiler, the conditions that trigger a re-compilation task do not
change. The compilation time of the single kernel is not sufficiently
significative per se. Thus, we compare the compilation time of each
compiler implementation when it is asked to compile the whole set
of PolyBench/C benchmarks. Figure a.1 underlines the improved
performance of the JITCompiler when compared with other clang-
based compilers. The SystemCompiler is based instead on the gcc

compiler technology, which performs better in terms of compilation
time. Figure a.2 confirms that this trend holds for each kernel.

a.1.3 Other JIT implementations

The history of JIT compilation is almost as old as computer science. Ay-
cook summarizes early works on JIT compilation techniques starting
from the 1960s in his survey [5]. In modern times, the Sun Microsys-
tems Java HotSpot Virtual Machine [146] started to extensively use JIT
technologies by running both an interpreter and a compiler, the latter
invoked on hot-spots [116]. In [1], an evaluation of several techniques
for hot spot detection is presented.

[June 28, 2019 at 16:11 – XXXI cycle]

a.1 adding jit compilation to libvc 129

dm correlation

dm covariance

la blas/gemm

la blas/gemver

la blas/gesummv

la blas/syr2k

la blas/syrk

la blas/trmm

la ker/2mm

la ker/3mm

la ker/atax

la ker/bicg

la ker/doitgen

la ker/mvt

la solv/cholesky

la solv/durbin

la solv/gramschmidt

la solv/lu

la solv/ludcmp

la solv/trisolv

med deriche

med fl-war

med nussinov

sten adi

sten fdtd-2d

sten heat-3d

sten jacobi-1d

sten jacobi-2d

sten seidel-2d

0

5
0

0

1
0

0
0

1
5

0
0

Time (ms)

C
o
m

p
il
a
ti

o
n

 a
n

d
 r

u
n

 t
im

e
 o

f
e
a
c
h

 k
e
rn

e
l

S
y
st

e
m

 e
xe

cu
ti

o
n
 t

im
e

S
y
st

e
m

 c
o
m

p
ila

ti
o
n
 t

im
e

S
y
st

e
m

O
p
ti

m
iz

e
r

e
xe

cu
ti

o
n
 t

im
e

S
y
st

e
m

O
p
ti

m
iz

e
r

co
m

p
ila

ti
o
n
 t

im
e

Li
b
C

la
n
g
 e

xe
cu

ti
o
n
 t

im
e

Li
b
C

la
n
g
 c

o
m

p
ila

ti
o
n
 t

im
e

JI
T
 e

xe
cu

ti
o
n
 t

im
e

JI
T
 c

o
m

p
ila

ti
o
n
 t

im
e

Fi
gu

re
a.

2
:C

om
pi

le
ti

m
e

an
d

ru
n

ti
m

e
of

ea
ch

ke
rn

el
of

th
e

Po
ly

Be
nc

h/
C

be
nc

hm
ar

k
su

it
e

w
it

h
di

ff
er

en
t

im
pl

em
en

ta
ti

on
al

te
rn

at
iv

es
fr

om
l

i
b

V
C

.

[June 28, 2019 at 16:11 – XXXI cycle]

130 dynamic compilation insights

More recently, the Graal Project2 aims at leveraging the JIT tech-
nologies to improve the performance of several interpreted, bitcode-
interpreted, and compiled languages. In particular, the GraalVM3 is
the most relevant outcome of this project. It embraces JIT compilation
as the key-stone of the framework in order to enable several specula-
tive optimizations [45]. GraalVM has been used to provide JIT support
to a wide range of programming languages, from domain specific lan-
guages [157] to popular languages, such as JavaScript and C/C++ [64].
However, it relies on llvm-based solutions to dynamically compile
C/C++ source code to llvm-ir (clang front end), and to interpret
llvm-ir (lli interpreter). Thus, GraalVM can be considered techno-
logically equivalent to the llvm compiler toolchain we evaluated via
libVC.

Another effort to enable dynamic compilation over C/C++ code is
represented by Cling [156] — the clang-based C++ interpreter. Since
this project implements the Read-Eval-Print-Loop (REPL) paradigm
over C++ source code, it is the closest effort to a pure C++ JIT compiler
in the state-of-the-art. In the rest of this section we further discuss
Cling and its usage. Finally, we provide a comparative analysis be-
tween our proposed solution and Cling.

cling Cling originates from the need to process a vast amount
of data with the capabilities of a compiled language with a strong
focus on code efficiency, such as C++. It was developed as a part
of CERN’s data processing framework ROOT. Cling’s core objective
is to provide a fast and interactive way to run applications able to
access experimental results generated by the high-energy-physics
research community. A structural analysis of Cling highlights the 3

fundamental parts it is composed of:

interpreter which implements the parsing, JIT compilation, and
evaluation of native C++ capabilities

meta processor which provides a command line interface to send
commands to the interpreter

user interface which provides the interactive prompt, and an
exception handling mechanism

Cling’s interpreter is based on the version 5.0.0. of llvm, and on its
C++ frontend Clang. While our JITCompiler leverages the IRCompile-

Layer class to provide jitting, Cling uses the LazyEmitLayer one. In
the former case the class JIT compiles the llvm Module as soon as this
is passed to the addModule API. In the latter case, instead, it explicitly
waits the symbol to be called to begin compiling.

2 Oracle Graal project https://openjdk.java.net/projects/graal/
3 GraalVM https://www.graalvm.org

[June 28, 2019 at 16:11 – XXXI cycle]

https://openjdk.java.net/projects/graal/
https://www.graalvm.org

a.1 adding jit compilation to libvc 131

Given Cling’s intrinsic REPL-based implementation, to measure its
performance we exploit the bash’s time utility to extract the precise
execution time lapse of the evaluation of a single kernel. To exclude
the overhead due to other Cling’s components initialization, such
as the User Interface, we run the Interpreter several times with no
instructions but the .q (exit) directive. In this way, we collect the
average time lapse of the setup and the tear down routines of Cling.

Moreover, we separate compilation and execution times, which are
indistinguishable due to the lazyness of Cling’s jitting strategy, by
running the interpreter multiple times. This procedure allows us to
infer the single compilation-only time lapse for each kernel.

comparative analysis We compare Cling with our JIT imple-
mentation within libVC by scheduling the run of each kernel from
the PolyBench/C benchmark suite. We rely on the same hardware
and software setup described in Section a.1.2. We measure execution
time and the (re-)compilation overhead. Since Cling does not sup-
port any code optimization level, we slightly modify the previously-
described experimental setup to allow a fair comparison between
Cling and JITCompiler. In particular, we disable any optimization in
our JITCompiler via the -O0 compiler option. We collect data using
the MEDIUM dataset size preset and the IEEE-754 floating point single
precision data type for the computation.

In Figure a.3 we compare JITCompiler from libVC with the external
tool Cling. As expected, the compiling phase is a more time requesting
task than a single execution of the PolyBench/C benchmark suite.
Figure a.3 clearly shows that the compiling plus execution time of
the JITCompiler outperforms the Cling interpreter even when the
former does not schedule any optimization, i.e. when it runs with -O0

optimization level.
Figure a.4 better highlights the saving coming from the use of

JITCompiler, as it shows the overall amount of time spent compiling
and running the full PolyBench/C benchmark suite.

Figure a.5 shows the comparison bewteen the compilation time
plus the execution time of Cling compared with the equivant of the
JITCompiler when the latter is using the -O3 optimization level. Run-
ning the compiled code several times allows us to analyze the actual
speedup given by the JICompiler. Although the total compilation time,
as seen in Figure a.4, does not show astonishing differences, with an
increased number of invocation of the same kernel the JITCompiler

optimization capabilities — which are paid by longer compilation
times — allows the system to reach better performance.

[June 28, 2019 at 16:11 – XXXI cycle]

132 dynamic compilation insights

dm correlation

dm covariance

la blas/gemm

la blas/gemver

la blas/gesummv

la blas/syr2k

la blas/syrk

la blas/trmm

la ker/2mm

la ker/3mm

la ker/atax

la ker/bicg

la ker/doitgen

la ker/mvt

la solv/cholesky

la solv/durbin

la solv/gramschmidt

la solv/lu

la solv/ludcmp

la solv/trisolv

med deriche

med fl-war

med nussinov

sten adi

sten fdtd-2d

sten heat-3d

sten jacobi-1d

sten jacobi-2d

sten seidel-2d

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

Time (ms)
C

o
m

p
ila

tio
n

 a
n

d
 ru

n
 tim

e
 o

f e
a
c
h

 k
e
rn

e
l

JIT
 e

xe
cu

tio
n
 tim

e
JIT

 co
m

p
ila

tio
n
 tim

e
C

lin
g
 e

xe
cu

tio
n
 tim

e
C

lin
g
 co

m
p
ila

tio
n
 tim

e

Figure
a.

3:C
om

pilation
and

execution
tim

e
of

each
kernelof

the
PolyBench/C

benchm
ark

suite
w

ith
C
l
i
n
g

and
w

ith
J
I
T
C
o
m
p
i
l
e
r.

[June 28, 2019 at 16:11 – XXXI cycle]

a.1 adding jit compilation to libvc 133

Figure a.4: Compilation and execution time of the overall PolyBench/C
benchmark suite with Cling and with JITCompiler.

[June 28, 2019 at 16:11 – XXXI cycle]

134 dynamic compilation insights
C

o
m

p
ila

tio
n

 tim
e
 s

p
e
e
d

u
p

JIT
C

o
m

p
ile

r v
s
 C

lin
g

dm correlation

dm covariance

la blas/gemm

la blas/gemver

la blas/gesummv

la blas/syr2k

la blas/syrk

la blas/trmm

la ker/2mm

la ker/3mm

la ker/atax

la ker/bicg

la ker/doitgen

la ker/mvt

la solv/cholesky

la solv/durbin

la solv/gramschmidt

la solv/lu

la solv/ludcmp

la solv/trisolv

med deriche

med fl-war

med nussinov

sten adi

sten fdtd-2d

sten heat-3d

sten jacobi-1d

sten jacobi-2d

sten seidel-2d

1
0

0

1
0

1

1
0

2
Speedup

1
 co

m
p

ila
tio

n
 +

 1
0

 e
xe

cu
tio

n
1

 co
m

p
ila

tio
n
 +

 1
0

0
 e

xe
cu

tio
n
s

1
 co

m
p

ila
tio

n
 +

 1
0

0
0

 e
xe

cu
tio

n

Figure
a.

5:Speedup
achieved

by
using

J
I
T
C
o
m
p
i
l
e
r

instead
of

C
l
i
n
g

w
ith

10,100,and
1000

invocations
of

the
kernel.

[June 28, 2019 at 16:11 – XXXI cycle]

D E C L A R AT I O N

This page concludes the thesis. Hope you found it interesting to read.
Now let’s go out and have some drinks.

Milano, June 2019

Stefano Cherubin

[June 28, 2019 at 16:11 – XXXI cycle]

	Dedication
	Abstract
	Sommario
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	2 Theoretical Background
	2.1 Data Types
	2.1.1 Fixed point Data Types
	2.1.2 Floating point Data Types

	2.2 Errors
	2.3 The Process of Reduced Precision Computation

	3 State-of-the-Art
	3.1 Scope of the Tool
	3.2 Program Analysis
	3.2.1 Static Approaches
	3.2.2 Dynamic Approaches

	3.3 Code Manipulation
	3.3.1 The Generality Problem
	3.3.2 A Technological Taxonomy

	3.4 Verification
	3.4.1 Static Approaches
	3.4.2 Dynamic Approaches

	3.5 Type Casting Overhead
	3.6 A Comparative Analysis
	3.6.1 Functional Capabilities
	3.6.2 Portability Characteristics

	4 Effective Precision Tuning Solutions
	4.1 Static Precision Tuning
	4.1.1 A source-to-source solution

	4.2 Dynamic Precision Tuning
	4.2.1 TAFFO
	4.2.2 Precision Tuning Policies
	4.2.3 libVersioningCompiler
	4.2.4 Combining the Continuous Optimization Toolchain

	5 Case studies
	5.1 Implications of Reduced Precision Computing in HPC
	5.1.1 Issues with Vectorization
	5.1.2 Experimental Evaluation

	5.2 Embedded Operating System Optimization using TAFFO
	5.2.1 About Miosix
	5.2.2 Experimental Evaluation
	5.2.3 Result Analysis

	5.3 Static Precision Tuning using TAFFO
	5.3.1 Experimental Setup
	5.3.2 Benchmarks
	5.3.3 Model Construction
	5.3.4 Result Discussion

	5.4 Dynamic Compilation
	5.4.1 Geometrical Docking Miniapp
	5.4.2 OpenModelica Compiler

	5.5 Dynamic Precision Tuning using TAFFO
	5.5.1 Benchmarks
	5.5.2 Experimental Setup
	5.5.3 Result Discussion

	6 Conclusions
	 Bibliography
	a Dynamic Compilation Insights
	a.1 Adding JIT compilation to libVC
	a.1.1 Providing JIT APIs via LLVM
	a.1.2 Evaluation
	a.1.3 Other JIT implementations

	Declaration

