
POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

SELF-MANAGEMENT OF

GEOGRAPHICALLY DISTRIBUTED

INFRASTRUCTURES AND SERVICES

Doctoral Dissertation of:
Danilo Filgueira Mendonça

Supervisor:
Prof. Luciano Baresi
Tutor:
Prof. Raffaela Mirandola
The Chair of the Doctoral Program:
Prof. Barbara Pernici

2014/2 – XXX’ Cycle

First and foremost, I wish to thank CNPq —National Council for Sci-
entific and Technological Development— for the crucial financial support
provided to Brazilian students who adventure abroad. I extend my gratitude
to the Brazilian taxpayers who made this possible.

My most sincere gratitude and appreciation for the fellow PhD col-
leagues who shared the struggle and joy of the process. Special thanks
to the people who I had the opportunity to learn, share and develop ideas.
Above all, I (still) believe in collaboration over competition.

To Dr Fernando Antonio Reis Filgueira, professor, researcher, writer,
philosopher, and grandfather. Your lessons will never be forgotten.

Throughout this challenging path, we often find ourselves devoid of
light, self-esteem, or will to overcome the challenge. I can only attempt
to express my gratitude for all the steady dedication, companionship, en-
couragement and love received from my friend, girlfriend, and now wife,
Tábata. Together we go further.

To my beloved family and friends in Brazil, my gratitude for your loyal
transatlantic support.

Last but not least, I wish to thank my adviser Luciano Baresi for his
mentorship and valuable feedback on the various steps and skills required
to fulfil the goals of my PhD.

Abstract

THE paradigm of edge computing emerged in the last decade aim-
ing to fill the gap between cloud data centres— accessible through
multiple hops of networking — and the prosumers of information

residing at the network edge. In edge computing, computing and stor-
age resources are co-located with different kinds of infrastructures: with
cellular infrastructures like base stations and aggregation sites; with core
network components like ISP gateways; and with private infrastructures.
Among the main goals of edge computing are the mitigation of network
delay and the increase of bandwidth required by latency-sensitive and data-
intensive applications hosted on mobile and Internet of Things (IoT) de-
vices, including Autonomous Vehicles, Augmented/Virtual Reality, Mobile
Multi-player Games, Natural Language Processing, Real-time Data Analyt-
ics, and Industry 4.0.

The decentralised nature of the edge computing paradigm entails many
challenges. First and foremost, the fine-grained distribution of edge nodes
impose limitations to the capabilities offered by each node. Resources
must be managed efficiently, and collaboration among surrogate nodes is
paramount to enable more customers and services to be admitted into the
system. Operational (Ops) aspects like the placement, deployment and scal-
ing of edge-based services make automation and self-management proper-
ties first-class requirements. Last but not least, existing application and ser-
vice models need to be adapted to cope with the characteristics of densely
distributed infrastructure: heavyweight, monolithic applications may not fit
into edge node resources or may fail to scale.

I

In this thesis, we tackle the materialisation of edge computing from
two main perspectives: architectural, in which we focus on the application
and service models that enable the offloading of computation from latency-
sensitive and data-intensive applications to edge nodes; and management,
which handles the autonomic configuration, deployment, and scaling of ser-
vices by geo-distributed infrastructures.

At the heart of our proposal is the paradigm of serverless computing and
the Function-as-a-Service model. We leverage this alternative approach to
cloud computing and propose a Serverless Architecture for Multi-Access
Edge Computing. We then expand our contribution landscape with hete-
rogeneous resources from mobile, edge, and cloud platforms —which we
refer to as the Mobile-Edge-Cloud Continuum. To tackle the life-cycle of
serverless functions deployed to the Continuum, we propose A3-E frame-
work. A3-E moves away from centralised orchestration and management
in favour of opportunistic, autonomic and decentralised provisioning of
Function-as-a-Service to mobile applications with distinct requirements such
as latency and battery consumption. We conclude our contributions with
PAPS, a comprehensive framework that tackles the effective and efficient
placement and scaling of serverless functions onto densely distributed edge
nodes through multi-level self-management and control theory.

II

Sommario

IL paradigma del edge computing è emerso nell’ultimo decennio al fine
di colmare il divario tra i data center cloud —accessibile attraverso vari
hop di networking— e i consumatori e produttori di informazioni che

risiedono ai margini della rete. In edge computing, le risorse informatiche
sono co-localizzate con diversi tipi di infrastrutture: stazioni di radio ba-
se e siti di aggregazione; con componenti della rete backbone come ISP
gateways; e con infrastrutture di rete private. Tra gli obiettivi principa-
li del edge computing vi sono la riduzione del ritardo di rete e l’aumento
della larghezza di banda richiesta dalle applicazioni sensibili alla latenza
e throughput ospitate su dispositivi mobili e IoT, compresi veicoli autono-
mi, realtà aumentata / virtuale, giochi multiplayer mobile, elaborazione del
linguaggio naturale, analisi dei dati in tempo reale e Industry 4.0.

La natura decentralizzata del paradigma del edge computing comporta
molte sfide. Innanzitutto, la distribuzione a grana fine dei nodi edge im-
pone limitazioni alle capacità offerte da ciascun nodo. Le risorse devono
essere gestite in modo efficiente e la collaborazione tra i nodi più vicini è
fondamentale per consentire a più clienti e più servizi di essere ammessi nel
sistema. Aspetti operativi (Ops) come il posizionamento, il deployment e
il ridimensionamento dei servizi edge rendono le proprietà di automazione
e autogestione requisiti di prim’ordine. Infine, i modelli di cloud esistenti
devono essere adattati per far fronte alle caratteristiche di un’infrastruttu-
ra densamente distribuita: le applicazioni pesanti e monolitiche potrebbero
non adattarsi alle risorse dei nodi edge o potrebbero non riuscire a scalare.

In questa tesi, affrontiamo la materializzazione del edge computing da

III

due punti di vista principali: architettonico, in cui ci concentriamo sui
modelli di applicazione e di servizio che consentono lo scarico del cal-
colo da applicazioni sensibili alla latenza e ad alta intensità di dati ai no-
di edge; e gestione, che si occupa della configurazione, l’implementazio-
ne e il ridimensionamento autonomi dei servizi da parte di infrastrutture
geo-distribuite.

Il cuore della nostra proposta è il paradigma del serverless computing e
del modello Function-as-a-Service. Sfruttiamo questo approccio alternati-
vo al cloud computing e proponiamo un’architettura serverless per Multi-
Access Edge Computing. Quindi espandiamo il nostro panorama di contri-
buti con risorse eterogenee da piattaforme mobili, edge e cloud — che chia-
miamo Mobile-Edge-Cloud Continuum. Per affrontare il ciclo di vita del-
le funzioni serverless distribuite al Continuum, proponiamo un framework
A3-E. A3-E si allontana dall’orchestrazione e dalla gestione centralizzata
in favore di un provisioning opportunistico, autonomo e decentralizzato di
Function-as-a-Service per le applicazioni mobili con requisiti distinti qua-
li latenza e consumo della batteria. Concludiamo il nostro contributo con
PAPS, un framework multi-livello che affronta il posizionamento e il ridi-
mensionamento efficace ed efficiente delle funzioni serverless su nodi edge
densamente distribuiti attraverso la teoria dell’autogestione e del controllo.

IV

Contents

1 Introduction 1
1.1 The Emergence of Edge Computing 1
1.2 Research Opportunities and Challenges 3

1.2.1 Architectural Aspects 3
1.2.2 Management Aspects 4

1.3 Problem Statement and Research Goals 5
1.4 Contributions . 7
1.5 Dissemination . 8
1.6 Structure of the Thesis . 9

2 Preliminaries 11
2.1 Mobile Computing and the Internet of Things 11
2.2 Cloud Computing . 13

2.2.1 Virtualisation Technologies 13
2.2.2 Cloud Service Models 16

2.3 Edge Computing and Similar Concepts 17
2.3.1 Early History . 18
2.3.2 Cloudlets . 19
2.3.3 Mobile Ad-Hoc Clouds 19
2.3.4 Multi-access Edge Computing 20
2.3.5 Fog Computing . 22
2.3.6 Summary . 23

2.4 Serverless Computing . 24
2.4.1 Function-as-a-Service 24

V

Contents

2.4.2 FaaS vs Typical Cloud Service Models 26
2.4.3 FaaS vs Microservices 28

2.5 Autonomic Computing . 31
2.5.1 Adaptation Taxonomy 33
2.5.2 Multiple-Criteria Decision-Making 35

3 A Serverless Architecture for Multi-Access Edge Computing 37
3.1 Overview . 37
3.2 MEC Architecture and Use Cases 38

3.2.1 ETSI Framework and Reference Architecture for MEC 39
3.2.2 MEC Use Cases . 40
3.2.3 MEC Requirements 41
3.2.4 Running Example 42

3.3 The Serverless MEC Architecture 46
3.3.1 Self-Managed Computing Services 46
3.3.2 Supporting Services and Optimisations 49

3.4 The Serverless MEC Platform 57
3.4.1 Platform Architecture 57
3.4.2 Platform Deployment 63

3.5 Proactive Recovery Protocol 65
3.5.1 Overview . 65
3.5.2 Platform States . 65
3.5.3 Proactive Recovery Bounds 66
3.5.4 Recovery in Action 73

4 Mobile-Edge-Cloud Continuum Through Serverless and Autonomic
Computing 75
4.1 Overview . 75
4.2 The Mobile-Edge-Cloud Continuum 76

4.2.1 Running Example 78
4.3 System Model . 79

4.3.1 Infrastructure Model 79
4.3.2 Continuum Functions and Requirements 81
4.3.3 Continuum Application 82
4.3.4 Mobile Middleware and Domain Manager 83
4.3.5 Life-cycle Management Problem 85

4.4 A3-E Framework . 87
4.4.1 Overview . 87
4.4.2 A3-E’s Awareness 87
4.4.3 A3-E’s Acquisition 90

VI

Contents

4.4.4 A3-E’s Allocation 92
4.4.5 A3-E’s Engagement 94
4.4.6 Running Example 95

4.5 Domain Manager . 96
4.5.1 Architecture Overview 98
4.5.2 Awareness Manager 98
4.5.3 Acquisition Manager 99
4.5.4 Allocation Manager 102
4.5.5 Engagement . 106

4.6 Mobile Middleware . 106
4.6.1 Architecture Overview 106
4.6.2 Continuum Application Registration 108
4.6.3 Awareness Manager 109
4.6.4 Acquisition Manager 113
4.6.5 Allocation Manager 114
4.6.6 Library Proxy . 119
4.6.7 Mobile Domain . 120

5 The PAPS Framework 121
5.1 Overview . 121
5.2 Management Challenges 122
5.3 System Model . 123

5.3.1 Infrastructure Model 123
5.3.2 Function-as-a-Service 124
5.3.3 Management Problem Formulation 125

5.4 The PAPS Framework . 127
5.4.1 System-Level Self-Management 127
5.4.2 Community-Level Self-Management 128
5.4.3 Node-Level Self-Management 134

5.5 PAPS Simulator . 136
5.5.1 PeerSim . 137
5.5.2 Implementation Overview 137

6 Evaluation 141
6.1 Serverless MEC Architecture 141

6.1.1 Overview . 141
6.1.2 Application Scenario: Mobile Augmented Reality . . 141

6.2 Experimental Evaluation 144
6.2.1 Goal-Question-Metric 144
6.2.2 Experimental Setup 147

VII

Contents

6.2.3 Results: Memory Footprint 148
6.2.4 Results: Overhead and Response Time 149
6.2.5 Results: Simultaneous Users and Function Entropy . 153
6.2.6 Results: Elasticity 158
6.2.7 Discussion . 159
6.2.8 Threats to Validity 160

6.3 A3-E Framework . 162
6.3.1 Experimental Setup 162
6.3.2 Response Time and Scalability 163
6.3.3 Battery Consumption and Execution Time 165
6.3.4 Domain Selection and Availability 167
6.3.5 Enorm . 168
6.3.6 Threats to Validity 170

6.4 PAPS Framework . 172
6.4.1 Experimental Setup 172
6.4.2 Partitioning . 172
6.4.3 Allocation, Placement and Scaling 173

7 Related Work 177
7.1 Serverless MEC Architecture 177
7.2 A3-E Framework . 179
7.3 PAPS Framework . 186

8 Conclusions and Future Work 193
8.1 Future Work . 195

Bibliography 197

VIII

CHAPTER1
Introduction

1.1 The Emergence of Edge Computing

In the last decade, cloud computing has become a successful model for
the rapid provisioning of computing resources on demand. Cloud vendors
benefit from the economy of scale by aggregating a pool of configurable
and virtually unlimited resources into data centres. Among its variants,
the Infrastructure-as-a-Service (IaaS) model —empowered by virtualisa-
tion technologies— allows users to deploy and scale applications on virtual
machines [137] and, more recently, containers [80].

The advent of mobile computing and the Internet of Things (IoT) poses
new challenges to the centralised data centre model. Data-intensive ap-
plications enabled by mobile and IoT devices lying at the network edge
are already pushing the boundaries of how much data needs to be trans-
ported and processed by cloud data centres [18]. Current estimations point
out the continuous and exponential increase in this trend, as more devices
and applications join the network. For instance, according to Cisco [101],
the total amount of data created (and not necessarily stored) by any de-
vice will reach 847 zettabyte (1021) per year by 2021. Simultaneously,
the number and diversity of applications with compute-intensive features

1

Chapter 1. Introduction

are also increasing, which partially nullify the gains in computing power
and battery life achieved in modern pervasive devices. To mitigate battery
drain, these applications need to offload compute-intensive tasks to more
powerful servers in the cloud, which became known as Mobile Cloud Com-
puting [115]. However, real-time applications with strict requirements for
latency and throughput raise further questions about the feasibility of the
data centre model in satisfying all these needs [92, 97].

The paradigm of edge computing aims to tackle the challenges above by
filling the gap between cloud data centres and data prosumers at the network
edge [16, 108]. Since the concept of cloudlets [97] was initially proposed
by Satyanarayanan and his colleagues, edge computing has been associated
with different terminologies, architectures and technologies, all of which
share the common goal of enabling new types and scales of interactive,
real-time, and data-intensive applications to operate at the network edge.
Amongst prominent infrastructure-centric models are Multi-Access Edge
Computing (previously known as Mobile Edge Computing) [100]; follow-
me cloud [113]; mobile edge clouds [125]; and fog computing [77].

Some of the prominent use cases target by edge computing are consumer-
driven. In this category are new and disruptive applications such as Mobile
Augmented Reality, Cognitive Assistance, Connected and Autonomous Ve-
hicles, Industry 4.0, to name a few [16, 18, 37]. Network operators and
third-party are also expected to harness the power of decentralised infras-
tructure to deliver new types of services, e.g. to smart city applications that
require the processing and analysis of massive amounts of data [103]. In
this thesis, we distinguish two main use case categories: latency-sensitive
computation offloading and data pre-processing. As the name suggests, the
former considers latency as a first-class requirement. Its primary goal is to
augment the capabilities of mobile and IoT devices. In contrast, the sec-
ond scenario is mainly concerned with the anticipation of the processing of
voluminous data near its source, often IoT devices.

The satisfaction of the aforementioned use cases created new research
opportunities in multiple fields and areas ranging from computer sciences
to networking and telecommunications.

From the communication and architectural perspectives, several works
tackled the deployment of IT resources in the context of multi-access edge
computing and fog computing [61, 64]. Many authors focused on the deci-
sion of if and when to offload tasks to edge nodes [78,119], whereas others
tackled the management of edge nodes and the allocation of resources [71,
121]. The dynamic placement and migration of services [62, 125] and the
scheduling of tasks [46, 130] also received considerable attention from the

2

1.2. Research Opportunities and Challenges

operational research and optimisation communities.
Although some authors leverage the collaboration among end-user de-

vices to achieve the previously mentioned goals [27,116,133], we opted for
concentrating our research effort on infrastructure-centric edge computing.
The rationale behind this decision is twofold. First, we consider that both
models —device-centric and infrastructure-centric— to be complementary
and likely to co-exist. In some cases, stable and reliable servers might be
key for the creation of device-to-device cooperation among volatile devices.
Secondly, we argue that each approach poses significant challenges of its
own, which could not be properly addressed within the scope of this thesis.

1.2 Research Opportunities and Challenges

1.2.1 Architectural Aspects

Edge computing has been contemplated with substantial research effort and
contributions. However, some important gaps remain. From the software
architecture perspective, the particularities of the decentralised infrastruc-
ture model envisioned by edge computing are often ignored. The same is
valid for the service model to be adopted by edge infrastructure providers.
For example, many works refer to applications, components, and services
without entering into details about their architecture. In some cases, typical
cloud service models are adopted, e.g. virtual machines hosting monolithic
applications are provisioned on demand.

Although edge-centric architectures are broad enough to encompass in-
frastructures ranging from regional data centres [56] to single-board com-
puters [17], it is unlikely that edge nodes will match the capabilities of
nowadays’ data centres. The geographic dispersion of servers entails addi-
tional challenges to the replication of consolidated cloud computing mod-
els and software architectures. Thus, a more precise definition of the ser-
vice model provided by edge infrastructure operators and the architectural
model of consumer applications is needed.

Following the breakthroughs in visualisation technologies, the paradigm
of Serverless Computing [38,58,87] has been conceived to allow developers
to focus on the core aspects of their application, while a third-party cloud
provider handles the management of the infrastructure required for its exe-
cution. To the present date, this paradigm has been developing in different
forms and more prominently as stateless compute runtime services, also
known as the Function-as-a-Service model.

In the context of edge computing infrastructure, serverless computing
has critical advantages over other cloud service models. First, functions

3

Chapter 1. Introduction

are lightweight and stateless by design. Not only functions are good candi-
dates to fit into the limited computing and storage resources, but stateless
components can also be scaled and managed more efficiently. This is par-
ticularly true in a geographically distributed environment. Secondly, the
delegation of infrastructure management to a single entity (the provider)
not only allows more efficient provisioning and allocation of resources but
also facilitates the configuration of individual servers and the deployment
of software components across a potentially large number of servers.

Despite its advantages, serverless computing is still young if compared
to other consolidated architectures and models. The adoption of serverless
computing and the Function-as-a-Service model in the fulfilment of edge
computing use cases target by this thesis needs further assessment. First,
the benefits and limitations of modelling, implementing and deploying ap-
plication logic as functions must be evaluated. In a similar direction, key
performance indicators such as resource allocation efficiency, latency over-
head and scalability of existing serverless platforms must be assessed and
potentially optimised to fulfil the requirements at hand.

1.2.2 Management Aspects

In a typical cloud computing deployment, users define the policies that
will govern the provisioning and allocation of resources to their appli-
cations [60]. In most cases, a policy defines the conditions for trigger-
ing the provisioning (scale-out) or releasing (scale-in) of virtual machines
and, more recently, of containers. Accordingly, users have the control
and responsibility for determining how much resources are demanded from
providers. Such a high autonomy level is possible, thanks to the virtually
unlimited resources that characterise nowadays’ cloud data centres.

The management of geographically distributed infrastructures and ser-
vices entails multiple challenges. First, the decentralised nature of edge
computing adds a spatial dimension to the resource allocation and provi-
sioning problems. Not only the amount of resources procured to edge-
based applications needs to be dynamically decided, but also the placement
of these applications (e.g. single or multiple components) onto the mesh of
geo-distributed servers. Second, if we consider the limitation of resources
at each node, user-centred scaling decisions are likely to conflict with each
other unless arbitrated by the infrastructure provider.

For instance, centralised management approaches usually rely on a global
system view [91]. Depending on the scale and complexity, a massive amount
of data regarding the availability of resources and the performance of hun-

4

1.3. Problem Statement and Research Goals

dreds or thousands of components at multiple locations needs to be moni-
tored and analysed. Optimal solutions may be impractical, as the solution
space grows exponentially with the number of nodes [122].Management
decisions such as service placement and scaling must be consistent with
the current system state and therefore to be taken and executed in a timely
manner—at the risk of being innocuous or yielding adverse effects. Hence,
the delay introduced by networking and complex analysis may undermine
the effectiveness and efficiency of the management process.

In the opposite direction, fully decentralised management solutions like
those based on the principles of self-organising systems are known for their
superior responsiveness and scalability. However, the emergence of be-
haviour [23] characterising these systems may be hard to analyse and antici-
pate. Furthermore, decisions based solely on local knowledge may perform
poorly from a global perspective. The consequence can be the inability of
anticipating adverse or even catastrophic situations, as well as the ineffi-
cient distribution of resources among various applications and services.

Following a cloud-like approach, many works tackled the problems above
by assuming edge resources to be always available [71,135]. Others do con-
sider capacity limitations [114, 136], but still rely on single-level virtuali-
sation (i.e., virtual machines) instead of more resource-efficient containers.
Few proposals tackle the management of containerised applications while
considering the resource limitations of edge nodes [28]. To the best of our
knowledge, comprehensive edge-centric solutions based on the paradigm
of serverless computing are still missing.

1.3 Problem Statement and Research Goals

In light of the aforementioned considerations and challenges, the first re-
search goal addressed by this thesis can be stated as follows:

To study, analyse, and evaluate the techniques, models and tech-
nologies for the provisioning of computing services and propose
an efficient and scalable approach that enables the offloading
of computation and anticipation of data processing by compute-
intensive, latency-sensitive, and data-intensive applications.

Due to fundamental aspects of serverless computing, we decided to
deepen the investigation of this particular paradigm and to focus on the
Function-as-a-Service model. The benefits and limitations of this choice
must, therefore, be analysed and evaluated regarding the application sce-
narios this thesis aims to address, namely the offloading of latency-sensitive

5

Chapter 1. Introduction

computation and the anticipation of data processing. Accordingly, the
overall research goal can be decomposed into two research sub-goals:

Research goal 1 (RG1) – Architecture

“To study, analyse, and evaluate the Function-as-a-Service model
and associated technologies; and to propose a solution for the
provisioning of efficient and scalable Computing Services to be
hosted by geographically distributed infrastructures (edge com-
puting) in the context of compute-intensive, latency-sensitive and
data-intensive applications hosted by mobile and IoT devices.”

First and foremost, RG1 aims to study, adapt and improve the Function-
as-a-Service model from both theoretical and technological points of view,
taking into account the advantages and shortcomings of the infrastructure
model characterising edge computing and the specific requirements from
the targeted application scenarios.

The proper dimensioning of application components and the assignment
of responsibilities in terms of state and behaviour are critical to the mate-
rialisation of an edge-cloud ecosystem; not only it must cope with appli-
cation requirements, but it must also be aligned with the challenges pre-
viously discussed. Accordingly, from the architectural point of view, RG1
also concerns: (i) the definition of which application components should be
deployed to edge servers, to cloud data centres, or to remain part of front-
end applications hosted by mobile and IoT devices; and (ii) the interaction
among each of these parts.

Research goal 2 (RG2) – Self-Management

Once we have assessed the Function-as-a-Service model and the pro-
posed architecture, we considered the problem of managing edge systems
resulting from the combination of densely distributed, heterogeneous in-
frastructures providing the services and resources needed for the execution
of functions with different requirements. Due to its intrinsic complexity, the
management of the resulting distributed system is defined as an autonomic
computing [47, 112] problem. More specifically, the self-management of
decentralised infrastructures and services implementing a serverless archi-
tecture must cope with: (i) the intrinsic challenges of the infrastructure
model; (ii) the requirements of each targeted application scenario; and (iii)
the particularities of the Function-as-a-Service model. Accordingly, our
second research goal is defined as follows:

6

1.4. Contributions

“To develop an effective and efficient solution for the self-
management of geographically distributed infrastructures (edge
computing) providing computing services for the execution of
serverless functions (Function-as-a-Service) in the context of
compute-intensive, latency-sensitive and data-intensive applica-
tions hosted by mobile and IoT devices. ”

1.4 Contributions

In this section, we outline the contributions of the thesis, mapping them to
the research goals stated above.

Research Goal 1 — Architecture

We have investigated and compared different service models and cut-
ting edge virtualisation technologies for the provisioning of computing ser-
vices by decentralised infrastructures. We also evaluated key aspects re-
garding the architecture of applications from our targeted use cases. Based
on our findings, we proposed a Serverless Architecture for Multi-Access
Edge Computing along with the building block components, services, and
optimisations of a platform implementing the proposed architecture. The
proposal was evaluated both qualitatively and quantitatively through rele-
vant application scenarios and experiments.

Research Goal 2 — Self-Management
Once the benefits and limitations of the proposed architecture had been

demonstrated, we expanded the landscape of our contributions with a broader
range of deployment configurations resulting from the combination of mo-
bile, edge, and cloud computing. The resulting Compute Continuum ex-
tends the Serverless MEC Architecture. To manage the life-cycle of server-
less functions deployed to the heterogeneous infrastructures comprising the
Continuum, we proposed A3-E framework.

A3-E framework exploits both serverless and autonomic computing to
allow serverless functions to be opportunistically and autonomously fetched,
deployed and exposed as services by distinct edge and cloud providers, or
consumed locally. A3-E prototypes were implemented and evaluated. Re-
sults demonstrated significant gains in terms of response time and battery
consumption, which are critical requirements for the application scenarios
targeted by this thesis.

The opportunistic nature of A3-E yields an efficient allocation of re-
sources. Nonetheless, A3-E does not tackle the collaboration among edge

7

Chapter 1. Introduction

nodes from a single edge provider. We address this limitation with PAPS,
a framework designed to tackle the self-management of densely distributed
edge nodes. PAPS is based on a multi-level, decentralised self-management
approach that partitions the larger scale edge topology into delay-aware
communities and allocates resources among and within communities.

Differently from the optimisation frameworks found in the literature, the
PAPS framework combines optimal allocation and placement at the com-
munity level with a fast node-level container scaling to render the overall
self-management process both efficient and effective. Our framework also
comprises a simulator platform, which enables the evaluation of different
infrastructure, application, and workload scenarios. The PAPS framework
was evaluated with a large scale Multi-Access Edge Computing topology
hosting up to 100 serverless functions. Results showed the criticality of
the node-level self-management to achieve a more efficient allocation of
resources and prevent SLA violations.

1.5 Dissemination

The research conducted during the PhD program has lead to a number of
publications. This section lists them in order in which they are presented in
the thesis. The list also includes a minor research topic publication.

Major Research Topic Publications

• Luciano Baresi, Sam Guinea, Danilo Filgueira Mendonça. A3Droid:
A framework for developing distributed crowdsensing. In Proceed-
ings of the International Conference on Pervasive Computing and
Communication Workshops. IEEE, 2016, pp. 1-6.

While this workshop paper [11] pre-dates our research effort with
decentralised infrastructures and services, it falls in the category of
device-to-device edge computing. Some of the limitations in this pa-
per inspired us towards the infrastructure-based solutions presented in
this thesis.

• Luciano Baresi, Danilo Filgueira Mendonça, Martin Garriga. Em-
powering low-latency applications through a serverless edge comput-
ing architecture. In Proceedings of the 6th European Conference on
Service-Oriented and Cloud Computing (ESOCC 2017). Springer,
2017, pp. 196-210.

8

1.6. Structure of the Thesis

This conference paper [12] is the basis of Chapter 3, where we intro-
duce the serverless architecture for Multi-Access Edge Computing. It
is also the baseline for the Mobile-Cloud-Continuum model presented
in Chapter 4.

• Luciano Baresi, Danilo Filgueira Mendonça. Towards a Serverless
Platform for Edge Computing. In Proceedings of the 1st International
Conference on Fog Computing (TO APPEAR). IEEE, 2019.

This conference paper [14] is the basis for the optimisations and addi-
tional services provided by the Serverless MEC Platform presented in
Chapter 3.

• Luciano Baresi, Danilo Filgueira Mendonça, Martin Garriga, Sam
Guinea, and Giovanni Quattrocchi. A Unified Model for the Mobile-
Edge-Cloud Continuum. ACM Transactions on Internet Technology,
19(2):29:1–29:21, April 2019.

This journal paper [13] is the basis of Chapter 4, where we present
the Mobile-Edge-Cloud Continuum model and A3-E, a framework for
tackling the management of the life-cycle of functions opportunisti-
cally deployed to the Mobile-Edge-Cloud Continuum.

Minor Research Topic Publications

• Danilo Filgueira Mendonça, Genaína Nunes Rodrigues, Raian Ali,
Vander Alves, Luciano Baresi. GODA: A goal-oriented requirements
engineering framework for runtime dependability analysis. Informa-
tion and Software Technology, 80:245 - 264, 2016.

This journal paper [65] is the result of previous research effort on goal-
oriented dependability analysis with parametric probabilistic model
checking. As future work, we envision the extension of this work for
enabling dependability analysis of FaaS workflows.

1.6 Structure of the Thesis

The structure of this thesis is as follows:

• Chapter 1 overviews the problem statement and contributions in this
thesis, while Chapter 2 provides background information on the the-
ory, techniques, and technologies that are either used by the contribu-
tions in this thesis or are central to their understanding.

9

Chapter 1. Introduction

• Chapter 3 introduces the Serverless Architecture for Multi-Access Edge
Computing.

• Chapter 4 introduces the Mobile-Edge-Cloud Continuum and the A3-
E framework along with prototype implementations.

• Chapter 5 introduces the PAPS framework along with the simulation
platform accompanying the framework.

• Chapter 6 is divided in three parts. Section 6.1 presents a compre-
hensive evaluation of the Serverless MEC Architecture, whereas Sec-
tions 6.3 and 6.4 report on the evaluation of A3-E and PAPS frame-
works respectively.

• Chapter 7 surveys related work in the context of edge-centric archi-
tectures and the management of geographically distributed infrastruc-
tures and services.

• Finally, Chapter 8 provides some concluding remarks, discusses lim-
itations of the proposed approaches and how these limitations can be
addressed as part of future work.

10

CHAPTER2
Preliminaries

This chapter provides background information on the theory, techniques
and technologies that are fundamental for the contributions in this thesis, or
central to their understanding.

Section 2.1 briefly covers the current state of the technologies encom-
passing mobile computing and the Internet of Things, which are the main
drivers for edge computing. In Section 2.2, we discuss relevant aspects of
the paradigm of cloud computing. Also in this section are presented the
consolidated and cutting-edge virtualisation technologies and discuss their
role in different cloud service models. In turn, Section 2.3 provides a broad
overview of the edge computing paradigm. Next, Section 2.4 introduces the
serverless computing paradigm and the Function-as-a-Service model. Fi-
nally, Section 2.5 introduces the field of Autonomic Computing, on which
are based our contributions regarding the self-management of decentralised
infrastructures and services.

2.1 Mobile Computing and the Internet of Things

The massive popularisation of smartphones and other mobile devices has
been accompanied by an increasing number of new and sometimes disrup-

11

Chapter 2. Preliminaries

tive applications. The dynamic and interactive nature of many applications
demands that data be distributed over the Internet through heterogeneous
networks. To fulfil these requirements, mobile applications are typically
designed using the client-server model. In this kind of architecture, part of
the application logic and state, known as the client or front-end application,
is hosted by devices themselves. In turn, components forming the back-end
application are hosted by remote servers.

While computational power and battery autonomy significantly increased
over the years, mobile devices are not yet able to handle all sorts of tasks [95].
Moreover, the excessive use of mobile applications (often battery hungry)
is nowadays considered as a pathological behaviour [3] —one that affects
not only the life of its users but also the battery of their devices.

The offloading of computation from mobile devices to cloud servers was
first addressed by the concept of Mobile Cloud Computing [115]. Its pri-
mary purpose was to enable rich applications to run in resource-constrained
mobile devices by delegating compute-intensive tasks to cloud servers. How-
ever, this approach is limited by network latency, which is prohibitive for
most real-time and interactive applications.

In a parallel, but closely related thread, the Internet of Things (IoT) [35]
have expanded the pervasive computing landscape with a variety of physi-
cal devices and everyday objects distinguished by their capabilities of sens-
ing and actuating the environment, and of communicating and interacting
over the Internet [2]. Examples include but are not limited to Autonomous
and Connected Vehicles, Smart Homes, Smart Cities, Smart Industry (also
known as Industry 4.0), and different sorts of wearable technology. Con-
trasting with smartphones, tablets and other mobile devices, IoT is gen-
erally specialised and lack the resources for performing more sophisticated
computation; instead, connectivity is harnessed to allow data to be collected
and processed elsewhere —in most of the cases, by cloud-based services.

Mobile and IoT devices have in common the role of data prosumers, i.e.,
they are both consumers and producers of data. According to predictions,
these data will skyrocket in the coming years [101], mainly driven by mo-
bile and IoT devices —from simple temperature sensors to highly sophis-
ticated Autonomous/Connected Vehicles, passing by all sorts of wearable
devices [18]. Although cloud computing appears like a straightforward so-
lution for processing such massive amounts of data, the latency introduced
by long back and forth transmissions can severely hurt user experience.
Further, it would entail a considerable burden to the network infrastructure,
which may fail to deliver the required Quality-of-Service.

12

2.2. Cloud Computing

2.2 Cloud Computing

The last decades witnessed the consolidation of cloud computing [5, 137]
as a practical solution to manage and leverage IT resources and services.
Cloud computing reduces initial investments (i.e., no need to buy servers)
and maintenance costs. Instead, resources or service applications are of-
fered as (remote) services, available on-demand and on-the-fly, and billed
according to a pay-as-you-go model.

While cloud computing also comprises private deployments (also known
as the private cloud), it is mainly associated with the public data centre
model. In public cloud, shared pools of configurable computer system re-
sources and higher-level services owned by a third-party can be rapidly pro-
visioned with minimal management effort, often over the Internet. Empow-
ered by cutting-edge technologies, cloud data centres are known for giving
end-users —from garage practitioners to large-scale conglomerates— ac-
cess to virtually infinite resources.

Within this section, we provide an overview of the leading virtualisa-
tion technologies used in cloud computing. We give particular attention to
operating system-level virtualisation (containerisation), an enabler technol-
ogy for serverless computing and architecture. This section concludes with
a brief introduction to the leading cloud service models. In Section 2.4,
we shall present a more detailed comparison between these models and the
emerging Function-as-a-Service model.

2.2.1 Virtualisation Technologies

Virtualisation technologies are paramount to the success of cloud comput-
ing [137]. IBM introduced the concept of virtualisation more than fifty
years ago to allow multiple applications to run simultaneously. Since then,
the term evolved, and nowadays virtualisation is applied in many areas of
computing, including computer hardware, storage and network resources.

In cloud computing, virtualisation is mainly used as a mean to (logi-
cally) separate the server infrastructure and make it available to many users
(also referred to as tenants) in an isolated fashion. Leading virtualisa-
tion technologies can be categorised into two levels: hardware level vir-
tualisation, which includes full virtualisation and paravirtualisation, and
operating-system-level virtualisation (also known as containers) [80, 90].

Hardware level virtualisation

In full virtualisation, every salient feature of the hardware is reflected in
virtual machines (VM). Hence, a VM provides the same functionality as a

13

Chapter 2. Preliminaries

physical computer. In other words, they offer an efficient, isolated dupli-
cate of a real computer machine. The latter is commonly referred to as the
host and the VM as the guest. To achieve full virtualisation, a hypervisor
uses native execution to share and manage hardware, allowing for multiple
environments which are isolated from one another, yet exist on the same
physical machine. In hardware-assisted full virtualisation, the hypervisor
relies on hardware capabilities, primarily from the host processors, to by-
pass the binary translation

Trap

Hardware

Hypervisor

Guest Kernel

Hardware

Hypervisor

Modified Guest Kernel

Emulate

Paravirtualisation Full virtualisation

Hypercall

Operation

Privileged Instruction

Figure 2.1: Comparison between para and full virtualisation approaches. Para-
virtualisation requires the modification of the guest kernel, which becomes “paravir-
tualisation aware” and makes use of special-purpose API.

In paravirtualisation, guest VMs do not attempt to issue commands to
the (simulated) hardware, but instead makes use of drivers to issue com-
mands directly to the host operating system (see Figure 2.1). Accordingly,
the guest operating system must be paravirtualization-aware (i.e., to be ex-
plicitly ported to para-API) to run on top of a paravirtualisation hypervisor.

Operating system-level virtualisation

More recently, operating-system-level virtualisation (or containerization)
gained significant attention. This virtualisation approaches exploits fea-
tures of an operating system in which multiple isolated user-space instances
share the same kernel [29, 110]. In contrast with VMs (see Figure 2.2), a
container consists of an isolated process that runs directly on the operating
system without the intermediation of a hypervisor. For the program(s) run-
ning in them, containers mimic real computers. Contrary to a regular pro-
gram running in a physical machine, containerised software are restricted
in their view and access to the operating system’s and underlying (virtual)

14

2.2. Cloud Computing

machine’s resources (e.g. access to memory, CPU, and storage). Similarly
to VMs, containers are organised as images.

Trap

Hardware

Hypervisor

Guest Kernel

Hardware

Hypervisor

Modified Guest Kernel

Emulate

Virtual Machines Containers

Hypercall

Operation

Privileged Instruction

App 1

Bins/Libs

Guest
OS

App 1

Bins/Libs

Guest
OS

App 1

Bins/Libs

Guest
OS

App 1

Bins/Libs

Guest
OS

App 1

Bins/Libs

Guest
OS

App 1

Bins/Libs

Guest
OS

Container Engine

Operating System

Infrastructure

Operating System

Infrastructure

Figure 2.2: Comparison between virtual machines and containers1

Containers have many advantages compared to virtual machines [110],
namely:

• Overhead: unlike other virtualisation technologies, there is very little
or no overhead since it uses the host operating system kernel for exe-
cution, i.e., they do not require the intermediation of a hypervisor nor
custom APIs. Depending on the implementation, containers impose
little or no overhead.

• Image size: containers are considerably lighter since they do not con-
tain an operating system kernel, but only the application and user
space binaries and libraries. A container image can be as small as
a few megabytes. For instance, the size of a container image based
on a minimal Linux distribution (Alpine Linux) is 5MB only2. In con-
trast, virtual machines images comprise all of the parts of an operating
system. While VM images based on minimal Linux distributions are
much lighter (order of a hundred of megabytes) than more traditional
distributions (order of gigabyte), it is still significantly more onerous
than its container counterpart.

• Start time: the time needed to start a container is similar to the start
time of a native process. Conversely, a virtual machine start time com-
prises the booting time of a complete operating system. Hence, a VM

2https://hub.docker.com/_/alpine

15

https://hub.docker.com/_/alpine

Chapter 2. Preliminaries

start time is usually orders of magnitude higher (minutes [63]) than
the time to start a container (seconds).

There are also disadvantages to using containers that must be consid-
ered. In terms of security, containers provide a lower degree of isolation as
they share the same kernel —often with root access. The kernel takes care
of isolating containers, e.g. through virtual-memory support. Hence, se-
curity threats have easier access to the entire system when compared with
hypervisor-based virtualisation. Another drawback of containerization is
the reduced OS flexibility (OS lock-in). While distinct guest OS can live
side by side on the same host, a single OS must be used by all containers.
Also, container images are not compatible across different OS.

2.2.2 Cloud Service Models

Cloud providers offer resources and services at three different layers: at the
Software-as-a-Service (SaaS) layer, users can remotely access full-fledged
software applications; at the Platform-as-a Service (PaaS) layer, one finds
a development platform, a deployment and a runtime execution environ-
ment, which is used to run user-provided code in sandboxes hosted on
cloud-based premises; at the Infrastructure-as-a-Service (IaaS) the user can
access computing resources such as virtual machines, block storage, fire-
walls, load balancers, or networking I/O. Next, we briefly introduce the
more relevant service models in the context of our work.

Infrastructure-as-a-Service

In its most popular form, IaaS consumers rent virtual machines to run their
(guest) software programs. In this way, many users can share the same
physical machine without knowing it. The National Institute of Standards
and Technology (NIST) defines IaaS as:

“The capability provided to the consumer is to provision pro-
cessing, storage, networks, and other fundamental computing
resources where the consumer can deploy and run arbitrary
software, which can include operating systems and applications.
The consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, storage,
and deployed applications; and possibly limited control of se-
lect networking components (e.g., host firewalls).”

2Adapted from https://blog.netapp.com/blogs/containers-vs-vms/

16

https://blog.netapp.com/blogs/containers-vs-vms/

2.3. Edge Computing and Similar Concepts

While containers are considered as a type of IaaS, for the sake of clarity
and presentation we opt for distinguishing container-based infrastructure
provisioning into a separate category, namely Container-as-a-Service; from
now on, the term IaaS refers exclusively to VM-based provisioning.

Platform-as-a-Service

A PaaS provider typically offers developers a set of services that allow them
to develop, test, deploy and run applications without having to worry about
the underlying infrastructure. According to NIST, PaaS is defined as:

“The capability provided to the consumer is to deploy onto the
cloud infrastructure consumer-created or acquired applications
created using programming languages, libraries, services, and
tools supported by the provider. The consumer does not man-
age or control the underlying cloud infrastructure including net-
work, servers, operating systems, or storage, but has control
over the deployed applications and possibly configuration set-
tings for the application-hosting environment.”

Container-as-a-Service

Recent developments of the IaaS model empowered by the container tech-
nology lead to a new type of cloud service, namely the Container-as-a-
Service (CaaS). This model exploits the advantages of operating system-
level virtualisation in the provisioning of elastic compute services. While
the unique characteristics of CaaS position it between IaaS and PaaS, it is
most commonly viewed as a subset of IaaS [80].

The high granularity and simplicity of containers demand the support
of managing tools. For instance, an application may comprise hundreds or
more containers running on a server. Following the widespread adoption
of this virtualisation approach, various technologies are nowadays avail-
able and under active development, including security tracking, monitoring,
orchestration, and schedules that oversee operations. Hence, major CaaS
providers offer additional services to mitigate the complexity of container
management.

2.3 Edge Computing and Similar Concepts

This section summarises the paradigm of edge computing in its different
shapes and flavours, including background information about its early his-
tory and some of the conceptual and architectural variations in the literature.

17

Chapter 2. Preliminaries

2.3.1 Early History

In recent years the paradigm of edge computing has received significant
attention from academia and industry. Edge computing has roots in the
content delivery network (CDN), introduced by Akamai in the 1990s [96].
Back then, latency mitigation was the main driver for the distribution of
computing and storage resources to the network edge. Edge computing ex-
tends CDN by allowing not only the caching and distribution of multimedia
data but also the execution of general purpose computing at the network
edge.

Still in the 1990s, experiments have demonstrated the feasibility of im-
plementing speech recognition on a resource-constrained mobile device
by offloading computation to a nearby server [95]. Similar experiments
demonstrated savings in battery life. Already in the 2000s, Satyanarayanan
et al. generalised these concepts using the term cyber foraging. However,
in this decade, much of the attention from both industry and research turned
to the emerging paradigm of cloud computing.

Despite the consolidation of cloud computing and its success in provid-
ing virtually infinite compute and storage resources, the latency and jitter
resulting from multiple network hops between mobile devices and cloud
datacenters motivated the resurgence of edge computing. In a 2009 article,
Satyanarayanan et al. [97] defined cloudlets as trusted, resource-rich com-
puter or cluster of computers accessible through WiFi and available for use
by nearby mobile devices. Proximity and mobile computation offloading
are the two fundamental characteristics of the cloudlets architecture.

Fog computing [18] was later on introduced by Bonomi and his col-
leagues from Cisco and referred to a dispersed cloud infrastructure. Its
primary purpose is to address the scalability of IoT infrastructure, as the
volume of data generated by existing and emerging applications is expected
to increase at exponential rates [101]. In contrast with cloudlets, fog com-
puting reference architecture [77] consists of a multi-tier, hierarchical de-
ployment of fog nodes co-located with heterogeneous public and private in-
frastructures stretching from cloud data centres to densely distributed nodes
at the network edge.

Last but not least, multi-access edge computing [100], formerly referred
to as mobile edge computing, was conceived as a network architecture con-
cept that enables computing capabilities and IT services at the edge of the
cellular network. MEC differentiates from cloudlets and fog computing by
co-locating compute and storage resources within or in proximity to the cel-
lular network infrastructure, which allows traditional mobile and new IoT

18

2.3. Edge Computing and Similar Concepts

devices to leverage edge services while connected to the mobile network.
Next, we further described each of the aforementioned edge computing

strands.

2.3.2 Cloudlets

Cloudlets [97] —trusted, resource-rich computer or cluster of computers—
were proposed to be co-located with WiFi access points in private (e.g.,
domestic) or public (e.g., hot spots) deployments. Its original purpose was
to enable resource-poor mobile devices to perform compute-intensive and
energy-hungry tasks (e.g., those from mobile applications augmenting hu-
man cognition).

The dependence with WiFi is considered the main drawback of cloudlets.
Nowadays, mobile devices enjoy pervasive connectivity through mobile
networks. In contrast, the coverage and support for mobility provided by
WiFi access points are limited. Notwithstanding this, the number of public
WiFi hotspots in urban areas is already substantial and continues to in-
crease. Furthermore, cloudlets are suitable for various application scenar-
ios associated with specific locations that are likely to be covered by WiFi
and that users are expected to remain stationary for a while (e.g., domestic,
office, industry and public locations).

2.3.3 Mobile Ad-Hoc Clouds

Also referred to as mobile edge-clouds, mobile device clouds, or simply
mobile cloud, the concept of mobile ad-hoc clouds consist of another op-
tion for performing computing at the edge [27, 116, 133]. In this approach,
groups of mobile devices, often with some common objective to achieve,
form ad-hoc clouds in which their resources are shared and combined. The
ultimate goal is to process high demanding applications locally.

The formation of ad-hoc clouds entails several critical challenges. First,
devices in proximity must be found while guaranteeing that processed data
will be delivered back to the source. Second, computing devices must coor-
dinate their activities despite the lack of control channels providing reliable
communication. Third, device owners must be motivated to provide the
computing power of their devices, given the battery consumption and ad-
ditional data transmission constraints. Last but not least, the creation of
ad-hoc clouds may incur in various security issues.

19

Chapter 2. Preliminaries

2.3.4 Multi-access Edge Computing

The multi-access edge computing [100] was conceived as a network archi-
tecture concept that enables computing capabilities and IT services at the
edge of the cellular network. Also in this case, the baseline is that running
applications and services closer to end-users provides the benefit of reduced
latency, jitter, and higher throughput.

The most significant difference between MEC and the strands of edge
computing introduced before relies on its integration with cellular network
infrastructure. MEC combines elements from both information technology
(IT) and modern telecommunications. In one hand, services deployed at the
MEC can benefit from the context information regarding the client’s loca-
tion and what kind of user equipment is connected to the base station. In the
other, mobile network operators may leverage context information to adapt
the traffic and avoid congestions at the radio and backhaul network [61].

In the literature, multiple variations of the MEC architecture have been
proposed. Next, we briefly present the most relevant models.

Small cell cloud (SCC)

The Small cell cloud (SCC) [59] aims to enhance small cells (base stations)
such as microcells, picocells and femtocells with computing and storage re-
sources. It is argued that, because a large number of such cells is supposed
to integrate future mobile networks, the SCC can provide enough compu-
tational power for edge services that have strict requirements on latency.

The SCC architecture specifies the role of a small cell manager (SCM).
The latter is responsible for performing dynamic and elastic management
of virtualised resources from a single SCC cell, with a local SCM deployed
within the RAN; or multiple SCC cells forming a cluster, with a centralised
SCM at a higher cellular infrastructure hierarchy. SCMs can also form a
hierarchy of control, with local SCMs being managed by remote SCMs.
The latter can decide where to deploy and migrate a given computation
within a cluster in order to optimise the service delivery for the end-user.

Mobile micro cloud (MMC)

Similarly to the SCC, the mobile micro cloud (MMC) [123] also defines
an architecture in which cells are enhanced with computing and storage re-
sources. Differently from the SCC architecture, MMC resources are not
clustered but dedicated to the clients connected to its base station. Accord-
ingly, the management of resources forms each MMC is fully distributed

20

2.3. Edge Computing and Similar Concepts

and decentralised. Nonetheless, MMCs are interconnected to guarantee ser-
vice continuity through virtual machine migration whenever clients move
from one base station to another.

Fast moving personal cloud (MobiScud)

The fast moving personal cloud (MobiScud) [120] exploits the new paradigms
of software defined networks (SDN) and network function virtualisation
(NFV) to integrate cloud services into mobile networks without disrupt-
ing backward compatibility with the existing mobile networks. Differently
from SCC and MMC architectures, MobiScud envisions the placement of
computing and storage resources not precisely at the cells, but within or
close to the RAN. As such, it is regarded as a decentralised cloud archi-
tecture. MobiScud also includes a manager component responsible for in-
terfacing with the SDN switches and the decentralised cloud. Its purpose
is to monitor user equipment activities (e.g., handover), to orchestrate the
allocation of resources and the routing of data traffic within the SDN.

Follow me cloud (FMC)

Similarly to the MobiScud, the Follow-Me Cloud (FMC) proposes an ar-
chitecture in which services deployed to distributed datacenters follow its
mobile clients as they roam through the mobile network. Contrasting to
previous approaches, the FMC places distributed datacenters further from
users, into the core network of the mobile service operator. Each data cen-
tre is statically or dynamically mapped to base stations based on different
metrics. A manager entity is responsible for the resources and services and
decides which datacenters should serve which clients. The latter may be
deployed either centrally, hierarchically, or in a fully distributed configura-
tion, similarly to the SCC architecture.

CONCERT

The main difference from CONCERT and the previous architectures relies
on the hierarchical distribution of computing and storage resources within
the mobile network. Additionally, CONCERT integrates with centralised
cloud datacenters. Its purpose is to flexibly and elastically manage re-
sources, including the network. In CONCERT, local servers with lower
computational power offer low latency, lightweight services, whereas more
resourceful regional and centralised data centres serve as a fall-back in
case local resources are not sufficient and as providers of additional ser-
vices with higher latency. CONCERT also distinguishes between control

21

Chapter 2. Preliminaries

and data planes. The control entity (conductor) may also be deployed in
a centrally or hierarchical manner, whereas the data plane is composed of
communication, computing, and storage resources presented as virtual re-
sources. The latter is monitored and managed by the control entity.

ETSI MEC

The ETSI can be considered as the dominant player within the MEC com-
munity. Among the white papers and technical specifications regarding
the MEC paradigm and architecture, ETSI specified a first reference archi-
tecture [105] for MEC. It addresses multiple aspects, including functional
elements — software entities that run on top of virtualised resources from
one or more MEC servers — and reference points allowing the interaction
among them.

ETSI’s Reference Architecture comprises different deployment schemes.
In the first, MEC servers are co-located with base stations, similarly to the
SCC and MMC architectures. Alternatively, MEC services can be placed
at aggregation sites or multi-RAT aggregation points. Finally, MEC servers
can reside farther from the user equipment at some higher level in the mo-
bile networks infrastructure: for instance, at the edge of the core network,
analogously to the FMC architecture.

As one of the most prominent types of edge computing deployment, we
have adopted ETSI’s MEC framework and architecture as the baseline for
our contribution regarding our first research goal. Accordingly, we shall
provide further details on the ETSI’s MEC Framework and Reference Ar-
chitecture in Chapter 3.

2.3.5 Fog Computing

In contrast with the concept of cloudlets, fog computing does not limit
its architecture to servers lying a few hops away from its users. Instead,
fog computing comprises a multilevel hierarchy of nodes stretching from
cloud data centres to densely distributed servers at the network edge. While
cloudlets and consumer-centred MEC services are mostly concerned with
the offloading of latency-sensitive computation, fog computing gives spe-
cial emphases to the anticipation of processing and analysis of exponen-
tially larger volumes of data generated and consumed by IoT applications.
Hence, in addition to latency, fog computing considers network bandwidth
as a critical resource, especially for enabling data-intensive IoT use cases
like Autonomous and Connected Vehicles. Notwithstanding their differ-
ences, fog and edge computing have in common the goal of filling the gap

22

2.3. Edge Computing and Similar Concepts

between cloud data centres and applications at the network edge.
In 2015, several companies, including Cisco, Microsoft, Intel, and Dell,

in partnership with Princeton University, created the OpenFog consortium.
Among others, this consortium produced the first reference architecture for
fog computing [77]. It has also been actively involved in the dissemination
and development of the edge computing paradigm with the publication of
both technical and academic papers.

In our work, we have used both ETSI’s and OpenFog’s reference archi-
tectures. More precisely, ETSI’s specifications were the principal source
for the initial development of an architecture targeting latency-sensitive ap-
plications. We find ETSI’s particularly well detailed in terms of the com-
ponents of a MEC Platform. In contrast, we leveraged the broader deploy-
ment perspective associated with fog computing and detailed in OpenFog’s
Reference Architecture, which is less detailed in terms of functional com-
ponents and their interactions. In particular, the N-tier fog deployment has
been used as a reference for the contribution targeting the self-management
of geographically-distributed infrastructures and services in Chapter 5.

2.3.6 Summary

The architectural variations of MEC and edge computing in general not
only verse on how to deploy and manage edge resources, but also on the
nature of applications and services that are expected to benefit from such
resources. In one hand, finely grained and fully distributed edge nodes,
physically located at cellular base stations (as proposed by SCC and MMC),
are expected to deliver the network performance required by real-time and
interactive applications. In the other hand, these nodes may fail to provide
the resources needed by heavyweight applications and services.

To cope with distinct needs, a comprehensive architecture as proposed
by CONCERT seems more realistic. It also leverages the potential of con-
ventional cloud computing and supports the dynamic allocation of virtual
resources from local, regional, and cloud data centres. Thus, the work pre-
sented in this thesis adopts CONCERT’s vision and complements it with
the following characteristics:

• Multiple edge and cloud providers are expected to co-exist, enabling
the application to decide which provider to use whenever such choice
applies.

• In addition to on-demand, cloud-like provisioning of edge services,
we assume the existence of cloudlets accessible through WiFi hotspots.

23

Chapter 2. Preliminaries

The latter represent several application scenarios involving mobile
computing and the Internet of Things, including smart home, smart
city, and Industry 4.0. Hence, we assume that applications will be able
to seamlessly harnesses various types of edge-centric infrastructures.

Throughout this thesis, the term edge is used in reference to the paradigm
itself, or to the extremity of the network. The latter becomes more evident
in the context of an N-tier fog deployment, which distinguishes three lev-
els: the edge level, the fog level, and the cloud level. More details on the
N-tier fog deployment are presented in Chapter 5.

2.4 Serverless Computing

Recently, serverless computing [31, 87, 131] emerged as a compelling al-
ternative for hosting applications in the cloud. The essential characteris-
tic of the serverless computing paradigm consists of the delegation of the
management of infrastructure to one or more service providers. Server-
less providers become responsible for the elastic provisioning of resources,
networking, load balancing, fault tolerance, and for the patching and con-
figuration of servers.

Serverless computing and architectures are associated with two con-
cepts [87]: of applications that rely on third-party cloud services for han-
dling business logic and state (also known as Backend-as-a-Service, or
BaaS); and of applications for which server-side logic is still written by
application developers, but, unlike traditional architectures, functions run
in stateless compute containers that are event-triggered and fully managed
by a third party (also known as Function-as-a-Service, or FaaS).

2.4.1 Function-as-a-Service

A Note of Advise

Leading vendors like Amazon’s AWS Lambda, Google’s Cloud Functions
and Microsoft’s Azure Functions do not disclose details on their respective
serverless solutions. As shown in different studies [8, 58], the Quality-of-
Service may vary considerably from one FaaS platform to the other. Behind
these discrepancies are the distinct policies and mechanisms governing the
provisioning and allocation of operator’s resources [8, 58].

In this section, we aim to introduce the FaaS model, as advertised or
documented by the leading commercial and open source solutions. When-
ever appropriate, we shall refer to specific platforms when describing the
key features of this emergent service model.

24

2.4. Serverless Computing

Programming Model

In FaaS, application logic is implemented as stateless functions. A func-
tion consists of a granular logic unit responsible for a specific task. This
characteristic enables a separation of concerns and reinforces modular de-
velopment, making the code more maintainable and easily modifiable.

The essential capability of a FaaS platform is that of an event processing
system [9]. Functions are executed in reaction to various sorts of events.
The majority of FaaS platforms allow functions to be triggered remotely,
often through a RESTful API. Additionally, commercial platforms usually
provide integration with other services (e.g. a notification service) that may
be used as event source. Functions can be triggered either synchronously
(also known as blocking invocation) or asynchronously 3.

Functions may be written in various programming languages, including
both interpreted and compiled ones. Most platforms [4, 34, 67] support a
wide variety of languages like Java, Python, JavaScript, PHP, and Ruby.
Through accessible extension mechanisms, open source platforms such as
OpenWhisk [104] and OpenFaaS [106] further extend this support to any
language that may run in a containerised runtime.

Execution Model

Upon function activation, a containerized compute runtime (CCR) is either
made available (cold container) or reused from previous execution (warm
container) by a dispatcher. Additionally, the virtual machine(s) hosting
function containers are provisioned on demand (VM cold) or reused. While
booting a VM usually take minutes [58], CCRs are initialised within mil-
liseconds or a few seconds, thanks to the container technology. Nonethe-
less, retaining containers warm for a while prevents the CCR initialisation
overhead (also known as cold start) for subsequent requests.

The period in which VMs and CCRs are kept warm varies according to
the platform and vendor [58]. For instance, Apache OpenWhisk [104] —a
leading open source FaaS platform— retains warm containers for 60 sec-
onds in its default configuration. Similarly to AWS Lambda and other plat-
forms, OpenWhisk’s commercial counterpart (namely IBM’s Cloud Func-
tions) make use of specific policies and optimisations in the dynamic pro-
visioning and deprecation of virtual machines and containers.

3In the remainder of this work, we shall refer to function activation when the sort of event that triggers its
execution is not distinguished; to function invocation, when it is triggered synchronously; and to function request,
when it is triggered (synchronously or not) by an external source.

25

Chapter 2. Preliminaries

Packaging and Deployment

Functions are deployed to the FaaS platform as a self-contained source code
file or as a package that main contain dependencies (e.g., software modules
and libraries, multimedia assets, and other assets). Functions are uniquely
identified with a name within the tenant’s namespace. In most platforms,
functions may be additionally specified with:

• Compute Runtime: specifies what runtime should be used for exe-
cuting the function (e.g. Python:3, NodeJS:6, Java:1.8). It
may additionally refer to native/third-party binaries and libraries used
by the function (e.g. ImageMagick, OpenCV, to name a few).

• Memory: specifies the maximum memory that can be allocated for
the runtime; often passed as memory parameter to the Docker Engine.

• Timeout: defines the time limit after which the function is terminated
by the platform with an error.

• Concurrent Executions: defines the limit of simultaneous executions
after which new activations are throttled by the platform.

Most FaaS-based platforms also enforce overall limitations to the func-
tion package size and execution time by design. These limits are essen-
tial for keeping the time needed for loading functions into containers ad-
equately low, and to render the allocation and provisioning of resources
more predictable and therefore efficient [9].

2.4.2 FaaS vs Typical Cloud Service Models

FaaS vs IaaS

The IaaS model provides users with access to voluminous cloud resources.
Resource elasticity is managed at the virtual machine level, often result-
ing in over-provisioning of resources leading to increased hosting costs,
or under-provisioning that results in poor application performance. Such
disparity is usually worsened by abrupt workload variations.

Figure 2.3 illustrates the problem above with a typical IaaS deployment
subject to an inconsistent traffic pattern. Bursts of workload (in blue) are
seen as spikes that, within a time window, reach only twice the full capacity
of the allocated virtual machines (in red). Most of the time, the workload is
constrained to a small fraction of the allocated capacity, resulting in under-
utilization. Despite the improvements in full virtualisation technologies,

26

2.4. Serverless Computing
200

150

100

50

0

20

15

10

5

0

Requests/second Required VMs

Req/s VMs

 T(s)
| | | | | | |
5 10 15 20 25 30 35

Figure 2.3: Inconsistent traffic pattern in a typical IaaS deployment [87]

virtual machines still require a significant amount of time to boot, which
impedes responding to abrupt workload fluctuations [10].

Contrasting with the previous scenario, the FaaS model allocates re-
sources (i.e., containers) when actually needed. While the use of virtual
machines enables applications to share physical resources, the FaaS model
leverages the container technology to deliver the following advantages:

• A single operating system is shared among concurring functions serv-
ing one or multiple applications.

• Functions are promptly deployed and scaled in reaction to events with-
out pre-allocating computational resources.

FaaS vs CaaS

This CaaS model exploits the advantages of operating-system-level virtu-
alisation in the provisioning of elastic compute services. Although CaaS
shares with FaaS many of the benefits of container technology, these mod-
els are fundamentally different. First, CaaS is still considered as an in-
frastructure abstraction. Similarly to IaaS, consumers are still in charge of
management decisions (e.g. defining rules for auto-scaling). Second, it is
the responsibility of the user to define what goes in a container, includ-
ing versions of the containerised software and underlying runtime. Finally,
users are billed per time of allocated container and not just for their actual
usage.

27

Chapter 2. Preliminaries

Figure 2.4: Comparison between traditional service models and emergent ones. Each
service is characterised by a different abstraction level and unit of scale.

FaaS vs PaaS

Another common doubt regards the distinction between FaaS and PaaS
models. Before FaaS, the application was the smallest unit of scale. PaaS
providers would allow developers to scale their applications by deploying
multiple instances, with at least one instance always available. The major-
ity of PaaS vendors nowadays harnesses container technology to host users’
applications more efficiently [80].

In contrast with PaaS, the FaaS model allows developers to break their
application down into functions and scale each function independently. Dif-
ferently from PaaS, functions may be scaled down to zero. For most pro-
gramming languages, a function is the smallest unit of logic composing the
application behaviour. Accordingly, functions are the ultimate back-end
logic that can be abstracted by providers. Despite the similarities with the
PaaS model, FaaS lies one level beyond in terms of back-end logic abstrac-
tion. Figure 2.4 highlights the differences between various cloud service
models. In contrast with PaaS, functions (and not the application) is the
customer managed unit of scale.

2.4.3 FaaS vs Microservices

The microservices architecture is a variant of the service-oriented archi-
tectural style. Applications that follow the microservices architecture are
structured as a suite of loosely coupled, lightweight services, each running

28

2.4. Serverless Computing

its own process and communicating through lightweight mechanisms [54].
Among other benefits, the microservices modularity enables their devel-

opment to happen in parallel using distinct programming languages, tech-
nologies, and tools. Moreover, microservices are deployed and scaled inde-
pendently. The tolerant reader technique aims to reduce the likelihood of
failures from unexpected inputs when the microservices interface evolves.

Also importantly, microservices are ideally built around fine-grained
business capabilities by autonomous, multidisciplinary teams. This organ-
isational approach contrasts with the more traditional one in which teams
are organised around technology layers (e.g. a single database team respon-
sible for multiple application modules).

The microservices architecture moves away from sophisticated solutions
for message routing, choreography, transformation, and other functionality
provided by tools such an Enterprise Service Bus in traditional service-
oriented architecture. Instead, the microservices architecture favours dumb
pipes, smart endpoints. HTTP and other standard web protocols are widely
used. Each microservice parses a request, applies application logic and pro-
duces a response. Their choreography does not require complex protocols
like BPEL. Alternatively, lightweight message bus like RabbitMQ enables
reliable asynchronous communication.

The breakthrough in infrastructure automation is both driven and a driver
of the microservices architecture. In one hand, the additional burden for de-
veloping, testing, deploying, and monitoring a large set of independent mi-
croservices largely depends on the use of automation techniques and tools.
On the other hand, the adoption of this architectural style boosted the cre-
ation and evolution of the existing techniques and tools.

The Continuous Delivery software development discipline is commonly
associated with the microservices architecture. This development approach
makes use of intensive test automation that goes from basic unit tests up
to integration, user acceptance and performance tests. The ultimate goal is
to automate the deployment to the production environment in a continuous
and safe manner.

Similarly to microservices (or even more significantly), functions are
lightweight and fine grained and thus are likely to exist in large numbers.
Although the management of infrastructure is abstracted away from devel-
opers, the latter still need to test their functions before releasing them to
production. Hence, Continuous Delivery is also critical for the efficiency
in which serverless functions are developed and evolved.

There is a clear synergy between FaaS and the microservices architec-
ture. Indeed, both approaches are likely to co-exist as part of the same

29

Chapter 2. Preliminaries

application. Serverless functions could even be referred to as microservices
[54, 58], as they are small and modular, communicate through lightweight
protocols (often through a RESTful API), and are independently deployable
by fully automated machinery (i.e., the serverless platform). Furthermore,
the container technology is at the heart of both models. The intermediation
performed by the serverless platform may, however, be seen as a form of
smart pipe, which breaks an important principle of the microservices archi-
tecture. Given the particularities of the FaaS model, throughout this thesis
we shall use the term serverless function or just function.

FaaS Platforms

Introduced in 2014, AWS Lambda [4] was the first FaaS platform to become
widely adopted. It is also the first serverless offering by a major cloud
vendor, followed by Google Cloud Functions, Microsoft Azure Functions
and IBM’s OpenWhisk [43] in 2016. Since then, several open source and
commercial FaaS offerings appeared and continue to appear.

Among the existing open source FaaS platforms, Apache OpenWhisk [104]
is considered as the most mature option. Originally developed as a com-
mercial service by IBM, it was later on incubated by The Apache Software
Foundation. IBM continues to back the platform development and uses
OpenWhisk as the basis of its commercial Cloud Functions service. The
project also receives an active contribution from the open source commu-
nity. More recently, Adobe and Red Hat decided to adopt the OpenWhisk
as their serverless platform. OpenWhisk architecture focuses on scalabil-
ity and resiliency. It leverages cutting edge technology such as CouchDB,
Kafka, Nginx, Redis and Zookeeper. The framework includes a REST API-
based Command Line Interface along with another tooling to support pack-
aging, catalogue services and many popular container deployment options.

Another popular open source platform is OpenFaaS. This platform dates
from mid-2017, thus younger than OpenWhisk. Compared to OpenWhisk,
OpenFaaS offers a lighter approach to FaaS. While OpenWhisk provides its
implementation of a container orchestrator, OpenFaaS leverages state-of-
the-art technology for this purpose, namely Kebernetes 4. Moreover, Open-
FaaS delegates the auto-scaling to external tools that monitor the workload
and allow users to define auto-scaling rules in terms of the monitored met-
rics. Figure 2.5 shows the interest over time for OpenWhisk and Open-
FaaS 5.

4https://kubernetes.io/
5https://trends.google.com

30

2.5. Autonomic Computing

03
-0

1-
20

16

21
-0

7-
20

16

06
-0

2-
20

17

25
-0

8-
20

17

13
-0

3-
20

18

29
-0

9-
20

18

17
-0

4-
20

19

0

25

50

75

100
In

te
re

st
(G

oo
gl

e
Tr

en
ds

) OpenWhisk
OpenFaaS

Figure 2.5: OpenWhisk vs OpenFaaS — Interest over time measured by Google Trends

Finally, OpenLambda is an academic effort towards an open source
serverless architecture [38]. The platform consists of many subsystems
that coordinate to run Lambda handlers, including a local execution engine
that sandboxes handlers, a load balancer, and a distributed database. Al-
though attractive from the research perspective, OpenLambda is still at an
experimental stage and count on a few active developers.

2.5 Autonomic Computing

Autonomic Computing [47, 112] emerged as a paradigm to tame the grow-
ing scale, heterogeneity and dynamism (hence, complexity) of emerging
computing systems. This paradigm drew its name and inspiration from the
human autonomic nervous system. Its overarching goal is to realise com-
puter and software systems that can manage themselves following high-
level guidance from humans [81].

To be considered autonomic —similarly, self-managing or self-adaptive—
a system should have the following properties [47, 91, 112]:

• Self-configuration: is a system’s ability to readjust itself automati-
cally and dynamically following high-level policies that specify what
is desired but not how it is to be accomplished.

• Self-healing: is a system’s ability to ensure software and hardware
faults do not become failures (reactive mode), and to monitor its vital
signs to prevent faults from occurring (proactive mode).

31

Chapter 2. Preliminaries

• Self-optimisation: is a system’s awareness of its ideal performance
combined with its ability to measure its actual performance and act to
reduce or close the performance gap.

• Self-protection: is a system’s ability to defend itself from accidental
and malicious hazards, and to prevent localised failures to become
system-wide.

The equilibrium of an autonomic system is impacted by both its internal
(i.e., self) and external (i.e., context) environments [81, 91]. To achieve the
properties above (or objectives [112]), the autonomic system must be aware
of its internal state (self-awareness) and its external operating conditions
(context-awareness). To this end, the autonomic system makes use of self-
monitoring capabilities —through sensors— whereas self-adjusting is used
to counter the effects of changes —through actuators. Together, these two
activities form a closed-loop control system with the feedback loop aiming
to adjust itself to changes during operation [91].

An autonomic system may comprise one or multiple autonomic ele-
ments [47]. Each autonomic element contains resources and delivers ser-
vices to humans and other elements. Autonomic elements are typically
composed of an autonomic manager (or managing system) and a managed
component (or managed system).

The autonomic manager is responsible for a managed component within
a self-contained autonomic element [112]. It monitors and detects changes
in the internal state of the managed component and its external environ-
ment, and devise an adaptation plan based on the analyses of this infor-
mation, taking into account the current goals and requirements of the au-
tonomic element. The managed component consists of the functional, ad-
justable unit that performs the required services and functionalities.

The autonomic manager realizes the closed-loop control system. IBM
represents this loop as the Monitor, Analyse, Plan, and Execute (MAPE)
loop. The first part —monitor and analyse— process the data collected
from sensors to achieve self-awareness and context-awareness. The last
part —plan and execute— decides on the necessary self-management ac-
tions to be executed through the effectors.

The architecture of an autonomic element may vary [47, 112]. For in-
stance, the autonomic manager and the managed component may be de-
signed as a monolith. Alternatively, the autonomic manager may be pro-
vided externally, for instance, as an agent living in the same host as the man-
aged component or in a different machine. In the latter case, interactions

32

2.5. Autonomic Computing

occur remotely, often using a standard protocol (e.g. HTTP) and a consoli-
dated distributed system architecture (e.g. peer-to-peer, client-server).

2.5.1 Adaptation Taxonomy

Autonomic systems are often classified according to a set of facets charac-
terising their self-adaptation mechanisms, such as the origin of the change
that triggers adaptation, the adaptation type and approach, the object to be
adapted, and the adaptation time. Herein we summarise the key aspects
found in the classification by Rohr et al. [89] and Salehie et al. [91].

Time

Time is an important aspect regarding the adaptation of an autonomic sys-
tem. This facet is often refined as reactive and proactive adaptation [91].
In the reactive mode, self-adaptation occurs only after a change (e.g. in
the expected system behaviour or performance) is perceived. In contrast,
proactive self-adaptation anticipates changes, i.e., self-adaptive actions are
taken beforehand based on change prediction [70].

Rohr et al. [89] further distinguishes predictive adaptation from proac-
tive adaptation. While the former refers to the previously mentioned ability
of the system to anticipate changes, proactive adaptation aims to keep one
or more system metrics at better levels even if the current levels are accept-
able. Hence, proactive adaptation is closely related to self-optimisation.

System Layer

The object of adaptation can reside at distinct layers of the autonomic sys-
tem, namely: at the hardware, the operating system, the middleware, and
the application layer.

First and foremost, a computing system comprises hardware resources
such as CPU, memory, storage, and network components. Virtualisation
technologies enable access to these resources to be controlled at different
granularity levels. Physical and virtual resources may be added or sub-
tracted from the system as a result of its self-management process.

An operating system usually manages the various resources composing
the computing system and, depending on the case, a middleware platform.
Each of these layers may also be subject to adaptation (often through re-
configuration) as part of the system self-management.

With the increasing complexity of software systems, the application
layer has received significant attention from the autonomic computing and
especially from the self-adaptive systems communities. Depending on the

33

Chapter 2. Preliminaries

architecture and technology used for its implementation, an application can
be decomposed into services, methods, objects, components, aspects, and
other sub-parts [91]. Each of these may be subject to changes as part of the
system adaptations of different granularity levels.

Type

According to Salehie et al. [91], self-adaptation can be categorised into
the following types: open/closed, model-based/free, and specific/generic
adaptation.

Close-adaptive systems can perform a limited number of adaptive ac-
tions. In open adaptation, new behaviours can be introduced while the sys-
tem is operating (i.e., at runtime).

In model-free adaptation, the autonomic manager adapts the system
based on its requirements, goals, and alternatives and without a predefined
model for the environment nor the system itself. Conversely, a model-based
adaptation relies on models of the system and context to decide amongst
adaptive actions. For instance, the system model may be based on existing
theory (e.g. queue theory), architectural or domain-specific models.

Finally, a self-adaptation mechanism or method can be classified as
specified or generic. In the former case, the self-adaptation targets a spe-
cific domain or application. In the latter case, the process may encompass
multiple domains and applications.

Approach

Salehie et al. ’s adaptation taxonomy also comprises an approach facet,
which is refined into the following sub-facets: static/dynamic decision mak-
ing, internal/external adaptation, and making/achieving.

A static-adaptation system has its decision process hard-coded. The
modification of the decision procedures requires recompilation and rede-
ployment of the affected components. Conversely, dynamic decision-making
relies on policies, rules, or QoS definitions externally defined and modifi-
able at runtime.

Internal adaptation logic is intertwined with application logic. Prob-
lems of such approach include, but are not limited to, poor scalability and
maintainability. It is useful for localised adaptations but less efficient when
broader information regarding the internal state and context are needed.
The external approach is in-line with the autonomic element architecture
previously discussed. The autonomic manager (or managing system) im-
plements and performs the adaptation process.

34

2.5. Autonomic Computing

At last, Salehie et al. further classify the adaptation approach as making
or achieving. These sub-facet refer to the strategy for introducing self-
adaptivity into the system. According to Sterrit [112], the making approach
follows software engineering methods. In contrast, the achieving approach
implies adaptive learning and

Control Distribution

Depending on the autonomic element architecture —namely, monolithic or
distributed— and the adaptation approach —namely, internal or external—
the adaptation logic (or control [89]) can be categorised as centralised or
decentralised.

In centralised self-adaptation, a single entity is responsible for all the au-
tonomic operations in the system. This centralised control unit has a global
view of the system, which facilitates the analysis and planning activities.
On the other hand, the centralised approach creates a single point of fail-
ure. Moreover, it may result in substantial communication overhead and
eventually become a bottleneck in large distributed systems.

Decentralised autonomic systems are characterised by the distribution
of the adaptation logic over adaptation among its constituent autonomic el-
ements. This approach is usually employed with large distributed systems.
Each element makes decisions based on their local view of the system,
which mitigates communication bottleneck. On the other hand, this limita-
tion often reduces the efficiency of adaptation decisions.

A hybrid approach is also possible. Indeed, many systems use a com-
bination of centralised and decentralised self-adaptation to compensate for
the limitations of each approach. The adaptation logic is structured in a
hierarchy of layers. The lower layers interact directly with the managed
application to achieve a timely and effective adaptation, whereas the higher
layers have a more comprehensive view of the system based on which more
efficient adaptation decisions are made.

2.5.2 Multiple-Criteria Decision-Making

Multiple-Criteria Decision-Making (MCDM) is an important branch of decision-
making theory [76,86]. MCDM problems concern the selection of the best
alternative(s) among many, or their ranking (sorting). All the alternatives
are evaluated concerning multiple criteria chosen by the decision-maker(s).

According to Rezaei [86], a MCDM problem is generally shown as a

35

Chapter 2. Preliminaries

matrix P:

P =


c1 c2 · · · cn

a1 p11 p12 . . . p1n
a2 p21 p22 . . . p2n
...

...
...

am pm1 pm2 . . . pmn


{a1, a2, · · · , am} is the set of available alternatives, {c1, c2, · · · , cn} is the
set of chosen decision making criteria, pij is the score of alternative ai with
respect to criterion cj .

Since the goal of an MCDM problem is to select the best alternative(s)
or to rank them, we need to assign to each alternative ai an overall score
value Vi. Vi can be obtained using various methods. In a general form, if
we assign a weight wj (wj ≥ 0,

∑
wj = 1) to each criterion cj , then Vi can

be obtained as follows:

Vi =
n∑
j=1

wjpij

Usually the scores pij are objective and directly measurable (e.g. time,
energy, monetary cost). Indeed, the difficulty of making decisions when
multiple criteria are involved relies on determining a set of criteria weights
{w1, w2, · · · , wn} that accurately translate the decision maker(s) prefer-
ences.

36

CHAPTER3
A Serverless Architecture for

Multi-Access Edge Computing

3.1 Overview

As a starting point of the contributions in this thesis, we tackled the problem
of defining an architecture for Multi-Access Edge Computing [16]. Among
the various strands of edge computing, MEC has received significant at-
tention from both industry and academia. Famous MEC use cases [103]
include the offloading of computation and the pre-processing of data from
consumer devices. MEC standardisation efforts have been carried by ETSI,
who authored several documents, including a reference architecture [105].
Researchers from different areas have also tackled MEC from the architec-
ture, communication, and offloading perspectives [61, 64, 83].

Like other edge-centric models, the decentralised nature of MEC im-
poses limitations regarding its capability of hosting all the applications and
services that otherwise would be hosted by cloud data centres. An over-
loaded MEC server significantly degrades the user experience and negates
the advantages of the edge computing paradigm [93]. Thus, MEC services
might not be tackled with the straightforward migration of existing cloud
models such as the user-centred deployment of virtual machines (IaaS) and

37

Chapter 3. A Serverless Architecture for Multi-Access Edge Computing

containers (CaaS).
Recently, Serverless Computing [31] appeared as a disruptive alterna-

tive that delegates the management of an application execution environ-
ment to the infrastructure provider. As a consequence, provider-managed
containers are used to execute functions without pre-allocating any comput-
ing capability or dealing with scalability, servers configuration, and load-
balancing burden [9, 38, 87]. By taking into account different aspects such
as the need for an efficient allocation of resources, we propose a Serverless
MEC Architecture that enables the offloading of computation from user de-
vices to surrogate MEC nodes with minimum latency and high throughput.

The adoption of a serverless architecture should boost the utility of MEC
nodes and the accessibility of MEC-based solutions, allowing one to de-
ploy more functionality. Also importantly, the proposed architecture aims
to cope with abrupt and unpredictable workload fluctuations resulting from
the mobility and churn of devices. Furthermore, the Serverless MEC Ar-
chitecture tackles some critical limitations in FaaS platforms with optimi-
sations and supporting services.

The Serverless MEC Architecture described in this chapter is later on
extended in Chapter 4 to include a broader range of deployment alternatives
resulting from the combination of mobile, edge, and cloud computing. It
is also the baseline for the framework targeting the self-management of
densely distributed infrastructures and services presented in Chapter 5.

The remainder of this chapter is organised as follows. Section 3.2 de-
scribes some relevant requirements and provides further details about ETSI’s
Reference Architecture. Section 3.3 introduces the Serverless MEC Archi-
tecture, whereas Section 3.4 describes the instantiation of our architecture
as a Serverless MEC Platform. Finally, Section 3.5 presents a recovery pro-
tocol for improving the resilience and availability of the proposed Server-
less MEC Architecture.

3.2 MEC Architecture and Use Cases

This section sheds light on the requirements for services provided by MEC
platforms. We refer to ETSI’s MEC Use Case and Requirements [103]
and additional literature. In particular, we summarise the most relevant
use cases and requirements in the context of latency-sensitive applications,
which are the primary target of the contributions presented in this chapter.
This section also provides a more detailed description of ETSI’s Reference
Architecture for MEC [105]. In contrast with Section 2.3.4 —where ETSI’s
Reference Architecture was compared with other MEC architectures found

38

3.2. MEC Architecture and Use Cases

in literature— this section focuses on the functional elements and their in-
teraction. Note that some of the terminology used by ETSI was adapted
(e.g., user device instead of user equipment and MEC node instead of MEC
host). This section concludes with the introduction of a Running Example.

3.2.1 ETSI Framework and Reference Architecture for MEC

The ETSI MEC framework is composed of three levels: the mobile edge
system level, the mobile egde node level, and the networks level. The ref-
erence architecture contains both the functional elements and the reference
points allowing interaction among them. In particular, ETSI’s Reference
Architecture focuses on the system and node levels (the network level is
out of its scope). Next, we describe the core entities in ETSI’s Reference
Architecture for MEC relating to this work. The interested reader can find
more detailed information in the original document [105].

Figure 3.1 depicts ETSI’s Reference Architecture. Functional blocks
may not necessarily represent physical nodes in the mobile network, but
rather software entities running on top of a Virtualisation Infrastructure.
The Mobile Edge Orchestrator is the core functionality in the MEC Sys-
tem Level Management. Among others, it is responsible for maintaining a
larger view of the MEC system and selecting appropriate MEC nodes for
application instantiation based on constraints (e.g. network latency).

As discussed later in this thesis, the proper orchestration of infrastruc-
ture and services is key for the scalability and performance of MEC and
similar edge systems. Notwithstanding this, we opted for starting our con-
tribution at the node level. Its main functional elements are:

• MEC node: an entity that contains a Mobile Edge Platform and a
Virtualization Infrastructure providing compute, storage, and network
resources needed for running MEC applications.

• MEC Platform: the collection of essential functionality required to
run MEC Applications on virtualised resources; it also enables MEC
applications to provide and consume MEC services.

• MEC Applications: instantiated on the Virtualisation Infrastructure
(hosted by the MEC node) based on configuration and requests vali-
dated by the MEC Platform Management.

• MEC Platform Manager: responsible for the life-cycle of MEC Ap-
plications, for providing element management functions to the MEC
Platform, and for managing application rules and requirements.

39

Chapter 3. A Serverless Architecture for Multi-Access Edge Computing

Node Level management

System Level management

MEC Platform
Manager

Virtualisation
Infrastructure

Manager

M
E

C
 S

ystem
 Level

Other
MEC nodes

CSF
portal

User
Device

Client App

MEC
Orchestrator

Operation Support
System

User
App
LCM
proxy

Mx1

Mx2

Mm8

Mm9

Mm1

Mm2 Mm3 Mm4

Mm6

Mm7

Mm5

MEC node

Virtualisation Infrastructure

Mobile
edge

platform

Mp3

Mp2

MEC
Application

MEC
Application

MEC
Application

...

M
EC

 N
ode Level

Mp1

Figure 3.1: MEC reference architecture [105]

• Virtualisation Infrastructure Manager: responsible for allocating,
managing and releasing virtualised resources from the Virtualisation
Infrastructure; and for collecting performance metrics and detecting
faults.

3.2.2 MEC Use Cases

Herein, we provide examples of use cases that are commonly associated
with MEC by ETSI [103] and researchers from various fields [61, 64, 83].

Augmented Reality

Augmented Reality may be defined as the combination of the real world
view and supplementary computer-generated information [41]. This tech-
nique allows users to have additional information from their environment
by performing an analysis of their surroundings, deriving the semantics of
the scene, augmenting it with additional knowledge, and feeding it back to

40

3.2. MEC Architecture and Use Cases

the user within a short time. The device can be for example a smartphone
or any wearable device with a camera and other sensors (e.g. compass).

Assisted Reality

Assisted Reality uses a similar method, but its purpose is to actively inform
the user of a matter of interest to him (e.g. danger warning, conversations).
This information might be used for example to support people with disabil-
ities (e.g. blind, deaf, of old age) to improve their interactions with their
surroundings.

Virtual Reality

Another correlated use case is Virtual Reality. Its purpose is to render the
entire field of view with a virtual environment either generated or based
on recorded/transmitted environments. This information might be used for
example to support gaming implementations or remote viewing while using
the most natural input device available.

Cognitive Assistance

Cognitive Assistance takes the concept of Augmented Reality one step fur-
ther by providing personalised feedback on activities the user might be per-
forming (e.g. recreational activities, furniture assembling, cooking). Also
in this case, the analysis of the scene and the advice to the user are sensitive
to delay.

Image and Video Editing

The emergence of mobile devices equipped with a powerful camera com-
bined with the massive adoption of social network applications boosted the
number of pictures and videos produced by amateur and professional end-
users. Such popularisation has been accompanied by new mobile applica-
tions that allow users to customise images and videos to their taste. These
applications often rely on computationally-intensive procedures based on
image processing and, more recently, neural network techniques.

3.2.3 MEC Requirements

ETSI specifies a set of requirements for the MEC framework and architec-
ture [103, 105]. Herein we describe the most important ones in the context
of the main contribution in this chapter, which falls in the category of a

41

Chapter 3. A Serverless Architecture for Multi-Access Edge Computing

MEC Service. Other requirements, including some concerning MEC Appli-
cations, are also presented since they are closely related with the Comput-
ing Services we propose.

• Life-Cycle: A third-party may request the deployment of an applica-
tion to the MEC system.

• Life-Cycle: Applications must be seamlessly deployed on different
MEC nodes without specific adaptation from the application.

• Life-Cycle: Upon request, a client application needs to be provided
with a service instance.

• Life-Cycle: The client application may specify requirements such as
latency and compute resources that must be fulfilled by the MEC node.

• Life-Cycle: A new instance must be created if it is not yet running.

• Life-Cycle: An instance must be terminated if it is not used.

• Connectivity: the MEC platform will allow authorised MEC appli-
cations on the same host to communicate with each other and with
external third-party services.

• Mobility: The MEC system will be able to maintain connectivity
when the user device performs a handover to another cell (i.e., another
base station) assisted by the same or a different MEC node.

• Mobility: The MEC system needs to support the continuity of the ser-
vice when the user device performs a handover to another cell assisted
by the same or a different MEC node.

• Architecture: Application components may reside outside of the dis-
tributed edge cloud, for example in the device or central cloud.

• Architecture: Different deployment scenarios must be supported, in-
cluding base stations, aggregation points, and infrastructures at the
edge of the Core Network (e.g. distributed data centres and ISP Gate-
ways).

3.2.4 Running Example

In this section, we introduce two application scenarios that are used as a
running example throughout the remainder of this chapter.

42

3.2. MEC Architecture and Use Cases

Figure 3.2: An example of a Mobile Augmented Reality app 1

.

Mobile Augmented Reality

Mobile Augmented Reality (MAR) [50,118] emerged as the fusion of Aug-
mented Reality and mobile computing. MAR is an example of applications
for which low latency and high throughput are key requirements. MAR
applications enrich the interaction of users with the physical world by:

• augmenting their vision of the reality with relevant information (e.g.
historical information about buildings and monuments);

• modifying it (e.g. with translations of the captured text in a different
language);

• adding virtual elements that can mimic interactions with the real world
(e.g. virtual objects or creatures from a fantasy game); or

• helping users fulfil physical tasks (e.g. with the highlight of free park-
ing spots).

Our example MAR application is conceived to help the tourists that
visit a city and want to receive relevant information about points-of-interest
(POI), such as monuments, buildings, and other architectural elements, by
looking at them through their mobile devices (see Figure 3.2) or special
glasses. Based on approaches found in literature [42, 84, 118], the follow-
ing steps summarise the sequence of tasks in MAR applications:

1Accessed from http://etips.com

43

http://etips.com

Chapter 3. A Serverless Architecture for Multi-Access Edge Computing

1. The reality that must be augmented should be captured by using the
device’s camera.

2. The captured scene must be scanned and processed so that features
from POI in the scene can be detected and extracted.

3. Additionally, the scene may be contextualised by tracking the device’s
orientation and geographical location [84].

4. POI features are then matched against those in a feature dataset [118]
or a neural networks trained model [84].

5. Information associated with the identified POI must be retrieved, often
from remote servers (due to its size and dynamic nature).

6. Finally, the application augments the real world view with computer-
generated content, which is displayed on the device’s screen.

As users can rapidly move and target different portions of the world
around them, frames from the target scenes must be captured by the de-
vice’s camera at a fast rate (step 1), generating a significant volume of data.
The extraction of features from the objects in these frames (step 2) relies
on compute-intensive image processing [25]. Undesirable or prohibitive
network delay (and traffic) can be avoided by letting steps 1 to 4 and 6 be
performed locally and only delegating step 5 to services in the cloud [42].
However, this kind of approach may fail to meet users’ expectations be-
cause it can significantly reduce the battery level of their devices [20, 25].
Also importantly, continuously fetching POI information from cloud ser-
vices could be slow and disruptive for the user experience.

The offloading of computation from mobile and other IoT devices to
MEC platforms rather than using standard cloud services should bring sev-
eral advantages. First, it provides the low latency and high throughput re-
quired by real-time and interactive applications. Second, it prevents over-
loading resource-constrained devices with compute-intensive tasks. Third,
it prevents congesting the network with large volumes of data to more re-
mote cloud data centres. Last but not least, relying on densely distributed
MEC nodes instead of centralised cloud services is advantageous since sup-
plementary information concerning POI (and other types of city assets)
is highly localised; as showed elsewhere [25], a reduced and geo-located
dataset can significantly improve the responsiveness and accuracy of the
object detection technique employed by many outdoors MAR applications.

44

3.2. MEC Architecture and Use Cases

Figure 3.3: Facial Recognition used for detecting suspects in a crowd2

Facial Recognition

Amongst other use cases, facial recognition [68,98] is used as a non-invasive
and scalable biometrics technique that aims to provide the identity of one or
more individuals depicted in an image, be it a photograph or a video frame
from a surveillance camera.

The use of computers in the recognition of subjects dates back to the
1960s using a man-machine approach in which facial landmarks were man-
ually annotated and then automatically computed and compared between
images to determine identity. Since them, multiple techniques were devel-
oped; the accuracy of state-of-the-art facial recognition methods is orders
of magnitude higher compared to the pioneer attempts. From a more ab-
stract level, real-time facial recognition techniques can be summarised by
the following steps [82]:

1. A digital image or video frame containing one or multiple individuals
is captured.

2. All the faces in the image are detected and located.

3. Each sub-image containing a detected face is pre-processed to obtain
a canonical alignment and orientation of the subject’s face and thereby
improve the performance of the subsequent recognition procedures.

4. Facial features are extracted and selected.

5. Facial features are then compared against a broad set of features from
wanted individuals (e.g. a trained set [98]).

2Accessed from www.digitaltrends.com/cool-tech/facial-recognition-china-50000

45

www.digitaltrends.com/cool-tech/facial-recognition-china-50000

Chapter 3. A Serverless Architecture for Multi-Access Edge Computing

6. The identity of each person is output along with the confidence value.

A Facial Recognition application designed to identify wanted individu-
als out of crowd would also benefit from the MEC architecture. In contrast
with the MAR application, the central advantage is not to reduce battery
consumption nor minimising the delay, but to prevent that large volumes of
data to be transported all the way to cloud data centres [18]. To this end,
MEC nodes lay in the middle of a three-level architecture; data-intensive
tasks such as face detection (step 2), pre-processing (step 3), and feature
extraction (step 4) are delegated to the MEC platform. In turn, the feature
matching procedure (step 5), which relies on a database containing a broad
set of features, is performed by a cloud service.

3.3 The Serverless MEC Architecture

In this section, we introduce the building blocks of a Serverless MEC Ar-
chitecture. We start with the introduction of Self-Managed Computing Ser-
vices, which enable the offloading of application logic from mobile and
IoT devices. In sequence, we present the supporting services and optimi-
sations needed to overcome performance limitations in FaaS platforms and
to satisfy the requirements from latency-sensitive applications.

3.3.1 Self-Managed Computing Services

While MEC servers are ideal candidates for offloading compute-intensive
tasks needed to preserve device resources and kill latency, these servers
are themselves potentially constrained [61]. Accordingly, the feasibility of
hosting dedicated VMs (IaaS) or even containers (CaaS) would be limited.

To overcome this limitation, we propose to extend the MEC Platform in
ETSI’s Reference Architecture with the components from a serverless ar-
chitecture. The resulting Serverless MEC Architecture provides support for
the deployment and execution of functions (FaaS). We refer to this kind of
service as Self-Managed Computing Services or just Computing Services.

The Computing Services proposed are fundamentally different from the
concept of MEC Applications in ETSI’s framework. Although the initial-
isation and termination of MEC Applications on a request basis is part of
its specification, ETSI depicts MEC Applications as long-living instances
outlasting requests from one or multiple clients. Also, ETSI makes ex-
plicit reference to the provisioning of virtual machines and containers to
host MEC applications, thus similar to a typical cloud-based IaaS/CaaS de-
ployment. In contrast, we propose MEC Computing Services to follow a

46

3.3. The Serverless MEC Architecture

serverless architecture through the Function-as-a-Service model [9,38,87].
Serverless functions are stateless, lightweight by design and potentially

ephemeral (may last for a single invocation). Moreover, the life-cycle man-
agement of functions and the orchestration of containerised compute run-
times is abstracted away from developers and delegated to the Serverless
MEC Platform. As a result, the use of computational resources is opti-
mised, which allows more functionality to be deployed and more requests
to be processed concurrently. Also importantly, the Serverless MEC Ar-
chitecture exempts application providers and developers from manually
performing infrastructure management tasks such as server and network
configuration. According to Satyanarayanan and his colleagues [97], self-
management is vital for the widespread deployment of cloudlets infrastruc-
tures. We argue that the same principle holds for MEC deployments.

In our Running Example, the MAR application relies on two compute-
intensive tasks: one for feature extraction and another for feature match-
ing. The first handles the extraction of features from captured scenes,
while the second matches these features against a dataset [118] or a trained
model [84]. An additional POI information task fetches computer-generated
elements to be added to the scene rendered by the device’s display. The
Serverless MEC Architecture exploits the FaaS model to allow tasks such
as feature extraction, feature matching and POI information to be written
as serverless functions and consumed as web services.

Serverless functions could be referred to as microservices [54, 58], as
they are small and modular, communicate through lightweight protocols
(often through a RESTful API), and are independently deployable by fully
automated machinery (i.e., the serverless platform). Nonetheless, we opted
for keeping the consistency with the more commonly used terminology
among serverless computing and FaaS communities.

The resulting application architecture comprises two fine-grained and
highly cohesive functions: one for detecting POI in the captured scene, and
another for retrieving POI information (e.g., from a MEC Database Ser-
vice). Alternatively, the MAR functions could comprise a single, coarser
AR function; its main advantage would be the reduced communication
overhead. However, in the context of decentralised infrastructure, separat-
ing functions into distinct services has the following benefits: (i) it allows
functions to be deployed and scaled independently (e.g. by heterogeneous
MEC nodes); (ii) it allows functions to be consumed independently (e.g. by
client applications hosted by different devices and by distinct applications).

The advantages above are particularly important since MEC nodes in
different deployment configurations diverge in their computational capa-

47

Chapter 3. A Serverless Architecture for Multi-Access Edge Computing

bilities [61, 77]. The decision of where to execute each function (i.e., a
MEC node in proximity or more powerful, but distant nodes) will depend
on factors like the requirements of each function, the computational capa-
bilities and resources available, as well as the network latency and through-
put among devices and MEC nodes hosting the Serverless MEC Platform.

Serverless MEC Platform

Message-broker

MEC node

Serverless MEC Platform

Virtualisation Infrastructure

MEC Interface Components

Functions-as-a-Service

Latency-sensitive
Priority Queue

Delay-tolerant
Queue

External Event Source

Internal Event Source MEC
Service

Client
App

MEC
App

Figure 3.4: Serverless MEC Architecture. Events from external and internal sources are
fed into a message-broker component. Latency-sensitive events are processed with
higher priority, whereas data-intensive, delay-tolerant events may stay longer in queue.

Serverless architectures are, by design, event-driven. A typical use case
among cloud vendors is to enable functions to be executed in response to
events such as the upload of an image to a storage service. Indeed, functions
can become consumers of various sort of events generated by an ecosystem
of back-end services and applications, including other functions.

In the context of MEC, an event-driven architecture is key for the inte-
gration of different MEC applications and services. Not only functions are
activated by an external source of events —namely, requests from latency-
sensitive applications— but also in response to events that are internal to the
Serverless MEC Platform. Besides the trivial example in which functions
trigger one another, a message-broker component provides loosely coupled
integration between functions and other MEC subsystems and services. Our
Serverless MEC Architecture harness the priority queue functionality pro-
vided by this component to enable the in-transit processing and analysis of
data from data-intensive, delay-tolerant applications.

48

3.3. The Serverless MEC Architecture

Back to our Running Example, the Facial Recognition application relies
on Serverless MEC Platforms to perform a preliminary analysis and identi-
fication of facial features from wanted individuals among the crowd. More
specifically, the Serverless MEC Platform provides the compute runtime for
the execution of face detection, face alignment, and face recognition tasks,
which are data-intensive, but not sensitive to sub-second delays. Contrary
to the MAR application, upon preliminary facial identification, the results
are sent to the cloud instead of returning to the external event source.

Last but not least, the MEC architecture provides the critical advantage
of data locality. Such advantage has three aspects: (i) fewer data must be
cached on each MEC node; (ii) the latency of fetching updated data (e.g.
from a cloud service) is substantially reduced [1]; and (iii) a reduced dataset
often improves the performance of operations over these data.

For the MAR application in our Running Example, data locality restricts
the scope of the POI identification function; the platform will need to fetch
and store data only regarding the POI within the region served by its MEC
node (e.g. accessed by client applications through the co-located base sta-
tion [61]) instead of the broader area typically covered by cloud-based ser-
vices. Also importantly, a reduced feature dataset improves both the per-
formance and robustness of the feature matching procedure [25].

3.3.2 Supporting Services and Optimisations

The adoption of a serverless architecture offers many benefits in terms
of granularity, delegation of infrastructure management, and resource allo-
cation efficiency. Notwithstanding this, the satisfaction of more strict re-
quirements from latency-sensitive applications by a Serverless MEC Plat-
form demands further optimisations. Next, we propose additional services
and mechanisms targeting the mitigation of overhead.

Container Initialisation Overhead

As introduced in Section 2.4, FaaS platforms implement different opti-
misation strategies to minimise the time needed to scale-out containers
(cold start). Typical strategies include the caching of function assets, pre-
warming of uninitialised containers, and retention of idle (warm) containers
for subsequent invocations.

Contrary to cloud deployments, the proximity with end-users in MEC
architecture favours client awareness. For instance, ETSI specifies a Loca-
tion Service that provides location-related information regarding user de-

49

Chapter 3. A Serverless Architecture for Multi-Access Edge Computing

vices currently associated with the MEC node. A similar kind of service
might allow the Serverless MEC Platform to become aware of which ap-
plications are currently hosted and executed by user devices within its ser-
vice area. The fact that client applications are already supposed to identify
themselves to the MEC system corroborates this hypothesis.

The Serverless MEC Platform harnesses the client awareness discussed
above to anticipate the warming of virtualised infrastructure and thereby
mitigate the impact of cold start in latency-sensitive applications. More
precisely, we propose the following policies:

• By default, all deployed functions are scaled from zero.

• Whenever resources are available, the presence of devices hosting ac-
tive client applications that depend on functions provided by the plat-
form will trigger the allocation of their respective compute runtime.

• The allocation strategy may be more conservative (e.g. one warm
container per function) or aggressive (e.g. proportional to the number
of distinct clients in the MEC node area).

MEC operators may also choose to enact different policies according to
the SLA category of each function. For instance, functions with more strict
requirements for latency may be associated with specific SLA that assure
more aggressive pre-warming behaviour (provided with a higher cost).

Function Initialisation Overhead

In addition to cold start, the overhead in function initialisation must also
be considered. For instance, the majority of FaaS platforms available —
including Amazon’s AWS Lambda, IBM’s Cloud Functions, Google’s Cloud
Functions, and Microsoft’s Azure Functions— enforce a programming model
in which:

• Functions are entirely stateless, i.e., they have no access to internal
state, and its output depends solely on its input and implementation.

• Function sources and dependencies are limited in size.

• Functions have access to a temporary folder within its containerised
execution environment that can be exploited for caching data.

• Upon activation, a function sets up whatever dependencies it may have
(e.g. a trained model used for object detection in MAR).

50

3.3. The Serverless MEC Architecture

Figure 3.5: Upon a first function activation (in CCR no 1), the POI dataset is fetched from
a cloud-based storage service and added to the CCR’s temporary folder; subsequent
first activations in other CCRs are served by the platform’s Local Caching Service.

• Subsequent executions can happen within the same or different con-
tainers, including fresh (cold) containers.

The primary motivation for limiting package size is to keep at a mini-
mum the time taken to load the function’s assets into the container environ-
ment and make it available for execution, which in turn enables functions
to be allocated and scaled in a timely and efficient manner. Consequently,
functions that depend on more massive datasets need to retrieve them from
external sources when they are first executed within a fresh container. In
this approach, the container’s temporary folder is often used to mitigate
networking overhead for subsequent executions.

Caching Service

In the context of latency-sensitive applications, retrieving extensive data
sets may add prohibitive overhead. For instance, in the MAR example, a
catalogue (circa 100MB [84]) is used for matching POI in the captured
scene. To address this concern, Serverless MEC Platforms are equipped

51

Chapter 3. A Serverless Architecture for Multi-Access Edge Computing

with a Caching Service. This service allows functions to fetch data from
external storage and keep them available at the MEC node for mitigating
networking overhead.

The diagram in Figure 3.5 depicts the interplay between two fresh con-
tainers (CCR#1 and CCR#2) (initialised with the POI identification func-
tion) and the platform’s Caching Service. Upon a first initialisation (CCR#1),
the function fetches a POI catalogue from some remote cloud storage and
then adds it to the local platform’s cache. Subsequent container initialisa-
tions (e.g. CCR#2) retrieve the cached file from the Caching Service.

In-Memory Caching

Figure 3.6: In-memory Cache Mechanism. At the first request, the function assigns to
the cache (a global variable) some complex object. Subsequent executions bypass time
consuming creation of complex objects by retrieving them from the in-memory cache.

While the aforementioned approach is adequate for many use cases, it
may not be sufficient for latency-sensitive applications. For instance, the
time needed to load complex objects into the program’s memory before
execution may be significant or even disruptive. Targeting this scenario,
we propose a succinct, but effective modification to the FaaS programming
model, namely the support for in-memory cache.

52

3.3. The Serverless MEC Architecture

The rationale behind the proposed modification is directly related to the
allocation strategy adopted by most FaaS platforms, i.e., the retention of
warm containers for subsequent activations. While users are charged pro-
portionally to the (memory) resources allocated only for the function exe-
cution duration, idle containers will also retain memory. Hence, application
developers may opt to use part of the function’s memory quota (a specified
requirement) to keep in-memory cache across activations.

Figure 3.6 illustrates the in-memory cache mechanism within the func-
tion life-cycle. At each execution, the function checks the cache value. The
first function execution populates the cache using the object’s constructor.
Subsequent activations of the same function in the same container will find
the cached object initialised and ready for use. As a result, the performance
of subsequent executions is much improved.

Going back to our running example, the MAR function exploits the in-
memory cache mechanism to eliminate the overhead of creating and load-
ing the heavyweight feature dataset used for POI identification at every
function invocation, which in turn reduces the function response time.

It is important to note that the proposed mechanism does not conflict
with the concept of function statelessness since the function output will
solely depend on its input and implementation. The cached data will be
shared among subsequent function activations (possibly from different clients).
The FaaS platform can enforce its initialisation to be final to prevent misuse
(e.g. using the in-memory cache to hold session data). Conversely, distinct
functions will not be able to access each other’s cache as they are never
executed by the same container.

Function Workflows

The adoption of caching strategies is critical for the mitigation of func-
tion set up overhead. However, single function invocation may add signifi-
cant network overhead whenever two or more functions form an execution
flow. To avoid it, developers would be forced to either chain function calls
through hardcoded dependencies, or write coarser and less cohesive func-
tions. In the former case, function chaining also imposes a cost overhead,
since caller functions are also charged for the time they are kept waiting.

To address latency, design, cost, and deployment concerns, the Server-
less MEC Platform supports function workflows. The latter allows develop-
ers to define, through visual or textual programming, a function execution
flow. Similarly to single functions, workflows are activated by events (e.g.,
an HTTP request). At each intermediary step, the result from the current
function is passed to the next; the client application receives a response

53

Chapter 3. A Serverless Architecture for Multi-Access Edge Computing

solely from the last executed function, preventing the round-trip latency
overhead resulting from multiple invocations.

Figure 3.7: MAR function workflow. The workflow starts with the POI_Identification_Fn,
which process the scene frame and tries to identify POI in it. Upon identification
(Choice state), a second task (Retrieve_POI_Information_Fn) retrieves information
concerning the identified POI; otherwise it bypasses this task (Pass state) and returns.

Note that FaaS is event-driven by design. One may also opt to coordi-
nate the execution of functions by mapping specific events —fired by one
or more functions— with the trigger(s) of other function(s). Nonetheless, a
workflow language provides a more straightforward solution for the mod-
elling of execution flows with clear temporal order, causality and cardinal-
ity. Moreover, while event-driven coordination is asynchronous and results
must be fetched asynchronously, the workflow orchestrator may perform
blocking invocations to the platform’s interface and pass along execution
results to the next function without further delay.

Figure 3.7 illustrates a workflow for the MAR application. In this rep-
resentation, we adopted the semantics defined by the Amazon States Lan-
guage3, which allows the specification of workflows as state machines. This
language is also used by AWS Step Functions4, a graphical workflow mod-
elling language by the same vendor.

The first function ([Task] Retrieve_POI_Information) is responsible for
processing the video frame sent by the device and identifying eventual POI,
as described in Section 3.2.4. More specifically, this function outputs a map
containing the object (i.e. a POI) along with its coordinates in the frame.

3https://states-language.net/spec.html
4https://aws.amazon.com/step-functions/

54

3.3. The Serverless MEC Architecture

Upon identification ([Choice] POI_Identified?), the workflow proceeds by
activating the second function ([Task] Retrieve_POI_Information). The lat-
ter receives as input the map produced by the first function; for each iden-
tified POI, it will retrieve computer-generated content to be superimposed
to the original scene. Note that the workflow will return earlier ([Pass]
POI_Not_Identified) if the first function has identified no POI.

State at the Edge

Thus far we have dedicated attention to stateless functions provided by
Serverless MEC Platforms. The platform’s Self-Managed Computing Ser-
vices enable mobile and other IoT devices to offload latency-sensitive and
data-intensive tasks. While the offloading of intensive computation is one
of the central use cases, equally important is the mitigation of delay in ac-
cessing data. This is especially true for applications with data locality.

Take as an example the MAR application. Most of the information per-
taining city POI are highly localised. The POI_Information function would
greatly benefit from accessing these data locally, i.e., from a Database Ser-
vice composing the Serverless MEC Platform’s functionality. Addressing
this kind of scenario, the Serverless MEC Architecture may comprise a
Database Service. In contrast with the Caching Service, the Database Ser-
vice provides the functionality of a SQL or NoSQL database.

Similarly to the Caching Service, the Database Service may enforce ac-
cess to be read-only. Moreover, each platform stores a local view of geo-
localised data (e.g. only POI in that area). Whenever a client application
issues a Command (CMD) to update state, the latter is propagated to the
cloud persistence layer, which holds a global view of the system. Con-
versely, client Queries (QRY) are promptly replied.

While POI information is less dynamic, the same is not true for other
use cases that require access to volatile data with minimum delay. For ex-
ample, let us think of a Mobile Multiplayer Game (MMG). Following a
conventional multi-player architecture, an authoritative service is designed
to host the game state and logic. This solution has two advantages. First, it
mitigates N − to − N communication overhead among peers at each user
interaction. Secondly, it allows a reliable server to manage changes to the
game state. The latter task may not be safely delegated to clients, who oth-
erwise could modify the local game logic and state to their advantage. As
an interactive real-time application, low-latency is a first-class requirement
that justifies the deployment of this stateful service to MEC nodes.

The MMG application poses additional challenges. Contrary to the
Caching and Database Services, game state is updated bottom-up follow-

55

Chapter 3. A Serverless Architecture for Multi-Access Edge Computing

ing client commands. Game session state tends to be transient and therefore
easier to manage. Nonetheless, users may be scattered around distinct base
stations and MEC nodes in the same area.

Two alternative solutions could be employed with the previous scenario:
to create a single instance per game session (hosted by a single MEC node)
or to spawn multiple instances. The former approach implies the choice
of which node to host the session. Due to mobility, it might need to be
migrated at runtime to a best candidate node (e.g. lower delay). The latter
approach implies the synchronisation of state among different MEC nodes.

The replication of state across geographically distributed components
is not trivial. The CAP theorem [33] states that it is impossible for a dis-
tributed data store to simultaneously provide more than two out of the fol-
lowing three guarantees: consistency, availability, and partition tolerance.
For example, if the delay between two MEC nodes at different localities is
not negligible and data must be promptly available when requested, it is not
possible to guarantee the consistency of data at each node.

In light of this, the single-instance approach is favoured. Indeed, appli-
cation instance migration is part of ETSI’s Use Cases for MEC [103]. It is
also addressed by many authors who tackle the problem of placement and
migration of services in edge-centric architectures [61, 125].

Fn cached data
(local view)

Fn

Figure 3.8: Application scenarios involving data access/manipulation. Leftmost:
computation-only targets data pre-processing. Middle: data-only substantially miti-
gates data access (QRY) overhead through caching. Rightmost: read-write enables
transient data to be promptly modified and accessed (CMD+QRY) through sessions.

Figure 3.8 illustrates the three scenarios involving data at the edge. The
first scenario represents stateless computation in which raw data is pre-

56

3.4. The Serverless MEC Platform

processed at the edge and persisted by cloud data centres. The second
scenario adds a read-only Database Service for mitigating the overhead of
accessing data that may be cached at the edge. The third scenario enables
transient data to be promptly modified and accessed by clients within a
session from a latency-sensitive application (e.g. a real-time battle session
from a MMG application).

3.4 The Serverless MEC Platform

In this section, we describe the instantiation of our Serverless MEC Ar-
chitecture using ETSI’s Reference Architecture. In particular, we focus on
the functional elements comprising the Serverless MEC Platform and their
interplay with native components and services in the ETSI specification.

3.4.1 Platform Architecture

The Serverless MEC Platform materialises the MEC Platform component
in ETSI’s Reference Architecture. The platform herein described aims to
be comprehensive regarding the services and optimisations introduced in
the previous sections. It also leverages the functionality to be provided by
implementations of the MEC node and system, as specified by ETSI. This
is particularly so for the features that are out of the scope of this work, e.g.
security and authentication of users, service registry, and management of
traffic rules. Whenever appropriate, we shall comment on how the Server-
less MEC Platform integrates with other MEC components and services.

While academic efforts to the realisation of a serverless platform ex-
ist [39], these are yet far from the maturity level achieved by existing open
source solutions. In light of this, we adopted OpenWhisk [104], a leading
open source FaaS platform, as the serverless architecture of reference.

Triggers and Events

Figure 3.9 presents the Serverless MEC Platform architecture. Its entry
point are the triggers associated with events by means of rules. As dis-
cussed in Section 3.3.1, events may be of different kinds and may come
from external (e.g. HTTP requests) and internal sources (e.g. generated by
other functions or platform services).

While event-driven architectures are typically asynchronous, real-time
and interactive applications need results to be available as soon as possi-
ble. The Serverless MEC Platform tackles this requirement by supporting
synchronous (blocking) invocations to deployed functions.

57

Chapter 3. A Serverless Architecture for Multi-Access Edge Computing

1

f
1

f
2

f
n

2

f
1

f
2

f
n

Figure 3.9: Detailed view of the Serverless MEC Architecture integrated with the compo-
nents from ETSI’s MEC Reference Architecture [105].

58

3.4. The Serverless MEC Platform

In the MAR application, an event that activates the POI Identification
function consists of the upload of a video frame from the scene captured
by the device’s camera. Since it consists of an external invocation, the
activation is triggered by the arrival of an HTTP Request to the RESTfull
API exposed by the platform’s Controller. Moreover, the request consists
of a synchronous invocation; as soon as the execution finishes, results are
sent back to the client application (as an HTTP Response).

For many types of applications, asynchronous invocations can be ad-
vantageous. Indeed, this is a common requirement for the in-transit data
processing and analysis use case. For example, requests from the smart
cameras in our Facial Recognition are one-way only, i.e., they do not ex-
pect analysis results to return.

The Serverless MEC Platform supports this modality through the NoSQL
Storage component (a highly available non-relational database), which en-
ables results to be fetched asynchronously through the unique identifier re-
turned as response for each triggered execution.

Asynchronous invocations also enable execution results to be consumed
a posteriori. Furthermore, it allows for the debugging and auditing of the
function execution. For example, among the various MEC services that
may comprise the Serverless MEC Platform, one is to allow for third-party
administrators to request, via CSF Portal in ETSI’s Reference Architecture,
reports about the real-time or historical usage of the MAR application on
various regions.

The platforms deployed to distinct MEC nodes push their activation log
to the (global) MEC system database at two circumstances: (i) upon re-
source contention (e.g. MEC node storage is low); (ii) when network traffic
is lower (e.g. early in the morning). The access to the function execution
log follows a caching approach: upon a cache miss, the function execution
log is retrieved from the corresponding Serverless MEC Platform (thus, in
the opposite direction of the caching approach in Section 3.3.2).

Function Activation and Load Balancing

Once a request reaches the platform, it is forwarded to the Controller com-
ponent. The latter identifies the function being called and triggers its acti-
vation. Note that, at this point, the request has been authenticated and ad-
mitted by MEC’s User App LCM Proxy and forwarded to the Controller’s
IP, accordingly to the platform deployment set-up within the MEC infras-
tructure and the DNS rules defined by the MEC Platform Manager [105].

Upon activation, the Controller will proceed by delegating the function
execution to an Invoker. Its goal is to manage the life-cycle of the containers

59

Chapter 3. A Serverless Architecture for Multi-Access Edge Computing

in which functions are executed (see Section 3.4.1). Depending on the MEC
node’s capabilities, one or multiple Invokers may be deployed to virtual
machines provided by the Virtualisation Infrastructure.

Whenever multiple Invokers are deployed (see Figure 3.10), the Con-
troller’s Load Balancer module is responsible for selecting, upon each acti-
vation, an Invoker for handling the function execution. The Controller also
keeps track of the Invoker health through periodic heartbeats and new In-
vokers may be deployed on-the-fly without disrupting platform behaviour.

2 n

3

1

Figure 3.10: Multiple invokers hosted by heterogeneous VMs provided by the Virtualisa-
tion Infrastructure comprising a single MEC node.

A possible approach for load balancing would be to evenly distribute the
workload among Invokers, e.g. using a round-robin algorithm. However,
consolidating function activation has the advantage of increasing the rate
in which warm containers are re-used [58], which is critical for resource
allocation efficiency. This can be solved by mapping functions to a priority
list of Invokers (e.g. randomised with a hash function to prevent collisions).
A different Invoker may always be selected (with the increasing probability
of incurring in cold start) in case the current top priority Invoker becomes
overloaded or unavailable. Accordingly, the Controller’s Load Balancer
uses the following scheduling algorithm for each deployed function:

1. Upon a first activation, the controller maps the function to a ran-
domised priority list using a hash function to prevent collisions.

60

3.4. The Serverless MEC Platform

2. The Virtualisation Infrastructure Manager monitors the CPU and mem-
ory usage level of the virtual machine(s) hosting platform’s Invoker(s).

3. The Load Balancer schedules workload according to the priority list
and the Invokers’ status; overloaded and unavailable Invokers are
skipped following the priority order.

4. In case all Invokers are overloaded, the workload is scheduled to the
top priority Invoker, which will queue incoming activations.

Resource Management and Function Execution

The platform’s Invoker allocates containers on an event-basis and according
to the resources made available by the Virtualised Infrastructure Manager
on behalf of the Serverless MEC Platform. More precisely, the Invoker will
orchestrate the life-cycle of the containerised compute runtimes in which
functions are executed in isolation (see Section 2.4). The Invoker also offers
an additional isolation level for function execution and increases resilience,
as multiple instances may co-exist. Moreover, special-purpose Invokers
can be deployed and configured to handle the execution of functions with
distinct requirements such as GPU access (see Figure 3.10).

With the proposed architecture, there is no need to follow the common
practice of deploying multiple virtual machines or containers to render
MEC applications resilient and responsive against downtime or bursts of
workload. Instead, the event-based allocation provides inherent resilience
and scalability, as fresh (or prewarmed [104]) containers can be promptly
spawned and the number of running functions matches the trigger rate (as
long as resources are available to the deployed invokers).

It is also important to notice that most of the Serverless MEC Platform
components are shared among functions. The highly shared nature and the
automated management of the whole platform have two major advantages:
(i) it boosts the efficiency of resource utilisation and thereby the scalability
of the Serverless MEC Platform; (ii) it allow any deployed function to be
quickly scaled-out to unexpected bursts in the workload and scaled-in when
the workload decreases or ceases to exist.

Empowered by the Serverless MEC Architecture, each MEC node han-
dles the execution of several functions, and distinct client applications may
rely on the same functions (e.g., those involving image processing and ma-
chine learning). Many of these functions are already supported by libraries
integrated into major vendors’ serverless frameworks, such as IBM Visual

61

Chapter 3. A Serverless Architecture for Multi-Access Edge Computing

→
←

→
←

Figure 3.11: Left: MAR application running on mobile devices. Middle: Serverless MEC
Platform deployed in a surrogate MEC node. Right: cloud-based services for retriev-
ing POI information and updating the cached POI dataset at different MEC nodes

Recognition5, Azure Visual Cognitive Services6 and AWS Rekognition7.
Similar compute runtime environments and functions are likely to become
part of a Serverless MEC Platform, as the anticipation of data processing
and analysis constitutes one of the primary goals of edge computing [77].

Cloud Integration

The admission and deployment of functions to the Serverless MEC Plat-
form is performed by third-party administrators (or developers) using the
CSF Portal from the MEC System Level in ETSI’s Reference Architec-
ture [105].

Differently from MEC Applications [100, 103], for which instantiation
and termination may be requested through the CFS Portal, function deploy-
ment is limited to the upload of its source code and dependencies to the
Serverless MEC Platform, which will create instances on time, accordingly
to the allocation strategy discussed in this chapter.

While ETSI does not provide further details on the implementation of
the CSF Portal component, one possible solution is to expose a RESTful
API for handling the creation, reading, update, and deletion (CRUD) of
functions. Similarly to cloud-based FaaS platforms [4,34], such API would
be accessed manually through a web portal or CLI and libraries supporting
Operations Automation (Ops Automation).

5https://console.ng.bluemix.net/catalogue/services/watson_vision_combined
6https://azure.microsoft.com/en-us/services/cognitive-services
7https://aws.amazon.com/rekognition/

62

3.4. The Serverless MEC Platform

3.4.2 Platform Deployment

Access Level MEC Deployment

Latency-sensitive functions like the POI identification in the MAR are strong
candidates for being offloaded to Serverless MEC Platforms hosted by MEC
nodes co-located with access-level cellular infrastructure, namely base sta-
tions [61, 105]. In this deployment configuration, mobile devices hosting
client applications are at no more than a few hops from MEC nodes, which
prevents network latency, jitter and maximises throughput.

...
f
2

f
1

f
1

f
n

Figure 3.12: Serverless MEC Architecture overview. Low latency applications running
on user devices send requests to the Serverless MEC Platform hosted by a MEC node
co-located with a BTS, which composes the mobile network infrastructure.

Figure 3.12 provides an overview of the access-level deployment con-
figuration. Its main physical elements are mobile devices and the MEC
node. Consumer devices may be of any type running a latency-sensitive and
data-intensive application that needs offloading part of its computation to
a more robust platform. Hosted applications send the data to be processed
(i.e., captured scene frames) to the platform through standardised proto-
cols [109] over the radio access network (e.g. E-UTRA) using wireless
broadband technology (e.g. LTE). The (remote) Radio Head (i.e. cellular
antenna) composing the Base Transceiver Station (BTS) 8 bridges mobile

8Different wireless mobile networks generations use distinct terminologies (e.g., eNodeB in 4G and gNB in
the more recent 5G).

63

Chapter 3. A Serverless Architecture for Multi-Access Edge Computing

devices and MEC nodes hosting the Serverless MEC Platform. Depending
on the architecture, each BTS may serve one or multiple radio heads.

A local Domain Name Server (DNS) in ETSI’s Reference Architecture
distinguishes between requests to the RESTful platform endpoints and any
other (Internet) endpoints. The main difference from a regular DNS is lo-
cality, as requests must be handled by the MEC node on the current base
station To this end, the names of edge resources must be resolved locally
without being propagated to public DNS servers. As a result, function in-
vocations are handled transparently.

While the previous set-up is ideal from the network perspective, the plat-
form performance will also depend on the MEC node’s capabilities. For
instance, image processing functions will significantly benefit from func-
tionalities offered by GPUs. Hardware accelerators are also expected to be
part of edge infrastructure [77]. Indeed, they are key to enable the pro-
cessing and analysis of large volumes of data generated by the plethora of
devices and applications at the edge.

Alternative MEC Deployments

Additional MEC deployment configurations can be found in the litera-
ture [61]. For instance, MobiScud [120] places servers in distributed data
centres within or in proximity with the radio access network infrastruc-
ture; servers are accessed through Software Defined Networks. A similar
approach is followed by CONCERT [56]. The latter combines the hetero-
geneous capabilities of servers placed at different hierarchical levels.

ETSI also foresees the possibility of harnessing the capabilities provided
by Virtual Network Functions, which are expected to compose telecommu-
nications operators’ infrastructure [102]. In this alternative deployment,
various node level components —including those of a Serverless MEC
Platform— appear as virtualised network functions for the underlying Net-
work Virtualisation Infrastructure.

Distinct MEC deployment configurations result in heterogeneous com-
puting and storage capabilities. We argue that, regardless of the deployment
configuration, the decentralised nature of the various MEC architectures in
the literature imposes limitations on the capabilities of individual nodes.
Hence, the efficient management of MEC node resources enabled by the
Serverless MEC Architecture is critical for the feasibility of MEC and the
scalability of the applications relying upon MEC services.

64

3.5. Proactive Recovery Protocol

3.5 Proactive Recovery Protocol

3.5.1 Overview

ETSI specifies an Mp3 reference point (see Figure 3.9) for control com-
munication between surrogate MEC nodes (e.g. co-located with neighbour
base stations). This channel allows MEC platform to coordinate the reloca-
tion of MEC Application instances one from another [103].

Although the proposed Serverless MEC Architecture aims to improve
the efficiency at each platform, inter-platform coordination is vital to im-
prove scalability and resilience in the advent of two adverse scenarios:
MEC node overloading and platform failures.

To tackle the previous scenarios, we propose a Proactive Recovery Pro-
tocol. The protocol works by enabling surrogate MEC nodes to pro-actively
establish recovery bounds. At runtime, each MEC node monitors and ad-
vertises its state, which is then used to diverge the workload using previ-
ously established recovery bounds meanwhile the normal operation of the
platform is restored.

3.5.2 Platform States

The MEC Platform Manager at each MEC node is responsible for gathering
the platform state and metrics needed to infer its state. More specifically,
it queries the Virtualisation Infrastructure Manager (see Figure 3.9) for the
CPU and memory utilisation of the virtual machine(s) hosting an Invoker.
These data are added to the response time and the timeout error count met-
rics collected from the Serverless MEC Platform. The collected data are
then used to infer the platform state as healthy, overloaded, or unavailable.

Overloaded State

The Serverless MEC Platform will attempt to match demand by promptly
allocating fresh containers until all Invokers reach their memory capacity.
As the workload continues to increase, function activations are queued,
eventually resulting in activation timeout errors. The Serverless MEC Plat-
form is therefore considered overloaded if the following predicate holds:

(CPU ≥ 90% ∨Memory ≥ 95%) ∧ TimeoutErrorCount ≥ 3

The first condition asserts that CPU or memory are currently at a high
usage level. These are not sufficient conditions for attesting the overloaded

65

Chapter 3. A Serverless Architecture for Multi-Access Edge Computing

state, as the platform may still be able to keep response time within ac-
ceptable levels. However, they do indicate that the platform’s ability to
scale-out (memory ≥ 90%) or that CPU parallelism (CPU ≥ 95%) have
been reached 9. Note that, depending on the memory quota allocated for
different functions, used memory may never reach 100%. The additional
clause (TimeoutErrorCount ≥ 3) provides the MEC Platform Man-
ager with the last piece of evidence of the platform overload.

Unavailable State

The Serverless MEC Platform could fail due to various reasons, e.g. fail-
ures in the underlying hardware, Virtualisation Infrastructure, or in plat-
form’s components necessary to its operation. Whilst redundancy and other
fault tolerance techniques may be employed to reduce the changes of faults
to become failures [7], an eventual platform failure would be perceived by
the MEC Platform Manager through: a notification from the Virtualisation
Infrastructure Manager (VirtualisationError); or a sequence of function ac-
tivation errors (e.g. activation timeout).

Accordingly, the platform is considered unavailable if:

V irtualisationError ∨ TimeoutErrorCount ≥ 10

It is worth mentioning that the previous conditions are not intended to be
final and may be refined to reflect distinct MEC deployment configurations
and service-level agreements. Nonetheless, they are in-line with the rules
used for triggering auto-scaling (e.g., of virtual machines) in IaaS deploy-
ments and for determining that a distributed component is unavailable [60].

3.5.3 Proactive Recovery Bounds

We extended the role of the control channel in ETSI’s Reference Architec-
ture to allow platform state to be shared among surrogate platforms. The
resulting inter-platform awareness allows the MEC Platform Manager to
react to abnormal platform states by diverging workload to healthy plat-
forms. Achieving this requires two further steps: (i) deciding which sur-
rogate platform will receive the platform’s workload meanwhile it is over-
loaded or unavailable; and (ii) changing the platform’s traffic rules.

The decision of which surrogate MEC node should handle offloaded
workload may follow different strategies, e.g. to take into account dynamic
information such as the average service time for different functions, or how

9In both cases, metrics refer to the average from the virtual machine(s) that host the platform’s Invoker(s).

66

3.5. Proactive Recovery Protocol

many containers each surrogate platform is currently using (or retaining
idle). Another aspect regards the distribution of control, which may be
centralised (e.g. a cloud-based orchestrator), partially decentralised (e.g.
elected leaders within MEC clusters [93]), or fully decentralised (e.g. MEC
nodes behave as self-organizing agents [23]).

Similarly to the internal load balancing among invokers discussed earlier
in this chapter, the highly elastic and dynamic nature of resource allocation
in FaaS makes it harder to keep track of the platform’s internal state. An
effective recovery solution must consider this volatility and avoid taking
decisions based on information that becomes rapidly outdated. In the other
hand, a minimum coordination is required to prevent conflicting decisions
that could further jeopardize the stability of the MEC system.

In light of this, our recovery protocol enables MEC nodes to pro-actively
form recovery bonds with their neighbours. To cope with simultaneous
overloading or malfunctioning of two or more surrogate platforms, each
MEC node establishes recovery bounds of different degrees, which are ac-
tivated upon overloading or unavailability of the source Serverless MEC
Platform in a predetermined order and accordingly with the state of the tar-
get platform. Simultaneously, the protocol aims to distribute the recovery
bounds among nodes in a balanced manner to prevent disrupting their own
operation in case multiple nodes become overloaded or unavailable.

The Proactive Recovery Protocol is designed to operate without inter-
vention from an external orchestrator or cluster leaders. Moving away from
centralised control improves the robustness and scalability of the recovery
solution [23, 48]. While cluster-based solutions may achieve better results
within the cluster space, global performance will depend on the clusterisa-
tion algorithm itself. For instance, if clusters operate in isolation, neighbour
nodes in distinct clusters may loose the opportunity to cooperate. Also,
leaders may become central point of failure within their cluster.

The proposed protocol is carried out by ETSI’s node level MEC Plat-
form Manager and comprises the following messages:

• ASK(NODE_ID, DEGREE, PRIORITY). Indicates a target MEC
node that NODE_ID is willing to form a recovery bound.

– The DEGREE parameter defines the order in which the target node
will be looked upon for recovery by the requesting node.

– The PRIORITY parameter refers to the criticality of the recovery
bound of a given degree; it provides criteria for solving conflict-
ing requests (i.e., overlapping recovery bounds).

67

Chapter 3. A Serverless Architecture for Multi-Access Edge Computing

– OK|NOK informs the source node about the outcome of its recov-
ery bound creation request.

• UPD(NODE_ID→(DEGREE:PRIORITY)). Used by target nodes
to inform surrogate nodes about a new bound of DEGREE:PRIORITY.

The protocol makes no assumptions about the order in which messages
are sent and received, which is a critical requirement in distributed sys-
tems. Furthermore, MEC nodes may activate the protocol at any time, for
example when new MEC nodes are added to an existing MEC system.

The protocol operates at runtime. Nonetheless, it may be refined into
two phases: initialisation and adaptation. At initialisation, the node will
attempt to form recovery bounds of different degrees. Whenever new MEC
nodes join the system or become unavailable, adaptation takes place with
the self-organisation of recovery bounds until a new equilibrium is achieved.

Listings 1,2,3, and 4 describe the procedures implementing the recovery
protocol. The initialiseBounds procedure is used at initialisation.
It receives two parameters: the source node (containing surrogate nodes);
and the maximum degree. The latter parameter is useful for limiting the
protocol complexity, i.e., the number of messages exchanged and the time
needed to converge to a stable solution. In contrast, the higher the maxi-
mum degree, the more alternatives a MEC node will have for recovery.

The initialiseBounds procedure will solve one recovery bound
at a time, starting with the most relevant degree (i.e., DEGREE=1) up to
the maximum degree (by default, the number of surrogate nodes). For each
degree, the checkBound procedure is called.

The checkBound procedure randomly iterates over surrogate nodes
using a hash function to mitigate collisions. The iteration will stop at the
first node that: (i) has no bounds of lower degrees with that source node
—which otherwise would defeat the purpose of having multiple bounds;
and (ii) has less or, at most, equal number of bounds of that specific degree
with other nodes —which steers the system towards a balanced solution.

The selected node is then sent an ASK message with the following
PRIORITY: one (1), if there are other surrogate node(s) without bounds
for that particular degree that have not been asked for; two (2), if all other

Algorithm 1 initialiseBounds(node,maxDegree)

1: for degree← 1 to maxDegree do
2: CHECKBOUND(node, degree)
3: WAITFORDEGREE(node, degree)
4: end for

68

3.5. Proactive Recovery Protocol

Algorithm 2 checkBound(node, degree)

1: surrogateNodes← node.surrogateNodes
2: minBoundCount← GETMINBOUNDCOUNT(surrogateNodes, degree)
3: altNodes← GETALTNODES(surrogateNodes, degree,minBoundCount)
4: curBound← GETCURRENTBOUND(node, degree)
5: while (targetNode← NEXTNODE(surrogateNodes, degree)) not NULL do
6: targetBounds← GETBOUNDS(targetNode, degree)
7: hasLowerDegree← HASLOWERDEGREE(node, targetNode, degree)
8: if targetBounds.size = minBoundCount and not hasLowerDegree then
9: priority ← 1

10: minID ← GETMINID(targetBounds)
11: if curBound not NULL and curBound.targetNode = targetNode then
12: if altNodes.size > 1 and node.id ≤ minId then
13: priority ← 2
14: else if altNodes.size > 1 and node.id > minId then
15: altNodes← REMOVEFROM(altNodes, targetNode)
16: CONTINUE
17: else
18: priority ← 3
19: end if
20: end if
21: ok ← ASKFORBOUND(sourceNode, targetNode, degree, priority)
22: if ok then
23: if curBound not NULL and priority = 1 then
24: DROPBOUND(curBound)
25: end if
26: BREAK
27: end if
28: end if
29: end while

Algorithm 3 handleASK(node, sourceNode, degree, priority)

1: maxPriority ← GETMAXPRIORITY(degree)
2: if priority < maxPriority then
3: REPLYNOK()
4: else
5: bound← GETBOUND(sourceNode, node) . Any degree and priority
6: if bound not NULL then
7: REMOVEBOUND(bound)
8: end if
9: newBound← CREATEBOUND(sourceNode, node, degree, priority)

10: MULTICASTUPD(node, newBound)
11: REPLYOK()
12: end if

69

Chapter 3. A Serverless Architecture for Multi-Access Edge Computing

Algorithm 4 handleUPD(node, targetdNode, newBound)

1: bound← GETBOUND(node, targetdNode)
2: ADDBOUND(targetdNode, newBound)
3: if bound not NULL then
4: if bound.degree > newBound.degree then
5: CHECKBOUND(node, bound.degree) . Higher degree bound overridden
6: end if
7: else
8: CHECKBOUND(node, newBound.degree) . New overlapping bound
9: end if

surrogate nodes have an equal or greater number of bounds; and three (3),
if this is the only remaining alternative (e.g. MEC nodes at more remote
areas). In case of draw, the node disregards the current target if alternatives
exist and the node’s unique ID is not minimal among contenders.

Upon receipt (handleASK procedure), the target node checks for the
existence of recovery bounds for that same degree. It refrains from creating
a new bound only if a higher priority bound is found (NOK reply); other-
wise a recovery bound is created with the requested degree and priority (OK
reply). For each created bound, the target node updates its internal state and
multicast this event to surrogate nodes (UPD message).

To handle situations in which multiple nodes ask for the same degree
and priority, nodes react to UPD messages (handleUPD) by checking if
it affects its own recovery bounds. If the updated state contains additional
nodes sharing the same degree and priority, the node ID is used as tiebreaker
criterion; those with higher ID will repeat the iteration over its surrogate
nodes and look for the first node with more favourable state (i.e., that has
fewer bounds for that particular degree). If a better alternative is found, it
attempts to create a new bound with the same degree and priority; if suc-
cessful, it will drop the previous bound by sending a new ASKmessage with
the same degree, but PRIORITY=0. Conversely, if no better alternative is
found, the node will enforce the existing recovery bound by sending a new
ASK message, this time with PRIORITY=2 —if alternatives as good as
this still exist— or PRIORITY=3 —if this is the single or last alternative.

It is important to note that other nodes in similar situation (i.e., with
overlapping bounds) will perform the same procedure. The priority mech-
anism allows nodes in more adverse scenarios (e.g. exhausted alternatives)
to signalise their situation. Other nodes will use this information to reorgan-
ise their bounds whenever alternatives are available. If the MEC topology
is balanced (i.e., equal number of surrogate nodes), at least one of the nodes

70

3.5. Proactive Recovery Protocol

Figure 3.13: Recovery bounds formation. A mesh of 6 MEC nodes form balanced recovery
bounds of degree 1 (subsequent degrees are omitted).

71

Chapter 3. A Serverless Architecture for Multi-Access Edge Computing

Ov
er
lo
ad
ed

Overloaded

MEC
node

2

MEC
node

4

MEC
node

5

MEC
node

1

Unav
aila

ble

Overloaded

Unava
ilabl

eUnavailable

MEC
node

6

Mp3 reference point

Recovery Bound

State Update

U
n
a
v
.

MEC
node

3

MEC
node

2

MEC
node

4

MEC
node

5

MEC
node

1

MEC
node

6

MEC
node

3

Overloaded

Unavailable

MEC
node

2

MEC
node

4

MEC
node

1

MEC
node

6

MEC
node

3

MEC
node

5

Workload

Figure 3.14: Proactive Recovery Protocol in action. Nodes 3 and 6 advertise their ab-
normal state to surrogate nodes. Workload is diverged from node 6 to node 2, whereas
MEC node 3 offloads its workload to MEC node 4.

is likely to find a better alternative and drop the disputed recovery bound.
Also, the protocol assures that the recovery bounds of different degrees are
always established with distinct targets. The protocol will converge when:
(i) all aimed degrees have been satisfied; (ii) no better alternatives can be
found by any of the MEC nodes and for all aimed degrees.

Figure 3.13 depicts the recovery protocol in action with a reduced MEC
topology composed of 6 nodes. For the sake of simplicity, only the forma-
tion of the first degree is depicted. After randomly choosing their first de-
gree targets, pairs (1, 6) and (3, 5) establish overlapping bounds with
nodes 5 and 4 respectively. Higher ID nodes (i.e., 5 and 6) will establish
new bounds with other nodes in better conditions and drop their previous
bound; in turn, nodes 1 and 3 will enforce their bounds (PRIORITY=2).

72

3.5. Proactive Recovery Protocol

3.5.4 Recovery in Action

Once recovery bounds have been pro-actively established, the MEC Plat-
form Manager is able to diverge workload in case of abnormal platform
state. The Proactive Recovery Protocol relies upon minimal information re-
garding the platform’s internal state, which is analysed locally by the MEC
Platform Manger and shared among surrogate nodes (as inferred platform
states), accordingly to the Platform State Monitoring introduced in Sec-
tion 3.5.2. The adopted approach prevents excessive changes to the of-
floading decision and consequently mitigates overhead (e.g. in changing
the platform’s traffic rules). More importantly, it reduces the odds of enact-
ing conflicting decisions with other MEC nodes.

At runtime, the MEC Platform Manager monitors and advertises the
state of its own platform and listens for events coming from surrogate
nodes. Upon detecting an abnormal state of its own platform, the MEC
Platform Manager proceeds as follows:

• If the Serverless MEC Platform is overloaded, it chooses the recovery
bound of lowest degree whose target platform is in healthy state.

– If none is found (e.g. due to generalised overloading), it refrains
from diverging workload.

• If the Serverless MEC Platform is unavailable, it chooses the recovery
bound of lowest degree whose target platform is in healthy state.

– If none is found, it chooses the lowest degree whose platform is
overloaded.

– In the worse case scenario in which none is available (e.g. gener-
alised catastrophic failure), it refrains from diverging workload.

Figure 3.14 illustrates the recovery procedure with a scenario in which
2 out of 6 MEC nodes are in abnormal states.

73

CHAPTER4
Mobile-Edge-Cloud Continuum Through

Serverless and Autonomic Computing

4.1 Overview

In Chapter 3 we proposed a Serverless MEC Architecture for enabling
latency-sensitive and data-intensive applications to exploit the services pro-
vided by surrogate MEC nodes. In this section, we consider a broader range
of deployment configurations resulting from the combination of mobile,
edge, and cloud computing, from now on referred to as the Mobile-Edge-
Cloud Continuum, the Compute Continuum, or just Continuum.

While MEC is one of the most mature edge-centric architecture, other
models also received considerable attention from both industry and re-
searchers. This is particularly so for two alternative concepts, namely
cloudlets [96], which encompasses private deployments of trusted, pow-
erful computers or cluster of computers; and fog computing [18], whose
multi-layered architecture stretches from densely distributed devices at the
network edge all the way to cloud data centres.

From a different angle, other authors [27,116,133] consider end-user de-
vices such as smartphones, tablets, and IoT (referred to as edge devices) not
as just consumers, but also as service providers. In this view, the primary

75

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

goals of edge computing are fulfilled through the direct cooperation and
collaboration among edge devices, which execute locally tasks that would
otherwise be performed by services deployed to cloud infrastructure.

The heterogeneity among the existing edge-centric architectures is pro-
found and multi-faceted. Nonetheless, different strands share the objective
of paving the way for new and disrupting applications empowered by seam-
less connectivity and pervasive computing technology. These applications
and the edge paradigm as a whole would benefit from the convergence pro-
vided by a unified and comprehensive model.

Extending the Serverless MEC Architecture in Chapter 3, we present a
unified Mobile-Edge-Cloud Continuum model and propose A3-E, a frame-
work for tackling the management of the life-cycle of serverless functions
in the Continuum. A3-E framework exploits both serverless [9, 87] and
autonomic computing [47] to allow stateless and lightweight functions to
be opportunistically and efficiently fetched, deployed and exposed as re-
mote services by heterogeneous cloud and edge providers or consumed lo-
cally. Additionally, A3-E enables mobile applications to adapt to scenarios
in which surrogate edge servers are not available and contexts in which
performing computation locally is more advantageous than offloading it.

The remainder of this chapter is organised as follows. In Section 4.2, we
discuss the challenges of developing mobile applications for the Mobile-
Edge-Cloud Continuum and motivates it with a Running Example. Sec-
tion 4.3 introduces the A3-E framework and its main components. Sec-
tion 4.4 provides a detailed description of the A3-E framework, whereas
Sections 4.5 and 4.6 introduces prototype implementations.

4.2 The Mobile-Edge-Cloud Continuum

The conjunction of mobile-, edge-, and cloud-computing have the potential
to form a compute continuum on which new and disruptive types of appli-
cations can be built. This continuum enables the seamless convergence of
heterogeneous infrastructures, stretching all the way from cloud data cen-
tres down to mobile and IoT devices, including intermediate steps such as
ISP gateways, cellular base stations, and private deployments.

Given that the two fundamental elements of computation are data and
behaviour, the first challenge of developing an application that exploits the
Mobile-Edge-Cloud Continuum consists in deciding where in the Contin-
uum application data and behaviour should be deployed.

If we focus on behaviour, it is common to distinguish between stateful
and stateless computation. The main distinguishing factor between state-

76

4.2. The Mobile-Edge-Cloud Continuum

ful and stateless components is that the latter does not retain information
from one invocation to the next, nor produce internal side-effects. Also, the
produced output depends solely on the received inputs.

If we focus on data, it is common to distinguish between mutable and
immutable data. While mutable data can be modified after its creation,
immutable data is initialised once and for all at deployment time, i.e., im-
mutable data remains static throughout the life-cycle of the component until
a new deployment may update it.

The choice of where to deploy data and behaviour needs to be informed
by the heterogeneity that exists between the different infrastructures that
constitute the Continuum. Amongst other things, one must take into ac-
count important QoS aspects, such as availability, consistency, and latency.

Data and behaviour that are deployed to cloud solutions will benefit
from high availability, at the cost of introducing higher latency. In contrast,
components deployed to densely distributed edge nodes will benefit from
minimal latency and maximal throughput, at the cost of more constrained
resources and therefore reduced availability (e.g., whenever edge nodes in
proximity are overloaded). Moreover, the consistency of data hosted by
geographically distributed components is much harder to achieve.

A third possibility is to privilege mobile and IoT device own resources.
However, this could lead to significant battery drains and performance degra-
dation. Balancing all these trade-offs at design time may be infeasible,
especially in volatile contexts of operation. The critical challenge is, there-
fore, to allow applications to dynamically and opportunistically decide where
data and behaviour should be deployed and executed.

As we shall present in Section 4.3, it is our view that the Compute Con-
tinuum should focus on stateless computation —i.e., functions. Stateless
components hosting immutable data are much easier to replicate (and test)
across the continuum since no data synchronisation is required and any
data needed by the computation can be obtained at deployment time. Nev-
ertheless, stateful computation and mutable data cannot be excluded from
most modern applications. For these cases, we envision a mixed solution in
which typical mobile and cloud computing architectures are adopted along-
side the Mobile-Edge-Cloud Continuum.

Developing applications in the Compute Continuum also poses other
essential challenges. For example, when selecting where a specific com-
putation should be achieved, we need to take into account security aspects,
such as authorisation, confidentiality, and integrity. Also, deployment and
execution in the Continuum will need tool support, e.g., for performing
modelling, analysis, verification and integration testing. Although these

77

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

challenges are interesting and relevant research endeavours in themselves,
in this chapter we focus on establishing the basis upon which the Com-
pute Continuum can develop. Specifically, we focus on achieving: (i) the
effective deployment of serverless functions by the heterogeneous infras-
tructures that constitute the Continuum; and (ii) the dynamic selection of
where to execute each function while satisfying application requirements.

4.2.1 Running Example

In this section, we motivate the Mobile-Edge-Cloud Continuum with an
example scenario that involves multiple applications that rely on functions
executed in the cloud, edge, in the user’s mobile device.

First, let us consider the MAR application introduced in Chapter 3 and
employed by our user to explore POI in the city she is currently visiting.
The MAR application relies on computation-intensive and latency-sensitive
tasks; as such it can benefit from adopting the Continuum. Indeed, despite
the capacity of mobile devices, it is common with these kinds of appli-
cations for users to experience functional and non-functional degradation
(e.g. low refresh rate, battery drain). By offloading the POI identification
function to a more capable server, the user may enjoy an improved Quality-
of-Experience. While Serverless MEC Platforms are ideal candidates, they
may not always be available in the user location. Tourists visiting less pop-
ular areas could still rely on cloud-based serverless platforms if latency
is acceptable. Alternatively, developers may opt to deploy a reduced POI
dataset alongside the mobile application for covering these specific areas.

After her tour, our user calls for an Autonomous Vehicle to drive her
back to the hotel. During the journey, she starts editing the pictures shot
during the day. This activity is only interrupted by notifications from the
(still running) MAR application providing nearby POI information. To re-
duce the processing time and avoid battery drain, the vehicle features an
edge server that provides a dynamic catalogue of functions, including those
needed by the MAR application. The vehicle itself relies on a route plan-
ning service to calculate the best plan to reach the destination. Since latency
is not a critical requirement, the latter is served by a cloud provider.

Once at her hotel room, our user continues to edit the images and videos
that she shot during the day. Later on, she decides to enjoy a Mobile Game.
The game relies on complex calculations that pose a burden to her mobile
device. To support guest applications, the hotel provides an edge server
equipped with GPU. The server identifies the Image Editing and Mobile
Game applications and, after fetching and installing the necessary software,

78

4.3. System Model

Mobile
Middleware

Domain
Manager

<<resolves>>
<<manages>>

A3-E

Client
Application

<<implements>>

C-Request FunctionRequirement <<contains>>

<<executes>><<triggers>>

<<specifies>>

<<satisfies>>

<<references>>

<<coordinates>>
* *

0..*

1

10..*

1
1

1
**

1

1

0..* 1

1
*

1

<<materialises>>
Domain Resources

Computing
Continuum

Cloud
Domain

Edge
Domain

Mobile
Domain

<<provides>>

Location
Requirement

QoS
Requirement

<<requires>>

Figure 4.1: The conceptual model for the A3-E framework and the Compute Continuum.

starts providing the required functionality. Services managing game scores
and player authentication are hosted by cloud data centres.

4.3 System Model

The conceptual model depicted in Figure 4.1 defines the entities compos-
ing the Mobile-Edge-Cloud Continuum and their association with the A3-
E framework. Next, we introduce each of these entities. In particular, the
AE-E Framework —responsible for the self-management of the life-cycle
of serverless functions— is presented in details along Section 4.4.

4.3.1 Infrastructure Model

The Mobile-Edge-Cloud Continuum is constituted of multiple domains. A
domain yields a common abstraction of the heterogeneous compute, storage
and network resources that make up the Continuum, e.g. physical servers
and virtual machines, storage, and network infrastructure providing access
to the provided services. In the particular case of MEC, the term domain
generalises the ETSI concept of a MEC node [105].

Remote Domains

At the topmost level of the Compute Continuum are cloud domains, which
are accessible through and identified by their public Internet names. Fulfill-
ing the gap between cloud domains and client devices are edge domains. In
our framework, cloud and edge domains are also referred to as remote do-
mains. Edge domains are further distinguished by the networking technol-

79

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

ogy they use: mobile-edge domains (in the context of MEC) are co-located
with cellular infrastructure and accessed through mobile network technol-
ogy (see Chapter 3). In contrast, local-edge domains integrate with wireless
local area networks (e.g., a public or private WiFi Gateway).

Our vision of a cloud domain is aligned with the concept of multi-
clouds [88], in which client applications rely on distinct providers for the
same functionality. Moreover, cloud domains are aligned with the concept
of regions adopted by major cloud providers. As the name suggests, a re-
gion (or zone) refers to the geographical area where independent cloud data
centres from the same provider are located. The deployment of applications
to multiple regions is typically used for fault tolerance (e.g. in the advent of
catastrophic events), load balancing, and to improve network performance
—the primary motivation in the context of our work.

Densely distributed edge domains further refine the concept of regions.
Similarly to multi-clouds, we assume the existence of multiple edge providers.
For example, AWS Lambda, Google Cloud Functions, IBM Cloud Func-
tions, Microsoft Azure Functions are seen as distinct cloud domains; dif-
ferent MEC operators are seen as distinct mobile-edge domains; whereas
public and private deployments (e.g. cloudlets [97]) in the same area con-
sist of alternative local-edge domains.

Mobile Domains

In opposition to remote domains are local mobile domains. In the Contin-
uum, mobile devices play two roles: they are both consumers and providers.
As consumers, mobile devices have access to compute services provided
by edge and cloud domains. More precisely, mobile devices consume
Function-as-a-Service from edge and cloud domains. Additionally, mo-
bile devices provide resources for the execution of functions required by
the applications they host.

The motivation for including the resources and capabilities from mobile
devices in the Compute Continuum is threefold. First, due to the substantial
increase in computational capacity exhibited by modern devices [84, 118].
Second, due to the ability of these devices in executing serverless functions.
Third, to give applications a zero network latency and highly available al-
ternative to remote domains. Also importantly, this choice is in-line with
the edge computing vision [116] in which more powerful mobile and IoT
devices play the role service providers.

Figure 4.2 depicts the continuum model from a deployment perspective.
In this representation, a single mobile device hosts many continuum appli-
cations, which harness (through the Mobile Middleware introduced later on

80

4.3. System Model

Domain Manager

Cloud 1

Domain Manager

Cloud n

Domain Manager

Mobile-Edge 1

Domain Manager

Mobile-Edge n

Continuum
App 1

Mobile Domain

Continuum
App n

Mobile Domain

...

Mobile
Middleware

Mobile Device

Domain Manager
Local-Edge 1

Domain Manager

Local-Edge n5G

Manager

Proxy

Figure 4.2: High-level architecture of the Compute Continuum. A single mobile device
interacts with its (local) mobile domain, and with distinct edge and cloud domains.

in this section) the compute services provided by its (local) mobile domain
and distinct edge and cloud domains.

4.3.2 Continuum Functions and Requirements

Among the entities composing our framework are functions —executed by
various continuum domains— and accompanying requirements.

Continuum functions are aligned with the FaaS model and are specified
with the same attributes described in Section 2.4 (i.e., memory capacity,
runtime, timeout, and concurrency). Additionally, serverless functions are
specified with two types of requirements:

• Location-Requirements: LOCAL-ONLY, REMOTE-ONLY,
EDGE-ONLY, LOCAL-EDGE-ONLY, MOBILE-EDGE-ONLY,
CLOUD-ONLY.

• QoS-Requirements: COST, BATTERY-CONSUMPTION,
RESPONSE-TIME.

Location-Requirements enable application developers to restrict where

81

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

in the continuum a function may be executed. The rationale behind this
requirement is to give application developers the final word on which type
of domain the application relies upon whenever this decision may or must
be taken at design-time. Some of the use cases are: to prevent the overload-
ing of resource-constrained devices with compute-intensive functions; to
prevent the use of cloud domains with data-intensive and latency-sensitive
functions; or even to condition the use of more exclusive domains (e.g.
mobile-edge domains provided by telecom operators) to specific conditions
external to the context of operation (e.g. premium user accounts).

In contrast, QoS-Requirements enables developers (and, as we shall dis-
cuss in Section 4.5, end-users) to delegate the offloading decision to a man-
aging [47] component through the specification of Quality-of-Service at-
tributes. QoS-Requirements are composed of constraints and weights for
one or more QoS attributes. The latter is then monitored and analysed at
runtime and serve as input for the multi-attribute decision of which domain
should host the execution of each required function in different contexts of
operation.

4.3.3 Continuum Application

The architecture of a Continuum Application consists of:

• stateless application logic and immutable data forming serverless func-
tions, which are dynamically deployed to mobile, edge, and cloud do-
mains;

• stateful components, which may still be needed in an application, are
deployed to cloud data centres or the mobile device, depending on
design-time decisions; and

• typical client-side components such as application logic handling in-
ternal and external events, and those responsible for user interfaces.

Continuum applications leverage the serverless architecture proposed in
Chapter 3 to prevent data consistency problems that would arise if stateful
components containing transient or persistent state were deployed to finely-
distributed edge nodes. The adopted model also allows function instances
to co-exist along the continuum. More importantly, functions may be de-
ployed and undeployed independently without the need for state migration,
favouring the seamless transition from one continuum domain to another.
These benefits are particularly important to cope with user mobility and, as
discussed in Chapter 3, with unpredictable workload fluctuations.

82

4.3. System Model

µS µSf ff

Figure 4.3: Architecture of an application exploiting both the Compute Continuum —
through functions (Cf) executed by mobile, edge and cloud domains— and typical
mobile/cloud architecture —through cloud services (CS) and local components.

It is worth mentioning that we target general purpose, application-level
functions, in contrast to Virtual Network Functions (VNF). While our frame-
work does not target VNF, they are considered as a key technology sup-
porting the infrastructure of edge domains, e.g. by routing requests to/from
MEC nodes in specific deployment configurations [56, 120].

Figure 4.3 illustrates the high-level architecture of a mobile application
that leverages the Continuum. Serverless functions are opportunistically
deployed to different domains along the continuum. Additional compo-
nents follow a conventional mobile-cloud architecture: the front-end com-
prises client-side application logic (possibly stateful), local persistence,
and user interfaces; a typical IaaS/CaaS deployment hosts the back-end,
which comprises server-side application logic and remote persistence.

4.3.4 Mobile Middleware and Domain Manager

Representing the two principal parts in the Compute Continuum —namely
mobile devices and continuum domains— are the Mobile Middleware and
the Domain Manager. Their purpose is to tackle the life-cycle of serverless
functions, which is achieved through the coordinated activities defined by
the A3-E Framework (as we shall describe in Section 4.3.5).

Mobile Middleware

The Mobile Middleware performs two central roles: of a managing system,
and a proxy.

As a managing system, it performs activities related to the autonomic
management [47, 81, 112] of continuum applications, namely:

83

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

• registering and advertising the functions required by continuum appli-
cations —self-configuring;

• discovering domains —environment-awareness;

• monitoring the QoS (e.g. response time) of functions provided by
distinct domains —environment-awareness;

• monitoring the internal state (e.g. battery level) and user requirements
(e.g. battery consumption) —self-awareness; and

• preventing and handling failures —self-healing.

More importantly, the Mobile Middleware is responsible for analysing,
based on perceived QoS and requirements, the best domain to execute each
function required by continuum applications hosted by the mobile device
(i.e., self-optimising). Given the specification of multiple requirements, this
choice consists of a Multiple-Criteria Decision-Making (MCDM) [76, 86].

The result of the MCMD is used to transparently proxy Continuum Ap-
plication requests to the best domains, i.e., the Mobile Middleware also acts
as a proxy to continuum applications.

Domain Manager

Similarly to the Mobile Middleware, the Domain Manager also plays the
role of a managing system.

As a managing system, it provides autonomic capabilities —also known
as self-* properties [47, 81, 91]— to the FaaS platform handling the execu-
tion of serverless functions, namely:

• identifying functions required by continuum applications (environment-
awareness);

• fetching and deploying the required functions (self-configuring);

• monitoring the context (e.g. workload) in which the platform operates
(environment-awareness); and

• keeping track of the FaaS platform QoS (self-awareness).

The Domain Manager also oversees the FaaS platform in terms of how
many containers are allocated per function given its context of operation
and SLA (self-optimising).

System-wise, the Domain Manager is responsible for advertising the do-
main’s presence and capabilities; and for providing the Mobile Middleware
with performance metrics that guide its managing decisions.

84

4.3. System Model

4.3.5 Life-cycle Management Problem

When managing the life-cycle of serverless functions, there are two poten-
tially conflicting goals: i) the satisfaction of application requirements and
ii) the optimisation of the resources consumed by these applications.

We focus on three kinds of application requirements: response time, bat-
tery consumption, and monetary cost. Simultaneously, we target the effi-
cient and scalable use of computational resources —namely CPU, memory,
and storage— from the cloud and edge providers.

In the continuum, a multitude of disjoint cloud and edge domains can
host the execution of functions, i.e., they must be able to handle operational
aspects such as downloading and deploying required functions. Also, mo-
bile clients will freely enter and exit geographical areas that are covered by
distinct edge domains; even cloud domains are likely to see considerable
variations to their aggregate workload over time. In such a scenario, it may
be infeasible to know a priori or accurately predict the origin and intensity
of the workload that the different functions at each domain might see.

From an edge/cloud operator’s perspective, an efficient and scalable al-
location of the (virtualised) resources in each of its domains must be able
to cope with the maximum acceptable response time of each admitted func-
tion. To be efficient, the allocation of resources must mimic the correspond-
ing fluctuations of demand, i.e., be highly responsive. Consequently, it is
essential for the mechanisms governing resource allocation in each domain
to be aware of the actual and potential demand for each provided function.

To better express the previous problem, let us define the set of functions
F = {fj | j = 0, 1, ..., J}. Each fj ∈ F may have zero to many instances
allocated. Each instance is bound to a container; the resources allocated to
each container (i.e., CPU and memory) follow the requirement specification
for the corresponding function, coherently to existing FaaS platforms [4,67,
104]. Vector c̄ = (c1, ..., cJ) holds the number of instances for each fj ∈ F .

Now let us assume that each function fj ∈ F is additionally bound to an
SLA specifying a maximum accepted service time ∆j and a maximum con-
currence limit Cj , so that cj ≤ Cj . Given the fluctuations in the workload
and average service time τj (comprising setup time, queue time, and execu-
tion time) of each function, the aim of the Domain Manager is to calculate
the vector c̄ so that τj ≤ ∆j, ∀fj ∈ F . In other words, the domain man-
ager is responsible for regulating the pace in which containers are allocated
regarding the workload; the more strict the service time to be met, the more
responsive must be the creation of containers in the advent of workload
fluctuations. Conversely, the higher the chances of resource contention, the

85

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

more conservative the allocation must be.
Another touchpoint that affects allocation responsiveness consists of the

number of pre-warmed containers. As discussed later in this chapter, some
FaaS platforms [104] allows its operator to statically define the number of
pre-allocated containers that may promptly be loaded with any function
compatible with that specific compute runtime (see Chapter 2.4). While
pre-warming containers drastically reduce cold start, this approach also in-
creases the underutilised capacity and therefore hurts allocation efficiency
—crucial for densely distributed edge domains. The Domain Manager
must, therefore, steer the system towards a balance between provisioning
responsiveness and allocation efficiency.

From the Continuum Application’s viewpoint, the challenges are mainly
twofold: (i) edge domains need to be dynamically discovered and informed
about application requirements; and (ii) the application may need to choose,
at runtime, among different domains.

The QoS delivered by distinct domains may vary due to several rea-
sons. Let us focus, for example, on response time. The multiple hops of
networking separating cloud data centres from mobile devices may result
in network latency and jitter. On the other hand, edge domains may suf-
fer from resource contention. Mobile devices are inherently less powerful;
they may also suffer from performance degradation, especially if multiple
applications are simultaneously in execution.

The battery drain experienced by mobile devices also depends on the
context of operation [20]. If the computation is performed locally, the CPU
and GPU are the main culprits. Conversely, the burden posed by computa-
tion offloading depends mostly on the payload size and network through-
put [52]. For the mobile application, an optimal domain selection is there-
fore the one that, given a set of requirements, satisfies the multi-criteria
decision of which domain to use according to the perceived QoS of the
available domains. Moreover, since serverless functions are modular and
independently deployed, it consists of individual decisions regarding each
function consumed by the application.

To better express the domain selection problem, let us extend the pre-
vious formulation with an application A that relies on the set of functions
FA = {fA,i | i = 1, 2, ..., I}; and the set of disjoint continuum domains
D = {dp | p = 1, 2, ..., P} covering the mobile device hosting A. Each
domain dp ∈ D provides a set of functions Fp = {fp,j | j = 1, 2, ..., Jp}.
For each fA,i ∈ FA, there is at least one domain providing that function,
that is, ∃ fp,j ∈

⋃P
p=1 Fp s.t. fp,j = fA,i, ∀fA,i ∈ FA.

Now let us consider that each fA,i ∈ FA is bound to a set of QoS re-

86

4.4. A3-E Framework

quirements QoSA = {qA,u | u = 1, 2, ..., UA} and that each qA,u ∈ QoSA
is represented by a tuple (ctA,u, wA,u) respectively defining a constraint
(e.g. maximum response time ≤ 300ms) and a weight for that attribute,
where 0 ≤ wu ≤ 1, wu ∈ R≥0. For each qA,u ∈ QoSA, actualp,A,u defines
the value for that QoS attribute as perceived by the client. It follows that,
for each fA,i ∈ FA, the goal is to select the domain dp ∈ D that maximizes
the utility function UA(p) =

∑UA

u=1wA,u ∗ actualp,A,u s.t. actualp,A,u `
ctA,u, ∀qA,u ∈ QoSA (i.e., that all constraints are satisfied).

4.4 A3-E Framework

In this section we present A3-E, a framework tackling the self-management
of the life-cycles of serverless functions. A3-E inherits its name from its
four constituting activities, namely: Awareness, Acquisition, Allocation,
and Engagement.

A3-E targets the efficient and scalable placement of functions along the
continuum and the satisfaction of requirements such as the response time,
battery consumption, and availability. To achieve it, client devices and hete-
rogeneous continuum domains take part in the automated and opportunistic
decision of which continuum resources —among those of mobile, edge,
and cloud domains— should be employed in the execution of each of the
functions required by applications.

4.4.1 Overview

Figure 4.4 provides an overview of the A3-E framework. Activities are
carried out by the Domain Manager and the Mobile Middleware, and co-
ordinated asynchronously through events. Event notifications are depicted
by solid (local event) and dashed (remote event) arrows. Event labels are
depicted in Table 4.1.

Next, we describe each of the four main activities composing the A3-E
framework. Note that, to address the intrinsic heterogeneity of the con-
tinuum, A3-E is flexible concerning how different domains implement its
activities. Whenever appropriate, we shall highlight these differences; we
shall also refer to the activities and events depicted in Figure 4.4.

4.4.2 A3-E’s Awareness

The response time of serverless functions can be decomposed into net-
work latency and service time. The latter may be further refined into three

87

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

parts: acquisition delay (∆AQ), allocation delay (∆AL), and execution de-
lay (∆E). Most FaaS platforms (e.g. AWS Lambda [4] and OpenWhisk [104])
adopt a cold start policy in which containers are allocated after the first call,
and kept warm for a while even if they are idle [87]. The occasional cold
start, however, may be disruptive for latency-sensitive applications.

In light of this, A3-E generalises the Client Awareness in the Serverless
MEC Architecture (see Chapter 3). A3-E’s Awareness has two benefits:
(i) it enables function acquisition to be also opportunistic (i.e., on actual
demand) by triggering the download and deployment of new functions as
soon as the client becomes active in a specific domain (e.g., by starting
the application or by entering the area of an edge domain), which reduces
∆AQ; and (ii) it alleviates ∆AL by pro-actively warming containers just
before they are needed.

The former benefit is crucial for densely distributed edge domains, as
it exempts these domains of downloading and installing beforehand all the
assets needed for executing all functions in the system. Although storage
is a more abundant and less expensive kind of resource, the opportunistic
approach favours efficiency by preventing unnecessary usage. This is espe-
cially so for less popular or highly localised applications (i.e., the MAR ap-
plication for tourists). Moreoever, it prevents multiple edge domains fetch-
ing all function’s assets from a centralised repository at each new admission
or update release, and it enhances the operational autonomy of the domain
(discover-and-play).

The pre-warming of containers refines the practice adopted by some

Figure 4.4: The A3-E framework represented by its constituting activities executed by a
Mobile Middleware and a Domain Manager and coordinated through events.

88

4.4. A3-E Framework

Table 4.1: List of events in Figure 4.4

Source Sink Label Event

Awareness Awareness
DI domain identified
CI client identified

DM domain metrics

Acquisition
Acquisition

fI function identified
DF domain found
DL domain lost

Allocation
CA client arrived
CL client lost

Acquisition

Awareness
fAQ function acquired
fDN function denied

Allocation
fAQ function acquired
DA domain added
DR domain removed

Allocation Engagement
fAL function allocated
fDA function dealocated
DS domain selection

Engagement

Awareness DE domain error
Allocation EM execution metrics

Engagement
fRQ function request
fRS function response

Client Application Engagement
C-RQ continuum request
C-RS continuum response

FaaS platforms. For example, OpenWhisk allows the operator to statically
define how many containers are kept pre-warmed for distinct compute run-
times. In contrast with warm containers, a pre-warmed container does not
host a function. Still, a considerable fraction of cold start consists of creat-
ing the container and not loading the function into the container. As detailed
later in this section, Awareness improves the existing approach by enabling
container pre-warming to reflect the operating context dynamically.

Edge domains also exploit Awareness by triggering client join/left events
once mobile devices enter/exit the domain’s network. Alternatively, cloud
domains rely on special-purpose endpoints (client join) and adjustable time-
outs succeeding the last request by that client (client left). These events
allow for a better characterisation of the workload while multiple tenants
consume the domain’s services. This is particularly important for the effi-
ciency in which resources are allocated, as described in Section 4.4.4.

89

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

While cloud domains are not likely to change and may be set up stati-
cally through valid Internet names, surrogate edge domains must advertise
their existence (domain identification) using discovery protocols [66] com-
patible with their network infrastructure, for example through Simple Ser-
vice Discovery Protocol [134] in local-edge domains; and through Evolved
Multimedia Broadcast/Multicast Service [53], which are carried over tra-
ditional IP multicast over UDP towards end-user devices, in mobile-edge
domains. Besides the domain’s address within the network, edge domains
also need to advertise their API, through which management operations
(i.e., client identification, monitoring) and function requests are performed.

From the Mobile Middleware’s perspective, Awareness is responsible
for the discovery of domains (source of domain found and domain lost
events) and for the advertisement of required functions through client iden-
tification containing their metadata (i.e, name and repository url).
For the duration of the interaction with the domain, Awareness also takes
care of keeping track of the availability and QoS metrics (domain metrics).
The Mobile Middleware uses this information to trigger function available
and function unavailable events whenever the function state in the domain
changes (e.g. due to extreme resource contention). More importantly, the
middleware harnesses the provided information to feed Allocation with
crowd-sourced QoS metrics for each required function.

The communication required for Awareness may be implemented fol-
lowing different approaches, namely:

• Special-purpose, well-known HTTP endpoints with cloud domains.

• Local area network protocols (e.g., IP unicast over UDP) and local
HTTP endpoints with local-edge domains.

• Point-to-point radio

• System-level events (e.g., Intent Broadcast in Android) with mobile
domains.

4.4.3 A3-E’s Acquisition

A3-E’s Acquisition models the automated download and deployment of the
function artefacts from a repository, and the confirmation of the domain’s
capability of providing a required function(s). Its ultimate goal is to prevent
the use of the domain’s resources before the function is needed, while also
facilitating IT operations (Ops) for developers and administrators.

90

4.4. A3-E Framework

Ops mitigation is particularly important for densely distributed edge do-
mains since the manual administration of a large number of geographi-
cally distributed servers can be cumbersome or infeasible. A self-managed
approach towards the discovery of edge domains is also in-line with the
concept of cyber-foraging introduced by Satyanarayanan [94] —who also
states that the widespread deployment of cloudlet infrastructure (i.e., local-
edge domains) will not happen unless software management of that infras-
tructure is trivial—ideally, it should be totally self-managing [97]. Never-
theless, Ops mitigation can also prove useful for cloud domains: to the best
of our knowledge, current FaaS platforms only support uploading (pushing)
of functions, often through RESTful APIs [4, 38, 104].

The Domain Manager performs Acquisition by fetching the function
artefacts (e.g., compiled classes, dependencies, and static assets) from a
repository upon a client identified event. Note that mobile domains are
exempt from performing Acquisition as local functions are assumed to be
downloaded and installed along with continuum applications.

In particular, edge domains may employ different Acquisition approaches.
Taking advantage of A3-E’s Awareness, densely distributed edge domains
will fetch and deploy functions using the following policies:

• Base container images are cached beforehand for all supported com-
pute runtimes.

• Function packages (containing all function assets) are fetched from its
uniquely identified repository and deployed to the FaaS platform:

– upon function identification and after the confirmation that the
domain is capable of providing the function; or

– upon admission into the system and following update releases, if
the function is specified with pro-active deployment SLA.

These policies above may be further refined, e.g. using historical us-
age information and the availability of storage at each node to decide, at
runtime, whenever to anticipate the download and deployment of distinct
functions and when to deprecate resources from unused functions.

To the Mobile Middleware, Acquisition corresponds to the confirmation
(or denial) of the capability of a domain in providing the function(s) re-
quired by the application. Upon domain found event and following client
identification, the Mobile Middleware awaits for the domain metrics notifi-
cation containing the availability and performance metrics for the functions
that are currently available. For each reported function, it then triggers a

91

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

function available (or unavailable) event —to be handled with the update
of the middleware’s list of capable domains, and with the subsequent trig-
gering of a domain added (or removed) event.

In our running example (see Section 4.2.1), the artefacts composing
functions from the Image Editing and Mobile Game applications are once
fetched and installed by the edge domains in the AV and hotel upon the
client identification. Meanwhile, running applications momentarily con-
tinue to rely on their mobile domain, or on any other remote domain in
which the functions have already been downloaded and deployed due to
previous interactions. For example, the mobile-edge domains are likely
to skip the acquisition of MAR function artefacts due to previous contacts
with other tourists’ devices (function-locality correlation). Conversely, the
AV’s and hotel’s edge domains are likely to deprecate cached assets from
least recently used functions to make space for new ones.

4.4.4 A3-E’s Allocation

Monitors
QoS

Analyses
QoS

Optimises
Allocation

SLAs

Domain Manager

Functions

(a) Self-management loop performed by the Domain
Manager as part of A3-E’s Allocation.

Monitors
QoS

Analyses
QoS

Selects
Domain

Domains REQs

Mobile Middleware

(b) Self-management loop performed by the Mobile
Middleware as part of A3-E’s Allocation.

Figure 4.5: Self-management loops for domain-side functions allocation and client-side
domain selection

Domain Manager

The fast and reactive provisioning of containers is the essential character-
istic behind the FaaS model efficiency. However, a purely event-driven
approach may result in over-provisioning of resources, e.g. in the advent of
spikes of workload while the number of warm containers is low (or zero).
Employing a minimum queue between function activation and container
creation may significantly increase the odds of finding a warm container
released following the previous execution. Moreover, the pre-warming of

92

4.4. A3-E Framework

containers is critical for improving responsiveness but needs to account for
resource contention among functions and abrupt workload fluctuations.

In light of this, A3-E’s Allocation extends the mechanism employed by
FaaS platforms with a self-management loop [47]. Its primary goal is to
tackle the scaling of warm and pre-warmed containers by remote domains
in order to guarantee that the response time of each provided function is
in-line with their respective SLA —as formulated in Section 4.3.5. Hence,
in contrast with the static pre-warming and purely event-driven spawning
of containers, A3-E’s Allocation aims to allocate only the right amount of
resources.

The self-management loop (performed by the abstract MAPE compo-
nents in Figure 4.4 and further detailed in Figure 4.5a) works as follows:

• The Monitor (MD) keeps track of function execution metrics (EM)
in terms of response time; it also detects client arrived/left, which are
used to further characterise the workload in terms of active users.

• The Analyser (AD) then aggregates these data over a predefined time
window and computes the arrival rate (αj), average response time
(τj), and the number of clients (cj) for each function.

• The Planner (PD) considers the analysis results and calculates the
overall number of pre-warmed (p̄) and warmed (c̄) containers, so that
τj ≤ ∆j s.t. cj ≤ Cmaxj, ∀fj ∈ F , as defined in Section 4.3.5.

• Closing the loop, the Executor (ED) carries out the new allocation
scheme with the creation and termination of containers so that the
number of pre-warmed and warm containers per function matches the
planned allocation.

Given the limitations of densely distributed edge domains, resource con-
tention between different functions may exist. The planner is also in charge
of managing such situations, which may be achieved through distinct poli-
cies and heuristics. In our Running Example, critical applications (e.g.
Autonomous Vehicles) should have higher priority over less critical ones
(e.g. the MAR application for tourists). Another possibility is to distin-
guish assurances by their revenue to the edge domain operator (e.g.. gold
vs silver SLA). In such cases, some functions (e.g. less critical) might
become unavailable or available with a slower response time at the edge
domain, prompting the choice of alternative domains (e.g., mobile, cloud,
or edge domains from different providers).

93

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

Mobile Middleware

The Mobile Middleware handles QoS fluctuations through the dynamic se-
lection of the domain best satisfying function requirements. Analogously
to the domain-side Allocation, the Mobile Middleware realises this activity
using a self-management loop [47] for each function required by the ap-
plications it is currently managing. At each iteration, the self-management
loop (performed by the abstract MAPE components in Figure 4.4 and fur-
ther detailed in Figure 4.5b) works as follows:

• Through Awareness, the Monitor (MC) collects crowd-sourced per-
formance metrics (i.e., service time) and the network latency for all
capable domains (set D in Section 4.3.5); it also collects execution
metrics from Engagement to keep track of the updated battery con-
sumption and response time for the selected domain.

• For a predefined time window, the Analyser (AC) aggregates moni-
tored data to compute the overall battery consumption and response
time of each capable domain.

• The Planner (PC) uses the analysed data to run a multi-criteria rating
algorithm [86] and compute the best domain for the next invocations.

• Closing the self-management loop, the Executor (EC) enacts the se-
lection (if the computed domain differs from the one in use) by trig-
gering a domain selected event.

Meanwhile, the Domain Manager’s Planner handles domain removed
events (e.g. following network disconnection or function unavailability) by
disregarding that domain in subsequent iterations and removing it from the
current selection list. This condition is reverted upon domain added event.

4.4.5 A3-E’s Engagement

A3-E’s Engagement models the actual provisioning of a serverless func-
tion by a domain after successful Acquisition and Allocation. Throughout
Engagement, and as long as the mobile-domain interaction persists, Con-
tinuum Applications can engage with that selected domain by triggering
function invocations.

Remote domains (i.e., cloud and edge) are engaged through distributed
protocols (e.g., HTTP requests and WebSockets). To enforce a standard
interface between the mobile and remote domains, the former also expose
its functionality as local services.

94

4.4. A3-E Framework

During Engagement, a remote Domain Manager forwards function re-
quest events to the FaaS platform, which in turn maps each request to a con-
tainerised compute runtime responsible for its execution (see Section 2.4).
The decisions taken by A3-E’s Allocation are enacted as follows:

• Upon function deallocated event, the Domain Manager scales down
to zero the number of containers for that function, which causes sub-
sequent invocations to be queued.

• Upon timeout, the domain responds (function response) with a specific
error code (e.g. service unavailable) for all queued requests.

• Conversely, a function allocated event indicates the recovery of a
given function; the number of warm containers is restored, and the
FaaS platform resumes the processing of requests.

From the Mobile Middleware’s viewpoint, a C-request event indicates
that a continuum application has sent a new request to a serverless function.
C-requests contains the name of the target function along with required pa-
rameters; the middleware handles it by performing a function request ad-
dressing the currently selected domain. Upon function response arrival, the
middleware triggers a C-response event handled by the Continuum Appli-
cation.

During Engagement, the Mobile Middleware continuously listens for
domain selected events containing an updated rank of best domains. The
middleware harnesses the availability of multiple domains to provide fault
tolerance; whenever a domain fails (e.g. service unavailable), the next best
domain is used. If none is available for that specific function, the mid-
dleware reacts by queuing subsequent C-requests until a domain selected
event confirms a new domain or, upon timeout, it replies the Continuum
Application with a C-response containing the corresponding error.

4.4.6 Running Example

Figure 4.6 depicts a timeline of events from our Running Example. The
timeline starts with our user initialising the MAR application after entering
the touristic area. The Mobile Middleware receives a domain identification
event (DI) from its mobile domain, and replies with a client identification
(CI). Following the function identification (fI), the middleware triggers a
function allocated (fAL) once the required functions have been registered.
After selecting this domain, the middleware triggers a domain selection
(DS), which allows subsequent C-request (CRQ) events to be handled lo-
cally.

95

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

m. middleware

c. application

mobile domain

DF

RA

DI

CI DS

µAL

µRQ

CRQ

µRS

CI DC

µI

CRS

µRQ

local-edge

DS

CR’

CRS

µRQ

CRQ

CRS

DL DS

DI

CI

µI µAL

CRQ

µRQ

CRQ

user timeline

starts AR enters BSA enters AV exits BSA

µAQ

µRQ

µRS

µRQ

CRS

exits AV

DS

CRS

selected domain
remote event
local event

mobile domain
remote domain

DL

mobile device

DF DC

 mobile-edgeDI µIµAQ µRS µRSµAL

Figure 4.6: A timeline of events from the Running Example scenario.

As our user enters the area covered by a mobile-edge domain serving
a base station area (BSA), the middleware receives a domain identification
(DI) and repeats the previous set-up procedure. To prevent battery drain,
the Mobile Middleware decides for the mobile-edge domain and triggers
a new DS event once the function acquired (fAQ) event arrives. After a
long period of engagement with the mobile-edge domain, our user enters
the AV and its local-edge domain. Due to a change of network, the connec-
tion with the mobile-edge domain is lost (DL). To prevent service inter-
ruption, the middleware momentarily switches back to the mobile domain
(DS). Meanwhile, as this is the first contact with the MAR application, the
edge-domain goes through Acquisition, which takes some time (∆AQ) to
complete (fAQ). Upon a domain confirmed event (DC), the AV’s local-
edge domain is selected (DS) and engaged throughout the journey.

4.5 Domain Manager

To demonstrate the feasibility of A3-E in managing the life-cycle of contin-
uum functions, we implemented a prototype version of the Domain Man-
ager. While MEC architecture is certainly interesting, it is also signif-
icantly more difficult to access to cellular infrastructure and technology.
Thus, we focus on the implementation of a local-edge domain co-located
with our department’s infrastructure and accessed through WiFi, similarly
to cloudlets [97].

Notwithstanding the differences regarding communication technology
(i.e., LTE broadband) and supporting components (i.e., responsible for au-
thenticating user requests and managing traffic rules) between local- and
mobile-edge domains, we argue that the central concepts of the proposal
—namely, the opportunistic deployment of serverless functions— would

96

4.5. Domain Manager

Domain Manager

API Gateway (REST/HTTP)

identification endpoint monitoring endpoint engagement endpoint

SSDP (UDP)

MULTICAST

Acquisition
Manager

OpenWhisk

Controller

CounchDB

Git Repository

 Mobile Device

Mobile Middleware Continuum Application

Deployment Descriptor Function Package

Awareness Manager

RESTful API

Allocation Manager

QoS Monitor

Resource Allocator

SLA AnalyserContainer
Orchestrator

Function SLA
E

M

A

P

K Local
Persistency

Virtual
Machine(s)

Container Engine

f
1

f
1

f
2

f
3

f
3

Figure 4.7: Domain Manager architecture overview.

be shared with mobile-edge domains extending the Serverless MEC Archi-
tecture presented in Chapter 3. We also argue, for the scope of the con-
tributions in this work, edge domains are significantly more complex than
cloud domains, which may still benefit from many of the techniques and
mechanisms presented in this section.

Note that, for the sake of presentation, we opt for describing the im-
plementation of the Mobile Middleware and accompanying mobile domain
in a separated section (Section 4.6). As reported later in this work, these
prototypes were employed in the experimental evaluation of the Mobile-
Edge-Cloud Continuum and the A3-E framework.

97

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

4.5.1 Architecture Overview

The Domain Manager was implemented1 using a modular architecture re-
flecting A3-E’s activities. More precisely, Awareness, Acquisition, and
Allocation were implemented as separated modules in Python language.
While scalability might be a concern, Python language has an active com-
munity and features several libraries that reduce the burden of implement-
ing the prototype. It therefore offers good cost-benefit to demonstrate the
Domain Manager’s functionality.

Our prototype relies upon OpenWhisk [104], the most mature open source
solution for handling the execution of serverless functions. Our solution
interfaces with OpenWhisk through its (management) RESTful API. The
prototype also harnesses the functionality of some of the components in
OpenWhisk technology stack (e.g. CouchDB NoSQL Database and Ngix).

Figure 4.7 gives an overview of the Domain Manager architecture. Note
that, throughout the remainder of this section, we shall refer to A3-E’s ac-
tivities and their respective Manager component interchangeably.

4.5.2 Awareness Manager

The Awareness Manager handles part of the mutual awareness between
mobile devices and the domain. Local-edge domains are co-located with
wireless local area network infrastructure. We leverage the Simple Service
Discovery Protocol (SSDP) [134], a state-of-the-art network protocol, for
implementing the domain identification procedure in A3-E’s Awareness.

The SSDP protocol is designed to work without the assistance of server-
based configuration mechanisms, such as Dynamic Host Configuration Pro-
tocol (DHCP) or Domain Name System (DNS), and without special static
configuration of a network host. SSDP uses UDP to multicast text-based
NOTIFYmessages to a well-known IP address (239.255.255.250) and
port (1900). In addition to multicast (passive discovery), interested de-
vices may also query (active discovery) using the M-SEARCH method.
Responses are sent via unicast to the originating address and port number
of the multicast request.

The Awareness Manager utilises the SSDP protocol to advertise its pres-
ence and interface within a network domain. The Mobile Middleware (pre-
sented later in Section 4.6) uses the same protocol to listen to NOTIFYmes-
sages and acquire information about the domain’s RESTful API, namely:

• identification endpoint: used for client identification in Awareness.
1Documentation and source code available at https://github.com/deib-polimi/

A3-E-DSM-local-edge/

98

https://github.com/deib-polimi/A3-E-DSM-local-edge/
https://github.com/deib-polimi/A3-E-DSM-local-edge/

4.5. Domain Manager

• monitoring endpoint: used by Awareness to keep track of the domain
status (i.e., function availability) and crowd-sourced performance met-
rics (i.e., the average response time of available functions).

• activation endpoint: used to trigger the activation of functions during
Engagement.

In this set-up, we follow the assumption that an edge domain will over-
lap with the network domain in which it advertises its presence through the
UDP-based SSDP protocol. This is in-line with the domain abstraction ra-
tionale presented in Section 4.2. Consequently, a single Domain Manager
is expected to handle the control of the FaaS platform —deployed to one or
multiple (virtual) machines— serving the entire network domain.

Mobile devices within a domain network are not always engaging with
that domain. The Awareness Manager provides the critical functionality
of exposing, through the monitoring endpoint, updated information regard-
ing the availability and performance of admitted functions, as requested
by the Mobile Middleware. The rationale, inspired by Flores et al. [30], is
that mobile devices can take advantage of crowd-sourced execution metrics.
For each requested function, the Domain Manager checks through Open-
Whisk APIs if it is currently available. Additionally, it queries CouchDB
(the NoSQL composing OpenWhisk’s architecture) to obtain the aggregate
service time from past function activations.

Listing 4.1 shows an example of a domain metrics message containing
the availability status and crowd-sourced service time for three functions.

4.5.3 Acquisition Manager

The Acquisition Manager’s main thread subscribes to Awareness events.
For each required function contained in client identification, the manager
proceeds concurrently with A3-E’s Acquisition. First, it checks whether
the function’s credentials (i.e., name and repository URL) are present in
a whitelist. This simple positive control allows the edge domain admin-
istrator to restrict access and prevent misuse of the domain’s services by
unauthorised applications. Edge domains targeting unspecified applications
(e.g., hotel guests in our Running Example) may opt for granting access to
the domain’s services based on network-level or user-level authentication.

Amongst the files in the function’s repository, a Deployment Descrip-
tor provides deployment instructions. Listing 4.2 provides an example
of a function Deployment Descriptor file. The descriptor is written us-
ing JavaScript Object Notation (JSON), an open-standard key-value file

99

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

Listing 4.1: Example of deployment descriptor file used by remote domains.

1 {
2 "metrics": [
3 {
4 "repo": "https://github.com/ste23droid/A3E-face-

detection",
5 "status": "available",
6 "serviceTime":
7 {
8 "value": 0.11072,
9 "unit": "ms"

10 }
11 },
12 {
13 "repo": "https://github.com/ste23droid/A3E-POI-

recognition",
14 "status": "available",
15 "serviceTime":
16 {
17 "value": 0.19034,
18 "unit": "ms"
19 }
20 },
21 {
22 "repo": "https://github.com/ste23droid/A3E-neural-

transfer",
23 "status": "unavailable"
24 }
25]
26 }

format. At the current version, function deployment descriptor files are
expected to contain the following attributes:

• functionName: unique name within the user namespace; passed “as
it is” to the OpenWhisk CLI.

• path: relative path to the compressed package (.zip) containing
the function’s assets; passed “as it is” to OpenWhisk CLI.

• runtime: the compute runtime, accordingly to the domain’s catalogue.

• dependencies: list of software dependencies required to run the func-
tion; each dependency is specified by its name and version.

100

4.5. Domain Manager

• memory: how much memory is assigned to the OpenWhisk action.

• timeout: the maximum execution time before a timeout error.

Figure 4.8: Activity diagram depicting the function identification procedure.

A domain is considered capable if: (i) the requested compute runtime
is registered in the domain’s catalogue and the corresponding Docker con-
tainer image is available; (ii) all software dependencies are satisfied; and
(iii) required storage is available.

In theory, container images may be retrieved at runtime from public
repositories (e.g. Docker Hub). For instance, one can find bundles of lean
operating system containers (e.g. Alpine Linux) plus runtime (e.g. Python)
as small as 60MB. In practice, a function often relies on other dependencies;
the total size of the container image can jump to hundreds of megabytes or
more. Hence, the manager conditions the domain’s capability in serving
a function to the local availability of the corresponding container image.
If the function is whitelisted, the Acquisition Manager will attempt to pull
a missing image. Otherwise, the domain is denied for that function. It is
only after verifying and confirming the domain’s capabilities in providing
the required functionality that the Acquisition Manager will fetch from the
same repository the compressed package containing all function assets.

The activity diagram in Figure 4.8 depicts the Acquisition procedure.
Upon a client identification event (i.e., an HTTP request), the manager
parses the set of required functions. For each function (depicted by the
fork bar in the diagram) the manager will check for the function’s name
and repository in the whitelist. If it is not available, it will then pull the
image before finally fetching the function package.

101

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

Once the function package and dependencies are ready, the manager
proceeds with its deployment using OpenWhisk’s command-line interface.
The different threads handling individual acquisition will eventually join
(depicted by the join bar in the diagram). The outcome of each operation is
sent as an aggregate response to the Mobile Middleware. If successful, each
operation triggers an individual function acquired event, which is handled
by the domain’s Allocation Manager.

Listing 4.2: Example of Deployment Descriptor file used by remote domains.

1 {
2 "functionName": "faceDetection",
3 "path": "faceDetection.zip",
4 "runtime": "Python",
5 "dependencies": [
6 {
7 "name": "numpy",
8 "version": ">=1.15"
9 },

10 {
11 "name": "opencv",
12 "version": ">=3.4.2"
13 }
14],
15 "memory": 256,
16 "timeout": 2
17 }

4.5.4 Allocation Manager

The Allocation Manager is responsible for guiding the FaaS platform’s
allocation process, according to the domain’s context of operation and the
SLA of deployed functions. We propose a fast and scalable materialisation
of the self-management loop in A3-E’s Allocation based on control theory
to cope with the requirement of continuum applications and highly dynamic
workload (e.g., from users that quickly enter and leave a particular area).

In literature, one can find many approaches for dynamic resource allo-
cation based on heuristics [99], artificial intelligence [74] and queue the-
ory [40]. We adopted an extremely lightweight control theoretic technique
that exploits the container technology [10].

The primary goal of the control-theoretic allocation is to prevent the

102

4.5. Domain Manager

Figure 4.9: Control loop implementing the self-management in A3-E’s Allocation.

overallocation of containers in the advent of workload spikes. While cloud-
based FaaS operators enjoy virtually unlimited resources, overallocation
threatens the performance of contender functions in edge domains due to
limited horizontal scalability. Simultaneously, controllers can readily change
resource allocation (i.e., short control period), thanks to the reduced time
needed to create and load functions into containers.

Control-Theoretic Allocation

Figure 4.9 gives an overview of the control system, which is responsible
for limiting the number of containers to the cluster of (virtual) machines
composing a domain’s pool of resources (or the plant in control-theoretical
terms). Each container provides the runtime environment required for the
execution of a given continuum function; and multiple containers may co-
exist in one or more machines (horizontal scalability).

The control plant is subject to different signals that could be measurable
(input variables) or unknown (disturbances). Considering a discrete time,
for each admitted serverless function we define λ(k) as the function of the
measured arrival rate of requests at each control time k; and λ̄(k) as the
corresponding vector for all admitted functions.

At time k, the function is executed in a cj(k) number of allocated con-

103

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

tainers, while c̄(k) is the corresponding vector for all functions. The distur-
bances are defined as d̄ and, by definition, cannot be directly controlled and
measured. Finally, τ̄ is the system output and corresponds to the response
time vector comprising all functions, whereas τ̄ ◦ corresponds to the vector
of desired response time per function (or control set-point) according to the
SLA of each function.

In our current set-up, the function τ̄ ◦(k) does not vary over time, mean-
ing a constant targeted response time for each function. Of course, these
values should be set below the SLA threshold (i.e., τ ◦j (k) ≤ ∆j,∀ k ∈
N, fj ∈ F). Moreover, since response time cannot be measured instanta-
neously but by aggregating the execution time of multiple requests over a
predefined time window, many aggregation techniques could be used with-
out any change to the system model and controller. In our framework, we
compute the average of the response time values in τ̄ within each control
period, but stricter aggregation functions like the 99th percentile could be
used depending on the needs of the service provider.

We dedicate one Controller per function with the goal to compute the
next container allocation in order to obtain:

τj(k)◦ − τj(k) = ej(k) = 0 ∀k ≥ 0 (4.1)

or more realistically, considering all functions:

ēj(k) ' 0 ∀k ≥ 0,∀fj ∈ F (4.2)

To achieve this objective controllers must model the system by defining
a characteristic function. We assume that this function does not need to be
linear but regular enough to be linearisable in the domain space of interest.
Moreover, we consider this function to be dependent on the ratio of the
number of allocated containers c and the request rate λ.

The characteristic function (f to give it a name) is intuitively monoton-
ically decreasing towards a possible lower horizontal asymptote, as it can
be assumed that once the parallelism degree of a function is fulfilled by the
available containers, adding new ones causes no further decrease in the re-
sponse time. More specifically, we found a practically acceptable function
to be:

f

(
c(k)

λ(k)

)
= ũ(k) = c1 +

c2

1 + c3
c(k)
λ(k)

(4.3)

where parameters c1, c2, and c3 were obtained through profiling of each
function. Thus we obtain the following dynamic system:

104

4.5. Domain Manager

τ(k) = pτ(k − 1) + (1− p)ũ(k − 1) (4.4)
where p ∈ [0, 1) is the single pole of the system estimated with step re-
sponse analysis. As control technique, we rely on PI controllers because
they are able to effectively control systems dominated by a first order dy-
namic [6] (i.e., representable with first order differential equations) such as
the studied ones. PI controllers compute the next state of a plant by using
two contributions: one that is proportional and another that is integral to
the error e. Algorithmically, ∀ k ∈ N, fj ∈ F :

e := τ ◦r − τr;
xR := xRp + (1− p) ∗ ep;
c := λ ∗ finv((α− 1)/(p− 1) ∗ (xR + e));

c := max(min(Kmax, c), Kmin);

xRp := (p− 1)/(α− 1) ∗ f(c/λ)− e;
ep := e;

where the “p” subscript denotes “previous” values (i.e., those correspond-
ing to the previous step) and “finv” corresponds to the inverse of the char-
acteristic function, and xR the state of the controller. Finally, α ∈ [0, 1) and
p ∈ [0, 1) are the single pole of the controller and the system, respectively.
The higher the value of α, the faster will be the error convergence —ideally
to zero— at the expense of a more fluctuating allocation.

Resource Contention

At each control step, function controllers run independently (i.e. without
synchronization) to compute the next container scale for the corresponding
function. Vector ĉ contains the number of containers for of all functions.
Nonetheless, ĉ can not immediately actuated since the sum of containers
could exceed the domain’s capabilities (e.g. due to resource contention
among functions).

We tackle the scenario above with two policies: priority first, and fair-
ness. More precisely, ĉ is passed to another control component, namely
the ContentionManager. The latter outputs a vector c̄ corresponding to the
actual allocation; c̄ is defined as follows:

c̄(k) =

{
ĉ(k), if no resource contention

solveContention(ĉ(k)), otherwise
(4.5)

105

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

where function solveContention scales down the container allocation
in c̄ to be equal to the maximum memory capacity. In case of resource
contention among distinct functions, allocation demand is distributed first
among functions of higher priority (priority first) until their demand is ful-
filled or capacity is exhausted. Functions with the same priority are given
an equal number of containers (fairness). The ContentionManager also
updates the state of each Controller (variable xRp) to reflect the actual con-
tainer allocation and thereby assure Controllers’ consistency.

4.5.5 Engagement

The Domain Manager’s prototype delegates A3-E’s Engagement to Open-
Whisk. We also take advantage of the components natively employed by
OpenWhisk —namely, Nginx as the API Gateway— to proxy external func-
tion requests to the FaaS Platform. To this end, the engagement endpoint
advertised by the Awareness Manager refers to the actual API exposed by
the FaaS platform’s Gateway component.

For each arriving function request, OpenWhisk’s Controller identifies
the activated function and dispatches its execution. Both activation and
outcome are persisted to the CouchDB NoSQL database. These records
become the source of the crowd-sourced performance metrics gathered and
reported by the Awareness Manager upon request from the Mobile Middle-
ware’s fault tolerance mechanism.

The current prototype does not queue requests upon function dealloca-
tion events from the Allocation Manager. Nonetheless, the platform replies
with an error code indicating that the function is not currently available,
which is then handled by the Mobile Middleware.

4.6 Mobile Middleware

In this section, we describe the implementation2 of the Mobile Middleware
and accompanying the mobile domain. In particular, our implementation
targets the Android platform, which in 2018 achieved almost 75% of the
smartphone market share.

4.6.1 Architecture Overview

The Mobile Middleware architecture follows the guidelines for the design
of autonomic elements [47, 81], i.e., it comprises an Autonomic Manager

2Documentation and source code available at https://github.com/deib-polimi/A3-E-CSM

106

https://github.com/deib-polimi/A3-E-CSM

4.6. Mobile Middleware

Mobile Middleware

Sidecar
Proxy

Autonomic Manager

Awareness Manager

Library Proxy

Domain Discovery
Manager

Local Feedback
Manager

Local
Persistency

Requirements

Domains

Allocation Manager

Acquisition Manager

Function Acquisition
Manager

Domain Registry

Invocation Resolver

Function Registry

QoS Monitor

Domain Classifier

Requirements AnalyserProxy Updater

External Feedback
Manager

Domain Acquisition
Manager

Client Identification
Manager

Functions

Requirements
QoS

E

M

A

P

K

QoS Metrics

Requirements
Acquisition Manager

Performance
MonitorRegistration Manager Mobile

Domain

Figure 4.10: Mobile Middleware architecture overview.

—responsible for self-managing of a functional unit— and the managed
component —in our case, the Library Proxy component.

Similarly to the Domain Manager, the Autonomic Manager is imple-
mented as separated Manager components corresponding to its three first
A3-E activities: the Awareness Manager, the Acquisition Manager, and the
Allocation Manager. Each of these is refined into sub-components that take
care of specific concerns in a modular fashion.

As the name suggests, the Library Proxy consists of an Android library
that intermediates the interaction between client applications hosted by the
mobile device and various domains. As a managed component, it provides
the Autonomic Manager with monitoring information —namely, local per-

107

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

formance metrics— and it receives directives for its behaviour —namely,
the ranked list of domains for each function required by hosted applications.

4.6.2 Continuum Application Registration

Continuum applications register themselves to the Mobile Middleware pass-
ing an application configuration (App Config) file. Similarly to the function
Deployment Descriptor file in Section 4.5.3, the App Config file is for-
matted in JSON. Besides the Continuum Application’s unique identifier
(appId), the file contains the metadata and requirements for all functions
consumed by this applications, namely:

• name: the unique name that uniquely identifies the function within
the Continuum Application namespace.

• repo: the repository URL containing the function Deployment De-
scriptor and package files used to deploy the serverless function on
remote domains (see Section 4.5.3 for details).

• qosRequirements: set of QoS requirements for this function (see
Section 4.3.2), namely:

– responseTime
∗ weight: default response time weight (∈ [0, 2]).
∗ threshold: default response time threshold (∈ [0, 2]).

– batteryConsumption
∗ weight: default battery consumption weight (∈ [0, 2]).
∗ threshold: default battery consumption threshold (∈ [0, 2]).

• locationRequirements: set of Location-Requirements for this func-
tion (see Section 4.3.2), namely:

– mobileDomain
∗ enabled: true if the Mobile Domain provides a local im-

plementation of this function.
∗ path: fully qualified path name of the file implementing this

function within the application’s classpath.

– edgeDomains
∗ enabled: true if the developer wants to enable the support

of edge domains for this function.

108

4.6. Mobile Middleware

∗ type: ANY|LOCAL|MOBILE

– cloudDomains

∗ enabled: true if the developer wants to enable the support
of cloud domains for this function.
∗ endpoint: fully qualified URL to be used by the Library

Proxy to invoke this function on the cloud domain.

The motivation for using a configuration file instead of class level an-
notations is twofold. First, it allows remote-only functions to be registered
without the need for creating a local empty function. Secondly, it enforces
a portable format that may be shared with other mobile platforms. List-
ing 4.3 provides an example of an App Config file. Additional details on
the use of each attribute by the prototype are provided later in this section.

4.6.3 Awareness Manager

The Awareness Manager fulfils the other part of the mutual awareness con-
tract between mobile devices and Continuum domains.

Its first role regards the discovery of surrogate edge domains. The Do-
main Discovery Manager listens for UDP messages multicasted by edge
domains using the SSDP protocol (domain identification). To avoid bat-
tery drain, the discovery manager limits its activity to a short period af-
ter the Mobile Middleware is launched or the network connection changes
(e.g. from 5G network to a local-area wireless network). As described in
Section 4.5.2, the SSDP NOTIFY message contains the following informa-
tion: the identification endpoint, used to send client identification requests;
the engagement endpoint, based on which function requests endpoints are
composed; and the monitoring endpoint, used by the External Feedback
Manager to obtain crowd-sourced performance metrics.

The Domain Discovery Manager leverages native networking utility of-
fered by the Android SDK (viz, isReachable) to keep updated knowl-
edge about the network reachability and latency of remote domains. Simi-
larly to the crowd-sourced performance metrics discussed below, this pro-
cedure provides the Mobile Middleware with awareness regarding remote
domains that are not currently engaged. Moreover, this procedure is the
source of both domain found and domain lost events.

For every domain found event, the Function Acquisition Manager pro-
ceeds by sending a POST request to the domain’s identification endpoint
containing the address of the repository of all registered functions at that

109

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

Listing 4.3: Example of App Config file.

1 {
2 "appId": "com.theapp.facedetection",
3 "functions": [
4 {
5 "name": "faceDetection",
6 "repo": "https://github.com/ste23droid/A3E-face-

detection",
7 "qosRequirements": [
8 {
9 "metric": "responseTime",

10 "weight": 2,
11 "responsivenessThreshold": 2
12 },
13 {
14 "metric": "batteryConsumption",
15 "weight": 2,
16 "threshold": 2
17 }
18],
19 "locationRequirements":
20 {
21 "mobileDomain": {
22 "enabled": true,
23 "path": "app/continuum/functions/faceDetection.js

"
24 },
25 "edgeDomains": [
26 {
27 "enabled": true,
28 "type": "ANY"
29 }
30],
31 "cloudDomains": [
32 {
33 "enabled": true,
34 "endpoint": "http://faasprovider.com/api/

identification"
35 }
36],
37 },
38 }
39 }

110

4.6. Mobile Middleware

Listing 4.4: Example of client identification response.

1 {
2 "functions": [
3 {
4 "repo": "https://github.com/ste23droid/A3E-face-

detection",
5 "compatible": true,
6 "name": "ste23droid/faceDetection"
7 },
8 {
9 "repo": "https://github.com/ste23droid/A3E-neural-

transfer",
10 "compatible": false
11 }
12]
13 }

moment (see Section 4.5.3). The client identification response contains in-
formation about which functions are compatible/incompatible; for the for-
mer, the name of their URI within the FaaS platform’s namespace.

Listing 4.4 shows an example of a client identification response. Each
function is uniquely identified by its repository url. For each confirmed
(denied) function, a system level function available (unavailable) event is
triggered —to be handled by the Acquisition Manager.

At regular intervals and upon new Continuum Application registration,
the External Feedback Manager queries the domain through its monitoring
endpoint. Not only it keeps track of the availability of required functions,
but it also collects crowd-sourced performance metrics.

The availability of functions is mainly affected by the decisions taken by
the domain’s Allocation Manager in the advent of resource contention (see
Section 4.5.4). In contrast, crowd-sourced performance metrics are aggre-
gate from previous executions from multiple clients. This approach allows
the Mobile Middleware to oversee the domains that are not currently been
engaged, i.e., domains from which performance metrics are not collected
locally. Listing 4.5 provides an example of a domain report (in JSON for-
mat) containing the status and performance metrics of three functions.

Additionally to the availability and service time, the internal domain
metrics event triggered by the External Feedback Manager contains the net-
work latency most recently acquired by the Domain Discovery Manager.
While we could have opted to use the response time to the domain metrics

111

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

Listing 4.5: Example of domain metrics response.

1 {
2 "metrics": [
3 {
4 "repo": "https://github.com/ste23droid/A3E-face-

detection",
5 "status": "available",
6 "serviceTime":
7 {
8 "value": 0.11072,
9 "unit": "ms"

10 }
11 },
12 {
13 "repo": "https://github.com/ste23droid/A3E-POI-

recognition",
14 "status": "available",
15 "serviceTime":
16 {
17 "value": 0.19034,
18 "unit": "ms"
19 }
20 },
21 {
22 "repo": "https://github.com/ste23droid/A3E-neural-

transfer",
23 "status": "unavailable"
24 }
25]
26 }

HTTP request to obtain an estimated network latency, the latter would also
include the time needed to process such request. In contrast, the network
latency reported by the Domain Discovery Manager is free of such biases.

Last but not least, the Local Feedback Manager performs the important
role of retrieving from the Library Proxy the performance metrics from
local and remote execution of functions by the selected domain(s): after
registration, continuum applications are able to send requests to the Contin-
uum through the Library Proxy API. Each request is ultimately dispatched
for execution by the proxy based on the ranked list of best domains; raw
execution metrics —both local and remote— are then batched in memory
and periodically sent to the Local Feedback Manager for analysis.

112

4.6. Mobile Middleware

Listing 4.6: Example of local execution metrics notification.

1 {
2 "package": "com.example.app",
3 "localMetrics": [
4 {
5 "functionName": "faceDetection",
6 "payloadBytes": 65000,
7 "responseTime": 0.383,
8 "ticks": 284.37
9 },

10 {
11 "functionName": "faceDetection",
12 "payloadBytes": 81250,
13 "responseTime": 0.402,
14 "ticks": 289.55
15 }
16]
17 }
18 {
19 "package": "com.example.app",
20 "localMetrics": [
21 {
22 "functionName": "faceDetection",
23 "payloadBytes": 65000,
24 "responseTime": 0.383,
25 "ticksPerSec": 284.37
26 },
27 {
28 "functionName": "faceDetection",
29 "payloadBytes": 81250,
30 "responseTime": 0.402,
31 "ticksPerSec": 289.55
32 }
33]
34 }

Listing 4.6 shows an example of the execution metrics (in JSON format)
reported by the Library Proxy.

4.6.4 Acquisition Manager

The Acquisition Manager is responsible for keeping updated the Local Per-
sistence registries with the functions required by continuum applications

113

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

(Requirements); the availability of domains (Domains); and the catalogue
of functions provided by each domain (Functions). In particular, the use
of a local persistence component prevents the loss of state when the Mo-
bile Middleware is terminated by the operating system —a common routine
with Android platforms in case of resource contention or inactivity.

The Requirements Acquisition Manager acquires information about the
requirements from continuum applications currently active in the mobile
device. More precisely, applications leverage the Library Proxy API to reg-
ister themselves passing the App Config file through the registerApp
interface. In turn, the manager takes care of parsing the App Config file and
registering the required functions.

The Function Acquisition Manager and the Domain Acquisition Man-
ager react to internal function available/unavailable and domain found/lost
events by adding/removing the corresponding entity to/from the Local Per-
sistence component. These components will also react to each event by
triggering a corresponding domain added/removed event.

4.6.5 Allocation Manager

The Allocation Manager implements the self-managing loop introduced in
Section 4.4.4 and performed for each of the functions in the registry, taking
into account their requirements and the QoS of each domain.

Monitoring and Analysis

The loop starts with the QoS Monitor. At each cycle, this component keeps
track of the most recent metrics regarding the QoS of different domains. To
this end, it listens to two sorts of events: domain metrics, reported by the
External Feedback Manager; and execution metrics, reported by the Local
Feedback Manager.

The raw metrics collected are then passed to the next component, viz.
the Requirements Analyser. The role of this component is to aggregate the
QoS metrics from the previous step and produce useful information regard-
ing the QoS-Requirements specified by the application developer. The ag-
gregate metrics are response time, which comprises both service time and
network latency; and battery consumption, which is either a result of the
local function execution or the networking with remote domains.

In the literature, one can find multiple energy modelling techniques.
Nonetheless, the granularity level characteristic of serverless functions makes
it more difficult to obtain precise information regarding the battery drain in-
flicted by functions in isolation. Hence, many of the existing approaches

114

4.6. Mobile Middleware

are not suitable for this challenge.
More recently, a method-level energy model was proposed by Neto as

part of the ULOOF framework [73]. The proposed energy model considers
both the CPU and various network interfaces, which makes it suitable for
A3-E and the Mobile-Edge-Cloud Continuum. In their original model, the
energy consumption inflicted by method m while using the CPU is defined
as:

CpuConsumption(m) = lcpu(cpuT icks(m)/execT ime(m)) ∗ execT ime(m)

For the same method, the energy consumption while using the network
interface i is defined as:

NetworkConsumption(m, i) = lradio,i(throughput(i)) ∗ transfT ime(m)

Where lcpu and lradio(i) functions are device specific and profiled offline
using a USB Power Meter [73]. Next, we briefly describe how each of the
additional variables in the previous model can be obtained in the context of
Android platform devices and A3-E.

Cpu Ticks. In an operating system, a tick consists of an arbitrary unit
for measuring internal system time from which various operating system
functions are derived. The CPU tick frequency is OS dependent and may
be obtained through kernel level constants. The Android operating system
is based on the Linux kernel; the CPU tick frequency can obtain through the
_SC_CLK_TCK constant and equals 100, i.e., one tick every 10ms. This
information allows us to calculate the time spent by the CPU on a block of
code using the following equation:

execT ime =
utine+ stime

_SC_CLK_TCK
Where utime and stime are the CPU ticks respectively spent in the

user and kernel code. For a given process (PID) and thread (TID), both
values can be obtained through the /proc/<PID>/task/tid/stat
system file.

Throughput. The throughput of a network interface will vary accord-
ing to the technology. Moreover, wireless interfaces are subject to noise;
according to the Shannon-Hartley’s theorem:

C = B log2(1 + SNR)

115

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

where C is the channel capacity in bits per second, B is the channel
bandwidth in hertz, and SNR is the signal-to-noise ratio.

In Android, the current WiFi throughput was obtained programmatically
through the networking utility provided by its SDK (getLinkSpeed).
Alternatively, the throughput of a mobile data link is calculated using the
Shannon-Hartley’s theorem based on the nominal link capacity of each
broadband technology (e.g. 7.2Mbps in HSDPA, 42Mbps in HSPA+, and
150Mbps in LTE) and the current SNR value, which can also be obtained
programmatically.

Once the throughput for the network interface associated with a given
domain is determined, we may use it to estimate the time needed to transfer
the function payload and receive its execution output through the equation:

transfT ime =
inputSize+ outputSize

throughput

Of course, in most cases, it can not determine the precise function output
size. Nonetheless, this uncertainty can be mitigated by considering the
output average of recent invocations. In contrast, the input size is measured
programmatically by the Library Proxy component after its serialisation.

Planning and Execution

The Domain Classifier leverages the information provided by the Require-
ments Analyser to rank the best domains following a Multi-Criteria Deci-
sion Making (MCDM).

In particular, we implement the MCDM based on the SMART [76] al-
gorithm, in which multiple competing QoS attributes are taken into account
using the following equation:

Smart(p) =

∑U
u=1 valueu(p) ∗ weightu∑U

u=1weightu
(4.6)

Where p is a domain, the considered QoS attributes are response time
and battery consumption (thus U = 2), and their weights are represented as
explained in Section 2.5.2.

Algorithm 5 describes the main procedure used by the Domain Clas-
sifier. The algorithm first retrieves the list of available domains for that
particular function (i.e., whose availability have been confirmed through
A3-E Awareness). The algorithm also gets the average output size for that
particular function, as well as the weight for both latency (i.e., response
time) and battery (i.e., battery consumption).

116

4.6. Mobile Middleware

Algorithm 5 A3-E Selection Algorithm

1: function GETDOMAINSELECTION(function, inputSize)
2: availableDomains← GETAVAILABLEDOMAINS(function)
3: outputSize← GETAVERAGEOUTPUTSIZE(function)
4: latencyWeight← function.getLatencyWeight()
5: batteryWeight← function.getBatteryWeight()
6: maxLatency,maxConsumption,maxScore← 0
7: domainScores, domainUtilities← {}
8: for all domain ∈ availableDomains do
9: latency ← GETRESPONSETIME(domain, function, inputSize, outputSize)

10: if latency ≥ maxLatency then
11: maxLatency ← latency
12: end if
13: consumption←

GETBATTERYCONSUMPTION(domain, function, inputSize, outputSize)
14: if consumption ≥ maxConsumption then
15: maxConsumption← consumption
16: end if
17: domainQoS ← (domain, latency, consumption)
18: end for
19: for all (domain, latency, consumption) ∈ domainQoS do
20: latencyScore← latency/maxLatency
21: consumptionScore← consumption/maxConsumption
22: score←

(latencyScore ∗ latencyWeight) + (batteryScore ∗ batteryWeight)
23: if score ≥ maxScore then
24: maxScore← score
25: domainScores← (domain, score)
26: end if
27: end for
28: for all (domain, score) ∈ domainScores do
29: utility ← 0
30: if maxScore > 0 then
31: utility ← score/maxScore
32: domainUtilities← (domain, utility)
33: end if
34: end for
35: domainSelection← SORTDOMAINSBYUTILITY(domainUtilities)
36: return domainSelection
37: end function

117

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

After initialising all variables, the procedure iterates over the available
domains (lines 8 − 18). For each domain, it obtains both the latency (line
line9) and the battery consumption (line 13), which are compared to the
current maximum of each attribute and added to the list of domain QoS
(line 17).

In the next loop (lines 19 − 27), the score for each attribute is com-
puted concerning the respective maximum. The algorithm then computes
the overall domain’s score taking into account the respective weights for
each attribute (line 22). The iteration concludes with the update of the do-
main score list and the max score if it applies (lines 13− 15).

The last loop (lines 28−34) is used to normalise the domain scores using
the max score value (line 31) and produce a final list of domain utilities (line
32). The latter will then be used to sort the domains and obtain the domain
selection rank (line 35).

Algorithm 6 Response time computation for a given domain and function

1: function GETRESPONSETIME(domain, function, inputSize, outputSize)
2: if domain.type == REMOTE then
3: throughput← GETAVGLINKTHROUGHPUT(domain, function)
4: transferT ime← (inputSize+ outputSize)/throughput
5: serviceT ime← GETAVGSERVICETIME(domain, function)
6: responseT ime← transferT ime+ serviceT ime
7: return score
8: else
9: responseT ime← GETAVGEXECTIME(domain, function)

10: end if
11: end function

Algorithm 7 Battery consumption for a given domain and function

1: function GETBATTERYCONSUMPTION(domain, function, inputSize, outputSize)
2: if domain.type == REMOTE then
3: throughput← GETAVGLINKTHROUGHPUT(domain, function)
4: transferT ime← (inputSize+ outputSize)/throughput
5: netConsumption← GETNETCONSUMPTION(throughput, transferT ime)
6: else
7: cpuT ickFreq ← GETCPUTICKFREQ()
8: cpuT icks← GETAVGCPUTICKS(function)
9: execT ime← cpuT icks/cpuT ickFreq

10: cpuConsumption← GETCPUCONSUMPTION(cpuT icks, execT ime)
11: end if
12: return score
13: end function

118

4.6. Mobile Middleware

Algorithms 6 and 7 present the subprocedures used to respectively ob-
tain the response time and battery consumption scores.

4.6.6 Library Proxy

To implement Engagement, the Library Proxy handles requests triggered
by client applications by invoking the functions provided by the previously-
selected domain.

The Invocation Resolver is the principal sub-component in the Library
Proxy architecture. This component maps each domain type to a specific
interface: edge and cloud domains are engaged through HTTP requests,
while requests to the mobile domain are delegated to the homonym compo-
nent (see Section 4.6.7).

Regardless of the domain selected, the Invocation Resolver measures for
each request the following metrics: the request payload size (input size),
the response payload size (output size), and the response time. Specifically,
the response time is either collected from the Mobile Domain (using the
method in Section 2) or from a specific field included in the response from
the remote domain.

Each of the aforementioned metrics is fed into the Performance Monitor
component. This component makes use of heuristics to decide when to
report the execution metrics batch to the Local Feedback Manager: when a
maximum number of execution metrics have been performed (currently, 25
executions); or before that upon expiration of a timer (currently, 5s).

The Invocation Resolver harnesses the availability of multiple domains
in the ranked domain selection list to provide fault tolerance [7] to the con-
tinuum application. More specifically, the Invocation Resolver parses the
response from the currently engaged domain. If it contains an error (e.g.
HTTP error from remote domains) the Invocation Resolver discards the as-
sociated execution metrics and retries the failed request with the next best
domain. Domains that exhibit erratic behaviour are blacklisted for a period
that grows proportionally to the number of failures. At the first successful
invocation, a particular domain is removed from the blacklist.

Last but not least, the Registration Manager receives from continuum
applications the App Config file containing all required metadata, including
the fully qualified path of local functions and the repository URL of remote
functions (see Listing 4.3).

The Registration Manager also keeps a callback open with the Auto-
nomic Manager, throughout which the latter updates the Invocation Re-
solver with the latest domain selection for each of the functions required by

119

Chapter 4. Mobile-Edge-Cloud Continuum Through Serverless and
Autonomic Computing

this continuum application.

4.6.7 Mobile Domain

Our prototype implements the mobile domain abstraction as a homonym
module within the Library Proxy component.

The Mobile Domain supports two types of functions: natively supported
Java functions and JavaScript functions, which require a JNI wrapper for
their execution on Android devices. Note that, existing FaaS platforms
support a variety of other languages. More comprehensive implementations
of the Mobile Domain may leverage additional wrappers.

In contrast to cloud and edge domains, the Mobile Domain receives the
fully qualified path name (e.g., a JavaScript file that implements the func-
tion), which is added to an internal function registry upon application reg-
istration. During Engagement and upon the selection of this domain, the
Mobile Domain handles function request events are by looking up for the
corresponding functions. Once found, the function is called with the pa-
rameters in the original C-request, and produces a function response with
the execution output.

120

CHAPTER5
The PAPS Framework

5.1 Overview

Edge computing promises many benefits. Nonetheless, the management of
geo-distributed infrastructures poses significant challenges: not only one
must provision and allocate computational resources to components, but
these components must be placed onto the different nodes by taking into
account propagation latency along with the availability of resources.

The monitoring and analysis of the current workload, availability of
resources, and performance of components is key for the efficient the al-
location of resources and placement of components, but it must be car-
ried out in a timely manner for the entire system. Network latency and
time-consuming decisions may jeopardise the effectiveness of the decision
process, especially with highly volatile workloads —a likely-to-happen
scenario with densely distributed edge nodes that serve the needs of mo-
bile/IoT devices.

The placement and migration of services in MEC and similar edge-
centric architectures received considerable attention from researchers. Op-
timal solutions —e.g. that minimise network latency or maximise resource
utilisation— are typically NP-Hard [124]. Many works tackled variations

121

Chapter 5. The PAPS Framework

of the allocation and placement problems with heuristics [71,114,132] and
approximations [122, 124, 125]. Although some report the complexity of
their solution, the majority resort to experiments. In many cases, evalu-
ation is carried with a reduced number of nodes and components (or ser-
vices). Moreover, few works take into account the challenges related to
the monitoring, analysis, and actuation of decisions taken by a centralised,
omniscient orchestrator. Hence, a more holistic framework targeting the
management of geo-distributed infrastructures and services is still missing.

In this chapter, we propose PAPS — Partitioning, Allocation, Placement,
and Provisioning — a framework for tackling the effective and efficient
management of geo-distributed infrastructures and services through decen-
tralized self-adaptation and serverless computing.

In contrast with Chapter 4, in which we focused on the self-management
of the life-cycle of functions opportunistically deployed to mobile devices
and disjoint edge and cloud infrastructures, herein we move our attention to
the self-management of geo-distributed infrastructures and services from a
single provider, namely a MEC operator. While in Chapter 4 we assumed
that disparate edge domains to operate independently, the PAPS framework
is based on the assumption that lateral collaboration [77] among edge nodes
is critical for the system robustness, performance, and scalability.

The remainder of this chapter is organised as follows. Section 5.2 dis-
cusses the challenges of managing decentralised infrastructures and ser-
vices. Section 5.3 presents the system model and presents a formulation
of the self-management problem tackled by our framework. Next, Sec-
tion 5.4 presents the PAPS framework, whereas Section 5.5 describes the
implementation of PAPS as a simulation platform.

5.2 Management Challenges

The challenges of managing geo-distributed infrastructures and services
may be approached from multiple angles.

From the bottommost level, cloudlets [97] and surrogate MEC nodes [105]
may employ self-managing techniques [47, 81] to augment the capabili-
ties of transient mobile and IoT devices. This approach matches the dense
distribution of infrastructure with full decentralisation of control over the
allocation of resources and the provisioning of various services.

The A3-E framework presented in Chapter 4 instantiates this approach.
Moreover, A3-E leverages the serverless architecture introduced in Chap-
ter 3 to promote the accessibility and efficiency in which Self-Managed
Computing Services are provided to latency-intensive and data-intensive

122

5.3. System Model

applications hosted by IoT and mobile devices.
Moving up in the decentralised infrastructure hierarchy —to the fog

layer [77]— one can imagine several ways to realise management. For
instance, through dedicated control units deployed within or in proximity
to the radio access network [59, 123] orchestrating several MEC nodes; or
even through supernodes (or leaders) responsible for the surrounding and
underlying sections of the topology. At last, one can also think of power-
ful and omniscient —yet physically remote— centralised orchestrators [56]
hosted by cloud data centres.

The question that arises is: what are the benefits and limitations of tack-
ling the management of geo-distributed infrastructures and services at each
of these three levels?

The answer to the question above requires the specification of what kind
of management decisions needs to be tackled.

If we consider the provisioning of computing services needed for the ex-
ecution of serverless functions, the management decision is twofold. First,
it concerns the number of containers that need to be allocated for each func-
tion given the workload and SLA. Further, it concerns where in the topology
the containers must be placed to satisfy the demand coming from various
access points in the topology while satisfying the maximum acceptable de-
lay. In light of this formulation, the primary benefits and limitations of
tackling the management challenges at each level are as follows.

At the node level, data locality yields maximum responsiveness at the
cost of limited processing power and reduced visibility over the topology.

At the regional level, micro data centres [56] and Virtualised Network
Infrastructure [102] offer the computational power needed for more com-
plex decisions and have a regional view of the system, but might not be able
to monitor and decide so quickly as localised, self-managing nodes.

Finally, a centralised orchestrator may harness virtually infinite resources
from cloud data centres but are too far away to perform fine-grained man-
agement decisions for the whole topology in a timely and effective manner.

We took each of the previous aspects into consideration in the design
of PAPS, a holistic framework targeting the management of densely dis-
tributed edge infrastructure hosting the execution of serverless functions.

5.3 System Model

5.3.1 Infrastructure Model

While many edge-centric architectures have been proposed, in this chap-
ter we shall focus on a MEC topology composed of a finite set of nodes

123

Chapter 5. The PAPS Framework

Figure 5.1: A topology formed by geo-distributed MEC nodes; each node i is reachable
by edge devices connected to a base station in its area through the fronthaul network
(delay λi), or through the backhaul network (delay δi,j)

N . Figure 5.1 presents such a topology. Mobile and IoT devices access
the system through cellular base stations. Each device is connected to a
MEC node i ∈ N through the fronthaul network. MEC nodes in N are
interconnected through the backhaul network. The total propagation delay
Di,j between a client device accessing the system through the base station
co-located with the MEC node i ∈ N and served by the MEC node j ∈ N
is defined as:

Di,j =

{
λi + δi,j, if i != j

λi, if i = j
(5.1)

where λi and δi,j are respectively the propagation delay of the fronthaul and
backhaul networks.

5.3.2 Function-as-a-Service

Our framework targets the dynamic allocation and placement of containers
required for the execution of serverless functions [9]. Even if the allocation
model adopted by serverless vendors can vary [58], typically functions are
given access to a fixed CPU share proportional to their memory capacity,
similarly to the leading Function-as-a-Service (FaaS) offerings.

A limit (e.g. 250MB) is imposed on the function package size. The lat-
ter restricts time needed to load the function and dependencies into a fresh
(cold) container. It is also paramount to cope with the storage limitations

124

5.3. System Model

of densely distributed edge nodes.
Additionally to the memory capacity —which specifies the maximum

memory available to the container hosting the function execution— we as-
sume a function deployment descriptor to be specified with a Service-Level
Agreement (SLA) between the MEC operator and the customer deploying
the function (e.g. an application provider).

To the best of our knowledge, the SLA specification is not supported by
existing FaaS vendors [4, 34, 43, 67]. To better support applications with
strict requirements for latency, the PAPS framework takes into account re-
sponse time as an SLA attribute. More precisely, the SLA is specified with
two attributes. The Response Time (RTSLA) defines the upper limit for the
round-trip time between the arrival of a request in the system (through one
of the access points across the topology), its execution, and its exit through
the same access point (synchronous invocation); or from the arrival of re-
quest until the end of function execution (asynchronous invocation). Ta-
ble 5.1 illustrates two possible SLAs.

Latency-sensitive Data-intensive

Response Time: ≤ 120ms Response Time: ≤ 500ms

Maximum Execution Time: 90ms Maximum Execution Time: 380ms

Invocation Mode: synchronous Invocation Mode: asynchronous

Table 5.1: Examples of Response Time SLA

Each SLA is specified with two attributes.
The Response Time (RTSLA) specifies the upper limit for the round-

trip time between the arrival of a request in the system (through one of
the access points across the topology), its service, and the response exit
through the same access point (synchronous invocation); or from the arrival
of request until the end of function execution (asynchronous invocation).

The Maximum Execution Time (EMAX) limits the function execution
time. The latter is a common attribute in cloud-based FaaS platforms [4,
104]. In the context of our framework, it is key to guide the allocation and
placement decisions, as formulated in the following section.

5.3.3 Management Problem Formulation

For a given topologyN and a set of admitted functions F , the management
problem is twofold: (i) to decide how many containers are needed for each
function; and (ii) to decide where (onto which nodes) should each container

125

Chapter 5. The PAPS Framework

be placed.
Each allocated container works as a server for a specific function f ∈ F ,

whose memory capacity is defined by mf , whereas Mj defines the overall
memory capacity of node i ∈ N .

While most FaaS vendors claim to allocate resources on a request ba-
sis, queuing requests for a short period may significantly reduce the use
of resources. Thus, the perceived response time is given by the following
general equation:

RT = D +Q+ E (5.2)

where D represents the total propagation delay, Q the queuing time, and E
the execution time.

The propagation delay is affected by the container placement decision,
accordingly to Eq. 5.1. The sojourn time (i.e., Q + E) depends on the
number of containers serving each function. Intuitively, adding containers
decreases queue time to the point that all incoming requests find a warm
container, i.e., to the point that Q = 0 and RT = D + E.

To minimise the use of resources, the MEC operator should control D
(through placement) and Q (through scaling) so that:

D +Q+ E ≤ RTSLA (5.3)

The higher the propagation delay component, the less margin is left for
queuing requests. At one extreme level, D = RTSLA − E and the request
must be served immediately, i.e., Q must be nullified.

Conversely, serving requests at the nearest node minimises component
D, but might result in poor workload distribution: some MEC nodes may
become overloaded while others remain idle.

The propagation delay of D can easily become part of an optimal con-
tainer placement problem formulation. On the other hand, it is less trivial
to incorporate Q and E as part of a joint allocation and placement formula-
tion.

One possible approach is to use a function to map the workload to the
corresponding allocation (i.e., number of containers) needed to keep the
sojourn time below a threshold. Indeed, some authors (e.g. [138]) assume
the workload to follow a known probabilistic distribution; queue theory is
then used to calculate the expected sojourn time.

As it will be discussed in Section 5, we refrain from assuming a known
probabilistic distribution for the workload. Instead, the current sojourn time

126

5.4. The PAPS Framework

is measured at each node for the functions it is currently hosting. This in-
formation is then used to calculate the number of containers to satisfy the
workload from each source across the MEC topology and find the optimal
placement solution. We, therefore, postpone the formalization of the place-
ment and allocation problem tackled by our framework to the next section.

5.4 The PAPS Framework

In this section we present PAPS — Partitioning, Allocation, Placement and
Scaling — a framework for tackling the decentralised self-management of
large scale edge systems. It is comprised of three levels: the system-level,
the community-level, and the node-level self-management.

5.4.1 System-Level Self-Management

Objective: The system-level self-management aims to tackle the complex-
ity of managing the larger scale geo-distributed infrastructure by partition-
ing it into delay-aware network communities.

Community-based Partitioning

In complex networks, a network is said to have community structure if its
node can be easily grouped into (potentially overlapping) sets of nodes such
that each set is densely connected internally [129].

In our framework, we extend the previous definition and refer to a delay-
aware network community as a set of logically interconnected MEC nodes
whose network latency from one another is below a threshold.

A delay-aware network community provides a reduced space in which
the solution for the placement and allocation satisfying Equation 5.3 can
be computed (effective analysis). Furthermore, it allows the parallelisation
of the self-adaptation process and its localisation within a geographic area
(effective monitoring, analysis and actuation).

The community identification may follow different approaches. In our
framework, a centralised coordinator (hereafter referred to as the supervi-
sor) has a global view of the system and makes use of a community search
algorithm. The algorithm takes two parameters: the maximum inter-node
delay (MID) and the maximum community size (DMAX).

TheMID parameter is used to produce a sub-graph. Each of its vertices
maps to a node in the MEC topology; an edge exists between two vertices
if the network delay between their respective nodes is below the maximum
inter-node delay.

127

Chapter 5. The PAPS Framework

The DMAX parameter limits how many MEC nodes can belong to a
community. Therefore, it is useful for limiting the complexity of the community-
level self-management.

The produced sub-graph will then serve as the input to a community de-
tection algorithm. In particular, we adopt the SLPA method [128], whose
complexity is O(t ∗ n), where t is a predefined maximum number of itera-
tions (e.g. t ≤ 20) and n is the number of nodes. The SLPA method ranked
first among the community detection algorithms in the literature [129].

Community Structure Adaptation

MEC nodes are co-located with fixed infrastructures. Thus, we assume that
nodes and inter-node delay are expected to remain stable. Nonetheless,
topological changes caused by catastrophic failures, system upgrades, and
other eventualities may require the adaptation of the community structure.
The primary goal of the supervisor is, therefore, to assure that communities
remain consistent in their size, membership and inter-node delay.

While defining the best approach to tackle the community structure adap-
tation, we took into account the amount of information that needs to be
monitored, as well as the complexity of the community search procedure.

The presence and health of the MEC nodes across the topology can be
obtained through light-weight heartbeat messages sent by each node to the
supervisor. This approach is commonly adopted in distributed systems of
different scales and does not treat the scalability of the proposed solution.

As previously mentioned, the time complexity of the adopted commu-
nity search algorithm is linear (O(t∗n)), hence tractable even for very large
topologies. Authors also suggest a modest value (t = 20) for the maximum
number of iterations needed to find edible quality communities [128].

All these aspects favoured the choice of the supervisor as the managing
entity responsible for the community structure adaptation.

The supervisor harnesses its global system view to tackle the adaptation
of the community structure. More specifically, the system-level adaptation
is modelled as a master-slave MAPE loop [127] depicted in Figure 5.2.
While Monitoring and Execution are performed by each and every MEC
node in the topology, the supervisor is in charge of the Analysis and Plan-
ning activities.

5.4.2 Community-Level Self-Management

Objective: the community-level self-management aims to assure that the
MEC nodes in that community are operating under feasible conditions, i.e.,

128

5.4. The PAPS Framework

Suvervisor

Abstract model

Instance

MEC node

Decentralised
Master/slave
MAPE-K pattern

MEC nodeMEC nodeMEC node

Supervisor

Figure 5.2: Community structure adaptation modelled as a decentralised master/slave
MAPE loop (adapted from [127])

it aims to minimise the likelihood of SLA violations to occur and, if they
occur, react in order to bring the MEC community back to its equilibrium.

Inter-Community Allocation

A first challenge that emerges when the MEC system is partitioned into
communities regards the allocation of shared member resources. In other
words, we must decide the share that each overlapping community will get
from the shared member resources.

A trivial but less efficient approach would be to privilege one commu-
nity with all resources. However, the disadvantaged communities might
need more resources to cope with the additional workload while the com-
mon member is underutilised. Changes to the workload are expected to
happen frequently and without warning. In order to prevent SLA viola-
tions, resources from common nodes need to flow from one overlapping
community to the other. Our framework tackles this goal by weighting the
aggregate demand and capacity in each overlapping community.

The aggregate demand refers to the number of containers needed to cope
with the aggregate workload. The latter refers to the rate of requests incom-
ing from base-stations co-located with MEC nodes whose network latency
to the common node is below the inter-node delay threshold DMAX , plus

129

Chapter 5. The PAPS Framework

a proportional demand share from the base station(s) co-located with the
common node itself. The aggregate capacity refers to the sum of resources
from the previous nodes, excluding the common node. A share of capac-
ity is then allocated by the common node to each overlapping community
proportionally to their aggregate demand-capacity ratio.

Algorithm 8 depicts our inter-community allocation approach. This pro-
cedure is greedily performed for all MEC nodes in the topology that be-
longs to two or more communities.

Algorithm 8 CapacityDemandRatio(C, s,DMAX)

1: neighborsInRange← GETNEIGHBORS(C, s,DMAX)
2: aggDemand← 0, aggCapacity ← 0
3: for all n ∈ neighborsInRange do
4: aggDemand← GETDEMAND(n)
5: aggregateCapacity ← GETCAPACITY(n)
6: end for
7: ovCount← GETOVCOUNT(s)
8: demandShare← GETDEMAND(s) / ovCount
9: aggDemand← aggDemand+ demandShare

10: return aggDemand / aggCapacity

Intra-Community Allocation and Placement

Analogously to the inter-community allocation, the intra-community allo-
cation aims to distribute resources among nodes within a community given
the aggregate demand and capacity in that community.

Within each community, a leader is responsible for solving the alloca-
tion and placement problem introduced in Section 5.3.3. Such a central-
ization within decentralization has the following advantages: (i) it allows
the optimal placement problem to be solved in a single step for the whole
community; (ii) it eliminates the need for a more complex coordination pro-
tocol. More importantly, the leader-based approach allows the placement
problem to be solved by well-known centralised optimisation techniques.

A problem that arises from the complexity of the container placement
problem is high-resolution time, which prevents communities to adapt to
workload fluctuations on time. Until a placement solution is computed, the
workload may have changed, requiring a new solution.

Pro-active adaptation [70, 89] could be used to mitigate the aforemen-
tioned problem. For instance, if the arrival of requests is characterised by
a well-known probabilistic distribution (e.g. Poisson), the container alloca-
tion procedure might then benefit from queue theory to predict the number

130

5.4. The PAPS Framework

of containers that are needed to keep the sojourn time in Eq. 5.2 at a specific
value and thereby jointly solve the allocation and placement problem.

To our disadvantage, the decentralised infrastructure model makes the
previous assumption less realistic. Not only users will freely enter and exit
different areas, but the aggregate workload to be served by each node is
limited compared to typical cloud services. Even a small group of users that
enters or exits a MEC node area may cause significant workload variation.

In light of this, our framework favours reactive adaptation for solving
the allocation and placement problem. Our solution draws inspiration from
the Ultra-Stable system architecture [81].

The community-level self-management acts as the secondary feedback
loop in the Ultra-Stable system. When the workload fluctuations are sig-
nificant enough to threat or to throw the node-level self-management out of
its limits, the community-level self-management provides the community
with a new allocation and placement solution.

In turn, the node-level self-management works as the primary feedback
loop in the Ultra-Stable system architecture. Through its sensors, the MEC
node monitors subtle changes in the environment (i.e., in the actual work-
load for each function). It accordingly responds, through its effectors, by
changing the node-level allocation (i.e., the number of containers per func-
tion).

Hence, the community-level placement targets not a single solution, but
a solution space in which the node-level container scaling ultimately takes
place. In more details:

• The optimal placement solution determines the target amount of con-
tainers to be hosted by each community member. It considers the ag-
gregate workload incoming from all access points in the community.

• Load balancers in the community infrastructure use the placement so-
lution to route the workload incoming from different sources (i.e., base
stations) to their respective destinations (i.e., MEC nodes).

• Each member (MEC node) in the community has the autonomy to
decide the actual number of containers it hosts per placed function
based on the actual workload and the resources available.

• As the workload fluctuates, response time deviates from its target
value; the node-level self-management takes care of the timely scal-
ing of containers to optimise resource usage while preventing SLA
violations.

131

Chapter 5. The PAPS Framework

• The optimal solution is enforced by each community member in case
of local resource contention.

Using a more recent reference model [47], the community-level self-
management consists of an instance of the regional planner MAPE loop [127]
depicted in Figure 5.3.

Leader
Node

Abstract model

Instance

Member
Node

Decentralised
Regional planner
MAPE-K pattern

Member NodeMember Node

Member Node

Leader
Node

Member Node

Member Node

Member Node

Leader
Node

Figure 5.3: Community-level self-management modelled as a regional planner MAPE
loop (adapted from [127])

Each community member takes advantage of its privileged position within
the MEC topology to monitor and analyse the workload coming from ad-
jacent base stations (see Fig. 5.1).

The number of containers needed to cope with a given workload while
satisfying the function SLA is determined at the node level using a control
loop with a short period —compatible with the container start-up time (i.e.,
up to a few seconds).

In turn, the community leader utilises information to plan, through the
transfer function in Section 5.4.3, the number of containers needed to sat-
isfy the response time SLA. The transfer function takes as input the ag-
gregate workload over a larger control period —compatible with the time

132

5.4. The PAPS Framework

needed to compute the optimal placement solution (i.e., up to a few min-
utes, depending on the formulation, the number of nodes in the community,
and the number of admitted functions).

At last, the community-level adaptation is executed by each affected
node in the community with the update of its targeted placement and allo-
cation for each admitted function. Depending on how the new placement
solution diverges, the MEC node may have to add or remove function(s)
from/to its catalogue.

Optimal Container Placement. The PAPS frameworks is agnostic with
respect to the placement optimization formulation. Herein, we formulate it
as a Mixed Integer Programming (MIP) problem as follows:

min
x

∑
i∈N

∑
j∈N

∑
f∈F

di,j ∗ xf,i,j (5.4a)

subject to xf,i,j ∗ di,j ≤ xf,i,j ∗Dk ∀i ∈ N ,∀j ∈ N ,∀f ∈ F
(5.4b)∑

i∈N

∑
f∈F

cf,i ∗mj ∗ xf,i,j ≤Mj ∀j ∈ N

(5.4c)∑
j∈N

cf,i ∗ xf,i,j = cf,i ∀i ∈ N ,∀f ∈ F

(5.4d)

where xf,i,j is a continuous decision variable that denotes the fraction of the
container demand cf,i ∈ N>0 for function f ∈ F from source node i ∈ N
that should be hosted by node j ∈ N . The rationale behind the use of a
continuous variable is as follows.

The control-theoretic container scaling in Section 5.4.3 calculates the
ideal allocation per function per workload source (cf,i). Although one can
not scale a non-integral number of containers (e.g. scale-up half container),
the ideal allocation from various sources may be combined. Indeed, server
consolidation is commonly used to boost resource usage efficiency. It is
also the default behaviour of the MIP solver.

Conversely, the ideal allocation from a single source (e.g. 4 contain-
ers) may be distributed among two or more nodes. This is especially so
if node capacity is insufficient. The continuous variable xf,i,j enables the
MIP solver to provide such type of solution.

The objective function in Eq. 5.4a minimizes the overall network de-
lay resulting from the container placement. The first constraint (Eq. 5.4b)

133

Chapter 5. The PAPS Framework

limits the network propagation delay. Since xf,i,j is a continuous variable,
it appears at both sides so that a fractional value is counterbalanced at the
threshold side. Specifically, Dk is calculated using the following equation:

Df = β ∗ (RTSLA,f − EMAX,f) (5.5)

where 0 < β ≤ 1 defines the fraction of the marginal response time
RTSLA,f − EMAX,f for function f ∈ F that can be used for networking.
Conversely, the complement (1 − β) defines the fraction of the marginal
response time used for queuing function f while hosted by node j:

Qf,j = (1− β) ∗ (RTSLA,f − EMAX,f) + (EMAX,f − Ef,j) (5.6)

whereEf,j is the monitored execution time for function f hosted by node j.
The queue componentQf,j is particularly important to the control-theoretic
container scaling (see Section 5.4.3).

The second constraint (Eq. 5.4c) assures the number of containers placed
at a node j ∈ N does not violate its memory capacity Mj .

Finally, the last constraint (Eq. 5.4d) assures that all required containers
are placed.

5.4.3 Node-Level Self-Management

Objective: The node-level self-management aims to efficiently and ef-
fectively orchestrate the scaling of containers needed to satisfy the response
time SLA of each admitted function given the fluctuations in the workload
and the target placement and allocation defined by the community leader.

Given a fixed allocation of resources, the response time of a function
can change due to various reasons, including:

• Variations in the request arrival rate (i.e., due to mobility and churn).

• Variations in the execution time (e.g. due to input variations).

• Disturbances in the execution environment (e.g. at the operating sys-
tem or hardware level).

While some factors are harder to quantify and account for, others are
possible to monitor and take into account in determining the appropriate al-
location needed to prevent violations of the response time SLA. Our frame-
work leverage a control-theoretic approach [10] proposed in Chapter 4 to

134

5.4. The PAPS Framework

solve the node-level container scaling problem. We recall the more essen-
tial aspects of its operation regarding the PAPS framework; the reader can
find more details in Section 4.5.4 where it is introduced.

Contro-theoretic Container Scaling

The control system is responsible for the deployment of containers to the
cluster of (virtual) machines composing the MEC node pool of resources,
from now on referred to as the control plant.

The control plant is subject to different signals that could be measurable
(input variables) or unknown (disturbances). Considering a discrete time,
for each admitted serverless function we define λ(k) as the function of the
measured arrival rate of requests at each control time k; while λ̄(k) is the
corresponding vector for all admitted functions.

At time k, the function is executed in a cj(k) number of allocated con-
tainers. The disturbances are defined as d̄ and cannot be directly controlled
and measured. Finally, τ̄ is the system output and corresponds to the re-
sponse time vector comprising all functions, whereas τ̄ ◦ corresponds to the
vector of desired response time per function (or control set-point), accord-
ing to the SLA of each function.

In our current set-up, the function τ̄ ◦(k) does not vary over time, mean-
ing a constant targeted response time for each function. Of course, these
values should be set below the SLA threshold. Moreover, since response
time cannot be measured instantaneously but by aggregating the execution
time of different requests over a predefined time window, many aggrega-
tion techniques could be used without any change to the system model and
controller. In our framework, we compute the average of the response time
values in τ̄ within each control period, but stricter aggregation functions,
such as 99th percentile, could be used depending on the needs of the MEC
operator.

Our framework dedicates one controller per function. A characteristic
function is used to model the system with enough details to govern the
dynamics of the plant. We assume that this function does not need to be
linear but regular enough to be linearisable in the domain space of interest.
Moreover, we consider this function to be dependent on the ratio of the
number of allocated containers c and the request rate λ.

The characteristic function monotonically decreases towards a possible
lower horizontal asymptote, as it can be assumed that once the parallelism
degree of a function is fulfilled by the available containers, adding new ones
entails no further benefits in terms of response time. We found a practically
acceptable function to be:

135

Chapter 5. The PAPS Framework

f

(
c(k)

λ(k)

)
= ũ(k) = c1 +

c2

1 + c3
c(k)
λ(k)

(5.7)

where parameters c1, c2, and c3 were obtained through profiling of each
function.

As control technique, we rely on PI controllers because they are able to
effectively control systems dominated by a first order dynamic [6] (i.e., rep-
resentable with first order differential equations) such as the studied ones.

At each control step, function controllers run independently (i.e. without
synchronization) to compute the next container scale for the corresponding
function, which is added to the vector ĉ. The number of containers in ĉ
is not immediately actuated since the sum of required containers could be
higher than the entire capacity of the MEC node. Instead, ĉ is passed to a
contention manager. This component outputs a vector c̄, which is the actual
number of containers per function, defined as:

c̄(k) =

{
ĉ(k), if no resource contention

scaleDown(ĉ(k)), otherwise
(5.8)

where function scaleDown scales down the values in ĉ according to the
thresholds defined by the placement solution by the community leader (see
Section 5.4.2). The contention manager then updates the state of each con-
troller to be consistent with the actual allocation.

5.5 PAPS Simulator

In this section, we briefly describe the implementation of the PAPS Simula-
tor 1. The purpose of the simulator is twofold. First, it was used to assess the
feasibility of our framework. Second, we aim to provide a flexible and ac-
cessible simulation environment to be used with various topologies, work-
load, and application scenarios. The simulator also allows experiments to
be performed with variations of the optimal placement and allocation for-
mulation. Also importantly, a rich set of parameters allows experiments to
be performed with a broad range of scenarios, which include turning on and
off the control-theoretic container scaling at the node level.

1Source code accessible from https://github.com/deib-polimi/PAPS

136

https://github.com/deib-polimi/PAPS

5.5. PAPS Simulator

5.5.1 PeerSim

We have implemented our framework using PeerSim [69], a peer-to-peer
(P2P) simulator framework.

PeerSim is the result of an academic effort to produce a scalable peer-to-
peer simulation framework. Several factors motivated our choice of Peer-
Sim as the baseline simulation framework for implementing PAPS.

First and foremost, we took into account the distributed nature of PAPS.
Differently from other works that abstract away the implementation of a
proposed solution for the management of complex edge systems, PAPS
focuses on the inherent challenges of monitoring, analysing, planning, and
executing adaptation decisions for the entire MEC topology.

In the literature, one can find simulation platforms for edge computing.
EdgeCloudSim [111] and iFogSim [36] are two examples of simulation
platforms targeting the orchestration of resources from an edge (or fog)
system. These platforms extend the popular cloud simulator framework
CloudSim [19]. CloudSim features a centralised architecture. It is partic-
ularly suited for the evaluation of load and data distribution but does not
model with details important aspects of communication.

In contrast, PeerSim provides a rich set of features for the implemen-
tation of distributed protocols, as well as utilities for the generation of dy-
namic workload and the exchange of messages using reliable or unreliable
channels, with or without delay. It also provides out-of-the-box support for
the creation of various sort of flat or hierarchical topologies, which can also
vary over time. Also importantly, PeerSim is designed with scalability as a
first-class requirement.

We harness the features offered by PeerSim to implement the separate
self-management layers of our framework as P2P protocols, which then can
be evaluated with a more realistic simulation of a large scale MEC topology.
Additional comparison with other simulation platforms in the literature can
be found in Section 7.3.

5.5.2 Implementation Overview

The PAPS Simulator architecture reflects the underlying model used by
PeerSim. Thus, before describing each main component in our solution,
we briefly introduce the corresponding PeerSim class or functionality.

The Protocol class is the main component in PeerSim. As the name
suggests, this class is used to implement the behaviour to be performed
by the nodes that implement a given protocol. Instances of the Protocol
class are cloned into every node in the topology. Each node then executes

137

Chapter 5. The PAPS Framework

the protocol once at every cycle (cycle-based simulation model) or every
scheduled event (event-based simulation model).

In its current version, the PAPS Simulator implements two protocols:
a Community Protocol and the Node Protocol. Each protocol respectively
implements the behaviour of MEC nodes as community members (i.e., as a
leader or a common member) and individual nodes. The Community Pro-
tocol implements the adaptation activities from the regional planner MAPE
loop described in Section 5.4.3 is implemented. In turn, the Node Protocol
implements a part of the node-level adaptation and delegates to a library the
implementation of the control-theoretical container scaling.

Another important PeerSim class is Control. In contrast with the Pro-
tocol class, the Control class is instantiated once per simulation and is not
associated with a particular node. The purpose of this class is to enable the
implementation of custom operations performed over the nodes or any other
entity that compose the implemented simulation, be it once (e.g. at initiali-
sation time) or throughout the simulation (i.e., at every cycle or event).

The PAPS Simulator extends the Control class to initialise the state of
the community protocol (CommunityStateInitializer) and node protocol in-
stances (NodeStateInitializer). It is also used to initialise the inter-node
delay and the memory capacity of each node, as well as the catalogue of
functions admitted into the system.

Moreover, our implementation leverages the PeerSim’s Control to ini-
tialise the workload coming from different sources across the topology and
vary the workload throughout the simulation (WorkloadFluctuation). Fi-
nally, the Control class is also extended to synchronise the logical time
of the simulation with the real function execution time (see the Control-
Theoretic Container Scaling below).

Our simulation platform leverage the utility classes provided by the sim-
ulation framework to build the MEC topology. Later on, the nodes in the
topology can retrieve the list of links and thereby the nodes connected to
them. PeerSim also helps with the implementation of the transport layer.
A simulation may be built with reliable or unreliable transport. In the lat-
ter case, a parameter defines the message drop probability. This feature is
important for the design of simulation scenarios in which unreliable chan-
nels are used by leaders to collect metrics from community members and
to inform them about adaptation decisions.

At last, we extended PeerSim’s Node class to characterise nodes in the
topology regarding their essential attributes and state (FogNode). Differ-
ently from node-centric P2P simulators, PeerSim enforces the decoupling
of the P2P state and behaviour (protocol class) from the intrinsic attributes

138

5.5. PAPS Simulator

and behaviour that characterise each node.
Our implementation extends the Node class to define the attributes that

characterise a MEC Node, namely its computational capacity. This class
may be further extended to include additional MEC node features such as
its hierarchical position in the topology.

Optimal Container Allocation and Placement

We have modelled the optimal placement of containers onto MEC nodes
within each community using IBM CPLEX2, a state-of-the-art solver for
linear programming, mixed-integer programming and quadratic program-
ming. Our implementation interfaces with CPLEX through its command-
line interface (OPLEX).

At each iteration of the community-level feedback loop, the community
leader performs an asynchronous call to the solver CLI, which must be
installed in the system that hosts the simulation execution.

The call to the solver CLI includes the path to two files: the model file,
in which the container placement is formulated (in our solution, as a mixed
integer programming problem) and an additional data file containing the
initialisation of the (non-decision) variables in the formulation (e.g. MEC
node capacity, inter-node delay).

Our solution adopts a template-based approach in which both files are
built at each community-level iteration based on a given skeleton of the
model and data files. The classes in the solver package encapsulate the
interfacing with the solver of choice. Future implementations may either
extend or include new classes for variations of the optimisation problem
formulation and corresponding variables.

Once the optimisation is solved, results are collected via standard output
and parsed to obtain the corresponding allocation and placement solution,
i.e., the targeted number of containers per admitted function to be hosted
by each MEC node in the community.

Control-Theoretic Container Scaling

Our solution employs a modular architecture to separate the main simulator
component from the library3 that implements the control-theoretic method
for container provisioning at the node level.

The node library was implemented as a dynamic thread pool, where
one container is a thread that executes the incoming requests. The maxi-

2https://www.ibm.com/analytics/cplex-optimizer
3Source code accessible from https://github.com/deib-polimi/ppap-node

139

https://github.com/deib-polimi/ppap-node

Chapter 5. The PAPS Framework

mum number of containers that can be allocated onto a node depends on
its memory capacity and the memory requirements of the functions to be
deployed (respectively, 96GB and 128MB in our experiments).

Nodes in the topology instantiate the library above, which in turn ex-
poses the node its single interface (NodeFacade). The interface includes
methods for adding/removing functions and for updating the targeted allo-
cation, as decided by the community-level container placement.

The control library also includes functionality for mimicking the real
execution of functions using Java threads, based on which the control sys-
tem measures the aggregate response time of various functions. The library
interface also exposes a method for triggering the execution of a function.
The latter is used to transfer the responsibility for the workload generation
from the node library component to the main simulator thread.

Following the technique in Section 5.4.3, the Controller component de-
cides the number of containers needed to cope with the function SLA given
the monitored response time and workload. In the case of resource con-
tention, the number of containers is scaled down according to the target
value decided by the community-level container placement.

Last but not least, the NodeFacade includes a static method for retriev-
ing the number of containers for a given workload based on the character-
istic function used by the control system (see Section 5.4.3). This interface
method is consumed by the Community Protocol to retrieve the container
demand given an aggregate workload as part of community-level feedback
loop described in Section 5.4.2.

140

CHAPTER6
Evaluation

6.1 Serverless MEC Architecture

6.1.1 Overview

In this section, we report on the evaluation of the Serverless MEC Archi-
tecture. First, the architecture is instantiated with the MAR application
described in Section 3.2.4. The primary goal is to demonstrate the use of
the platform services with a real application scenario and to assess the plat-
form from the development perspective. Secondly, we performed a series
of experiments to demonstrate key attributes of the proposed architecture,
such as the satisfaction of targeted use case requirements and scalability.

6.1.2 Application Scenario: Mobile Augmented Reality

The MAR application appears in many technical [41,103] and research [16,
126] publications as one of the use cases that would significantly benefit
from a MEC architecture. MAR distinguishes from typical Augmented and
Virtual Reality applications as it leverages the mobility offered by smart-
phones, smart glasses, and other modern pervasive devices. Hence, MEC
services are paramount for the seamless operation of these applications as

141

Chapter 6. Evaluation

Figure 6.1: An overview of the SSD object detection method. Image adapted from [84].

users enter and exit different city areas.

Object Detection Method

At the heart of the MAR application is the method for identifying ob-
jects composing the captured scenes. In the literature, one can find sev-
eral methods for object detection [84]. In the particular case of outdoors
augmented reality like our MAR application, a combination of multiple
sensors is required for robust detection, such as a GPS receiver for loca-
tions and distances and inertial and magnetic sensors for orientations. Ad-
ditionally, it is a common practice to employ computer-vision techniques to
accomplish more robust object detection and tracking [84]. Among these,
natural feature detection methods were successfully ported into mobile de-
vices [42, 118]. In some approaches, a client-server architecture is em-
ployed to offload heavyweight computation, which poses the challenge of
limiting the impact of network latency on Quality-of-Experience.

More recently, the application of machine-learning techniques to computer-
vision and object detection attracted considerable attention from both re-
searchers and practitioners. Instead of relying on manual feature engineer-
ing, deep learning methods automatically discover from raw data the rep-
resentations needed for classification or detection, thereby taking advan-
tage of the increasing availability of computational resources and data [84].
Among these methods, some are capable of achieving real-time perfor-
mance with significant detection accuracy [57,85]. Accordingly, we demon-
strate our Serverless MEC Architecture with the MAR application using the
Single Shot Detector (SSD) [57], a state-of-the-art object detection method
based on deep-learning.

Figure 6.1 provides an overview of the SSD method. The first step

142

6.1. Serverless MEC Architecture

Listing 6.1: Object detection function.
1 import numpy as np
2 import cv2
3 import base64
4 import t ime
5
6 def main (a r g s) :
7 g l o b a l cache
8 i f ’ cache ’ not in g l o b a l s () :
9 n e u r a l _ n e t w o r k = cv2 . dnn . r eadNe tFromCaf fe (" . / i m a g e R e c o g n i t i o n /

MobileNetSSD_deploy . p r o t o t x t . t x t " , " . / i m a g e R e c o g n i t i o n /
MobileNetSSD_deploy . c a f f e m o d e l ")

10 cache = n e u r a l _ n e t w o r k
11 e l s e :
12 n e u r a l _ n e t w o r k = cache
13
14 c lassNames = [" background " , " a e r o p l a n e " , " b i c y c l e " , " b i r d " , " b o a t " , "

b o t t l e " , " bus " , " c a r " , " c a t " , " c h a i r " , " cow " , " d i n i n g t a b l e " , " dog "
, " h o r s e " , " m o t o r b i k e " , " p e r s o n " , " p o t t e d p l a n t " , " sheep " , " s o f a " ,
" t r a i n " , " t v m o n i t o r "]

15 image = cv2 . imdecode (np . f r o m s t r i n g (base64 . b64decode (a r g s [" image "]) ,
d t y p e =np . u i n t 8) , 1)

16 i n p u t _ b l o b = cv2 . dnn . blobFromImage (image , 0 . 0 0 7 8 4 3 , (3 0 0 , 300) , (1 2 7 . 5 ,
1 2 7 . 5 , 1 2 7 . 5) , F a l s e , F a l s e)

17 n e u r a l _ n e t w o r k . s e t I n p u t (i n p u t _ b l o b)
18 d e t e c t i o n s = n e u r a l _ n e t w o r k . f o r w a r d () [0] [0]
19 c o n t e n t s = []
20 f o r elem in d e t e c t i o n s :
21 name = c lassNames [i n t (elem [1])]
22 c o n f i d e n c e = 100 ∗ s o r t e d (elem [2 :] , r e v e r s e = True) [0]
23 i f c o n f i d e n c e > 100 :
24 c o n f i d e n c e = 100
25 c o n t e n t s . append ({ "Name" : name , " C o n f i d e n c e " : c o n f i d e n c e })
26 re turn { " s t a t u s C o d e " : 200 , " h e a d e r s " : { " Conten t−Type " : " a p p l i c a t i o n /

j s o n " } , " body " : { ’ L a b e l s ’ : c o n t e n t s }}

extracts features from the input image. The multiway classification and
box regression techniques are then used to obtain initial detection results.
Finally, a non-maximum suppression is used to eliminate redundant re-
sults [57, 84]. To the purpose and scope of the evaluation presented in
this Section, we have employed a well-known SSD trained model (Mo-
bileNetSSD) capable of identifying up to twenty classes of objects, includ-
ing buildings. It is worth mentioning that a precise detection of more spe-
cific objects such as monuments, statues and other tourist attractions de-
mands the proper training of a large image dataset containing these objects.
In many cases, the training set must be annotated to guide the training pro-
cess and thereby produce a more accurate model [84].

143

Chapter 6. Evaluation

Implementation

The object detection pipeline was implemented as a function in Python lan-
guage. In particular, Python has become a broadly used language among
computer-vision practitioners and researchers, with several libraries offer-
ing support in Python. Among these, OpenCV —a popular computer-vision
library implemented in C++ language— provides an API in Python. The
same library also supports different deep learning methods.

Listing 6.1 presents the source code of the object detection function
compatible with OpenWhisk platform. The function instantiates a neu-
ral_network object from OpenCV’s deep neural network module (dnn).
More specifically, it consists of an implementation of the Convolutional
Architecture for Fast Feature Embedding (CAFFE) deep neural network
framework. This complex object is then assigned to the global cache vari-
able. In contrast with OpenWhisk native programming model, in which all
objects composing a function are instantiated at each execution, this func-
tion exploits the proposed in-memory cache (see Section 3.3.2), which pro-
vides a significant advantage in terms of function initialisation overhead.
The remainder of the function takes care of processing the image received
as an argument and passing it through the neural network. Finally, the func-
tion returns all the objects detected in the captured scene along with their
corresponding confidence probability.

6.2 Experimental Evaluation

In this section, we report on the experimental evaluation of the serverless
architecture. The primary goal is to provide a quantitative assessment re-
garding key performance indicators such as latency, scalability, and elastic-
ity. In particular, we followed the Goal-Question-Metric (GQM) method-
ology [15] to guide the evaluation process.

6.2.1 Goal-Question-Metric

Table 6.1 shows the questions and metrics for the experimental evaluation.

Q1: Resource-Constrained Edge Nodes

First and foremost, we evaluated the feasibility of deploying the compo-
nents implementing a serverless architecture on resource-constrained edge
nodes. In particular, we measured the memory footprint (Q1-M1) of all
components in the idle state.

144

6.2. Experimental Evaluation

Table 6.1: Goals, Questions, and Metrics of the Experimental Evaluation

Evaluation Goal: The Serverless MEC Architecture
Question Metrics

Q1 Is the proposed architecture suitable for resource-
constrained edge nodes?

M1: Memory footprint

Q2 Is the proposed architecture suitable for
latency-sensitive and data-intensive applications?

M1: Overhead

M2: Response time

Q3 Is the proposed architecture scalable?
M1: Simultaneous users

M2: Function entropy

Q4 Is the proposed architecture elastic (able to cope
with abrupt workload fluctuations)?

M1: Provisioning time

ST

AA ES EE AR

AO ROET Time

Figure 6.2: Decomposition of the platform service time from activation arrival (AA) to
activation return (AR), passing by execution start (ES) and execution end (EE). In ad-
ditional to execution time (ET), the service time (ST) comprises the activation overhead
(AO) and return overhead (RO).

Additional evidence on the feasibility of deploying the serverless plat-
form to the edge is provided with the experiments targeting the platform
performance and scalability (Q2 and Q3, respectively).

Q2: Latency-Sensitive and Data-Intensive Applications

Next, we evaluated the ability of OpenWhisk in satisfying the requirements
from latency-sensitive and data-intensive applications.We focused on three
metrics: the platform overhead (Q2-M1), defined as the difference between
the total service time and the function execution time; and the platform
response time (Q2-M2), which comprises both service time and network
latency.

Compared with typical IaaS deployments, a FaaS platform adds pro-
cessing and communication overhead while parsing events, managing the
life-cycle of containers, and finally executing functions. Thus, the motiva-

145

Chapter 6. Evaluation

tion for investigating the overhead of the FaaS platform to determine the
impact of having additional components intermediating the interaction be-
tween latency-sensitive and data-intensive client applications and the run-
time environment in which offloaded functions are executed.

In our experiments, the platform overhead is refined into sub-components,
each of which refers to a specific part of the critical path from the function
activation to its execution. While doing so, we considered OpenWhisk’s
public documentation and source code [104]. Despite the particular design
and implementation choices, the rationale behind the operation of this ma-
ture FaaS platform is common to other open source solutions [106]. Plat-
form overhead is decomposed in the following parts (see Figure 6.2):

• Overhead: the time taken by the platform to process an activation
event and trigger the function execution. It also comprises the time
between execution completion and sending the response in the case
of blocking requests, which is the main scenario with computation
offloading. It corresponds to the first metric in Question 2 (Q2-M1).

– AO: the time elapsed between the function activation event and
its execution within a warm container. Includes eventual initiali-
sation overhead of the container and function (see Section 3.3.2).

– RO: the time elapsed between the end of the function execution
and the availability of results —fetched asynchronously or sent
back to the source of a synchronous (blocking) invocation.

• ET: the execution time corresponds to the duration of the function
execution. In our experiments, this is either a controlled variable (test
function) or the actual execution time of a function implementing real
application logic.

• ST: the service time comprises both overhead and execution time. It
corresponds to the first metric in Question 2 (Q2-M2).

Q3: Scalability

In order to access the scalability of the serverless architecture, we consid-
ered the ability of the FaaS platform to accommodate larger and varied
workloads without disruption of its performance. More specifically, we
considered two metrics: simultaneous users (Q3-M1) and function entropy
(Q3-M2). Both metrics were evaluated against distinct memory capacity
configurations.

146

6.2. Experimental Evaluation

The first metric measures the impact of an increasing number of simulta-
neous clients on response time; it is directly related to the platform through-
put for a given capacity configuration. The second metric measures the
platform performance when subject to invocations an increasing number of
different functions (hence, function entropy).

The user limit is a standard metric in software scalability testing. In con-
trast, the second metric is intrinsically related to the FaaS execution model.
In contrast with a typical IaaS deployment, in which capacity defines a hard
limit for how many concurrent services may be deployed, the fast alloca-
tion of containers enables the FaaS platform to rotate the current allocation
in case of resource contention and thereby serve more functionality than
a typical IaaS deployment. Such operation, however, has a non-negligible
impact on performance, which we aim to evaluate.

Q4: Elasticity

Last but not least, the elasticity of the proposed architecture was evaluated
in scenarios of sudden workload fluctuations. More specifically, we eval-
uated the platform scaling responsiveness (provisioning time, metric Q4-
M1) when subject to bursts of workload in the following scenarios: when
infrastructure is cold, i.e., no containers are allocated; and when capacity is
thoroughly used by other functions, whose containers must be first deallo-
cated.

6.2.2 Experimental Setup

The experiments presented in this section were performed with two dedi-
cated Ubuntu/Linux 14.04 servers. Each server was equipped with 12 pro-
cessors and 16GB of memory. Servers were connected to the same network
through Ethernet at two hops of distance (separated by a switcher). The
first server was exclusively used to host the FaaS platform stack. In turn,
the second server was exclusively used to generate workload towards the
first server.

As previously discussed, we adopted OpenWhisk, the most mature open
source serverless framework available. OpenWhisk’s development repos-
itories receive daily commits. For our experiments, we used the last sta-
ble version at the time and followed the recommended set up using Docker
Composer in a single machine. While the official documentation comprises
distributed set up using Kubernets, we opted for focusing our evaluation
on a single node, from which results can be extrapolated. The use of a

147

Chapter 6. Evaluation

Server 1 Server 2

Figure 6.3: Experimental setup. Server 1 hosts OpenWhisk, whereas Server 2 generates
the workload according to the parameters in each experiment.

single machine is also aligned with the idea that edge nodes are resource-
constrained.

The memory capacity assigned to the single Invoker component in our
setup was fixed for all but the experiments targeting the platform scalability.
More precisely, we considered the memory capacity needed by the function
been tested (e.g. 128MB for our Python 2.7 test function) and set the In-
voker capacity to be 12 times the required memory. We found this number
to be appropriate given the 12 CPU cores of the hosting machine.

The workload was generated from the second machine using Locust 1,
an open source load testing tool. Locust provides a comprehensive API
for Python language, based on which we implemented the test cases for
each experiment and load scenario. We shall provide the details on the
parameters used to generate workload for the evaluated metrics in Table 6.1
at the corresponding experiment section.

Except for the memory footprint, the experiments reported in this sec-
tion were repeated ten times. For each of these experiments, thin vertical
bars depict the standard deviation that corresponds to the plotted average.

6.2.3 Results: Memory Footprint

To evaluate the feasibility of deploying the platform onto resource-constrained
MEC nodes, we measured the memory consumption of all the components
that belong to the platform. More precisely, the values reported in Table 6.2
correspond to the memory footprint of each component while the platform
is idle, that is, while no functions are being executed.

The total memory footprint, when the platform is idle, sums 1.8GB.
Additionally, each container instance (not depicted in Table 6.2) consumes

1https://locust.io/

148

6.2. Experimental Evaluation

Table 6.2: Memory footprint of the serverless platform components (idle state).

Fig. 8 Component Memory Footprint (MB)
A API Gateway/Nginx — Third-party 60 MB

B Controller — OpenWhisk 520 MB

C Kafka — Third-party 545.0 MB

D FaaS Invoker — OpenWhisk 400 MB

F CounchDB — Third-party 120.0 MB

G Minio — Third-party 20 MB

H Mosquitto — Third-party 9 MB

I WS Proxy + Feed — Implemented 2x65 MB

Total ≈ 1.8 GB

a minimum of 128MB and a maximum of 512MB in its default config-
uration. Given the variety of deployments of MEC nodes, these results
indicate the feasibility of deploying a complete Serverless MEC Platform
onto MEC nodes with the resources of a personal computer. Kafka [51]
was the most expensive component. While the role of a reliable messag-
ing system is paramount for larger scale and distributed deployments such
as regional-level MEC nodes with multiple invokers, resource-constrained
MEC nodes would benefit from the combination of controller and invoker
into a monolithic component.

Interestingly, OpenWhisk provides such a lean implementation. In this
set-up, an invoker exists within the controller, while an in-memory queue
replaces Kafka. This alternative set-up makes the Serverless MEC Archi-
tecture suitable for MEC nodes with constrained capacity.

6.2.4 Results: Overhead and Response Time

Platform Overhead

The FaaS platform overhead was measured with serial invocations to a sin-
gle test function (ET = 0) in our first set-up deployment. In order to
capture the possible impact of the allocation strategy used by this FaaS
platform, we measured the overhead against an increasing inter-arrival time
—to be more consistent with the architecture under investigation, from now
on we shall refer to this variable as the time between invocations (TBI).

Figure 6.4 shows the obtained results for the overhead in two differ-
ent pause grace (PG) configurations. The first (red bars) refer to the na-
tive OpenWhisk configuration, in which warm containers are paused after

149

Chapter 6. Evaluation

25 50 100 250 500

0

50

100

150

200

Time between invocations (ms)

O
ve

rh
ea

d
(m

s)

FaaS (PG = 50ms) FaaS (PG = 5s)

Figure 6.4: Overhead vs Time between invocations. Each pair of bars depict the total
overhead for a pause grace configuration of 50ms (red bar) and 5s (blue bar).

50ms interval of idleness. The second (blue bars) correspond to a higher
pause grace value (5s). Obtained results show that the pausing (and re-
suming) of containers by the FaaS platform imposes considerable overhead
whenever TBI > PG. The measured overhead in the native configuration
(PG = 50ms) jumps from ≈ 30ms to ≈ 110ms when TBI goes from
50ms to 100ms. In contrast, with our customised configuration (PG = 5s)
the measured overhead remained stable at different TBA values —all of
which bellow pause grace; in the worse case (TBA = 500), the complete
overhead for executing the single test function was 30± 37ms.

25 50 100 250 500
−20

0

20

40

60

Time between invocations (ms)

O
ve

rh
ea

d
(m

s)

Figure 6.5: Overhead vs Time between invocations. Each stacked bar depicts the over-
head in terms of AO (bottom) and RO (top).

Figure 6.5 refines the results obtained for the platform overhead (PG =
5s) in terms of activation overhead (in orange) and return overhead (in

150

6.2. Experimental Evaluation

gray). As expected, the activation overhead is more significant than the re-
turn overhead due to the time needed to process the activation event and
dispatch it to a warm container. In the worse case (TBI = 500ms), activa-
tion overhead was 19.3± 36.7ms —a substantial increase in the measured
standard variation compared to the previous value (1.9ms). In turn, the
corresponding return overhead was 6.74± 0.86ms.

In contrast with the experiments targeting the platform scalability, in
which throughput was measured against a varying number of simultane-
ous users and disparate functions, we also measured the throughput of the
serverless platform for a unique test function (ET = 0) consumed at an in-
creasing rate. The goal is to evaluate how the platform performs in the ad-
vent of invocations to a single latency-sensitive function and thereby check
whether it is capable of processing, given its overhead, a regular but inten-
sive workload.

Figure 6.6 shows the obtained results for the platform throughput in
terms of activations per second (A/s).In contrast with the results in Fig-
ure 6.4, in which points in the curve refer to the TBI , here the horizontal
axis refers to the rate of invocations (thus, the inverse of TBI). Each ex-
periment was performed for a fixed period of 60s. Note that, in this and the
remainder of the experiments in this section, the pause grace parameter in
OpenWhisk was set to 5s (custom configuration).

10 20 33.33 50 66.67 100 200

20

40

60

Invocation rate(r/s)

T
hr

ou
gh

pu
t(

A
/s

)

Figure 6.6: Throughout vs Invocation rate.

Obtained results show a steady throughput performance for up to 70
activations per second. From this point on, the measured throughput re-
mains below the pace of invocations. At first glance, these results seem
to indicate a low platform performance. However, as the experiments with
multiple users in this section demonstrate, the bottleneck was actually on
the client side: the single client’s thread was not able to generate a higher

151

Chapter 6. Evaluation

workload.
While the response time perceived by client applications still depends

on both execution time and network latency, obtained results for the plat-
form overhead corroborate the feasibility of the serverless architecture in
satisfying the requirements of latency-sensitive applications.

Response Time

After assessing the overhead and throughput with a test function, we moved
our attention to the performance of the serverless platform in executing
functions implementing real application logic. More precisely, we mea-
sured the response time perceived by client applications that rely on the
serverless platform for the execution of two functions, all implemented in
Python 2.7: object detection and face detection.

The first function uses the SSD deep-learning method for detecting ob-
jects in an image (see Section 6.1.2). The second function uses a con-
solidated machine learning classifier (namely, HAAR Cascade) for detect-
ing faces in an image. These computation-intensive, data-intensive, and
latency-sensitive functions were selected for their relevance with respect to
significant MEC use cases [41, 103].

1 5 10

0

100

200

300

400

500

600

Number of simultaneous users —object detection function

R
es

po
ns

e
Ti

m
e

(m
s) λ = 2r/s

λ = 4r/s

λ = 10r/s

Figure 6.7: Response time vs Number of simultaneous users

We measured response time for each function separately with concurring
invocations coming from an increasing number of clients for a fixed period
of 60s. Each client generates a synthetic workload using an exponential
distribution set with an increasing average rate λ, where λ = TBA−1.

Figure 6.7 shows the results for object detection. With an average in-
vocation rate of 2r/s, the highest response time was 210ms ± 95ms for
10 simultaneous clients and half of that for up to 5 clients. For an aver-

152

6.2. Experimental Evaluation

1 5 10

0

100

200

300

400

500

Number of simultaneous users —face detection function

R
es

po
ns

e
Ti

m
e

(m
s) λ = 2r/s

λ = 4r/s

λ = 10r/s

Figure 6.8: Response time vs Number of simultaneous users

age invocation rate of 4r/s, response time increased linearly for up to 5
simultaneous clients (136± 44ms) and jumps to 440ms± 100ms with 10
simultaneous clients —indicating the saturation of the platform. Lastly, at
an average invocation rate of 10 r/s, response time was up to 56% higher
(441 ± 102ms) compared to lower invocation rates with 5 simultaneous
clients.

Interestingly, the response time for an average rate of 4r/s and 10r/s
was almost equal for 10 simultaneous clients. This unexpected result may
be justified by a bottleneck in generating requests. Indeed, the results
for the activation throughput in Figure 6.6 corroborates this hypothesis.
Although this could be circumvented adding new machines to behave as
clients, the substantial increase in response time from 5 to 10 clients at
4r/s was able to demonstrate the point in which the platform at the present
set-up becomes overloaded.

The obtained results for the face detection function (see Figure 6.8) were
slightly better (i.e., lower) in all scenarios. The measured response time
was below 75 ± 8ms for all invocation rates triggered by a single client;
up to 186± 70ms for 5 simultaneous clients; and up to 365± 95ms for 10
simultaneous clients and average invocation rate of 10 r/s.

6.2.5 Results: Simultaneous Users and Function Entropy

Simultaneous users

To assess the scalability of the serverless architecture, we measured the
throughput of the FaaS platform with concurring invocations to a test func-
tion coming from an increasing number of clients. In contrast with previous
experiments, the test function hangs for a fixed period of ET = 50ms to

153

Chapter 6. Evaluation

emulate the execution time of a low latency function.
At each client, a synthetic workload was generated for a period of 60s

using an exponential distribution set with an increasing average rate of λ.
Once we have established the limits for a given deployment configuration,
we repeated the experiments adding more capacity to the serverless plat-
form.

Figures 6.9 to 6.11 show the obtained results for different capacity con-
figurations. Each stacked bar depicts the throughput in activations per sec-
ond (A/s) along with the corresponding response time, which allows us to
visualise the point in which a given capacity configuration becomes over-
loaded. With the minimum capacity set-up (4GB), the platform was able to
process as high as 526A/s with 60 simultaneous users and average invoca-
tion rate of 10r/s. At this level, the perceived response time (i.e., round-trip
time) was 112.6± 25.6ms, hence ≈ 62ms of overhead.

10 20 30 40 50 60
0

100

200

300

400

500

600

700

Simultaneous clients

T
hr

ou
gh

pu
t(

r/
s)

|L
at

en
cy

(m
s) λ = 4r/s

10 20 30 40 50 60
0

200

400

600
λ = 10r/s

10 20 30 40 50 60
0

200

400

600

λ = 20r/s

Figure 6.9: Throughput | Latency vs Simultaneous clients — 4GB memory capacity.

Results for 6GB and 9GB capacity configurations showed no signif-
icant improvement concerning the previous results. With 6GB of mem-
ory available, the platform throughput reaches as high as 529A/s with
λ = 20r/s and 60 simultaneous users, whereas the 9GB capacity set-up
achieved as high as 517.563A/s in the same workload scenario. In both
cases, the measured response time was ≈ 115ms.

While these results seem to indicate a scalability problem —as the per-
formance was not improved by additional memory— a closer look into the
FaaS platform and our experimental setup revealed that CPU contention
and not memory was the bottleneck. In short, the FaaS platform calculates
the maximum number of containers based on the ratio between memory

154

6.2. Experimental Evaluation

10 20 30 40 50 60
0

100

200

300

400

500

600

Simultaneous clients

T
hr

ou
gh

pu
t(

r/
s)

|L
at

en
cy

(m
s) λ = 4r/s

10 20 30 40 50 60
0

200

400

600
λ = 10r/s

10 20 30 40 50 60
0

200

400

600

λ = 20r/s

Figure 6.10: Throughput | Latency vs Simultaneous clients — 6GB memory capacity.

10 20 30 40 50 60
0

100

200

300

400

500

600

700

Simultaneous clients

T
hr

ou
gh

pu
t(

r/
s)

|L
at

en
cy

(m
s) λ = 4r/s

10 20 30 40 50 60
0

200

400

600
λ = 10r/s

10 20 30 40 50 60
0

200

400

600

λ = 20r/s

Figure 6.11: Throughput | Latency vs Simultaneous clients — 9GB memory capacity.

155

Chapter 6. Evaluation

required by the function and the capacity available. Our test functions re-
quired 128MB only, which enabled the FaaS platform to scale up to 48
containers with the 6GB configuration and up to 72 with 9GB set-up. This
outstanding elasticity, however, is not followed by the underlying process-
ing capacity, as each container requires one core. Thus, as the number of
containers (thus, processes) continues to increase, CPU contention prevents
the platform from processing a more significant number of invocations.

Function entropy

As the last metric targeting the scalability of the serverless architecture, we
measured the platform response time against an increasing number of dif-
ferent functions, after this referred to as the function entropy. In contrast to
cloud-based IaaS deployments in which distinct components can be scaled
horizontally in an independent manner, the OpenWhisk considers the max-
imum capacity allocated. In case of memory contention, containers that
have been used less recently are released to free space for the processing of
queued activations for which no warm containers are available.

The present experiment was performed following a different approach
from the previous one targeting simultaneous users. Instead of increas-
ing the number of simultaneous clients for a single test function and three
different average invocation rates, we fixed the average invocation rate at
a reasonable level (λ = 4r/s) and focused on the platform performance
at different entropy levels and for an increasing number of simultaneous
users. Not that, to simulate the case in which a single application relies
on multiple functions, clients trigger a burst of requests for all functions
at each entropy level. Similarly to the previous experiment, each function
hanged for a fixed period of ET = 50ms and required 128MB of memory.

1 2 3 4 5 6 7 8 9 10

102

102.5

Disparate functions invoked by 1–10 simultaneous clients with λ = 250ms.

L
at

en
cy

(m
s)

1 Fn 2 Fn 3 Fn
4 Fn 5 Fn 6 Fn
7 Fn

Figure 6.12: Latency vs Function entropy — 4GB memory capacity.

156

6.2. Experimental Evaluation

1 2 3 4 5 6 7 8 9 10

102

102.5

Disparate functions invoked by 1–10 simultaneous clients with λ = 250ms.

L
at

en
cy

(m
s)

1 Fn 2 Fn 3 Fn
4 Fn 5 Fn 6 Fn
7 Fn 8 Fn 9 Fn

Figure 6.13: Latency vs Function entropy — 6GB memory capacity.

1 2 3 4 5 6 7 8 9 10

75

100

125

150

175

200

Disparate functions invoked by 1–10 simultaneous clients with λ = 250ms.

L
at

en
cy

(m
s)

1 Fn 2 Fn 3 Fn 4 Fn
5 Fn 6 Fn 7 Fn 8 Fn
9 Fn 10 Fn

Figure 6.14: Latency vs Function entropy — 9GB memory capacity.

157

Chapter 6. Evaluation

Figures 6.12 to 6.14 present the results for different capacity configura-
tions. Points in the curves represent the response time for a given function
entropy level and number of simultaneous users.

Obtained results for the more constrained capacity (4GB, Figure 6.12)
show that the serverless platform handles up to 10 users concurrently trig-
gering as much as 4 different functions in a burst without any damage to
the perceived response time. With 5 different functions, the measured re-
sponse time starts to increase with 9 simultaneous users. With higher levels
of entropy, the performance hit is noticed earlier (with 7 and 6 simultaneous
users, respectively).

In contrast, obtained results for 6GB memory capacity (Figure 6.13)
show the ability of the serverless platform in serving up to 6 functions for
10 simultaneous users with negligible performance degradation, whereas 7
to 9 functions suffered from higher latency starting from 8, 7, and 6 simul-
taneous users respectively.

At last, the 9GB capacity configuration (Figure 6.14) exhibited sub-
stantial improvements. In this set-up, the serverless platform was able to
process bursts of workload from up to 10 users concurrently triggering as
much as 10 different functions. Performance hit was only perceived at en-
tropy levels of 9 and 10 functions and for 10 and 9 users respectively.

6.2.6 Results: Elasticity

As the last set of experiments, we evaluated the elasticity of the serverless
architecture by measuring its provisioning time in two different scenarios:
when infrastructure is cold, i.e., no containers have been yet created; and
when capacity if fully allocated, i.e., the FaaS platform needs to first release
warm containers from its pool of resources before creating new ones.

The present experiments were also performed with a test function that
hanged for a fixed period of ET = 50ms and required 128MB of memory.
At each scenario, a burst of requests was generated by 10 simultaneous
users at an average rate of λ = 4r/s. The elapsed time was measured with
a bash script loop; at each iteration, the container engine (i.e., Docker) was
queried using the Docker ps command. The number of containers of the
specific type was then logged along with timestamps.

Figure 6.15 depict the obtained results for the provisioning time of the
FaaS platform. With the infrastructure cold, it took ≈ 0.35s to spawn the
first container. Due to container reuse, the elapsed time for subsequent
scale-outs varied. In total, it took ≈ 6s to scale from zero to a total of 10
containers (1 per simultaneous user).

158

6.2. Experimental Evaluation

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8
9
10

Elapsed time (s)

A
llo

ca
te

d
C

on
ta

in
er

s Cold infrastructure
Resource contention

Figure 6.15: Container provisioning time for cold infrastructure and resource contention
scenarios.

As expected, the obtained results for the scenario, in which capacity is
fully utilised, show the impact of the container termination overhead on the
provisioning responsiveness. In this scenario, the first container is created
after ≈ 4.3s, while the second shows up after ≈ 6.7s. A total of ≈ 11.8s is
elapsed after all 10 containers are finally available.

The previous results allows us to draw meaningful conclusions regarding
the platform elasticity. OpenWhisk and the majority of container-based
software nowadays rely on Docker and more specifically on dockerd. To
the best of our knowledge, dockerd cannot create and terminate containers
in parallel. Hence, even though the generated workload comprises parallel
requests, containers are created sequentially. This behaviour explains the
stair-like shape in the results for both scenarios in Figure 6.15.

The previous bottleneck limits the elasticity of the platform to some
extent. Nonetheless, we argue that such an abrupt change of workload rep-
resents the worse possible scenario and that the few seconds needed to spin
or terminate a container are acceptable. One must also take into account
that, in a distributed deployment, the container orchestrator could leverage
multiple hosts to spin containers in parallel.

6.2.7 Discussion

The obtained results show the importance of understanding the technology
that implements a serverless architecture along with the configurations and
strategies that suit the needs of a Serverless MEC Platform. In particular,
we empathise the following aspects: (i) while the overhead associated with
the creation and termination of containers is orders of magnitude lower than
similar operations with virtual machines, it is still considerable for latency-

159

Chapter 6. Evaluation

sensitive applications; (ii) the proper configuration of the FaaS platform in
terms of pause grace is paramount for keeping this overhead low.

The experiments with functions implementing real application logic also
indicate the feasibility of the serverless architecture in coping with the re-
quirements from targeted use cases. For instance, if we consider interactive
applications for whose frame rate must be no less than 5 frames per second
to provide a seamless experience to its users (e.g. the MAR application
in our Running Example), results for the object detection function are in-
line with such requirements for up to 5 simultaneous users with a memory
capacity configuration of 6GB only. Results show that, with additional
capacity, the platform is able to scale to more intense workloads.

The proper dimensioning of the capacity is crucial for achieving the de-
sired performance. Although evident from a theoretical point of view, the
correlation between allocated capacity and performance of a FaaS platform
is less evident due to its unique resource allocation mechanisms, namely the
fast and reactive creation of containerised compute runtimes on demand.
This is even more so in scenarios of resource contention, as the platform
might need to terminate least used containers before spawning new con-
tainers needed to processed queued invocations. Thus, despite its flexibil-
ity and efficiency in providing more functionality with limited resources, a
MEC operator must design the system according to: (i) the characteristic
of the functions admitted into the system; (ii) the number of users.

Last but not least, it is also important to mention that our experiments
were performed without GPU support. A MEC node equipped with the
proper hardware acceleration could significantly reduce service time and
elevate the achieved benchmark for a considerably higher number of users.

6.2.8 Threats to Validity

FaaS Platform

The first and more evident threat to validity is in the choice of OpenWhisk
as the FaaS platform. OpenWhisk makes use of its orchestration technology
to schedule function execution and scale containers. Contrary to other less
sophisticated implementations, this particular FaaS platform uses a persis-
tence component to log the metadata and results of function activations.

Many reasons substantiated the decision of using OpenWhisk as the
FaaS platform of choice. First, it is the most mature open source solu-
tion available. Second, it is actively developed by the open source com-
munity and backed by a leading cloud vendor and other major IT compa-
nies. Third, the platform architecture is sound and well documented, which

160

6.2. Experimental Evaluation

allowed us to investigate in depth its behaviour and propose the modifica-
tions needed to cope with our targeted use cases and deployment scenario.
It is also worth mentioning that some preliminary tests with another open
source FaaS platform [106] revealed no significant gains that would justify
its adoption in place of OpenWhisk.

Networking Technology

Another threat to the validity of our experiments regards the networking
technology employed. Unfortunately, access to cellular infrastructure and
wireless broadband technologies is minimal. One considered option was
to use a standard wireless local area network (WiFi) to perform our exper-
iments. However, this type of technology is yet to see its full potential in
terms of throughput and jitter and therefore is not comparable to the per-
formance to be achieved by 5G networks and accompanying Long-term
evolution wireless broadband, a key technology enabler for MEC.

In light of this, we opted for generating the workload in our experiments
through standard Ethernet technology, which provides superior throughput
and stability. Another justification for this choice is in the infeasibility,
given the resources at hand, to deploy a large number of client applications
onto distinct devices. Instead, we opted for generating the workload from a
single, but powerful server. Such configuration requires that the single link
among these servers to have the necessary capacity.

Notwithstanding the importance of communication, our experiments fo-
cused on the platform rather than network performance. Throughout our
experiments, the latency component introduced by the networking was al-
ways negligible. Hence, one must consider the additional network delay
in a real deployment scenario when analysing the obtained results. In the
other hand, we argue that high network performance is the basic premise of
MEC and edge computing in general, which allows us to conclude that its
effect on the overall performance should be minimal.

Object Identification

The object identification function used in our evaluation also deserves at-
tention. In our experiments, we employed a popular trained model able to
detect up to 20 classes of objects. This model does not include some of
the POI that a MAR application for tourists would need to detect. Notwith-
standing this, the employed trained model preserves two key aspects: large
dimension, which prevents it to be packed as a function asset; and the same
object identification method (Single Shot Detector), which assures accu-

161

Chapter 6. Evaluation

racy and execution time to be comparable with an existing MAR approach
in the literature [84].

6.3 A3-E Framework

We performed various experiments with four distinct domains to assess the
Mobile-Edge-Continuum and the A3-E framework.

The first experiment studies how latency changes and how remote do-
mains scale with a varying workload.

The second experiment evaluates all domains from a client’s perspec-
tive, both in terms of battery consumption and total execution time.

The third experiment evaluates the capabilities of dynamically selecting
domains and targets availability.

Finally, the last experiment evaluates the performance of A3-E’s Acqui-
sition and Allocation. When possible, we compared A3-E against Enorm,
a state-of-the-art framework for edge node management.

6.3.1 Experimental Setup

Table 6.3 summarizes the four domains used in the evaluation. The mobile
domain is part of our Mobile Middleware prototype (see Section 4.6.7),
whereas the mobile application used for the experiments relies on an object
detection function placed along the Continuum.

Our Domain Manager prototype (see Section 4.5) was deployed on two
local-edge domains. Local-edge-1 represented a situation in which latency
is ultra low, but the computational resources are more constrained, and
scaling-up is not possible due to the inherent physical restrictions of the un-
derlying infrastructure (e.g., a lightweight, office-wide server). In contrast,
Local-edge-2 had more computational resources and, again, low latency
could be achieved due to physical proximity (e.g., a robust edge server that
is supposed to cover an entire floor of a building).

As for cloud domains, we used AWS Lambda [4] (Cloud-FaaS), the
most mature FaaS solution on the market. To be consistent with our formu-
lation of the Compute Continuum, functions and associated dependencies
were deployed to the AWS Lambda data centre in Europe. Additionally,
we also deployed the functionality onto a typical IaaS set-up (Cloud-IaaS)
using virtual machines provided by the same vendor. The main goal of this
set-up was not to compare traditional cloud services against a FaaS solu-
tion, but to demonstrate that the Compute Continuum could outperform the
cloud under the tested circumstances and requirements.

162

6.3. A3-E Framework

Table 6.3: Domains Setup in the Continuum for the Experimental Evaluation

Domain Machine Resources Execution Environment

Mobile Samsung Galaxy S6 SM-G90, 3Gb RAM,
8x Cortex CPU 2Ghz

Android 5.0.2 + Java Functions + OpenCV

Local-edge-1 ubuntu/trusty64-2, 4x vCPUs, 4Gb RAM OpenWhisk, 256 Mb/Action, Python 2.7 +
OpenCV

Local-edge-2 ubuntu/trusty64-2, 8x vCPUs, 16Gb RAM OpenWhisk, 256 Mb/Action, Python 2.7 +
OpenCV

Cloud-FaaS N/A AWS Lambda, 256 Mb/Function, Python
2.7 + OpenCV

Cloud-IaaS Auto Scaling Group with t2.micro instances
+ Amazon Linux AMI 2017

NodeJs 6.11 server + Python 2.7 + OpenCV

6.3.2 Response Time and Scalability

The first experiment assessed different domains in term of response time
and scalability when subjected to a varying workload. We simulated an in-
creasing number of clients, each one making 100 requests for the functions
required by the application at a rate of two per second. This setup was con-
ceived by taking into account the default limit of concurrent executions in
AWS Lambda [4] and Openwhisk [104].

This experiment excluded the mobile domain and focused on the remote
domains, that is, the edge- and cloud-based ones. In this experiment, re-
quests were emulated using Postman2, an open source application designed
to perform load testing. The payload used for this experiment was an exam-
ple image of approximately 65KB, which is a reasonable size for this use
case when considering the requirements related to low latency and there-
fore fast computation time. To mitigate the cost of cloud-based providers,
the execution time was profiled once for each domain, and then we focused
on network latency, which is subject to higher fluctuations; the results on
network latency were averaged through 5 executions.

Figure 6.16 shows the average latency for each increment in used clients.
Note that the computation time (light grey) is different from the overhead
(dark grey). The latter includes network communication (routing and for-
warding) and queuing time (when no resources are available to process the
request). If we use Cloud-FaaS as baseline, latency reduction was up to
90% for Local-edge-1 and up to 82% for Local-edge-2.

Interestingly, with Cloud-FaaS the latency decreases when the number
of simultaneous clients increases. This is due to the extra virtual machines

2https://www.getpostman.com/

163

https://www.getpostman.com/

Chapter 6. Evaluation

(*)max-concurrent-executions = 64

Figure 6.16: Latency and scalability for each domain and increasing number of clients.

provided under-the-hood by AWS Lambda to compensate for the initiali-
sation overhead of cold requests: higher reuse rates correspond to higher
stress levels of requests [58]. For a few service invocations, the load dis-
tribution adopted by AWS is uneven across hosts. This uneven use of the
infrastructure may lead to the early deallocation of some containers (incur-
ring in cold starts) if client workloads do not utilise all hosts. Thus, the
decrease in the execution time with a higher level of workload is justified
by the fact that more containers are kept warm.

Despite its virtually unlimited resources, the Cloud-FaaS has tunable
limits for the maximum number of concurrent executions (default is 1000)
due to budget constraints [117]. This is reflected in the substantial increase
in latency when we consider the Cloud-FaaS domain and 64 clients.

If we use the Cloud-IaaS domain as baseline, the reductions when us-
ing Cloud-FaaS are up to 77% and 58% with respect to Local-edge-1 and
Local-edge-2, respectively. Interestingly, Cloud-IaaS outperformed Cloud-
FaaS (46% less overhead) for light workloads (up to 2 simultaneous clients).
This can be due to the additional steps performed by the API Gateway to
forward RESTful calls to AWS lambda functions in Cloud-FaaS3. Never-
theless, this advantage is mitigated by the fact that Cloud-FaaS can better
react to workload bursts due to its faster horizontal scaling [38, 117].

For light to medium workloads (up to 16 simultaneous clients), the over-
head added by the local-edge domains is less than in both cloud alternatives.
Under heavier workloads (from 32 simultaneous clients onwards) these do-
mains present limited availability and degraded performance —as observed

3http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https.html

164

6.3. A3-E Framework

with Local-edge-1, the most resource-constrained domain. One may argue
that a local-edge domain is intended to cope with light workloads (e.g., a
single office or a floor in a building). Edge domains that must cope with
hundreds of simultaneous users (e.g., a mobile-edge domain), the computa-
tion and storage capabilities are expected to be orders of magnitude higher.

6.3.3 Battery Consumption and Execution Time

The main goal of this experiment was to evaluate the Compute Continuum
from the client application viewpoint in terms of battery consumption and
response time. Differently from the previous experiment, we set up a mo-
bile device with our Mobile Middleware (see Sec. 4.6).

This experiment featured four different scenarios: the first three consider
one domain each (Cloud-FaaS, Local-edge-2, and Mobile-device), and the
last one (all-domains) combines the previous ones to form the Continuum4.
The experiment consisted in cascading 2000 sequential requests for the ob-
ject detection function passing an example image (with 65KB of size).
We measured the total execution time, that is, the cumulated time between
requests and their respective response; the battery consumption; and the
average execution time per call. Figure 6.17 shows the obtained results,
averaged on 5 executions for each scenario.

If we consider the total execution time (Figure 6.17a) and Cloud-FaaS
as a baseline, Local-edge reduced it up to a 72%, while Mobile-device and
All-domains up to a 69% and 49%, respectively. In turn, we measured
the battery consumption (Figure 6.17b) in the Mobile-device domain, and
noticed a drop of 4.5% after 750 seconds (i.e., 12.5 minutes) of execution.

Starting from the previous baseline, the savings with Cloud-FaaS, Local-
edge and All-domains were 49%, 35%, and 49%, respectively. The time per
call (Figure 6.17c), with Cloud-FaaS as baseline (1137 milliseconds per
call), was improved by 76%, 68% and 47% for Local-edge, Mobile-device
and All-domains, respectively.

These experiments tell us that the total execution time when using only
the cloud was two times higher than when using the Continuum (All-domains).
Since the requests were performed in cascade and given the higher latency
per call in the cloud, the total time increases accordingly. The use A3-E to
switch to edge domains when possible would substantially reduce latency
and would improve the perceived QoS.

Battery consumption was substantially lower when offloading compu-
tation, rather than performing it on the device. The Mobile-device domain

4Details on the availability of each domain in the all-domains scenario are discussed in Sec. 6.3.4.

165

Chapter 6. Evaluation

(a) Total execution time (sec)

(b) Battery consumption (%)

(c) Execution time per call (ms)

Figure 6.17: A3-E experimental evaluation results

166

6.3. A3-E Framework

lasted half the time, but used twice as much battery (a prohibitive 20% of
battery drain per hour) than with All-domains, given that it was performing
CPU intensive operations at each request. This recalls the importance of
computation offloading to preserve the resources of mobile devices.

6.3.4 Domain Selection and Availability

We evaluated the capability of A3-E to select the best domain, given the
requirements on response time and battery consumption. In this experi-
ment, we used the three domains above together to form the Continuum
and simulated their availabilities using a probability distribution.

The mobile middleware was configured to ping for domain availabil-
ity and network latency every two seconds. We considered that the cloud
domain could be unavailable mainly due to the absence of mobile network
coverage since the downtime of cloud services is minimal [32]. To simulate
this, the average network unavailability was set to once every 15 minutes,
while the average time for it to re-become available was 2 minutes, which
resulted in an availability of 88%.

The rationale for the edge domain was analogous yet with a higher prob-
ability of being unavailable (e.g., due to the lack of memory or CPU). In this
case, the edge domain was unavailable once every 10 minutes, and it needed
an average of 5 minutes to re-become available, resulting in an availability
of 66%. If we consider that edge nodes are only reachable within network
coverage, the resulting availability is calculated by the product of the two
availabilities, that is, 0.88 ∗ 0.66 = 58%. Finally, the mobile device is
considered as always available, as we aimed to stress the trade-off between
battery consumption (when the mobile domain is employed) and latency
(when remote domains are used).

To set an optimal baseline for this experiment, we calculated the the-
oretical number of calls to be served per domain, given the probabilities
explained above. Upon this, we calculated the optimal execution by assum-
ing no overhead for domain switching and by always using the best domain
available.

Figure 6.18 shows the results for the All-domains scenario, with respect
to availability. The experiment showed (see Figure 6.18a) an average per-
ceived availability of 93% without considering the Mobile-device domain
(5% and 35% improvement with respect to the cloud and edge domains, re-
spectively), and 100% availability when also considering the Mobile-device
domain (which is always available).

Figure 6.18b shows the distribution of calls per domain in the Con-

167

Chapter 6. Evaluation

tinuum: 63% served by Local-edge, followed by Cloud-FaaS (30%) and
Mobile-device (7%) —with an optimal of 66, 22 and 12% respectively. In
terms of consistency, given that all requests were served, on average 70% of
the requests perceived low latency, while the 30% that relied on the cloud
had a degradation in QoS but still were processed successfully.

Finally, Figure 6.18c shows an increase of 33% in the total execution
time using A3-E concerning the optimal, where the former includes the
overhead of domain selection and switching.

The previous experiment showed that A3-E is capable of performing
domain selection and offloading decision at runtime. The All-domains sce-
nario reflects the underlying rationale of the Compute Continuum: one
should exploit edge domains as much as possible by specifying appropri-
ate weights in the QoS-requirements (see Equation 4.6), leading to a better
balance among computation time, latency, and resource consumption.

It is important to note that the response time of the mobile domain has
the lowest possible score. Thus, the cloud domain was often selected as
the first alternative in case of edge domain unavailability. It is also worth
mentioning that, in our experiment, the mobile device was always avail-
able, hence the maximum availability when the mobile domain is included.
However, in a more realistic scenario, the mobile domain may become un-
available in case of failures (e.g. involving a hardware or software compo-
nent), resource contention (e.g. if there are multiple applications running
in parallel), or even because specific components are temporarily disabled
by users or the operating system (e.g. if battery level is too low).

6.3.5 Enorm

Finally, we compared Local-edge-2 against Enorm [121], which assumes a
similar, resource-constrained configuration for edge nodes.

Figure 6.19a shows the latency reduction when using both A3-E and
Enorm, that is, an edge alternative, instead of a cloud-based solution. Both
edge-based solutions are better than a cloud alternative for up to 50 simul-
taneous clients (from 35% to 55% latency reduction), and A3-E is always
better (higher reduction) than Enorm. Both approaches perform worse than
the cloud solution with heavier workloads (from some 50 to 64 simultane-
ous clients on).

The last experiment evaluated the performance of Acquisition and Allo-
cation. Given the resource limitations of edge domains and the potential
benefits of the client arrival/exit awareness provided by edge locality, we
targeted the evaluation of Local-edge-2 as a domain.

168

6.3. A3-E Framework

(a) Average availability (%)

(b) Number of requests served

(c) Total Execution Time (sec)

Figure 6.18: All-domains scenario results

169

Chapter 6. Evaluation

The experiment focused on the scenario in which no edge resources are
pre-allocated, that is, a worst case cold-start scenario that includes both Ac-
quisition (∆AQ) and Allocation (∆AL) overhead. The function we used
was similar to the ones used in the previous experiments. Along with the
metadata related to client identification, the client informed the server of
the repository to fetch required assets (some 30MB including the function
and dependencies). Also, the experiment only measured the domain-side
performance, as the response time perceived by clients was evaluated in
the previous experiments. After each successful Acquisition and Alloca-
tion, we uninstalled and deleted all the function-related assets to allow the
following measurements to capture a worst case cold-start.

We executed cascading sequential requests for periods of 5 minutes,
with different utilization levels of the edge node: low (10% server load
and low network traffic, equivalent to 8 clients), medium (55% server load
and 16 clients) and high (85% server load and 32 clients). Again, we were
able to compare A3-E against the Enorm framework, given that our acqui-
sition and awareness are analogous to the provisioning phase in Enorm,
which consists of deploying application server partitions from the cloud to
containers edge nodes.

Figure 6.19b shows obtained results. The average time between the de-
tection of a client identification event and a successful Allocation was 12.5
and 44 seconds for A3-E and Enorm, respectively, without considerable
variations regarding the current load of the edge node. Such a reduction
of provisioning overhead (up to 70%) is one of the main advantages of
adopting a FaaS model for the Continuum. The underlying FaaS solution
(OpenWhisk in this experiment) reduces the burden of downloading and in-
stalling new functionality: thanks to the highly shared platform, functions
can be created and deleted in a fraction of the time needed to do it with full
containers (as in Enorm and most of the state-of-the-art solutions).

6.3.6 Threats to Validity

The experiments only targeted one example application and, in the case
of the experiments of Sections 6.3.3 and 6.3.4, one single client device.
Further tests are therefore needed to assess multiple clients that use several
applications composed of functions with conflicting requirements, whose
corresponding functions are deployed along the Continuum.

It is currently not possible to test with real mobile-edge domains, that
is, to provide computational capabilities on base stations. This could be ap-
proximated either by simulation or by deploying edge domains by follow-

170

6.3. A3-E Framework

(a) Latency Reduction (%)

(b) Provisioning Overhead (sec)

Figure 6.19: Comparison of A3-E (Local-edge-2) and Enorm against a cloud-based solu-
tion.

171

Chapter 6. Evaluation

ing the current specifications of MEC in terms of computational power and
latency, to capture the heterogeneity of the Continuum better. Nonetheless,
the fact that specifications and technologies are still under development
limits the accuracy with which mobile-edge domains can be evaluated.

6.4 PAPS Framework

The simulator introduced in Section 5.5 was used to evaluate the allocation,
placement, and scaling mechanisms of the PAPS framework given different
partitioning of the MEC topology.

6.4.1 Experimental Setup

All the experiments were run using two servers running Ubuntu 16.04 equipped
with processor Intel Xeon CPU E5-2430 for a total of 24 cores and 328GB
of memory.

6.4.2 Partitioning

Figure 6.20: Communities found in a large
scale topology with 250 MEC nodes.

RT

Test Conf V µ σ 95th

OPT 10/50 6.4% 84.9 13.9 111.9
CT 10/50 0.6% 74.4 4.9 81.2

OPT 10/75 7.1% 89.6 15.1 113.4
CT 10/75 0.7% 75.6 7.8 81.8

OPT 10/100 8.9% 92.7 18.7 146.8
CT 10/100 0.9% 76.3 8.1 86.0

OPT 25/50 6.8% 92.6 16.7 176.0
CT 25/50 0.9% 75.6 10.7 85.8

OPT 25/75 10.5% 95.1 19.9 210.7
CT 25/75 1.8% 88.1 12.0 101.6

OPT 25/100 11.7% 101.6 23.0 221.3
CT 25/100 2.0% 85.8 20.0 107.3

OPT 50/50 7.4% 114.9 23.6 243.6
CT 50/50 1.4% 77.7 9.9 89.8

OPT 50/75 12.4% 118.9 27.6 260.6
CT 50/75 1.6% 78.7 15.6 91.6

OPT 50/100 14.0% 125.9 29.6 270.6
CT 50/100 2.2% 90.6 17.3 114.7

Table 6.4: Obtained results.

First, we assumed a large-scale edge topology of 250 nodes created with
normally distributed node-to-node latencies. We used the SLPA algorithm
to partition the topology in communities of 10, 25, and 50 nodes (param-
eter MCS) with membership probability r = 0.35. Fig. 6.20 shows the
results of the partitioning when MCS was set 25. Coloured squares repre-
sent edge nodes within a single community; those belonging to overlapping
communities are pictured as multi-colour circles.

172

6.4. PAPS Framework

It is worth mentioning that each graph edge in Fig. 6.20 represents a
logical path whose network latency is within the inter-node delay threshold
(e.g. DMAX ≤ 10ms). While node positions and edge dimensions may
reflect the geographical location of corresponding MEC nodes, the visual
representation is only illustrative and not necessarily proportional.

6.4.3 Allocation, Placement and Scaling

Next, we run two types of experiments to evaluate (i) the feasibility, the per-
formance, and the scalability of the approach and (ii) the benefit of having
a multi-layer self-management solution.

The first type of experiment, called testOPT, tests the community be-
haviour under an extremely fluctuating workload by using only the community-
level allocation and placement. Each node keeps the target resource alloca-
tion to each running function constant between two community-level deci-
sions. The second type of experiment, called testCT, uses both community-
level and node-level adaptation to provide a more refined and dynamic re-
source allocation for the incoming random workload.

For each of the three community partitioning, we tested the system with
an increasing number of types of functions: 50, 75, 100. Each execution
lasted 10 minutes and tested one of the nine combinations of partitioning
and number of functions. For each configuration, we executed 5 runs of
testOPT and 5 runs of testCT for a total of 90 experiments.

The control periods of the community-level and node-level adaptation
mechanisms were set to 1 minute and 5 seconds, respectively. If no feasible
optimal solution is found at the community level, a constraint-relaxed ver-
sion of the optimization problem introduced in Section 5.4.2 is solved, and
the next placement decision starts 1 minute after. Moreover, we set the frac-
tion of the marginal response time β to 0.5 and the value of the controller
pole α (introduced in Section 5.4.3) to 0.9.

The workloads were generated using exponential distributions for both
execution times (Ek) and inter-arrival rates. Specifically, the latter was gen-
erated for three different scenarios: low, regular, and high. A scenario was
chosen randomly every 15 seconds to simulate an extremely dynamic traffic
caused by user mobility and churn of devices. Finally, the RTSLA of all the
functions was set to 120ms, whereas ETMAX was set to 90ms.

Table 6.4 shows the obtained aggregated results. Column Test shows
the type of test (either testOPT or testCT), column Conf presents the con-
figuration of the experiments (e.g., 10/50 means that each community has
10 nodes and there are 50 different types of functions), column V shows

173

Chapter 6. Evaluation

0 200 400 600
time [s]

0

100

200

re
sp

on
se

 t
im

e
[m

s]

(a) testOPT - Conf. 10/50

0 200 400 600
time [s]

0

100

200

re
sp

on
se

 t
im

e
[m

s]

(b) testCT - Conf. 10/50

0 20 40
time [s]

0

20

40

#
 u

se
rs

3

4

5
#

 c
on

ta
in

er
s

(c) testOPT - Sample of workload and number of
containers in a node

0 10 20 30 40 50
time [s]

20

40
#

 u
se

rs

2.5

5.0

7.5

#
 c

on
ta

in
er

s

(d) testCT - Sample of workload and number of
containers in a node

Figure 6.21: Experimental evaluation results

the percentage of control periods (5 seconds) in which the average response
time violated the SLA, while columns µ, σ and 95th show, respectively, the
overall average, the standard deviation and 95th percentile of the response
time aggregated over the 5 experiment repetitions.

If we focus independently on testOPT and testCT, we can observe in
Table 6.4 that even by increasing the number of nodes and functions the
percentage of failures is kept under 14.0% and 2.2% respectively. These are
reasonable values considering that we used an extremely variable workload
with scenarios changing every 15 seconds.

Note that, the control period used for the community-level decision is
four times larger than the time between two scenarios. Instead, if we com-
pare the results of both tests, we can clearly notice the benefit of the node-
level self-management; by enabling the control theoretical planners, the
number of violations were reduced by an order of magnitude, for example,
from 6.4% to 0.6% in configuration 10/50, from 10.5% to 1.8% in configu-
ration 25/75 functions and from 14% to 2.2% using configuration 50/100.
Moreover, the average, the standard deviation and the 95th percentile of the
response time are significantly lower in all the testCT experiments.

Charts in Fig. 6.21 help in better visualizing the results obtained. Fig-

174

6.4. PAPS Framework

ures 6.21a and 6.21b show the average response time of testOPT and testCT
using configuration 10/50. In the first chart, there are some violations (the
horizontal straight line at 120ms is the SLA), while in the second graph
there is just one at around second 500 and the response time is more con-
stant (lower standard deviation) thanks to the faster actuation of the node-
level manager.

Figures 6.21c and 6.21d show the number of users (lighter line) and
the allocation (darker line) during the execution of a function on a single
node for the two types of experiments (same configuration as before). In
testOPT, the control period is kept larger, given the complexity of the op-
timization problem. Due to the highly dynamic workload, the allocation
is often suboptimal and quite approximated from the actual needs of the
tested system. On the other hand, during testCT the fast node-level con-
tainer scaling allows the system to better fulfil the needs of the users by
strictly following the course of the workload.

175

CHAPTER7
Related Work

7.1 Serverless MEC Architecture

Ismail et al. [44] evaluated Docker, the leading container-based framework,
as an edge computing platform. The paper discussed many of the bene-
fits offered by container technology that are critical for edge computing.
Their evaluation focused on four different criteria: (i) deployment and ter-
mination; (ii) resource & service management; (iii) fault tolerance; and (iv)
caching. In their work, a test-bed was set up using a cloud database and
three edge nodes interconnected by Ethernet network. They highlight three
features of Docker that makes it an attractive technology for edge comput-
ing: fast deployment, small footprint, and excellent performance.

The benefits offered by Docker and the container technology highlighted
by Ismail et al. are also leveraged by the Serverless MEC Architecture we
propose. Indeed, many (if not all) the existing serverless offerings (e.g.
[4, 43, 104, 106]) are based on Docker containers. Nonetheless, our pro-
posal moves away from traditional user-centric service models —namely
IaaS and CaaS— in favour of serverless computing to facilitate Operations,
optimise the use of edge resources and boost the scalability of MEC.

EdgeScale [22] is another platform that leverages serverless comput-

177

Chapter 7. Related Work

ing to enable storage and processing on a hierarchy of data centres, posi-
tioned over the geographic span of a network between the user and tradi-
tional wide-area cloud providers. EdgeScale applications are structured as
lightweight, stateless functions that can be rapidly instantiated on demand.
In their poster presentation, the authors aim to implement all the functions,
storage, routing and additional capabilities from scratch, while we opted for
leveraging current open technologies such as Openwhisk. Besides, regard-
ing the expected benefits of the approach, EdgeScale is on an early stage
and does not report any empirical evaluation of concrete gains in terms of
network latency, throughput and bandwidth.

Lambda@Edge1 is an offering by AWS that allows one to explicitly
deploy serverless functions to specific edge locations, closer to the user.
Functions deployed to edge locations are not suited for general-purpose
computing but for intermediating and optimising the interactions between
edge servers hosting content and end-users. Also importantly, the notion
of edge locations is coarse-grained: their edge schema, named CloudFront,
consists of approximately 155 edge locations worldwide. In contrast, we
consider densely distributed MEC nodes. If co-located with base stations,
MEC nodes can be distributed every km2 or less. Furthermore, the up-
coming small 5G cells and microcells [16] allow us to think of one edge
node per block, or even per building in certain vital places like government
buildings, shopping centres and mass transport stations.

The first real-world prototype of the mobile edge (by Nokia Siemens
and Intel [75]) features base stations equipped with commodity hardware,
and application deployment is based on virtualisation and containerization
technologies. The authors stress the benefits of the mobile edge architec-
ture for both mobile service consumers and operators. Applications running
on the mobile edge are expected to be event-driven, which is in-line with
the Serverless MEC Architecture that we propose. However, this approach
does not take into account the inherent resource limitations of edge comput-
ing, tackled by our architecture by adhering to the FaaS execution model.
Besides, the authors present a taxonomy of MEC applications that can profit
from MEC deployment. Interestingly, the MAR application —used as Run-
ning Example along with this thesis— is representative of two of the most
benefited application scenarios, namely offloading and augmentation.

Satria et al. [93] proposes two different recovery schemes for overloaded
or broken MEC nodes. One recovery scheme is where an overloaded MEC
node offloads its workload to available neighbours within transfer range.
The other is for situations in which no adjacent MEC node is within transfer

1http://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html

178

7.2. A3-E Framework

range, and user devices are employed as ad-hoc relay nodes.In the former
scheme, one MEC node performs the role of a cluster head. The latter pro-
vides offloading alternatives to the MEC nodes within the cluster, whereas
cluster members inform the head about their current state (i.e., overloaded
or not). The second scheme considers the signal-to-noise, buffer size, and
bandwidth capacity of relay nodes. It then formulates an optimal data al-
location problem, whose solution defines the ad-hoc routing from discon-
nected devices to a recovery MEC through selected relay nodes.

Similarly to the former approach, in our proposal we harness the col-
laboration among MEC nodes to boost the availability, resilience and scal-
ability of the proposed Serverless MEC Architecture. In contrast with the
leader-based scheme proposed by Satria et al., MEC nodes establish pro-
active recovery bounds in a fully decentralised manner. While the idea of
employing user devices as an ad-hoc relay to extend the range of MEC node
collaboration is attractive for operators, we argue that users may not be
willing to have their resource-constrained devices used for such purposes.
This is especially so if it incurs in battery drain due to additional use of ra-
dio communication. Thus, we opt for limiting collaboration among surro-
gate MEC nodes interconnected through high throughout, reliable network
links.

7.2 A3-E Framework

Satyanarayana and his colleagues were the first to introduce the notion of
a compute continuum with cloudlets —trusted, resource-rich computers, or
clusters of computers, connected to the Internet and available for nearby
mobile devices [96, 97].

Cloudlets can be seen as the first Mobile-Edge-Cloud architecture. Its
goal is to reduce the response time perceived by interactive applications.
The Mobile-Edge-Cloud Continuum extends the cloudlet architecture with
other types of edge-centric deployment configurations —namely mobile-
edge (MEC). Moreover, in our model cloud deployments are still regarded
as a highly available alternative to mobile and edge computing.

Amongst other domains, the A3-E framework intermediates the oppor-
tunistic interactions between local-edge domains (cloudlets) and mobile ap-
plications (referred to by Satyanarayanan as cyber foraging [94]). Nonethe-
less, there are some significant differences with the original cloudlets pro-
posal. First, cloudlets rely on dynamic VM synthesis rather than container
technology [97]. This might be justified by the time in which the cloudlets
architecture was proposed, which pre-dates the consolidation of the con-

179

Chapter 7. Related Work

tainer technology. On the other hand, even if containers were adopted,
cloudlets remain very general regarding the type of components it can host
or how they should be scaled to cope with dynamic workloads. Also impor-
tantly, rather than pre-defining if and where computation will be offloaded
from mobile devices, A3-E enables this decision to be made at runtime.
Thus, the A3-E framework address essential gaps in the materialization of
the cloudlets vision and architecture.

Sarkar and his colleagues [92] compared the performance of an edge-
cloud continuum (bridged by means of a fog computing tier) and traditional
cloud deployments in the context of IoT. The authors demonstrated from a
theoretical point of view that the edge-cloud continuum outperforms cloud
computing as the fraction of latency-sensitive applications is 50% of all de-
ployed applications. However, in scenarios where the majority of the appli-
cations do not have strict latency requirements, the continuum is observed
to be an overhead compared to cloud-only execution.

Several works (e.g. [46,55,78,130,138]) tackled the decision of whether
to offload computation from/to mobile, edge, or cloud nodes.

In this category, Orsini et al. [78, 79] proposed CloudAware, a compre-
hensive context-aware mobile middleware that handles offloading to edge
and cloud nodes. CloudAware’s primary goal is to provide mobile applica-
tions uninterrupted availability. The latter is achieved either by offloading
computation to surrogate edge nodes, to cloud data centres, or executing
tasks locally. More importantly, the proposed framework takes into ac-
count the conditions of both logical and physical environments, as well as
other contextual information in the client-centred offloading decision.

CloudAware is based on Jadex, an agent-oriented middleware that ships
with various tools and features such as service discovery and different com-
munication protocols. It comprises four main components: a partitioner
that determines which parts of the code are candidates for offloading; a
context monitor that senses and analyses contextual information; a solver
that decides whether to offload computation and to which node; and a co-
ordinator that, among others, handles discovery and synchronization.

At the hearth of CloudAware, a Generic Context Adaptation (GDA)
forecasts, out of a provided feature set, the availability of WiFi, the band-
width range, and other attributes such as the execution time of an offloaded
task. The GDA predicts the previous context information based on his-
torical data collected by the mobile device. The authors relied on a mo-
bile dataset collected from 20 users for a period of 18 months to obtain
a trained model. Among other information, the training data contain the
battery level, which was used to infer the battery drain for various tasks.

180

7.2. A3-E Framework

CloudAware was evaluated regarding multiple attributes. Similarly to
A3-E, it maximises availability by including the mobile device as a fall-
back in case of unavailability of surrogate nodes. Likewise A3-E, the mo-
bile middleware selects the alternative that best suits specified requirements
and the context of operation.

There is also a similarity between the concepts of tasks (CloudAware)
and serverless functions (A3-E). In both cases, the granularity level can
vary according to the application design. In contrast with active compo-
nents supported by Jadex, the paradigm of serverless computing and the
FaaS model have received considerable attention in recent years. In terms
of portability, functions can be executed in heterogeneous environments
(including mobile devices) and written in different languages. Conversely,
Jadex is limited to Java. On the other hand, Jadex provides out-of-the-box
features like service discovery, which are implemented by our middleware
using state-of-the-art protocols.

Although the authors provide a general description of CloudAware main
components, little is said about their behaviour. For instance, a challenge
regarding the monitoring of contextual data like battery level is the lack of
precision. Some authors overcome this limitation through modifications to
the hardware or operating system, which renders their approach not prac-
tical. A3-E makes use of information provided by the Android platform.
Unlike CloudAware, we provide a detailed description of: how we obtain
context information; how this information is used in the selection of the
best domain for the execution of functions.

Last but not least, CloudAware uses a prediction technique to antici-
pate the context and thereby improve the success rate of task execution.
While this is an interesting approach, we add some important considera-
tions. First, multiple factors may undermine the prediction accuracy. Also,
the training process is not trivial and, as stated by the authors, likely to be
performed a priori by remote servers. Whenever the actual conditions di-
verge from the training dataset, the prediction error is likely to increase.
Prediction errors may hurt the offloading decisions by preventing tasks
from being offloaded even if surrogate nodes are available. In A3-E, of-
floading decisions are reactive regarding the monitored context. The ra-
tionale is as follows. Serverless functions offloaded to edge nodes are
stateless and expected to be short-lived. While mobility may disrupt com-
munication, the mobile device is expected to remain in proximity for at
least enough time for several executions to be completed. Hence, the even-
tual error caused by mobility should not affect the normal application be-
haviour; instead of not trying to offload execution, fault tolerance may react

181

Chapter 7. Related Work

by rescheduling the request to the new surrogate node.
Regarding scalability, FaaS harnesses the container technology to achieve

fast scaling, whereas the scalability of CloudAware depends on the under-
lying framework (Jadex). Our implementation of A3-E’s mobile middle-
ware also harnesses adaptive strategies to reduce the overhead of context
monitoring and domain changes. With respect to security, serverless func-
tions are executed in isolation at the software level (containers). In contrast,
CloudAware depends on the compute runtime provided by Jadex. At its cur-
rent version, our framework does not tackle the authentication of function
requests. Nonetheless, it makes use of encrypted connection and delegates
authentication to the FaaS platform.

Next, we discuss some state-of-the-art frameworks. In contrast with
CloudAware [78, 79] and A3-E, the offloading decision is delegated to a
remote server, which is fundamentally different from our proposal. Hence,
we limit the discussion to the essential characteristics of each framework.

Cuervo et al. proposed MAUI [21], a context-aware offloading frame-
work whose primary purpose is to minimise the energy consumption of
mobile devices. MAUI leverages the properties of the Microsoft .NET
Common Language Runtime (CLR) to achieve method-level offloading.
Similarly to CloudAware, developers must annotate candidate methods. In
contrast, A3-E leverages a language-agnostic App configuration file, which
allows the specification of functions that are not executable locally (e.g.
edge-only and remote-only).

On the mobile device, MAUI architecture consists of a client proxy, a
profiler, and a solver. The client proxy handles control and data transfer
for offloaded methods, whereas the profiler instruments the application and
collects measurements of its energy and data transfer requirements. The
MAUI server architecture comprises a profiler and a server proxy with sim-
ilar roles performed by their client counterparts; the actual decision engine
(solver) and a coordinator (controller). The solver component solves an In-
teger Linear Programming (ILP) problem to decide whether offloading can
save energy or not. More specifically, this is performed on the MAUI server
to prevent battery drain, while the client-side solver provides an interface
to the decision engine. The MAUI Controller manages authentication and
resource allocation for incoming requests. The server can run both on a
public cloud or on private cloud deployments.

The optimisation problem is re-solved periodically to adapt to possi-
ble changes in network conditions. The formulation considers call graphs
of method invocations. The objective function minimises the energy con-
sumption sum, subject to latency constraints.

182

7.2. A3-E Framework

MAUI is able to estimate the energy consumed when executing a method
locally through a linear model, built using Least Squares Regression. The
model correlates CPU cycles to the measured energy consumption. Similar
models are built for WiFi and 3G interfaces, but further details are omit-
ted. The energy measurements have been obtained using a hardware power
meter, connected directly to the smartphone’s battery terminals and able to
sample the current drawn with a frequency of 5000 Hz.

The MAUI framework tries to predict execution times using a history-
based approach. However, it does not consider the input size, since it is
assumed that it will not vary much between executions. It has been shown
elsewhere [73,115] that such assumption may lead to imprecise predictions.

The limitation of the MAUI framework regarding real-time applications
is twofold: (i) it targets the minimisation of battery consumption with-
out considering response time; (ii) the scheduler (solver) is located on the
MAUI server. Overhead is introduced before the mobile device is informed
about the scheduler’s decision. In contrast, A3-E privileges client-centric
offloading decisions. The latter follow a more straightforward MCMD al-
gorithm. On the other hand, it supports a broader set of requirements. More
importantly, its low complexity allows resource-constrained mobile devices
to computed it locally.

On the server side, A3-E benefits from the container technology and the
FaaS model, whereas MIAU relies on statically allocated VMs to host their
solution. Thus, A3-E outperforms MIAU in terms of scalability.

Kosta et al. proposed ThinkAir [49], a context-aware framework that
supports method-level offloading to a smartphone runtime clone deployed
to a cloud-based VM. ThinkAir was designed to improve the scalability of
the MIAU framework, allowing clients to achieve their desired QoS either
by executing on multiple cloned VMs in parallel or by asking for a more
powerful VM clone. Although able to improve the scalability of the pre-
vious framework, ThinkAir still relies on typical IaaS deployments. More-
over, offloading decisions are still delegated to a server-side component.

Closely related to our infrastructure model, Tarneberg et al. [114] tack-
led the application placement across heterogeneous edge and cloud infras-
tructures. The authors stressed the challenges in satisfying application re-
quirements while minimising infrastructure-wide operational expenditure.
They also highlight the importance of load balancing to mitigate resource
usage skewness. Their main contributions are twofold. First, they present a
model that captures the heterogeneity of the decentralised infrastructure in
terms of resources and cost; application requirements, and workload. Sec-
ond, they propose an algorithm to solve the resulting multi-optimization

183

Chapter 7. Related Work

placement problem, which considers application execution cost in terms of
computer and network resources, as well as the overload penalty on each
node in terms of latency and resource utilisation. The objective function
reflects mostly the interests of the infrastructure provider (e.g. a telecom
operator), whose primary goal is to minimise the overall running cost.

While the edge-cloud continuum is part of our infrastructure model, our
framework focus on the autonomic capabilities of individual domains (or
data centres, using the authors’ terminology [114]). A3-E tackles the de-
ployment and scaling of stateless and lightweight functions —instead of
monolithic applications— onto mobile, edge, and cloud platforms accord-
ing to application requirements, self-managing policies and the availability
of resources. As previously mentioned, centralised orchestration solutions
may complement A3-E, as they could be employed by providers of mul-
tiple inter-connected domains to optimise their costs (e.g. by retaining or
releasing resources at different mobile-edge domains in specific contexts
of operation). In turn, A3-E adapts to the conditions imposed by the geo-
distributed infrastructure operator (e.g. by deallocating low-priority func-
tions and selecting alternative domains for the affected applications).

Zhao et al [138] proposed a cooperative scheduling in which compute
tasks are offloaded either to local clouds (e.g. cloudlets) or internet cloud
(i.e., typical cloud data centres). The local cloud is modelled as an M/M/C
queue. The authors proposed a priority-based policy for scheduling tasks
according to their tolerance to delay. A task is admitted by the local cloud
if a server is available, or if the corresponding buffer is below a threshold.
The authors then propose an algorithm for optimally determining the buffer
threshold for different priorities. The performance of the priority-based
scheduling was compared against a first-come, first served policy (FCFS),
a greedy policy, and a non-buffer policy. Results show a 5% improvement
in success rate compared to the FCFS policy, whereas the use of Internet
cloud as fall-back improves the success rate in 20%.

A3-E also makes use of policies to solve contention among functions.
Requests are served based on their arrival order and priority. In opposition
to Zhao et al ’s approach, A3-E emphasises client autonomy. An overloaded
edge may deny the execution of a request and will not delegate its execution
to the cloud. Given the perceived context of operation (e.g. denied request),
the mobile middleware has the ultimate decision of where computation is
performed (e.g. locally or the cloud). While our solution benefits from
standard handover technique to preserve the connection with a cloud, a
device connected to the local cloud scheduler may not be able to retrieve
results if it moves to a base station served by another local cloud.

184

7.2. A3-E Framework

The ENORM framework [121] for edge node resource management
shares similarities with A3-E. In ENORM, cloud managers are responsible
for the deployment of server-side application partitions onto edge nodes
with the aim of reducing service latency and the volume of data sent to the
cloud. Server allocation follows a handshake between cloud and edge man-
agers. If successful, application partitions are deployed to edge servers and
clients are bound to specific ports following a network-level reconfigura-
tion.

The ENORM framework architecture includes the following compo-
nents on the edge node: the Resource Allocator keeps track of the available
CPU cores and memory; the Edge Manager is composed by the node man-
ager (deals with the requests obtained by the server manager from a cloud
server) and server manager (initialises containers, allocates ports and secu-
rity); the Monitor periodically tracks communication/computing latency of
each application edge server; the Auto-scaler dynamically allocates/deal-
locates hardware resources to the containers executing application servers
based on monitored metrics; finally, the Application Edge Server is the par-
tition of the cloud server hosted on the edge node.

The ENORM framework is mainly focused on resource management
from the cloud to the edge (top-down). In contrast, A3-E adopts a bottom-
up approach in which autonomic edge domains and potential consumers of
serverless functions interact directly: functions are dynamically deployed
after a handshake between clients and autonomic edge domains; clients de-
cide on the best domain given their requirements and perceived QoS. De-
pending on the requirements (e.g. latency-sensitive functions), edge nodes
are likely to be first in the domain rank and then going up in the hierarchy
given the infeasibility of running by or in proximity to the mobile device.

Like in ENORM, our framework takes into account both priority and
latency to solve contention among functions. Nonetheless, in A3-E requests
from different clients are not bound to specific instances, but decided by a
load balancer, favouring seamless mobility and scalability. Accordingly,
allocation and scaling in A3-E are carried by a node-level control able to
deal with a highly dynamic workload. On the other hand, ENORM provides
support for stateful applications, whereas in our model stateful components
are hosted locally or provided by typical cloud deployments.

As for the Network Function Virtualization (NFV) field, several frame-
works, mainly based on the ETSI MANO standard [45], have been pro-
posed to cope with the fluctuating demand of network infrastructure2 [107].
These frameworks provide an abstraction layer over a mobile edge infras-

2For example, OpenBaton: https://openbaton.github.io/

185

Chapter 7. Related Work

tructure, making the shift among the different parts of the continuum utterly
transparent to applications. However, A3-E focuses on the opportunistic
placement of application-level functions (following the FaaS model) rather
than on VNF elements. We see NFV/VNF as a part of the underlying in-
frastructure, thus the work on them is complementary to ours.

7.3 PAPS Framework

A number of works tackled the problems of placement, scaling, and mi-
gration of services in geo-distributed infrastructures of various density lev-
els. Some (e.g. [28, 114, 132, 136]) focus on the previously mentioned
problems for a set of single-component applications, whereas others (e.g.
[26, 71, 124]) consider multiple-components. In some cases (e.g. [26, 114,
135,136]) the solution refers to singleton components, whereas others (e.g.
[28, 71, 132]) tackle the placement of multiple component instances.

Nastic and his colleagues [72] introduced a serverless edge data analyt-
ics platform. Their platform extends the notion of serverless computing to
the edge via a reference architecture, enabling uniform development and
operation of data analytics functions. The proposed serverless data ana-
lytics paradigm is particularly suitable for managing different granularities
of data analytics approaches bottom-up. This means that the edge focuses
on local views (for example, per edge gateway), while the cloud supports
global views, that is, combining and analysing data from different edge
devices, regions, or even domains.

Data analytics can be performed on edge nodes, cloud nodes, or both,
and delivered from any of the nodes directly to the application, based on
the desired view. Moreover, the top-down control process allows decou-
pling of application requirements (the what) from the concrete realisation
of those requirements (the how). This allows developers to define the an-
alytics function behaviour and data-processing business logic and applica-
tion goals instead of dealing with the complexity of different management,
orchestration, and optimisation processes.

Within Nastic and al’s proposal, the Serverless Stream Model extends
the traditional stream processing model. The transformation function is the
core concept and encapsulates user-defined data analytics logic to process
data along the stream. These functions are then composed into topologies
that enable complex data processing applications. A wrapper is responsi-
ble for encapsulating the transformation functions and exposing a thin API
layer, enabling the analytics function layer to treat functions as microser-
vices. For stateful functions, these wrappers also provide implicit state

186

7.3. PAPS Framework

management. The wrapper transparently handles state replication and mi-
gration, and access to a function’s state is controlled via the exposed API.

The resulting model aims to hide away from developers the hetero-
geneity of the underlying infrastructure comprising large-scale, heteroge-
neous pools of resources —from cloud data centres to fine-grained edge
nodes. At the hearth of the model lays an orchestrator.It receives the ap-
plication configuration directives, in terms of high-level objectives such as
optimising network latency and decides how to orchestrate the underlying
resources, as well as the user-defined functions, by invoking the underlying
runtime mechanisms. However, the precise mechanisms for orchestration
are left open. The PAPS framework focuses precisely on the orchestration
of geo-distributed infrastructures and services through decentralised self-
management. Thus, both works are complementary.

Yang et al. [132] tackled the joint placement of independent services
onto mobile cloud systems and the dispatching of the workload from var-
ious geo-distributed sources. Their system model acknowledges the lim-
itation of each node in terms of how much workload it can serve (com-
putational resource constraint) and how many simultaneous services it can
cache (storage constraint). The authors proposed two formulations: a ba-
sic service placement problem and a cost-aware service placement prob-
lem. The former ignores the cost of deploying and migrating services,
whereas the latter is modelled with a multi-objective function comprising
these costs. A competitive heuristic to the basic service placement prob-
lem is proposed and compared against various benchmark heuristics. An
online solution to the cost-aware version of the problem was also proposed
and evaluated using taxi and metro mobility traces from a real dataset com-
bined with users access pattern to Youtube videos.

The reported results corroborate the feasibility of the proposed heuristics
in solving the basic service placement problem with a low-resolution time.
However, the authors did not compare their heuristics against an optimal
solution, which prevents us from drawing conclusions about its efficiency.
Moreover, the resolution time was reported for up to 80 nodes (≈ 1.5s) with
a fixed number of 30 services. Given that the complexity of the polynomial-
time heuristics is O(N5K5(N + 1)3), one may expect the resolution time
to grow considerably for a more significant number of services.

In light of this, the node-level self-management in the PAPS approach
could complement the joint service placement and workload dispatching
solution by scaling services as the workload fluctuation while a new solu-
tion is provided. Conversely, our framework would benefit at the commu-
nity level from a more robust formulation of the joint service placement

187

Chapter 7. Related Work

and workload dispatching problem along with the proposed polynomial-
time approximation solution. The same rationale holds for the online so-
lution for the cost-aware formulation: the node-level feedback loop could
tackle the scaling of containers and thereby mitigate the adverse effects of
the workload prediction errors.

Yu et al. [135] proposed a fully polynomial-time approximation for the
joint placement and data routing of data-intensive IoT applications in a fog
topology. Their solution comprises both single and multiple applications,
which are proved to be NP-Hard. The proposed approximation was eval-
uated with a random topology with 20 nodes, with only 20% of them as
fog nodes, while the remaining nodes are exclusively used for network-
ing. Capabilities and requirements for throughput and latency were also
randomised for a total of five concurring applications.

The proposed solution was able to improve the QoS of data-intensive ap-
plications compared to different heuristics. However, due to the complexity
of the problem at hand, experiment results show limitations in terms of scal-
ability. For instance, the designation of hosts for the placement of multiple
applications is exponential to the number of applications. Due also to the
data routing complexity, the resolution time of the proposed approximation
for multiple application placement shows an exponential increase as the
approximation parameter is reduced. With an accuracy parameter of 0.3,
resolution time was as high as 200 seconds for five applications.

These previous results lead to the following conclusions. Firstly, the
scale of nodes with computational capabilities does not correspond to a
dense distribution of fog nodes. Secondly, even if the formulation con-
siders multiple applications, each application is monolithic and hosted by a
single node. While the formulation is flexible enough to be used with multi-
component applications, it would need further assessment for its resolution
time, which may be prohibitive for more dynamic workloads. Finally, the
proposal focuses on network resources without considering the computa-
tional capabilities of each node. This limitation is significant since in the
context of densely distributed nodes resources are likely to be constrained.

Zanzi et al. [136] proposed a multi-tenant resource orchestration in MEC
systems. Authors introduce a MEC broker responsible for procuring slices
of the resources available in the MEC system to various tenants based on
their privilege level. At each optimization cycle, the broker decides for
placing single-component applications onto the MEC node of choice (gold
users) or any feasible node according to the availability of computing re-
sources and the network delay.

We have instantiated our framework with a similar MEC topology. Nonethe-

188

7.3. PAPS Framework

less, our solution tackles the placement of a dynamic number of instances
of various serverless functions onto stateless containers. Hence, while the
idea proposed by Zanzi et al. of slicing MEC node resources based on user
priority levels is undoubtedly interesting, our framework moves away from
user-centric decisions regarding the placement of application components.
We approach takes into account the response time as SLA and a varying
workload from different sources across the MEC topology.

Nardelli et al. [71] proposed ACD, a general formulation of the de-
ployment and adaptation problem of containerised applications over geo-
distributed infrastructures. The proposed model tackles the optimisation of
specific deployment objectives with the allocation of containerised applica-
tion components to geo-distributed VMs and preserves these objectives at
runtime through the horizontal and vertical scaling of containers within the
VMs. The paper formalises the deployment and adaptation cost and evalu-
ates various deployment heuristics. The paper considers a multi-component
application model in which components are independently deployed and
scaled, with each instance running in an individual container.

From the operator’s perspective, the proposed formulation considers a
single application that comprises multiple components. However, the de-
ployment on densely distributed infrastructures must deal with resource
contention among concurring applications. Thus, deployment and adap-
tation decisions from different applications are likely to conflict with each
other if taken independently.

From the application provider’s perspective, authors rely on a compute-
intensive optimisation framework —namely, Integer Linear Programming—
for solving the ACD formulation. The authors state that the resulting for-
mulation is NP-Hard. The optimal solution is then compared as a bench-
mark against three greedy heuristics.

The experimental evaluation was based on simulations involving a five
components application. Results are then compared with greedy heuristics
which do not take into account the network, which may be considered a
threat to the validity of the evaluation. An optimal solution for the more
elaborate formulation that minimises both deployment and adaptation costs
is found with a resolution time as high as 17 seconds. While this is a valid
result for the evaluated application, resolution time could be prohibitive
for a higher number of communicating components. Although not tackled
by the ACD formulation, the same conclusion can be drawn regarding an
extended formulation comprising multiple applications.

The results above corroborate the importance of the decentralised self-
management adopted by the PAPS framework: while the ACD formulation

189

Chapter 7. Related Work

could be employed at the community level, the node-level self-management
provides an effective allocation of resources through control-theoretic con-
tainer scaling.

iFogSim [36] was proposed as a toolkit for modelling and simulating
resource management techniques in a Mobile-Edge-Cloud Continuum. It
allows one to simulate the placement of different modules of real-time ap-
plications to edge devices and then measure latency, network congestion,
energy consumption, and cost.

The platform focuses on two types of management decisions: place-
ment of components (application modules) and scheduling. It supports two
application models: the sensor-process-actuate and the stream processing
model. The platform also comprises classes for the monitoring of the in-
frastructure and performance prediction.

The Placement and Scheduler classes are the main resource manage-
ment components. Users may extend their behaviour to implement spe-
cific strategies. The Placement class provides out-of-the-box support for
cloud-only and edge-ward strategies. The latter iteratively places applica-
tion modules, favouring fog nodes in proximity with clients. Upon incom-
patibility or unavailability of resources, it performs a leaf-to-root traversal
and places the application module onto the first feasible node. In turn, the
default Scheduler behaviour is to uniformly distribute the load among all
active application modules.

The EdgeCloudSim [111] is another simulation platform streamlined for
edge computing. The platform supports the simulation of multi-tier scenar-
ios where multiple edge servers provide services to mobile user devices in
coordination with upper layer cloud solutions.

Similarly to iFogSim, EdgeCloudSim features modular architecture. Be-
sides the functionalities inherited from CloudSim, it provides features such
as a mobility model, a load generator, and network modelling for both
WLAN and WAN. The platform also provides an extensible orchestra-
tor module in which resource management actions can be implemented.
Specifically, EdgeCloudSim supports the creation and termination of VMs,
the provisioning of computational resources of edge nodes, and the offload-
ing of tasks to edge or cloud servers based on scheduling policies.

The previous simulation platforms extend the popular cloud simulator
framework CloudSim [19]. CloudSim features a centralised architecture.
While iFogSim and EdgeCloudSim introduce new features to represent the
geo-distribution of servers and clients, they preserve the centralised nature
of decision making from CloudSim. In both cases, allocation, placement,
and scheduling decisions are performed by a centralised entity (orchestra-

190

7.3. PAPS Framework

tor). The default implementation consists of straightforward algorithms,
whose scalability is demonstrated to be satisfactory. Nonetheless, the re-
sulting performance (e.g. average delay and use of resources) may be sig-
nificantly lower than provided by optimal, but far more complex solutions.
Also importantly, network modelling is limited to the data plane, whereas
the control plane is abstracted away —the orchestrator is omniscient of the
whole edge system under its control.

While designing the PAPS Simulator, we considered the scalability needed
to cope with a large number of nodes in a complex edge system. Not only
we tackle the complexity of the decisions involved with the orchestration
of geo-distributed nodes and services, but we also consider the challenges
of monitoring and analysing the data needed for such decisions, as well as
their execution by affected nodes in the system.

These previous requirements lead us to choose PeerSim as the simu-
lation framework for implementing our simulator. As discussed in Sec-
tion 5.5, PeerSim has been built with scalability as a first-class requirement
and facilitates the implementation of the decentralised self-management ac-
tivities that comprise the PAPS framework.

The PAPS Simulator shares many of the features in EdgeCloudSim,
including extensible modules responsible for the generation of dynamic
workload, mobility of users, and the modelling of network communica-
tion, which in our case includes the control plane (implemented as modular
P2P protocols for each self-managing level). In contrast with the orches-
tration approach used by iFogSim and EdgeCloudSim, the PAPS simulator
features the node-level self-management composing our framework with
the control-theoretical container scaling as its default implementation —a
behaviour that can be disabled or extended.

191

CHAPTER8
Conclusions and Future Work

In Chapter 3, we presented a Serverless MEC Architecture to tackle two
crucial MEC use cases: latency-sensitive computation offloading and in-
transit data processing and analysis. To the best of our knowledge, no other
work had employed a serverless architecture in the provisioning of Self-
Managed Computing Services by a MEC Platform.

Multiple components may affect the latency perceived by client applica-
tions relying on a Serverless MEC Platform for computation offloading.
First and foremost, network bottlenecks are the main threat to a client-
server architecture targeting latency-sensitive use cases. Hence, new wire-
less broadband technologies like the Long Term Evolution (LTE) and the
5th Generation of Cellular Mobile Communications (5G) are vital for the
success of delivering low latency, high throughput services [24].

The other main threat is platform overhead. The zero preallocation en-
abled by FaaS comes with the cost of cold start, which may vary from mil-
liseconds (for cold containers) to seconds (for cold virtual machines) [58].
Thus, a Serverless MEC Platform must aim for the balance between re-
source efficiency, achieved through deprecation of idle resources, and re-
sponsiveness, achieved through the retention of infrastructure. In this re-
gard, the client-awareness is paramount for the efficient pre-warming of

193

Chapter 8. Conclusions and Future Work

containers needed to prevent cold start.
System designers must take into account the particularities exhibited by

different functions. Functions that rely on computationally expensive tech-
niques such as image processing and deep-learning require special-purpose
hardware for achieving optimal performance. Besides graphics process-
ing units, which nowadays is supported by specific container engines (e.g.
Nvidia-Docker 1), Tensor Processing Units have been recently proposed to
optimise the training process 2. According to the OpenFog Reference Ar-
chitecture [77], hardware accelerators are expected to be deployed at the
edge to enable the processing and analysis of large volumes of data.

Last but not least, serverless architectures also provide a different cost
model through fine-grained billing. While this billing model is already seen
as a positive characteristic of cloud-based serverless platforms, it may be-
come a central feature for driving the adoption of MEC Computing Services
among operators. Indeed, it can even complement other utility services (e.g.
a mobile data plan) which are often charged in a fine-grained manner (e.g.
per minute), hence similar to the serverless billing model.

In Chapter 4, we introduced our vision of a Compute Continuum formed
by mobile, edge, and cloud computing. As the central contribution, we pre-
sented A3-E, a framework for managing the life-cycle of serverless func-
tions deployed to various parts of the Continuum according to application
requirements and context.

A3-E overcomes the heterogeneity of the Compute Continuum through
mutual client-provider awareness and self-management activities performed
by autonomic managers at both sides. Also, it leverages the serverless
computing paradigm to allow stateless and lightweight functions to be op-
portunistically fetched, deployed and exposed by heterogeneous edge and
cloud providers, or consumed locally.

The four A3-E activities are distributed across the continuum and con-
ceptually divided into two parts: one is responsible for the autonomic man-
agement of function life-cycle, while a client-side proxy is responsible for
handling application requests and forwarding them to the provider that can
best satisfy the client application requirements.

The feasibility of A3-E has been demonstrated with prototype imple-
mentations of its Domain Manager for local-edge (i.e., cloudlets) and Mo-
bile Middleware for Android platforms. Thanks to A3-E, the application
was able to autonomously proxy its requests to services that were dynami-
cally deployed to a Compute Continuum. Performed experiments show up

1https://github.com/NVIDIA/nvidia-docker
2https://cloud.google.com/tpu/

194

https://github.com/NVIDIA/nvidia-docker
https://cloud.google.com/tpu/

8.1. Future Work

to a 90% reduction of latency when edge replaced cloud and a 74% decrease
of battery consumption when the computation is offloaded from the mobile
device to edge/cloud domains. Moreover, by dynamically selecting what
constituents to use in the continuum in different contexts, A3-E was able
to maximise availability and prevent service interruptions while reducing
the overall execution time and battery consumption. Finally, A3-E reduced
deployment time up to 70%, compared to a similar approach [120] for the
resource management of edge nodes.

Obtained results allow us to conclude that through its self-management
capabilities, which complement those of serverless computing, A3-E pro-
vides a suitable approach for the convergence among mobile, edge, and
cloud computing. Nonetheless, from a single MEC operator, A3-E does
not tackle the cooperation among MEC nodes from the same operator.

In Chapter 5, we address the previous limitation in A3-E with PAPS, a
framework designed to tackle the self-management of densely distributed
MEC nodes from a single provider.

PAPS is based on a multi-level, decentralised self-management approach
that partitions the larger scale edge topology into delay-aware communi-
ties and allocates resources among and within communities. Moreover,
the PAPS framework combines optimal community-level allocation and
placement with fast node-level container scaling to render the overall self-
management process both efficient and effective.

The PAPS framework also comprises a simulation platform. The plat-
form is built on top of PeerSim, a mature P2P simulation framework. The
resulting simulation platform allows users to perform experiments with
complex topology, workload, and application requirements configurations.
The implementation follows a modular architecture. Currently, the PAPS
Simulator is integrated with IBM CPLEX —a state-of-the-art solver— and
a library implementing the control-theoretic method for SLA-based con-
tainer provisioning.

8.1 Future Work

Our future work regarding the Serverless MEC Architecture includes the
following items.

First, we would like to assess the impact of the function granularity on
the software development process.

In a parallel thread, we wish to investigate more complex deployment
configurations in which functions from the same application are hosted by
heterogeneous MEC nodes according to the node’s capabilities and appli-

195

Chapter 8. Conclusions and Future Work

cation requirements.
We are also interested in tackling the problem of caching data on the

edge. While the use of caching is key for mitigating the function initiali-
sation overhead, it is also expensive from the storage perspective. In our
current proposal, we considered a least recently used policy. As future
work, we wish to evaluate more robust caching policies and techniques.

As a final development, we are interested in the deployment of state-
ful components. Similarly to the FaaS model, this kind of service would
harness the container technology and impose restrictions on the partition
size and memory capacity. Differently from FaaS, stateful partitions would
privilege vertical scaling and require consistency assurances whenever con-
tainers are replicated or migrated.

The roadmap of our future research with the A3-E framework is sum-
marised as follows.

First, we wish to carry out experiments with mobile-edge domains, i.e.,
with MEC nodes accessed through broadband technology. While the access
to cellular infrastructure may be more difficult, we consider that only with
a realistic experimental setup we will be able to fully assess the validity of
our architectural and management approaches.

Secondly, we would like to deepen our investigation in the context of
non-intrusive energy consumption monitoring for leading mobile platforms.
More importantly, we wish to equip the mobile domain with the capabilities
of a remote domain, i.e., to render it able to host the execution of functions
from other devices as part of mobile ad-hoc clouds.

Our research effort to develop a comprehensive framework for tackling
the self-management of geographically distributed infrastructures and ser-
vices from a single provider started more recently. Thus, we envision a
series of developments for our work.

First, we wish to perform a robust evaluation of the PAPS approach with
various optimisation formulations and control-theoretic techniques. The
evaluation of our framework with more complex optimisation formulations
is particularly important to highlight the role of the node-level container
scaling in preventing SLA violations.

Secondly, we would like to improve our method with the adaptation of
the community structure based on the performance of the community-level
self-management (e.g. the optimal container placement resolution time). In
the same direction, we wish to further investigate the impact of the inter-
community allocation in the overall system performance.

Last but not least, we would like to consolidate the implementation of
our simulation platform and extend its set of features.

196

Bibliography

[1] Ahmed H Abase, Mohamed H Khafagy, and Fatma A Omara. Locality sim: Cloud simulator
with data locality. International Journal on Cloud Computing: Services and Architecture
(IJCCSA), 6:17–31, December 2016.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. Internet of things:
A survey on enabling technologies, protocols, and applications. IEEE Communications Sur-
veys Tutorials, 17(4):2347–2376, Fourthquarter 2015.

[3] Raian Ali, Nan Jiang, Keith Phalp, Sarah Muir, and John McAlaney. The emerging require-
ment for digital addiction labels. In Samuel A. Fricker and Kurt Schneider, editors, Require-
ments Engineering: Foundation for Software Quality, pages 198–213, Cham, 2015. Springer
International Publishing.

[4] Amazon Web Services. Aws lambda. https://docs.aws.amazon.com/lambda,
2019.

[5] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy
Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A
view of cloud computing. Commun. ACM, 53(4):50–58, April 2010.

[6] K. J. Åström and T. Hägglund. PID controllers: theory, design, and tuning, volume 2. Isa
Research Triangle Park, NC, 1995.

[7] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Trans. Dependable Sec. Comput.,
1(1):11–33, 2004.

[8] Timon Back and Vasilios Andrikopoulos. Using a microbenchmark to compare function as a
service solutions. In Service-Oriented and Cloud Computing - 7th IFIP WG 2.14 European
Conference, ESOCC 2018, Como, Italy, September 12-14, 2018, Proceedings, pages 146–
160, 2018.

[9] Ioana Baldini, Paul C. Castro, Kerry Shih-Ping Chang, Perry Cheng, Stephen J. Fink, Vatche
Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric M. Rabbah, Aleksander Slominski, and
Philippe Suter. Serverless computing: Current trends and open problems. In Research Ad-
vances in Cloud Computing, pages 1–20. 2017.

197

https://docs.aws.amazon.com/lambda

Bibliography

[10] L. Baresi, S. Guinea, A. Leva, and G. Quattrocchi. A discrete-time feedback controller for
containerized cloud applications. In Proc. of the 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, pages 217–228, New York, NY, USA, 2016.
ACM.

[11] L. Baresi, S. Guinea, and D. F. Mendonca. A3droid: A framework for developing distributed
crowdsensing. In IEEE International Conf. on Pervasive Computing and Communication
Workshops (PerCom Workshops), pages 1–6, March 2016.

[12] L. Baresi, D. F. Mendonça, and M. Garriga. Empowering low-latency applications through
a serverless edge computing architecture. In Proc. of the 6th European Conf. on Service-
Oriented and Cloud Computing, pages 196–210, Cham, 2017. Springer International Pub-
lishing.

[13] L. Baresi, D. F. Mendonça, M. Garriga, S. Guinea, and G. Quattrocchi. A unified model for
the mobile-edge-cloud continuum. ACM Trans. Internet Technol., 19(2):29:1–29:21, April
2019.

[14] Luciano Baresi and Danilo Filgueira Mendonça. Towards a serverless platform for edge
computing. July 2019.

[15] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The goal question metric ap-
proach. 1999.

[16] Michael Till Beck, Martin Werner, Sebastian Feld, and S Schimper. Mobile edge computing:
A taxonomy. In Proc. of the Sixth International Conference on Advances in Future Internet,
pages 48–54, 2014.

[17] Paolo Bellavista and Alessandro Zanni. Feasibility of fog computing deployment based on
docker containerization over raspberrypi. In Proceedings of the 18th International Conference
on Distributed Computing and Networking, ICDCN ’17, pages 16:1–16:10, New York, NY,
USA, 2017. ACM.

[18] Flavio Bonomi, Rodolfo A. Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and
its role in the internet of things. In Proceedings of the first edition of the MCC workshop on
Mobile cloud computing, MCC@SIGCOMM 2012, Helsinki, Finland, August 17, 2012, pages
13–16, 2012.

[19] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and Rajkumar
Buyya. Cloudsim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Software: Practice and experience,
41(1):23–50, 2011.

[20] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smartphone. In
Proc. of the 2010 USENIX Conf. on USENIX Annual Technical Conf., pages 21–21, Berkeley,
CA, USA, 2010. USENIX Association.

[21] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu, Ran-
veer Chandra, and Paramvir Bahl. MAUI: making smartphones last longer with code offload.
In Proceedings of the 8th international conference on Mobile systems, applications, and ser-
vices, pages 49–62. ACM, 2010.

[22] Eyal de Lara, Carolina S Gomes, Steve Langridge, S Hossein Mortazavi, and Meysam Roodi.
Hierarchical serverless computing for the mobile edge. In IEEE/ACM Symposium on Edge
Computing (SEC), pages 109–110. IEEE, 2016.

[23] Tom De Wolf and Tom Holvoet. Emergence versus self-organisation: Different concepts but
promising when combined. In Sven A. Brueckner, Giovanna Di Marzo Serugendo, Anthony
Karageorgos, and Radhika Nagpal, editors, Engineering Self-Organising Systems, pages 1–
15, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

198

Bibliography

[24] C. Dehos, J. L. González, A. D. Domenico, D. Kténas, and L. Dussopt. Millimeter-wave
access and backhauling: the solution to the exponential data traffic increase in 5g mobile
communications systems? IEEE Communications Magazine, 52(9):88–95, September 2014.

[25] J. Dolezal, Z. Becvar, and T. Zeman. Performance evaluation of computation offloading
from mobile device to the edge of mobile network. In IEEE Conference on Standards for
Communications and Networking (CSCN), pages 1–7, Oct 2016.

[26] Bruno Donassolo, Ilhem Fajjari, Arnaud Legrand, and Panayotis Mertikopoulos. Fog Based
Framework for IoT Service Provisioning. In CCNC 2019 - IEEE Consumer Communications
& Networking Conference, pages 1–6, Las Vegas, United States, January 2019. IEEE.

[27] U. Drolia, R. Martins, J. Tan, A. Chheda, M. Sanghavi, R. Gandhi, and P. Narasimhan. The
case for mobile edge-clouds. In 2013 IEEE 10th International Conference on Ubiquitous
Intelligence and Computing and 2013 IEEE 10th International Conference on Autonomic
and Trusted Computing, pages 209–215, Dec 2013.

[28] Francescomaria Faticanti, Francesco De Pellegrini, Domenico Siracusa, Daniele Santoro, and
Silvio Cretti. Cutting throughput on the edge: App-aware placement in fog computing. CoRR,
abs/1810.04442, 2018.

[29] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated performance
comparison of virtual machines and linux containers. In Performance Analysis of Systems
and Software (ISPASS), IEEE International Symposium On, pages 171–172. IEEE, 2015.

[30] H. Flores, P. Hui, P. Nurmi, E. Lagerspetz, S. Tarkoma, J. Manner, V. Kostakos, Y. Li, and
X. Su. Evidence-aware mobile computational offloading. IEEE Transactions on Mobile
Computing, 17(8):1834–1850, Aug 2018.

[31] Ken Fromm. Why the future of software and apps is serverless, 2012. Retrieved from:
http://readwrite.com/2012/10/15/why-the-future-of-software-and-apps-is-serverless/.

[32] J. L. Garcia-Dorado. Bandwidth measurements within the cloud: Characterizing regular be-
haviors and correlating downtimes. ACM Trans. Internet Technol., 17(4):39:1–39:25, 2017.

[33] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

[34] Google. Google cloud functions. https://cloud.google.com/functions/, 2019.

[35] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami. Inter-
net of things (iot): A vision, architectural elements, and future directions. Future Generation
Comp. Syst., 29(7):1645–1660, 2013.

[36] H. Gupta, D. Vahid, S. Ghosh, and R. Buyya. ifogsim: A toolkit for modeling and simula-
tion of resource management techniques in the internet of things, edge and fog computing
environments. Software: Practice and Experience, 47(9):1275–1296, 2017. spe.2509.

[37] M. Heck, J. Edinger, D. Schaefer, and C. Becker. Iot applications in fog and edge computing:
Where are we and where are we going? In 27th International Conference on Computer
Communication and Networks (ICCCN), pages 1–6, July 2018.

[38] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkataramani, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Serverless computation with open-
lambda. In Proceedings of the 8th USENIX Conference on Hot Topics in Cloud Computing,
pages 33–39, 2016.

[39] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkataramani, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Openlambda. https://github.
com/open-lambda/open-lambda, 2019.

199

https://cloud.google.com/functions/
https://github.com/open-lambda/open-lambda
https://github.com/open-lambda/open-lambda

Bibliography

[40] Y. Hu, J. Wong, G. Iszlai, and M. Litoiu. Resource provisioning for cloud computing. In
Proceedings of the 2009 Conference of the Center for Advanced Studies on Collaborative
Research, pages 101–111, Riverton, NJ, USA, 2009. IBM Corp.

[41] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young. Mobile edge
computing: A key technology towards 5g. ETSI White Paper, 11, 2015.

[42] B. R. Huang, C. H. Lin, and C. H. Lee. Mobile augmented reality based on cloud computing.
In Anti-counterfeiting, Security, and Identification, pages 1–5, Aug 2012.

[43] IBM. Ibm cloud functions. https://www.ibm.com/cloud/functions, 2019.

[44] B. I. Ismail, E. Mostajeran Goortani, M. B. Ab Karim, W. Ming Tat, S. Setapa, J. Y. Luke,
and O. Hong Hoe. Evaluation of docker as edge computing platform. In IEEE Conference on
Open Systems (ICOS), pages 130–135, Aug 2015.

[45] A. Israel, A. Hoban, A. Tierno Sepulveda, F. Salguero, G. Garcia de Blase, and K. Kashalkar.
Open source mano release three – etsi white paper. Technical report, ETSI OSM Consortium,
10 2017.

[46] M. Jia, W. Liang, and Z. Xu. Qos-aware task offloading in distributed cloudlets with virtual
network function services. In Proc. of the 20th ACM International Conf. on Modelling, Anal-
ysis and Simulation of Wireless and Mobile Systems, pages 109–116, New York, NY, USA,
2017. ACM.

[47] J. O Kephart and D. M. Chess. The vision of autonomic computing. Computer, 36(1):41–50,
Jan 2003.

[48] Florian Klein and Matthias Tichy. Building reliable systems based on self-organizing multi-
agent systems. In Proceedings of the 2006 International Workshop on Software Engineering
for Large-scale Multi-agent Systems, SELMAS ’06, pages 51–58, New York, NY, USA, 2006.
ACM.

[49] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang. ThinkAir:
Dynamic resource allocation and parallel execution in the Cloud for Mobile Code Offloading.
In Infocom, 2012 Proceedings IEEE, pages 945–953. IEEE, 2012.

[50] Chris D. Kounavis, Anna E. Kasimati, and Efpraxia D. Zamani. Enhancing the tourism ex-
perience through mobile augmented reality: Challenges and prospects. International Journal
of Engineering Business Management, 4:10, 2012.

[51] Jay Kreps. Kafka : a distributed messaging system for log processing, 2011.

[52] Karthik Kumar and Yung-Hsiang Lu. Cloud Computing for mobile users: Can offloading
computation save energy? Computer, 43(4):51–56, 2010.

[53] D. Lecompte and F. Gabin. Evolved multimedia broadcast/multicast service (embms) in lte-
advanced: overview and rel-11 enhancements. IEEE Communications Magazine, 50(11),
2012.

[54] James Lewis and Martin Fowler. Microservices: A definition for this new architectural term,
2019. Retrieved from: http://martinfowler.com/articles/microservices.html.

[55] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief. Delay-Optimal Computation Task Scheduling for
Mobile-Edge Computing Systems. ArXiv e-prints, April 2016.

[56] J. Liu, T. Zhao, S. Zhou, Y. Cheng, and Z. Niu. Concert: a cloud-based architecture for
next-generation cellular systems. IEEE Wireless Communications, 21(6):14–22, December
2014.

[57] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-Yang
Fu, and Alexander C. Berg. SSD: single shot multibox detector. CoRR, abs/1512.02325, 2015.

200

https://www.ibm.com/cloud/functions

Bibliography

[58] Wes Lloyd, Shruti Ramesh, Swetha Chinthalapati, Lan Ly, and Shrideep Pallickara. Server-
less computing: An investigation of factors influencing microservice performance. In IEEE
International Conference on Cloud Engineering, IC2E 2018, Orlando, FL, USA, April 17-20,
2018, pages 159–169, 2018.

[59] F. Lobillo, Z. Becvar, M. A. Puente, P. Mach, F. Lo Presti, F. Gambetti, M. Goldhamer, J. Vi-
dal, A. K. Widiawan, and E. Calvanesse. An architecture for mobile computation offloading
on cloud-enabled lte small cells. In IEEE Wireless Communications and Networking Confer-
ence Workshops (WCNCW), pages 1–6, April 2014.

[60] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A. Lozano. A review of auto-scaling
techniques for elastic applications in cloud environments. Journal of Grid Computing,
12(4):559–592, Dec 2014.

[61] Pavel Mach and Zdenek Becvar. Mobile edge computing: A survey on architecture and
computation offloading. CoRR, abs/1702.05309, 2017.

[62] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis. Live service migration in
mobile edge clouds. IEEE Wireless Communications, 25(1):140–147, February 2018.

[63] Ming Mao and Marty Humphrey. A performance study on the vm startup time in the cloud. In
Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing, CLOUD
’12, pages 423–430, Washington, DC, USA, 2012. IEEE Computer Society.

[64] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled Ben Letaief. A survey
on mobile edge computing: The communication perspective. IEEE Communications Surveys
and Tutorials, 19(4):2322–2358, 2017.

[65] Danilo Filgueira Mendonça, Genaína Nunes Rodrigues, Raian Ali, Vander Alves, and Lu-
ciano Baresi. GODA: A goal-oriented requirements engineering framework for runtime de-
pendability analysis. Information & Software Technology, 80:245–264, 2016.

[66] Elena Meshkova, Janne Riihijärvi, Marina Petrova, and Petri Mähönen. A survey on resource
discovery mechanisms, peer-to-peer and service discovery frameworks. Computer Networks,
52:2097–2128, 2008.

[67] Microsoft Azure. Azure functions. https://azure.microsoft.com/pt-br/
services/functions/, 2019.

[68] Ali Mollahosseini, David Chan, and Mohammad H. Mahoor. Going deeper in facial expres-
sion recognition using deep neural networks. In IEEE Winter Conference on Applications of
Computer Vision, WACV 2016, Lake Placid, NY, USA, March 7-10, 2016, pages 1–10, 2016.

[69] Alberto Montresor and Márk Jelasity. PeerSim: A scalable P2P simulator. In Proc. of the 9th
Int. Conference on Peer-to-Peer (P2P’09), pages 99–100, Seattle, WA, September 2009.

[70] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. Proactive self-
adaptation under uncertainty: A probabilistic model checking approach. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages
1–12, New York, NY, USA, 2015. ACM.

[71] Matteo Nardelli, Valeria Cardellini, and Emiliano Casalicchio. Multi-level elastic deployment
of containerized applications in geo-distributed environments. In 6th IEEE International
Conference on Future Internet of Things and Cloud, FiCloud 2018, Barcelona, Spain, August
6-8, 2018, pages 1–8, 2018.

[72] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska, M. Kostoska, B. Jaki-
movski, S. Ristov, and R. Prodan. A serverless real-time data analytics platform for edge
computing. IEEE Internet Computing, 21(4):64–71, 2017.

201

https://azure.microsoft.com/pt-br/services/functions/
https://azure.microsoft.com/pt-br/services/functions/

Bibliography

[73] J. L. D. Neto, S. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar, and S. Secci. Uloof: A user
level online offloading framework for mobile edge computing. IEEE Transactions on Mobile
Computing, 17(11):2660–2674, Nov 2018.

[74] A. Y. Nikravesh, S. A. Ajila, and Chung-Horng Lung. Towards an Autonomic Auto-scaling
Prediction System for Cloud Resource Provisioning. In Proc. of the 10th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, pages 35–45. IEEE
Press, 2015.

[75] Nokia Siemens Networks, Intel. Increasing mobile operators’
value proposition with edge computing, 2013. Retrieved from:
http://www.intel.co.id/content/dam/www/public/us/en/documents/technology-briefs/edge-
computing-tech-brief.pdf.

[76] D. L. Olson. Smart, pages 34–48. Springer New York, New York, NY, 1996.

[77] OpenFog Consortium. Reference architecture. Technical report, OpenFog Consortium, 09
2017.

[78] G. Orsini, D. Bade, and W. Lamersdorf. Cloudaware: A context-adaptive middleware for
mobile edge and cloud computing applications. In IEEE 1st International Workshops on
Foundations and Applications of Self* Systems (FAS*W), pages 216–221, Sept 2016.

[79] Gabriel Orsini, Dirk Bade, and Winfried Lamersdorf. Cloudaware: Empowering context-
aware self-adaptation for mobile applications. Trans. Emerging Telecommunications Tech-
nologies, 29(4), 2018.

[80] C. Pahl. Containerization and the paas cloud. IEEE Cloud Computing, 2(3):24–31, May
2015.

[81] Manish Parashar and Salim Hariri. Autonomic computing: An overview. In Jean-Pierre
Banâtre, Pascal Fradet, Jean-Louis Giavitto, and Olivier Michel, editors, Unconventional Pro-
gramming Paradigms, pages 257–269, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[82] Ripal Patel, Nidhi Rathod, and Ami Shah. Article: Comparative analysis of face recogni-
tion approaches: A survey. International Journal of Computer Applications, 57(17):50–69,
November 2012. Full text available.

[83] Pawani Porambage, Jude Okwuibe, Madhusanka Liyanage, Mika Ylianttila, and Tarik
Taleb. Survey on multi-access edge computing for internet of things realization. CoRR,
abs/1805.06695, 2018.

[84] Jinmeng Rao, Yanjun Qiao, Fu Ren, Junxing Wang, and Qingyun Du. A mobile outdoor
augmented reality method combining deep learning object detection and spatial relationships
for geovisualization. In Sensors, 2017.

[85] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. CoRR, abs/1506.02640, 2015.

[86] Jafar Rezaei. Best-Worst Multi-Criteria Decision-Making method. Omega, 53:49–57, 2015.

[87] Mike Roberts. Serverless architectures. https://martinfowler.com/articles/
serverless.html, May 2018.

[88] Benny Rochwerger, David Breitgand, Eliezer Levy, Alex Galis, Kenneth Nagin, Igna-
cio Martín Llorente, Rubén S. Montero, Yaron Wolfsthal, Erik Elmroth, Juan A. Cáceres,
Muli Ben-Yehuda, Wolfgang Emmerich, and Fermín Galán. The reservoir model and ar-
chitecture for open federated cloud computing. IBM Journal of Research and Development,
53(4):4, 2009.

202

https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html

Bibliography

[89] Matthias Rohr, Simon Giesecke, Wilhelm Hasselbring, Marcel Hiel, Willem-Jan van den
Heuvel, and Hans Weigand. A Classification Scheme for Self-adaptation Research. In Pro-
ceedings of the International Conference on Self-Organization and Autonomous Systems In
Computing and Communications (SOAS’2006), September 2006.

[90] J. Sahoo, S. Mohapatra, and R. Lath. Virtualization: A survey on concepts, taxonomy and
associated security issues. In Second International Conference on Computer and Network
Technology, pages 222–226, April 2010.

[91] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst., 4(2):14:1–14:42, May 2009.

[92] S. Sarkar, S. Chatterjee, and S. Misra. Assessment of the suitability of fog computing in the
context of internet of things. IEEE Transactions on Cloud Computing, 6(1):46–59, Jan 2018.

[93] Dimas Satria, Daihee Park, and Minho Jo. Recovery for overloaded mobile edge computing.
Future Generation Computer Systems, 70:138 – 147, 2017.

[94] M. Satyanarayanan. Pervasive computing: vision and challenges. IEEE Personal Communi-
cations, 8(4):10–17, Aug 2001.

[95] Mahadev Satyanarayanan. A brief history of cloud offload: A personal journey from odyssey
through cyber foraging to cloudlets. GetMobile: Mobile Comp. and Comm., 18(4):19–23,
January 2015.

[96] Mahadev Satyanarayanan. The emergence of edge computing. IEEE Computer, 50(1):30–39,
2017.

[97] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Cáceres, and Nigel Davies. The case for
vm-based cloudlets in mobile computing. IEEE Pervasive Computing, 8(4):14–23, 2009.

[98] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recog-
nition and clustering. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 815–823, June 2015.

[99] S. Schulte, D. Schuller, P. Hoenisch, U. Lampe, S. Dustdar, and R. Steinmetz. Cost-driven
Optimization of Cloud Resource Allocation for Elastic Processes. International Journal of
Cloud Computing, 1(2):1–14, 2013.

[100] Several authors. Mobile edge computing (mec); terminology v1.1.1. Technical report, Euro-
pean Telecommunications Standards Institute (ETSI), 10 2016.

[101] Several authors. Cisco global cloud index: Forecast and methodology, 2016–2021 white
paper. Technical report, Cisco, 11 2018.

[102] Several authors. Mobile edge computing (mec); deployment of mobile edge computing in an
nfv environment. Technical report, ETSI GS MEC, 03 2018.

[103] Several authors. Multi-access edge computing (mec); phase 2: Use cases and requirements.
Technical report, European Telecommunications Standards Institute (ETSI), 10 2018.

[104] Several authors. Apache openwhisk. https://openwhisk.apache.org, 2019.

[105] Several authors. Mobile edge computing (mec); framework and reference architecture. Tech-
nical report, ETSI GS MEC, 01 2019.

[106] Several authors. Openfaas. https://www.openfaas.com/, 2019.

[107] N. Shalom, Y. Parasol, S. Naeh, and W. Yoram. Nfv and what it means to you: From etsi
to mano to yang – cloudify white paper. Technical report, GigaSpaces Research, Cloudify
Team, 04 2014.

[108] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges. IEEE
Internet of Things Journal, 3(5):637–646, Oct 2016.

203

https://openwhisk.apache.org
https://www.openfaas.com/

Bibliography

[109] A. Sill. Standards at the edge of the cloud. IEEE Cloud Computing, 4(2):63–67, March 2017.

[110] Stephen Soltesz, Herbert Pötzl, Marc E Fiuczynski, Andy Bavier, and Larry Peterson.
Container-based operating system virtualization: a scalable, high-performance alternative to
hypervisors. In ACM SIGOPS Operating Systems Review, volume 41, pages 275–287. ACM,
2007.

[111] C. Sonmez, A. Ozgovde, and C. Ersoy. Edgecloudsim: An environment for performance
evaluation of edge computing systems. In Second International Conf. on Fog and Mobile
Edge Computing (FMEC), pages 39–44, May 2017.

[112] Roy Sterritt. Autonomic computing. Innovations in Systems and Software Engineering,
1(1):79–88, Apr 2005.

[113] T. Taleb and A. Ksentini. Follow me cloud: interworking federated clouds and distributed
mobile networks. IEEE Network, 27(5):12–19, September 2013.

[114] William Tärneberg, Amardeep Mehta, Eddie Wadbro, Johan Tordsson, Johan Eker, Maria
Kihl, and Erik Elmroth. Dynamic application placement in the mobile cloud network. Future
Generation Comp. Syst., 70:163–177, 2017.

[115] A. u. R. Khan, M. Othman, S. A. Madani, and S. U. Khan. A survey of mobile cloud com-
puting application models. IEEE Communications Surveys Tutorials, 16(1):393–413, First
2014.

[116] Luis M. Vaquero and Luis Rodero-Merino. Finding your way in the fog: Towards a com-
prehensive definition of fog computing. SIGCOMM Comput. Commun. Rev., 44(5):27–32,
October 2014.

[117] M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Salamanca, M. Verano, R. Casallas, S. Gil,
C. Valencia, A. Zambrano, and M. Lang. Cost comparison of running web applications in
the cloud using monolithic, microservice, and aws lambda architectures. Service Oriented
Computing and Applications, 11(2):233–247, 2017.

[118] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmalstieg. Real-time detection
and tracking for augmented reality on mobile phones. IEEE Transactions on Visualization and
Computer Graphics, 16(3):355–368, May 2010.

[119] Jianyu Wang, Jianli Pan, Flavio Esposito, Prasad Calyam, Zhicheng Yang, and Prasant Mo-
hapatra. Edge cloud offloading algorithms: Issues, methods, and perspectives. ACM Comput.
Surv., 52(1):2:1–2:23, February 2019.

[120] Kaiqiang Wang, Minwei Shen, Junguk Cho, Arijit Banerjee, Jacobus Van der Merwe, and
Kirk Webb. Mobiscud: A fast moving personal cloud in the mobile network. In Proceed-
ings of the 5th Workshop on All Things Cellular: Operations, Applications and Challenges,
AllThingsCellular ’15, pages 19–24, New York, NY, USA, 2015. ACM.

[121] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos. Enorm: A framework for edge
node resource management. IEEE Transactions on Services Computing, pages 1–1, 2018.

[122] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung. Dynamic service
placement for mobile micro-clouds with predicted future costs. IEEE Transactions on Parallel
and Distributed Systems, 28(4):1002–1016, April 2017.

[123] S. Wang, R. Urgaonkar, T. He, M. Zafer, K. Chan, and K. K. Leung. Mobility-induced
service migration in mobile micro-clouds. In IEEE Military Communications Conference,
pages 835–840, Oct 2014.

[124] S. Wang, M. Zafer, and K. K. Leung. Online placement of multi-component applications in
edge computing environments. IEEE Access, 5:2514–2533, 2017.

204

Bibliography

[125] Shiqiang Wang, Rahul Urgaonkar, Murtaza Zafer, Ting He, Kevin S. Chan, and Kin K. Le-
ung. Dynamic service migration in mobile edge-clouds. In Proceedings of the 14th IFIP
Networking Conference, Toulouse, France, 20-22 May, 2015, pages 1–9, 2015.

[126] Shuo Wang, Xing Zhang, Yan Zhang, Lin Wang, Juwo Yang, and Wenbo Wang. A survey
on mobile edge networks: Convergence of computing, caching and communications. IEEE
Access, 5:6757–6779, 2017.

[127] Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Mirandola, Chris-
tian Prehofer, Jochen Wuttke, Jesper Andersson, Holger Giese, and Karl M. Göschka. On
Patterns for Decentralized Control in Self-Adaptive Systems, pages 76–107. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013.

[128] J. Xie, B. K. Szymanski, and X. Liu. Slpa: Uncovering overlapping communities in so-
cial networks via a speaker-listener interaction dynamic process. In IEEE 11th International
Conference on Data Mining Workshops, pages 344–349, Dec 2011.

[129] Jierui Xie, Stephen Kelley, and Boleslaw K. Szymanski. Overlapping community detection in
networks: The state-of-the-art and comparative study. ACM Comput. Surv., 45(4):43:1–43:35,
August 2013.

[130] Jie Xu, Lixing Chen, and Pan Zhou. Joint service caching and task offloading for mobile
edge computing in dense networks. In IEEE Conference on Computer Communications,
INFOCOM 2018, Honolulu, HI, USA, April 16-19, 2018, pages 207–215, 2018.

[131] Mengting Yan, Paul C. Castro, Perry Cheng, and Vatche Ishakian. Building a chatbot with
serverless computing. In Proceedings of the 1st International Workshop on Mashups of Things
and APIs, MOTA@Middleware 2016, Trento, Italy, December 12-13, 2016, pages 5:1–5:4,
2016.

[132] L. Yang, J. Cao, G. Liang, and X. Han. Cost aware service placement and load dispatching in
mobile cloud systems. IEEE Transactions on Computers, 65(5):1440–1452, May 2016.

[133] Ibrar Yaqoob, Ejaz Ahmed, Abdullah Gani, Salimah Mokhtar, Muhammad Imran, and
Sghaier Guizani. Mobile ad hoc cloud: A survey. Wirel. Commun. Mob. Comput.,
16(16):2572–2589, November 2016.

[134] Paul Leach Yaron Y. Goland, Ting Cai and Ye Gu. Simple service discovery protocol/1.0
operating without an arbiter; internet draft. Technical report, Microsoft Corporation, Shivaun
Albright, Hewlett-Packard Company, 10 1999.

[135] Ruozhou Yu, Guoliang Xue, and Xiang Zhang. Application provisioning in FOG computing-
enabled internet-of-things: A network perspective. In IEEE Conference on Computer Com-
munications, INFOCOM 2018, Honolulu, HI, USA, April 16-19, 2018, pages 783–791, 2018.

[136] L. Zanzi, F. Giust, and V. Sciancalepore. M2ec: A multi-tenant resource orchestration in
multi-access edge computing systems. In IEEE Wireless Communications and Networking
Conference (WCNC), pages 1–6, April 2018.

[137] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and research
challenges. Journal of Internet Services and Applications, 1(1):7–18, May 2010.

[138] Tianchu Zhao, Sheng Zhou, Xueying Guo, Yun Zhao, and Zhisheng Niu. A cooperative
scheduling scheme of local cloud and internet cloud for delay-aware mobile cloud computing.
In IEEE Globecom Workshops, San Diego, CA, USA, December 6-10, 2015, pages 1–6, 2015.

205

	Introduction
	The Emergence of Edge Computing
	Research Opportunities and Challenges
	Architectural Aspects
	Management Aspects

	Problem Statement and Research Goals
	Contributions
	Dissemination
	Structure of the Thesis

	Preliminaries
	Mobile Computing and the Internet of Things
	Cloud Computing
	Virtualisation Technologies
	Cloud Service Models

	Edge Computing and Similar Concepts
	Early History
	Cloudlets
	Mobile Ad-Hoc Clouds
	Multi-access Edge Computing
	Fog Computing
	Summary

	Serverless Computing
	Function-as-a-Service
	FaaS vs Typical Cloud Service Models
	FaaS vs Microservices

	Autonomic Computing
	Adaptation Taxonomy
	Multiple-Criteria Decision-Making

	A Serverless Architecture for Multi-Access Edge Computing
	Overview
	MEC Architecture and Use Cases
	ETSI Framework and Reference Architecture for MEC
	MEC Use Cases
	MEC Requirements
	Running Example

	The Serverless MEC Architecture
	Self-Managed Computing Services
	Supporting Services and Optimisations

	The Serverless MEC Platform
	Platform Architecture
	Platform Deployment

	Proactive Recovery Protocol
	Overview
	Platform States
	Proactive Recovery Bounds
	Recovery in Action

	Mobile-Edge-Cloud Continuum Through Serverless and Autonomic Computing
	Overview
	The Mobile-Edge-Cloud Continuum
	Running Example

	System Model
	Infrastructure Model
	Continuum Functions and Requirements
	Continuum Application
	Mobile Middleware and Domain Manager
	Life-cycle Management Problem

	A3-E Framework
	Overview
	A3-E's Awareness
	A3-E's Acquisition
	A3-E's Allocation
	A3-E's Engagement
	Running Example

	Domain Manager
	Architecture Overview
	Awareness Manager
	Acquisition Manager
	Allocation Manager
	Engagement

	Mobile Middleware
	Architecture Overview
	Continuum Application Registration
	Awareness Manager
	Acquisition Manager
	Allocation Manager
	Library Proxy
	Mobile Domain

	The PAPS Framework
	Overview
	Management Challenges
	System Model
	Infrastructure Model
	Function-as-a-Service
	Management Problem Formulation

	The PAPS Framework
	System-Level Self-Management
	Community-Level Self-Management
	Node-Level Self-Management

	PAPS Simulator
	PeerSim
	Implementation Overview

	Evaluation
	Serverless MEC Architecture
	Overview
	Application Scenario: Mobile Augmented Reality

	Experimental Evaluation
	Goal-Question-Metric
	Experimental Setup
	Results: Memory Footprint
	Results: Overhead and Response Time
	Results: Simultaneous Users and Function Entropy
	Results: Elasticity
	Discussion
	Threats to Validity

	A3-E Framework
	Experimental Setup
	Response Time and Scalability
	Battery Consumption and Execution Time
	Domain Selection and Availability
	Enorm
	Threats to Validity

	PAPS Framework
	Experimental Setup
	Partitioning
	Allocation, Placement and Scaling

	Related Work
	Serverless MEC Architecture
	A3-E Framework
	PAPS Framework

	Conclusions and Future Work
	Future Work

	Bibliography

