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Chapter 1

Abstract

In these years communication between devices is becoming increasingly

present in our lives. If we think about mobile phones or laptops, these de-

vices couldn’t even fullfill their purpose without a working wireless connec-

tion. Other fields where wireless networks are of paramount importance are

for example the Internet of Things world and wireless data collection from

sensors.

The most common wireless technologies can be divided roughly into high

performance and low power technologies, two examples of high perfor-

mance network technologies are WiFi and LTE while two low power network

technologies are ZigBee or LoRa.

If we analyze the end-to-end latency of these technologies, we find that

the latency of a WiFi network is around 1-5ms on a non congested network,

but can quickly rise to 1s or more in presence of heavy traffic [1]. Meanwhile

a ZigBee network have a normal latency of 50-350ms [2] which just like WiFi,

can rise of several orders of magnitude in case of a congested network.

In this thesis we present TDMH, a wireless communication stack able

to provide bounded latency, which means that the worst case network

latency depends only on the network size and TDMH configuration and is

independent from the network load.
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The bounded latency makes TDMH suitable for real time applications

like industrial control. TDMH is capable of managing multi-hop wireless

mesh networks and its architecture allows to switch off the radio whenever

a device doesn’t need to transmit or receive packets, this enables low power

applications such as being employed on battery powered devices.

The author’s contribution to TDMH consists mainly in the scheduling

and routing part of the network stack, which is the main focus of this thesis.

The athor is responsible also for the design and implementation of several

TDMH modules which are essential to the network stack operation.

You can find an overview of the main TDMH modules and the author’s

contribution in sections 3.3 and 10.2.
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Chapter 2

Sommario

In questi anni la comunicazione tra dispositivi è diventata sempre piú

presente nelle nostre vite. Ad esempio i telefoni cellulari o i computer portatili

perderebbero di funzionalitá se non ci fosse a disposizione una connessione

wireless. Altri campi in cui le reti wireless sono fondamentali sono il mondo

dell’Internet of Things e la raccolta dati da sensori wireless.

Le tecnologie wireless piú diffuse si possono categorizzare in reti ad alte

prestazioni e reti low power, due esempi di tecnologie ad alte prestazioni

sono il WiFi e LTE, mentre due tecnologie low power sono ZigBee e LoRa.

Se analizziamo la latenza di rete di queste tecnologie, troviamo dei valori

intorno a 1-5ms per una rete WiFi non congestionata, ma questi valori pos-

sono arrivare a 1s o piú in presenza di traffico elevato[1]. Mentre una rete

ZigBee ha una latenza nominale di 50-350ms[2], che proprio come per il WiFi

puó aumentare di diversi ordini di grandezza in una rete sotto carico.

In questa tesi viene presentato TDMH, uno stack di comunicazione wire-

less in grado di fornire una latenza limitata, ovvero una latenza di rete nel

caso peggiore che dipende solo dalla dimensione della rete e dalla configu-

razione di TDMH e soprattutto è indipendente dal carico di rete.

La latenza limitata rende TDMH adatto per applicazioni real time come

il controllo industriale.
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TDMH è in grado di gestire reti wireless mesh con struttura multi-hop,

inoltre TDMH permette di spegnere la radio quando un dispositivo non deve

trasmettere o ricevere pacchetti, questo consente di risparmiare molta ener-

gia, aprendo possibilitá ad applicazioni low power, ad esempio su dispositivi

alimentati a batteria.

Il contributo dell’autore a TDMH consiste principalmente nella parte di

scheduling e routing dello stack di rete, questa tesi si concentrerá princi-

palmente su questi due aspetti. L’autore è anche responsabile del design e

dell’implementazione di alcuni moduli di TDMH che sono essenziali al fun-

zionamento complessivo dello stack di rete.

Potete trovare una panoramica dei moduli principali di TDMH e del con-

tributo dell’ autore a questi nelle sezioni 3.3 e 10.2.
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Chapter 3

Introduction

3.1 An introduction to wireless networks

The importance of wireless networks in the world we live in is greatly

increasing, since this technology can provide various advantages like

mobility and flexibility.

Mobility is really important in many of the devices we use, for example

mobile phones would be pretty useless without wireless technology, another

advantage is that wireless technology doesn’t require a heavy infrastruc-

ture and can be used in different environments, on the contrary in some of

these environments running cables for a wired network may not be possible.
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3.1.1 Case study: smart meters

An example of a low power wireless network that comes with a lightweight

infrastructure is the wireless network used to remotely collect utility mea-

surements from smart meters, like gas meters or water meters.[3]

In this kind of application as in many other wireless network applications,

the low power consumption is fundamental.

For example if we decide to replace all the gas meters in a city with smart

meters, we want these to have a battery life longer than two decades,

to avoid facing too soon the great effort of replacing the batteries of all the

meters in the city.

The technology used in smart utility meters is called LPWAN, which

stands for Low Power Wide Area Network. The LPWAN technology is fairly

recent, we will do an overview of other low power network technologies in

chapter 4.

3.1.2 Case study: industrial control

Another successful application of wireless networks is industrial control.

In this environment, a wireless network could be used to read sensor data

coming from various parts of a plant, or even to send commands to actua-

tors. Wireless technology in this application has significant advantages over

a wired network counterpart, these advantages include lower costs, lower

power consumption and higher flexibility. The flexibility could mean

adding new sensor devices without changing the current infrastructure.

The network stack we present includes these advantages, and in addition

introduces bounded latency, which reduces dramatically the uncertainty

in data latency, enabling high precision readings and faster and more reliable

actuations.
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3.2 Goal of this work

Low power networks comes generally with one important disadvantage:

the high latencies that derive from power saving techniques.

The goal of the work behind this thesis is to build a wireless network

that while being low power, is capable also of achieving low latencies,

in the order of nanoseconds. This low latency capability allows real-time

applications.

The network stack presented is called TDMH, which stands for Time

Deterministic Multi Hop, an acronym that recalls the deterministic nature

of the stack given by the bounded latency, and its ability to handle

multi-hop networks.

3.3 Author’s contribution

The author’s contribution to the TDMH network stack consisted mainly in

adding the missing scheduling and routing functionality to the stack,

and additionally in designing, developing and testing several new modules of

the network stack. The general goal of the work was to turn TDMH from

being a Medium Access Control which included: time synchronization,

network graph collection and packet sending, to a full fledged network

stack, capable of opening and routing connections at runtime, and featuring

several redundancy and data reliability options. This change is explained in

detail in section 5.2.1.
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Chapter 4

Literature review

4.1 Low power wireless protocols

As of note there is no wireless protocol that combines low latency with low

power consumption, in fact high data rate protocols like WiFi

(IEEE 802.11) have a notoriously high power consumption [4], while low

power protocols like ZigBee (IEEE 802.15.4) save power at the cost of in-

creasing latency.

4.1.1 Low power listening

One of the techniques used to reduce the power consumption of wireless

protocols is the one adopted in IEEE 802.15.4 networks called low power

listening [5], this technique is able to reduce the radio reception power

consumption at the expense of the transmission-side power consumption.

This technique consists in the sender transmitting a long preamble (100ms)

before every packet (2ms) and the receiver checking periodically whether the

channel is free or a carrier-wave is present (carrier sensing), in the latter case

he can tell that a packet is incoming.

The check gives a statistical or deterministical certainty about receiving

a packet, depending on the period at which the checks are performed.

16



This approach has its drawbacks, for example a collision problem when

we have more than one node that wants to trasmit, these collisions have the

effect of generating network delay. Another downside is the fact that

transmitting a long preamble drains the battery of the transmitting nodes,

also the receiving node may use more power than necessary if it senses the

channel in the middle of the preable, because it has to receive the remaining

half of the preamble (50ms) and the packet being sent (2ms). The biggest

disadvantage of low power listening is the inefficient use of the radio channel,

which is mostly occupied with preambles.

4.1.2 Channel access method

An important notion for understanding wireless protocols is the channel ac-

cess method used. If we think of two wireless radios in range and operating

on the same frequency, we know that only one of them can transmit at a

given time and the other can only receive, because if two radios transmit at

the same time on the same frequency, the information can get lost because

of the interference between the two transmissions. This is the reason why

we need a channel access method, to organize the transmissions of the

different radios and reduce or eliminate the possibility of interference.

The two most common channel access methods are CSMA/CA and TDMA

[6].

CSMA/CA

CSMA/CA stands for Carrier Sense Multiple Access with Collision Avoid-

ance and its principle is that a radio, before transmitting checks if the chan-

nel is free, if that is the case the radio can transmit, if otherwise there is

another transmission happening, the radio waits for a random time interval,

called exponential backoff. This type of channel access is called a random

channel access, its advantage is that it doesn’t require a centralized orches-

tration of the transmissions, so it adapts easily to a changing environment, a

17



drawback of CSMA/CA is that with heavy traffic the latency can become

very high, and in general is not predictable.

TDMA

TDMA stands for Time Division Multiple Access and is a channel access

method that works by dividing the time in a given number of slots called

timeslots, and making sure that for every timeslot at most one radio unit

is transmitting. This technique allows to avoid collisions between transmis-

sions of the same network, since the transmissions are performed in different

timeslots. The drawback of this technique is that it requires an orchestration

of the transmissions, generally performed through a scheduling, we will see

more of this technique because it is the one employed by TDMH. Among the

advantages of TDMA, there is the bound latency, generally depending only

on the propagation delay of the transmission and on the radio transmission

and reception latency.

4.1.3 IEEE 802.15.4e

IEEE 802.15.4e [7] is an upgrade over existing standard IEEE 802.15.4, it

introduces several new physical and MAC level standards, among which the

most interesting ones are TSCH [8], DSME [9] and LLDN [10].

4.1.4 TSCH

It is the more developed standard, and the one most present in research.

TSCH [8] is based on IEEE 802.15.4 peer-to-peer architecture, but em-

ploys a TDMA-like architecture instead of CSMA/CA proposed by the IEEE

802.15.4 standard. A TSCH network uses beacons sent by the ”active”

nodes of the network (IEEE 802.15.4 FFD, Fully Functioning Device) to

synchronize the other nodes in the network. The ”active” nodes in the net-

work build a schedule using a distributed algorithm, the schedule is used to

allocate links over channels and slots, the schedule effectively performs a

18



TDMA channel access mechanism.

Unfortunately, TSCH scheduling and schedule distribution are not de-

fined in their RFC, in fact the design and development of these parts are left

to the ones who implement the protocol. An example of TSCH implementa-

tion is the 6TiSCH [11] protocol.

A possible limit of TSCH is that the protocol does not guarantee any

boundaries on delays and real-time periods, the only guaranteed param-

eter is the reliability of packet reception.

4.1.5 DSME

DSME [9] is a time-synchronized MAC protocol capable of multi-hop trans-

missions, it provides some improvements over the IEEE 802.15.4 MAC speci-

fication, like the multichannel capability. DSME employs a TDMA channel

access mechanism like TSCH, and uses also channel diversity, which is the

simultaneous use of different radio channels.

The DSME MAC transmits frames based on a time structure called multi-

superframe, this structure contains 16 superframe slots, each of them is di-

vided into a contention access period (CAP), and a contention free period

(CFP), the CAP portion is contended between the nodes of the DSME net-

work, while the CFP portion is scheduled and allocated to the single nodes.

The CAP section of the DSME frame is the more power hungry, since it

requires a node to listen for the whole superframe to assess if the channel is

free. For this reason DSME employs a scheme called CAP reduction, that

gives priority to the scheduled and more power saving CFP mode.

TSCH frames are managed and scheduled like DSME’s CFP mode, and

TSCH is able to get the power saving benefits of this mode.

19



4.1.6 LLDN

LLDN [10] is another MAC presented in the IEEE 802.15.4e standard. The

LLDN MAC is limited to single hop topologies (star networks) and uses a

single channel. It is aimed at data collection from sensors and is able to

collect data every 10ms from 20 different sensors. The time structure of

LLDN is composed by superframes and the nodes access the slots of the

superframe by using CSMA/CA.

4.1.7 Comparison of TDMH with other protocols

See the table 4.1.

Protocol TDMH TSCH DSME LLDN

multi-hop yes yes yes no

guaranteed period yes no no yes

topology type mesh cluster-tree cluster-tree star

spatial redundancy yes no no no

temporal redundancy yes feasible feasible feasible

channel spatial reuse yes yes (MODESA) no no

management central. central./distr. central. central.

Table 4.1: Comparison of TDMH with other IEEE 802.15.4 MACs
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4.2 Scheduling

4.2.1 Introduction to scheduling

Scheduling is the operation of allocating of a set of resources to a number of

agents requiring these resources. You can find a more in depth explaination

of the problem in chapter 6. In the context of wireless sensor networks, and

in particular of TDMA based networks, the resource available is a number

of free timeslots, and the agents are the nodes of the network that want to

send data through these timeslots.

Since the solution to this problem is not trivial, in TDMA based MACs

we find a software module called scheduler that is able to solve this problem.

4.2.2 TSCH scheduling

The most similar scheduling algorithms found in literature are two algo-

rithms proposed for the IEEE 802.15.4e TSCH MAC, called TASA [12] and

MODESA [13].

4.2.3 TASA

TASA [12] stands for Traffic Aware Scheduling Algorithm, and is a proposed

scheduling scheme for TSCH. It uses a centralized scheduling algorithm

and requires that the master node has a complete topology information of

the network.

The network topology information is composed of:

• Logical network graph

• Physical connectivity graph

The TASA scheduling algorithm works as a combination of the matching

and vertex coloring problems, which are solved by two algorithms. The two

algorithms are applied in an iterative way, such that for every data slot the

suitable links are selected step by step.
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4.2.4 MODESA

MODESA [13] stands for Multichannel Optimized DElay time Slot Assign-

ment, like TASA is a scheduling scheme proposed for TSCH. In MODESA,

the nodes compete for a time slot if and only if they have something to trans-

mit. Every node in a network scheduled with MODESA has a dynamic

priority, which is calculated as remPckt ∗ parentRcv, where remPckt is

equal to the number of packets present in the buffer, and parentRcv is the

total number that the parent of the node has to receive.

The schedule is calculated by selecting for any timeslot the node that has

the highest priority among all the nodes having data to transmit. A node can

be scheduled in the current timeslot and channel only if it doesn’t interfere

with nodes already scheduled on the same timeslot and channel, otherwise

the node is scheduled on a different channel. This allows the spatial reuse

of channels, since we can have multiple simultaneous transmissions on the

same channel and timeslot, the check for interferences is performed on the

connectivity graph, since the logical network graph does not use all the pos-

sible physical links.
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4.2.5 Compatibility with TDMH

The TASA and MODESA algorithms cannot be applied directly to the

TDMH scheduling problem because of two core differences between TSCH

and TDMH:

• TSCH employs channel hopping while TDMH uses a single channel

• TSCH uses a tree topology, while TDMH uses a mesh topology

The topology difference is the more important, since in a tree network

all packets in the network are routed through the network coordinator,

which is at the root of the network tree, this architecture simplifies a lot

the scheduling problem, but reduces the overall network efficiency, since the

distance between a node of the network and the network coordinator may be

higher that the distance from the source node to the destination node in a

mesh network.

Convergecast scheduling

There is another reason of incompatibility between TASA, MODESA and

TDMH: TASA and MODESA are created for a convergecast network, while

TDMH is not convergecast.

A convergecast network is a network where packets can only flow from

a number of source nodes to a single sink node, that corresponds usually

with the network coordinator [14].

This model is particularly suitable for to the usecase of collecting data

from wireless sensors, without the need to send any data to the sensors itself.

TDMH is not a convergecast network, since it allows bidirectional com-

munication between any pair of nodes of the network, so the scheduler

should follow this requirement.
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4.2.6 Considerations on spatial reuse of channel

The protocol we analyzed in this literature review have different approaches

to spatial reuse of channel.

For example WirelessHART avoids on purpose the spatial reuse of

channels when scheduling, this is done to avoid transmission failure due to

interference between simultaneous transmissions [15].

On the contrary TSCH, in particular with the MODESA scheduler

takes advantage of spatial reuse of channel by using a connectivity graph

that is a superset of the network graph, containing all the link in radio

range between nodes. Spatial reuse of channel is enabled for links without

interference while links with interference are scheduled different channels

[13].
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Chapter 5

Project overview

5.1 Introduction to TDMH

TDMH is a real-time network stack capable of low power consumption. It

is based on the IEEE 802.15.4 Radio standard and its network structure and

algorithms are centralized. Regarding the network organization, TDMH is

structured as a mesh network, and is capable of multi-hop transmissions.

TDMH relies heavily on time-synchronization, thanks to which all the

nodes in the network have their internal clocks synchronized, this allows

doing a TDMA (see section 4.1.2) access to the radio, without the need for

carrier sensing, which we have seen in the literature review (chapter 4)

having a great disadvantages in the form of latency and power consumption.

5.1.1 Time synchronization

The time synchronization part of TDMH is performed by employing the

FLOPSYNC-2 [16] scheme, which is particularly effective in compensating

the various sources of clock error and desynchronization, like jitter, temper-

ature drift or clock errors caused by the PLL.

FLOPSYNC-2 consists in a model of the local clock, coupled with a
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controller able to correct its non-idealities. This scheme is capable of high

precision, below the µs, with a power consumption of less than 2.1µW . Other

benefits of FLOPSYNC-2 include a monotonic and continuous clock, ex-

cept for when the nodes resynchronize after losing connection to the network.

5.1.2 Master and Dynamic nodes

As hinted before, TDMH is a centralized protocol, which means that there is

a special node in every network which orchestrates the entire network, this

node is called the Master node and its tasks include keeping the main clock

at which the other nodes of the network synchronize theirs to. The master

node is also in charge of gathering the network topology and connection re-

quests, and evaluate these two to grant or deny the opening of a Stream,

this happens during the Scheduling phase, of which we will talk in the next

chapters.

The other nodes of the TDMH network apart from the only Master node

are called Dynamic nodes, this to indicate the fact that they might change

their position in space, while the Master node is more likely to have a fixed

position.

Dynamic nodes as opposed to the Master node, cooperate and forward

each others’ transmission to perform three main tasks:

• Synchronizing their clock with the clock of the Master node

• Collecting the network topology graph

• Collecting information about connection requests or Streams

• Send the application data using Streams
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We have cited in this section the concept of Stream, which is specific

to TDMH. A Stream is a connection between two arbitrary nodes of the

network, and can be thought as the omologous of TCP/IP sockets.

TDMH Streams have some peculiarities with respect to Sockets, and we

will talk in detail about these in the section 5.2.2 and following.

5.1.3 Protocol phases

As we said, TDMH is a TDMA protocol, and as such all the nodes have a

notion of the network time, which is sychronized among the whole network.

The network time is used to divide the time in different phases, which are

used to carry out the various tasks of the network stack.

The phases are three, and can be distinguished based on the direction of

information in of each of these.

The three network phases are:

• The Downlink phase in which the Master node distributes information

to the rest of the network.

• The Uplink phase in which the Dynamic nodes gather information

about the network and forward it to the Master node.

• The Data phase in which the Master and Dynamic nodes send appli-

cation data to other nodes of the same network.
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5.1.4 Tiled frame

The network phases we listed are organized such that they can alternate and

repeat in a sequence that is known to all the nodes of the network, as the

exact number and sequence of the phases is part of the TDMH configuration.

In particular the time is divided into frames, which are time periods with

a default lenght of 100ms, which are used to measure the time passed in the

network stack.

The phases repetition is done by creating two types of frames called tiles,

each of these tiles can be of two types, based on the TDMH phase is contains.

The tiles alternate and repeat always in the same sequence, as we said before,

this sequence if part of TDMH configuration. You can see an example of

TDMH tiles in figure 5.1.

Figure 5.1: Representation of TDMH superframe

5.1.5 Downlink phase

The Downlink phase has two functions: its used to distribute information

from the Master node to the other nodes in the network, but it is also used

to keep the clocks of the Dynamic nodes synchronized with the one of the

Master node. The part of the Downlink phase which is related to clock syn-

chronization is called Timesync.

28



The information which is distributed consists in:

• Clock sychronization packets in the Timesync Downlink part

• Network schedule, in the Schedule Distribution part

• Signaling messages called Info Elements

Flooding

Packets in the Downlink phase are propagated in the network using a

flooding technique, which takes advantage of the constructive interfer-

ence. Constructive interference is the phenomenon that occurs when packets

with the same content are transmitted at the same time by all the nodes of

a certain hop distance, and the single resulting packet is received by all the

nodes at the next hop. The technique used for flooding packets using con-

structive interference is a modified version of Glossy [17].

5.1.6 Uplink phase

The Uplink phase is used to collect information from the Dynamic nodes

towards the Master node, the information collected is the following:

• Network Topology which is used to synchronize the clocks

• Stream Management Elements which represent a request for open-

ing a Stream.

5.1.7 Data phase

The Data phase is used by the Master and Dynamic nodes of the network

to communicate and transfer application payloads over the network.

The Data phase works by performing the playback of a TDMA schedule

that is computed by the Master node, and then distributed to the Dynamic

nodes of the network in the Downlink phase.
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5.2 Network stack design

The goal of the work behind this thesis was to expand and improve

TDMH to make it able to be used to send data between two arbitrary

nodes, without knowing a priori the details of the stream of data being sent

in the network.

The main features of TDMH that were developed during this work are:

• Real-time streams to transmit data

with constant period and bounded latency

• Spatial and temporal redundancy of transmitted data

for improved reliability and resilience

• An automatic scheduler for scheduling streams, taking count of the

network topology and avoiding conflicts

• Spatial reuse of channels of the scheduled streams

• A schedule distribution system

The developement of these features needed a thorough design before

the actual implementation, in this section we will present the design decisions

behind the features of TDMH listed above.
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5.2.1 From TDMH Mac to TDMH Stack

During the developement we realized that we were expanding the scope

of TDMH from being a Medium Access Control to being a proper

Network Stack.

This decision was not taken lightly, as we would have preferred to adhere

to a layered network model like ISO/OSI [18]. However this was not

possible for lack of support for crucial features of TDMH Streams in the

layer 4 - Transport and upper. The unsupported features are periodic

real-time streams and redundancy.

Figure 5.2: ISO/OSI model chart
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5.2.2 Streams and periods

The ability to send and receive data through real-time Streams is one of

the core features of TDMH. The two main characteristics of TDMH Streams

are constant period and bounded latency.

Period

The main feature of a real-time stream is its Period. The period determines

what is the distance in time from one transmission of the stream and

the following transmission of the same stream. You can see in figure 5.3 a

comparison between a stream of Period 1 and another stream of Period 2.

Figure 5.3: Comparison of two different stream periods

Which period to choose depends largely on the needs of the application

that will make use of the TDMH stream, in particular the choice must be

based on the frequency at which the data needs to be sent or received. We

know that the period can be calculated as the inverse of the frequency:

P =
1

f

For example a control loop running at a frequency of 1 Hz may specify a

period of 1 s between one transmission and the next one, while an application

reading data from a sensor at 10 Hz, needs to specify a period of 100 ms.

The period for a stream cannot be chosen in an arbitrary way, in fact

there is a list of available periods, which are calculated in the following

way:
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K Period

1 100ms

2 200ms

5 500ms

10 1s

20 2s

50 5s

100 10s

200 20s

500 50s

1000 100s

2000 200s

5000 500s

10000 1000s

Table 5.1: Possible choices for period with a tile duration of 100ms

P (K) = K ∗ tile duration

K ∈ N,K[1, N ]

Where tile duration is the time lenght of the TDMH tile (see chapter 5.1.4)

and the K parameter indicates what multiple of tile duration we want to

use as period.

With the tile duration default value of 100 ms, the possible periods are

shown in table 5.1. Predefined period values will be denoted with PK, K ∈
[1, N ] for example P1 corresponds to 100ms, P50 to 5s and so on.

You may have noticed that only certain values of K are being shown on

the table. In fact TDMH supports for K only integers with 1,2 or 5 as the

leftmost figure, and a number of 0s for the other figures.

This is not a coincidence but is a solution to the problem explained below.
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Length of a schedule

If we think of a schedule as a sequence of TDMA time slots, grouped in

blocks of size equal to a TDMH tile. A schedule for a given stream must

have some of the slots indicating the activity of the nodes of that stream,

and is generally long a number of tiles equal to the K factor. If we denote

the length of a schedule in number of tiles as schedule tiles we have that:

schedule tiles(P ) = K

When we have more than a stream, for example with two streams, the

schedule length becomes the least common multiple of the periods of the two

streams, this because the schedule needs to specify not only the slots used

by a stream in its period, but all the possible combination of the slots used

by the two streams, and the combinations of the slots are cyclic with a cycle

long lcm(P1, P2). So for a number N of streams, the lenght of a schedule is:

schedule tiles(P1, P2, ..., PN) = lcm(P1, P2, ..., PN)

The choice of numbers starting with either 1,2 or 5 comes from the Frobe-

nius coin problem, in fact these three numbers can be used to obtain any

higher number, and at the same time their lcm remains low [19].

Data rate

Choosing a period for a stream among the available ones means also deter-

mining the data rate of the stream, since the corresponding data rate for

a given period can be calculated in the following way

Data rate =
payload size

Period

Where payload size is the number of packets sent per transmission, and

the Period is expressed in seconds.
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5.2.3 Spatial and temporal redundancy

Reliability in receiving data over networks is fundamental, because

data loss can happen due to packet loss on wired network and interference

or signal loss in wireless networks. Generally we want a way to mitigate the

effect of data loss. In case of TCP/IP networks this is done by employing

the TCP protocol itself, that makes sure that all data sent is also received,

and if some data is lost along the way, it is retransmitted until it is received.

TCP’s solution of error detection is not suitable to TDMH, because

the packet loss effects are mitigated by resending data, and in a real-time

network we don’t want to retransmit data based on the success of the previ-

ous transmission, because doing that would create a non predictable increase

of the latency. In fact in certain environments keeping the latency low is

crucial, and a data that has been resent becomes old and possibly useless

with respect to data delivered in time.

Our mitigation to the problem of data loss over radio interfaces comes in

the form of transmission redundancy, in pratice data is sent two or three

times within a period, to increase the probability of receiving at least one of

the two or three copies of the data.

In particular TDMH supports two kind of redundancy:

• spatial redundancy: the two copies are sent over two different paths

on the network (possibly without common intermediate nodes)

• temporal redundancy: the two copies are sent over the same path

Clearly spatial redundancy is not always applicable in fact we may

not have two paths without common intermediate nodes, in this case the

scheduler will downgrade the redundancy type from spatial to temporal.

Finally, it is important that the two paths do not have common interme-

diate nodes, because these nodes would become the single point of failure
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of the redundant stream.

5.2.4 Spatial reuse of channels

We wanted to apply another optimization to TDMH, since it is a TDMA

network in which the master node knows and decides exactly in which instant

every node of the network is going to send or receive messages on the radio.

We decided to develop an interference model based on the network

graph, to enable the spatial reuse of channels, that is the possibility for

two or more nodes to send and receive packets simultaneously.

The simultaneous transmissions are allowed by the scheduler once it

verifies that an interference cannot happen.

Summarizing, in a TDMA without spatial reuse, only one node in the

network can transmit at a given time

Without spatial reuse of channels

1 2 3 4 5 6

T1 T2 T3 T2 T4

With spatial reuse of channels

1 2 3 4 5 6

T1 T3 T2

T2 T4

As previously said, the spatial reuse of channel is possible thanks to

the interference check performed in the scheduler, which will be explained

in the following section.
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5.2.5 Interference check in scheduler

To model the radio interference between two nodes transmitting and re-

ceiving at the same time, we start from the following assumptions:

• Two nodes in radio range are connected in the topology map

• Two nodes not connected in the topology map do not interfere with

each other

The case in which two nodes are too distant to communicate properly

but close enough to interfere each other is considered unlikely, because of the

power capture and delay capture effects of the O-QPSK modulation

employed [17].

Interference hypotesis

We have an interference if and only if we have one of these two situations:

• A node is trasmitting and at least one of its neighbors is receiving

for a different transmission.

• A node is receiving and at least one of its neighbors is transmitting

for a different transmission.

The four possible cases are summarized in this truth table:

Node A Node B Interference

TX RX YES

TX TX NO

RX TX YES

RX RX NO
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Chapter 6

Scheduling: Theory

6.1 Problem statement

Scheduling in Computer Science generally means finding the best mapping

between a set of jobs and the resources that can fullfill these jobs. This

mapping is usually done by following a certain criterion, with the aim of

maximizing a particular metric, for example fairness of use or quality of

service. An example of scheduling is usually found in Operating Systems

Architecture, in which the so called scheduler manages the allocation CPU

time to Processes. In this case the metric can be from keeping the latency

of a given process low to ensuring the fair use of the CPU among Tasks.

In the case of TDMH, being a TDMA network stack, the resources we

are talking about are the slots of time, and the jobs to allocate are the trans-

missions from the nodes of the network.

More in detail: When an application running on a TDMH enabled node

wants to send data to another node in the same network, it requests the

TDMH stack running on the node to open a Stream to that other node. We

can think of a TDMH Stream as omologous to a TCP/IP socket.
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This request gets forwarded by the network to the master node, the spe-

cial node that coordinates the network, the master node can evaluate the

stream request, and basing its decision on the current network topology,

other opened streams and network configuration, decide if it is possible to

open the requested stream and which TDMA time slots to allocate it to.

A Stream request is composed by the following information:

• Source node ID

• Destination node ID

• Source Port

• Destination Port

• Period

• Size of the payload (in packets)

• Redundancy level

The Network Topology of TDMH is defined as a partial mesh, or a

generic graph that is not fully connected, in which:

• Graph nodes represent the physical nodes forming the network

• Graph edges mean that the two nodes are in radio range

The Network Configuration of TDMH contains information about how

the superframe is structured, which slots of the TDMA frame are available

for data transmission and which other are needed for the other TDMH phases

and cannot be used for data.
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6.1.1 Routing and Scheduling

An important distinction to make is between the Routing and Scheduling

problems, both of them are required to be solved in the scheduling of a generic

Stream, but they are entirely different.

Scheduling

We previously said that the Scheduling problem consists in placing a re-

quested stream in the suitable TDMA time slots.

This placement can be made by directly running the Scheduler algo-

rithm only for Streams connecting two nodes in radio range, this situation

can be seen in the topology as a graph edge connecting the two nodes in

the Network graph.

The type of stream we just described is called single-hop, but they are

not the only type of stream admitted by TDMH, in fact TDMH also supports

multi-hop streams.

Routing

Multi-hop streams are data communication between two nodes that are not

in direct radio range, but are still connected in the network graph, so the data

can be sent by the source, forwarded by one or more intermediate nodes in

the network and finally be received by its destination.

The Routing problem is the task of finding the best sequence of con-

nected intermediate nodes between source of destination to route the multi-

hop stream through the network.

The TDMH Router accepts as input a single multi-hop stream, and pro-

duces as output a path on the graph, then converted to a list of two or

more single-hop Transmissions. These transmissions, when properly sched-

uled make the multi-hop stream work.
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Summarizing, the Scheduler fills the TDMA slots with chosen Streams,

but accepts as input only single-hop Streams, while multi-hop Streams

needs to be processed first by the Router, that converts them into a list of

single-hop transmissions that the Scheduler can handle, these transmissions

are then scheduled in place of the original multi-hop Stream.

6.2 Formal definition of the problem

The inputs of the scheduling and routing problems are:

• TDMH configuration

• Network topology graph

• List of Stream requests

While the output is:

• Schedule: list of Schedule Elements, each element containing an action

for every node of the network, per every dataslot of the superframe

An action can be Sleep, Transmit or Receive.

The schedule is obtained by running the Router on the stream requests,

to find a path for multi-hop requests and break them down to single-hop

transmissions. The routed streams obtained by the Router are then fed into

the Scheduler that tries to allocate them in the dataslots, obtaining the

final schedule.

The TDMH configuration is:

• N = Maximum number of nodes of the network

• M = Maximum number of hops admitted in the network

• D = Number of available dataslots per slotframe
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The Network topology graph is defined as:

• Node ni, i ∈ [0, N ]

• Edge ei = (ni, nj), i, j ∈ [0, N ]

• Graph G : ei ∈ G ⇐⇒ ni and nj are in radio range

(can receive each others’ packets)

A generic Stream request si, i ∈ [1, S] is defined as:

• si = (ni, nj, p, h), i ∈ [1, S]

• S = Number of stream requests

• ni ∈ N Source node

• nj ∈ N Destination node

• per(si) = p Stream period

• red(si) = h Desired redundancy level

6.2.1 Scheduling problem

The Scheduler operates on routed streams ri, i ∈ [1, S], containing only

single-hop transmissions. The goal of the scheduler is to place the routed

streams in the dataslots, satisfying the constraints and avoiding possible

conflicts.

Constraints

• Period constraint: The period between one stream transmission and

the following must be maintained

• Causality constraint: An intermediate node can retransmit a packet

only after receiving it.
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Conflicts

Two transmissions belonging to different streams can conflict if their nodes

are scheduled to the same data slot and one of the following condition is true:

• Unicity conflict: One node transmits AND receives on the same dataslot

• Interference conflict: One node transmits while a neighbor node that

is not the recipient of the transmission is listening for a different trans-

mission. For a more detailed explaination see chapter 5.2.4

Scheduler definition

• k = (ni, di, r) Schedule Element

• ni ∈ [0, N ] Sender/Receiver node

• di ∈ [0, D] Data slot

• r = {TX,RX} Radio activity

• SK = {k0, k1, ..., kn} Schedule

• ∀ri = (Ti, p, h), i ∈ [1, S],∀t ∈ Ti :

∃ki(tx(t), di, TX), kj(rx(t), dj, RX), di = dj

• ∀ki = (ni, di, ri) :

6 ∃kc = (nc, dc, rc), dc = di ∧ nc = ni ∧
6 ∃kd = (nd, dd, rd), dd = di ∧ r 6= rd, ek(nd, ni) ∈ G

• ∀t ∈ Ti, : 6 ∃ke = (ne, de, re), kf (nf , df , rf ),

ne = tx(t) ∧ nf = rx(t) ∧ de > df
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6.2.2 Routing problem

The Routing problem accepts as input a set of generic streams si, i ∈ [1, S]

If a stream is single-hop, it doesn’t need routing, if it is multi-hop and a path

on the graph exists, the router calculates the corresponding routed stream

ri, i ∈ [1, S], composed of single-hop transmissions.

• sh = (ni, nj, p, h), h ∈ [1, S], i, j ∈ [0, N ] Stream

• tk = (ni, nj), i, j ∈ [0, N ] Transmission

• T = {t1, t2, ..., tn}, n ∈ [1,M ] List of transmissions

• ∀tk ∈ T, tk = (ni, nj) : tx(tk) = ni, rx(tk) = nj

• ∀si ∈ S, ∃ri = (T (ni, nj), p, h), eh = (ni, nj) ∈ G ∨
∃ri = (T, p, h),∀tk = (ni, nj) ∈ T, ∃eh = (ni, nj) ∈ G
∧ tx(t1) = src(si) ∧ rx(tn) = dst(si)

∧ ∀th, tk, k = h+ 1, rx(th) = tx(tk)

A routed Stream ri, i ∈ [1, S] is defined as a list of one or more trans-

missions. The number of hops of the stream corresponds to the transmission

set cardinality.

• ri = (Ti, p, h), i ∈ [1, S]

• Ti = {t1, t2, t3, ..., tn}, i ∈ [1, S], n ∈ [1,M ]

• hop(ri) = |Ti|, hop(ri) ∈ [1,M ]

• ti = (ni, nj), ti ∈ G
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Chapter 7

Scheduling: Algorithms

7.1 Routing

The Router is the TDMH module responsible for finding a suitable path

between the source and destination nodes on the network graph for every

multi-hop stream request. The path found is used for breaking down the

multi-hop stream in two or more single-hop transmissions, so that the

scheduler can schedule them.

The network graph we are talking about is an undirected, unweighted

and partially connected graph, and in such a graph there may be more

than one path between two nodes. Our goal in case of multiple paths being

available is choosing the shortest one (in number of hops), this to mini-

mize the transmission time between source and destination.

The problem of finding the shortest path in a generic graph or shortest

path problem is well known in literature, to solve this problem we employed

the breadth-first search (Moore, 1959; Zuse, 1972), which is optimal [20]

for unweighted and undirected graphs.
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7.1.1 Breadth-first search

The breadth first search algorithm is a graph search that starts from the

source node in the graph and visits all the neighbor nodes at distance 1,

when all the nodes at distance 1 are visited, the algorithm visits the neigh-

bors of neighbors (distance 2) and so on until the destination node is found.

This algorithm has temporal complexity O(E + V ) with E = number of

edges and V = number of vertices, and it’s the best algorithm known for

undirected unweighted graphs.

Also the breadth-first search is guaranteed to find the shortest solu-

tion first because the paths are found with the distance from root strictly

increasing. After the first solution is found, the algorithm could possibily

explore further the graph and find every other solution. However we are not

interested in other solutions longer than the first one found, so we are going

to stop the algorithm once the first and shortest solution is found, this saves

computation time.
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Python code

Here is the Python code for breadth-first search, taken from the Python

simulation of the scheduler (see chapter 9).

Note that these Python simulations are used only as a pseudocode, and

TDMH runs a C++ implementation of the scheduler and router algorithm.

def b r e a d t h f i r s t s e a r c h ( topology , stream ) :

# Breadth−F i r s t Search f o r t o p o l o g y graph

# Data s t r u c t u r e s

open se t = queue . Queue ( )

v i s i t e d = set ( )

p a r e n t o f = dict ( ) # key : node v a l u e : parent node

src , dst = stream ; # Stream t u p l e unpacking

root = s r c

p a r e n t o f [ root ] = None

open se t . put ( root )

while not open se t . empty ( ) :

s u b t r e e r o o t = open se t . get ( )

i f s u b t r e e r o o t == dst :

return cons t ruc t path ( subt r e e roo t ,\
p a r e n t o f )

for c h i l d in adjacence ( topology , s u b t r e e r o o t ) :

i f c h i l d in v i s i t e d :

continue ;

i f c h i l d not in l i s t ( open se t . queue )

p a r e n t o f [ c h i l d ] = s u b t r e e r o o t

open se t . put ( c h i l d )

v i s i t e d . add ( s u b t r e e r o o t )
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def cons t ruc t path ( node , p a r e n t o f ) :

path = l i s t ( )

# Continue u n t i l you reach the roo t ( parent=None)

# Append d e s t i n a t i o n node to avoid l o s i n g i t

path . append ( node )

while p a r e n t o f [ node ] i s not None :

# Skip the d e s t i n a t i o n node saved above

node = p a r e n t o f [ node ]

path . append ( node )

path . r e v e r s e ( )

return path

Sample output

Starting Breadth-First search

bfs open set: [6]

parent_of: {6: None}

bfs open set: [8, 2, 4]

parent_of: {6: None, 8: 6, 2: 6, 4: 6}

bfs open set: [2, 4, 5, 7]

parent_of: {6: None, 8: 6, 2: 6, 4: 6, 5: 8, 7: 8}

bfs open set: [4, 5, 7]

parent_of: {6: None, 8: 6, 2: 6, 4: 6, 5: 8, 7: 8}

bfs open set: [5, 7]

parent_of: {6: None, 8: 6, 2: 6, 4: 6, 5: 8, 7: 8}

bfs open set: [7, 0, 1, 3]

parent_of: {6: None, 8: 6, 2: 6, 4: 6, 5: 8, 7: 8, 0: 5, 1: 5, 3: 5}

bfs open set: [0, 1, 3]

parent_of: {6: None, 8: 6, 2: 6, 4: 6, 5: 8, 7: 8, 0: 5, 1: 5, 3: 5}

Primary Path (BFS): [6, 8, 5, 0]

Routing (6, 0) as [(6, 8), (8, 5), (5, 0)]
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From the last line of the output we can see that the multi-hop stream

(6, 0) has been routed to the three single-hop transmissions (6, 8), (8, 5) and

(5, 0). this transmission block will be scheduled making sure that it

remains atomic and sequential.

7.1.2 Spatial and temporal redundancy

Temporal redundancy

Enabling temporal redundancy for a stream means that the stream data

will be sent twice or three times over the network. This is useful to improve

the reliability of the said stream, in fact in case one of the transmissions is

not received correctly (e.g. because of an interference), the recipient can still

get the data during one of the redundant transmissions.

The temporal redundancy can be obtained easily in the router, to do

so we duplicate or triplicate (depending on the redundancy level required) the

transmission block we obtain from the breadth first search. Obviously the

duplicated or triplicated data must be handled by at least another component

of TDMH to avoid the recipient application getting unwanted copies of the

same data. This task is performed by the Dataphase while the schedule is

executed by the nodes, see chapter 10.6 for details.

Spatial redundancy

The spatial redundancy for a stream consists in sending two copies of the

data over two distinct paths on the network, two distinct paths are paths

in which the intermediate nodes of the primary path do not appear in the

intermediate nodes of the secondary path.

To achieve the spatial redudancy we need to obtain a secondary path

without common intermediate nodes with the primary path.
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A complete search of the graph to find a secondary path could be expen-

sive in terms of computation time, and may retrieve paths that are much

longer than the primary path, these paths are not so useful because they

could introduce an unwanted delay in the reception of the streams with spa-

tial redundancy.

7.1.3 Limited depth-first search

With the goal of finding secondary paths with the same lenght or slightly

longer than the primary path, we adopted the idea of doing a depth limited

search, in particular the algorithm we chose to implement is the limited

depth-first search, which we run to the completion with the length

limit equal to the lenght of the primary path plus a configurable parameter,

subsequently called more hops.

The limited depth-first search temporal complexity of O(l) with l

being the limit equal to the primary solution lenght plus more hops. This

algorithm is optimal like breadth-first search but uses less memory because

it doesn’t need to store the parent of relations of all visited nodes.

The algorithm starts at the source node of the stream and explores the

graph by following a path and avoiding visiting already visited nodes. This

allows the algorithm to visit the longest paths from the start node, until the

limit is reached, then it starts again from the source node and chooses a

different path, still avoiding choosing already visited nodes.

When the destination node is found, the algorithm backtracks and recon-

struct the path from the destination, up to the source node.
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Python code

The Python code for depth-first search applied to path finding, taken from

the Python simulation (see chapter 9)

def d f s pa th s ( graph , s ta r t , ta rget , l im i t , path=None ) :

i f path i s None :

path = [ s t a r t ]

i f s t a r t == t a r g e t :

y i e l d path

for next in set ( adjacence ( graph , s t a r t ))− set ( path ) :

i f l i m i t == 0 :

continue

l i m i t −= 1

y i e l d from d f s pa th s ( graph , next , ta rget , l im i t ,\
path+[next ] )

Sample output

Primary Path (BFS): [6, 8, 5, 0]

Routing (6, 0) as [(6, 8), (8, 5), (5, 0)]

Primary path length: 4

Searching secondary path of max length: 4+2= 6

DFS solutions: [[6, 8, 2, 4, 5, 0], [6, 8, 2, 4, 7, 0],

[6, 8, 2, 7, 0], [6, 8, 4, 2, 7, 0], [6, 8, 4, 5, 0],

[6, 8, 5, 0], [6, 8, 7, 0], [6, 2, 8, 4, 5, 0],

[6, 2, 8, 5, 0], [6, 2, 7, 0]]

Middle nodes [8, 5]

Found indipendent path

Secondary Path (limited-DFS): [6, 2, 7, 0]

Routing (6, 0) as [(6, 2), (2, 7), (7, 0)]
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7.2 Scheduling

After running the router on our initial list of streams, we should have a new

list, containing both the single-hop streams that didn’t need routing and the

multi-hop streams that have been routed through their shortest path into

a block of single-hop transmissions. Among these transmission-blocks,

some have been duplicated or triplicated for redundancy, these redundant

blocks are scheduled normally because the scheduler itself has no particu-

lar role in the redundancy, other that checking for conflicts as for any other

stream.

Summarizing, the scheduler work is to place the already routed streams

and transmission blocks into the TDMA slots available for data transfer, this

fullfilling the constraints and avoiding the conflicts as explained in chapter

6.2.1.

7.2.1 Greedy scheduler algorithm

To complete this task we designed a custom greedy algorithm that:

• Sort the streams to have the highest-period streams first

• Iterates over the streams and tries to allocate them to the first

available timeslot

• Checks for conflicts and makes sure that the constraints are satisfied

• If there are conflicts, the scheduler tries the next available timeslot

• If on the next timeslot there are no conflicts, the stream is scheduled

• If there are no more timeslots available, the stream is not scheduled.
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Below you can find the Python code for the greedy scheduler algorithm,

taken from the Python scheduler simulation (see chapter 9)

Greedy scheduler algorithm

def s chedu l e r ( topology , req streams , d a t a s l o t s ) :

s chedu le = [ ]

for s t ream block in r eq s t r eams :

# l a s t t s guarantees s e q u e n t i a l i t y in b l o c k s

# and avo ids c o n f l i c t s between two c o n s e c u t i v e

# streams in a b l o c k .

l a s t t s = 0

e r r b l o c k = False ;

num streams in block = 0 ;

for stream in s t ream block :

# I f a stream in a b l o c k cannot be

# schedu led , undo the whole b lock ,

# then break b l o c k c y c l e

i f e r r b l o c k :

for i in range ( num streams in block ) :

s chedu le . pop ( ) ;

s chedu le . pop ( ) ;

break ;

for t i m e s l o t in range ( l a s t t s , d a t a s l o t s ) :

# Stream t u p l e unpacking

src , dst = stream ;

c o n f l i c t = False ;

e r r un r ea chab l e = Fal se ;

## C o n n e c t i v i t y check :

# edge between src and d s t nodes

i f not i s onehop ( topology , stream ) :

e r r b l o c k = True ;
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e r r un r ea chab l e = True ;

break ; #Cannot s c h e d u l e t ransmiss ion

## C o n f l i c t checks

# Unic i t y check :

# no TX and RX f o r the same node

# on the same t i m e s l o t

c o n f l i c t |= c h e c k u n i c i t y c o n f l i c t (

schedule , t imes lo t , stream )

# I n t e r f e r e n c e check :

# no TX and RX f o r nodes at 1−hop

# d i s t a n c e in the same t i m e s l o t

# Check TX node f o r RX n e i g h b o r s

c o n f l i c t |= c h e c k i n t e r f e r e n c e c o n f l i c t (

schedule , topology , t imes lo t ,

s rc , ’RX’ )

# Check RX node f o r TX n e i g h b o r s

c o n f l i c t |= c h e c k i n t e r f e r e n c e c o n f l i c t (

schedule , topology , t imes lo t ,

dst , ’TX’ )

# Checks e v a l u a t i o n

i f c o n f l i c t :

# Try to s c h e d u l e in next t i m e s l o t

continue ;

else :

l a s t t s = t i m e s l o t

num streams in block += 1

# Adding stream to s c h e d u l e

schedu le . append ( ( t imes lo t , s rc ,

’TX’ ) ) ;

s chedu le . append ( ( t imes lo t , dst ,

’RX’ ) ) ;
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# S u c c e s s f u l l y s c h e d u l e d

# transmiss ion , break

# t i m e s l o t c y c l e

break ;

## Next t ransmiss ion in b l o c k shou ld s t a r t

## from next t i m e s l o t to s a t i s f y

## the c a u s a l i t y c o n s t r a i n t

l a s t t s += 1

# I f we are in the l a s t−t i m e s l o t

# and have a c o n f l i c t

# the stream i s not s c h e d u l a b l e

i f t i m e s l o t == d a t a s l o t s − 1 :

e r r b l o c k = True ;

return schedu le ;

Sample output

Final stream list: [[(3, 0)], [(6, 8), (8, 5), (5, 0)],

[(6, 2), (2, 7), (7, 0)], [(4, 5), (5, 0)], [(4, 7), (7, 0)]]

Checking stream (3, 0) on timeslot 0

Scheduled stream (3, 0) on timeslot 0

Checking stream (6, 8) on timeslot 0

Scheduled stream (6, 8) on timeslot 0

Checking stream (8, 5) on timeslot 1

Scheduled stream (8, 5) on timeslot 1

Checking stream (5, 0) on timeslot 2

Scheduled stream (5, 0) on timeslot 2

Checking stream (6, 2) on timeslot 0

Conflict Detected! src or dst node are busy on timeslot 0

Conflict Detected! TX-RX conflict between node 6 and node 8

Conflict Detected! TX-RX conflict between node 2 and node 6
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Cannot schedule stream (6, 2) on timeslot 0

Checking stream (6, 2) on timeslot 1

Conflict Detected! TX-RX conflict between node 2 and node 8

Cannot schedule stream (6, 2) on timeslot 1

Checking stream (6, 2) on timeslot 2

Scheduled stream (6, 2) on timeslot 2

Checking stream (2, 7) on timeslot 3

Scheduled stream (2, 7) on timeslot 3

Checking stream (7, 0) on timeslot 4

Scheduled stream (7, 0) on timeslot 4

Checking stream (4, 5) on timeslot 0

Conflict Detected! TX-RX conflict between node 4 and node 8

Conflict Detected! TX-RX conflict between node 5 and node 3

Cannot schedule stream (4, 5) on timeslot 0

Checking stream (4, 5) on timeslot 1

Conflict Detected! src or dst node are busy on timeslot 1

Conflict Detected! TX-RX conflict between node 4 and node 5

Conflict Detected! TX-RX conflict between node 5 and node 8

Cannot schedule stream (4, 5) on timeslot 1

Checking stream (4, 5) on timeslot 2

Conflict Detected! src or dst node are busy on timeslot 2

Conflict Detected! TX-RX conflict between node 4 and node 2

Cannot schedule stream (4, 5) on timeslot 2

Checking stream (4, 5) on timeslot 3

Conflict Detected! TX-RX conflict between node 4 and node 7

Cannot schedule stream (4, 5) on timeslot 3

Checking stream (4, 5) on timeslot 4

Conflict Detected! TX-RX conflict between node 5 and node 7

Cannot schedule stream (4, 5) on timeslot 4

Checking stream (4, 5) on timeslot 5

Scheduled stream (4, 5) on timeslot 5

56



Checking stream (5, 0) on timeslot 6

Scheduled stream (5, 0) on timeslot 6

Checking stream (4, 7) on timeslot 0

Conflict Detected! TX-RX conflict between node 4 and node 8

Cannot schedule stream (4, 7) on timeslot 0

Checking stream (4, 7) on timeslot 1

Conflict Detected! TX-RX conflict between node 4 and node 5

Conflict Detected! TX-RX conflict between node 7 and node 8

Cannot schedule stream (4, 7) on timeslot 1

Checking stream (4, 7) on timeslot 2

Conflict Detected! TX-RX conflict between node 4 and node 2

Conflict Detected! TX-RX conflict between node 7 and node 5

Cannot schedule stream (4, 7) on timeslot 2

Checking stream (4, 7) on timeslot 3

Conflict Detected! src or dst node are busy on timeslot 3

Conflict Detected! TX-RX conflict between node 4 and node 7

Conflict Detected! TX-RX conflict between node 7 and node 2

Cannot schedule stream (4, 7) on timeslot 3

Checking stream (4, 7) on timeslot 4

Conflict Detected! src or dst node are busy on timeslot 4

Cannot schedule stream (4, 7) on timeslot 4

Checking stream (4, 7) on timeslot 5

Conflict Detected! src or dst node are busy on timeslot 5

Conflict Detected! TX-RX conflict between node 4 and node 5

Conflict Detected! TX-RX conflict between node 7 and node 4

Cannot schedule stream (4, 7) on timeslot 5

Checking stream (4, 7) on timeslot 6

Conflict Detected! TX-RX conflict between node 7 and node 5

Cannot schedule stream (4, 7) on timeslot 6

Checking stream (4, 7) on timeslot 7

Scheduled stream (4, 7) on timeslot 7
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Checking stream (7, 0) on timeslot 8

Scheduled stream (7, 0) on timeslot 8

Resulting schedule

Time Src, Dst

0: 3 0

0: 6 8

1: 8 5

2: 5 0

2: 6 2

3: 2 7

4: 7 0

5: 4 5

6: 5 0

7: 4 7

8: 7 0
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Chapter 8

Schedule distribution

Until now we thought of the schedule as a list of schedule elements,

one for each timeslot, with every schedule element containing a timeslot, an

action (TX,RX) and which node has to do it. From now on we will call this

schedule encoding explicit schedule:

explicitScheduleElement = (timeslot, action, node)

When thinking about distributing the schedule from the master node

to the other nodes of the network, we realized that the explicit schedule was

really large, since it scales linearly with the number of timeslots, which

can become big very quickly, especially for streams with coprime periods.

For example in case we have a first stream with period 2 and a second

stream with period 5, the schedule size in periods would be lcm(2, 5) = 10,

which in timeslots is 10∗tile size, assuming a tile size of 16, the number

of explicitScheduleElements to send on the network would be 160.

An option could be compressing the schedule to reduce the size of

the elements without an action, but this measure would not be effective for

a heavily loaded network (few timeslots without action).
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8.1 Implicit schedule idea

The information saved in the explicit schedule is heavily correlated, in

particular all the schedule elements of a stream are repeating at distance

equal to the stream period, for the complete lenght of the explicit schedule,

and this is true for all the streams in the schedule.

Knowing the distance between a particular schedule element and the cor-

responding schedule element of the next period isn’t enough to reconstruct

the explicit schedule. The other information we need is the slot in which the

first schedule element of that stream is placed, we will call this value offset.

8.1.1 Implicit schedule element

An explicit schedule can be obtained without uncertainties from a more com-

pact form that we will call implicit schedule, which elements are composed

by a node, an action, the period and the offset of the first transmission.

implicitScheduleElement = (node, action, period, offset)

We just defined the schedule element offset, while the stream period

was introduced in section 5.2.2.

8.1.2 Advantages of the implicit schedule

The implicit schedule format has the clear advantage of using less memory

space than its explicit counterpart, in fact an implicit schedule scales in size

linearly with the number of streams, while the explicit schedule scales

linearly with the number of timeslots in the schedule, which is generally

much bigger than the number of streams. In fact the implicit schedule is

much smaller and easy to send over the network. Given this advantage, we

decided to employ the implicit schedule right from its initial computation in

the scheduler and during the schedule distribution.
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However the dataphase requires an explicit schedule to operate more

efficiently, since it allows to perform a lookup on the current timeslot to

get the corresponding action. The explicit schedule is converted from its

implicit counterpart on the node itself, after the schedule distribution; this

allows an important optimization: when the explicit schedule is derived,

every node extracts only the actions in which he is involved, resulting in a

simpler explicit schedule containing only streams related to a given node.

The conversion from implicit schedule to explicit will be explained in

section. 8.3

8.2 Schedule packet format

Here we explain the format used to distribute the implicit schedule from

the master node to all the other nodes of the network.

The schedule distribution happens in the downlink phase of TDMH

(see section 5.1.3), in this phase the master creates a schedule packet by

encoding the newest implicit schedule available and sends it to its neighbors,

who retransmit the packet after a predefined retransmission time and keep

the packet content to build a local version of the schedule that is being dis-

tributed. The schedule packet is distributed to all the nodes in the network.

The schedule packet is composed of the following:

• a scheduleHeader containing information on the current packet

• one or more scheduleElement, corresponding to an element of the

implicit schedule.
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The scheduleHeader class contains the following data:

• totalPacket: number of schedule packets needed to distribute the

schedule

• currentPacket: current packet of the total

• scheduleID: unique ID of the schedule distributed

• activationTile: tile number in which the schedule becomes active

• scheduleTiles: length of explicit schedule in tiles

• repetition: current repetition of the schedule distribution

The scheduleElement class contains the following data:

• src: source node of the stream

• dst: destination node of the stream

• srcPort: source port of the stream

• dstPort: destination port of the stream

• tx: node transmitting this transmission

• rx: node receiving this transmission

• redundancy: redundancy level

• period: period of the stream (in tiles)

• payloadSize: size of the data to send (in packets)

• direction: used to open bidirectional streams

• offset: offset to calculate the explicit schedule
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8.3 Dataphase schedule

Once a dynamic node of the network receives all the schedule packets

forming a schedule, he can easily reconstruct the content of the most re-

cent implicit schedule by unpacking the scheduleElements contained in the

schedulePacket, since they have a direct correspondence with the implicit

schedule elements. The node can also get some metadata about the schedule

from the scheduleHeader for example the schedule ID, size, and activation

tile.

8.3.1 Schedule activation

All the nodes in the network keep track of the current tile number from the

start of TDMH. When the current tile becomes equal to the activation tile of

the received schedule, the implicit schedule can be converted to an explicit

schedule, and the last one can be applied in the dataphase for playback.

8.3.2 Dataphase schedule format

The Dataphase employs an explicit schedule, but its format is different from

the explicit schedule we mentioned before. In fact the Dataphase does not

need a list of generic explicitScheduleElement, but needs a vector of el-

ements containing the operation that the specific node needs to perform on

each of the timeslots.

dataphaseScheduleElement = (timeslot, dataphaseAction)

The dataphaseAction represents one of the five operations that the

Dataphase can perform:

• Sleep: save power when no other action is needed

• Send from stream: send packet from the application level

• Receive to stream: receive packet to the application level
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• Send from buffer: send packet from the packet buffer

• Receive to buffer: receive packet to the packet buffer

Note that every node has a buffer able to store one packet, used for

retransmit packets for multi-hop transmission.

It is an implicit constraint of the scheduler that a node needs to store

only one packet at a time, this keeps the multi-hop transmissions in order,

the memory use of the nodes low and avoids buffering of packets in the

network that will worsen the overall latency.

8.3.3 Conversion algorithm

the conversion from implicit schedule to Dataphase schedule is done with

the following algorithm in C++, taken from the C++ implementation (see

chapter 10):

s td : : vector<DataphaseScheduleElement>

ScheduleDownlinkPhase : : expandSchedule (

unsigned char nodeID ) {
// New e x p l i c i t S c h e d u l e to re turn

std : : vector<DataphaseScheduleElement> r e s u l t ;

// Res ize new e x p l i c i t S c h e d u l e

// and f i l l w i th d e f a u l t v a l u e ( s l e e p )

auto s l o t s I n T i l e = ctx . ge tS lo t s InTi l eCount ( ) ;

auto s c h e d u l e S l o t s = header . g e tSchedu l eT i l e s ( ) ∗
s l o t s I n T i l e ;

r e s u l t . r e s i z e ( s chedu l eS l o t s ,

DataphaseScheduleElement ( ) ) ;

// Scan i m p l i c i t s c h e d u l e and d e r i v e

// the corresponding a c t i o n

for (auto e : s chedu le ) {
// Period i s normal ly e x p r e s s e d in t i l e s ,

// g e t per iod in s l o t s
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auto p e r i o d S l o t s = to In t ( e . getPer iod ( ) ) ∗
s l o t s I n T i l e ;

Action ac t i on = Action : : SLEEP;

// Send from stream case

i f ( e . ge tSrc ( ) == nodeID && e . getTx ( ) == nodeID )

ac t i on = Action : :SENDSTREAM;

// Receive to stream case

i f ( e . getDst ( ) == nodeID && e . getRx ( ) == nodeID )

ac t i on = Action : :RECVSTREAM;

// Send from b u f f e r case

// ( send saved mult i−hop packe t )

i f ( e . ge tSrc ( ) != nodeID && e . getTx ( ) == nodeID )

ac t i on = Action : :SENDBUFFER;

// Receive to b u f f e r case

// ( r e c e i v e and save mult i−hop packe t )

i f ( e . getDst ( ) != nodeID && e . getRx ( ) == nodeID )

ac t i on = Action : :RECVBUFFER;

// Apply a c t i o n to the r i g h t s l o t s

for (auto s l o t = e . g e t O f f s e t ( ) ;

s l o t < s c h e d u l e S l o t s ;

s l o t += p e r i o d S l o t s ) {
r e s u l t [ s l o t ] = DataphaseScheduleElement (

act ion ,

e . getStreamInfo ( ) ) ;

}
}
return r e s u l t ;

}
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Chapter 9

Simulation

The codebase of TDMH runs on the Miosix [21] operating system, and it’s

written in C++. Before working on this project I was not very proficient in

C++, and I hesitated at the idea of implementing and testing the algorithms

directly in a language I was not confident with.

Because of this I decided together with my supervisor to implement

a proof-of-concept simulation of the scheduling and routing algorithms

explained in the previous chapters in a self-contained program written in

Python, a language I was already proficient at.

9.1 Python simulation

The results of this simulation written in Python were very positive, in fact

I was able to test the correctness of the algorithms in a small program that

given the basic inputs of the scheduling and routing problem:

• A network topology graph

• A list of stream requests

• The number of available time slots
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Could run the algorithms and produce as output an explicit schedule

composed by:

• A list of tuples containing (time slot, node, activity)

Another advantage of the Python simulation was that we had a working

implementation of the algorithms to be implemented in TDMH, so this made

the implementation in C++ easier, but not without issues at all.

In fact the main difference between the Python simulation and the ac-

tual implementation is that the simulation worked with explicit schedules,

because it was written before we decided to adopt the implicit schedule.

The adoption of the implicit scheduler brought its own difficulties mainly in

finding conflicts between two implicit form streams, this has to be done by

just using their period and offsets. For more details see section 10.4.3 of the

implementation chapter.

Below you can find the execution output of the Python simulation running

with the input data (topology, stream requests and number of time slots)

taken from the RTSS article ”TDMH-MAC: Real-Time and Multi-hop in the

Same Wireless MAC” [22]

0/0

1/1

3/1

5/1

7/1

4/2

8/2
2/3

6/3

Figure 9.1: Network topology from RTSS paper
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Below is the input data for the simulation:

topology = [ ( 0 , 1 ) , (0 , 3 ) , (0 , 5 ) , (0 , 7 ) ,

(1 , 3 ) , (1 , 5 ) , (1 , 7 ) ,

(2 , 4 ) , (2 , 6 ) , (2 , 7 ) , (2 , 8 ) ,

(3 , 5 ) ,

(4 , 5 ) , (4 , 6 ) , (4 , 7 ) , (4 , 8 ) ,

(5 , 7 ) , (5 , 8 ) ,

(6 , 8 ) ,

(7 , 8 ) ]

r eq s t r eams = [ ( 3 , 0 ) ,

(6 , 0 ) ,

(4 , 0 ) ]

t i m e s l o t s = 10

Python simulation output

$ ./scheduler_sym.py run

Primary Path (BFS): [6, 8, 5, 0]

Routing (6, 0) as [(6, 8), (8, 5), (5, 0)]

Primary path length: 4

Searching secondary path of max length: 4+2= 6

DFS solutions: [[6, 8, 2, 4, 5, 0], [6, 8, 2, 4, 7, 0],

[6, 8, 2, 7, 0], [6, 8, 4, 2, 7, 0], [6, 8, 4, 5, 0],

[6, 8, 5, 0], [6, 8, 7, 0], [6, 2, 8, 4, 5, 0],

[6, 2, 8, 5, 0], [6, 2, 7, 0]]

Middle nodes [8, 5]

Found indipendent path

Secondary Path (limited-DFS): [6, 2, 7, 0]

Routing (6, 0) as [(6, 2), (2, 7), (7, 0)]

Primary Path (BFS): [4, 5, 0]

Routing (4, 0) as [(4, 5), (5, 0)]
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Primary path length: 3

Searching secondary path of max length: 3+2= 5

DFS solutions: [[4, 2, 8, 5, 0], [4, 2, 7, 0], [4, 5, 0],

[4, 5, 1, 0], [4, 7, 0]]

Middle nodes [5]

Found indipendent path

Secondary Path (limited-DFS): [4, 7, 0]

Routing (4, 0) as [(4, 7), (7, 0)]

Final stream list: [[(3, 0)], [(6, 8), (8, 5), (5, 0)],

[(6, 2), (2, 7), (7, 0)], [(4, 5), (5, 0)], [(4, 7), (7, 0)]]

Resulting schedule

Time Src, Dst

0: 3 0

0: 6 8

1: 8 5

2: 5 0

2: 6 2

3: 2 7

4: 7 0

5: 4 5

6: 5 0

7: 4 7

8: 7 0

In figure 9.2 there is a graphical representation of the schedule generated

with the python simulator. Looking at the schedule, we note that it seems

reasonable and efficient, and it has no conflicts.
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Figure 9.2: Schedule generated with the python simulator

9.2 OMNeT++ simulation

After the Python simulation was ready and tested, we began implenting the

algorithms in the actual TDMH codebase.

TDMH is designed to be run on wireless nodes running the Miosix [21]

Operating System, in particular on the WandStem [23] nodes, because of the

hardware timestamping needed to make FLOPSYNC-2 work.

Implementing and testing the scheduling algorithm directly on real hard-

ware has its own set of problems, in particular the difficulty in troubleshoot-

ing and the time required to make tests with more than one node.

For this reason Paolo Polidori, the previous student doing its master the-

sis [24] on TDMH, developed an interface to run TDMH in OMNeT++ [25],

a well known network simulator based on discrete event simulation.
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The integration was done by developing an interface compatible with

Miosix APIs for radio, timers and logging, that will call OMNeT++ corre-

sponding functions instead of the Miosix kernel ones. Doing so we have a

unique codebase that can run both in simulation and on real hardware.

Running TDMH in simulation allowed developing and testing the new

components of the code in a simulation environment, with the ease of running

the code and trying different topologies that comes with it.

Figure 9.3: Debug view of the OMNeT++ simulator
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Figure 9.4: Simulation view of the OMNeT++ simulator
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Chapter 10

Implementation

In this chapter we will explain some details about the implementation of

the Scheduler and Router algorithms presented in the previous chapters into

the existing C++ codebase of TDMH. We will also present the design

and implementation of the other components of the network stack that have

been built in the process of making the TDMH stack work in simulation

and on real hardware.

10.1 Object Oriented codebase

The codebase on which this thesis is built is the work of post. Doc. professor

Federico Terraneo (author of Miosix [21]) and previous Ms. thesis student

Paolo Polidori. The TDMH source code is released under the Open Source

license GPLv2 [26] and it is currently hosted on GitHub[27].

This codebase has a strongly Object Oriented style, which means that

every self contained portion of the code is kept in a separate class, and there

is a heavy use of inheritance within these classes.
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The most notable example of inheritance is that every class that should

have a different behaviour in the master node with respect to dynamic nodes

is structured as a generic parent class implementing the common methods

between master and dynamic nodes, and two different classes with prefix

’Master’ and ’Dynamic’ that implement the behaviour specific to the two

type of nodes.

You can see an example of this pattern in figure 10.1.

Figure 10.1: UML diagram showing polymorphism in the Uplink class

10.2 Overview of TDMH modules

In figure 10.2 we can see that a relevant part of the current TDMH function-

ality has been implemented as part of this thesis work.

In the following sections you can find the general design and some imple-

mentation details of the TDMH modules on which this work had its focus.
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Figure 10.2: Highlight of author’s contribution in TDMH codebase

10.3 Topology Collection

The Topology Collection module is the one responsible for collecting infor-

mation from the Dynamic nodes of the network, towards the Master node.

The information collected is mainly the map of the network, but also the

requests for opening a Stream or a Server.

The Topology Collection works during the Uplink phase (see section 5.1.6)

and is essential for the correct functioning of the other modules, because it

provides the base information on which the schedule is computed, and is also

responsible for the stream and server commands.
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10.4 Schedule computation

The Scheduler and Router algorithms are contained respectively in the

ScheduleComputation and Router classes, in these classes are implemented

the algorithms explained in chapter 7. These algorithms perform the transla-

tion from the Stream opening requests received by the nodes of the network

to a TDMA schedule, ready to be distributed and finally executed in the

Dataphase. See figure 10.3 for a graphic representation of this process.

Figure 10.3: TDMH modules related to streams

The scheduling and routing algorithms are computationally intensive be-

cause they employ multiple graph searches. Since the timing is crucial in

the TDMH stack, the execution of these algorithms might delay the network

phases. For this reason, all the computation for the scheduling and routing

is done in an offline fashion, by running the scheduler and router code on

a separate thread, that is opportunely synchronized with the network stack

thread.

10.4.1 Thread model

The synchronization between the scheduler thread and the network stack

thread is not trivial. In fact the scheduler thread needs to wait until there

are one or more suitable streams to schedule, and this wait should not con-
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sume CPU resources.

To fullfill this requirement, we employed a producer consumer pattern

for thread synchronization. This was implemented using a mutex with

a condition variable, the implementation is shown below:

void ScheduleComputation : : run ( ) {
. . .

// Mutex l o c k to acces s stream l i s t .

{
#ifde f MIOSIX

mios ix : : Lock<mios ix : : Mutex> l c k ( sched mutex ) ;

#else

std : : un ique lock<std : : mutex> l c k ( sched mutex ) ;

#endif

// Wait u n t i l t o p o l o g y or stream l i s t changes

while ( ! t opo logy c tx . wasModified ( ) &&

! stream mgmt . wasModified ( ) ) {
sched cv . wait ( l c k ) ;

}
// Begin s c h e d u l i n g

. . .

}
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The notify for this condition variable is called in the main loop of

TDMH, this is done to activate the scheduler at each TDMH cycle. The

function that sends the notify is called beginScheduling

void MACContext : : run ( ) {
. . .

for ( running = true ; running ; ) {
. . .

else {
i f ( ! s chedu l eD i s t r i bu t i on−>d i s t r i b u t i n g S c h e d u l e ( ) )

beg inSchedul ing ( ) ;

s chedu l eD i s t r i bu t i on−>run ( currentNextDeadl ine ) ;

}
. . .

}

10.4.2 Scheduler algorithm implementation

The ScheduleComputation class implements the greedy scheduler algo-

rithm presented in chapter 7.2.1, that we report here for convenience:

Greedy scheduler algorithm:

• Sort the streams to have the highest-period streams first

• Iterates over the streams and tries to allocate them to the first

available timeslot

• Checks for conflicts and makes sure that the constraints are satisfied

• If there are conflicts, the scheduler tries the next available timeslot

• If on the next timeslot there are no conflicts, the stream is scheduled

• If there are no more timeslots available, the stream is not scheduled.
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The TDMH implementation of this algorithm differs from the Python

simulation found in chapter 9, because in the TDMH implementation we

employed the concept of implicit schedule (see section 8.1).

The main difference that arises from the adoption of the implicit sched-

ule, is that for every stream, we iterate over the available offsets, and

not over the timeslots as we did on the Python simulator.

An important step of the greedy scheduler algorithm is finding poten-

tial conflicts between the stream currently being scheduled and the already

scheduled streams.

The conflict checks that we perform in the scheduler algorithm are the

following:

• Unicity check: A node in the network cannot transmit and receive in

the same timeslot

• Interference check: The current transmission must not interfere with

other transmissions happening in the same timeslot (see section 5.2.5)

The complication introduced by the adoption of the implicit schedule

arises from the fact that we do not know directly the timeslot used by every

stream, in fact every stream is characterized only by a period and an offset.

10.4.3 Finding conflicts in implicit schedule

This problem was solved by leveraging the correlation between the period

and offset of a stream, and the dataslots resulting from these.

In fact we can derive all the dataslots occupied by a stream with the

following formula: given tile size the lenght in dataslots of a single Period

and per a value ranging from 1 to Period

Dataslot = offset+ per ∗ tile size
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From this we know that we can simply iterate over the offsets and check

the conflicts only with the streams have the calculated dataslots in com-

mon.

The function that calculates if two streams have dataslots in common is

called checkSlotConflict and has the following implementation.

bool ScheduleComputation : : c h e c k S l o t C o n f l i c t ( . . . ) {
// C a l c u l a t e s l o t s used by the two t r a n s m i s s i o n s

// and see i f t h e r e i s a t l e a s t a common v a l u e

unsigned pe r i od a = to In t ( newtransm . getPer iod ( ) ) ;

unsigned per i od b = to In t ( oldtransm . getPer iod ( ) ) ;

unsigned p e r i o d s l o t s a = pe r i od a ∗ t i l e s i z e ;

unsigned p e r i o d s l o t s b = per iod b ∗ t i l e s i z e ;

unsigned s c h e d u l e s l o t s = lcm ( per iod a , pe r i od b ) ∗
t i l e s i z e ;

for (unsigned s l o t a=o f f s e t a ;

s l o t a < s c h e d u l e s l o t s ;

s l o t a += p e r i o d s l o t s a ) {
for (unsigned s l o t b=oldtransm . g e t O f f s e t ( ) ;

s l o t b < s c h e d u l e s l o t s ;

s l o t b += p e r i o d s l o t s b ) {
i f ( s l o t a == s l o t b )

return true ;

}
}
return fa l se ;

}
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10.5 Schedule distribution

The schedule distribution module’s goal is to distribute to the entire net-

work the schedule computed by the master node, and to make sure that the

new schedule is applied in the whole network at the same time.

10.5.1 Finite state machine model

We decided to model the schedule distribution module with the finite state

machine paradigm, the advantages of this type of model is better clarity

and better solidity. The behaviour of the schedule distribution module can

be described with two FSMs (Finite state machines) for the master node and

two FSMs for the dynamic nodes, for a total of four FSMs.

• master schedule distribution

• master schedule application

• dynamic schedule distribution

• dynamic schedule application

We will show below the model of the four FSM, together with a description
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Master schedule distribution

The master schedule distribution FSM is in charge of retrieving a new

schedule and computing the tile number at which the new schedule will be

activated (activationTile), after this it will send the Schedule Packets

for a predefined number of repetitions, in this case three.

You can find a representation of this FSM in figure 10.4.

Figure 10.4: FSM model of master schedule distribution
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Master schedule application

The master schedule application, when a new schedule is present waits

until it has been distributed and then compares the current tile number,

with the saved activationTile. When these two numbers are equal, the

schedule is applied. A given schedule can be applied only after it has

been distributed, otherwise the nodes that still haven’t received the new

schedule cannot apply it, thus leading to a non uniformity of the schedule

over the network. This requirement is handled by employing a boolean flag

called distributing.

You can find a representation of the master schedule application FSM in

figure 10.5.

Figure 10.5: FSM model of master schedule application
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Dynamic schedule distribution

The dynamic schedule distribution FSM runs on the dynamic nodes

and listens for incoming Schedule Packets, when all the packets composing a

schedule are received, the complete schedule is reconstructed.

You can find a representation of the dynamic schedule distribution FSM

in figure 10.6.

Figure 10.6: FSM model of dynamic schedule distribution
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Dynamic schedule application

The dynamic schedule application FSM runs on the dynamic nodes and

compares the current tile number with the schedule activationTile received

with the schedule, applying the schedule if the two tile numbers correspond.

You can find a representation of the dynamic schedule application FSM

in figure 10.7.

Figure 10.7: FSM model of dynamic schedule application
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10.6 Dataphase

The purpose of the Dataphase module is to playback the latest available

schedule, executing the operations specified for every timeslot of the slot-

frame. The Dataphase module is essential to the functioning of the Streams,

as it’s the one sending or receiving the actual application data from the net-

work. The Dataphase uses a schedule in its explicit form, this schedule is

converted after its distribution as explained in section 8.3.

As we have seen before, an explicit schedule defines an action for every

timeslot. The explicit schedule is specific to a given node, since it contains

only actions related to that node.

10.6.1 Schedule actions

The actions that the Dataphase can perform based on its explicit schedule are

five, here is the prototype of the methods implementing the various action,

taken from dataphase.h

/∗ Five p o s s i b l e ac t ions , as d e s c r i b e d by

the e x p l i c i t s c h e d u l e ∗/
void s l e e p ( long long s l o t S t a r t ) ;

void sendFromStream ( long long s l o t S t a r t , StreamId id ) ;

void receiveToStream ( long long s l o t S t a r t , StreamId id ) ;

void sendFromBuffer ( long long s l o t S t a r t ) ;

void r e ce iveToBuf f e r ( long long s l o t S t a r t ) ;
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Sleep

The sleep action puts the microcontroller in a low power state until the start

of the next timeslot.

Send from stream

The send from stream action checks if a packet is available from the upper

layer (stream) and sends it on the network, if it’s not available it sleeps until

the start of the next timeslot.

Receive to stream

The receive to stream action receives a packet from the network, and if it

is valid, it is forwarded to the upper layer (stream).

Send from buffer

The send from buffer action checks if a valid packet is present in the buffer

and sends it on the network, if it’s not available it sleeps until the start of

the next timeslot.

Receive to buffer

The receive to buffer action receives a packet from the network, and if it

is valid, it is stored on the buffer and the buffer is marked as valid.
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10.7 Stream manager

The Stream Manager is the TDMH module responsible for managing the

Streams and Servers. It contains informations about all the Streams and

Servers regarding the current node. The Stream Manager presents an inter-

face to the application level, with all the available functions to operate on

the Streams. The Stream Manager is also in charge of modifying the Streams

according to the information it receives from the network, in the form of a

new schedule or a list of Info elements.

The Streams and Servers themselves are implemented with a finite state

machine model. The Streams and Servers current status is kept respectively

in the instances of the Stream and Server classes inside the Stream Manager.

The Stream Manager is the one providing events that change the status of

the finite state machines, these events can either come from the user (Stream

API) or from the Network (Schedule, Info element or disconnection).

10.7.1 Streams

You can find a representation of the stream state machine in the dynamic

nodes in figure 10.8, and the related state machine in the master node in

figure 10.9.

10.7.2 Servers

You can find a representation of the server state machine in the dynamic

nodes in figure 10.10, and the related state machine in the master node in

figure 10.11.
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Figure 10.8: FSM model of streams in dynamic nodes
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Figure 10.9: FSM model of streams in master nodes
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Figure 10.10: FSM model of servers in dynamic nodes
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Figure 10.11: FSM model of servers in master nodes
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Chapter 11

Experiments

The goal of the experiments presented in this chapter is to validate the gen-

eral functionalities of TDMH and in particular to prove the effectiveness of

the redundancy measures in the transmission of data.

We propose three experiments, consisting in a simulation and several

real-world experiments:

• 1: validation of the stream redundancy in simulation

• 2: validation of the stream redundancy using a wired setup

• 3: validation of the stream redundancy with nodes placed over a

building floor

11.1 First experiment: Simulation

11.1.1 Topology

The network topology chosen for the first experiment is the so called dia-

mond topology, consisting in four nodes connected in a rhombus geometry.

See figure 11.2
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Figure 11.1: Diamond topology shown in OMNeT++

This topology is simple but allows to take advantage of the spatial re-

dundancy, thanks to the two paths without common intermediate nodes

between nodes 0 and 3: 0→ 1→ 3 and 0→ 2→ 3.

11.1.2 Setup

This experiment is run on the OMNeT++ simulator, the simulator allows to

shutdown one of the simulated nodes at a given time, this function is used

to simulate the fault.

11.1.3 Test procedure

First run

In the first run a stream is opened from node 3 to node 0, with Period::P1

and without redundancy. The simulated time is 10 minutes, and at 5 minutes

from the start we simulate a fault, turning off the intermediate node of the

path 0→ 3 (which could be 1 or 2 depending on the schedule).
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• The network is started and left running for 10 minutes

• After 5 minutes, node 1 or 2 is shut down

• The network is left running for additional 5 minutes

• Total test time: 10 minutes

Second run

In the second run a stream is opened from node 3 to node 0, with Period::P1

and with triple spatial redundancy. The simulated time is 10 minutes,

and at 5 minutes from the start we simulate a fault, turning off one of the

two intermediate nodes of the path 0→ 3 (node 1 or node 2).

• The network is started and left running for 10 minutes

• After 5 minutes, node 1 or 2 is shut down

• The network is left running for additional 5 minutes

• Total test time: 10 minutes

11.1.4 Goal

First run

The expected result of turning off the node is that there is a small packet

loss, until the network realizes that the node is not available anymore, at

this point the master node should produce a new schedule that avoids the

missing node, restoring the normal stream functionality.

Second run

The expected result of turning off the node is that there is no packet loss,

because thanks to the spatial redundancy, the packet of the stream follow

two distinct path, and are not affected by the fault. Also in this case the
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master node should realize that one of the nodes is not available anymore,

and should produce a new schedule that avoids the missing node.

11.1.5 Results

The results of this experiment are listed in tables 11.1, 11.2,

11.1.6 Conclusions

First run

This test case shows the self diagnosing and self-healing capabilities of

TDMH. In fact when a node of the network becomes unavailable, the master

node detects the change in the network topology and produces a new sched-

ule with a new path for the stream, if there is one available.

The result is that even with no redundancy, in case a node becomes un-

reachable we have a small data loss, but the affected stream is soon restored

and able again to send packets.

Second run

This test case shows the effectiveness of the spatial redundancy in

avoiding data loss in case of temporary or permanent failure of a node in the

network, this can be seen in practice by the fact that the stream (3,0) with

spatial redundancy keeps receiving packets even after node 2, that is on

one of the possible paths is shut down.

Node ID Total packets Lost packets Reliability

3 5770 60 98.96%

Table 11.1: First experiment results with redundancy disabled
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Node ID Total packets Lost packets Reliability

3 5770 0 100%

Table 11.2: First experiment results with triple redundancy

11.2 Second experiment: wired setup

This experiments is meant to test the two situations presented in the first

experiment, but on real hardware, with a wired setup 11.2.2, that allows to

have a constant RSSI and to avoid external interferences.

11.2.1 Topology

For the second experiment we chose the same network topology we used

for the first experiment (diamond topology).

Figure 11.2: Diamond topology of the wired setup

11.2.2 Setup

The wired setup consists in connecting the WandStem [23] nodes in a wired

RF circuit. This has the great advantage of eliminating the problems of low

RSSI, interferences with other protocols or noise in the 2.4GHz spectrum.
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The RF circuit is composed of the following elements:

• n.8 Coaxial cables

• n.4 3-way RF splitters

• n.4 30dB attenuators

In figure 11.3 you can see a photo of the final setup.

Figure 11.3: Photo of the wired setup

98



11.2.3 Test procedure

First run

In the first run a stream is opened from node 3 to node 0, with Period::P1

and without redundancy. The simulated time is 10 minutes, and at 5 minutes

from the start we simulate a fault, turning off the intermediate node of the

path 0→ 3 (which could be 1 or 2 depending on the schedule).

• The network is started and left running for 10 minutes

• After 5 minutes, node 1 or 2 is shut down

• The network is left running for additional 5 minutes

• Total test time: 10 minutes

Second run

In the second run a stream is opened from node 3 to node 0, with Period::P1

and with triple spatial redundancy. The simulated time is 10 minutes,

and at 5 minutes from the start we simulate a fault, turning off one of the

two intermediate nodes of the path 0→ 3 (node 1 or node 2).

• The network is started and left running for 10 minutes

• After 5 minutes, node 1 or 2 is shut down

• The network is left running for additional 5 minutes

• Total test time: 10 minutes
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11.2.4 Goal

First run

The expected result of turning off the node is that there is a small packet

loss, until the network realizes that the node is not available anymore, at

this point the master node should produce a new schedule that avoids the

missing node, restoring the normal stream functionality.

Second run

The expected result of turning off the node is that there is no packet loss,

because thanks to the spatial redundancy, the packet of the stream follow

two distinct path, and are not affected by the fault. Also in this case the

master node realizes that one of the nodes is not available anymore, and it

should produce a new schedule that avoids the missing node.

11.2.5 Results

The results of this experiment are listed in tables 11.3, 11.4,

11.2.6 Conclusions

First run

As the omologous simulation experiment in section 11.1, this test case shows

the self diagnosing and self-healing capabilities of TDMH. In fact when a

node of the network becomes unavailable, the master node detects the change

in the network topology and produces a new schedule with a new path for

the stream, if there is one available.

The result is that even with no redundancy, in case a node becomes un-

reachable we have a small data loss, but the affected stream is soon restored

and able again to send packets.

This behaviour is confirmed even on real hardware.
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Node ID Total packets Lost packets Reliability

3 6027 57 99.05%

Table 11.3: Second experiment results with redundancy disabled

Node ID Total packets Lost packets Reliability

3 6023 1 99.98%

Table 11.4: Second experiment results with triple redundancy

Second run

As the omologous simulation experiment in section 11.1, this test case shows

the effectiveness of the spatial redundancy in avoiding data loss in case

of temporary or permanent failure of a node in the network, this can be seen

in practice by the fact that the stream (3,0) with spatial redundancy keeps

receiving packets even after node 2, that is on one of the possible paths is

shut down. This behaviour is confirmed even on real hardware.
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11.3 Third experiment: building floor setup

11.3.1 Topology

For the third experiment the topology was collected by the TDMH network

itself, as part of its normal functionality. For this experiment, the

WandStem [23] nodes were deployed over the first floor of the Building 21

of Politecnico di Milano, reproducing the node placement seen in the paper

presented by Terraneo et al. at the RTSS conference [22]. This choice was

done to be able to compare the results to the one presented in the said paper

with a previous version of TDMH.

You can see the node placement in figure 11.4.

Figure 11.4: Node placement from RTSS paper

11.3.2 Setup

The WandStem nodes were placed in appropriate boxes and powered by a

pair of AA alcaline batteries for each node. The master node was powered by

the USB port of a computer, and its output logged from a serial connection.

This experiments is meant to test the TDMH general reliability in a

real-world setup, employing real hardware and radio communication in a

complex environment. Another purpose of this test was evaluating the
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Figure 11.5: WandStem nodes in their boxes

effectiveness of the redundancy settings. The spatial reuse of channels was

disabled for this experiment.

11.3.3 Test procedure

The network is composed of 9 nodes (8 dynamic nodes and 1 master node).

All the dynamic nodes (ID:1,8) open a stream to the master node with Pe-

riod::P10 (corresponding to 1 second interval between packets), and triple

spatial redundancy. The master node logs every packet received or missed,

and prints the content of the packets.

The experiment is being run with the redundancy set to its highest value

(triple spatial). However when analyzing logs, we can extract the reliability

corresponding to redundancy disabled or double redundancy, by consider-

ing only the first or the first two repetitions of a transmission. This way

we can get statistics about the three types of redundancy within the same

experiment.
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• The experiment is started at 18:00 and left running until the 9:30 of

the next day.

• Total test time: 15 hours, 30minutes

• Number of packet sent: ∼55000 per stream

11.3.4 Goal

We expect that the Redundancy setting is able to increase the reliability of

the streams, at the expense of using more data slots (thus more bandwidth).

So we expect to have a stream reliability for every level of redundancy that

is higher than the lower level.

11.3.5 Results

The results of this experiment are listed in table 11.5.

11.3.6 Conclusions

From the results of this experiment we can see that the reliability is good

since it is generally higher than 95%. We can see that rising the redun-

dancy settings results in strictly higher reliability values, that confirm the

effectiveness of this measure.
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Node ID Reliability (single) Reliability (double) Reliability (triple)

1 99.90% 99.93% 99.93%

2 96.08% 99.44% 99.95%

3 97.19% 99.67% 99.87%

4 95.90% 99.65% 99.95%

5 95.99% 99.60% 99.88%

6 95.99% 99.38% 99.85%

7 96.28% 99.62% 99.82%

8 96.13% 99.39% 99.83%

Table 11.5: Third experiment results, reliability with single, double and triple

spatial redundancy
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Chapter 12

Conclusions

In this thesis we presented TDMH, a wireless communication stack capa-

ble of multi-hop mesh networks, with bounded latency and low power

consumption.

The focus was put in the scheduling and routing problems, algorithms and

implementations that were the main task of this thesis’ work. We presented

also the design decisions and some implementation details of several other

TDMH components that were created within the same work.

Summarizing, the two major tasks behind this thesis were

• Solve the scheduling and routing problem of TDMH and implement

the resulting algorithm.

• Design and develop the modules needed to turn TDMH into a full

network stack.

These two tasks were both completed with a rigorous approach, starting

from the problem formalization, to the creation and refinement of a model

for the software and finally to the implementation of a software following the

model. In this thesis you found details about these three aspects.

TDMH represents a novelty in research thanks to its real-time capabilities,

but there is also room for future improvements, thanks to its modular design.
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