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“There was a smell of Time in the air tonight. He smiled and turned the fancy in his mind. There

was a thought. What did time smell like? Like dust and clocks and people. And if you wondered what

Time sounded like it sounded like water running in a dark cave and voices crying and dirt dropping

down upon hollow box lids, and rain. And, going further, what did Time look like? Time look like snow

dropping silently into a black room or it looked like a silent film in an ancient theater, 100 billion faces

falling like those New Year balloons, down and down into nothing. That was how Time smelled and

looked and sounded. And tonight-Tomas shoved a hand into the wind outside the truck-tonight you could

almost taste time.”

— Ray Bradbury, The Martian chronicles





A B S T R A C T

In the last few decades, space debris have become one of the most important hazards
for space activities; preventing their formation is the best mitigation option, and
avoiding an impact can be of fundamental importance for a mission’s success. This
study proposes four methods to design a continuous-thrust Collision Avoidance
Manoeuvre (CAM), which have been developed in the perspective of finding a
fast and reliable approach, suitable for on-board implementation. The objective
function to be minimized is the collision probability (Pc) at the nominal time of
closest approach. The first approach consists in the conversion from an analytical
fuel-optimal impulsive manoeuvre to a finite-burn arc through an indirect optimal
control model. In the second approach, a new formulation of the problem is
proposed, where the collision probability is considered as a terminal constraint in
the minimum-Fuel and minimum-Energy Optimal Control Problem (FOP/EOP).
The mathematical formulation yields a Two Boundary Value Problem, whose
minimum-fuel discontinuous solution is achieved through a continuation method,
and the shooting method is adopted for the resolution of the minimum-energy
formulation. Both of these approaches require time consuming fully numerical
iterative cycles. The last two methods are based on the linearisation of EOP, and
consist in an analytical and semi-analytical approach. In the analytical approach the
direction of maximum change of Pc is exploited, in order to obtain the maximum
decrease of Pc with the least deviation from the nominal trajectory. In the semi-
analytical approach, the boundary conditions of the TPBVP associated to the
minimum-energy problem are exploited, leading to a relation between the terminal
cost in the cost function and the final spacecraft position. All these approaches
are compared via a numerical test case set in the two-body dynamical framework,
assuming circular Keplerian orbits.
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S O M M A R I O

Negli ultimi decenni, i detriti spaziali sono diventati uno dei maggiori pericoli per
le attività spaziali; prevenirne la formazione è la migliore strategia di mitigazione,
ed evitare un impatto può essere di importanza vitale per il successo di una
missione. Questo studio propone quattro metodi per progettare una manovra
per evitare la collisione (CAM) a spinta finita, sviluppati nell’ottica di trovare
un approccio veloce e robusto, adatto all’implementazione a bordo. L’obiettivo
è minimizzare la probabilità di collisione (Pc) all’istante nominale di distanza
minima. Il primo metodo consiste nella conversione di una manovra ottima
impulsiva in un arco finito di spinta (FBC) attraverso un modello di controllo
ottimo indiretto. Nel secondo approccio è proposta una nuova formulazione
del problema, dove Pc è inserita come costo finale in un problema di controllo
ottimo (OCP) nelle formulazioni a minima energia e minimo propellente. Tramite
l’uso dei moltiplicatori di Lagrange e il calcolo variazionale, il problema diventa
trovare i valori iniziali dei moltiplicatori. La soluzione a minimo propellente ha un
profilo discontinuo e, di conseguenza, per evitare problemi numerici, è adottato un
metodo di continuazione sulla spinta. La formulazione a minima energia è risolta
tramite l’utilizzo dello shooting method. I precedenti due metodi sono interamente
numerici e di difficile risoluzione a causa di possibili problemi numerici. Gli
ultimi due metodi sono basati sulla linearizzazione dell’ OCP formulato nella
versione a minima energia (EOP), e consistono in un approccio analitico ed in
uno semi-analitico. Nell’approccio analitico è sfruttata la direzione dove Pc varia
più velocemente, in modo tale da ottenere la massima diminuzione di Pc con
la minima deviazione dalla traiettoria nominale. Nell’approccio semi-analitico
vengono sfruttate le condizioni finali sui moltiplicatori ricavate dall’applicazione
dell’ OCP, le quali permettono di ottenere una relazione tra il costo finale nella
funzione obiettivo e la probabilità risultante. Tutti i precedenti approcci sono
comparati tra loro attraverso un caso reale nel contesto del problema dei due corpi,
considerando orbite Kepleriane circolari.
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E S T R AT T O D E L L A T E S I D I L AU R E A

Questo lavoro si focalizza sull’ottimizzazione della manovre per evitare la collisione
(CAM). Negli ultimi decenni, i detriti spaziali sono diventati uno dei maggiori
pericoli per le attività spaziali, e prevenirne la formazione è la migliore strategia di
mitigazione. Queste manovre sono programmate quando un determinato limite
sulla probabilità di collisione (Pc) o sulla minima distanza tra l’oggetto manovrabile
e l’oggetto seciondario, è superato. Dato l’alto numero di avvisi su possibli collisioni
e la limitata disponibilità di carburante, le CAM sono progettate per essere il più
efficienti possibili in termine di carburante, così come rispettose dei requisiti di
missione.

Al momento le manovre sono programmate a terra, e non sono disponibili sis-
temi autonomi di progettazioni implementabili a bordo. In questa tesi vengono
investigate quattro diverse soluzioni al problema della minimizzazione della proba-
bilità di collisione, sviluppate con lo scopo di trovare un metodo veloce ed robusto,
adatto all’implementazione a bordo.

capitolo 1

Nel primo capitolo viene introdotto il contesto nel quale sia articola questa disser-
tazione. Nella prima parte è brevemente spiegato il problema dei detriti spaziali, e
come viene gestito al momento. Nella seconda parte sono illustrate le varie opzioni
al momento disponibili per la progettazione di una CAM.

capitolo 2

Nel secondo capitolo è illustrato il background matematico necessario per compren-
dere gli argomenti trattati nei capitoli seguenti. Dopo una breve intruduzione sul
problema dei due corpi, e’ dettagliatamente spiegato il modello usato per il calcolo
della probabilità di collisione, mettendo in evidenza le ipotesi fatte. In seguito è
rivista la teoria relativa al problema di controllo ottimo (OCP), nelle formulazioni a
minimo consumo di propellente e minima energia. In fine è spiegato il processo
usato da per la progettazione di una manovra ottima in caso di spinta impulsiva.

capitolo 3

Nel terzo capitolo sono illustrati i diversi approcci sviluppati in questa tesi per
minimizzare Pc. Il primo metodo consiste nella conversione di una manovra ottima
impulsiva in un arco finito di spinta (FBC). La conversione si basa sul problema di
controllo ottimo nella formulazione a minimo consumo di propellente. Inserendo
le equazioni del moto nella funzione di costo e successivamente tramite l’uso dei
moltiplicatori di Lagrange e il calcolo variazionale, il problema diventa trovare i
valori iniziali dei moltiplicatori. La soluzione ottima ha un profilo discontinuo e,
di conseguenza, per evitare problemi numerici, è adottato un metodo di continu-
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xii

azione sulla spinta. La spinta viene approssimata da un profilo esponenziale, e
tramite continuazione su un parametro p, il profilo bang-bang viene iterativamente
approssimato, al fine di recuperare la soluzione discontinua.

Il secondo metodo consiste nell’appilcazione del problema di controllo ottimo
nella formulazione a minimo propellente (FOP) e minima energia (EOP), inserendo
Pc nella funzione di costo da minimizzare sotto forma di costo finale. Nel FOP è
adottato nuovamente il metodo di continuazione già usato per il primo metodo.
Allo scopo di risolvere FBC e FOP, è usata la funzione MATLAB bvp4c, la quale
necessita di soluzioni di primo tentativo. Allo scopo di trovare soluzioni di primo
tentativo appropriate, l’ Adjoint Control Transformation sviluppata in [23] è imple-
mentata. Il problema a minima energia, a differenza del FOP, ha soluzione di spinta
continua. Conseguentemente, è possibile utilizzare lo shooting method per la sua
risoluzione, dove la traiettoria è propagata in avanti e tramite iterazioni di Newton
i moltiplicatori iniziali vengono variati finchè le condizioni finali sullo stato e
moltiplicatori non sono rispettate. In entrambe le formulazioni, la funzione di costo
è modificata tramite l’inserimento di pesi su Pc, in modo da variare l’importanza
relativa assegnata alla probabilità e al consumo di massa/energia, ed ottenere
profili diversi di Pc al momento previsto di collisione.

I precedenti due metodi sono interamente numerici e di difficile risoluzione a
causa di possibili problemi numerici. Conseguentemente, non sono adatti alla
implementazione a bordo. Il terzo e quarto metodo partono dalla linearizzazione
dell’EOP, il primo risultante in un approccio analitico, il secondo in un approccio
semi-analitico.

Nel terzo approccio, tramite un semplice problema agli autovalori, è trovata la
direzione di massima variazione di Pc al tempo di prevista collisione. Spostanto
la posizione finale del satellite lungo questa direzione, è possibile ottenere la
massima viariazione di Pc con la minima deviazione dalla traiettoria nominale.
In tal modo, il problema presenta stati iniziali e finali fissati. Tramite la State
Transition Matrix (STM) risultante dalla linearizzazione dell’EOP, i moltiplicatori
iniziali sono calcolati.

Nell’ultimo approccio, vengono sfruttate le condizioni finali sui moltiplicatori
ricavate dall’applicazione dell’ OCP. Lo scopo è quello di trovare una relazione
diretta tra il peso inserito nella funzione di costo e la probabilità risultante. Tramite
manipolazione della STM, è trovata una relazione non-lineare tra posizione fi-
nale e peso. Essendo Pc dipendente solo dalla posizione, tramite risoluzione
dell’equazione è possibile ottenere la relazione desiderata.

capitolo 4

Nel quarto capitolo sono mostrati i risultati numerici dei vari metodi. Il caso reale
esaminato è quello della collisione tra satelliti, avvenuta il 10 febbraio 2009, che ha
coinvolto il satellite operativo Iridium 33 e il detrito Cosmos 2251. I vari approcci
sono confrontati in termini di massa, velocità di calcolo, e convergenza.
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capitolo 5

Nel quinto ed ultimo capitolo, sono tratte le conclusioni sul lavoro svolto, e vengono
illustrati i possibili sviluppi futuri.
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1
I N T R O D U C T I O N

1.1 space debris

Space debris are defined as human-generated, non-functional objects in Earth orbit
or re-entering the atmosphere, and since space activity begun, almost 60 years ago,
space debris accumulated in near-Earth space and now they represent a real threat
to space activities. Statistical models estimate that more than 34000 objects bigger
than 10cm, and hundreds of millions of objects which size range from 1mm to 1cm,
are in orbit around the Earth [4].

The main sources of space debris include spent upper stages, fragments from
explosions of satellites and rocket bodies, caused by the lost of mechanical integrity
due to the space environment which leads to fuel self ignition, and antisatellite test
(the Chinese FengYun-1C engagement in January 2007 alone increase the trackable
space object population by 25%) [2]. Other important sources of debris are solid
rocket motors, which firings release aluminium oxide in the form of particles
even centimetres big, and ultraviolet radiation, which erodes surfaces causing the
realising of paint droplets which sizes can be up to millimetres big.

Space debris are a navigation hazard to all operational satellites; in the event of a
collision, due to the very high relative velocities, even few millimetres size debris
can critically damage a satellite, ending the mission. Collision within bigger objects
can be a disastrous event, leading to the formation of thousands more objects, as
happened in 2009, when the accidental in-orbit collision between two satellites took
place: the Iridium-33/Kosmos2251 collision produced more than 2300 trackable
fragments.

Debris distribution in space is not uniform, it is higher in the most used space
regions: that’s why most space debris are concentrated in LEO and in GEO orbits,
respectively where Earth observation satellites and telecommunications satellites
work. For example, in 2016 the Russian Briz-M rocket underwent an in-orbit break-
up, last of other three significant events involving Britz-M upper stages between
2006 and 2012, which altogether created thousands of debris whose orbits intersect
the International Space Station (ISS) orbit and satellites in GEO. Assuming break-
ups will continue at the same rates of the last decades, the number of debris will
increase, and with it, the probability of catastrophic collisions. Prevention through
post-mission disposal guidelines and active strategies to remove debris are crucial
to keep some orbit regions accessible, since collisions create more debris creating
a runaway chain reaction, known as the Kessler Syndrome: once the amount of
debris in a particular orbit reaches critical mass, collision cascading begins even
if no more objects are injected into orbit. At that point, the collision risk becomes
unacceptable, and the orbit is no longer available[2].

Avoiding the collisions in the first place is the best mitigation strategy, and here’s
when collision avoidance manoeuvres come into play.

1
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1.2 collision avoidance manoeuvres (cams)

A collision avoidance manoeuvre is performed when, at the time of closest approach,
a threshold on the miss distance, or on the collision probability, is exceeded: In
the ISS case, for example, a manoeuvre is considered if the miss distance lies
inside a box of ±0.75×±25×±25km in the UVW reference frame, while an usual
probability threshold for LEO ESA’s missions is P > 10−4.

Until mid 2010, conjunctions were identified comparing mission orbits with the
orbit informations of potential conjunction objects provided by USSTRATCOM in
TLE format. Nowadays, conjunctions are detected thanks to Conjunction Summary
Messages received by JSpOC.

A CSM is a message that contains information about a conjunction between
a primary satellite and a secondary satellite; the CSM include also the time of
closest approach, the miss distance, relative position and velocity in the Radial,
In-track, Cross-track (UVW) reference frame, observation statistics, the satellite
covariance matrices and the time of last acceptable observation. It is sent every
time a pre-defined threshold on the miss distance or the collision probability is
exceeded, and a satellite operator might receive up to 30 CSM per day. It is up to
the satellite’s operator, once the message is received, to decide if a manoeuvre is
necessary or not. Detailed informations about CSM can be found in [8].

Being Europe mainly dependent on non-European sources of informations for
what regards the capacity of watching for satellite’s sources of danger like natural
phenomena, NEO’s and space debris, ESA is implementing the Space Situational
Awareness (SSA) programme, a programme aimed to give Europe the necessary
independence to acquire knowledge about the situation in space. SSA programme
focuses on Space Weather, Near-Earth Objects, and Space Surveillance and Tracking.
Providing independent data and informations, the SSA programme also strength
the reliability and availability of space-based applications. An overview of the
programme can be found in [11].

Because of the high number of warnings and of the limited fuel availability, colli-
sion avoidance manoeuvres are planned to be the most efficient as possible in terms
of propellant, as well as most compliant as possible with mission requirements:
because of the increasing number of objects in orbit, efficient manoeuvres are essen-
tial to extend a mission’s life. As explained in [13], planning, implementation and
execution of collision avoidance manoeuvres takes several hours: the current ESA’s
routine, once a CSM is received, includes tracking data, updating ephemerides,
covariances and conjunction geometries and re-estimating the collision risk. If the
risk is still considered high enough to require a collision avoidance manoeuvre, the
manoeuvre has to be planned, and even if only 2% of the conjunctions are predicted
less than 24 hours in advance, the need of fast responses can only increase, as the
space debris situation gets worse.

Nowadays manoeuvres are planned on-ground, and no on-board autonomous
collision avoidance manoeuvres planning tools are available: because of the huge
amount of data to process as the number of warnings increases, it is desirable to
automate the process of screening, manoeuvre planning and execution.
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1.3 state of the art

Nowadays, CAMs are planned on-ground, with the support of specific tools. If
the pre-defined threshold on the probability or on the miss distance is exceeded, a
manoeuvre is designed by mission planners.

Regarding ESA, the Space Debris Office (SDO) is the department in charge of all
the activities concerning space debris. The ARES tool [10] (within the DRAMA tool
suite) is used in order to estimate a proper reaction threshold, through a trade-off
between ignored risk and avoided risk. When a CSM is received, the CORAM
software is used to compute the associated risk. If a manoeuvre is considered
necessary, the CAMOS (Collision Avoidance Manoeuvre Optimization Software)
tool of CORAM [14] is used to support manoeuvre planning and optimization. A
full description of the SDO current collision avoidance service can bee found in [20]

The U.S. National Security Space Systems, through the support of the Aerospace
Corporation, relies on the Collision Vision software [22]: in order to support mission
planners, several manoeuvres are found through a search in the four-dimensional
space composed by the manoeuvre time, velocity magnitude and the velocity
direction angles.

Algorithms for the design of CAMs often employ direct optimization methods.
In [3] a mixed-integer linear programming method is used to find fuel-optimal
trajectories for spacecraft subjected to avoidance requirements. CAMOS exploits
a method based on a parametric search. In [22] the dimension of the problem is
reduced from three to one, decoupling thrust direction and thrust magnitude, and a
method based on a gradient search is developed. In [24] a fuel-optimal manoeuvre
is found through the implementation of a genetic algorithm. Multi-objective
particle swarm optimizers are employed by [21] to design an optimal continuous-
thrust CAM. Research on continuous-thrust optimization methods includes the
semi-analytical method developed by [25] for rapid collision avoidance, based
on the hypothesis that the optimal thrust is always radial. [18] developed an
analytical solution to the problem of maximizing the miss distance through the
use of generating functions, inserting the miss distance as penalty function in an
optimal feedback control problem. The lack of iterative processes is counteracted
by the sub-optimality of the solution and the empirical effort needed to tune the
design parameters.

Optimal impulsive manoeuvres are studied in [27], where the problem is lin-
earised and the minimum impulsive ∆V that respect a terminal position constraint
is found through an eigenvalue problem, but the conclusions are not satisfactory if a
precise control is required. Recently [6] developed an analytical and semi-analytical
method to find the fuel-optimal impulsive collision avoidance manoeuvre in case
of direct and non-direct impact.

1.4 motivations and dissertation overview

In the last few decades, space debris have become one of the most important
hazards for space activities; preventing their formation is the best mitigation option,
and avoiding an impact can be of fundamental importance for a mission’s success.
This study proposes four methods to design a continuous-thrust CAM, where the
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objective function to be minimized is the collision probability at the nominal time
of closest approach. At the time of writing, little research regarding designing
CAMs with small notification time is available, and no on-board autonomous CAM
planning tool exists. Therefore, the approaches proposed in this work have been
developed in the perspective of finding a fast and reliable approach, suitable for
on-board implementation.

Chapter 2

The second chapter is devoted to review the mathematical background upon which
the thesis is based. After a brief introduction on the two-body problem, the model
used to compute the collision probability Pc is explained in detail, enlightening
the adopted hypothesis. Afterwards, the theory relative to the Optimal Control
Problem (OCP) is reviewed, with particular attention on the fuel/energy-minimum
formulations (FOP/EOP). In the end, the optimal impulsive CAM designed by [6]
is explained, and the theory behind the state transition matrix for time-varying
systems is illustrated.

Chapter 3

In the third chapter the four approaches developed in order to minimize Pc are
explained. The first method consists in the conversion of the impulsive CAM
described in Chapter 2 to a finite-burn arc, trough an indirect optimization method,
using the minimum-fuel formulation. The impulsive manoeuvre point is considered
the middle point of the thrust arc, and the impulsive ∆v is distributed over the arc
bounded by the initial and final states, which are found by propagating backward
and forward from the impulsive manoeuvre point over the pre-impulse and post-
impulse trajectories. In the second approach the problem is stated as an OCP
where the Pc computed with the Chan model is inserted in the cost function as
terminal cost. Through the application of calculus of variations, FOP and EOP
translate in the solution of a Two Point Boundary Value Problem (TPBVP), with
the boundary conditions consisting in the initial state and final costate. The TPBVP
associated to the FOP is solved with a collocation method, while EOP is solved
through the adoption of the shooting method. The optimal control laws resulting
from the fuel-optimal formulations (finite-burn conversion and FOP) require a
continuation method on the thrust to achieve the optimal discontinuous solution.
These processes are carried on a grid of initial manoeuvre points along the nominal
orbit, and through the application of weights W in the cost function it is possible
to tune the Pc for the same manoeuvre point: the weights change the ratio between
the terminal and the path cost, so that a larger weight on Pc yields a lower collision
probability at fuel’s or energy’s expense.

In the third approach EOP is linearised, and an analytical solution is obtained
by computing and manipulating the State Transition Matrix (STM). The problem
translates in a transfer between two fixed states: the direction of maximum change
of Pc at the time of closest approach, dmax, is found through a simple eigenvalue
problem. The final position of the spacecraft rf is set to be along this direction,
in order to obtain the maximum change of Pc with the least deviation from the
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nominal trajectory. Depending on the position of rf along dmax, different Pc are
obtained.

The fourth approach starts from the linearisation of the EOP and exploits the
boundary conditions of the TPBVP associated with the EOP to find a direct relation
between the terminal cost in the cost function and rf. The application of different
weights W to the terminal cost in the cost function affects the terminal boundary
conditions of the costates. Through the STM, it is possible to obtain a set of
nonlinear equations to find rf, function ofW. Once rf is obtained, Pc is immediately
computed trough an analytical formula. By acting on the weight W, it is possible
to tune Pc for the same manoeuvre point. Then, by means of the STM, the initial
costate and the optimal control law associated to the desired Pc can be retrieved.

Chapter 4

In the fourth chapter the numerical results of the different methods are shown.
The test case examined is the collision between the American communication
satellite Iridium 33 and the derelict Russian communication satellite Cosmos 2251,
happened on February 10TH, 2009. The approaches are compared in terms of
propellant mass, computational time and robustness.

Chapter 5

In the fifth and last chapter, the final considerations about this work are reported,
as well as the possible future developments.





2
M AT H E M AT I C A L M O D E L

This chapter is devoted to review the mathematical background upon which the
thesis is based. The first section concerns the adopted dynamical model. Then
in Section 2.2 some basic concepts of probability theory are reviewed, in order
to give to the reader the necessary tools for collision probability computation. In
Section 2.3 the theory behind the formulation and resolution of an optimal control
problem is examined, specifically in its energy/fuel formulations. Section 2.4 is
dedicated to the overview of the method developed by [6] for the formulation of
an impulsive optimal CAM, since its results are exploited multiple times in this
dissertation. The last section is devoted to the theory behind the formulation of the
state transition matrix for time-dependant linear systems, which is the foundation
of the approaches in Section 3.5 and 3.6.

2.1 the restricted two-body problem

In this section the dynamical model used to describe the motion of the primary
satellite is illustrated. After a brief introduction of the n-body model, the equations
of motion that describes the satellite’s motion in the context of the 2-body dynamics
are explained.

The more general n-body problem considers n point masses mi, i = 1, 2, . . . ,n
subjected only to their mutual gravitational attraction, in an inertial reference frame
in the three dimensional space. Their motion is regulated by Newton universal
gravitation law

mir̈i =

n∑
j=1
j6=i

G
mimj

r3ji
(rj − ri) , i = 1, . . . n . (1)

G is the universal gravitational constant and rji is the magnitude of the distance
between two generic masses mi,mj.
A potential energy for the gravitational force can be defined, since it is a conserva-
tive force

U =

n∑
j=1
j6=i

G
mimj

rji
, (2)

so that 1 can be rewritten in a more compact way, where ∇ is the gradient operator

mir̈i = ∇U , i = 1, . . . ,n .

This is a set of 6n first-order differential equations, and for n > 2 no closed form
solution exists.
When the motion of a massless particle (a particle with a mass infinitesimally small
with respect to the other bodies, for example a satellite) is studied, the problem is

7
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called restricted n-body problem. For n = 2 the problem is completely solved and
even if for Earth satellites it is not as representative of the actual dynamics as a
3-body model, it is often used for preliminary mission design stages. The equations
of motion are

r̈ = −
µ

r3
r , (3)

where µ is the Earth gravitational constant. When also the control acceleration of
the spacecraft is taken into account, ac = Tmax

u
mγ, the set of first-order differential

equations that describe the controlled dynamics is
ṙ = v ,
v̇ = g(r) + Tmax

u
mγ ,

ṁ = −TmaxuIspg0
,

(4)

with
g(r) =

µ

r3
r , (5)

where Tmax is the maximum thrust magnitude the propulsion system can provide,
m is the spacecraft mass, u is the thrust ratio, u ∈ [0, 1], Isp is the thruster specific
impulse, g0 is the sea level gravity acceleration and γ is the thrust direction.

2.2 collision probability

In this section the basic concepts of probability theory needed to fully understand
the topic of collision probability computation are reviewed. Next the b-plane, a
reference frame that simplifies the understanding of the collision dynamics, is
introduced, and the main hypothesis related to the computation of the collision
probability are illustrated. Finally, the detailed method used to compute the
collision probability is described.

2.2.1 Review on probability theory

The covariance function of a random process x(t) is defined as

Cxx(t1, t2) = E[∆x(t1)∆xT (t2)]

= E[(x(t1) − µx(t1))(x(t2) − µx(t2))
T ] , (6)

where µx is the expected value, the average of all realizations of the process x(t),
defined as

µx(t) = E[x(t)] =

∫+∞
−∞ · · ·

∫+∞
−∞ xf(x)dx . (7)

The function inside the integral is integrated as many times as the number of
variables and f(x) is the Probability Density Function (PDF) of the continuous
random variable x.
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PDF is the derivative of the cumulative density function FX(x), which represents
the probability the variable X will fall into the interval X ∈ (−∞, xi), i ∈ [1,n], n
number of components of X

F(x) =

∫x1
−∞· · ·

∫xn
−∞ f(u)du . (8)

We are interested in the error associated to the relative position of the primary
spacecraft with respect to the secondary object. Defining the position of the primary
spacecraft rp, and the position of the secondary object rs, the relative position is
rp − rs, the mean relative position is r̄p − r̄s and the covariance matrix is defined
by

C = E[((rp − rs) − (r̄p − r̄s))((rp − rs) − (r̄p − r̄s))
T ]

= E[(∆rp −∆rs)(∆rp −∆rs)
T ]

= E[(∆rp)(∆r
T
p)] + E[(∆rs)(∆r

T
s )] − E[(∆rp)(∆r

T
s )] − E[(∆rs)(∆r

T
p)] . (9)

Under the assumption of uncorrelated uncertainties, the relative position covariance
matrix is the sum of the covariance matrices of the two objects

C = Cp +Cs , (10)

since
E[(∆rp)(∆r

T
s )] = E[(∆rp)]E[(∆r

T
s )] = 0 . (11)

In order to express the covariance matrices in the same reference frame, being Rps
the rotation matrix from the frame Cp is expressed in, to the Cs frame, the required
computation is

C = Cp + R
T
psCsRps . (12)

The covariance matrix of a three-dimensional distribution of random variables may
be expressed as

C =

 σ2x ρxyσxσy ρxzσxσz
ρxyσxσy σ2y ρyzσyσz
ρxzσxσz ρyzσyσz σ2z

 , (13)

Where ρij is the correlation coefficient, defined as

ρij =
Cij

σiσj
, (14)

and σ is the standard deviation, a quantity that quantify the amount of dispersion
of a set of data, and it is defined as the square root of the variance σ2

σ2x = E[∆x∆xT ] . (15)

The confidence region allows us to immediately visualize the errors associated
to certain quantities. It is the multi-dimension version of the confidence interval,
and in the three-dimensional case of a spacecraft’s position, it is an ellipsoid
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representing the space where, within a certain degree of confidence, the spacecraft
is expected to be. It is defined by the equation

(x− µx)
TC−1(x− µx) 6 χ

2 , (16)

where χ is the quantile function associated to a determinate probability value p:
values will fall inside the error ellipsoid p-percent of the time.

For almost circular orbits, the velocities of the objects of interest are aligned
with the principal major axes of the respective ellipses [7]. As a consequence, the
intermediate axis is aligned in the cross-track direction, and the minor axis in the
radial direction. This assumption holds for the whole dissertation.

2.2.2 B-plane

It is useful now to introduce the b-plane, a coordinate system that is adopted to to
compute both the miss distance and the collision probability.

The b-plane is illustrated in Figure 1, and it is defined as follows. The origin of
the axes lies at the centre of the secondary object at the time of closest approach;
the η-axis is defined along the direction of the relative velocity of the first satellite
with respect to the secondary object; the ξζ plane is perpendicular to that η-axis.

ûξ =
vs × vp
‖vs × vp‖

, (17)

ûη =
vp − vs
‖vp − vs‖

, (18)

ûζ = ûξ × ûη . (19)

The position on the b-plane of the primary satellite at the time of closest approach

Figure 1: B-plane reference frame.

is then rb = (ξ, 0, ζ), and the miss distance can be computed as

d =
√
ξ2 + ζ2 . (20)
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An impact can be direct or non-direct: an impact is called direct when the miss
distances is zero, that is rb = 0, and it is called non-direct when, at the time of
closest approach, the miss distance is different from zero.

2.2.3 Short-term encounter approximation

The hypothesis of short-term encounter approximation lays the basis for the ana-
lytical result that will be obtained for the computation of the collision probability.
Under this hypothesis, the relative motion of the two objects of interest can be
considered rectilinear: because of the high relative velocity, the primary spacecraft
spends a really short time in the encounter region; consequently, the gravitational
forces can be neglected and the combined covariance matrix can be considered
constant.

An encounter can be considered short-term when the time t the primary satellite
takes to cross the 1σ combined error ellipsoid is much smaller with respect to its
orbital period T [6]

ε =
t

T
� 1 , (21)

where t can be computed as

t =
2ση

‖vp − vs‖
. (22)

This hypothesis is valid for most of the encounters, especially in Low Earth Orbits
(LEOs). A detailed treatment about its validity can be found in [7].

2.2.4 Computation of the collision probability

In this section, the approach used in [7] to obtain an analytical expression for the
collision probability is illustrated.

Assuming the two objects as spherical, let’s denote with rp the radius of the
primary spacecraft and with rs the radius of the secondary object. If the secondary
object enters a sphere of radius rA = rp + rs centred at the primary, a collision
happens.

Studying the motion of two spheres with the associated errors, is equivalent to
study the relative motion of a sphere with radius equal to the sum of the radii
of the single spheres (the primary satellite) with respect to a point mass (the
secondary object) subjected to all the uncertainties. Defining for simplicity (x,y, z)
the coordinates along the (ûζ, ûη, ûξ) axes, and therefore being r = [x,y, z] the
relative position vector, assuming a three-dimensional Gaussian distribution of the
uncertainties, the PDF of r is

f3(x,y, z) =
1√

(2π)3‖C‖
e−

1
2r
TC−1r , (23)

where C is the combined covariance matrix.
The probability of collision is

P =

∫∫∫
V

f3(x,y, z)dxdydz , (24)



12 mathematical model

where V is the volume swept by the sphere of radius rA centred at the primary as
it moves through the space of random variables (x,y, z) [7].

Making now the short-term encounter hypothesis, it is possible to reduce the
volume integral to a double integral: assuming the motion rectilinear in the relative
velocity direction, and being the standard deviation in the y-direction several
kilometres, so that the motion is rectilinear over a region long several standard
deviations, the volume swept by the sphere can be considered as a long cylinder
extending in the y-direction from −∞ to +∞.

P =

∫∫
A

f2(x, z)dxdz , (25)

where f2(x, z) is the bivariate Gaussian distribution and A is the collision circular
cross-sectional area of radius rA

f2(x, z) =
1

2πσxσz
√
1− ρ2xz

e

−

[
( xσx )

2
−2ρxz( xσx )( zσz )+( zσz )

2
]

2(1−ρ2xz) . (26)

The covariance matrix associated to this problem is

C =

[
σ2x ρxzσzσx

ρxzσzσx σ2z

]
. (27)

Changing reference frame, it is possible to simplify the analysis. A rotation from
(x, z) to (x ′, z ′) allows us to eliminate the off-diagonal terms of the covariance
matrix, since this new reference frame axes are chosen to be aligned with the major
and minor axes of the error ellipse. Therefore the new covariance matrix in this
reference frame is

C ′ =

[
σ2x ′ 0

0 σ2z ′

]
, (28)

and the rotation angle between the frames is

θ =
1

2
tan−1

[
2ρxzσxσz

(σ2x − σ
2
z)

]
. (29)

From the invariance of the covariance matrix determinant

σx ′σz ′ =
√
1− ρ2xzσxσz , (30)

it is possible to express the PDF in the new reference frame, and the corresponding
collision probability

f2(x
′, z ′) =

1

2πσx ′σz ′
e
−

[(
x ′
σ
x ′

)2
+
(
z ′
σ
z ′

)2]
, (31)

P =

∫∫
A ′
f2(x

′, z ′)dx ′dz ′ , (32)

with
A ′ = A , rA ′ = rA , x ′p = xe cos θ , z ′e = xe sin θ , (33)
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and (x ′p, z ′p) denotes the new coordinates of the primary spacecraft in the b-plane.
In order to develop the analytical expression of the collision probability, another
change of coordinates is necessary, where the PDF is transformed into a isotropic
function. This is accomplished with the coordinate change:

x ′′ =
σz ′

σx ′
x ′ ,

z ′′ = z ′ , (34)

that maps the ellipses of constant PDF

x ′2

σx ′2
+
z ′2

σz ′2
= k2 , (35)

into circles of constant PDF

x ′2

σz ′2
+
z ′2

σz ′2
= k2 . (36)

Therefore, now the pdf is

f3(x
′′, z ′′) =

1

2πσz ′2
e
−

(
x ′′+z ′′
2σ
z ′2

)
, (37)

so that we have

A ′′ =
σz ′

σx ′
A ′ , a = rA ′ , b =

σz ′

σx ′
rA ′ , (38)

with a,b semimajor axis and semi-minor axis of the new elliptical cross-sectional
collision area. In order to proceed, it is necessary to approximate the elliptical cross
section A ′′ with a circular cross section A ′′′ of the same area with radius rA ′′′ . The
new quantities then are

A ′′′ = πrA ′′′
2 , rA ′′′ =

√
ab , r ′′p

2
= x ′′p

2
+ z ′′p

2 , (39)

with r ′′p distance of the primary satellite from the origin of the (x ′′, z ′′) coordinate
system. The previous approximation allows us to transform the 2 dimensional
isotropic pdf integrated over a circle of radius rA ′′′ at distance r ′′p from the origin
into a one dimensional Rician pdf integrated from 0 to rA ′′′

P =

∫rA ′′′
0

r

σ2z ′
exp

{
−
(r2 + r ′′p

2)

2σ2z ′

}
I0

(
rr ′′p

σ2z ′

)
dr , (40)

where I0(·) is the modified Bessel function of the first kind of order zero. The
analytical solution consists in an infinite series

P = e−
v
2

∞∑
m=0

vm

2mm!

[
1− e−

u
2

m∑
k=0

uk

2kk!

]
, (41)



14 mathematical model

where the dimensionless variables u and v are defined as:

u =

(
rA

σx ′σz ′

)2
=
(rA
σ

)2
, (42)

v =
(xe
σ∗

)2
, (43)

σ∗2 = σz ′
2

[
1+

[(
σz ′

σx ′

)2
− 1

](
x ′p
2

x ′p
2 + z ′p

2

)]−1
. (44)

Retaining only the first term of the series, the collision probability can be expressed
as

P = e−
v
2 (1− e−

u
2 ) + E1 , (45)

where E1 is the truncation error, and it satisfies

E1 <
1

8
u2ve−

v
2 e

uv
4 . (46)

This is a fundamental result: an analytical expression that relates collision prob-
ability and miss distance, function only of the spacecraft position. This result is
the foundation of this whole dissertation, as it is shown in 3.2, where the collision
probability minimization problem is formulated.

2.3 optimal control theory

In the following section the general formulation of an Optimal Control Problem
(OCP) is introduced, followed by the derivation of the solutions for the specific
energy/fuel optimal problems.

OCP is a problem that consists in finding the functions u(t) that minimize (or
maximize) a performance index J. The resolutive methods can be divided in two
classes: indirect methods, which exploit the analytical optimality conditions arising
from the calculus of variations, and direct methods, which convert the continuous
optimal control problem into a parameter optimization problem [9].

This dissertation deals extensively with the indirect optimization problem, where
the objective function is expressed in the Bolza form. The problem is formulated as
follows:
minimizing(or maximizing) J

J = Φ(tf, xf) +
∫tf
t0

L(t, x,u)dt , (47)
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subjected to

ẋ = f(t, x,u) , (48)

x(ti) = xi , (49)

Ψ(tf, xf) = 0 . (50)

(51)

The dynamical system under investigation is described by the differential equations
(48), where x is the n-dimensional state vector, determined by the m-dimensional
control vector u.

In order to solve this problem, the Euler-Lagrange theorem is invoked: it states
that, assuming Φ,L, f,Ψ ∈ C1 on their respective domains and that the optimal
control, u∗ ∈ C0[ti, tf], is unconstrained, there exists a time-varying multiplier vec-
tor λT (t) = (λ1, λ2, · · · , λn) and a constant multiplier vector νT = (ν1,ν2, · · · ,νq)
such that with the Hamiltonian

H(t, x,u,λ) = L(t, x,u) + λT f(t, x,u) , (52)

and a terminal function

Φ(tf, xf) = Φ(tf, xf) + νTΨ(tf, xf) , (53)

the following necessary conditions must hold:

λ̇T = −
∂H∗

∂x
= −H∗x , (54)

λT (tf) =
∂φ∗

∂xf
, (55)

H∗u = 0T , (56)

and the transversality condition:

Ω(tf, xf,uf) = L∗f −
dΦ∗

dtf
= 0 , (57)

which applies if tf is unspecified [19].
It is worth to show the demonstration of this results, since it gives some useful

insights of the problem. Re-writing J as

J = Φ(tf, x(tf)) +
∫tf
ti

{
H− λT ẋ

}
dt , (58)
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and differentiating it with respect to the variations in the control vector u, after
a few manipulations [19], the final equation is set equal to 0, in order to find a
stationary point of the cost J, necessary condition for a minimum

dJ =
∂Φ∗

∂tf
dtf +

∂Φ∗

∂xf
dxf + L

∗(t∗f)dtf+

+

∫t∗f
ti

[
H∗x∂x(t) +H

∗
u∂u(t) − λ

T (t)∂ẋ(t)
]
dt = 0 . (59)

Integrating the last term by part∫t∗f
ti

−λT (t)∂ẋ(t)dt =
[
−λT (t)∂x(t)

] ∣∣∣t∗f
ti
+

∫t∗f
ti

λ̇T (t)∂x(t)dt , (60)

inserting (60) in (59), substituting ∂x(t∗f) = dxf − ẋ
∗
fdtf [19] and considering the

initial time fixed, so that ∂x(ti) = 0

dJ =

[
∂Φ∗

∂tf
+ L∗(t∗f) + λ

T (t∗f)∂ẋ
∗
f

]
dtf +

[
∂Φ∗

∂xf
− λT (t∗f)

]
dxf+

+

∫t∗f
ti

{[
H∗x + λ̇

T
]
∂x(t) +H∗u∂u(t)

}
dt = 0 . (61)

Exploiting now the arbitrarity of ∂x(t) and ∂u, and the fact that dJ has to be
zero for all dx(tf) and dtf, we finally obtain the set of equations (54)-(57). The
set of equations (54) describes the dynamics of the costates, quantities without a
clear physical meaning, that have to be integrated simultaneously with the state
equations in order to obtain the optimal control law.

Instead of setting ∂x(ti) = 0 in (60), i.e. considering ∂x(ti) 6= 0, dJ would be zero
only if λT (ti) = 0. This means that the optimal value of x(ti) is obtained when
the corresponding costate λ(ti) = 0. This allows us to draw a conclusion on the
meaning of the costates: they represent the first-order sensitivity of a change in
the cost function due to a variation in the initial state; since every time t can be
considered as initial time, this conclusion applies at any time t, and that’s why
they are also called influence functions on J in variations in x(t)[15]

Boundary Conditions (BCs) are split into initial and final ones: in order to solve
this problem, it is necessary to solve a Two Boundary Value Problem (TPBVP).
Several numerical techniques exist for this purpose; among them, the most famous
is probably the shooting method, that certainly is the most intuitive one: the
problem is translated in an initial value problem, and the trajectory is “shooted”
until the tolerances on the BCs are respected. Other methods are finite-difference
methods [12] and collocation methods, where the latter are the selected algorithms
by Matlab® to solve TPBVP: the integration interval is divided into a mesh, and a
set of algebraic equation resultant from the boundary conditions is solved. From
the resultant error the mesh is adapted and the process is repeated [26].
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2.3.1 Fuel optimal formulation

For minimum-fuel formulations, the cost function is defined as

J =

∫tf
t0

Ldt, L =
Tmax

ce
u . (62)

The non-linear set of equations that describes our problem is 4, so the Hamiltonian
becomes:

H = λTr · v+ λTv ·
(
−
µ

r3
r+ Tmax

u

m
γ
)
+
uTmax

Ispg0
[1− λm] , (63)

where λr,λv, λm are the costates associated to position, velocity and mass, and u
and γ are the thrust magnitude and direction, which represent the control law we
are interested in.

The optimal control law is immediately retrieved applying the Potryagin min-
imum principle, which states that the Hamiltonian must be minimized over the
set of all admissible u [15]. As a consequence, from (63) it is possible to see that
the thrust direction must be in the same direction of −λv, termed by Lawden [17]
primer vector1

γ = −
λv

‖λv‖
. (64)

Therefore, H can be rewritten as

H = λTr · v+ λTv ·
(
−
µ

r3
r
)
+
uTmax

ce
Sf , (65)

where

Sf = 1− ce
‖λv‖
m

− λm (66)

is the Switching function.
Applying a second time the Minimum Principle [1], it is possible to find the optimal
value of u, the only decision variable left unsorted. The resultant control law is

u =


0 if Sf > 0 ,
0 6 u 6 1 if Sf = 0 ,
1 if Sf < 0 .

(67)

It can be seen that the optimal control law has a bang-bang profile: u depends only
on the sign of Sf, therefore the thrust switch from 0 to the maximum value and
vice versa, depending on the sign of Sf.

1 Lawden, in a personal letter:

In regard to the term ‘primer vector’, you are quite correct in your supposition. I served
in the artillery during the war [World War II] and became familiar with the initiation of
the burning of cordite by means of a primer charge. Thus, p = 1 is the signal for the
rocket motor to be ignited.
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Costates equations of motion are found from (54), and they result to be

λ̇T = −
∂H∗

∂x
=



λ̇r =
µ
r3
λv −

3µrλv
r5

r ,

λ̇v = −λr ,

λ̇m = −Tmaxu
m2 λv ,

(68)

since the gravity gradient matrix G(r) =
∂g(r)
∂r is computed as

∂g(r)

∂r
=

[
r3(−µ

∂r

∂r
) + µr

(
3r2

∂r

∂r

)]/
r6

=
µ

r5

(
3rrT − r2I3

)
, (69)

where I3 is the 3-dimensional identity matrix.

2.3.2 Energy optimal formulation

In minimum-energy formulations, the control is expressed in terms of acceleration,
therefore the cost function is defined as

J =

∫tf
ti

Ldt, L =
1

2
aTcac , (70)

where ac is the control acceleration.
In this formulation, the mass is not included in the state variables, since its

equation is decoupled from the other. Thus, in order to simplify the equations, it is
considered separately:

ẋ =

{
ṙ = v ,
v̇ = g(r) +ac .

(71)

The Hamiltonian is

H = λr
Tv+ λv

T
(
−
µ

r3
r+ac

)
+
1

2
aTcac , (72)

and the equations of motion for the costate are derived from (54)

λ̇T =


λ̇r =

µ
r3
λv −

3µrλv
r5

r ,

λ̇v = −λr .
(73)

The Pontryagin minimum principle states that the optimal control is the one that
minimize the Hamiltonian. Therefore, by inspection of (72), the optimal control
acceleration is

ac = −λv . (74)
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In order to improve the numerical efficiency of the code, variables are normalized:
the normalization units chosen are the orbital radius lref = R, the initial mass of
the spacecraft m0, and the reference velocity vref =

√
µ
R , so that the reference time

results tref = vref
lref

.

2.3.3 Continuation method

The discontinuous solution resulted from the bang-bang optimal thrust profile is
numerically difficult to obtain, hence a continuation method is adopted in order to
improve the numerical solution process and help convergence.

Generally, a continuation method is used to obtain the solution of a complex
problem by building a sequence of (simpler) auxiliary problems that converges to
the original one [28].

The approach chosen in this work to bypass the problem, is the one illustrated
in [24], where the discontinuous control law is approximated by exponential or
arc-tangential C∞ functions.

u =
1

1+ exp(2Sfp)
, u =

1

2
+
1

π
arctan−Sfp , (75)

where p is the continuation parameter. Increasing the value of p, the behaviour of
the bang-bang control law is slowly approximated through an iterative process, as
shown in Figure 2. Each solution is used as initial guess for the pk+1 iteration, until
the discontinuous profile is adequately approximated: at this point it is possible to
integrate the equations of motion with the optimal discontinuous control law.

0 10 20 30 40 50 60

tc [s]

0

0.2

0.4

0.6

0.8

1

u

p

Figure 2: Continuation method.

2.4 optimal impulsive collision avoidance manoeuvre

In this section the analytical optimal impulsive collision avoidance manoeuvre
developed by [6] is illustrated, since it is the basis for the finite-burn conversion
illustrated in Section 3.1 and it enlightens some important aspects about the collision
probability computation that are going to be used in Section 3.5 for the formulation
of the analytical approach.
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The manoeuvre impulse ∆v performed at an angular distance ∆θ from the
expected collision can be related to the displacement in the b-plane by the linear
relation provided by [5]

r = RKD∆v =M∆v , (76)

where R, D, and K are the rotation, kinematics, and dynamics matrices. From
equation (41) it is possible to notice that the collision probability P decreases
exponentially with the variable v; as a consequence, in the case of direct impact,
the optimization problem can be stated as: maximizing J

J =

(
ζ

σζ

)2
+

(
ξ

σξ

)2
− 2ρξζ

ξζ

σζσξ
, (77)

subjected to
f(∆v) = ∆vT∆v−∆v20 ,6 0 (78)

where ξ, ζ are the coordinates along the b-plane axes ûξ, ûζ. Defining the matrix
Q∗ as

Q∗ =


1
σ2ζ

0
−ρξζ
σζσξ

0 0 0
−ρξζ
σζσξ

0 1
σ
ξ2

 , (79)

the cost function can be rewritten as

J = rTQ∗r . (80)

Using (76), it is re-written as

J = ∆vTMTQ∗M∆v = ∆vTA∗∆v . (81)

The problem is solved through Lagrange multipliers, so writing the Lagrange
function

L = J− λf , (82)

the necessary condition for a minimum is found through

∂L

∂∆v
= 2A∆v− 2λ∆v = 0 . (83)

The problem is reduced to an eigenvalue problem, where the optimal solution
(the ∆v direction) corresponds to the eigenvector s1 associated to the maximum
eigenvalue. Therefore, the optimal impulse is

∆vopt = ∆v0s1 . (84)

2.5 state transition matrix

In this section the theory behind the computation of the State Transition Matrix
(STM) is briefly reviewed, and it is derived for the energy-optimal formulation, in
order to set the basis for the understanding of the approaches developed in Section
3.5 and 3.6.
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The state transition matrix Φ(t, t0) allows us to map the variation of the state
of a linear system at an arbitrary time t0 into variation of the state at an arbitrary
final time t. Considering a small variation δx0 of the initial state, the solution at
successive times can be expressed as

x(x0 + δx0, t) = x(x0, t) + δx(t) , (85)

and since the variations from the nominal trajectory are considered to be small,
x(x0 + δx0, t) can be expanded in Taylor series, so that (85) becomes

x(x0, t) +
∂x

∂x0
δx0 + · · · = x(x0, t) + δx(t) . (86)

The variation of δx with respect to δx0 is the STM

Φ(t, t0) =
∂x

∂x0
, (87)

δx(t) = Φ(t, t0)δx(t0) . (88)

For time-varying systems, the STM is found by integrating

.
Φ(t, t0) = A(t)Φ(t, t0) , Φ(t0, t0) = I12×12 . (89)

Where A(t) is the state matrix of the linear system

ẋ = A(t)x . (90)

In this case, we want to linearise the equations of motion f(x, t) of the energy-
optimal control problem around the nominal trajectory represented by the state xn.
The equations of motion and the state vector are

x =



r

v

λr

λv


,



ṙ = v ,

v̇ = − µ
r3
r− λv ,

λ̇r =
µ
r3
λv −

3µrλv
r5

r ,

λ̇v = −λr .

(91)

The nominal trajectory consists in the natural motion of the satellite around the
Earth. 

ṙn = vn ,

v̇n = − µ
r3n
rn ,

λ̇rn = 0 ,

λ̇vn = 0 .

(92)
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Therefore, the state matrix

A =

[
∂f

∂x

]∣∣∣∣
xn

(93)

results to be

A =


03×3 I3×3 03×3 03×3
−A34 03×3 03×3 −I3×3
03×3 03×3 03×3 A34
03×3 03×3 −I3×3 03×3

 . (94)

In particular

A34 =
µ

r3n
I3×3 +


3µrn

2(1)
r5n

3µrn(1)rn(2)
r5n

3µrn(1)rn(3)
r5n

3µrn(2)rn(1)
r5n

3µrn
2(2)
r5n

3µrn(2)rn(3)
r5n

3µrn(3)rn(1)
r5n

3µrn(3)rn(1)
r5n

3µrn
3(1)
r5n

 , (95)

where rn(1), rn(2) and rn(3) are the components of the position vector on the
nominal orbit rn, expressed in ECI.
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P R O P O S E D M E T H O D S

In this chapter four methods to design a continuous-thrust CAM are proposed,
which have been developed in the perspective of finding a fast and reliable approach,
suitable for on-board implementation. The objective to be minimized is the collision
probability Pc at the time of closest approach, computed with (45). First a finite-
burn conversion from an analytical impulsive optimal manoeuvre is implemented,
following an indirect optimization method that relies on the theory of the optimal
control problem. In Sections 3.3 and 3.4, the fuel/energy optimal control problem
formulations are exploited, inserting the collision probability as terminal cost in
the performance index J. These first two approaches rely on numerical methods,
whose time consuming procedures and convergence problems may be a relevant
drawback for their on-board implementation. Therefore, through the linearisation
of the energy OCP and the use of the STM (2.5), two suitable procedures are
obtained. In Section 3.5 an analytical approach is proposed, where in order to
obtain the maximum decrease of the collision probability with the least deviation
from the nominal trajectory, the direction of maximum change of Pc is exploited.
The method proposed in Section 3.6 exploits the boundary conditions developed in
Section 3.2.1, leading to a semi-analytical solution.

3.1 finite-burn conversion (fbc)

An exact impulsive to finite burn manoeuvre conversion is one that produces a
finite burn solution whose final position and velocity state is equal to the final
position and velocity of the original post impulsive manoeuvre at the time the finite
burn manoeuvre ends [1].

As seen in Section 2.4, the method developed by [6] is a fast and simple way to
compute the optimal impulsive ∆v, therefore it is worth to investigate the results of
a conversion to a finite-burn manoeuvre. The conversion is carried out by means
of the indirect optimization method explained in [1], exploiting the fuel-optimal
formulation.

The impulsive manoeuvre point is considered the middle point of the thrust
arc, and the impulsive ∆v is distributed over the arc bounded by the initial and
final states, which are found by propagating backward and forward from the
impulsive manoeuvre point over the pre-impulse and post-impulse trajectories. In
order to find the ends of the thrust-arc, the burn time is estimated analytically.
Since fuel/energy optimal transfers usually require longer time of flights to match
the imposed boundary conditions, the ∆t estimated is increased of an arbitrary
percentile, chosen to be 20% [1].

∆t =
ce∆m

Tmax
+ 1.2

ce∆m

Tmax
, (96)

23
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where ∆m is computed from the impulsive manoeuvre rocket equation

∆m = m0

(
e‖∆v‖/ce − 1

)
. (97)

The impulsive manoeuvre time t0 is the midpoint of the finite burn arc, therefore
initial and final burn time, ti, tf, are computed as

ti = t0 −
∆t

2
, tf = t0 +

∆t

2
. (98)

Position and velocity are computed propagating the spacecraft state at t0 backward
on the pre-impulse trajectory and forward on the post-impulse trajectory.

Recalling the set of equations of motion of state and costate that describes the
minimum-fuel control problem

ṙ = v ,

v̇ = g(r) + Tmax
u
mγ ,

ṁ = −TmaxuIspg0
,

λ̇r =
µ
r3
λv −

3µrλv
r5

r ,

λ̇v = −λr ,

λ̇m = −Tmaxu
m2 λv ,

(99)

and the optimal control law

u =

{
0 if Sf > 0 ,
1 if Sf < 0 ,

(100)

γ = −
λv

‖λv‖
, (101)

it is now necessary to specify the boundary conditions of this problem. 2n BCs, n
number of state variables, are needed to have a well-posed TPBVP. Since position,
velocity vector and mass are 7 variables, 14 BCs are necessary. Initial state and
mass and final state give 13 boundary conditions, the missing one is represented
by

λm(tf) = 0 (102)

since the final mass is free.
The resultant boundary conditions of the TPBVP therefore are

Ψ =



r(ti) − ri
v(ti) − vi
m(ti) −mi
r(tf) − rf
r(tf) − rf
λm(tf)


. (103)
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The TPBVP is solved with the collocation method implemented in the Matlab®

built-in function bvp4c. bvp4c is a finite difference code that implements the
three-stage Lobatto IIIa formula. This method uses a collocation formula and
the collocation polynomial provides a C1-continuous solution that is fourth-order
accurate uniformly in [ti, tf]. Mesh selection and error control are based on the
residual of the continuous solution [19].

Initial estimates for the variables are needed: the initial state in known, therefore
it is necessary to provide an estimate of the initial costate. A proper initial guess
can be retrieved directly from the knowledge of the impulsive ∆v, through the
hypothesis that the initial thrust direction vector γ is equal to the impulsive
manoeuvre direction. 

γ(ti) =
∆v
‖∆v‖ ,

γ̇(ti) =
∆v̇
‖∆v‖ −

∆v·∆v̇
‖∆v‖3 ∆v ,

(104)

where

∆v̇ = ∆g = g(r, v+, ti) −g(r, v−, ti) = 0 , (105)

∆v̈ = Gr∆v+Gv∆g = Gr∆v , (106)

Gr =

[
∂g

∂r

]
, (107)

Gv =

[
∂g

∂v

]
= 0 , (108)

since g is function of the position r only (see (5)). At this point, according to [1], it
is possible to compute the initial position and velocity costates estimation as

λv = −λvγ , (109)

λr = −λ̇vγ+ λvγ̇+ λvG
T
vγ = 0 , (110)

where, according to the primer vector theory, λv is estimated as

λv =
Tmax

mi
, (111)

and the mass costate is estimated as

λm0
= ce

(
1

mf
−

1

m0

)
. (112)

The discontinuous control law requires the adoption of the continuation method
introduced in Section 2.3.3. The discontinuous control law is approximated with the
exponential function (75), and at every use of the function bvp4c the continuation
parameter p is increased, until it is possible to converge to the discontinuous
solution.
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3.2 collision probability minimization

The aim of this work is to provide a technique to compute a continuous-thrust
manoeuvre that yields a reduction of the collision probability below a desired
threshold, optimizing the propellant expenditure.

One possible way to accomplish the aforementioned goal, is by inserting the
collision probability Pc computed with the Chan model (45) as terminal constraint
into the cost function of the minimum-fuel formulation

J = Pc (tf, xf) +
∫tf
ti

Tmax

ce
udt , (113)

where

Pc = e
− v
2 (1− e−

u
2 )

= exp

{
ln

(
1− e

−
r2a
2σ2

)
−
1

2

d2

σ2ξ

}
. (114)

According to [25], σ∗ from (44) can be simplified as σx ′ = σξ (expressed in the
b-plane reference frame), and σ = σξσζ.

The miss distance d is computed as

d =
√
ξ2 + ζ2 = ‖SRb(rf − rc)‖2 , S =

1 0 0

0 0 0

0 0 1

 , (115)

where Rb is the rotation matrix from the Earth Centred Inertial (ECI) reference
frame to the b-plane, rc and rf are respectively the positions at the time of closest
approach of the secondary object (where the b-plane is centred), and of the ma-
noeuvrable spacecraft. In the case of a direct impact, the position of the primary
and secondary objects at the time of closest approach coincides.

The collision probability appears to be function of the final position only: this
allows us to analytically compute the necessary boundary conditions to have a
well-posed TPBVP.

3.2.1 Boundary conditions

In the next approaches, the initial state is considered fixed. The optimization process
is carried out by applying the optimization method for different manoeuvres points,
in order to find not only the optimal manoeuvre for the manoeuvre point under
investigation, but also perform a sensitivity analysis of the problem, which may
yield to discover better optimal manoeuvre points along the orbit.

Being the initial state fixed, to have a well posed TPBVP, three or two additional
boundary conditions are needed, depending on whether the minimum-fuel or
minimum-energy formulation is under investigation. In the minimum-energy
formulation the mass costate is not taken into account, since the mass is not a state
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variable, being decoupled from the other equations of motion. The missing three
boundary conditions are retrieved from (55), since Φ = Pc. Recalling that

Pc = exp

{
ln

(
1− e

−
r2a
2σ2

)
−
1

2

‖SRb(rf − rc)‖2

σ2ξ

}
, (116)

the costate final boundary conditions are

∂Φ

∂xf
=



λrf = ∂Φ
∂rf

= − 1
σ2ξ
RTbS

T (SRb (rf − rc)) exp

{
ln

(
1− e

−
r2a
2σ2

)
− 1
2
‖SRb(rf−rc)‖2

σ2ξ

}
,

λvf = ∂Φ
∂vf

= 0 ,

λm = ∂Φ
∂mf

= 0 .
(117)

The complete set of boundary conditions is collected in the vector Ψ, where ti is the
initial time, and tf is the final time, that is the time corresponding to the predicted
closest approach:

Ψ =



r(ti) − ri
v(ti) − vi
m(ti) −mi
λr(tf) − λrf
λv(tf)

λm(tf)


. (118)

3.2.2 Weights on the Terminal Constraint

This formulation of the problem gives no control on the resulting collision prob-
ability after manoeuvre execution. No threshold is specified: the final spacecraft
state is the result of a trade-off between the path constraint that minimize the fuel
or the energy and the terminal constraint on the collision probability. The relative
relevance of these terms can be tuned by adding a weight W in the cost function J
as

J =WPc (tf, xf) +
∫tf
ti

Tmax

ce
udt , (for minimum-fuel problems) , (119)

that directly affect the boundary condition on λr, being Pc a function of the final
spacecraft position. Remembering that

Pc = exp

{
ln

(
1− e

−
r2a
2σ2

)
−
1

2

‖SRb(rf − rc)‖2

σ2ξ

}
, (120)
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the boundary condition on λr is computed with (55), since Φ =WPc. Therefore

λrf = −W
1

σ2ξ
RTbS

T (SRb (rf − rc)) exp

{
ln

(
1− e

−
r2a
2σ2

)
−
1

2

‖SRb (rf − rc)‖2

σ2ξ

}
.

(121)

3.3 fuel-optimal control problem (fop)

As mentioned in Section 1.2, one of the most important features of a CAM is
the efficiency in terms of propellant consumption. The fuel-optimal formulation
illustrated in Section 2.3.1 grants a minimum-fuel solution to the minimization
problem. Inserting Pc in the cost function as terminal cost, this formulation grants
a solution that, according to the weights ratio between terminal and path cost (view
Section 3.2.2), minimize Pc with the least amount of fuel.
Pc is inserted as terminal cost in the cost function Jf

Jf = Pc (tf, xf) +
∫tf
ti

Tmax

ce
udt , (122)

associated to the equations of motion and the initial conditions

ẋ =


ṙ = v ,

v̇ = − µ
r3
r− uTmax

m γ ,

ṁ = −uTmaxce
,

ICs :


r(ti) = ri ,

v(ti) = vi ,

m(ti) = mi .

(123)

The problem consists in finding the control parameters u and γ, thrust ratio and
direction, that minimize Jf. It translates in the solution of a TPBVP, whose boundary
conditions are grouped in the vector Ψ, and the equations of motion of state and
costates are 

ṙ = v ,

v̇ = − µ
r3
r− uTmax

m γ ,

ṁ = −uTmaxce
,

λ̇r = µ
r3
λv −

3µrλv
r5

r ,

λ̇v = −λr ,

λ̇m = −Tmaxu
m2 λv ,

Ψ =



r(ti) − ri

v(ti) − vi

m(ti) −mi

λr(tf) − λrf

λv(tf)

λm(tf)


. (124)
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The costate final BCs are

λ(tf) =



λrf = − 1
σ2ξ
RTbS

T (SRb (rf − rc)) exp

{
ln

(
1− e

−
r2a
2σ2

)
− 1
2
‖SRb(rf−rc)‖2

σ2ξ

}
,

λvf = 0 ,

λm = 0 ,
(125)

and the optimal control law resulting from the application of the Euler-Lagrange
theorem and the Potryagin minimum principle is

u =


0 if Sf > 0 ,
0 6 u 6 1 if Sf = 0 ,
1 if Sf < 0 ,

(126)

with
Sf = 1− ce

‖λv‖
m

− λm . (127)

The unknown boundary conditions to be retrieved are the initial costates λ(ti). The
discontinuous optimal control law (67) is numerically difficult to obtain, therefore
the continuation method explained in Section 2.3.3 is applied. The control parame-
ter u is approximated by the exponential function (75), and at each iteration the
problem is solved thanks to the Matlab® built-in function bvp4c. Initial estimations
of the variables need to be provided to the solver: in order to find appropriate
costate’ initial guesses, the Adjoint Control Transformation (ACT) developed in
[23] is adopted.

3.3.1 Adjoint Control Transformation

Because of the lack of physical meaning of the costates, it is not easy to guess the
values they could assume. The method developed by [23] provides an estimate
of the position and velocity costates starting from the knowledge of the thrust
direction, a variable that has a clear physical meaning and that can be more easily
guessed.

The velocity costate is replaced by the thrust direction vector, and it is expressed
in a vehicle-centred coordinate frame

v̂ =
v

v
, (128)

ĥ =
(r× v)
‖r× v‖

, (129)

ŵ = ĥ× v̂ . (130)
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The thrust direction and its derivative are expressed through the use of the angles
α and β, as

γvwh =

 cosα cosβ
sinα cosβ

sinβ

 , γ̇vwh =

 −α̇ sinα cosβ− β̇ cosα sinβ
α̇ cosα cosβ− β̇ sinα sinβ

β̇ cosβ

 , (131)

where

α = tan−1 γy

γx
, (132)

β = tan−1 γx√
γ2x + γ

2
y

, (133)

α̇ =
γxγ̇y − γyγ̇x√

γ2x + γ
2
y

, (134)

β̇ = tan−1 γ̇z√
γ2x + γ

2
y

. (135)

The guess for the thrust direction is the same as the one adopted in Section 3.1,
therefore γx and γy are the components of γ computed in (104). It is now necessary
to rotate γvwh and γ̇vwh in the Earth Centred Inertial reference frame, that is the
one used to integrate the equations of motion.

γijk = Rvwh−ECIγvwh , (136)

γ̇ijk = Rvwh−ECIγ̇vwh + Ṙvwh−ECIγvwh . (137)

The initial costates are finally estimated as

λv = −λvûijk , (138)

λ̇v = −λ̇vûijk − λv ˙̂uijk , (139)

λr = −λ̇v −H
Tλv , (140)

where λv is estimated as Tmaxmi
, because of the result of the primer vector theory.

3.4 energy-optimal control problem (eop)

The FOP illustrated in the previous section is characterized by a discontinuous
solution, the thrust profile has a bang-bang profile that could cause numerical
difficulties in the integration of the equations of motion. Even relying on the
continuation method, the problem is very sensitive on the increasing rate of the
parameter p, and convergence issues could still arise. It is therefore interesting
to examine the energy-optimal formulation explained in Section 2.3.2. Even if
there is no bound on the control acceleration value, therefore no control on the
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propellant mass, the continuous solution is appealing and makes this formulation
worth investigating.
Pc is inserted as terminal cost in the cost function Je,

Je = Pc(tf, xf) +
∫tf
ti

aTcacdt . (141)

The problem consists in finding the control acceleration ac that minimizes Je,
subjected to the equations of motion and the initial conditions

ẋ =


ṙ = v ,

v̇ = µ
r3
r+ac ,

ICs :


r(ti) = ri ,

v(ti) = vi .
(142)

The mass is not included in the state variables, since its equation is decoupled from
the other. In order to reduce the size of the problem, it is considered separately,

ṁ = −
m

ce
‖ac‖ . m(ti) = mi . (143)

The problem translates in the solution of a TPBVP, whose boundary conditions
are grouped in the vector Ψ. The state and costate equations to be integrated
simultaneously are

ṙ = v ,

v̇ = µ
r3
r− λv ,

λ̇r =
µ
r3
λv −

3µrλv
r5

r ,

λ̇v = −λr ,

Ψ =



r(ti) − ri

v(ti) − vi

λr(tf) − λrf

λv(tf)


, (144)

since the optimal control acceleration is

ac = −λv . (145)

The explicit conditions on the final costates are

λ(tf) =


λrf = − 1

σ2ξ
RTbS

T (SRb (rf − rc)) exp

{
ln

(
1− e

−
r2a
2σ2

)
− 1
2
‖SRb(rf−rc)‖2

σ2ξ

}
,

λvf = 0 .
(146)

The initial costates λ(ti) are found through the shooting method, and the optimal
control law is computed through simple integration of the equations of motion.
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3.4.1 Shooting method

The optimal control law of the EOP has a continuous profile, and no numerical
difficulties arise from the adoption of the shooting method for its resolution. As
already outlined, the method consists in guessing the initial costate, propagating
the trajectory forward, checking the error on the final boundary conditions and
through Newton iterations adjusting the initial costate, until the residual on the
final boundary conditions is below a given threshold. The ACT (see Section 3.3.1)
is used to find appropriate costates’ initial guesses.

3.5 analytical method (am)

In the first two methods the fuel and energy formulations of the OCP are exploited,
leading to time consuming fully numerical iterative methods. In the perspective of
finding a method that can be implemented onboard, the linearisation of the EOP
formulated in Section 2.5 is exploited.

A CAM has to be efficient in terms of propellant, but also as compliant as possible
with mission requirements. In the analytical approach presented here the direction
of maximum change of Pc is exploited, in order to obtain the largest decrease of Pc
with the least deviation possible from the nominal trajectory.

The cost function (80) formulated by [6] and illustrated in Section 2.4 exploits
the same idea. The impulsive manoeuvre optimization is based on maximizing

Jimp = rTbQ
∗rb , (147)

since Pc decreases exponentially with v (41), where rb is the position of the primary
satellite on the b-plane at the time of closest approach.

In order to exploit the STM (94), it is now necessary to express Jimp in terms of
deviations of the spacecraft from the nominal trajectory, since the STM maps the
variations of the initial states into variations of the final state:

δrf
δvf
δλrf
δλvf

 =


Φ11 Φ12 Φ13 Φ14
Φ21 Φ22 Φ23 Φ24
Φ31 Φ32 Φ33 Φ34
Φ41 Φ42 Φ43 Φ44



δr0
δv0
δλr0
δλv0

 . (148)
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In this approach the initial state is fixed, and the costates are zero on the nominal
trajectory, therefore the following relations hold:

r0 = rm → δr0 = r0 − rm = 0 , (149)

v0 = vm → δv0 = v0 − vm = 0 , (150)

λrm = 0→ δλr0 = λr0 , (151)

λvm = 0→ δλv0 = λv0 , (152)

δrf = rf − rc , (153)

δvf = vf − vc , (154)

λrc = 0→ δλrf = λrf , (155)

λvc = 0→ δλvf = λvf , (156)

where rm, vm,λrm ,λvm are the state and costate at the initial manoeuvre point,
that is at the initial time ti; rc, vc,λrc ,λvc are the state and costate at the time of
closest approach on the nominal trajectory, and rf, vf,λrf ,λvf are the state and
costate at the time of closest approach after the manoeuvre.

As already mentioned in Section 2.2.2, the position in the b-plane of the manoeu-
vrable object is defined as

rb = Rb(rf − r2c) , (157)

since the b-plane is centred in the secondary object, and r2c is the position of the
non-manoeuvrable object at the time of closest approach, expressed in the same
reference frame as rf. Rb is the rotation matrix to the b-plane.

In the case of direct impact, the position of the manoeuvrable satellite coincides
with the one of the secondary object, r2c = rc, therefore the position in the b-plane
is

rb = Rb(rf − rc) = Rbδrf . (158)

The problem can then be stated as maximizing

JAM = δrTf R
T
bQ
∗Rbδrf , (159)

subjected to the inequality constraint

δrTf δrf − δr̄
2
f 6 0 , (160)

where the constraint (160) is applied in order to limit the variation from the nominal
trajectory, being δr̄f a maximum arbitrary deviation. This minimization problem is
solved through Lagrange multipliers, in the same way [6] solves the problem of the
optimal impulsive CAM, explained in Section 2.4. Adjoining the constraint to the
cost function, the Lagrangian is

L = δrTf R
T
bQ
∗Rbδrf − λAM(δrTf δrf − δr̄

2
f) . (161)
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The necessary condition for a minimum is then

∂L

∂rf
= 2RTbQ

∗Rbδrf − 2λSAδrf = 0 . (162)

Equation (162) represent an eigenvalue problem

(RTbQ
∗Rb − λSAI3)δrf = 0 , (163)

where the direction dmax over which Pc changes more rapidly, is the eigenvector
correspondent to the maximum eigenvalue λSAmax . Therefore, δrf is imposed to
be on this direction

δrf = εAMdmax , (164)

and the final position of the spacecraft is rf = rc + δrf.
The final position of the spacecraft varies accordingly to εAM, and the resulting Pc
is

Pc = exp

{
ln

(
1− e

−
r2a
2σ2

)
−
1

2

‖SRb(δrf)‖2

σ2ξ

}
. (165)

Equation (165) provides a collision probability profile dependant on εAM. Chosen
the desired Pc, the correspondent δrf is computed and, thanks to the STM, the
initial costates are retrieved. Since the final velocity is free, the associated final
costate is zero. The initial position and velocity are fixed, therefore from the fourth
row of (148)

0 = Φ43δλr0 +Φ44δλv0 ,

→ δλr0 = −Φ−1
43Φ44δλv0 . (166)

Once δrf is known, it is possible to compute δλv0 and δλr0

δrf = Φ13δλr0 +Φ14δλv0 (167)

= −Φ13Φ
−1
43Φ44δλv0 +Φ14δλv0 (168)

→ δλv0 =
[
−Φ13Φ

−1
43Φ44 +Φ14

]−1
δrf . (169)

All the initial conditions are now available, since δλr0 = λr0 and δλv0 = λv0. It is
finally possible to integrate the equations of motion (144) and obtain the control
law.

3.6 semi-analytical method (sam)

This fourth approach starts from the linearisation of the EOP illustrated in Section
2.5. The final BCs of the TPBVP associated with the EOP are here exploited to find
a direct relation between the applied weight W to the terminal cost and Pc,

J =WPc(tf, xf) +
∫tf
ti

aTcacdt . (170)
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In this way it is possible to compute the weight to apply in order to obtain the
control law to achieve a desired Pc. It is worth highlighting again that in the FBC
and the FOP/EOP methods Pc is a result of the optimization, and it is not possible
to know a-priori its value.

The aim here is to find a relation between W and δrf, since the collision proba-
bility depends only on the spacecraft position

Pc = exp

{
ln

(
1− e

−
r2a
2σ2

)
−
1

2

‖SRb(δrf)‖2

σ2ξ

}
, (171)

where δrf = rf − rc.
The weight in the terminal cost affects the final conditions on the costates (146),
that can be rewritten as

λrf = −W 1
σ2ξ
RTbS

T (SRb (δrf)) exp

{
ln

(
1− e

−
r2a
2σ2

)
− 1
2
‖SRb(δrf)‖2

σ2ξ

}
,

λvf = 0 .
(172)

The desired relation between rf and W can be found by exploiting the STM (148).
Remembering equations (149) and (150)

δr0 = 0 , (173)

δv0 = 0 , (174)

from equation (156), δλvf = λvf = 0, the same relation already computed in (166)
is found

δλv0 = −Φ−1
44Φ43δλr0 . (175)

Therefore, substituting (175) in the third row of (148) it is possible to obtain a
relation between δλr0 and δλrf:

δλrf = Φ33δλr0 +Φ34δλv0 , (176)

=
(
Φ33 −Φ34Φ

−1
44Φ43

)
δλr0 , (177)

= Bδλr0 , (178)

→ δλr0 = B
−1δλrf . (179)

It is now possible to write rf as function of δλrf,

δrf = Φ13δλr0 +Φ14δλv0 , (180)

=
(
Φ13 −Φ14Φ

−1
44Φ43

)
δλr0 , (181)

= Cδλr0 , (182)

= CB−1δλrf . (183)
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Remembering now that δλrf = λrf,

δrf = −WCB−1 1

σ2ξ
RTbS

TSRbδrfexp

{
ln

(
1− e

−
r2a
2σ2

)
−
1

2

‖SRbδrf‖2

σ2ξ

}
. (184)

A set of three non-linear equations relating the spacecraft final position (rf = δrf + rc)

to the terminal cost weight W has been found. The unknown variable to be com-
puted is δrf, and the solution can be easily obtained trough Newton’s iterations.
dmax, the direction of maximum change of Pc found in Section 3.5 through the
eigenvalue problem (163), turns out to be an appropriate first guess (see Chapter 4).
Once rf is found, the correspondent Pc is computed with (165), and a probability
profile for different manoeuvre points and weights is obtained.



4
N U M E R I C A L R E S U LT S

In this chapter the numerical results of the proposed methods developed in Chapter
3 are illustrated. First the test case is introduced. Afterwards, each method is
individually tested and the particular features of each one are enlightened. In
the last section, the methods are compared in terms of propellant consumption,
computational time and robustness.

4.1 test case

The test case examined is the collision between the American communication
satellite Iridium 33 and the derelict Russian communication satellite Cosmos 2251,
happened on February 10TH, 2009. The two satellites impacted at 789 km above the
Tajmyr peninsula, in Russia, even if the predicted miss distance was of 584m. It
was not even the closest approach predicted for the Iridium satellites that week, but
at the time the close approach was predicted, the satellite become silent, and a cloud
of debris tracked by the US Space Surveillance Network confirmed the collision
[16]. Following [6], the two satellites have been modelled as two spherical bodies
respectively having a radius of 4m and 3m, such that the combined cross sectional
radius results ra =7m. A covariance matrix with standard deviations of 0.1km
in the tangential direction and 1km in the radial and out-of-plane directions has
been assumed for both objects. The combined covariance matrix Cuvw expressed
in the UVW reference frame of the manoeuvrable satellite is computed with (12);
in order to express Cuvw in the b-plane reference frame, a final rotation is applied,
C = RTbCuvwRb, and the resulting covariance matrix is

C =

[
0.02km2 0

0 0.8km2

]
. (185)

The orbits of the two satellites are assumed to be circular, which is a reasonable
assumptions since the eccentricities are of the order of 10−5. Since for circular orbits
the argument of periapsis ω is not defined, in order to alter the least possible the
real orbital elements it was chosen to maintain the original argument of periapsis
value for both the orbits. The orbital parameters are listed in Table 1, where the
set ai, ei, ii,Ωi,ωi, θcollision refers to the Iridium satellite at the time of closest
approach, and ac, ec, ic,Ωc,ωc refers to the Cosmos satellite.

The Iridium satellite carries on-board a hydrazine thruster, whose specifications
are listed in Table 2. The mass of the spacecraft is approximated from 586 kg to
500 kg. The predicted miss distance is 0, so it is a direct impact.

37
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ai(km) 7155.8 ac(km) 7155.8
ei 0 ec 0

ii(deg) 86.6 ic(deg) 74

Ωi(deg) 230 Ωc(deg) 328.29
ωi(deg) 328 ωc(deg) 316.25
θcollision(deg) 318.47

Table 1: Iridium and Cosmos orbital parameters.

Thrust (N) 1

Isp (s) 220

Mass (kg) 500

Table 2: Iridium 33 propulsion parameters.

4.2 impulsive cam

In order to compute the optimal impulsive collision avoidance manoeuvre, a
maximum ∆v of 0.1× 10−3 kms−1 is assumed. In Figures 3 and 4 it is shown
the resultant collision probability and the corresponding miss distance; ∆θ is the
angular distance from the closest approach, and it is expressed in orbits [2π].
Note that even when the miss distance is 0, the probability is not 1, because of
the uncertainty associated to the orbits. The clear favourable manoeuvre points
observable in the collision probability plot are due to the relative motion dynamics:
since the probability decreases more rapidly in the ξ direction, the manoeuvre
should take place in the opposite point in the orbit with respect to the collision [5].
In Figures 5 and 6 the manoeuvres’ angles are shown. σ represents the in-plane
rotation, opposite to the orbital angular momentum, while γ is the out-of-plane
rotation [5]. It is possible to notice that the manoeuvre tends to become more
tangential as the anticipation time increases, and that an out-of plane component is
usually present. In Figure 7 the b-plane positions after the manoeuvres are shown,
together with the error ellipse. The positions tend to follow the semi-minor axis of
the ellipse, being it the direction where the collision probability diminishes more
quickly.
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Figure 7: b-plane positions after the impulsive manoeuvres.

4.3 fbc results

In this section the results relative to the finite-burn conversion illustrated in Section
3.1 are shown.

In order to evaluate the convenience of the conversion to finite-burn, the efficiency
ηc is computed as

ηc =
‖∆vimpulsive‖
‖∆vfinite−burn‖

, (186)

where the finite-burn ∆v is obtained by integrating the control acceleration ac
simultaneously with the equations of motion, once the TPBVP is solved and all the
initial conditions to have a well-posed initial value problem are available.

∆v =

∫tf
ti

acdt =

∫tf
ti

Tmax

m
uγdt . (187)

Therefore, as figures of merit for the conversion, the efficiency and the propellant
mass consumed ∆m = mf −mi are chosen. Their mean values are listed in Table 3,
and their point values are shown in Figures 8 and 9.
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ηc 0.98
∆m(kg) 0.02

Table 3: Figures of merit of FBC.
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Figure 9: ∆m trend of FBC.

From Figure 8 it is possible to see that the efficiency remains constant for all the
manoeuvres converted when the impulsive ∆θ is higher than ≈ 0.3 orbits. There is
then a sudden lost of efficiency and a consequent asymptote to the value ηc = 1.
This behaviour is consistent with the behaviour of the mass in Figure 9, and it
is easily explained looking at Figure 3: the collision probability resulting from
the optimal impulsive manoeuvre tends to increase exponentially as the collision
becomes closer, and reaches the nominal value as ∆θ→ 0. For ∆θ < 0.3 orbits the
time available is no more sufficient for an optimal conversion, consequently there
is a sudden loss of efficiency. Near the collision the constraints on the final distance
relaxes, and the miss distance tends to 0, therefore time of flight available becomes
more than enough to satisfy the boundary conditions (as it is possible to see in
Figure 12), and as the efficiency tends to unity, the propellant needed diminishes.

In order to obtain the discontinuous control law, the exponential function (75)
is chosen to perform the continuation on u; the parameter p has been increased
first with 5 iterations where pk+1 = pk + 2 and then with other 5 iterations with
pk+1 = pk + 20, starting from a value of p1 = 1.

From Figures 10-12 it is possible to see that for manoeuvres converted far from
the collision, the thrust is mainly tangential, while for manoeuvres close to the
collision, both a radial and an out-of-plane component (not visible in the plots) start
to arise, emulating then the behaviour of the impulsive manoeuvre. The switching
function, the thrust ratio and the thrust components are plotted as function of the
burn time, computed with (96).
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Figure 10: FBC switching function, thrust ratio and components at ∆θimp = 1 orbits.
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Figure 11: FBC switching function, thrust ratio and components at ∆θimp = 0.16 orbits.
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Figure 12: FBC switching function, thrust ratio and components at ∆θimp = 0.12 orbits.
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4.4 fop results

In this section the results of the application of FOP (see Section 3.3) are shown.
Figure 13 reports the Pc profile obtained with the application of the minimum-

fuel formulation for the collision probability minimization problem explained in
Section 3.3. It is possible to see the profiles corresponding to the application of three
different weights W on the terminal cost. The flat behaviour particularly evident for
W = 1 is due to the trade off between the terminal cost and the path cost illustrated
in Section 3.2.2: close to the collision, the mass expenditure is considered too high
with respect to the achievable Pc and the resulting control law corresponds to no
thrust, therefore Pc assumes the nominal value Pcn = 3.775× 10−5. The application
of higher weights yields an higher mass expenditure and a lower Pc, therefore it is
possible to obtain Pc < Pcn. As for EOP, more than one solution exists for the same
initial manoeuvre point. Because of the high computational time required by FOP
to converge to the optimal solution, the random search performed for EOP (see
next section) is not applicable to this method. Nevertheless, the presence of more
than one solution resulted evident from the outcomes of the simulations if the ACT
is adopted for each ∆θ: the algorithm converged to values of Pc of differing orders
of magnitude one from the other, causing evident jumps in the Pc profile. In order
to converge to the same branch of solutions, every iteration is made dependant
from the previous one: the costate solution found at the initial manoeuvre point
∆θn is used as initial guess for the manoeuvre point ∆θn+1, with ∆θn > ∆θn+1.
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Figure 13: Collision Probability trend of FOP.

In Figure 14 the b-plane positions corresponding to the probability profiles with
two different weights are shown.

These results are consistent with the ones of the optimal impulsive CAM (Section
2.4): the final positions, as ∆θ diminishes, tend to be aligned with the semi-minor
axes of the error ellipse, since it is the direction where the collision probability
diminishes more rapidly. For angular distances larger than ∆θ = 1 orbit, the pattern
appears to repeat, on a different scale. The presence of different solutions can
be perceived looking at the distribution of the solutions around the ellipse: they
are split among two main patterns, as it is more visible in the analysis shown in
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Sections 4.5 and 4.7. These patterns differ very little in terms of achieved collision
probability, therefore FOP converges alternatively to both of them. One pattern is
visible for manoeuvres performed up to one orbit in advance with respect to the
collision, the other pattern is the first pattern reflected with respect to both semi
axes. In fact, for manoeuvres performed from one to two orbits in advance, it is
possible to see the presence of solutions on both sides of the plot. This behaviour is
better investigated in Sections 4.5 and 4.7.
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Figure 14: b-plane positions of FOP.

In Figure 15 it is shown the propellant mass behaviour. When the manoeuvre
starts far from the collision point, lower Pcs are achieved with lower ∆m. The flat
part of the plots corresponds to the flat part of Pc in Figure 15: when no thrust is
applied, ∆m is obviously zero.
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Figure 15: ∆m trend of FOP.

In Figures 16 and 17 it is shown the typical bang-bang optimal thrust profile
for manoeuvres starting 2 orbits prior to collision and half orbit prior to collision,
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respectively. Thrust components are plotted as function of the time to collision tc.
Consistently with the literature [14], the thrust usually has an out-of-plane and
radial component. When the distance from the collision grows, the thrust becomes
mainly tangential. When the thruster is on, the thrust magnitude is equal to 1N.
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Figure 16: FOP thrust components at ∆θ = 1.5 orbits, achieved Pc = 6 · 10−9, W = 1000.
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Figure 17: FOP thrust components at ∆θ = 0.5 orbits, achieved Pc = 3 · 10−8, W = 1000.

The optimal discontinuous solution is obtained with the continuation method
already explained in Section 75, using the exponential function. Looking at the
boundary conditions (117), it is possible to see that a trivial solution corresponding
to λ(t) = 0 exists. Low thrust magnitudes correspond to low costates magnitudes.
When the manoeuvre starts more than one orbit in advance with respect to the
collision, the needed thrust is particularly low, therefore costates are nearly zero.
This implies that a very slow continuation has to be performed, since abruptly
changes in the continuation parameter p reflect in convergence issues, yielding the
trivial solution.
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It is found that a continuation on the parameter p of the kind showed in Figure
18 works for almost all the manoeuvres points up to three orbits in advance with
respect to the collision.

s e t p to one
s e t counter to one

whi l e counter i s l e s s or equal to f i v e

add one to p

end whi l e

s e t counter to one

whi l e counter i s l e s s or equal to ten

add f i v e to p

end whi l e

s e t counter to one

whi l e counter i s l e s s or equal to f i f t e e n

increment p o f 150%

end whi l e

Figure 18: FOP continuation method, pseudocode.

4.5 eop results

In this section the results of the application of the minimum energy formulation
explained in Section 3.4 are illustrated.

In order to have a preliminary idea of the possible solutions, an initial random
search is initialized. Since the problem is normalized, the search space for each
costate is restricted to λ ∈ (0, 1]. The 0 is excluded from the acceptable solutions
since, looking at (146), it is possible to see that the solution λ(tf) = 0 satisfies the
terminal boundary conditions when rf = rc, that is when there is no deviation
from the nominal trajectory. As a consequence, an initial condition of λ(ti) = 0
leads to the trivial solution of no thrust.

The search is made with 100 costates per manoeuvre point, and the results
are shown in Figure 19. For manoeuvre points ∆θ < 0.5 orbits there are two
main solution branches, that then divide in 2 sub-branches. For ∆θ > 0.5 orbits
only the branch corresponding to lower Pcs is found. From now on, the branch
correspondent to higher Pcs is going to be called branch 1, and the other branch 2.
In order to follow one of the two main branches, the ACT 3.3.1 is again used to find
first guesses for the Newton’s method. To avoid discontinuities and jumps between
the two branches, the solution found for an initial manoeuvre point ∆θn, is used
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as first guess for the initial manoeuvre point ∆θn+1. In Figure 20 the positions
corresponding to each solution are shown. Both the solutions corresponding to the
applied weights W = 1 and W = 100 are illustrated: it is possible to notice that,
the higher the weight, the more the positions shifts along the ellipse semi-axes.
Positions corresponding to the branches labelled 1 and 3 shifts vertically along
the semi-minor axis, while positions labelled 2 and 4 shifts horizontally along the
semi-major axis.

The vertical branches (1 and 3), correspond to branch 2 solutions. This is a
trivial result, since along the semi-minor axis the collision probability diminishes
more quickly. This behaviour will be further examined in Section 4.7, since the
smaller computational time of the Semi-Analytical Method enables to perform
more detailed analysis.
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Figure 19: Collision Probability trend resulting from the EOP random search.
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Figure 20: b-plane positions resulting from the EOP random search.

In Figure 21 the collision probability trend resulting from the energy-optimal
problem illustrated in Section 3.4 is shown. Three different weights are applied to
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the terminal cost Pc in the cost function, in order to obtain different probability
curves; in so doing, it is possible to choose the solution that matches the desired
threshold. Furthermore, the solution is found to be highly dependent on the
guess for the initial costates: it oscillates between the various solutions found in
the random search and illustrated in Figure 19. In order to have a continuous
probability profile, the iterations are made co-dependant: the solution for the initial
costates found for the manoeuvre starting at ∆θn is used as initial guess for the
manoeuvre starting at ∆θn+1. The use of the ACT (Section 3.3.1) to compute the
initial guesses yields the solution to converge to the lower Pc branch. In Figure
22 the b-plane positions corresponding to W = 1 are shown. The flat part of the
collision probability plot for W = 1 is due to the fact that the trade off between
collision probability (terminal cost) and the energy cost (integral cost) yields to
the no-thrust solution, therefore the collision at the closest approach remains the
nominal one, P = 3.775× 10−5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 [number of orbits]

10
-10

10
-8

10
-6

10
-4

C
o
lli

s
io

n
 P

ro
b
a
b
ili

ty

W = 0.0001

W = 0.001

W = 0.1

Figure 21: Collision Probability trend of EOP.
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Figure 22: b-plane positions of EOP when W = 1, initial guesses estimated with ACT.
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In Figure 23 the ∆m = mf −mi associated to each manoeuvre point is shown. It
decreases as the distance from the predicted impact increases. In conclusion, the
farer the manoeuvre starts, the more efficient it is, both in terms of propellant, and
achieved collision probability.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 [number of orbits]

0

0.5

1

1.5

m
 [
k
g

]

W = 0.1

W = 0.001

W = 0.0001

1.6 1.8 2
0.04

0.06

0.08

Figure 23: ∆m trend of EOP.

The continuous thrust profiles showed in Figures 24 and 25 reflect the behaviour
already noticed in FOP and FBC thrust profiles: when the distance from the
collision grows, the thrust becomes mainly tangential, while close to the collision
an out-of-plane and radial components are present. In fact, when ∆θ = 2 orbits, the
thrust magnitude and the tangential component almost overlap, while for ∆θ = 0.5
orbits the radial and out-of-plane components assume values comparable with the
tangential one.
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Figure 24: EOP thrust profile at ∆θ = 2 orbits, achieved Pc = 5 · 10−12, W = 1.
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Figure 25: EOP thrust profile at ∆θ = 0.5 orbits, achieved Pc = 5 · 10−10, W = 1.

4.6 am results

In this section the results of the analytical approach developed in Section 3.5 are
presented. Figure 26 shows the collision probability profile as function of εAM.
Greater values of εAM yield lower values of Pc, since the distance from the nominal
trajectory increases. This is the only method developed in this dissertation where it
is possible to choose the desired Pc in advance, and then compute the control law.

The direction dmax where the final position of the spacecraft rf is imposed to be
is computed in Section 3.5, and it is shown in Figure 29; as predictable, it follows
the semi-minor axis of the error ellipse. Figure 27 shows the mass profile. The
constant probability curves are plotted as function of the manoeuvre starting point:
it is possible to notice a minima at one orbit in advance, followed by local minima
at multiples of one orbit. The mass consumption does not decreases with ∆θ.
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Figure 26: Collision Probability trend of AM.
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Figure 27: ∆m trend of AM.

4.7 sam results

In this section the results of the semi-analytical approach developed in Section 3.6
are reported. As it was already done for the EOP, in order to obtain a complete
picture of the possible solutions, a set of random initial guesses per manoeuvre
point to solve equations (184) is used.

Every set of guesses is created randomly by varying the nominal initial guess
δr0 = dmax in the neighbourhood bounded by a and b, chosen as

a = δr0 − 5δr0 , (188)

b = δr0 + 5δr0 . (189)

The solution is found through Newton’s iterations, and the algorithm converged
for all the initial guesses. The results can be seen in Figure 28. Consistently with
the fact that this formulation is the linearisation of the EOP, the solutions found
agree with the ones of the minimum-energy formulation, with the exception of the
initial discontinuity in the SAM curve, that is better visible in Figure 34, where
the collision probability profiles of SAM and EOP are compared. In Figure 29, the
b-plane positions for W = 1, 100, 104 are shown. The positions plotted correspond
to manoeuvres performed at distances to collision ranging from ∆θ = 0 to ∆θ = 1

orbit. Lighter colours correspond to higher distances to collision.
Comparing EOP and SAM results it is found that the error introduced by the

linearisation is of the order of meters. The comparison between these two methods
is better illustrated at the end of this section. Unlike EOP, this time the two main
probability branches are found for all the manoeuvre points.
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Figure 28: Collision Probability trend of the SAM random search with W = 1.
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Figure 29: b-plane positions of the SAM random search.

The mass and miss distance profiles corresponding to the two solution branches
are visible in Figures 30 and 31. The curve corresponding to the probability branch
2 (the red one) is the one corresponding to lower masses: in fact, the positions of
branch 2 are closer to the semi-minor axis of the ellipse (branches 1 and 3 in Figure
29), therefore the probability diminishes more quickly, and it is possible to obtain
lower Pc with less mass consumption. It is interesting to notice that the horizontal
position branches (labelled 2 and 3) correspond to smaller deviations from the
nominal trajectory, that is smaller miss distances, but to higher mass consumption.
Therefore, the red branches in Figures 28, 30 and 31 are solutions that grants the
minimum Pc with the least mass consumption (the vertical positions branches),
while the blue branches correspond to higher Pc and ∆m, but lower miss distance.

In Figure 32 it is visible the collision probability profile as function of W. As it
was already done for the FOP/EOP, in order to avoid jumps between the different
branches, the result of each iteration is used as initial guess for the next one.
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Figure 30: ∆m trend of SAM, random search with W = 1.
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Figure 31: Miss Distance trend of SAM, random search with W = 1.
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Furthermore, the first iteration is chosen to be the one closer to the collision,
since the smaller the deviation from the nominal trajectory, the more accurate the
linearised solution is. The choice of the closer point to collision as first iteration
point yields problems when the weight is particularly small, since all the successive
iterations tend to converge to the zero-thrust solution. To avoid this problem, the
initial guess for iterations with low W is chosen to be the solution belonging to
an higher weight branch, for the same ∆θ. The format of this plots is the same as
EOP/FOP one: to different weights correspond different probability profiles. In
Figure 33 the mass consumption corresponding to the probability curves is shown.
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Figure 32: Collision Probability trend of SAM.
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Figure 33: ∆m trend of SAM.

In Figures 34 and 35 the probability and mass profiles of EOP and SAM are
compared. After a transient dependant on W, the probability curves overlap, and
the mass profiles differ on the order of 10−4kg. The weight W has the same value
for both the methods. The lower W, the longest the transient, as it is possible to
see by comparing Figures 32 and 21, where the Pc of SAM and EOP are shown.
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Figure 34: Collision Probability comparison between EOP and SAM with W = 0.1.
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Figure 35: ∆m comparison between EOP and SAM with W = 0.1.
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4.8 comparisons

In this section the various approaches are compared in terms of mass consumption,
computational cost and robustness.

4.8.1 Mass

In this section the approaches are compared in terms of mass consumption. In
Figure 36 the mass consumptions of AM and SAM are compared, as function of
the manoeuvre point, at fixed Pc. At every ∆θ, the achieved collision probability is
the same for both methods.
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Figure 36: ∆m comparison between AM and SAM with W = 0.1.

For manoeuvres performed very close to the collision, AM is more efficient
than SAM and, therefore, EOP. In both these approaches, mass consumption is
not explicitly inserted as an optimizable parameter; EOP/SAM minimize energy
and collision probability, while AM minimize energy and, indirectly, mass and
collision probability, since in the analytical method the energy-optimal dynamics is
exploited for a transfer to a fixed state situated along the maximum change of Pc
at the time of closest approach. For more distant manoeuvres, AM mass oscillatory
behaviour definitely affect the performances, and SAM/EOP are more efficient. In
Figure 37 it is shown the mass consumption as function of the orbital position, for
fixed Pc, of all the approaches. From this plot it is not possible to infer conclusions
about the behaviour of the single methods as function of the manoeuvre point,
since at every ∆θ the collision probability used for the comparison is different.
For example, the Pc achieved at ∆θ = 0.6 orbits is lower than the one achieved
at ∆θ = 0.3 orbits, and AM consumes more mass to achieve a lower collision
probability, even if the manoeuvre starts earlier. Apart from AM, the behaviour of
the other methods is confirmed by the specific analyses performed in the dedicated
sections: the mass consumption decreases with the distance from the collision. The
fuel-optimal formulations are, as expected, always the most efficient ones. FBC
proved to be always more efficient than FOP but close to the collision, since even
for high Pc, FBC mass consumption does not change. The gap between FOP/FBC
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and EOP/SAM is minimal compared to the difference with AM, especially when
∆θ grows.
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Figure 37: Complete ∆m comparison.

4.8.2 computational time

In this section the approaches are compared in terms of Computational Time
(CT). In Figure 38 CT is plotted as function of ∆θ. FOP and FBC show a constant
behaviour, while CT of EOP, SAM and AM decreases with the decreasing of the
time to collision, which is a reasonable behaviour since the methods are mainly
based on integrations over tc.
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Figure 38: Complete computational time comparison.

In Figure 39 it is shown the comparison between SAM and AM. Because the
CT of both methods is of the order of fractions of second, in order to have results
independent on the specific simulation conditions, every simulation is repeated
100 times and then averaged. As predicted, the analytical method is always faster
than the semi-analytical one.
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Figure 39: Computational time comparison between AM and SAM.

4.8.3 Convergence

In this section the robustness of the numerical and semi-analytical methods is
compared and discussed. Figure 40 shows the percentage of converge of the EOP
random search. Far from the collision, less thrust is needed to achieve the same
collision probability, therefore the costates magnitude is significantly lower than
unity, while the opposite happens for manoeuvres performed close to the collision
point. These considerations reflect in the behaviour of the convergence percentage:
when the initial guesses’ magnitude is |λ0| = 1, the convergence percentage increase
as ∆θ decreases, while the opposite happens for |λ0| = 1e−5.

Table 4 shows when FOP and EOP converges if the ACT is used to guess the
initial costates, as function of ∆θ. Regarding EOP, the algorithm was not able
to reach the desired tolerances, set at 10−10, with less than 800 iterations, for
manoeuvres performed at 2 orbits < ∆θ < 3 orbits. FOP is less sensitive to initial
guesses but it is sensitive to the continuation rate, as it was already mentioned in
FOP dedicated section.

FBC does not show convergence issues, and it is definitely less sensitive to
the continuation method: since the mass consumption is constant, as well as the
burn-time, the continuation rate is not dependant on the manoeuvre point, and the
impulsive ∆v angles proved to be an optimal initial guess for the velocity costate.

The robustness of SAM is tested with the set of initial guesses described in (189).
It converged for the entire set of guesses.
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Figure 40: Convergence trend of the random search of EOP.

∆θ

(number of orbits)
Convergence

FOP EOP

0.1 X X

3 X X

3.25 X

3.5 X

4 X

Table 4: Convergence as function of ∆θ of EOP and FOP
when costates are guessed with ACT.



5
C O N C L U S I O N S A N D F U T U R E D E V E L O P M E N T S

In this chapter the final considerations about this work are reported, as well as the
possible future developments.

5.1 conclusions

5.1.1 Methods

In this work four different approaches to design a collision avoidance manoeuvre
are proposed. The first one consists in the conversion of an impulsive manoeuvre to
a finite-burn arc, through an indirect optimization method. The impulsive manoeu-
vre point is considered the middle point of the thrust arc, and the impulsive ∆v is
distributed over the arc bounded by the initial and final states, which are found
by propagating backward and forward from the impulsive manoeuvre point over
the pre-impulse and post-impulse trajectories. The fuel-optimal formulation of the
OCP requires the use of a continuation method to obtain the optimal discontinuous
control law: the bang-bang thrust profile is approximated with an exponential
function, and the discontinuous profile is gradually achieved through an iterative
procedure.

In the second approach the problem is stated as an OCP where the Pc computed
with the Chan model is inserted in the cost function as terminal cost. For the
FOP, the cost function is J = P(tf, rf) +

∫tf
ti

Tmax
ce
udt, while for the EOP it is J =

P(tf, rf) +
∫tf
ti
aca

T
cdt, where Tmax, ce,ac,u are the maximum thrust available, the

effective velocity, the control acceleration and the thrust ratio u ∈ [0, 1], respectively.
Through the application of calculus of variations, FOP and EOP translate in the
resolution of a TPBVP, with the BCs consisting in the initial state and final costate.
The TPBVP associated to the FOP is solved with a collocation method, while EOP
is solved through the adoption of the shooting method.

These processes are carried on a grid of initial manoeuvre points along the
nominal orbit, and through the application of weights W in the cost function it is
possible to tune the Pc for the same manoeuvre point: the weights change the ratio
between the terminal and the path cost, so that a larger weight on Pc yields a lower
collision probability at fuel’s or energy’s expense.

The analysis of the spacecraft positions at the time of closest approach, after
the manoeuvres, showed the presence of different solution to the FOP/EOP min-
imization problem. A random search for the EOP solutions allowed us to find
four solution branches, which cause discontinuities in the probability profile. In
order to have solutions convergent all to the same branch, the solution found for a
manoeuvre point is used as initial guess for the next ∆θ.

In the third approach the EOP is linearised, and an analytical solution is obtained
by computing and manipulating the STM. The problem translates in a transfer
between two fixed states: the direction of maximum change of Pc at the time of

59
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closest approach, dmax, is found through a simple eigenvalue problem. The final
position of the spacecraft rf is set to be along this direction, in order to obtain
the maximum change of Pc with the least deviation from the nominal trajectory.
Depending on the position of rf along dmax, different Pc are obtained.

The fourth approach starts from the linearisation of the EOP and exploits the
boundary conditions of the TPBVP associated with the EOP to find a direct relation
between the terminal cost in the cost function and rf. The application of different
weights W to the terminal cost J = WP(tf, rf) +

∫tf
ti
aca

T
cdt affects the terminal

boundary conditions of the costates. Through the STM, it is possible to obtain a
set of nonlinear equations to find rf, function of W. Once rf is obtained, Pc is
immediately computed trough an analytical formula. By acting on the weight W, it
is possible to tune Pc for the same manoeuvre point. Then, by means of the STM,
the initial costate and the optimal control law associated to the desired Pc can be
retrieved.

5.1.2 Comparisons

The minimum-fuel formulations obviously result to be the most efficient in terms
of propellant. FBC ∆m, accordingly with the conversion formulation, is constant no
matter the manoeuvre point where the burn-arc starts. FOP ∆m diminishes with
∆θ, as well as the achieved Pc. FBC proved to be always more efficient than FOP
but close to the collision, since even for high Pc, FBC mass consumption does not
change. AM is clearly the less efficient, since the energy-optimal formulation and
the oscillatory behaviour of the mass both contribute negatively to the propellant
consumption. SAM results are consistent with the problem formulation, since
it is the linearisation of EOP. Because of the small deviations from the nominal
trajectory, the linearisation does not introduce visible differences between SAM
and EOP, and the mass profile can reasonably be considered identical for both
the formulations, with the only difference of the SAM discontinuity close to the
collision.

Regarding the computational time, SAM and AM are clearly superior to the
fully numerical methods. The CT of these methods increases with the distance to
collision, unlike the CT of FBC and FOP, that does not depend on ∆θ and remains
approximately constant. Nevertheless, SAM/AM CT results always lower than the
ones of the other numerical methods. As expected, AM is always faster than SAM,
but the difference is almost negligible. FOP resulted the most inefficient. FBC has a
constant CT, since a single continuation rate is valid for all manoeuvre points. EOP
CT decreases with ∆θ, because of the dependency of the shooting method on the
time to collision.

Convergence is a real issues for FOP, because of the high sensitivity of this
method on the continuation rate. On the other hand, when a good continuation
rate is found, there are no more convergence problems. EOP is very sensitive to
the initial guesses because of the presence of different solutions to the optimization
problem. When ACT is used to guess the solution, the algorithm does not converge
for manoeuvre points located more than 2 orbits in advance with respect to the
collision. FBC always converged, as well as SAM.



5.2 future developments 61

5.2 future developments

The main achievement of this work is represented by the ideas behind the different
proposed approaches. The methods themselves are designed in the context of
circular Keplerian orbits, therefore they are suitable for preliminary analysis, but
further investigation has to be done about the influence of orbital perturbations
on the manoeuvres. Particular attention should be paid for the methods based on
the minimum-energy formulation, since the control acceleration could reach values
comparable with the ones of the perturbing accelerations caused by atmospheric
drag and J2.

Regarding the design of the fully numerical methods and SAM, it would be
interesting to find a way to know a-priori the threshold Pc would reach after the
manoeuvre. One way to do it, could be to find a relation between the applied
weights and the last useful value of Pc, right before the solution switches to no-
thrust. In this way it would be possible to know that no matter the manoeuvre
point, the spacecraft would reach at least the desired Pc, once the correct weight is
applied.

In minimum-energy formulation there is no bound on the mass consumption,
therefore a natural improvement could be to add an automatic check in the al-
gorithm. If the mass threshold is exceeded, another manoeuvre at higher Pc but
adequate mass consumption should be computed.
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