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A B S T R A C T

Automotive security has gained significant traction in the last decade
thanks to the development of new connectivity features that have
brought the vehicle from an isolated environment to an externally
facing domain. A vehicle has several embedded Electronic Control
Units (ECUs), these are sensors and actuators used from simple tasks
to safety-critical systems. Controller Area Network (CAN) is the de-
facto protocol to communicate these ECUs, it has proven to be ef-
ficient, however, it presents several drawbacks in this new intercon-
nected scenario. Researchers have presented vulnerabilities on ECUs,
infotainment systems, and telematics units that can be exploited to
gain access to the CAN bus. With access to the bus, an attacker can
interfere with the normal flow of information, effectively altering the
state of the car and putting the safety of drivers and others at risk.

To detect these attacks, security experts and researchers have pro-
posed several countermeasures, including the use of Intrusion Detec-
tion Systems (IDSs) which make for a great part of the published
research. Given the pervasiveness of CAN and the infeasibility of
changing the protocol, IDSs provide a tool to analyze CAN traffic
that does not interfere with the regular operation of the bus.

In this work, propose a data sequence anomaly detection approach
that uses Long Short-Term Memory (LSTM) autoencoders. These mod-
els learn to reconstruct sequences using exclusively normal CAN traf-
fic data. Our system uses the difference between reconstructions and
real sequences to create a distribution of reconstruction errors, which
describe legitimate traffic behavior. Using a set of simulated attacks,
we demonstrate that sequence anomalies effectively alter this distri-
bution and can be used for detection. We demonstrate that LSTM
autoencoders are on average more effective at detecting anomalies on
CAN data than the current state-of-the-art LSTM predictor-based de-
tector; we run our anomaly tests on both detectors using a real-world
dataset and the same experimental framework.



S O M M A R I O

L’ambito della sicurezza informatica in campo automobilistico ha rice-
vuto una crescente attenzione dagli esperti e ricercatori nell’ultimo
decennio. Ciò è dovuto agli sviluppi di nuove interfacce di comuni-
cazione che hanno portato il veicolo dall’essere un ambiente isolato
ad un dominio che si interfaccia con reti esterne. Ogni veicolo ha
diversi sistemi embedded chiamati unità di controllo elettronico (o
ECU). Queste centraline sono composte da sensori e attuatori che
controllano diverse funzionalità, da quelle semplici come il controllo
dei climatizzatori, a quelle critiche per la sicurezza come i sistemi anti
bloccaggio dei freni. Diversi sistemi richiedono i dati forniti da più
ECU, che pertanto devono essere collegate tra di loro. Il protocollo
standard che collega tra di loro queste ECU all’interno del veicolo è
chiamato Controller Area Network (CAN). CAN ha dimostrato di es-
sere un protocollo efficiente che permette la comunicazione in tempo
reale, tuttavia non è stato progettato tenendo conto dei requisiti di
sicurezza informatica, non essendo prevedibile all’epoca l’inclusione,
nel veicolo, di interfacce con sistemi esterni.

Le vulnerabilità delle ECU sono state illustrate da diversi lavori di
ricerca. È stato per esempio dimostrato che i sistemi infotainment o le
unità di telematica possono essere utilizzate per ottenere accesso alla
rete CAN. Ottenuto l’accesso, un attaccante può alterare il normale
funzionamento delle ECU all’interno del veicolo, e quindi mettere a
rischio la sicurezza delle persone attorno al veicolo.

Diversi metodi sono stati proposti per rilevare i potenziali attac-
chi. Tra questi, l’uso di Intrusion Detection System (IDS) è quello
sostenuto dalla maggior parte dei ricercatori ed esperti di sicurezza.
Una delle principali problematiche dell’uso di IDS in campo automo-
bilistico è che questi sistemi devono essere progettati per individuare
attacchi, ma non è possibile ottenere esempi documentati di attac-
chi avvenuti realmente, si possono solo generare attacchi in labora-
torio. Questa limitazione forza l’utilizzo di Anomaly Detection Sys-
tem (ADS), che funzionano creando un modello di riferimento che
rappresenta il comportamento normale del sistema, in modo che qual-
siasi deviazione da questo modello possa essere considerata come
una anomalia.

Nello stato dell’arte si trovano degli ADS per sistemi automotive
che monitorano la frequenza dei messaggi, le caratteristiche fisiche
dei segnali delle ECU, oltre che le sequenze di dati CAN. Analizzare
sequenze di dati ci permette di rilevare anomalie che possono passare
inosservate con altri metodi. Molti ADS di questo tipo usano metodi
di machine learning per creare i modelli di riferimento, tra i quali
ci sono le recurrent neural networks con Long Short-Term Memory



(LSTM). Tra questi metodi si trovano gli autoencoders, una tecnica
di apprendimento non supervisionato che permette di generare una
rappresentazione compatta di sequenze di input. Questo tipo di reti
neurali ci permette di creare un modello del meccanismo generatore
dei dati, che impara a ricostruire le sequenze.

In questa tesi proponiamo un metodo di anomaly detection in se-
quenze di dati CAN usando LSTM autoencoders. Questi vengono
allenati usando traffico CAN di un veicolo reale, senza bisogno di es-
empi di attacchi. Il nostro sistema usa la differenza tra le ricostruzioni
e le sequenze reali per generare una distribuzione degli errori di ri-
costruzione, che descrive le caratteristiche del traffico in condizioni
non-anomale.

Paragonando la distribuzione degli errori in condizioni normali
con le distribuzioni ottenute con sequenze anomale simulate, dimos-
triamo che le seconde sono significativamente diverse rispetto alle
prime. Questa differenza ci fornisce la base su cui creare un mecca-
nismo che distingua sequenze anomale. Dimostriamo mediante es-
perimenti con dati CAN di un veicolo reale, condotti con gli stessi
parametri sperimentali, che gli LSTM autoencoders sono in media
più efficaci nel rilevamento di anomalie dei modelli di predizione su
reti LSTM, che sono l’attuale stato dell’arte.
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I N T R O D U C T I O N

The automotive industry has seen gigantic growth in the last thirty
years due to the rapid development of new hardware and software
components that are embedded to improve efficiency, reliability, and
more user-experience oriented features; this phenomenon was driven
by many factors including environmental and safety regulations, but
also out of market necessity. Before this change vehicles were mainly
mechanic, they included a small amount of networked electronic com-
ponents used to display data on the dashboard and to execute simple
tasks. Nowadays, we can find up to a hundred connected Electronic
Control Units (ECUs) in a modern vehicle. These embedded systems
control most of the vehicle’s functionalities from simple tasks such
as opening or closing the windows, to safety critical components like
the engine control units, anti-lock braking systems, airbag deploy-
ment, accessing diagnostics data, etc. Many of the vehicle systems de-
pend on signals produced by other ECUs and, consequently, units are
required to communicate in an efficient manner due to the safety re-
quirements implied by the automotive system. To interconnect these
units, in 1986 Robert Bosch Gmbh presented the CAN bus specifica-
tion [6], a simple but efficient solution to the problem of interconnect-
ing ECUs that meets the requirements for real-time communication
and low deployment costs. CAN is considered as the de-facto stan-
dard in automotive internal networks even to this day [4] and is also
commonly found in other industrial applications.

Although the introduction of new features strongly improves safety
and driving experience, they have also expanded the attack surfaces
exploitable by potential malicious agents. In order to mitigate these
new threats we must tackle a dual-faced problem: on one we have to
manage systems that were not designed with cybersecurity in mind,
on the other side these cannot be easily replaced or updated given
their pervasive use and the complexity of the automotive supply-
chain; each manufacturer buys components from several providers
which also depend on other suppliers and so on, therefore patch-
ing or substituting specific components can be an impractical or pro-
hibitively expensive task.

This new scenario, consisting of new potential threats and systems
that are difficult to adapt, has caused an increased attention to auto-
motive security. In the last decade, a significant amount of research
work on automotive security has been published, and the attention
on the topic has been steadily increasing ever since. Shortly after
automotive security became an novel and interesting topic, new re-
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search was published demonstrating vulnerabilities and experimen-
tal attacks on controlled laboratory environments [32, 8, 24]. Inter-
est from the academia and from security experts grew rapidly after
researchers presented attacks carried out in real vehicles, catching
attention from the industry and media outlets as well [22, 43, 44].
Countermeasures and Intrusion Detection Systems (IDSs) proposals
for vehicles immediately followed applying the vast knowledge of the
computer security field to the automotive world.

Intrusion Detection System (IDS) monitor the events in a computer
system or network for signs of intrusions In the context of automo-
tive security, we adopt a definition of intrusion that carries the great-
est risk, which refers to malicious agents that have gained access to
the CAN bus. IDS can be classified depending on the methodology
they follow: signature-based, specification-based, and anomaly-based
intrusion detection [35]. Signature and specification-based detection
systems assume the knowledge of known attacks and of a strict de-
scription of the protocol; however, this information is not available
since databases with attack data on CAN in real world scenarios are
not yet available, and specifications on the signals generated by ECUs
are generally not available [60]. Because of the lack of attack exam-
ples, a specification-based IDS is no longer a suitable solution. In-
stead, ADS attempt to characterize normal traffic data and deviations
from this norm are considered anomalous and have been proposed
for CAN security applications [48].

In this chapter, we begin by introducing the motivations behind the
need for anomaly detection on automotive networks, specifically on
the CAN bus. We then introduce an overview of the countermeasures
that have been proposed to make the bus more secure. Next, we out-
line our proposal for the problem of anomaly detection. Finally, we
briefly summarize our contributions and define the outline for this
thesis.

1.1 motivations

1.1.1 Vehicles as targets for cyber attacks

The introduction of remote telematic units, Internet-connected info-
tainment systems, and Bluetooth interfaces have brought to the au-
tomotive market new and interesting connectivity features, but they
have also brought the CAN bus to a connected domain where it is
no longer an isolated network. These new externally-facing interfaces
turn the vehicle into a potential target for cyber attacks. CAN was not
designed with cybersecurity considerations in mind since connecting
the bus to external interfaces was not considered a possibility at the
time of its conception, hence the priorities at the time pushed towards
following real-time system requirements and cost minimization. With
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a lack of authentication, encryption, and access control mechanisms,
the protocol has a significant number of inherent weaknesses [32]. A
combination of new external interfaces, the drawbacks of the proto-
col, and even oversight by some manufacturers, have given security
researchers the tools to successfully compromise devices connected
to the CAN bus, giving them control of the bus and in consequence
effectively altering the state of the vehicle.

These security issues have been exploited by security researchers
to prove the feasibility of attacks. The publication of the most notable
attacks presented by Checkoway et al. [8] and Miller and Valasek [43,
42, 44] demonstrated the feasibility to carry out attacks on vehicles
under real operating circumstances, this served as a concrete proof
of the need for cybersecurity on vehicles. And with this, automotive
cybersecurity stopped being just a theoretical possibility and turned
into a real concern.

To carry out an attack, one of the most crucial steps for an attacker
is successfully gaining access to the CAN bus. Once they are able
to read and transmit messages they can potentially control most of
the vehicle functionality including, but not limited to, controlling the
steering wheel, brakes, speed, airbag deployment, Anti-Lock Brak-
ing System (ABS), and even shutting down the car entirely. For that
reason guaranteeing the correct operation of the vehicle and its com-
ponents is a safety-critical task. Any malicious alteration can lead to
life-threatening situations not only for the driver and their passengers,
but also to surrounding vehicles, pedestrians, infrastructure, the en-
vironment, and more. Additionally, the prospect of autonomous cars
on the streets have created a greater demand to enhance automotive
cybersecurity [69].

1.1.2 Countermeasures

Along with the relatively new importance given to automotive cy-
bersecurity, researchers and security experts have proposed new de-
tection systems and countermeasures to mitigate potential attacks.
These include enhancing the protocol, tools to verify specification-
compliance, ECU fingerprinting, and Intrusion Detection Systems (IDSs).
Some of the proposals to enhance the CAN protocol include introduc-
ing authentication [71, 55]. However, altering the protocol itself is not
considered feasible as it would require significant modifications on
how the existing networks operate; leading to the non-trivial task
of managing firmware patches across millions of existing vehicles
and across complex manufacturer supply chains. In consequence, this
leads to issues with the inclusion of authentication, encryption, and
similar mechanisms used in traditional computer networks, as they
would require modifications of the protocol itself.
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IDSs instead do not require protocol alterations and they do not in-
terfere with regular communication over CAN at all. They can be im-
plemented on a single unit purposed exclusively for detection, and, as
a result, backward compatibility would not be an issue. Additionally,
costs are significantly mitigated with respect to patching firmware
for dozens of ECUs per vehicle. These considerations render IDSs an
appropriate and feasible security mechanism.

Initially, research on CAN-based detection systems focused on ana-
lyzing the frequency of messages transmitted on the bus, this choice
was supported by the fact that most CAN traffic is periodic and be-
cause most attacks tend to alter the frequency at which messages
appear on the bus. However, these proposals fail to detect scenarios
where an attacker is able to mimic the correct frequencies and is still
able to inject malicious data.

Another approach focused on attempting to create ECU finger-
prints, providing a pseudo-authentication mechanism [12, 11, 9]; how-
ever, some proposals have been deemed inadequate in real operating
circumstances, and others have been successfully bypassed by follow-
ing research work [57].

Inspired by the extensive research on time-series anomaly analy-
sis, researchers have developed IDSs that use machine learning algo-
rithms to detect anomalous sequences in data streams, even in auto-
motive applications. In this framework, only sequences of data are
analyzed, looking for suspicious contents that may signal an attack.
The main goal of this approach is to find anomalies in streams of
data, caused by contextual inconsistencies in sequences or by anoma-
lous data points; this implies that it is indispensable to model what
characterizes normal/legitimate traffic.

Understanding the meaning of CAN signals is a crucial step when
evaluating what is the most appropriate approach. Knowing the data
generating mechanism and its semantics is useful when defining what
differentiates legitimate and suspicious messages. However, databases
that specify these semantics are usually kept confidential by vehi-
cle and ECU manufacturers, forcing researchers to look for alterna-
tive approaches to process these signals. In consequence, develop-
ing semantics-unaware systems is an unfortunate but unavoidable
requirement.

1.2 proposed approach

RNNs are considered good modelers for time-series data [1]. They
have been proposed as a solution for anomaly detection problems,
showing promising results even in semantics-unaware scenarios. Ad-
ditionally, they are considered a natural fit when dealing with mul-
tivariate time-series (as is the case of CAN) [67]. Anomaly detectors
using RNNs work by creating a baseline of what constitutes the nor-
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mal behavior of a time-series, and any deviation from such model is
considered anomalous. In the context of intrusion detection this can
signal an attack.

One of the main advantages of RNNs is that they learn to model
sequences of data rather than isolated observations. This allows us
to detect anomalies from single data points outside the normal data
distribution, and, most importantly, from data that is anomalous in
the context of other observations. Such context is defined as sequen-
tial data, just like a time-series. Classical RNN units are rarely used in
practice because they struggle with learning long sequence dependen-
cies, this problem is caused by an uncontrolled growth or shrinkage
of its gradients . Instead, these networks normally use Long Short-
Term Memory (LSTM) units, which are more complex and can learn
values over arbitrary time intervals, overcoming the limitations of
classic RNNs. By learning how a sequence behaves, we can also learn
how to reconstruct it, that is attempting to recreate sequences based
on the data seen before. This has uses in many areas, including dimen-
sionality reduction, removing noise from data [20], and even anomaly
detection.

Detection approaches that use RNNs can be divided into two cat-
egories: prediction-based and reconstruction-based anomaly detection.
Predictors have been used to model CAN traffic data, and have been
shown to perform well in most anomaly scenarios [67, 66]. However,
this approach relies on a very strong assumption stating that CAN
traffic is predictable to some extent; given the semantics-unaware con-
text of our problem, this assumption has to be re-evaluated.
Alternatively, sequence reconstruction approaches have been shown
to be efficient at detecting anomalies in time-series that are inherently
unpredictable [38]. Given the fact that ECUs signal semantics are un-
known to us, we deemed this approach to be a suitable choice for
CAN. To our understanding, this approach has not yet been imple-
mented and tested in an automotive context.

In this thesis, we present an ADS for CAN that applies a reconstruction-
based approach using LSTM autoencoders. This unsupervised ap-
proach learns a latent representation of CAN traffic data sequences
using only normal/legitimate data. The resulting autoencoder is used
to reconstruct sequences, and through this process, we compute the
difference between reconstructed and real sequences. We demonstrate
that in the presence of anomalies, reconstruction errors are signifi-
cantly altered, thus we can utilize this error metric as a tool for de-
tecting attacks. We demonstrate the effectiveness of this approach in
cases where the data semantics are unknown. We compare our ap-
proach with the prediction-based detector presented in previous re-
search, and finally we evaluate the two detectors in the context of
CAN anomaly detection.

Our approach can be summarized in the following steps:
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1. CAN data evaluation. We collect and analyze CAN traffic data,
and classify it based on frequency and variability. From this
process, we are able to infer some structure using an algorithm
proposed in the literature.

2. Simulating attacks. Since CAN traffic databases with attack exam-
ples are not available, we use simulated attack data to test our
system. Such data is based on attacks presented in published
work, and on threat models of previous research.

3. Predictor-based detector replication. We implement the predictor
proposed in previous research, using our own data to evaluate
its performance.

4. Reconstruction models as anomaly detection mechanism. We evalu-
ate the use of autoencoders to reconstruct CAN data sequences,
and propose an architecture based on our dataset.

5. Evaluation. Finally, we test the predictor and autoencoder with
the same anomalous data, evaluating and comparing their per-
formance.

1.3 contributions

In this thesis, we propose a novel approach to anomaly detection of
data sequences in automotive networks using LSTM autoencoders.
Our autoencoder is trained to reconstruct the normal CAN traffic
obtained from a real vehicle, and requires no prior availability of at-
tack examples to both train the model and to fine-tune its anomaly
scoring mechanism. We compare our proposal with a state-of-the-
art prediction-based detector found in the literature. We show that,
on average, the autoencoder outperforms the predictor under the
same anomaly scenarios, demonstrating that an autoencoder can ei-
ther complement the predictor in a detection system or even substi-
tute it.

Our objectives for this work can be summarized as:

• Implement and evaluate the performance of the state-of-the-art
LSTM predictor approach with our own data, employing the
same semi-supervised approach as in the reference work.

• Assess the use of autoencoders as time-series modelers, for which
we do not make any assumptions on its predictability, using a
completely unsupervised approach.

• Compare both approaches using the same data for both training
and anomaly testing. Evaluate their use in automotive intrusion
detection.

The key contributions of our work are:



1.4 structure of the work 7

1. The presentation a reconstruction-based approach using LSTM
autoencoders that can efficiently model normal CAN traffic.

2. The demonstration that using autoencoders in an unsupervised
detection scheme can effectively detect anomalies in CAN data
under different attack scenarios.

3. Proposing the use of autoencoders as a suitable addition to in-
trusion detection systems for vehicles that can either work to-
gether with predictor approaches or even substitute them.

1.4 structure of the work

This thesis is organized as follows:
In Chapter 2 we introduce the necessary background on CAN,

present a preliminary analysis of the CAN traffic data we use through-
out this work, and introduce an approach to find potential structure
in the data.
Chapter ?? introduces the relevant background on CAN vulnerabili-
ties, an overview of the published attacks, and a review the state-of-
the-art of detection systems for in-vehicle networks. We also give an
overview of RNNs, LSTMs, and autoencoders. We conclude with an
overview of the state-of-the-art on anomaly detection using RNNs.
Chapter 4 introduces our solution to the problem, here we describe
the threat model and define how we evaluate performance. We follow
with an explanation of predictor-based detection. Then, we present
an autoencoder-based detection approach. We conclude by explain-
ing how these two methods are evaluated and compared.
In Chapter 5 we present the experimental setup and how we pre-
pare the data. We follow with an explanation of how we train the
models and how we set up the post-processing. We continue by pre-
senting the detection results, showing how detectors perform under
the anomaly test scenarios.
Finally, in Chapter 6 we summarize our work, draw our conclusions,
and define the path for future work.





2
T H E C O N T R O L L E R A R E A N E T W O R K

2.1 introduction

In this chapter we introduce the Controller Area Network (CAN), the
most prevalent protocol in automotive networks, and we frame it in
a cybersecurity context.

We begin by describing the protocol, including the assumptions
and requirements taken into account during its design. We focus on
the relevant aspects within the context of our anomaly detection prob-
lem. We then present a preliminary analysis of CAN traffic data ob-
tained from a real vehicle. This analysis is an overview of the data
we use in our experiments, used to obtain insight about the behavior
of the different IDs in the bus. We conclude this chapter by present-
ing the field identification algorithm, used to find potential structures in
CAN messages.

2.2 overview of can in automotive

CAN is a serial bus communication protocol, it defines the lowest
layers of the Open Systems Interconnection (OSI) model, that is, the
physical and data link layer. CAN was designed for distributed real-
time control [6], and is suitable for embedded applications and real-
time systems, providing data transfer rates up to 1Mb/s [27]. It is
widely used in industrial machinery but is most commonly known
for its widespread use in vehicles internal networks. In fact, it has
been used as a mandatory standard for cars manufactured in Eu-
rope since 2001, and in the United States since 2008 [60]. In automo-
tive applications, the protocol is used to connect the ECUs placed all
around the vehicle. These units control several subsystems that need
to exchange data to meet functional requirements while also fulfilling,
among others, requirements on fault tolerance, real-time communica-
tion, arbitration policies, among others.

CAN runs on a fairly simple physical medium, typically consisting
of two twisted-pair wires and one 120-Ohm resistance on each end
of the bus for termination. The two wires are known as CAN-H and
CAN-L, and they are also used as a fault tolerance mechanism. Dur-
ing transmission, the bus uses differential signaling that raises the
voltage on one wire and drops it in the other [60]. Typically, buses
with two lines are exclusively used for safety-critical tasks and run
at high speeds. Non-critical components typically use a simpler and
cheaper single wire significantly lower speeds, e. g. air conditioning,
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Figure 2.1: Example of a CAN network with two nodes connected using
CAN-H and CAN-L.

door control modules. Traffic on the high-speed bus is usually char-
acterized by the presence of high-frequency messages, where ECUs
transmit on average every 10-20 milliseconds. Additionally, high pri-
ority units tend to be very active in the network, so high-frequency
messages tend to be associated with important tasks and safety-critical
modules [27], making them a higher priority when designing security
systems.

Figure 2.1 illustrates a simplified view of a CAN bus, where nodes
are individual ECUs with a CAN transceiver, a CAN controller, and
a microcontroller.

It is common to find separate buses in a vehicle, the internal net-
work is usually divided into subdomains each with its own bus. This
provides some network segmentation that could potentially isolate
issues that occur in one of the buses. However, some components de-
pend on data that is transmitted on buses from different domains;
because of this, manufacturers use gateway bridges to connect differ-
ent buses [32]. For example, a Volvo XC90 has separate buses con-
necting up to 40 ECUs[27], as illustrated in Figure 2.2. In this net-
work, safety-critical control modules like the Engine Controle Mod-
ule (ECM), Brake Controle Module (BCM), and Transmission Cont-
role Module (TCM) are connected to a bus running at 500 kbps. A
separate network, running at 125 kbps, connects non safety-critical
components like the climate control, and infotainment modules. In
this vehicle, the central electronic module acts as a gateway between
the two buses. Another example of network bridging can be found in
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Powertrain and chassis Body electronics
TCM Transmission control module CEM Central electronic module
ECM Engine control module SWM Steering wheel module
BCM Brake control module DDM Driver door module
BSC Body sensor cluster REM Rear electronic module
SAS Steering angle sensor SWM Steering wheel module
SUM Suspension module DDM Driver door module
AUD Audio module PDM Passenger door module

REM Rear electronic module
Infotainment/Telematics CCM Climate control module

MP1,2 Media players 1 and 2 ICM Infotainment control
PHM Phone module UEM Upper electronic module
MMM Multimedia module DIM Driver information module
SUB Subwoofer AEM Auxiliary electronic
ATM Antenna tuner module

Fig. 7. Distributed control architecture for the Volvo XC90. Two CAN buses and
some other networks connect up to about 40 ECUs. (Courtesy of Volvo Car Corpo-
ration.)

are due to the fact that trucks are configured in a large number of physical
variants and have longer expected life times. These characteristics impose
requirements on flexibility with respect to connecting, adding, and removing
equipments and trailers.

The control architecture for a Scania truck is shown in Fig. 8. It consists
of three CAN buses, denoted green, yellow, and red by Scania due to their
relative importance. The leftmost (vertical) CAN contains less critical ECUs
such as the audio system and the climate control. The middle (vertical) CAN
handles the communication for important subsystems that are not directly
involved in the engine and brake management. For example, connected to this

Figure 2.2: Control architecture of a Volvo XC90, network segmentation is
present to separate different components. Taken from [27].

the 2010 Ford Escape, where the Accessory Protocol Interface Module
and the Instrument Cluster effectively bridge both [CAN] buses [43].

2.2.1 CAN packets

CAN operates as a broadcast network connecting all ECUs that com-
municate on the bus, with no sender or receiver information attached.
The ID, specified at the beginning of every frame, defines the mean-
ing of the data being transmitted rather than its origin. It is important
to note that in the network, an ID should be exclusively sent by only
one ECU, however, this is not a guaranteed and it must be taken
into account when designing systems that analyze CAN packets. IDs
also define the priority of messages through arbitration, which is de-
termined according to the frame’s ID; with lower IDs indicating a
higher priority message.

CAN provides four different kinds of frames, each with its own
semantics and structure. There are the data, remote, error, and overload
frames:
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Figure 2.3: CAN Data Frame.

• Data frames carry data from a transmitting ECU. For example, a
frame containing the steering wheel angle.

• Remote frames are used to request the transmission of a data
frame, using the ID to signal which frame is needed. For exam-
ple, A is the unit responsible for transmitting messages with ID
0x01, another unit B can send a remote frame with ID 0x01 to
request A to send a data frame. Usually these frames are not
used, as data frames are typically sent at specific time intervals.

• Error frames are transmitted when a bus errors occur. For exam-
ple, when badly formed frames are transmitted.

• Overload frames signal a delay of the next data frame because the
transmitting ECU is overloaded at the moment.

In the context of this thesis, we only focus on the data frame. When
reading data from the bus, the CAN controller automatically handles
overload and error frames, so we only record data frames. Remote
frames are rarely used, so they are practically almost never seen on
the bus.

As illustrated in Figure 2.3, each frame is composed of the follow-
ing fields:

1. SOF, start of frame that uses a dominant bit, i.e. 0.

2. An arbitration field that can use either an 11-bit or extended
29-bit ID, depending on the protocol version in place. This field
consists of:

a) The base ID, which is 11 bits.

b) SRR, substitute remote request, typically used for extended
packets.

c) IDE, Identifier extension. Set to 1 if it uses an extended ID,
otherwise set to 0.

d) Extended ID, with additional 18 bits.

e) RTR, Remote transmission request. Used the message is a
request frame.

3. The control field consists of 2 reserved bits followed by a DLC,
specifies how many bytes will be transmitted. Its value can vary
between 0 and 8 bytes.
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4. Data field, the payload of the frame. It can be 8 bytes at maxi-
mum, length specified by the DLC.

5. The Cyclic Redundancy Checksum (CRC) field is used for data
integrity check. It is used by a receiver to check for possible
data corruption. A CRC delimiter is set afterwards, with its bit
always set to 1.

6. ACK is used as acknowledgment and is two bits long. A trans-
mitter sets these two bits as recessive bits (i.e. 1), and a receiving
unit acknowledges a successful transmission by setting the first
bit to a dominant bit (i.e. 0). If the ACK fails, an error frame is
sent into the bus and the transmitter of the original frame must
retransmit it. The ACK delimiter is always set to 1.

7. Lastly, an EOF consists of seven consecutive recessive bits, indi-
cating the end of the frame.

Additionally, data frames are separated from each other by an inter-
space frame, consisting of three recessive bits. During their transmis-
sion, no ECU is allowed to transmit into the bus to guarantee a mini-
mal gap between frames.

transmitting payloads over 8 bytes . In some scenarios, it
is required to transmit messages with a payload bigger than 8 bytes.
The ISO-TP Protocol 15765-2 specifies the transmission of bigger pay-
loads, it works by segmenting messages into multiple frames with
additional meta-data, which is used to reconstruct the entire message
at the receiving unit- This protocol allows a significant payload size
increase summing in total 4095 bytes per packet, and is commonly
used in diagnostic tasks [18].

2.2.2 OBD

OBD is a subset of the Unified Diagnostic Services (UDS) protocol,
used by manufacturers and technicians to provide services for diag-
nostics, calibration, and ECU firmware management. Some diagnos-
tic operations include additional security mechanisms because of the
risk factors involved; a challenge-response authentication mechanism
is put in place to allow any modification or access to the ECU state.

Most vehicles are equipped with an OBD port, to allow an exter-
nal party to run diagnostic queries. The port is directly connected
to the CAN bus, and is usually found below the steering wheel [60].
One of the most common uses of the OBD port is to query and clear
fault codes stored in some of the car modules. Routine checks are per-
formed by one of the ECUs. When any subsystem encounters a fault
or error, a Diagnostic Trouble Code (DTC) is stored in the Power Train
Control Module (PCM), either in memory or persistent storage, and
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2 Data Overview

Check how many entries we have

In [2]: ## Load the data
filepath = os.sep.join(data_path + ['alfa2.csv'])
data = pd.read_csv(filepath, dtype={"Timestamp": float, "ID": str, "DLC": int, "Data": str})

data = data.iloc[:(len(data)//2)]

#Number of unique IDs
print("CAN IDs description:")
print(pd.Series(data['ID']).describe())

CAN IDs description:
count 784888
unique 76
top 0FB
freq 29725
Name: ID, dtype: object

In [3]: pd.set_option('display.max_colwidth', -1)
pd.set_option('display.float_format', lambda x: '%.5f' % x)
data[['Timestamp', 'ID','Data', 'DataBin', 'DataBin_nc']].head()

Out[3]: Timestamp ID Data \
0 1549035061.89032 0FB 00121FB401000186
1 1549035061.89049 0F4 1900000000000121
2 1549035061.89073 1EF 8800000000000EDF
3 1549035061.89095 256 0000007FCC410000
4 1549035061.89120 259 000008B670000000

DataBin \
0 0000000000010010000111111011010000000001000000000000000110000110
1 0001100100000000000000000000000000000000000000000000000100100001
2 1000100000000000000000000000000000000000000000000000111011011111
3 0000000000000000000000000111111111001100010000010000000000000000
4 0000000000000000000010001011011001110000000000000000000000000000

DataBin_nc
0 0100100011111101101000000001000110000110
1 110010000000000100100001
2 1010000111011011111
3 00000
4 1100111

There are over 5.4 million packets in this dataset, and a total of 83 unique IDs

2

Figure 2.4: Example of individual recordings of CAN traffic data of an Alfa
Giulia Veloce vehicle.

can be displayed as a warning on the dashboard. A typical example
of the use of the OBD port is clearing the “Check Engine” indicator
on the dashboard. Through the port it is possible to know the reasons
behind this warning and to turn the indicator off.

While it was originally meant to help technicians with their repair-
ing/diagnosing tasks, the OBD port is also used by telematics after-
market units connected directly to it. These units provide telematics
information to drivers and insurance companies [19].

2.3 preliminary analysis of can traffic

For this thesis, we collect logs of CAN traffic data from a real vehicle
to use on our experiments. After collection, the first step is to study
the data at hand. We are able to obtain some insight into our dataset,
despite the lack of signal-semantic knowledge.

In this Section, we present our dataset and study its characteristics.
These include obtaining the number of IDs, packet counts and their
frequency, and how the available space is used. Finally, we study the
symbol counts for each ID, which gives us a basic understanding of
the behavior of the data contents.

2.3.1 Data collection

We gathered CAN messages from a 2017 Alfa Romeo Giulia Veloce,
and use them to build our dataset. We collected the data from the
OBD port, which allowed us to read CAN traffic directly from the
bus. The data gathering process took place during a driving session
that lasted 65 minutes. As data recording was taking place, the vehicle
was driven inside the city and also on the highway.

2.3.2 Dataset

Our dataset consists of over 6 million messages. Each message has
four variables which define the columns of our dataset. We describe
them below, and show an example of the recordings in Figure 2.4:
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2.0.1 DLC use

We can see that most of the packets use all the available 8 bytes of the data frame.

In [53]: ## Let's check how many bytes of the Data frame are used by checking the DLC
print(pd.Series(data['DLC']).describe(percentiles=[.01, .1, .18]))

count 5,471,373.00000
mean 7.49818
std 1.18750
min 1.00000
1% 3.00000
10% 6.00000
18% 8.00000
50% 8.00000
max 8.00000
Name: DLC, dtype: float64

Now let’s check the IDs that produce the most packets:

In [4]: ser = pd.Series(data['ID'])
print('Top 20:\n',ser.value_counts().iloc[:20])

Top 20:
104 207833
0F0 207833
0DE 207832
0FF 207831
0FC 207831
100 207831
0F4 207830
0FB 207830
120 207828
0FA 207826
192 207700
0FE 207399
101 207399
0EE 207399
103 207399
107 207399
11C 207399
116 207399
1F7 103916
1F0 103916
Name: ID, dtype: int64

In [5]: fig, ax = plt.subplots(figsize=(16, 8))
p = sns.barplot(x = ser.value_counts().keys(), y = ser.value_counts().values)

3

Figure 2.5: DLC usage in our CAN recordings dataset.

• Timestamp. Numerical variable that indicates the time when
the message was transmitted. It represents Unix time (also known
as POSIX time, or Unix epoch time), which counts the number
of seconds since midnight of January 1st, 1970.

• ID. An hexadecimal value representing the message identifier.

• DLC. An integer for the data length code, it specifies the pay-
load size.

• Data. Payload for a specific message in hexadecimal representa-
tion.

2.3.3 Data Characteristics

To have a better understanding of the characteristics of our dataset we
perform a preliminary analysis on the CAN traffic logs we collected.
Here we present our most relevant findings.

id use . We identify 83 unique IDs in our dataset, each appearing
at different frequencies.

dlc use . By studying the distribution of DLCs, we observe that
most packets use all the available 8 bytes of the data frame. 89% of
messages set their DLC to 8 bytes, around 10% to 6 bytes, and the rest
make use of 1 to 3 bytes for their payload. Additionally, we confirmed
that every ID uses a constant DLC throughout the dataset, so the size
of the data field can be considered constant.

Despite the fact that most IDs use all the available payload size,
several of the data buts remain constant throughout our dataset. We
observe that constant bits are a common factor across IDs, albeit each
one in different distributions. In table 2.1, we show the varying de-
grees of constant bits used across a list of IDs.
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ID DLC value Non-constant bits

0DE 48 41

0FF 64 42

100 64 43

0F0 64 51

0EE 64 60

0FE 64 55

0FB 64 40

104 64 47

116 64 52

11C 64 49

0FC 64 37

1F7 64 50

1FB 64 25

Table 2.1: Number of bits used for each ID as set in its DLC field, and how
many of those bits are non-constant in our dataset.

packet counts per id. A handful of IDs produce most of the
packets found in the dataset. 18 IDs alone account for 56% of the
total traffic, as illustrated in Figure 2.6.

packet frequency. By computing the timestamp differences be-
tween messages with the same ID, we can estimate their respective
transmission frequency. This allows us to determine which IDs trans-
mit messages at a periodic rate, and which ones are aperiodic. 73

ID show seemingly constant frequencies, confirming the assumption
that most CAN traffic is periodic. We illustrate the timestamp differ-
ences for each ID in Figure 2.7.
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Figure 2.6: Packet counts by ID, from a sample of the CAN dataset.
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Figure 2.7: Estimated frequencies for all IDs in the CAN dataset. The x-axis represents the different IDs, and the y-axis the estimated frequency.
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We divide periodic IDs into three categories depending on their
estimated frequency. We present this classification in Table 2.2, along
with how many IDs correspond to each category.

Classification Estimated frequency (s) Number of IDs

High Frequency < 0.025 29

Medium Frequency [0.25, 0.5] 20

High Variability >0.5 27

Table 2.2: Classification of IDs according to their estimated frequency (in
seconds) for our dataset.

symbol counts For our data sequence anomaly detection prob-
lem, the most important field to consider is the data field (i.e. its
payload). The field can be up to 64 bits long, allowing every ID to pro-
duce at most 264 unique data symbols. After analyzing the data, we
can observe that several IDs only use a small set of unique symbols,
while others continuously create new ones. We count the number of
unique symbols to define the variability of each ID, and divide them
into three categories: Low, Medium, and High variability IDs. We fol-
low a similar classification as used in previous research [66].
Table 2.3 shows the ranges of unique symbols for each category, and
how many IDs belong to each one; we can observe that most IDs have
high symbol variability. We also observed that 23 IDs only produce
one unique symbol.

Classification Number of unique symbols Number of IDs

Low Variability <100 23

Medium Variability [100, 500] 7

High Variability >500 30

Table 2.3: Classification of IDs according to their unique symbol count in
the CAN dataset.

In Figure 2.8, we illustrate the symbol creation rate for four high
frequency IDs. This shows that CAN IDs continually create new sym-
bols at a seemingly steady or growing rate.

For this work, we choose 12 IDs that belong to both high-frequency
and high symbol variability categories, with more than 1% of their to-
tal symbol count being unique. We chose these characteristics as they
are most likely related to safety-critical systems, and also because
they present the greatest challenge to model given their symbol cre-
ation rates. The chosen IDs are:
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Figure 2.8: Symbol creation rate for four CAN IDs.

0DE, 0EE, 0FB, 0FC, 0FE, 0FF, 1F7, 1FB, 11C, 100, 104, 116.

2.4 finding structure in can data

The data field typically has a substructure of its own. It is divided into
several fields, each one with its own specific semantics. For example,
a single packet could contain both data on the vehicle speed and
revolutions per minute (rpm), both represented as 32-bit integers: the
speed being stored on the first four bytes of the data field, and rpm
in the remaining ones. Usually, not all the available bits are used, and
some are set to a constant value. These bits seem to act as separators
in the data frame. We can analyze the symbol variability to define
potential substructures in the messages. In Figure 2.9, we illustrate
the bit average values for a list of high-frequency CAN IDs, using
over 200,000 logged CAN messages from the dataset. From this figure,
we can visually identify some potential separators.
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Figure 2.9: Bit average values for a single CAN IDs.

2.4.1 Field Identification Algorithm

To identify potential structures in CAN frames, Markovitz and Wool
[41] proposed an algorithm that finds semantically meaningful struc-
ture in CANs messages when ECUs specifications are not previously
known. The structure of messages consists of a concatenation of po-
sitional bit fields of fixed length. By collecting CAN traffic logs, the
authors attempted to classify the fields present in the data frames.
This resulted in the identification of four field types with clear se-
mantics: constant, multi-value, counter, and sensor. This classification
depends on factors such as the length of each candidate field and its
respective amount of unique bit counts.

field types Each field can be classified as:

1. Constant. Sets of bits with non-changing values.

2. Multi-Value. Fields that exhibited a set of few different unique
values. A minimum field length (denoted as TLmin

) and a maxi-
mum symbol count (denoted as TVmax

) are set as thresholds to
classify fields as multi-value.

3. Counter. Values that behave like a cyclic counter with minimum
and maximum values.

4. Sensor. Represent a measurement of a physical quantity, these
are continuous with some noise. In practice any field with a
symbol count greater than TVmax

.

However, in the experiments Counter and Sensor were grouped into
a single class. A procedure to separate these categories was left for
future research.
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procedure Using sequences of CAN data as input, the algorithm
consists of the following steps:

1. Split into fields. Create a 64×64 matrix f to represent all possible
divisions. In this lower triangular matrix, columns represent the
index of the fields’ left bit. Rows represent each field’s length.
For example, a candidate in f[10,4] represents a field that starts
at index 4 and has a length of 10 bits. Similarly, f[64,1] represents
a candidate field that uses the whole message.

2. Count Values. For each candidate in f, count how many unique
values k exist in the given dataset.

3. Types and Scores. Set a field type for every candidate and com-
pute a score for each one. For each candidate, types and scores
are set using the following criteria:

a) Set to Constant if the number of unique values equals one.
The score is set as the length of the field.

b) Set to Multi-Value if the unique values are less than TVmax
,

and its length is at minimum TLmin
. The score is set as the

length of the field.

c) Set to Sensor if the candidate was not set to the other types.
The score is computed as k2

sl
, where k is the number of

unique values for the candidate field, and l is the length.

4. Choose fields. Iteratively traverse the candidates matrix following
this priority scheme: Constant � Multi-Value � Sensor. When
comparing candidates of the same type, its priority is set by
its score, with higher scores indicating higher priority. At each
iteration, the algorithm removes all overlapping fields until no
candidates remain.

The algorithm outputs a list of disjoint fields, each containing values
indicating its index, length, type, number of unique values, and score.
An example of the output for one CAN ID is shown in Table 2.4.

However, the greedy algorithm proposed by Markovitz and Wool
works by sequentially finding local optima in the group of possible
candidates, and in consequence cannot guarantee that the results are
optimum.

The field classification algorithm by Markovitz and Wool was pro-
posed in a research paper in anomaly detection for automotive net-
works. Their ADS proposal is based on Ternary Content Addressable
Memorys (TCAMs), commonly used in network switches and routers.
However, their ADS proposal was not tested, and their main contri-
bution is the field identification algorithm.



2.4 finding structure in can data 23

Type Index Length Category unique symbols

MULTI-VALUE 0 5 LOW VAR 10

SENSOR 5 11 HIGH VAR 197

CONST 16 8 N/A N/A

MULTI-VALUE 24 5 LOW VAR 10

SENSOR 29 6 MID VAR 64

MULTI-VALUE 35 5 LOW VAR 7

SENSOR 40 6 MID VAR 64

CONST 48 4 N/A N/A

SENSOR 52 12 HIGH VAR 4081

Table 2.4: Resulting field division from the field identification algorithm by
Markovitz and Wool. It consists of a list of disjoint fields for a
single CAN ID.
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T H R E AT M O D E L & R E L AT E D W O R K

3.1 introduction

In this chapter we present the threat model and the relevant back-
ground on anomaly detection on CAN. We divided this chapter into
two parts. In the first part we summarize the vulnerabilities and at-
tacks targeting the CAN bus, and from this analysis we present the
threat model. In the second part of this chapter, we present a sum-
mary of the most notable detection systems for CAN classified by
their common characteristics. Then we present an introduction to
RNNs, LSTM, and autoencoders; this section provides the context
needed to understand some of the approaches used in anomaly de-
tection. We conclude this chapter by presenting an overview of the
solutions to anomaly detection on multivariate time-series, including
their use in automotive applications.

3.2 threat model

3.2.1 Overview of vulnerabilities

Security experts and researchers have been able to compromise the
security of vehicles due to the significant expansion of attack surfaces
on automotive systems. New attack vectors exist as a result of intro-
ducing new connectivity features, combined with several vulnerabil-
ities that exist in the vehicle ECUs and other components connected
to the bus.

Some of the earliest experimental assessments on automotive vul-
nerabilities were published at the beginning of the decade. Koscher et
al.[32] performed an experimental security analysis of modern vehi-
cles, showcasing the issues on their networks and demonstrating that
almost every ECU in the vehicle can be compromised. They begin by
highlighting the inherent security challenges that the CAN protocol
presents, which include:

• The broadcast nature of the protocol.

• Its fragility to Denial of Service (DoS) attacks, easily imple-
mented by flooding the bus with high priority messages.

• Lack of authentication.

• Weak access control. It can allow an attacker to read or mod-
ify the state of ECUs, and to reflash their firmware. Koscher et
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al. showcased examples of how the challenge-response autho-
rization mechanism in the protocol specification can be circum-
vented by a determined attacker.

Automotive protocols standards specify countermeasures to avoid
some safety risks, for example, not allowing firmware updated while
the vehicle is moving. However, in some cases, manufacturers im-
plement them poorly or completely ignore them. Koscher et al. [32]
found instances where components and units do not follow the secu-
rity requirements of the protocol, which can be exploited by malicious
agents to alter the state of the vehicle. The most notable issues they
found include:

• Allowing unsafe commands to be accepted by ECUs while the
vehicle is being driven. For example, executing the “disable all
CAN communications” command and reflashing firmware.

• Non-compliant access control. It allowed the researchers to read
sensitive memory and alter the state of several units. This was
caused due to a poor implementation of the challenge-response
authentication mechanism, which used hardcoded response keys.

• Imperfect network segmentation. Because of the dependencies
between components, data has to be exchanged across buses
and domains, and so gateways are put in place to bridge these
networks. Researchers discovered that they were able to repro-
gram these gateways from the low-speed bus, going against the
protocol specifications that state that gateway reprogramming
must only be possible in the high-speed network.

Later, Checkoway et al. [8] studied additional vulnerabilities, on
their work they classified automotive attack surfaces into three cate-
gories:

• Direct/indirect physical access to the CAN bus (e.g. OBD port,
CD players, USB interfaces, infotainment systems). These present
lack of encryption, authorization, and authentication.

• Short-range wireless (e.g. Bluetooth, RF-based remote keyless
entry, etc.). These present buffer overflow vulnerabilities, weak
encryption, and a lack of authentication and authorization

• Long-range signals (e.g. GPS, satellite/digital radio, cellular in-
terfaces). These present weak encryption, and a weak of authen-
tication, and weak authorization mechanisms.

Long-range surfaces have been shown to have surprisingly weak secu-
rity mechanisms. Some examples of this include the use of common
passwords in Internet-facing components and the re-use of encryp-
tion keys [52]. Each of these surfaces presents different vulnerabilities
that can be exploited with varying levels of difficulty, but they have
been experimentally proven to be feasible.
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3.2.2 Attacks on the CAN bus

Attacks are offensive maneuvers that target information systems to
gain unauthorized access or use of an asset, they are carried out by
exploiting one or several vulnerabilities present in a computer system.
In an automotive context, they can originate from components inside
or outside the CAN bus, taking advantage of several vulnerabilities
that exist in CAN, as presented in Section 3.2.1. In this section, we
present some of the most notable research on experimental attacks
on CAN. Our goal is to provide an overview of the attacks and their
effects, and most importantly, to synthesize this information so we
can build a threat model. More comprehensive lists on attacks target-
ing CAN can be found in literature [42, 56, 52]

Koscher et al. [32] presented several methodologies to carry out a
variety of attacks. Among these, they showed an attack that exploits
the vulnerabilities on the access control mechanisms found in ECUs,
allowing an attacker to inject arbitrary code in the ECU memory us-
ing diagnostic messages, specifically the DeviceControl service. This
allowed them to reprogram the functionality of the unit, which can
be used to inject malicious messages into the CAN bus as if they were
coming from a legitimate unit. Another attack consisted of injecting
carefully crafted data frames which enabled them to control several
components of the vehicle. The authors demonstrated it was possi-
ble to display false information on the instrument panel cluster, or
displaying bogus speedometer and fuel level values. These crafted
frames were also used to control some of the car functionalities, such
as: opening the trunk, unlocking the doors, controlling the horns, en-
gaging the brakes, killing the engine.

Hoppe et al. [24] demonstrated that by injecting messages at high
rates, they could trick ECUs into accepting malicious input, effec-
tively impersonating actuators. They managed to control windows,
turn off warning lights, and fake the state of the airbag control sys-
tem which had been removed. These attacks worked by continuously
flooding the bus with fabricated messages, “drowning” the original
signals. Additionally, they managed to take control of a gateway in
the network, effectively gaining access to different domains and sub-
networks.

Miller and Valasek [43, 42] work is one of the most notable on cy-
berattacks targeting vehicles, having a comprehensive assessment of
vulnerabilities on real cars and documented examples of attack tests.
Their experiments were carried out on real vehicles, where they were
able to tamper the steering, braking, acceleration, and other function-
alities. The attacks were carried out by directly fabricating specific
frames using a compromised ECU. They also demonstrated a DoS
attack that floods the bus with high priority messages, which causes
subsystems to malfunction. In a later work [44], they found additional
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Figure 3.1: OBD Bluetooth Dongle by Continental used to transmit telem-
atics data (available at: https://www.continental-automotive.
com/en-gl/Trucks-Buses/Interior-Cabin/Tachographs,

-Telematics-Services/Tolling-Telematic-Solutions/

Telematics/OBD-BT-Dongle)

vulnerabilities that could be exploited remotely, one of the most crit-
ical included opening ports over a cellular connection through an
authenticated port, and with it gain access to the CAN bus. The au-
thors were able to take full control of a Jeep Cherokee wirelessly, al-
lowing them to shut down the engine of a moving vehicle [22]. They
also demonstrated an attack targeting the collision prevention system,
where they were able to engage the brakes by impersonating the sys-
tem without the need of injecting malicious messages at high rates.

Foster et al. [19] demonstrated how aftermarket telematics com-
ponents can be exploited remotely by taking advantage of several
vulnerabilities found in them. They studied Telematic Control Units
(TCUs) with Bluetooth or cellular interfaces, which are widely avail-
able. These units are directly connected to the OBD-II port and give
drivers and insurance companies data on how the vehicle is operat-
ing. Figure 3.1 illustrates an example of a TCU typically found on
the market. Since these units are connected to OBD they have direct
access to the CAN bus. Their vulnerabilities can be exploited locally
and used externally, i.e. start with physical access which then could
launch a webserver with open ports and telnet. It was verified that all
units sold by a specific manufacturer used the same SSH key, mean-
ing that an attacker could buy a unit, manually retrieve the key, and
use it to gain access to other TCUs.

Cho and Shin [10] and Palanca et al. [51] took advantage of the
error handling mechanism on the CAN protocol to compromise the
availability of a target ECU, and even the whole bus. This approach
uses the bit monitoring checks to deceive the target unit that there
was an error with the message it was trying to transmit. This causes
a chain of errors that eventually drive the target into bus-off mode,
shutting them off the bus.

https://www.continental-automotive.com/en-gl/Trucks-Buses/Interior-Cabin/Tachographs,-Telematics-Services/Tolling-Telematic-Solutions/Telematics/OBD-BT-Dongle
https://www.continental-automotive.com/en-gl/Trucks-Buses/Interior-Cabin/Tachographs,-Telematics-Services/Tolling-Telematic-Solutions/Telematics/OBD-BT-Dongle
https://www.continental-automotive.com/en-gl/Trucks-Buses/Interior-Cabin/Tachographs,-Telematics-Services/Tolling-Telematic-Solutions/Telematics/OBD-BT-Dongle
https://www.continental-automotive.com/en-gl/Trucks-Buses/Interior-Cabin/Tachographs,-Telematics-Services/Tolling-Telematic-Solutions/Telematics/OBD-BT-Dongle
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3.2.3 Modeling attacks

The attacks on the CAN bus presented in literature can be synthe-
sized according to the used methodology:

• Packet Sniffing. Since CAN is a broadcast protocol, any ECU
connected to the network can read all traffic passing through the
bus. Sniffing can be used to either forward data to a malicious
agent, learn the behavior of a target ECU, and for replay attacks.

• Forging messages

– Masquerade attack. A compromised component with ac-
cess to the network can inject data in the bus impersonat-
ing a target ECU. Attacks of this kind usually inject vast
amounts of messages to fool its target into accepting mali-
cious frames, instead of the legitimate data. They can also
be executed following the same injection rates as the tar-
get, but usually require the target to be shut off from bus
communications. These attacks are usually referred to as
masquerade attacks [11]. Which approach to use depends on
the goal of the attack, and also the requirements needed to
successfully change the state of a target ECU, but it almost
always requires revere-engineering the target unit.

– Replay attack. By sniffing previously transmitted messages,
an attacker can collect data and retransmit it on the bus at
a later time. The purpose of a replay attack is to reenact a
previously seen state by using the sniffed data.

– Fuzzing. Reverse-engineering CAN messages is a neces-
sary step to achieve specific changes in the vehicle state,
e.g. forging odometer data. On the other hand, fuzzing
consists of injecting random or partially random messages,
and it can be used when reverse-engineering is not possi-
ble. Fuzzing has proven to be an effective tool to cause sig-
nificant damage in the vehicle [32]. Fuzzing is a term used
in contexts other than malicious use, however, we use this
term in order to have a consistent terminology with the
methodologies presented by Koscher et al. in [32].

• DoS. The network as a whole, or its individual components,
can be targeted to compromise their availability. A DoS attack
consists of flooding the bus with high priority frames is one of
the most commonly used tools to shut down the CAN bus. It
is also possible to target individual units and shut them off the
network, as presented in [51].

An attacker could use one or more attack methodologies depending
on their objective. For example, with replay attacks an attacker needs
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to first obtain examples of messages using sniffing, and using this
data they can start re transmitting messages impersonating its victim.
Additionally, for the attack to work, an attacker may need to shut
down the unit it is trying to impersonate.

3.2.4 Defining the threat model

Databases with real anomalous CAN traffic are not publicly available,
so in order to test any anomaly detection system we must simulate
anomalies by modifying the CAN data messages we have collected.
We define the threat model in this work based on the reviewed litera-
ture, and for consistency and ease of comparing results we will use a
similar notation to Taylor et al. work [67, 66].

Most attacks presented in literature, as seen in Section 3.2.2, consist
of altering the normal traffic data flow, that is, the expected progres-
sion of data frames in a given time-frame. The most common example
of such attacks is injecting specific messages at high rates to alter the
vehicle state, also referred to as flooding. Specifically, we consider the
scenario where a compromised and a legitimate ECU send competing
messages on the bus, thus creating a stream of interleaved messages.
This scenario will be referred to as an interleave anomaly.

We consider the case where some messages are eliminated from a
legitimate CAN data sequence, thus creating a gap or discontinuity in
the normal data flow. This simulates the scenario where a target unit
gets switched off and then an impersonator starts transmitting new
but still valid sequences. This scenario is referred to as a discontinuity
anomaly.

These two anomaly scenarios would cause an abnormality at the
rate in which messages appear in the CAN bus, assuming these are
periodic. Therefore they could still potentially be more efficiently de-
tected by frequency-based methods, but we consider them for com-
pleteness as they effectively alter the normal flow of a data sequence.

3.2.4.1 Data fields content modifications.

Our threat model also includes cases where data frame contents are
directly modified, however, we do not target the whole data frame
but instead specific subsets of bits, these subsets are referred to as
fields as we described in Section 2.4. We identify these fields using the
field identification algorithm presented in Section 2.4.1. In the field
modification anomaly scenario we employ a fuzzing-like approach,
we evaluate fuzzing in our threat model following a similar structure
and parameters as in [66]. We refer to these anomaly tests as data field
anomalies. During experimentation, we consider three parameters to
simulate these anomalies: how long the anomaly lasts, which kind of
field it is targeted based on its variability, and how the target fields are
modified. Regarding how fields are modified we consider: setting its
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value to its maximum/minimum value, a random value, a constant
value, or a replayed value from another time in the sequence.

The alteration of constant bits in the sequence may signal a hidden
command, however we have not included the case where constant bits
are flipped since finding such anomalies is a trivial task which does
not require the use of a neural network-based detection system. By
not considering constant bits in the detector we present in this thesis,
we can effectively reduce the data dimensionality of our problem,
additionally, the performance of our model will not be obfuscated by
the learning of constant data.

3.2.5 Summary of the anomalies

In summary, we focus on attacks that alter the normal flow of data
sequences and also the contents within, hence we define our threat
model using the following four anomalous scenarios:

• Interleave anomalies. Two legitimate sequences from different
time instances are interleaved together, creating inconsistencies
in the data stream. For example. given two sequences from dif-
ferent time instances t, and j
st = [xt, xt+1, xt+2, . . . ], and sj = [xj, xj+1, xj+2, . . . ]

An interleaved sequence is built as:

sinterleaved = [xt, xj, xt+1, xj+1, xt+2, xj+2, . . . ]

• Discontinuity anomalies. Symbols are removed around the mid-
dle of a legitimate sequence, creating a gap/discontinuity. E.g.
if 2 symbols are eliminated from the sequence s = [x0, x1, x2, x3,

the resulting discontinuity sequence is built as:

sdiscontinuity = [x0, x3]

In our experiments we use a gap consisting of 10 symbols.

• Data field anomalies. These anomalies consist of altering a spe-
cific target field in a CAN data frame. Such alteration is param-
eterized by a modifier function, its duration, and the category
of the target field. We define 5 modifier functions: setting the
field to its maximum, minimum, a constant, a random value, or
using a replayed field (i.e. a field value previously found in the
dataset).

• Reverse anomalies. The order of symbols in a sequence is re-
versed. This particular anomaly does not match any known at-
tack and it is only used for control purposes. For example, a
sequence s = [x0, x1, x2, x3] is modified to
sreversed = [x3, x2, x1, x0] .



32 threat model & related work

3.3 state of the art and related works on detection

systems for can

In this section we introduce the existing work on anomaly detection
schemes for automotive networks. Systems used to detect potential
attacks can be divided into two main categories depending on the ap-
proach they follow: signature-based and anomaly-based detection [2].
Signature-based detection uses a database of known attack character-
istics and analyses ongoing traffic looking for messages that match
these signatures. However, such a database would be manufacturer-
dependent, and additionally, databases with real attack examples on
CAN that are not part of laboratory tests are not publicly available.
Anomaly-based detection on the other hand does not require attack
signatures examples to function, this approach creates a baseline us-
ing exclusively normal traffic. During the operation of the detector,
the messages going through the network are compared with this base-
line so that deviations from it are considered anomalous and may
signal an attack. Anomaly detection is the most commonly used ap-
proach in automotive security research, given the unavailability of
attack signatures databases. From a machine learning perspective,
anomaly-based detection can be considered as an unsupervised or
semi-supervised approach. Unsupervised when no attack samples
are used, and semi-supervised when it is possible to use some simu-
lated attack examples to fine-tune the detectors.

In this section we present an overview of the most commonly used
patterns for detection, and present the current state of the art on de-
tection systems for CAN.

3.3.1 Patterns used for detection

As the first research papers on vulnerabilities and attacks in auto-
motive were published, so did the work on how to mitigate them.
Hoppe et al. [24] showcased examples of security threats in CAN and
were among the first to propose countermeasures to mitigate these
threats. The authors identified four attack scenarios to analyze their
safety risks: unauthorized actuation, spoofing signals, impersonation
of other ECUs, and unauthorized network bridging. From these sce-
narios, the authors identified three patterns that can be used to detect
potential anomalies:

1. Increased message frequency. The first two scenarios require the
attacker to send enough traffic into the bus to “drown” the orig-
inal signal, this means sending more messages than the legiti-
mate ones to force the target unit to accept the malicious data
as input. This increased frequency of contradicting messages
can be used as an indication of an attack, however, it is only
applicable when these are sent periodically.
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Figure 3.2: Categories of anomaly detection systems for CAN.

2. CAN ID misuse. Because of the broadcast nature of CAN, ev-
ery ECU can monitor if other units send frames using one of
its exclusive IDs. Therefore, each unit can theoretically detect
messages that are trying to impersonate it.

3. Low level communication characteristics. Use data from the physi-
cal layer (i.e. the electrical signal generated by the transceiver)
to detect anomalies from an arbitrary bus location. Used to val-
idate if a message comes from the expected source, acting as a
pseudo-authentication mechanism.

Based on these scenarios and attack patterns, many researchers
have suggested detection systems that attempt to generalize what
constitutes normal and anomalous traffic. Results are promising, how-
ever, not one single method or system can be used to detect all pos-
sible anomalies since they manifest in different ways. Therefore, a
complete intrusion detection system must employ several techniques
to successfully identify attacks.

Next, we present the most notable research on detection systems
for CAN. These proposals can be divided into four categories depend-
ing on the attack patterns they analyze, these are: Specification-based,
frequency/time-based, signal characteristics-based, and data anomaly de-
tection. Additionally, data anomaly detection is divided into two sub-
categories, data point detection which analyzes single data points,
and sequence detection which analyzes a time-series of data observa-
tions. We illustrate these categories in Figure 3.2.
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3.3.2 Specification-based detection.

With this approach, legitimate CAN traffic is specified by a set of
explicitly defined rules. This holistic scheme checks for correctness,
compliance, formality, consistency, and plausibility of the contents
of every message. From a database, the system retrieves what are
the allowed ranges, variations, domains, frequencies, etc. for a given
CAN ID.

Müter et al. [48] define this specification-compliance verification
process through the use of a set of sensors. These check for formality,
location, range, frequency, correlation, protocol compliance, plausibil-
ity, and consistency. The results from these sensors are integrated to
produce an estimation of a potential anomaly using weighted values
to indicate criticality.

Salman and Bresch [59] proposed a detection system that uses a
signal database (i.e. the dbc file) to check for compliance, and sets
a threshold that determines how many abnormal messages are al-
lowed before triggering an attack alarm. This database specifies a set
of allowed behavior for each ID, for example: in which domains it op-
erates, minimum and maximum values, allowed change rates in data,
message frequency, etc.

Dagan and Wool proposed Parrot [13], an anti-spoofing system
which would be installed on every ECU. It works by monitoring the
network for ID misuse by other units, and if needed, it creates colli-
sions as a counter attack to take the offending unit offline. Naturally,
it requires knowledge as to which units can in fact be taken offline
and not cause further damage.

However, many attacks presented in literature follow the follow the
behavioral specification for a given CAN ID, several of the attacks
presented in literature use the allowed ranges and expected message
injection rates. A specific example that matches this description is a
replay attack. In practice, the databases containing the specifications
of CAN signals are rarely available since they are kept confidential,
they are also different across models and manufacturers. All other
research made on this topic assumes this database is unavailable and
therefore it is not possible to know the original signal semantics.

3.3.3 Frequency/time-based detection.

Several attacks presented in literature consist of an attacker injecting
malicious messages at high rates. Researchers have proposed detec-
tion systems that record how often messages are seen on the bus,
deriving an estimated frequency for each ID, which is then analyzed
for anomalous variations. A crucial assumption in this scenario is that
the monitored IDs sends messages periodically with a somewhat con-
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stant frequency. Outliers in the frequency distribution are not anoma-
lous by nature, a common scenario where this occurs is when packets
lose arbitration to higher priority traffic, which is considered normal.
Because of this, IDSs that use this approach must account for occa-
sional and legitimate outliers.

Here we present some of the frequency/timing-based detection sys-
tems found in literature, even though similar methods were discussed
in previous research [43], these works include experimental tests of
their detection systems.

Taylor et al. [68] proposed a detection mechanism using two meth-
ods: training a One Class Support Vector Machine (OCSVM) using
statistical data on message frequency as features, and computing the
frequency for every ID using a sliding window and then getting an
anomaly score based on computing a t-test over the historical data.
The two presented methods performed significantly well, achieving
perfect performance in many tests. Since they are computationally
inexpensive, and no method was better in all test cases, the authors
suggest using a mix both for more reliable detection.

Song et al. [61] proposed a lightweight IDS that analyses time in-
tervals between messages. First, the system estimates these intervals,
and in the detection phase, an alarm is triggered when an interval
is shorter than half of what it normally is. The system then creates
a score based on how many consecutive messages have abnormal ar-
rival times, effectively reducing false positives. This part is an impor-
tant aspect of the system, as it can handle real variations that occur
like lost arbitrations. A significant advantage of this approach is that
It requires only a small number of samples and low computational
demands, it achieves almost perfect performance with the proposed
threat model, achieving up to 100% accuracy with no false positives.

Cho and Shin [11] proposed CIDS, an IDS that creates fingerprints
for every ECU based on their clock skews. The main assumption of
this work is that clock quartz crystal oscillations in each ECU create
unique clock skews. This ADS aims to detect messages from mali-
cious units that attempt to impersonate other units, regardless of their
injection rate. However, in practice, it has been proven that this detec-
tion system can by bypassed. The clock offsets are computed based
on the messages arrival times to the detection unit, rather than solely
on hardware characteristics, and so they can potentially be spoofed
as shown by Sagong et al. [57].

Lee et al. [33] proposed OTIDS, a detector that periodically sends re-
mote frames to all ECUs in the network and detects anomalies based
on the time they take to send a response to these frames. This re-
sponse time is theorized to be a good fingerprinting tool, as it de-
pends on hardware characteristics that are assumed unique for each
unit. However, the actual system only evaluates the time at which
the required frames arrive at the detector. During set-up, this system
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learns the distribution of response times for every transmitting unit,
to then create the baseline that the detector uses to look for anoma-
lous response times.

Even though these proposals can find anomalies with fairly good
performance, they can only detect attacks that require the use of high
injection rates. Therefore, malicious changes in the data frames using
seemingly normal injection frequencies (as presented in [44]) would
not be detected.

3.3.4 Signal characteristics-based detection.

Some detection systems make use of the signal characteristics of CAN
transceivers to create fingerprints of each unit in the network. These
characteristics are theorized to be unique for each ECU and could be
used to effectively identify them. Fingerprints are built by analyzing
the physical changes in the bus for each ID that is transmitted. These
systems aim to detect intrusions in cases where a message is sent
from a unit with a different fingerprint than the expected one; this
aims to detect attacks where an attacker impersonates a given unit
but manages to mimic other aspects of its behavior.

Murvay and Groza [46], Choi et al. [12], and Spicer [63] proposed
systems that derive the signal characteristics of a message by measur-
ing the CAN-H and CAN-L voltage values during transmission, ex-
tracting several features from the time and frequency domains, which
are then used to train classifiers. This approach is used to derive
a fingerprint for each ECU, so when an impersonation occurs, the
anomalous messages would show characteristics that are different
from the expected fingerprint. However, the approach presented in
these works follow a batch learning-based approach which assumes
that the characteristics do not change during the operation of the ve-
hicle; this is not the case in automotive environments since several
factors, like changes in temperature, can alter these signals.

Cho and Shin [9] proposed an approach that measures the volt-
age use of each unit in the network, these measurements are used to
create voltage profiles for every transmitting ECU. However, its goal
is not intrusion or anomaly detection, but rather work as a tool for
attacker identification. One of its most important features is adaptabil-
ity, this system uses an adaptive signal processing approach so that
the system can account for environmental or operational changes that
affect the voltage profiles of every unit in the vehicle.

Palanca et al. [51] proposed a mechanism that aims to detect when
a new ECU is connected into the network. It measures differential
internal resistance of all the units, which influences the total bus load
that a transmitting units uses to correctly send bits. When a unit is
added, this load changes, thus detection works by measuring changes
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in the current necessary for transmission. This was proposed as part
of their work presenting a novel attack in CAN networks, it was pre-
sented as a possible countermeasure so no real test were conducted;
we included this work since it could be implemented as part of a
complete security solution.

3.3.5 Data anomaly detection.

Some of the attacks in literature only modify the payload contents of
CAN messages, using the same frequency as a target ID and follow-
ing the protocol specification. For instance, Cho and Shin [11] demon-
strated a scenario where a target ECU is taken offline and then a
compromised unit sends malicious messages impersonating the tar-
get. In this scenario. Frequency-based detection systems would not be
able to detect the attack, in consequence, an approach that analyses
data contents is needed.

Some researchers have proposed solutions to find anomalies in the
data frame contents. Müter and Asaj [47] and Marchetti et al. [39] pro-
posed an information theory approach, where the packet message
entropy is used to construct a norm model. This strategy showed
promising results, but it was only tested in insertion attack scenar-
ios, e.g. flooding, DoS, and targeted injection. However, these sys-
tems only compare the entropy of single messages and not sequences,
therefore it can only detect single point outliers.

Kang and Kang [29] proposed a probability-based IDS that uses a
deep neural network model that captures the statistical features of
CAN traffic. First, the system computes the probability of each given
symbol, then p is defined as the result of applying a logistic regres-
sion on such probabilities. Then, a feature vector is built by apply-
ing a xor operation between two consecutive time instances, that is
v(n) = pv(n)⊕ pv(n− 1). The neural network is trained using these
feature vectors and using a supervised approach, using samples of
both normal and anomalous traffic. The model learns to estimate a
certainty metric that a given feature vector is anomalous or not. How-
ever, it is difficult to evaluate the use of this approach for several
reasons, the experimentation was fairly limited and omitted impor-
tant details. The nature of the messages was also very limited since
it only considered subsets of the data frame bits. Additionally, the
threat model used was not specified so it’s impossible to know under
which anomaly scenarios the IDS was tested on.

3.3.6 Data sequence anomaly detection.

CAN traffic data can be seen as a time-series, with its own natural
temporal ordering, meaning that analyzing anomalies in CAN traffic,
is a time-series anomaly detection task. One of the main advantages
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of this approach is that it aims to detect abnormalities in messages
that can be considered normal as individual observations, but that
are actually anomalous in the context of surrounding messages. It can
detect values that are outside a norm model (outliers) and also when
they are out of context; for example sudden unrealistic changes in
speed but otherwise normal absolute speed values, e.g. 1km/h to
100km/h in a second. Another advantage of this approach is that it
can be used regardless of the periodicity of the CAN ID to be moni-
tored.

Detecting anomalies in time-series is a well-researched topic, de-
tection can be done using several techniques including finite-state
automata, information theory, proximity by mapping the series onto
a space, or creating models that aim to reproduce the time-series [1].
Cluster analysis has also been proposed to analyze time-series subse-
quences, however, research has shown this approach to be inadequate
yielding poor results [30]. Choosing a detection approach greatly de-
pends on how many unique data symbols are produced. For a lim-
ited number, approaches like Hidden Markov Models (HMMs) [28,
21], or Conditional Random Fields (CRF) [62] could be appropriate
solutions.

Regarding time-series anomaly detection on automotive networks,
Narayanan et al. [50], and Levi et al. [34], presented ADSs that use
classifiers trained using HMMs. They analyze sequences of events for
anomalous behavior, transforming time-series data into state changes
with transition probabilities. Levi et al. used the absolute value of
known variables, specifically rpm and speed to build the HMM. Narayanan
et al. on the other hand, created a new layer of abstraction of the data
by defining stories, which are general descriptions of events, examples
of stories are: car unlock, door open, door close, seat belt on. However, as
we demonstrated in Section 2.3, the number of symbols that CAN IDs
can produce is not necessarily restricted to a fixed dictionary, render-
ing HMMs and CRFs inadequate in most cases.

In time-series analysis, RNNs have been shown to be effective mod-
elers. They are considered to be a natural fit when dealing with mul-
tivariate sequences, with no natural restrictions on the symbols’ dic-
tionary size, and even allowing the use of arbitrary sequence lengths
when using specialized units. Taylor et al. [67] proposed a system that
trains models as predictors of CAN traffic data, then it classifies un-
expected predictions as a potential anomalies. This model works by
applying a semi-supervised learning approach, the ADS uses LSTM
neural networks to learn the normal sequences in the data, these
models are trained to predict data symbols given a set of normal
sequences. An anomaly score is computed based on the difference
between the real and predicted data frame, i.e. the prediction error,
and it is used as the anomaly detection metric. In their later work
[66], the authors also compared the predictor with a multi-step mul-
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Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left) Circuit diagram. The black square indicates a delay of a single time
step. The same network seen as an unfolded computational graph, where each(Right)
node is now associated with one particular time instance.

signal x( )t ,
s( )t = (f s( 1)t− ,x( )t ; )θ , (10.4)

where we see that the state now contains information about the whole past sequence.

Recurrent neural networks can be built in many different ways. Much as
almost any function can be considered a feedforward neural network, essentially
any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use equation or a similar equation to10.5
define the values of their hidden units. To indicate that the state is the hidden
units of the network, we now rewrite equation using the variable10.4 h to represent
the state,

h( )t = (f h( 1)t− ,x( )t ; )θ , (10.5)

illustrated in figure ; typical RNNs will add extra architectural features such10.2
as output layers that read information out of the state to make predictions.h

When the recurrent network is trained to perform a task that requires predicting
the future from the past, the network typically learns to use h( )t as a kind of lossy
summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence
(x( )t ,x( 1)t− ,x( 2)t− , . . . ,x(2),x(1)) to a fixed length vector h( )t . Depending on the
training criterion, this summary might selectively keep some aspects of the past
sequence with more precision than other aspects. For example, if the RNN is
used in statistical language modeling, typically to predict the next word given
previous words, storing all the information in the input sequence up to time t
may not be necessary; storing only enough information to predict the rest of the
sentence is sufficient. The most demanding situation is when we ask h( )t to be rich
enough to allow one to approximately recover the input sequence, as in autoencoder
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Figure 3.3: Unfolding a RNN. Figure taken from [20].

tivariate HMM, which is adapted to handle high dimensional data.
However, the performance of the new HMM was significantly worse
than the LSTM predictor. Among the conclusions drawn from their
work, it was noted that the detector struggled with several IDs with
low word-variability, as well as, short-lasting anomalies, leaving room
for improvement and future research.

In the following sections we introduce RNNs and LSTM, so we can
introduce the concept of multivariate time-series anomaly detection,
which is the main framework of this thesis.

3.4 recurrent neural networks

Neural Networks are statistical models that aim to approximate a
nonlinear function, however, classical neural networks cannot pro-
cess sequential data. Recurrent Neural Networks (RNNs) on the other
hand, specialize in handling data sequences and they are powerful
modelers even at arbitrary sequence lengths [20]. Sequences are gen-
eralized by sharing the parameters of the network through sequences
of nodes, which translates into sharing them across time. These net-
works use the notion of recurrence to represent a sequence or chain
of events. This can be represented as the unfolding a computational
graph, where information from an input series x is processed by incor-
porating the hidden state h(t) to the input x(t) at time t, and passed
forward to t+ 1. This process is illustrated in Figure 3.3. RNNs are
akin to finite state automata, and they do not make a Markovian as-
sumption [1] (a property of a stochastic process that states that the
future state of a process depends only upon the current state and
not past events). Additionally, they do not demand dimensionality
reduction of the input, rendering them a natural fit for multivariate
data.

We proceed to present an overview of how these networks can rep-
resent sequences of data. Given the input x(t), the state h(t) of a
recurrent unit is computed as:

h(t) = f(Wx(t) +Uh(t−1) + b)
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where f is a nonlinear activation function (e.g. sigmoid hyperbolic
tangent, etc.) , W and U are weight matrices, and b is a bias term that
exist in each unit. The output for each cell is computed as:

o(t) =Whoh
(t) + bo

where o(t) at time t depends on the current state h(t), a weight matrix
Who connecting input and output with a separate bias term for the
output bo. All these computations are repeated over a sequence over
time t so that the RNN learns to generalize the sequence. Even though
RNNs can learn arbitrary time lengths, the input must always have
the same size as this determines the structure of the neurons in the
network.

Similarly to classical neural networks, RNNs require the definition
of a loss function to compute the gradients during training. How-
ever, classical back-propagation is not adequate anymore because of
the flow of the gradient does not only go through neurons, but also
time. To solve the issue of computing the gradients through time, the
back-propagation algorithm is applied to the unrolled computational
graph, in a process called Back-Propagation Through Time (BPTT).

This makes RNNs quite difficult to train in practice. This difficulty
is due to the more complex units, the fact that the network now has to
optimize significantly more parameters and so forward-propagation
requires computing significantly more outputs/states, and BPTT is
a complex operation on its own. These networks have another im-
portant disadvantage, even though they theoretically can learn long-
term dependencies, this is not the case in reality because of two prob-
lems known as vanishing and exploding gradients [53]. During back-
propagation, the feedback loops can cause the gradients to shrink or
grow significantly.

3.4.1 Long Short-Term Memory

Hochreiter and Schmidhuber [23] presented Long Short-Term Mem-
ory (LSTM) neural networks, a solution to the gradient problems
present in RNNs. This solution adds forget-gates and a complex, but
powerful, state flow that allows the network to actually learn long-
term dependencies. The most crucial contribution of LSTMs is the
presence of a linear self-loop that gradients can flow through with-
out exploding or vanishing [1]. The state computation is significantly
more complex than in classic RNNs, however, they achieve great im-
provements in performance.

Now we describe the equations used in he calculation flow of an
LSTM, this process is also illustrated in Figure 3.5.

Input and forget gates (i and f respectively) are crucial components
of LSTMs, they control how much of the hidden space is dependent
on both the new input and the state at t − 1. They depend on the



3.4 recurrent neural networks 41

X

σ σ tanh σ

x t

X

tanh

h t

X +

x t-1

h t-1

A

Figure 3.4: Structure of a LSTM in a network.

input x(t) and the output sate from the previous step. The signal of
these gates is determined by the equations:

i(t) = σ(Winputx
(t) +Uinputh

(t−1) + binput)

f(t) = σ(Wforgetx
(t) +Uforgeth

(t−1) + bforget)

Winput , Uinput and Wforget ,Wforget are weight matrices for the
input and forget gates, while binput, bforget are their respective bias
terms. σ corresponds to the sigmoid function.

A linear combination of the outputs of i and f is used to determine
the new state of the cell c(t) using the previous state c(t−1) and a
candidate state g(t). The new state is computed as:

g(t) = tanh(Wcx
(t) +Uch

(t−1) + bc)

c(t) = f(t)c(t−1) + ig(t)

WhereWc, Uc are the weight matrices of the c. Now the cell output
is controlled by an output gate o(i):

o(t) = σ(Wox
(t) +Uoh

(t−1)) + bo

Where Wo, Uo are the weight matrices of the output gate, and bo its
bias. Finally we can compute the output state h(i):

h(t) = o(t) tanh(c(t))

3.4.2 Autoencoders

An autoencoder is a type of neural network that learns a latent repre-
sentation of training data, this results in a fixed-sized representation
that usually has a smaller dimension than the input. Autoencoders
consist of two main components, an encoder and a decoder. In brief,
the input is described by a hidden state h, the encoder acts as a func-
tion so that h = f(x). The decoder then reconstructs the input from
the hidden state r = g(h), the general structure of an autoencoder is
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Figure 4.4 (a) calculation flow diagram (biases omitted, adapted from [106])

i(t) = �(Wi · (x(t), s(t�1), c(t�1)) + bi) (4.6a)

f (t) = �(Wf · (x(t), s(t�1), c(t�1)) + bf ) (4.6b)

g(t) = tanh(Wc · (x(t), s(t�1)) + bc) (4.6c)

c(t) = f (t) � c(t�1) + i(t) � g(t) (4.6d)

o(t) = �(Wo · (x(t), s(t�1), c(t�1)) + bo) (4.6e)

s(t) = o(t) � tanh(c(t)) (4.6f)

Figure 4.4 (b) equations from [76]

Figure 4.4: Long Short-Term Memory layer. � stands for the logistic sigmoid function
while ⌧ stands for tanh. Element-wise multiplication is represented by the � symbol. For
brevity and clarity, a (single) weight matrix combines the weights associated with more than
one input to a single output (unlike the typical notation used in literature). For example,

Wi · (x(t), s(t�1), c(t�1)) = Wxix
(t) + Wsis

(t�1) + Wcic
(t�1) where the input vectors, x, s,

and c are concatenated into a vector and weight matrices Wxi, Wsi, and Wci are augmented
horizontally. In the diagram, the concatenation is represented by black dots combining single
lines into more than one line. Furthermore, Wci, Wcf , and Wco are diagonal matrices so
the number of weights associated with each c equals the LSTM ‘size’.

The size that can be attributed to the LSTM module is the dimension of i, f , g, c, o,

30

Figure 3.5: LSTM calculation flow, not including bias terms. Taken from [1]
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Figure 3.6: General structure of an autoencoder. An input x is represented
as a space h through function f(x), and then it is reconstructed
to output r using function g(h).

illustrated on Figure 3.6. Autoencoders have been traditionally used
for feature learning or dimensionality reduction [20, 3]. Denoising
autoencoders for example, are commonly used to remove noise that
is corrupting an input, it receives corrupted data and is trained to
predict the original data.

Autoencoders are usually set to have a single layer for the encoder
and one for the decoder. Nonetheless, similarly to feed-forward net-
works, autoencoders with deep architectures can offer greater repre-
sentational power. Additionally, depth can significantly decrease the
amount of training data that is needed to learn some functions [20].

Autoencoders can also be used to learn latent representations of
sequential data using recurrent units in the encoder/decoder layers,
where the encoder maps an input sequence into a vector representa-
tion. In this scenario the hidden state h is obtained from the last step
in the encoder. The dimensionality of this latent representation is de-
termined by the number of hidden units in the recurrent network.
In natural language processing, sequence-to-sequence models can be
implemented using autoencoders.
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3.5 rnns in multivariate time-series anomaly detection

Complex control systems that record measurements from different
sensors create streams of multivariate data, in other words, a time-
series composed of more than one dependent variable. Systems with
multiple inputs and outputs are often difficult to model, fewer vari-
ables make for an easier modeling task but it is likely that their
accuracy will worsen. Industrial systems, aircrafts, and automobiles
are some examples of systems that create multivariate time-series be-
cause of the vast amount of sensors included within them. In the case
of automotive CAN, not only each ECU produces unique streams of
data packets, but also each of them can have up to 64 variables (i.e.
the number of bits in the data field).

Several approaches have been presented for multivariate time-series
anomaly detection applications, these include graph-based models
[54], energy-based methods like restricted Boltzmann machines [17,
72, 14], and recurrent neural network models. In this context, RNN
models have been shown to be effective time-series modelers.

There are two main approaches when performing anomaly detec-
tion tasks using RNNs: predictor and reconstruction-based detectors.

3.5.1 Prediction-based detection

A predictor-based detection approach [37] trains a recurrent neural
network model to predict future observations using normal (i.e. non-
anomalous) time-series sequences. The model consists of stacked lay-
ers of recurrent units (either LSTMs, or Gated Recurrent Units (GRUs))
and it is trained to predict either a single observation or a whole se-
quence. This training is carried out with the goal of reducing the
prediction error over a separate set of validation data. A simplified
representation of the stacked LSTM architecture used for anomaly
detection is presented in Figure 3.7. During operation, this type of
detector takes as an input a time-series and tries to predict its next
observation. The difference between the prediction and actual value
is computed as the prediction error which is used as an anomaly met-
ric, high prediction errors are likely to indicate an anomaly in the
data sequence.

This approach has been applied in anomaly detection in a wide
variety of contexts, including but not limited to electrocardiography
data [7], industrial control systems [15, 16], aircraft and spacecraft
data [49, 25], video [36], and also automotive CAN [67] as we pre-
sented in Section 3.3.6. Neural networks with dilated convolutions
have been proposed as an alternative to recurrent neural networks in
prediction tasks, they are significantly easier to train with similar or
better prediction performance in some scenarios [5], this solution was
inspired by the generative approach used in Wavenet [70].
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Figure 3.7: Simplified architecture of a stacked recurrent neural network
predictor with LSTM units.

3.5.2 Reconstruction-based detection

The second approach to anomaly detection is reconstruction-based
detection, it consists of training a RNN for representation learning,
typically using an autoencoder. A reconstruction consists of recreat-
ing a sequence based on the characteristics of the signal used to train
the model. This model characterizes the data sequences in a com-
pressed representation so they can be later reconstructed, the recon-
struction error is used as a metric to differentiate anomalies [58]. Re-
construction models, specifically LSTM autoencoders, have also been
proposed to model these sequences, Malhotra et al. [38] showed that
an encoder-decoder approach for multi-sensor anomaly detection is
more efficient than predictor-based models at detecting anomalies
when the underlying data is inherently unpredictable. They carried
our their experiments to test this hypothesis under different datasets,
with both predicable and unpredictable time-series data. A similar
experiment showing supporting results to this hypothesis was also
presented in [1]. This reconstruction approach using autoencoders
has been shown to be effective in different time-series anomaly detec-
tion settings, including industrial machinery [3], acoustic data [40],
video sequence analysis [58].
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A P P R O A C H : P R E D I C T O R A N D A U T O E N C O D E R
D E T E C T O R S

4.1 introduction

In this chapter, we describe the approach of our work. First, we present
an overview framing our problem and explain the motivation behind
our choice to use the LSTM autoencoder approach as a solution. We
then define the performance scores that we later use as a metric to
compare how the predictor and autoencoder perform under the same
experimental framework. Then, we present the approach used in the
state-of-the-art predictor-based ADS for CAN. Finally, we describe
our proposal of an autoencoder-based approach for anomaly detec-
tion on CAN, we define the components and architecture of the de-
tector, and its method to use a reconstruction approach to find anoma-
lies.

Both detectors are described in a way that allows for experimental
comparison of these two approaches.

4.2 approach overview

The approach we propose is a data sequence anomaly detection sys-
tem for CAN data. This detection problem has several restrictions
that limit the solutions that can be applied. An important limitation
comes from the number of unique symbols that can exist in CAN
traffic data, since most IDs in the high-speed bus create new sym-
bols at a seemingly growing rate, rendering approaches that assume
a fixed-size dictionary inadequate. Another issue with HMM and sim-
ilar approaches is that they make the assumption that the data gen-
erating mechanism behind the time-series can be modeled through a
Markovian process, which is a strong assumption given our domain-
unaware scenario. To our knowledge, the predictor-based ADS pro-
posed by Taylor et al. [67] is the only work done on data sequence
anomaly detection on CAN that deals with effectively infinite unique
symbols. From their results and conclusions, we observe that perfor-
mance varies significantly between IDs, although, not knowing the
signal semantics hinder a complete interpretation on what factors in-
fluence these results. However, some insights are obtained from the
parameters used in the anomaly tests. For instance, the test cases with
low performing detection results had some common characteristics,
they targeted low variability data and they used short lasting anoma-
lies.
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This approach also presents some inherent limitations that come
from the assumptions made during its design, one of the most cru-
cial ones being that CAN traffic is thought to be predictable. However,
this assumption can be challenged given the semantics-unaware con-
text of the problem. Some approaches on anomaly detection do not
rely on the predictability assumption: in Section 3.5.2, we reviewed
literature presenting the use of autoencoders for anomaly detection,
which can be used as an alternative to prediction-based models. Mal-
hotra et al. [38] presented a reconstruction-based detector using a
LSTM encoder-decoder model, which was proposed as an alterna-
tive to the LSTM predictor approach by the same authors in [37]. By
experimenting on different datasets, this model proved to perform
better on unpredictable time-series. For predictable time-series, the
predictor-based approach still achieved better performance. In this
work we will refer to this encoder-decoder approach simply as an au-
toencoder, because both the encoder and decoder structure are similar
and because they have use the same input and output space, effec-
tively rendering the model as an autoencoder.

We have chosen to apply a reconstruction-based approach using
autoencoders to our problem given the promising results in contexts
that do not assume the time-series to be stationary, and therefore
a series that may be difficult to predict or inherently unpredictable.
Further work is needed in order to apply a LSTM autoencoder to
our multivariate problem, Malhotra et al. only effectively tested their
model using univariate test sets, the only multivariate data on their
experiments was reduced to an univariate time-series using principal
component analysis.

Our work consists on evaluating the use of a detection system
for CAN using LSTM autoencoders and showcase its advantages
with respect to a state-of-the-art detector for data sequence anoma-
lies. We first replicate the LSTM prediction-based detector as pre-
sented by Malhotra et al. [37] and Taylor et al. [67] and test it with
our own dataset. Then, we implement an autoencoder detector that
reconstructs sequences of the multivariate time-series by exclusively
learning normal traffic data. Since one of our main goals is to com-
pare the two approaches, we will use similar parameters in both our
implementation and experiments that we present in Chapter 5.

Our approach can be summarized into the following steps:

1. Define the performance scores. First we define how we evaluate
the performance of an anomaly detector, the metrics to do so
are defined in Section 4.3.

2. Replicate the predictor-based detector for CAN. To do so, sev-
eral further steps must be followed, we describe this process in
Section 4.4.



4.3 performance scores 47

3. Evaluate the use of autoencoders for data sequence anomaly
detection on CAN. This process is described in Section 4.5.

4. Finally, test the predictor and autoencoder detectors under the
same anomaly scenarios and compare their performance. This
step will give us the results needed to effectively compare both
approaches, and is explained in Section 4.6.

4.3 performance scores

In this section we define how we measure performance for the meth-
ods evaluated in this thesis. Anomaly detection is a classification task
and we must evaluate it as such, a CAN data sequence can be consid-
ered either as anomalous or normal. Both approaches presented here
output a single score value that is used to determine how to classify
a sequence. Choosing a decision threshold depends on many factors,
in our scenario it is determined by the nature of each unit given its
criticality on the network.

Precision, and Recall

To determine the performance metric we use in our classification task,
first we have to introduce an evaluation measure from the context
of information retrieval. When classifying documents, or in this case
CAN traffic sequences, we need to measure the relevance of our results.
The possible results in a classification task are summarized in Table
4.1:

True

Normal Anomalous

Predicted
Normal True Positive (TP) False Positive (FP)

Anomalous False Negative (FN) True Negative (TN)

Table 4.1: Definitions of the results in a binary classification task.

From these definitions we can define two performance metrics for
classification, the True Positive Rate and the False Positive Rate, defined
in Table 4.2:

True Positive Rate (TPR) TP
FN+TP

False Positive Rate (FPR) FP
TN+FP

Table 4.2: Definitions of true positive and false positive rate, performance
metrics for classification tasks.
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Figure 4.1: Example of a ROC curve showing AUC values for two detectors.

4.3.1 ROC and AUC

The Receiver Operating Characteristic (ROC) is a widely used graphic
to display the TPR and FPR for all possible thresholds, where the
overall performance of the classifier is given by the Area Under the
Curve (AUC) of the ROC [26]. The AUC is the detector performance
metric used throughout this work. An ideal classifier would show a
ROC curve that sits very closely to the top left corner with AUC val-
ues close to 1. A classifier that is no better than random choice would
have an AUC of 0.5. Which threshold value to choose depends on the
problem domain at hand, whether we want to maximize precision or
minimize false positives, we must choose a threshold that meets the
domain’s needs. We use an example of one of our anomaly tests to
illustrate the ROC in Figure 4.1, which shows fairly good results of
two classifiers with high AUC values.

It is important to note that this approach to measuring performance
is better used in cases where classes are somewhat equally distributed
in the test dataset. So in order to use them properly during our exper-
iments, we test the detectors on datasets that are not strongly domi-
nated by normal traffic, keeping a more balanced sequence type dis-
tribution.

4.4 prediction-based detection

In this work we replicate the prediction-based detector and evalu-
ate its use with our dataset. In our understanding, the predictor sys-
tem presented by Taylor et al. is the only approach aiming to detect
anomalies in CAN data sequences following the limitations we have
described in Sections 2.3 and 3.3, specifically dealing with data gen-
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erating mechanisms that steadily create new symbols that are not
limited to fixed-size dictionaries.

The intuition behind this approach is that a RNN can learn to
model the characteristics of a time-series of CAN recordings. Since
only non-anomalous data is used, the RNN exclusively learns to
model what constitutes normal CAN data. Consequently, in the pres-
ence of anomalous traffic the RNN would output erratic results from
which we can infer the presence of anomalies. The detector consists
of two main components, a predictor and an output processing mech-
anism. The predictor is a neural network that is modeled so it can
forecast a time-series based on an input sequence, in our context the
model takes as input a sequence of CAN data recordings up to a
time t and aims to predict the next CAN data symbol. The detection
system then measures how accurate the predictions are, and then it
compares the real symbol from the time-series at t+ 1 with the pre-
dictor’s output to compute a prediction error value. This error works
as an indication to differentiate potential anomalies. These errors are
then sent to an output processing module for further analysis.

The output processing module analyses a stream of prediction er-
rors to produce an anomaly signal. The need for this module comes
from the fact that predictors will likely never be able to perfectly char-
acterize the data generating mechanism behind the time-series, this
can be caused by many factors but most importantly by the presence
of noise and stochastic processes that we are unaware of given the
domain-unaware nature of our problem. When designing this module
two important challenges appear: how to process prediction errors to
produce a single error metric (called anomaly signal), and then how
do we determine at which values are these metrics considered anoma-
lous. Figure 4.2 illustrates an overview of the predictor-based ADS.

Since each data generating mechanism behind each ID is different,
it is necessary to implement a single predictor for each one, in our
case resulting in 12 different predictors for each of our 12 IDs.

In summary, to replicate the predictor-based ADS we must follow
these general steps:

1. Define the predictor architecture and train the model.

2. Implement the output processing module, which defines how
the anomaly signal is generated.

4.4.1 Model Architecture

The predictor system proposed by Taylor et al. is heavily inspired
by the model proposed in Malhotra et al. work [37]. The authors de-
signed a stacked architecture and prove that by stacking recurrent
hidden layers with LSTM units, the resulting model can learn long
term patterns of arbitrary length and also learn higher level temporal



50 approach : predictor and autoencoder detectors
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Prediction error
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Anomaly Signal

Figure 4.2: Overview of a predictor-based CAN anomaly detection system.

features. The structure of the model is defined as a neural network
with four hidden layers, as shown in Figure 4.3. This architecture
is based on the one presented in [37] but with a small variation in
the hyperparameters obtained by running a random hyperparameter
search process.

The predictor model is structured as:

1. An input layer that specifies the input sequence dimensions,
equal to the number of non-constant bits for its respective CAN
ID.

2. Two fully connected dense feed-forward hidden layers, with 128

units using tanh activation functions.

3. Two recurrent layers follow, both using tanh activation func-
tions and 512 LSTM units.

4. The output layer outputs the prediction, so it has the same
amount of units as the series dimensionality for the given ID,
It uses sigmoid activation functions to scale back the prediction
to a [0 - 1] range.

Each layer, except for the output one, is followed by batch normal-
ization layer. This layer normalizes the activations of the previous
layer at each batch and is said to speed up convergence time.

All layers in the network have a Dropout value of 0.2. Dropout is
a tool used when training neural networks that aims to avoid overfit-
ting by dropping some units in the network. Each unit in each layer
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Figure 4.3: Structure of the prediction-based anomaly detector for CAN
proposed by Taylor et al.
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has a probability D to be taken out the network, D is a hyperparam-
eter.

input. For each time step, the input is given by sequences of CAN
data of length n in binary format with dimensionality k. Each input
sequence is therefore a n× k vector. n is a hyperparameter that can
be chosen depending on application constraints. However, its value
must be tuned in order to improve prediction accuracy. Instinctively
the more context (i.e. data frames) are fed into the model, predictions
improve. In our experiments we set n = 20 to be consistent with
the reference work [67]. k represents the dimensionality of our time-
series, with a maximum value of 64, corresponding to the 64 bits
available per data frame. However, as we evidenced in Section 2.3 all
IDs use only a subset of the total amount of available bits, removing
constants reduces the dimensionality for each ID and slightly lessens
the model’s memory usage.

output. An output layer is added to bring the prediction back into
the domain of the original data. This linear layer uses sigmoid activa-
tion functions to scale the values between 0 and 1, and uses a total of
k units. The final output is a single symbol prediction x̂i+1 with di-
mensionality k, it can be interpreted as a measure of certainty about
the prediction, even though its presentation is similar to a probability
it cannot be considered as one. For example, a predicted bit value of
0.9 indicates that the neural network predicts with high confidence
that the real bit value is 1. While values around 0.5 indicate that the
model is not confident about its prediction.

Training

A single model is trained for every ID, only IDs that present both high
frequency and high symbol variability are considered, accounting for
12 CAN IDs as discussed in Section 2.3.

The model itself consists of a deep neural network that is trained to
predict a symbol that follows a given sequence. To find the parame-
ters that better achieve this task the network computes an error metric
between the predicted symbol and the real one. To train the model for
prediction, we begin by defining the sequence Si = xt, xt+1, . . . , xn
where xt is a single CAN data frame at time t, and n is the sequence
length (also called a window). The neural network receives two ele-
ments as inputs: a set of sequences and a set of individual symbols y
following those sequences so that the network learns what it is meant
to predict. Briefly, training inputs consist of a set of S sequences that
are continuous in time to preserve data flow continuity, and a set of
target symbols, e.g.:

S0 = x0, . . . , xn y0 = xn+1
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S1 = x1, . . . , xn+1 y1 = xn+2

In the spirit of replicating Taylor et al. approach we use the same
number of timesteps for the input sequence (i.e. how many symbols
per sequence) which we set to n = 20.

parameters . The models are trained with a binary cross entropy
loss function using the Adam optimizer, using a batch size of 128. It
also includes early stopping as an overfitting countermeasure, speci-
fying that training stops if the network performance does not improve
after 3 epochs.

The resulting models are saved on separate files and stored in disk.

usage . Once the predictor models have been trained, we have to
specify how they are used in the context of analyzing sequences. The
resulting models receive as an input a set of sequences S, for each
sequence si = . . . , xt−2, xt−1, xt, s ∈ S a symbol prediction is the
output ŷt+1 which is then compared to the real value xt+1.

4.4.2 Output Processing and anomaly signal

With the model trained, we can use data sequences to obtain an out-
put which is sent to the processing module to evaluate the predictions
and create an anomaly signal. With a set of predictions made by the
neural network the system uses a binary cross entropy loss function
to evaluate each single bit of the prediction, high values for incorrect
but confident predictions, and low for incorrect but middling ones.
Output processing is carried out using the following procedure:

1. Compute prediction error. Compute the binary cross entropy
loss e between the symbol prediction ŷt and the real symbol xt.
This results in an error vector e with the same dimensions as x
and ŷ.

2. Create a symbol score (word output score following Taylor’s
notation). Compute a single score from vector e, possible op-
tions include: finding the maximum, minimum, or average bit
loss.

3. Symbol score combination. The symbol scores for a sequence
must be combined into a single value, indicating the “anomaly
signal value” for the sequence. Using the symbol output from
the previous step, the combination can be done using any of the
following methods: taking the mean, maximum, log sum value,
or using a rolling window that takes the average score over 0.1s
windows and from these it retrieves the maximum value.

Since each ID has its own model, the score results obtained from
this module vary between them. Therefore, every ID has its own out-
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put processing procedure. In order to check what is the best symbol
score and symbol combinations, the detector has to be tested on val-
idation data, using a set of anomalous traffic the best combination is
selected based on which one scores the highest AUC on average.

detecting an anomaly. With the above methods the output
processing module provides a unique anomaly score for every given
sequence. From this it is possible to establish a threshold that discrim-
inates between anomalous and normal sequences. In the reference
work, the authors used an additional validation set with anomalies
to set this threshold, however, in this work we omit this last step. The
goals of these thesis are two, the first one is to evaluate the use of an
unsupervised approach to anomaly detection, by doing so we do not
use any anomalous data to set detection thresholds. The second goal
is to compare the predictor and autoencoder models, in order to do
that they must have the same performance metric so we can compare
their results, by using the AUC we evaluate their performance under
different threshold values.
In summary, in the predictor-based ADS we only evaluate the output
of the symbol combination method without comparing it to a given
threshold. By doing this, we can directly compare its results with the
autoencoder-based approach that we present next.

4.5 autoencoders-based detection

Based on the arguments presented in Section 4.2, we implement a
reconstruction-based approach using autoencoders for anomaly de-
tection on CAN. Based on the research work done by alDosari[1], As-
sendorp [3], Malhotra et al. [38], we deemed this approach to be fea-
sible and potentially efficient in our context. In our understanding no
work has been published discussing the application of autoencoders
in automotive security.

In a scenario where we want to learn the high level representation
of a time-series, in our particular case model normal CAN traffic, au-
toencoders are a more intuitive approach than using predictors. We
aim to build a model that is able to replicate sequences of normal
CAN data so that if it fails in doing so, it can indicate that an at-
tack is taking place. An autoencoder learns a vector representation of
the time-series so it can learn what constitutes ‘normal’ traffic with-
out the need of attack examples, then it reconstructs such sequences
based on the representation that it learned. This means that a per-
fect model outputs exactly the same sequence that was used as an
input. Once the autoencoder has been trained, we need to know if
a given sequence can be considered anomalous or not, we can make
this classification based on how well the model is able to reconstruct
the input sequence. The intuition behind this is that given that the
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Figure 4.4: Overview of the autoencoder-based ADS.

autoencoder only knows how to reconstruct normal data, if given an
anomalous input it would create a bad reconstruction. We use the
reconstruction error, that is the difference between the input and re-
constructed sequences, to evaluate the performance of the model: low
error values indicate that the autoencoder managed to reconstruct
the sequence rather well, while if errors are high it indicates that the
given sequence is anomalous and potentially an attack.

The anomaly detection system we present here consists of two
main components: the autoencoder, used to reconstruct traffic, and
the anomaly signal mechanism. The second component is responsible
of computing an anomaly score given the autoencoder reconstruction
errors. Figure 4.4 shows an overview of the autoencoder-based ADS
we propose, it receives sequences of CAN data as input and outputs
an anomaly score. The errors computed using the reconstructed se-
quence from autoencoder only tell us how well the reconstruction is
done, but we still need to translate this into a measure of certainty
that a given sequence is normal or not. Perfect reconstructions are
impossible due to many factors, including the bias of the model it-
self, and most importantly the noise generated by the data generating
mechanisms behind CAN signals.

The anomaly signal mechanism works by computing the statisti-
cal characteristics of reconstruction errors over a separate validation
dataset, then it assigns a distance score that indicates how far a given
reconstruction error is from the expected normal/legitimate distribu-
tion. In principle both detector approaches train the models with legit-
imate/normal data, however with autoencoders we will not be using
any validation data with anomalous traffic to tune the anomaly sig-
nal, rendering this a completely unsupervised approach to anomaly
detection on CAN. We specify how this distribution and distance are
computed in Section 4.5.3.
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Similarly to the predictor approach, we train an autoencoder for
every ID in our dataset, which results in 12 autoencoders in total.

4.5.1 Model Architecture

To design the model architecture we begin by following the model
proposed by Malhotra et al. It consists of an encoder and a decoder,
the encoder consists of an input layer that receives the input sequence
x(t) and a single recurrent hidden layer with LSTM units. The de-
coder consists of a single recurrent hidden layer with LSTM units
and an output layer, the state of the decoder recurrent layer is initial-
ized using the final hidden state from the encoder htE. The decoder
output layer transforms the state back into the same dimension as
the encoder input, scaling its values back to the [0, 1] range and so
outputting the sequence reconstruction.

The encoder input is a sequence S as in the predictor case, however,
the target used for training is also a sequence. Nonetheless, the same
sequence S is not used as a target as it would lead the network to just
memorize sequences. Instead, the target sequence is reversed as it
has been shown to improve reconstruction performance in sequence-
to-sequence modeling applications [65] 1. An overview of the model
is illustrated in Figure 4.5 showing the inference steps for an input
x(t) to reconstruct x ′(t).

inputs The autoencoder uses a similar input to the predictor spec-
ified in Section 4.4, a n×k vector where n is the sequence length with
dimensionality k. n is a hyperparameter that can be tuned depending
on practical considerations of the ADS. We preemptively set its value
to n = 20 the same sequence length used by Taylor et al. in their
predictor: we made this decision in order to have similar parameters
when confronting the predictor and autoencoder models. As we dis-
cussed in the input description of the predictor approach, k can be
at most 64 but thanks to the removal of constant bits it is reduced
depending on the respective ID.

encoder and decoder hidden layers We performed a ran-
dom hyperparameter search over this model to obtain an architecture
that could properly address our multivariate problem. Malhotra et al.
model, even though proposed for multivariate time-series, was not ef-
fectively tested with multivariate data. In their experiments they used
4 different datasets, 3 of them univariate, the remaining one was re-

1 Even though Malhotra et al. cite Sutskever et al. to justify the use of reversed se-
quences, the former used a reversed source sequence with a normal target sequence,
while the latter did the opposite, that is a reversed target but regular source sequence.
There was not any explanation as for why this change was done, we verified in a test
scenario that the reconstruction performance is similar regardless of what sequence
gets reversed.
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LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection

series with the target time-series being the input time-series
itself. Then, the reconstruction error at any future time-
instance is used to compute the likelihood of anomaly at
that point. We show that such an encoder-decoder model
learnt using only the normal sequences can be used for de-
tecting anomalies in multi-sensor time-series: The intuition
here is that the encoder-decoder pair would only have seen
normal instances during training and learnt to reconstruct
them. When given an anomalous sequence, it may not be
able to reconstruct it well, and hence would lead to higher
reconstruction errors compared to the reconstruction errors
for the normal sequences.

EncDec-AD uses only the normal sequences for training.
This is particularly useful in scenarios when anomalous
data is not available or is sparse, making it difficult to
learn a classification model over the normal and anoma-
lous sequences. This is especially true of machines that
undergo periodic maintainance and therefore get serviced
before anomalies show up in the sensor readings.

2. EncDec-AD

Consider a time-series X = {x(1),x(2), ...,x(L)} of length
L, where each point x(i) 2 Rm is an m-dimensional vec-
tor of readings for m variables at time-instance ti. We con-
sider the scenario where multiple such time-series are avail-
able or can be obtained by taking a window of length L
over a larger time-series. We first train the LSTM Encoder-
Decoder model to reconstruct the normal time-series. The
reconstruction errors are then used to obtain the likelihood
of a point in a test time-series being anomalous s.t. for each
point x(i), an anomaly score a(i) of the point being anoma-
lous is obtained. A higher anomaly score indicates a higher
likelihood of the point being anomalous.

2.1. LSTM Encoder-Decoder as reconstruction model

We train an LSTM encoder-decoder to reconstruct in-
stances of normal time-series. The LSTM encoder learns
a fixed length vector representation of the input time-series
and the LSTM decoder uses this representation to recon-
struct the time-series using the current hidden state and
the value predicted at the previous time-step. Given X ,
h(i)
E is the hidden state of encoder at time ti for each

i 2 {1, 2, ..., L}, where h(i)
E 2 Rc, c is the number of

LSTM units in the hidden layer of the encoder. The encoder
and decoder are jointly trained to reconstruct the time-
series in reverse order (similar to (Sutskever et al., 2014)),
i.e. the target time-series is {x(L),x(L�1), ...,x(1)}. The
final state h(L)

E of the encoder is used as the initial state for
the decoder. A linear layer on top of the LSTM decoder
layer is used to predict the target. During training, the de-
coder uses x(i) as input to obtain the state h(i�1)

D , and then

Figure 2. LSTM Encoder-Decoder inference steps for input
{x(1),x(2),x(3)} to predict {x0(1),x0(2),x0(3)}

predict x0(i�1) corresponding to target x(i�1). During in-
ference, the predicted value x0(i) is input to the decoder
to obtain h(i�1)

D and predict x0(i�1). The model is trained
to minimize the objective

P
X2sN

PL
i=1 kx(i) � x0(i)k2,

where sN is set of normal training sequences.

Figure 2 depicts the inference steps in an LSTM Encoder-
Decoder reconstruction model for a sequence with L = 3.
The value x(i) at time instance ti and the hidden state
h(i�1)
E of the encoder at time ti � 1 are used to obtain the

hidden state h(i)
E of the encoder at time ti. The hidden state

h(3)
E of the encoder at the end of the input sequence is used

as the initial state h(3)
D of the decoder s.t. h(3)

D = h(3)
E . A

linear layer with weight matrix w of size c ⇥ m and bias
vector b 2 Rm on top of the decoder is used to compute
x
0(3) = wTh

(3)
D + b. The decoder uses h(i)

D and prediction
x0(i) to obtain the next hidden state h(i�1)

D .

2.2. Computing likelihood of anomaly

Similar to (Malhotra et al., 2015), we divide the normal
time-series into four sets of time-series: sN , vN1, vN2, and
tN , and the anomalous time-series into two sets vA and
tA. The set of sequences sN is used to learn the LSTM
encoder-decoder reconstruction model. The set vN1 is
used for early stopping while training the encoder-decoder
model. The reconstruction error vector for ti is given by
e(i) = |x(i) � x0(i)|. The error vectors for the points in the
sequences in set vN1 are used to estimate the parameters
µ and ⌃ of a Normal distribution N (µ,⌃) using Maxi-
mum Likelihood Estimation. Then, for any point x(i), the
anomaly score a(i) = (e(i) � µ)T⌃�1(e(i) � µ).

In a supervised setting, if a(i) > ⌧ , a point in a sequence
can be predicted to be “anomalous”, otherwise “normal”.
When enough anomalous sequences are available, a thresh-
old ⌧ over the likelihood values is learnt to maximize
F� = (1+�2)⇥P ⇥R/(�2P +R), where P is precision,
R is recall, “anomalous” is the positive class and “normal”
is the negative class. If a window contains an anomalous
pattern, the entire window is labeled as “anomalous”. This

Figure 4.5: Overview of the Encoder-Decoder model proposed by Malhotra
et al., taken from [38]

duced to an 1-dimensional series using principal component analysis.
Because of this we instinctively assume that the model must be more
complex in order to properly characterize the data dimensionality.
While conducting the random hyperparameter search, we selected
the model with the lowest reconstruction error on a validation set so
that the resulting model doesn’t just overfit our training data. The
search is done using the data from a single CAN ID that was ran-
domly chosen from our training dataset2. We began this process by
considering a similar architecture to Malhotra et al. model, starting
with a model with an input layer, a single LSTM recurrent hidden
layer for the encoder and one for the decoder. Our search included
additional recurrent and non-recurrent layers, and varying number
of units for each layer, from 64 to 512, and both GRU and LSTM units
for the recurrent layers. During the search we tested mechanisms to
avoid overfitting, including Dropout [64], using L1/L2 regularizers
[26] for different layers as well as using none at all.

The final architecture is illustrated in a simplified manner in Fig-
ure 4.8, and a more complex representation in Figure 4.9, the model
consists of two main components: an encoder and a decoder.

• An input layer expects n×k input matrix of each ID. n being the
length of the sequence to reconstruct and k the dimensionality.

• A dense feed-forward layer with 256 units (C = 256) with hy-
perbolic tangent activation functions. Dropout is added to this
layer with a probability set to 0.2.

• A recurrent layer follows with 128 LSTM (L = 128). units, with
hyperbolic tangent activation functions.

• The last layer is another recurrent layer with 128 LSTM units.
This layer returns the output from the encoder (which is not

2 Tuning the hyperparameters for each ID could in theory result in a better performing
model, since the data generating mechanisms are different, albeit a considerable
time-consuming task.
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Figure 4.6: Training loss with a validation dataset for a random ID using
Malhotra’s encoder-decoder model. The model overfits because
of the lack of regularization.

Our search began using the same architecture as Malhotra et al.:
when training this model we noticed that it can lead to overfitting

because there are no regularization processes in place. In Figure 4.6
we can see the model loss for a random ID using Malhotra’s model,
we observe that after epoch 40 the model starts to perform worse on

validation data while the test error kept decreasing, signaling that
model is overfitting. In general, a deeper architecture performed
better, as it was expected, and we noticed this trend early even

during training. As we can observe in Figure 4.7, the reconstruction
error of the deep autoencoder is significantly lower for the same ID

using exactly the same training and validation data.

Figure 4.7: Reconstruction error during training for the deep autoencoder
model.
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used) and the hidden state h. Technically LSTMs output two
states: the usual h from classic RNNs and the cell state c, but
we denote them both as h for simplicity.

The decoder is consists of:

• A recurrent layer with 128 LSTM units with hyperbolic tangent
activations. As an input it expects a vector with similar dimen-
sionality as the decoder output, and the encoder states h to
initialize the layer.

• Another recurrent layer follows, similarly with 128 LSTM units
with hyperbolic tangent activations.

• A final dense layer that uses sigmoid activation functions to
scale the result back into the [0, 1] range. It’s output has the
same shape as the encoder input.

At each time-step the encoder outputs two hidden states at the last
step, these hidden states hE are used to initialize the decoder.

4.5.2 Training

The autoencoder is trained to reconstruct CAN data sequences ex-
clusively using normal traffic data. During training, the autoencoder
needs to receive as an input a source and target sequence, i.e. what
it is supposed to reconstruct. Instinctively, one would use the same
sequences S for both source and target, however Sutskever et al. [65]
demonstrated that sequence reconstruction performance improves if
the symbol order of the source sequence is reversed, we apply the
same principle here. Additionally, the autoencoder needs another in-
put during training, the first LSTM layer of the decoder cannot be left
without an input, so similarly to Malhotra et al. the decoder previous
outputs are used as the decoder input. During training the model is
run on one time-step t, its output reconstruction s ′(t) and respective
states are stored and reinjected in the next iteration, so the recon-
structed sequence s ′(t) and its states are used as an decoder input
when processing s(t+1). This reinjection is performed only during
training, during the normal usage of the models, the decoder input is
simply set as a vector of zeros.

In summary, training is done using the following data:

• A source set of sequences S, where its symbols x order is reversed:

S0 = xn, . . . , x0

S1 = xn+1, . . . , x1

. . .
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xt

encoder	hidden	layer	1

encoder	recurrent	hidden	layer	2

hE
(L)

encoder	recurrent	hidden	layer	3

decoder	input	layer

decoder	recurrent	hidden	layer	1

decoder	recurrent	hidden	layer	2

decoder	hidden	layer	3

x't ... x't-P

Figure 4.8: General architecture of the autoencoder. The dashed lines indi-
cate that the decoder input is set to the previous reconstructions
only during training. Otherwise use a 0-vector. P corresponds
to the number of sequences used only during training.
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Figure 4.9: Autoencoder model. xt represents a CAN sequence at time t.
a
(enc/dec)l
C is the unit C of linear layer l of either the encoder

or the decoder. r(enc/dec)l
L is the LSTM unit L for the recurrent

hidden layer l of either the encoder or decoder. h(L)E is the en-
coder’s final hidden state used to initialize the decoder hidden
states. ŷt is the reconstructed sequence given xt. The re-injection
is performed only during training, the resulting model the de-
coder input is set to a 0 vector.
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• A set of target sequences Y, which is the same as the source
sequences but with the symbols in their original order.

Y0 = x0, . . . , xn

Y1 = x1, . . . , xn+1

. . .

• The decoder’s input, initially set to a vector of zeros but as train-
ing occurs the model uses St and Yt to output a reconstruction
Ŷt, at the next time-step t+ 1 the decoder’s input is set to Ŷi.
Note that the decoder input LSTM states are still being initial-
ized based on the latest encoder hidden states at the same time-
step.

parameters . The autoencoder is trained using mini batch opti-
mization with a batch size of 128 with Adam as the optimizer [31]. As
a loss function, we use binary cross entropy, this results in models that
harshly penalize incorrect but confident predictions. We also include
an early stopping check that stops training if the reconstruction error
from a validation set fails to improve after 10 consecutive epochs. As
soon as training starts, the decoder input is set to a 0-vector, but as the
first decoder outputs are produced, they are continuously reinjected
into the decoder input for the rest of the training process.

usage . To use a trained autoencoder we need to define its input
so it can be used to analyze sequences, these inputs are:

• Encoder inputs. A sequence st which is composed of L symbols
in reversed chronological order st = [xt+L, . . . , xt], and x, a sym-
bol of dimensionality k, 0 < k 6 64.

• Decoder inputs. A 0-vector of size 1× k

With these inputs the model outputs a reconstruction of the sequence

ŷt = [x̂t, . . . , x̂t+L]

Where x̂ is a single reconstructed symbol of size k.

4.5.3 Anomaly signal processing

Once we have a model that is able to reconstruct sequences, we need
to find a procedure to generate an anomaly score that is be used as
a discriminator between normal and anomalous sequences. First we
must define how to compute the error of a reconstruction. Unlike
Malhotra et al. approach, we do not use the absolute error function,
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instead we use the binary cross-entropy function to compute the re-
construction error:

−(bk log(b̂k + ε) + (1− bk) log(1− b̂k) + ε)

Where bk is the k-th bit in the reconstructed sequence yi and bk is
the k-th bit of the source (or input) sequence.

By computing the reconstruction error of a single sequence, we ob-
tain an error vector with the same cardinality as the input sequence,
that is using original and reconstructed sequences of size n× k will
result in a n× k reconstruction error vector. The next step is to deter-
mine how we can establish what are the normal reconstruction errors
that occur in normal data sequences.

The processing step yields different results for each autoencoder
that we trained, as the errors significantly vary between IDs. There-
fore, the anomaly signal processing procedure must be carried out
for each CAN ID.

normal reconstruction error distribution. To determine
if a reconstruction error for a sequence can be considered anomalous,
we must first establish what is a ‘normal’ error using legitimate data
sequences. Using a separate validation dataset we compute the re-
construction errors of a set of normal sequences which result in a
s×n× k error vector, where s is the number of sequence samples, n
is the length of each sequence, and k is the dimensionality of the sym-
bols in that sequence. From such errors we can compute the statistical
characteristics of the distribution, but first we need to reshape the vec-
tor so we can compute these values. We reshape the s× n× k error
vector into s ∗n×k, thus obtaining a continuous list of reconstruction
errors.

Successively, we fit these errors into a multivariate Gaussian dis-
tribution, which gives us the mean µ of dimension k and covariance
matrix Σ with k× k dimension.

anomaly score . Now that the normal error distribution is avail-
able we need to compute the likelihood of an anomaly. We use a
similar approach to [37, 38], an anomaly score a is derived from the
Mahalanobis distance measuring the distance between a reconstruc-
tion error and the distribution of normal/legitimate errors, and it is
computed as follows:

a = (e− µ)TΣ−1(e− µ)

Where e is the reconstruction error vector of dimensions s ∗n× k.
We need to test how correct is the assumption that these scores

are different under anomalous scenarios. Just for the purpose of il-
lustration we present the variations in the score distributions when
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Figure 4.10: Anomaly score distribution for test sequences with normal
data.

Figure 4.11: Anomaly score distribution for test sequences with an inter-
leave anomaly.

anomalies are present. In Figure 4.10 we show the anomaly score dis-
tribution using only legitimate sequences along with its mean and
standard deviation. Figure 4.11 illustrates an example using an inter-
leave anomaly, we can see the significant change in the scores distribu-
tion. In Figure 4.12 we illustrate the changes when executing a replay
anomaly targeting a high-frequency field, they are not as drastic as in
the interleave case but we can still see evident changes in the scores
distribution. This gives us an idea of how drastic anomalies alter the
reconstruction error distribution of a set of test sequences.

4.6 detectors evaluation

We can now use this anomaly score to compute the ROC AUC of
the autoencoders using our simulated anomalies. We have specified
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Figure 4.12: Anomaly score distribution for test sequences with a replay
attack targeting a high variability field.

the proposal that uses a predictor-based detector and we also defined
how our autoencoder detector operates. In the next chapter we eval-
uate how these two approaches compare to each other. We theorized
that the autoencoder approach could yield better results given the fact
that it does not make any assumptions on the data generating mecha-
nisms in place, and in doing so removing the strong assumption that
CAN traffic data is predictable. We use similar implementation and
experimental parameters to ensure that the detectors are being com-
pared under the same scenarios. For example, both detectors use the
same data sequence as input with the same sequence length.

Both detectors are tested using the same simulated anomalies with
the same anomaly parameters, during the anomaly test phase we
compute the ROC AUC of the detectors so we can evaluate their per-
formance and how they compare.





5
E VA L U AT I O N

5.1 introduction

In this chapter we present our experiments and results for our data
sequence anomaly detection task.

We begin by explaining our experimental setup and data, includ-
ing how our datasets are divided. We explain our data pre-processing
procedure and then present the results of the post-processing for
both detectors. Afterwards, we present the process used to simulate
anomalies.

We show the results of our anomaly experiments divided by the
two main categories of anomalies we consider. For each one, we
present an overview of the results, and in the case of data field tests,
we also show the results in the context of different parameter combi-
nations and offer some insight on them.

With our experimental evaluation we set three main goals:

1. Show that autoencoders provide a good model for anomaly de-
tection in data sequences.

2. Demonstrate that autoencoders can be used as a complemen-
tary model or even substitute predictors entirely in an anomaly
detection system. This is demonstrated using the performance
scores we defined.

3. Evaluate the shortcomings of the autoencoder approach so they
can be improved in future work.

5.2 experimental setup

The software tools were chosen because of the wide variety of li-
braries for fast prototyping with a wide collection of machine learn-
ing algorithms, including neural networks, data analysis, among oth-
ers. We used the following software throughout the course of this
work:

• Python 3.61

• Tensorflow 1.12 with Python API 2

• Keras 2.2.4 with Tensorflow back-end3

1 Available at: https://www.python.org/
2 Available at: https://www.tensorflow.org/
3 Available at: https://keras.io/
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• Pandas 0.24.1 (Library for Python) 4

• Numpy 1.15.4 (Library for Python) 5

• scikit-learn 0.20.2 (Library for Python) 6

• Jupyter 4.4.0 (for preliminary analysis and interactive data ex-
ploration) 7

5.3 experimental data

Datasets

In our experimental work we use a database with more than 6 million
messages of logged CAN traffic, the data is obtained from a Alfa
Romeo Giulia Veloce vehicle as we described in Section 2.3.2. It is
saved on disk as a text file and it contains the columns Timestamp,
ID, DLC, and Data.

Overall, we did not identify any missing information or data that
could be considered as corrupted or that may hinder our work. Nonethe-
less, the only issue came from a couple of small temporal gaps in the
readings. Some gaps were present which are a couple seconds long,
and one is 7 minutes long. Temporal gaps are problematic if not man-
aged correctly as they cause data discontinuities in the data streams
and this would negatively affect the performance of the models as we
train them. Despite of that, we took advantage of these gaps to divide
our data logs into disjoint datasets, which we describe bellow.

We divide the CAN recording files according to the different data
needs we have identified, each dataset is disjoint from one another so
there are no overlaps between them:

• Datatrain is a dataset used for training both our predictor and
autoencoder models. This dataset corresponds to around 60%
of all our available data.

• Datatrain_val is used as a validation set during training. It is
used to check the performance of our models as they are be-
ing trained, which is effectively used for early stopping to avoid
overfitting. This dataset corresponds to around 10% of the total
available data.

• Datascores is a dataset used to configure the anomaly signal
mechanisms of both detectors. In the case of the predictor, it is
used to find the best symbol output and symbol combinations
(half of the data is replaced with anomalous data, albeit non

4 Available at: https://pandas.pydata.org/
5 Available at: https://www.numpy.org/
6 Available at: https://scikit-learn.org/stable/
7 Available at: https://jupyter.org/
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permanently). For the autoencoder, this dataset is used to fit
the distribution of reconstruction errors and the anomaly scores
that are present in normal CAN data. This dataset corresponds
to round 10% of the total available data.

• Dataanomalies is a dataset used exclusively for anomaly tests,
during the evaluation of our systems 40% of this dataset is mod-
ified to include anomalies while the rest is left for normal/legiti-
mate traffic. This dataset corresponds to 20% of all our available
data.

Following Taylor’s approach, we only consider CAN IDs with high
frequency, high symbol variability, and non-trivial symbol complex-
ity (i.e. the percentage of unique symbols is higher than 1%). The IDs
in our dataset that match these characteristics are:

0DE, 0EE, 0FB, 0FC, 0FE, 0FF, 1F7, 1FB, 11C, 100, 104, 116.

5.3.1 Data Preprocessing

CAN data traffic, as directly logged from the bus, is not yet suitable
for training neural networks and to be used with the predictor and au-
toencoder models we have presented. Additionally, it also not usable
to simulate the anomalies we have described. For these reasons, we
must first follow pre-processing procedures to prepare our dataset.

One of the first steps during pre-processing is to create a binary
representation of the data field. To avoid converting data every time
we load the dataset, we add a new column to our dataset named
DataBin which is a binary representation of the hexadecimal data
present at each CAN message. This process also creates a new column
named DataBin_nc, which represents the data of DataBin but with the
constant bits removed. However, this requires that the whole dataset
is used in order to guarantee that the constant bits are consistent
across files and datasets.

5.3.1.1 Field Classification

As part of the data pre-processing process we implement the Field
Classification Algorithm presented by Markovitz and Wool[41] and
discussed in Section 2.4.1. Before executing the algorithm, it requires
that the data is represented as a sequence of bits rather than a hex-
adecimal string. It is also relevant to note that all data across files
is passed to the algorithm so the results are consistent throughout
our datasets As an example of the importance of using the entire
dataset, we observed that during our preliminary tests some of the
bits deemed constant in the training dataset later changed in our test
sets, this rendered our models incompatible across different datasets
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as they had inconsistent dimensionality when constant bits are re-
moved.
There are parameters that have to be set prior to the execution of the
algorithm. To classify fields as either sensor or multi-value, we used
the same parameters for maximum amount of unique symbols and
candidate field length used in the reference work TVmax

= 12 and
TLmin

= 4, these values were selected to minimize the false positive
rate. Since we do not have any ground truth to test the identification
algorithm we could not verify the accuracy of the resulting fields.

The algorithm follows this general procedure: as an input, the al-
gorithm uses the 64 bits of the data frame, executes the identification
process, and outputs a list of disjoint fields for each ID. The output
includes the leftmost-bit (i.e. index), length, type (multi-value, sensor,
constant), category (low/medium/high variability), and the number
of unique symbols. The output is then saved as a file on disk contain-
ing the list of disjoint fields and their attributes for every ID.

The full list of IDs and their identified fields are found in the Ap-
pendix A.

5.4 model training

We trained 24 models in total as there are 12 CAN IDs we consider
and 2 detectors, and each model is saved on a separate .h5 file. One
training process is executed for each given the available memory
space we had on the machine we used. However, no GPU was avail-
able so training was conducted only using the CPU. Because of this,
training took a significant amount of time, requiring 2-3 days to train
each predictor and 3 to train each autoencoder (which was expected
since autoencoders are known to take longer to train). In our case,
the total training time to obtain all models was 6 days. For future
work and replication we encourage the use of GPUs for training, and
if the right infrastructure is available, follow Tensorflow’s data input
pipeline performance 8.

5.5 post-processing

5.5.1 Predictor post-processing

There is no single best match of symbol scores and combination meth-
ods for all IDs. Using anomalous traffic samples from the validation
set Datascores, we choose the combination that maximizes the AUC,
this is the step that renders Taylor’s method a semi-supervised learn-
ing approach. In their early work [67], the maximum loss symbol
score was considered to perform best for all CAN IDs, in their later
work [66] results slightly changed but in general this mechanism still

8 Available at: https://www.tensorflow.org/guide/performance/datasets
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scored better overall. However, when we replicated the experiment
with our own data the results were more varied. For each ID we
computed the AUC for every anomaly type using all possible output
processing methods, the combination that performed best overall was
chosen. The final results included a combination of the symbol scores:
maximum and average, with combination scores: rolling window, log
sum, maximum, and average.

The best combination results can be seen in Table 5.1. These are the
anomaly signal outputs which indicate an anomaly score for a given
test sequence.

ID Symbol output Symbol combination

0DE Max bit loss Rolling window

0EE Max bit loss Rolling window

0FB Max bit loss Rolling window

0FC Max bit loss Rolling window

0FE Max bit loss Maximum symbol loss

0FF Max bit loss Rolling window

1F7 Max bit loss Maximum symbol loss

1FB Max bit loss Average symbol loss

11C Max bit loss Rolling window

100 Max bit loss Rolling window

104 Max bit loss Rolling window

116 Average bit loss Average symbol loss

Table 5.1: Symbol score and combination results for every ID..

5.5.2 Autoencoder post-processing

As we explained in Section 4.5.3, the post-processing procedure for
the autoencoder is fairly simple and it does not require evaluating
parameter combinations.

To produce an anomaly score we follow the same mechanism used
by Malhotra et al.[37, 38]. For every CAN ID, we find the reconstruc-
tion error distribution using only normal/legitimate data from our
validation set Datascores. This results in a mean µ and a covariance
matrix Σ that indicates us the multivariate Gaussian distribution of
non-anomalous data. We create a file for each ID specifying the re-
spective values for µ and Σ.

To determine if a given test sequence is anomalous, we compute
the Mahalanobis distance between the distribution we obtained pre-
viously and the reconstruction errors of the test sequence.
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5.6 anomaly tests results

5.6.1 Defining the test sequences

Before simulating anomalies we need to describe how our test se-
quences are defined. They are created using continuous and non-
overlapping data sequences from the Dataanomalies dataset. Each
sequence is 3 seconds long and contains 300 observations, since all the
CAN IDs we considered have a message frequency of 10 milliseconds.
The constant bits for each ID are not ignored since they are needed
when simulating anomalies targeting specific fields, constant bits are
removed after the anomaly sequences are created so we can use the
models we trained. Test sequences are therefore a 3-dimensional ma-
trix consisting of:
number_of_sequences × 300 × 64, for example:

sanom,0 = x0, x1, . . . , x299

sanom,1 = x300, x301, . . . , x699

. . .

Where xi is a single data frame with dimensionality 64.
For every anomaly type, we create a new set of test sequences. We

keep 60% of the original sequences as legitimate sequences, the re-
maining 40% is altered using the anomaly functions

5.6.2 Simulating anomalies

In this Section we describe the implementation of the anomalies that
we presented on the Threat Model in Section 3.2.4. To recap, the
anomalies Interleave and Reverse modify the test sequences but not
the contents of each symbol. Therefore, the only parameter needed
to create such anomalies is the test sequence itself. The Discontinuity
anomaly has an additional parameter, which is the number of sym-
bols to remove from the sequence. We set this parameter to 10.

On the other hand, field anomalies have additional parameters and
we must evaluate the detectors using different combinations. The pa-
rameter combination process is performed in the following order:

1. Anomaly function. There are 5 field modification functions we
consider, set to maximum, set to minimum, set to a constant, set to
random value, replay field.

2. Field variability. We consider all the 3 variability types (low, medium,
and high).

3. Target field. If a field with the chosen variability exists, we ran-
domly select a field for the target ID.
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4. Duration. How long is the anomaly in the test sequence. 4 du-
rations are evaluated: 0.2, 0.5, 1, and 1.5 seconds. The anomaly
starting time is chosen at random, but not earlier than one third
of the total length of the test sequence and early enough to
accommodate the entire anomaly duration. This allows us to
evaluate the impact of the duration time for every anomaly.

By selecting the target field before the duration, we guarantee that
we are consistently evaluating the anomaly under the same parame-
ters (anomaly function and variability type). We also note that in our
experiments we used exactly the same fields when testing the predic-
tor and the autoencoder, this was done in order to have a consistent
parameter choice between the detectors.
Taylor in their experiments implemented field anomalies in a way
that only targets Sensor fields, in this work we removed this restric-
tion so we can better evaluate detector performance using a greater
range of fields.

Note that there are potentially 64 anomaly test cases for every CAN
ID. However, in our experiments most IDs do not have fields for ev-
ery variability category therefore in most cases the actual number of
parameter combinations is 40.

5.7 anomaly results

In this section we present the results from the anomaly detection tasks
using both detectors. In all cases we use the AUC as the performance
metric to compare them.

While presenting the results, we first show how the detectors per-
form when analyzing interleave, discontinuity, and reverse anomalies.
Then we evaluate the results in data field attack scenarios, where we
evaluate the performance using the set of parameters used to create
the anomalies.

5.8 anomaly scenario 1 : general sequence anomalies

5.8.1 Interleave

We begin this evaluation by presenting the detectors results when
testing for interleave anomalies. The AUC for every ID is presented in
Table 5.2 as well as the performance average for both detectors. These
anomalies were among the easiest to detect because of the noticeable
impact they have in the data stream, half of the symbols in the se-
quences are drawn from a pool from a different point in time, and so
each anomalous sequence has half of its symbols from a completely
different context.

Both detectors score very high AUC values and there does not seem
to be a a clear winner in this case.
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Predictor Autoencoder

0DE 1 1

0EE 1 0.9846

0FB 1 1

0FC 1 1

0FE 1 1

0FF 1 1

1F7 0.9935 1

1FB 0.9894 1

11C 0.9982 1

100 1 1

104 0.9965 1

116 1 0.9997

avg 0.9981 0.9986

Table 5.2: Interleave anomaly AUC for all IDS.

Predictor Autoencoder

0DE 0.9996 1

0EE 0.9939 0.9437

0FB 0.9938 1

0FC 0.9921 1

0FE 0.9998 1

0FF 0.9911 1

1F7 0.9563 1

1FB 0.9961 1

11C 1 1

100 0.9957 1

104 1 1

116 0.9974 0.7892

avg 0.9930 0.9777

Table 5.3: Discontinuity anomaly AUC for all IDS.

5.8.2 Discontinuity

Next, in Table 5.3 we present the results for the discontinuity anomaly
case. Both detectors yield significantly good results overall. However,
on average the predictor obtained a higher AUC for all IDs, albeit
slightly. The main factor contributing to this result came from a spe-
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cific ID (116), for which the autoencoder performed poorly with an
AUC of 0.789 while the predictor achieved 0.997. However, we were
not able to find factors that could indicate why the autoencoder per-
forms worse for this specific ID but almost perfectly for all other
cases.

Predictor Autoencoder

0DE 1 1

0EE 1 0.9622

0FB 0.9999 1

0FC 0.9996 1

0FE 1 1

0FF 0.9991 1

1F7 0.9930 1

1FB 1 1

11C 1 1

100 1 1

104 1 1

116 0.9960 0.9587

avg 0.9989 0.9934

Table 5.4: Reverse anomaly AUC for all IDS.

5.8.3 Reverse

Finally, the reverse anomaly results are presented in Table 5.4. Both
detectors can detect these anomalies with very good performance, as
it was expected. This scenario does not match any attacks found in
literature, but it serves as a control experiment as done in [67].

Overall, we can see that both detectors perform well at detecting
these types of anomalies. This result is to be expected given the fact
that the all bits for every anomalous symbol are out of context, mean-
ing we can have a maximum of 64 anomalous bits per symbol. This
causes a chain of errors that significantly grows as we compute the
anomaly flow, from bit to symbol to sequence error. However, this is
not the case in data field anomalies which we will present next. In
this context only a subset of the symbols bits are used and these can
vary significantly, being either 6 bits or even 52 bits long.
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Predictor Autoencoder

0.932265 0.967711

Table 5.5: Average AUC results for all data field anomalies across all IDs

5.8.4 Caveats

These results are overall satisfying, as performance is quite high. How-
ever, all of these anomalies have something in common, they directly
alter the rates at which messages are seen on the bus. As we intro-
duced in Section 3.3.3, frequency detection methods have been proven
to be quite efficient at detecting these changes, achieving perfect per-
formance in many cases. Which approach yields better performance
remains to be evaluated, however these frequency-based methods are
effectively much simpler to design, implement, and execute, requir-
ing significantly less demanding computing demands.

5.9 anomaly scenario 2 : targeting fields

In this section we analyze the results of the data field anomaly test
cases. To begin, in Table 5.5 we show the average AUC for all IDs over
all data field anomalies, we see that performance is not that much
different with our autoencoder detector, achieving an AUC average
improvement of 0.034.

5.9.1 Overall results

One of the parameters that have the greatest impact in the results
is the identifier, each data generating mechanism is different and in
consequence so is the capability of the models to characterize them.
In Figure 5.1, we illustrate a direct comparison between the detectors
for each ID, we observe that in 7 out of 12 cases performance was
very similar as there’s an AUC difference less than 0.02, as shown in
Table 5.6. However, for 4 IDs the difference was more significant, with
AUC improvements ranging from 0.05 to 0.19.
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Figure 5.1: Average AUC per ID for all data field anomalies.

ID AUC difference

0DE 0.0090

0EE 0.0093

0FB 0.0327

0FC 0.0729

0FE 0.008

0FF 0.006

1F7 -0.0305

1FB 0.1913

11C 0.0067

100 -0.0049

104 0.0551

116 0.0822

Table 5.6: AUC difference between detectors for all data field anomalies. A
negative value indicates the predictor performs better.
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Figure 5.2: AUC results for ID 1FB. The x-axis indicates the parameters for each test as specified in Section 5.6.2
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Anomaly function Predictor Autoencoder

Max 0.9341 0.9440

Min 0.8986 0.9264

Constant 0.9508 0.9514

Random 0.9908 0.9944

Replay 0.8087 0.9521

Table 5.7: Overall AUC of the detectors grouped by anomaly function.

Looking at the results for each ID allows us to see trends that are
otherwise obfuscated by overall results, particularly when the detec-
tors have similar performance across the parameter space. To better
illustrate the detectors performance throughout the test parameters,
we take ID 1FB as an example, which is illustrated in Figure 5.2. We
chose this ID as it presents the greatest improvement when switching
from a predictor to our autoencoder. We see that the type of anomaly
influences the detectors performance, in this particular example the
autoencoder performs significantly better for every duration when
testing for field replay anomalies. The detectors share good results
in several scenarios, in the example we can observe that the predic-
tor eventually catches up with the autoencoder with longer lasting
anomalies, but the performance gap at shorter durations is quite sig-
nificant, even yielding an AUC difference of 0.49. In this particular
case, the predictor performs slightly better than just making a ran-
dom choice on whether or not the sequences are anomalous.

In the following sections, we present an evaluation considering
three important parameters that influence the detection results: we
begin analyzing the AUC by the anomaly function used, then we an-
alyze the results depending on the target field variability, and finally
on the duration.

5.9.2 Influence of the anomaly function

We evaluate if there is a relation between the anomaly function and
the detectors performance. We combine the AUC of all IDs and group-
ing them by the anomaly function, as presented in Table 5.7. We can
observe that performance is fairly similar between the detectors, yet
the autoencoder always resulted as the highest performer overall .
However, we can point out a clear pattern, autoencoders are signifi-
cantly better at detecting replay anomalies than predictors, the differ-
ence between their respective AUCs is 0.15.
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Field variability Predictor Autoencoder

Low 0.9239 0.9741

Medium 0.8837 0.9106

High 0.9594 0.9754

Table 5.8: Overall data field AUC anomaly results divided by field variabil-
ity.

5.9.3 Influence of field variability

We now evaluate the influence of symbol field variability as a in the
detectors performance. In Table 5.8, we see the average AUC results
for all IDs and grouped by the field target variability. We see that in
this framing, the autoencoder on average performs better. One of the
most remarkable results is the improvement of attacks targeting low
variability fields. As a matter of fact, Taylor et al. highlighted that
their detector performed worse using fields of low variability, and on
high variability cases it performs best, our results partially confirm
this conclusion.

However, in our tests, mid variability fields performed worse than
the others. By studying all the medium variability fields in our dataset,
which are presented in Appendix A, we see that these fields tend to
have a very short length, usually between 4 and 7 bits long. They are
also not particularly common, found in only 5 of our 12 IDs. As the
length is short with respect to other fields, the errors are much more
obfuscated by the surrounding legitimate bits.

We also evaluate the detection performance relation between vari-
ability and the anomaly function. In Figure 5.3 we illustrate the AUC
results by grouping variability and anomaly function, we observe that
performance is fairly similar for both detectors with the autoencoder
having a marginal advantage. From these results we can observe that
autoencoders have significant better performance at detecting replay
anomalies when the target fields have low or medium variability, with
high-variability fields they have better performance on average but
the difference is not as significant as the other cases.

5.9.4 Influence of duration

How long the anomaly lasts has a clear impact on the detectors per-
formance, intuitively one would assume that the longer the anomaly
the better the chances to detect it. Indeed, we confirm this intuition
as can be seen in Table 5.9. For both detectors longer anomalies result
in a higher AUC values. By grouping variability and duration, as il-
lustrated in Figure 5.4 and in Table 5.10, we can confirm that autoen-
coders perform significantly better on average for all short-lasting
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Figure 5.3: Overall detection AUC, grouped by anomaly function and vari-
ability. The first letter stands for the target field variability (Low,
Medium, and High), and it is followed by the anomaly function.

Anomaly duration (s) Predictor Autoencoder

0.2 0.9003 0.9260

0.5 0.9084 0.9535

1 0.9241 0.9648

1.5 0.9336 0.9704

Table 5.9: Overall detector AUC anomaly grouped by attack duration.

anomalies that target low variability fields. On the other cases perfor-
mance is relatively similar, but we can see the gap closes as anomalies
last longer.

5.10 observations on poorly performing contexts

In the preceding sections, we mostly considered average results for
our anomaly detection tests. By analyzing different levels of abstrac-
tion over the results we managed to draw some patterns and findings
on the factors that contribute to detection performance, as well as to
directly confront two anomaly detection mechanisms.

We look at some of the specific scenarios where both detectors per-
formed poorly as to know the reason why this is the case. Here are
some examples and findings:

• ID 104 (see appendix B.11) shows that both detectors perform
poorly when using a “set field to minimum” anomaly function
on a high-variability field. By looking at the average bit values
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Figure 5.4: Overall detection AUC, grouped by variability and duration.
The first letter stands for the target field variability (Low,
Medium, and High), and it is followed by the anomaly dura-
tion in seconds.

Low var. Mid var. High var.

ID 0.2(s) 0.5(s) 1(s) 1.5(s) 0.2(s) 0.5(s) 1(s) 1.5(s) 0.2(s) 0.5(s) 1 1.5(s)

0DE
P. 0.9721 0.9725 0.9772 0.9795 0.9520 0.9764 0.9879 0.9914

AE. 0.9819 0.9944 0.9996 0.9997 0.9560 0.9832 0.9897 0.9910

0EE
P. 0.9870 0.9749 0.9878 0.9888

AE. 0.9911 0.9957 1.0000 0.9994

0FB
P. 0.9561 0.9553 0.9013 0.9640 0.9903 0.9905 0.9920 0.9940

AE. 0.9989 1.0000 0.9983 1.0000 1.0000 1.0000 1.0000 1.0000

0FC
P. 0.9376 0.9419 0.9456 0.9475 0.7119 0.7104 0.7396 0.7566 0.9855 0.9924 0.9933 0.9941

AE. 0.9942 0.9976 0.9951 1.0000 0.8490 0.8974 0.8837 0.9203 1.0000 1.0000 1.0000 1.0000

0FE
P. 0.9252 0.9377 0.9432 0.9504 0.8965 0.9019 0.9047 0.9107 0.9966 0.9998 0.9991 0.9997

AE. 0.9044 1.0000 1.0000 1.0000 0.8289 0.9063 0.9913 0.9924 1.0000 1.0000 1.0000 1.0000

0FF
P. 0.9502 0.9603 0.9635 0.9667 0.7677 0.7515 0.8253 0.8245 0.9573 0.9737 0.9803 0.9827

AE. 0.9754 0.9997 1.0000 0.9993 0.7768 0.7519 0.8136 0.8352 0.9304 0.9893 0.9951 0.9981

1F7

P. 0.9326 0.9367 0.9439 0.9521 0.9081 0.9425 0.9734 0.9744 0.8734 0.8760 0.8796 0.8778

AE. 0.9039 0.9157 0.9198 0.9133 0.8442 0.8793 0.9148 0.9397 0.8306 0.8475 0.8565 0.8706

1FB
P. 0.5970 0.7031 0.9005 0.9909

AE. 0.9507 0.9980 0.9979 0.9979

11C
P. 0.9168 0.9149 0.9191 0.9212 0.9879 0.9894 0.9918 0.9934

AE. 0.8272 0.9841 0.9978 0.9998 0.9918 0.9990 0.9999 1.0000

100

P. 0.9822 0.9882 0.9906 0.9954

AE. 0.9745 0.9778 0.9873 0.9964

104

P. 0.8179 0.8174 0.8205 0.8218 0.9559 0.9579 0.9609 0.9607 0.8939 0.8881 0.9001 0.9026

AE. 0.9884 0.9995 1.0000 1.0000 0.9670 0.9759 0.9719 0.9802 0.8941 0.9014 0.9020 0.9020

116

P. 0.7599 0.7954 0.8579 0.8748 0.9973 0.9976 0.9978 0.9993

AE. 0.9508 0.9854 0.9938 0.9869 0.9982 0.9988 0.9995 0.9977

Avg
P. 0.9016 0.9096 0.9214 0.9268 0.8660 0.8699 0.8842 0.8985 0.9334 0.9458 0.9667 0.9758

AE. 0.9408 0.9846 0.9883 0.9874 0.8775 0.9018 0.9289 0.9446 0.9598 0.9742 0.9773 0.9794

Table 5.10: AUC results grouped by anomaly duration and target field cat-
egory. Blank cells indicate that a relevant field does not exist. P
stands for the predictor results, and AE. stands for the autoen-
coder results.
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over the target field, we observed that the average values for
that field are in fact very low in the unaltered dataset, with
many bits having average values ranging from 0.1 to 0.3.

• ID 0FF (see appendix B.6) is a particular case since it shows that
the autoencoder struggled significantly when detecting some
field anomalies with medium variability. We briefly inspected
the relevant fields that yielded these results, the field in question
was very short in length using 6 bits of the total 64. But most
importantly, we noticed that 3 of its bits remain constant in the
dataset we used for training, while they effectively change in
the test datasets. In brief, the detectors effectively learned some
bits as constant. Form this we can draw a hypothesis that the
autoencoder may be more sensible to these constant bits, from
which we can infer that it needs more training data to overcome
this issue.

5.11 summary

Through our experiments results we demonstrated that overall the
autoencoder performs better than the predictor in all anomaly sce-
narios. By combining the resulting AUCs in different configurations,
we could observe patterns that are not noticeable while looking at the
general results. Cases like CAN ID 100 help to obscure these patterns
as both approaches have a very similar high performance. In some
IDs we can see very high AUC differences between the detectors and
notice that not in every single scenario autoencoders perform best.
For example ID FB7, as seen in Figure B.7, is a single counterexample
to some of the conclusions we have drawn on variability influence on
the results. Alternatively, for IDs 1FB, 104, 116, shown in Figure B.8
,B.11, and B.12 respectively, we can see great performance improve-
ment when using an autoencoder since it can handle most of the
cases in which the predictor performs quite badly. The trend among
all IDs is favorable to our autoencoder approach.





6
C O N C L U S I O N S A N D F U T U R E W O R K

In this thesis we presented a new approach to anomaly detection in
sequences of automotive data using a completely unsupervised learn-
ing approach, where no attack data was used to either train or fine-
tune the detector. This approach consisted of using an autoencoder, a
deep neural network architecture used to learn the representation of
CAN data sequences. To test the advantages of our approach with re-
spect to other proposals, we compared it to a state-of-the-art anomaly
detection system designed for automotive data. Since the implemen-
tation of this detector is not publicly available, we proceeded to im-
plement it following the authors published research [37, 67, 66].

Our proposal was inspired by the research on anomaly detection
using autoencoders, which had been proposed in other application
areas. We adapted the approach to bring it into an automotive cyber-
security context, and demonstrating it yields significant performance
improvements over the current state-of-the-art.

In this section we review our process and findings, recap of our
contributions, and finally, lay out a path for possible future research
on this topic.

6.1 process review

6.1.1 CAN data

The first step during this research was to analyze CAN traffic data
in order to confirm the assumptions made in previous research, and
also to obtain an overview of the data at hand. We began this process
by collecting real CAN bus data from an Alfa Romeo Giulia Veloce.
With this data we observed that CAN traffic can be characterized with
the following features, as we showed in Section 2.3:

• The majority of CAN traffic is periodical.

• Traffic that is transmitted at high frequencies usually present a
greater payload variability.

• Each ID creates new symbols constantly, resulting in a symbol
dictionary that grows rapidly as more data is collected.

We also confirmed that there’s underlying structure to most CAN
ID payloads. To automatically find some potential structures, we repli-
cated Markovitz and Wool field identification algorithm. The results
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from this classification were used in the process of training our detec-
tors and designing our threat model. However, since we do not have
the real semantics behind the CAN IDs it was impossible to test the
accuracy of the algorithm.

6.1.2 Predictor replication

We followed by replicating prediction-based ADS proposed by Tay-
lor et al. as it represents one of the state-of-the-art systems for CAN
data sequence anomaly detection. Nonetheless, replication is quite
a time consuming task as the original code is not available, and be-
cause some details are not immediately available. One of the most
demanding tasks was the search for the best performing symbol out-
put combination method, which yielded a considerably high number
of results characteristics to consider, we ended up averaging these
results and from this we chose the best combination method.

6.1.3 Implementation of the autoencoder-based detector

Based on previous work on anomaly detection using LSTM neural
networks, we proposed a detection scheme with an autoencoder that
learns to reconstruct normal traffic data. The autoencoder-based de-
tector can be used to identify anomalies when a test sequence is not
consistent with the statistical characteristics of what is considered le-
gitimate traffic. We considered autoencoders as a more natural fit to
our problem given the conditions that real attack samples are not
available, which limits the choice of a detection scheme.

Through our experiments we observed that autoencoders are a suit-
able modeling technique for CAN traffic data, as it can successfully
model the time-series and it does not make any assumptions on the
data generating mechanism for each time-series. These assumptions
include whether the signal is predictable in some way, or more gener-
ally, its stationarity.

With our approach we also presented a much simpler procedure
to prepare the autoencoder for anomaly detection tasks. Once the
autoencoder has been trained, we can set the anomaly scoring mech-
anism with nothing more than normal/legitimate data. The anomaly
scoring mechanism is configured by learning the statistical distribu-
tion of reconstruction errors on non-anomalous data. The autoen-
coder receives as input sequence data from the dataset and outputs
the respective reconstructions, the system then computes the recon-
struction errors and fit these into a multivariate Gaussian distribution.
This distribution corresponds to a ground truth on what to consider
normal error scores. To evaluate if a given sequence is anomalous,
the system measures the Mahalanobis distance from the reconstruc-
tion errors of a test sequence to the legitimate data error distribution.
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6.1.4 Detection performance

In order to compare the predictor and autoencoder approaches, we
established that both detectors are evaluated using the same perfor-
mance metric. We used similar test scenarios and parameters for both
detectors, these are also similar to the ones used in the the state-of-
the-art detector research for two reasons: one was to replicate the orig-
inal experiment with our own data, the second was to have common
ground from which we can make a fair comparison on the detectors
performance.

To test the detectors we need to simulate anomalies. To do so, we
implemented a system that can manipulate existing CAN data and
create a new set of anomalous sequences. Both detectors are tested
on the same anomalous data.

Overall, the autoencoder detector showed better performance than
the predictor detector. However, some of the cases where the autoen-
coder performed best were not immediately clear, as the process of
averaging results over different variables and parameters can obfus-
cate some information. To obtain further insight on these results, we
analyzed different levels of abstraction on the results and we were
able to draw several conclusions. The most relevant one is that on
average our autoencoder detector performs either equally or better
than the state-of-the-art predictor system in most circumstances.

The most relevant observations from our detection results are:

• The autoencoder performs better on average when dealing with
anomalies on low variability fields. We see that many cases
where the predictor struggles are characterized by the fact that
the anomaly in question targets low variability fields.

• For some IDs the predictor yields relatively poor performance at
detecting replay field anomalies. These are anomalies in which
a target field is replaced with a series of bits from another point
in time. On the other hand, the autoencoder-based system per-
formed better on average on this type of data field anomaly.

• Both detectors performance on high-variability fields is fairly
similar, which gives us further incentive to propose the autoen-
coder as a substitute to the predictor rather than a complement.
Figure B.12 in the Appendix illustrates a clear example of this
phenomenon, the predictor performs well overall, however, all
the cases where it performs badly (AUC reaching values as
low as 0.55) are characterized only by the low-variability target
fields.

In general our experiments showed that anomalies in medium-
variability fields are the most difficult to detect for both detectors.
However, as we discussed in Section 5.11, these results were likely
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caused by the fact that the target fields were always quite short in
length with respect to other categories. Additionally, in our entire
dataset only a handful of IDs had medium-variability fields, meaning
that we likely didn’t have a representative sample of these fields. To
explain this phenomenon, we propose three hypothesis: not having
a finely-tuned field identification algorithm made the detector more
likely to misclassify mid-variability fields, the model needs more train-
ing data to better characterize the data, or, there are inherent prob-
lems in our implementation of the field identification algorithm.

6.2 contributions

We present two main contributions from this work. The first main con-
tribution is proving that autoencoders are effectively good modelers
of sequences CAN traffic data, even in the scenario where the data
generating mechanism is completely unknown. Our approach does
not make the same assumptions on the time-series characteristics we
are modeling as the predictor approach does, that is, its stationary
or predictability. Our approach also assumes no prior knowledge of
attack data to successfully create a baseline of what constitutes nor-
mal/legitimate sequences. Our unsupervised approach managed to
perform better than the semi-supervised predictor approach.

The second main contribution from our work was demonstrating
that the autoencoder approach is better suited for anomaly detection
tasks on CAN than a state-of-the-art predictor approach. In Section
5 we demonstrated the overall superior detection performance of our
approach, we observed that on average the autoencoder covers most
of the shortfalls of the predictor, and in the remaining cases both de-
tectors perform similarly well. From these results we can confidently
propose an autoencoder detection system as a potential substitute to
predictor-based detection systems.

To conclude, we investigated the limitations of our approach. On
most cases we identified potential ways to remediate these issues, for
instance, some cases can be improved using more training data. Ad-
ditionally, an improved field identification scheme could potentially
improve the performance of the detection system as we would obtain
a more accurate field structure. Nonetheless, some of the limitations
of our approach in certain scenarios remain unclear, however, inves-
tigating these causes is a difficult task unless we have access to the
semantics behind each CAN ID. Therefore, more work is needed to
study these limitations.

6.3 future work

An important topic of future work is evaluating the appropriateness
of our assumption on the errors distribution of normal CAN data.
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Even though our approach does not make any assumptions on the
CAN sequences, it does make a quite strong assumption regarding
reconstruction errors. During the post-processing phase, we fit the re-
construction errors of legitimate data into a multivariate Gaussian dis-
tribution. Our results indicate that even with this assumption in place
the results are promising, however, further work is needed to verify
that these errors can in fact be modeled as a normal distribution, or
alternatively propose new methods for modeling these multivariate
errors.

Having some prior knowledge of the CAN signals semantics can
also provide great insight regarding how to improve the detectors.
Partial semantics availability can greatly improve the quality of the
field identification algorithm, and even indicate us what fields are
worth monitoring. Additionally, a system could choose the best ap-
proach (autoencoder or predictor) depending on the nature of the
signal to be monitored.

Future research can also be done by testing different architectures
for different IDs. Because of computing resources limitations, we per-
formed the hyperparameter search of our autoencoder architecture
using a single randomly chosen ID. A valuable future work consists
of testing the autoencoder architecture for each CAN ID so that the
neural network can be modeled for each signal individually, thus
achieving better individual representations.

Testing different representational models is also an interesting path
for future work. Autoencoders come in different presentations, some
of which consist of using generative models, like Variational autoen-
coders [20]. The research of generative models could also be of great
value as a way to effectively estimate a distribution density of the
time series.

Another opportunity for future research consists on improving predictor-
based detectors. Time-series forecasting has been an active area of
research for many years, as presented in Section 3.5, new and inter-
esting approaches to predict time-series have been proposed. Rela-
tively newer models like neural networks with dilated convolutions
have been shown to outperform RNNs in some forecasting tasks, and
they are also significantly easier to train [45]. In cases where there is
knowledge that some CAN signals are known to be predicable, an
interesting approach would be to test these novel networks and eval-
uate their performance against LSTM predictors using automotive
data.

Building an effective detection system can be done by combining
different approaches. Automotive security issues cannot be solved us-
ing a single method. In the case of anomaly detection, we observe
that there is not a necessarily “best method” to detect all kinds of
anomalies. Effectively, frequency/timing-based detectors are more ef-
ficient in attack scenarios where the bus is constantly flooded with
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malicious traffic. As an additional measure we can make use of fin-
gerprinting mechanisms to identify the attacker once the anomaly
has been detected on the data stream, and if appropriate shut it off
the network using mitigation approaches like Parrot 3.3.2. Firewalls
can also be implemented in external facing interfaces as additional se-
curity measures. In conclusion, an effective solution requires putting
together several detection schemes and security mechanisms so they
can properly deal with the different manifestations of automotive cy-
ber attacks.

Finally, a valuable path for future work is the design and implemen-
tation of actuator mechanisms to bring the vehicle into a safe state
when an attack is detected. A possible solution is to trigger a “safe-
mode” state, where the vehicle shuts down most non safe-critical com-
ponents while instructing the driver to safely stop the vehicle, and it
can also automatically contact the authorities or insurance company.
Most of these are complex problems to solve, and additionally they
would have to be deemed safe enough by the relevant authorities.
Our framing of the problem can be used to direct researchers to pro-
pose new or improved anomaly detection systems that work for the
greater purpose of improving automotive security.
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A
I D E N T I F I E D F I E L D S

In this appendix we present the results of the field identification task
in our dataset. By implementing Markovitz and Wool field identifica-
tion algorithm, as discussed in Section 2.4.1, we obtain for each ID a
list of disjoint fields that make up the data field structure. These re-
sults are used for two purposes, one is determining the target fields
when implementing data field anomalies, and the other is to have a
better understanding of the IDs payload structure when evaluating
their performance.

For each ID, we list the number of fields present, their respective
type (either sensor multi-value or constant), its leftmost start bit, its
length, its variability type (low, medium, or high variability), and fi-
nally the number of unique symbols indicated by column # symbols.

0FF type start length variability # symbols

0 CONST 0 10 N/A NaN

1 SENSOR 10 10 HIGH_VAR 514

2 CONST 20 1 N/A NaN

3 SENSOR 21 10 HIGH_VAR 500

4 CONST 31 1 N/A NaN

5 MULTI-VALUE 32 5 LOW_VAR 9

6 SENSOR 37 5 MID_VAR 32

7 CONST 42 10 N/A NaN

8 SENSOR 52 12 HIGH_VAR 4096

Table A.1: List of identified fields for ID 0FF

0DE type start length variability # symbols

0 MULTI-VALUE 0 6 LOW_VAR 11

1 SENSOR 6 10 HIGH_VAR 1024

2 CONST 16 3 N/A NaN

3 SENSOR 19 13 HIGH_VAR 1015

4 CONST 32 4 N/A NaN

5 SENSOR 36 12 HIGH_VAR 4096

Table A.2: List of identified fields for ID 0DE
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1FB type start length variability # symbols

0 SENSOR 0 11 HIGH_VAR 829

1 CONST 11 2 N/A NaN

2 SENSOR 13 2 LOW_VAR 4

3 CONST 15 37 N/A NaN

4 SENSOR 52 12 HIGH_VAR 4072

Table A.3: List of identified fields for ID 1FB

1FB type start length variability # symbols

0 SENSOR 0 11 HIGH_VAR 829

1 CONST 11 2 N/A NaN

2 SENSOR 13 2 LOW_VAR 4

3 CONST 15 37 N/A NaN

4 SENSOR 52 12 HIGH_VAR 4072

Table A.4: List of identified fields for ID 1FB

100 type start length variability # symbols

0 CONST 0 2 N/A NaN

1 SENSOR 2 11 HIGH_VAR 818

2 CONST 13 1 N/A NaN

3 SENSOR 14 10 HIGH_VAR 514

4 CONST 24 1 N/A NaN

5 SENSOR 25 10 HIGH_VAR 514

6 CONST 35 17 N/A NaN

7 SENSOR 52 12 HIGH_VAR 4096

Table A.5: List of identified fields for ID 100

0EE type start length variability # symbols

0 CONST 0 1 N/A NaN

1 SENSOR 1 12 HIGH_VAR 2050

2 CONST 13 1 N/A NaN

3 SENSOR 14 12 HIGH_VAR 2050

4 CONST 26 1 N/A NaN

5 SENSOR 27 12 HIGH_VAR 2050

6 CONST 39 1 N/A NaN

7 SENSOR 40 24 HIGH_VAR 209526

Table A.6: List of identified fields for ID 0EE
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0FE type start length variability # symbols

0 MULTI-VALUE 0 5 LOW_VAR 7

1 SENSOR 5 58 HIGH_VAR 1903

2 CONST 36 5 N/A NaN

3 SENSOR 41 1 LOW_VAR 2

4 CONST 42 1 N/A NaN

5 SENSOR 43 6 MID_VAR 34

6 CONST 49 3 N/A NaN

7 SENSOR 52 12 HIGH_VAR 4096

Table A.7: List of identified fields for ID 0FE

101 type start length variability # symbols

0 SENSOR 0 4 LOW_VAR 6

1 CONST 4 3 N/A NaN

2 SENSOR 7 12 HIGH_VAR 2050

3 CONST 19 2 N/A NaN

4 SENSOR 21 9 HIGH_VAR 370

5 CONST 30 1 N/A NaN

6 MULTI-VALUE 31 11 LOW_VAR 5

7 SENSOR 32 2 LOW_VAR 4

8 CONST 42 10 N/A NaN

9 SENSOR 52 12 HIGH_VAR 4096

Table A.8: List of identified fields for ID 101

0FB type start length variability # symbols

0 CONST 0 10 N/A NaN

1 SENSOR 10 7 MID_VAR 53

2 CONST 17 1 N/A NaN

3 SENSOR 18 31 HIGH_VAR 3515

4 CONST 38 1 N/A NaN

5 SENSOR 39 1 LOW_VAR 2

6 CONST 40 12 N/A NaN

7 SENSOR 52 12 HIGH_VAR 4096

Table A.9: List of identified fields for ID 0FB
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104 type start length variability # symbols

0 MULTI-VALUE 0 5 LOW_VAR 11

1 SENSOR 5 8 HIGH_VAR 256

2 CONST 13 1 N/A NaN

3 MULTI-VALUE 14 5 LOW_VAR 8

4 SENSOR 15 8 MID_VAR 68

5 MULTI-VALUE 25 11 LOW_VAR 9

6 CONST 36 16 N/A NaN

7 SENSOR 52 12 HIGH_VAR 4094

Table A.10: List of identified fields for ID 104

116 type start length variability # symbols

0 SENSOR 0 52 HIGH_VAR 538013

1 MULTI-VALUE 34 6 LOW_VAR 10

2 CONST 40 12 N/A NaN

3 SENSOR 52 12 HIGH_VAR 4096

Table A.11: List of identified fields for ID 116

11C type start length variability # symbols

0 SENSOR 0 35 HIGH_VAR 4392

1 CONST 24 2 N/A NaN

2 MULTI-VALUE 26 5 LOW_VAR 11

3 SENSOR 31 8 HIGH_VAR 256

4 CONST 39 13 N/A NaN

5 SENSOR 52 12 HIGH_VAR 4096

Table A.12: List of identified fields for ID 11C

0FC type start length variability # symbols

0 CONST 0 1 N/A NaN

1 SENSOR 1 13 HIGH_VAR 3329

2 CONST 14 3 N/A NaN

3 MULTI-VALUE 17 5 LOW_VAR 11

4 SENSOR 22 5 MID_VAR 32

5 CONST 27 2 N/A NaN

6 SENSOR 29 2 LOW_VAR 3

7 CONST 31 21 N/A NaN

8 SENSOR 52 12 HIGH_VAR 4096

Table A.13: List of identified fields for ID 0FC
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D ATA F I E L D A N O M A LY D E T E C T I O N R E S U LT S

In this appendix we present the tables and figures representing the
results of the anomaly detection tests targeting data fields.

b.1 auc results

First we present the tables for anomaly tests AUC results that show
the detection performance for every ID depending on the variability
of the target field and the anomaly function used.
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Low var. Mid var. High var.

Max. Min. Constant Random Replay Max. Min. Constant Random Replay Max. Min. Constant Random Replay

0DE
Predictor 1.0000 1.0000 0.9993 1.0000 0.8774 1 0.94558 1 1 0.93895

Autoencoder 1.0000 1.0000 0.9997 1.0000 0.9699 1 0.93677 1 1 0.96304

0EE
Predictor 1 0.94164 1 0.99998 0.98149

Autoencoder 1 0.99719 0.99633 1 0.98915

0FB
Predictor 0.9983 0.9915 0.9234 0.9983 0.8094 0.99972 0.99995 0.99932 0.99623 0.96323

Autoencoder 1.0000 1.0000 0.9979 1.0000 0.9987 1 1 1 1 1

0FC
Predictor 0.9977 0.9999 0.9897 0.9996 0.7288 0.7191 0.6000 0.7014 0.9892 0.6384 0.99637 0.98941 0.99877 0.99703 0.97501

Autoencoder 1.0000 1.0000 0.9908 1.0000 0.9927 0.9250 0.6111 0.9101 0.9998 0.9920 1 1 1 1 1

0FE
Predictor 0.9817 0.9883 0.9877 0.9867 0.7512 0.9726 0.9854 0.9915 0.9920 0.5756 1 1 0.99999 1 0.99419

Autoencoder 1.0000 1.0000 0.8913 1.0000 0.9892 1.0000 1.0000 0.7807 1.0000 0.8678 1 1 1 1 1

0FF
Predictor 0.9967 0.9969 0.9978 0.9977 0.8119 0.6349 0.6734 0.8582 0.9756 0.8190 0.93346 0.99887 0.99781 0.99798 0.93930

Autoencoder 1.0000 1.0000 0.9992 1.0000 0.9689 0.5389 0.8838 0.7544 0.9058 0.8888 0.98247 1 0.90867 1 1

1F7

Predictor 0.9903 0.8783 0.9887 0.9859 0.8632 0.9735 0.9826 0.9581 0.9847 0.8492 0.63784 0.99232 0.9990 0.98531 0.76889

Autoencoder 1.0000 0.5844 1.0000 1.0000 0.9814 0.7821 0.9343 0.9412 0.9954 0.8194 0.51298 1 1 1 0.74353

1FB
Predictor 0.98857 0.74986 0.75952 0.87268 0.61862

Autoencoder 1 1 0.96584 1 0.96484

11C
Predictor 1.0000 0.9987 0.9973 1.0000 0.5940 1 0.99782 1 1 0.95527

Autoencoder 1.0000 0.9992 0.8717 1.0000 0.8903 1 1 1 1 0.98822

100

Predictor 0.981614 0.99124 0.99899 0.99944 0.97422

Autoencoder 0.99745 0.99882 0.99501 0.99933 0.92946

104

Predictor 1.0000 0.5821 1.0000 1.0000 0.5150 1.0000 0.8232 0.9908 1.0000 0.9803 1 0.50618 0.9965 0.99966 0.97854

Autoencoder 1.0000 0.9990 1.0000 1.0000 0.9859 1.0000 0.8742 0.9999 1.0000 0.9945 1 0.50064 0.99872 1 1

116

Predictor 0.7016 0.9724 0.7949 0.9924 0.6487 0.99368 1 0.99980 1 0.99650

Autoencoder 1.0000 0.9625 0.9927 1.0000 0.9410 0.999791 0.9943875 1 1 0.99854

Avg
Predictor 0.9585 0.9271 0.9694 0.9953 0.7238 0.8831 0.8427 0.9039 0.9900 0.7787 0.96094 0.92607 0.97915 0.98736 0.92368

Autoencoder 1.0000 0.9431 0.9682 1.0000 0.9649 0.8743 0.8839 0.8974 0.9835 0.9269 0.95772 0.95231 0.98871 0.99994 0.96473

Table B.1: AUC results grouped by variability (low and medium) and anomaly function. Blank cells indicate absence of a relevant field.
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b.2 auc results per id

In this Section we illustrate the anomaly detection test results for all
the 12 IDs through bar graphics. The vertical axis represents the AUC
ranging form 0.5 to 1.

The parameters used for anomaly detection where:

• Anomaly function. Four different anomaly functions are con-
sidered: maximum (max_value), minimum value (min_value),
constant (constant_value), random (random_value), and replay
(replay_field).

• Duration. Three different field categories are tested with 4 val-
ues [0.2, 0.5, 1, 1.5], in seconds.

• Field categories: low variability (LOW_VAR), medium variabil-
ity (MID_VAR), and high variability (HIGH_VAR)

Next, we describe the meaning of the labels in the x axis. The label
string is composed by concatenating

Anomaly function : duration : field category
For example, the following string: replay_field:0.2_s:LOW_VAR

represents a test using a replay anomaly function, with a duration
of 0.2 seconds, and the variability of the target field.

These figures allow for a better analysis of the common factors
that differentiate the performance of the autoencoder and predictor
detectors.
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Figure B.1: AUC results for ID 0DE.
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Figure B.2: AUC results for ID 0EE.
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Figure B.3: AUC results for ID 0FB.
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Figure B.4: AUC results for ID 0FC.



1
1

0
b

i
b

l
i
o

g
r

a
p

h
y

AU
C_

pr
ed

ic
to
r

0.5

0.6

0.7

0.8

0.9

1

ma
x_

va
lue

:0.
2_

s:L
OW

_V
AR

ma
x_

va
lue

:0.
5_

s:L
OW

_V
AR

ma
x_

va
lue

:1_
s:L

OW
_V

AR

ma
x_

va
lue

:1.
5_

s:L
OW

_V
AR

ma
x_

va
lue

:0.
2_

s:M
ID_

VA
R

ma
x_

va
lue

:0.
5_

s:M
ID_

VA
R

ma
x_

va
lue

:1_
s:M

ID_
VA

R

ma
x_

va
lue

:1.
5_

s:M
ID_

VA
R

ma
x_

va
lue

:0.
2_

s:H
IG

H_
VA

R

ma
x_

va
lue

:0.
5_

s:H
IG

H_
VA

R

ma
x_

va
lue

:1_
s:H

IG
H_

VA
R

ma
x_

va
lue

:1.
5_

s:H
IG

H_
VA

R

mi
n_

va
lue

:0.
2_

s:L
OW

_V
AR

mi
n_

va
lue

:0.
5_

s:L
OW

_V
AR

mi
n_

va
lue

:1_
s:L

OW
_V

AR

mi
n_

va
lue

:1.
5_

s:L
OW

_V
AR

mi
n_

va
lue

:0.
2_

s:M
ID_

VA
R

mi
n_

va
lue

:0.
5_

s:M
ID_

VA
R

mi
n_

va
lue

:1_
s:M

ID_
VA

R

mi
n_

va
lue

:1.
5_

s:M
ID_

VA
R

mi
n_

va
lue

:0.
2_

s:H
IG

H_
VA

R

mi
n_

va
lue

:0.
5_

s:H
IG

H_
VA

R

mi
n_

va
lue

:1_
s:H

IG
H_

VA
R

mi
n_

va
lue

:1.
5_

s:H
IG

H_
VA

R

co
ns

tan
t_v

alu
e:0

.2_
s:L

OW
_V

AR

co
ns

tan
t_v

alu
e:0

.5_
s:L

OW
_V

AR

co
ns

tan
t_v

alu
e:1

_s
:LO

W_
VA

R

co
ns

tan
t_v

alu
e:1

.5_
s:L

OW
_V

AR

co
ns

tan
t_v

alu
e:0

.2_
s:M

ID_
VA

R

co
ns

tan
t_v

alu
e:0

.5_
s:M

ID_
VA

R

co
ns

tan
t_v

alu
e:1

_s
:M

ID_
VA

R

co
ns

tan
t_v

alu
e:1

.5_
s:M

ID_
VA

R

co
ns

tan
t_v

alu
e:0

.2_
s:H

IG
H_

VA
R

co
ns

tan
t_v

alu
e:0

.5_
s:H

IG
H_

VA
R

co
ns

tan
t_v

alu
e:1

_s
:H

IG
H_

VA
R

co
ns

tan
t_v

alu
e:1

.5_
s:H

IG
H_

VA
R

ran
do

m_
va

lue
:0.

2_
s:L

OW
_V

AR

ran
do

m_
va

lue
:0.

5_
s:L

OW
_V

AR

ran
do

m_
va

lue
:1_

s:L
OW

_V
AR

ran
do

m_
va

lue
:1.

5_
s:L

OW
_V

AR

ran
do

m_
va

lue
:0.

2_
s:M

ID_
VA

R

ran
do

m_
va

lue
:0.

5_
s:M

ID_
VA

R

ran
do

m_
va

lue
:1_

s:M
ID_

VA
R

ran
do

m_
va

lue
:1.

5_
s:M

ID_
VA

R

ran
do

m_
va

lue
:0.

2_
s:H

IG
H_

VA
R

ran
do

m_
va

lue
:0.

5_
s:H

IG
H_

VA
R

ran
do

m_
va

lue
:1_

s:H
IG

H_
VA

R

ran
do

m_
va

lue
:1.

5_
s:H

IG
H_

VA
R

rep
lay

_fi
eld

:0.
2_

s:L
OW

_V
AR

rep
lay

_fi
eld

:0.
5_

s:L
OW

_V
AR

rep
lay

_fi
eld

:1_
s:L

OW
_V

AR

rep
lay

_fi
eld

:1.
5_

s:L
OW

_V
AR

rep
lay

_fi
eld

:0.
2_

s:M
ID_

VA
R

rep
lay

_fi
eld

:0.
5_

s:M
ID_

VA
R

rep
lay

_fi
eld

:1_
s:M

ID_
VA

R

rep
lay

_fi
eld

:1.
5_

s:M
ID_

VA
R

rep
lay

_fi
eld

:0.
2_

s:H
IG

H_
VA

R

rep
lay

_fi
eld

:0.
5_

s:H
IG

H_
VA

R

rep
lay

_fi
eld

:1_
s:H

IG
H_

VA
R

rep
lay

_fi
eld

:1.
5_

s:H
IG

H_
VA

R

AUC_predictor AUC_autoencoder

Figure B.5: AUC results for ID 0FE.
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Figure B.6: AUC results for ID 0FF.
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Figure B.7: AUC results for ID 1F7.
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Figure B.8: AUC results for ID 1FB.



1
1

4
b

i
b

l
i
o

g
r

a
p

h
y

0.5

0.6

0.7

0.8

0.9

1

ma
x_

va
lue

:0.
2_

s:L
OW

_V
AR

ma
x_

va
lue

:0.
5_

s:L
OW

_V
AR

ma
x_

va
lue

:1_
s:L

OW
_V

AR

ma
x_

va
lue

:1.
5_

s:L
OW

_V
AR

ma
x_

va
lue

:0.
2_

s:H
IG

H_
VA

R

ma
x_

va
lue

:0.
5_

s:H
IG

H_
VA

R

ma
x_

va
lue

:1_
s:H

IG
H_

VA
R

ma
x_

va
lue

:1.
5_

s:H
IG

H_
VA

R

mi
n_

va
lue

:0.
2_

s:L
OW

_V
AR

mi
n_

va
lue

:0.
5_

s:L
OW

_V
AR

mi
n_

va
lue

:1_
s:L

OW
_V

AR

mi
n_

va
lue

:1.
5_

s:L
OW

_V
AR

mi
n_

va
lue

:0.
2_

s:H
IG

H_
VA

R

mi
n_

va
lue

:0.
5_

s:H
IG

H_
VA

R

mi
n_

va
lue

:1_
s:H

IG
H_

VA
R

mi
n_

va
lue

:1.
5_

s:H
IG

H_
VA

R

co
ns

tan
t_v

alu
e:0

.2_
s:

co
ns

tan
t_v

alu
e:0

.5_
s:

co
ns

tan
t_v

alu
e:1

_s
:LO

W_
VA

R

co
ns

tan
t_v

alu
e:1

.5_
s:

co
ns

tan
t_v

alu
e:0

.2_
s:

co
ns

tan
t_v

alu
e:0

.5_
s:

co
ns

tan
t_v

alu
e:1

_s
:H

IG
H_

VA
R

co
ns

tan
t_v

alu
e:1

.5_
s:

ran
do

m_
va

lue
:0.

2_
s:L

OW
_V

AR

ran
do

m_
va

lue
:0.

5_
s:L

OW
_V

AR

ran
do

m_
va

lue
:1_

s:L
OW

_V
AR

ran
do

m_
va

lue
:1.

5_
s:L

OW
_V

AR

ran
do

m_
va

lue
:0.

2_
s:

ran
do

m_
va

lue
:0.

5_
s:

ran
do

m_
va

lue
:1_

s:H
IG

H_
VA

R

ran
do

m_
va

lue
:1.

5_
s:

rep
lay

_fi
eld

:0.
2_

s:L
OW

_V
AR

rep
lay

_fi
eld

:0.
5_

s:L
OW

_V
AR

rep
lay

_fi
eld

:1_
s:L

OW
_V

AR

rep
lay

_fi
eld

:1.
5_

s:L
OW

_V
AR

rep
lay

_fi
eld

:0.
2_

s:H
IG

H_
VA

R

rep
lay

_fi
eld

:0.
5_

s:H
IG

H_
VA

R

rep
lay

_fi
eld

:1_
s:H

IG
H_

VA
R

rep
lay

_fi
eld

:1.
5_

s:H
IG

H_
VA

R

AUC_predictor AUC_autoencoder

Figure B.9: AUC results for ID 11C.
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Figure B.10: AUC results for ID 100.



1
1

6
b

i
b

l
i
o

g
r

a
p

h
y

0.5

0.6

0.7

0.8

0.9

1

ma
x_

va
lue

:0.
2_

s:L
OW

_V
AR

ma
x_

va
lue

:0.
5_

s:L
OW

_V
AR

ma
x_

va
lue

:1_
s:L

OW
_V

AR

ma
x_

va
lue

:1.
5_

s:L
OW

_V
AR

ma
x_

va
lue

:0.
2_

s:M
ID_

VA
R

ma
x_

va
lue

:0.
5_

s:M
ID_

VA
R

ma
x_

va
lue

:1_
s:M

ID_
VA

R

ma
x_

va
lue

:1.
5_

s:M
ID_

VA
R

ma
x_

va
lue

:0.
2_

s:H
IG

H_
VA

R

ma
x_

va
lue

:0.
5_

s:H
IG

H_
VA

R

ma
x_

va
lue

:1_
s:H

IG
H_

VA
R

ma
x_

va
lue

:1.
5_

s:H
IG

H_
VA

R

mi
n_

va
lue

:0.
2_

s:L
OW

_V
AR

mi
n_

va
lue

:0.
5_

s:L
OW

_V
AR

mi
n_

va
lue

:1_
s:L

OW
_V

AR

mi
n_

va
lue

:1.
5_

s:L
OW

_V
AR

mi
n_

va
lue

:0.
2_

s:M
ID_

VA
R

mi
n_

va
lue

:0.
5_

s:M
ID_

VA
R

mi
n_

va
lue

:1_
s:M

ID_
VA

R

mi
n_

va
lue

:1.
5_

s:M
ID_

VA
R

mi
n_

va
lue

:0.
2_

s:H
IG

H_
VA

R

mi
n_

va
lue

:0.
5_

s:H
IG

H_
VA

R

mi
n_

va
lue

:1_
s:H

IG
H_

VA
R

mi
n_

va
lue

:1.
5_

s:H
IG

H_
VA

R

co
ns

tan
t_v

alu
e:0

.2_
s:L

OW
_V

AR

co
ns

tan
t_v

alu
e:0

.5_
s:L

OW
_V

AR

co
ns

tan
t_v

alu
e:1

_s
:LO

W_
VA

R

co
ns

tan
t_v

alu
e:1

.5_
s:L

OW
_V

AR

co
ns

tan
t_v

alu
e:0

.2_
s:M

ID_
VA

R

co
ns

tan
t_v

alu
e:0

.5_
s:M

ID_
VA

R

co
ns

tan
t_v

alu
e:1

_s
:M

ID_
VA

R

co
ns

tan
t_v

alu
e:1

.5_
s:M

ID_
VA

R

co
ns

tan
t_v

alu
e:0

.2_
s:H

IG
H_

VA
R

co
ns

tan
t_v

alu
e:0

.5_
s:H

IG
H_

VA
R

co
ns

tan
t_v

alu
e:1

_s
:H

IG
H_

VA
R

co
ns

tan
t_v

alu
e:1

.5_
s:H

IG
H_

VA
R

ran
do

m_
va

lue
:0.

2_
s:L

OW
_V

AR

ran
do

m_
va

lue
:0.

5_
s:L

OW
_V

AR

ran
do

m_
va

lue
:1_

s:L
OW

_V
AR

ran
do

m_
va

lue
:1.

5_
s:L

OW
_V

AR

ran
do

m_
va

lue
:0.

2_
s:M

ID_
VA

R

ran
do

m_
va

lue
:0.

5_
s:M

ID_
VA

R

ran
do

m_
va

lue
:1_

s:M
ID_

VA
R

ran
do

m_
va

lue
:1.

5_
s:M

ID_
VA

R

ran
do

m_
va

lue
:0.

2_
s:H

IG
H_

VA
R

ran
do

m_
va

lue
:0.

5_
s:H

IG
H_

VA
R

ran
do

m_
va

lue
:1_

s:H
IG

H_
VA

R

ran
do

m_
va

lue
:1.

5_
s:H

IG
H_

VA
R

rep
lay

_fi
eld

:0.
2_

s:L
OW

_V
AR

rep
lay

_fi
eld

:0.
5_

s:L
OW

_V
AR

rep
lay

_fi
eld

:1_
s:L

OW
_V

AR

rep
lay

_fi
eld

:1.
5_

s:L
OW

_V
AR

rep
lay

_fi
eld

:0.
2_

s:M
ID_

VA
R

rep
lay

_fi
eld

:0.
5_

s:M
ID_

VA
R

rep
lay

_fi
eld

:1_
s:M

ID_
VA

R

rep
lay

_fi
eld

:1.
5_

s:M
ID_

VA
R

rep
lay

_fi
eld

:0.
2_

s:H
IG

H_
VA

R

rep
lay

_fi
eld

:0.
5_

s:H
IG

H_
VA

R

rep
lay

_fi
eld

:1_
s:H

IG
H_

VA
R

rep
lay

_fi
eld

:1.
5_

s:H
IG

H_
VA

R

AUC_predictor AUC_autoencoder

Figure B.11: AUC results for ID 104.
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Figure B.12: AUC results for ID 116.
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