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Sommario

Grazie all’esponenziale sviluppo dei recenti anni della tecnologia informatica e
della potenza computazionale, sempre piú interesse viene dedicato al Machine
Learning. Questa branca dell’Intelligenza Artificiale ha dimostrato di essere uno
strumento estremamente potente, e per questa ragione ha trovato larghe ap-
plicazioni in innumerevoli campi come la visione artificiale, robotica, motori di
ricerca, finanza, medicina, solo per citarne alcuni. É naturale che anche il settore
spaziale sia interessato dal Machine Learning, che é molto promettente nell’ottica
di perfmettere l’esecuzione autonoma e in tempo reale di compiti complessi. Il
seguente lavoro applica il Machine Learning, in particolare tecniche di supervised
imitation learning, per implementare un sistema di controllo in feedback per un
atterraggio autonomo ottimo lunare. Tecniche di supervised imitation learning
per atterraggio ottimi sono giá state argomento di alcuni studi, ma nessno di
questi ha considerato il fatto che problemi di predizione sequenziale, dove le os-
servazioni future dipendono dalle predizioni precedenti, violano l’assunzione di
variabili indipendenti e identicamente distribuite che viene spesso presa nel Ma-
chine Learning, e questo spesso inficia le prestazioni sia in teoria che in pratica.
La soluzione proposta in questo lavoro a tale problema é l’applicazione sistematica
della tecnica del DAgger, il cui obiettivo é incrementare le prestazioni del modello
di Machine Learning al momento della simulazione. Il problema di atterraggio
é affrontato per il caso di energy optimal e fuel optimal, entrambi in casi 1D e
3D. Due differenti modelli di Machine Learning sono usati e confrontati, ovvero
la Deep Neural Network e l’Extreme Learning Machine.
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Abstract

Thanks to the exponential development of the computer technology and computa-
tional power during the recent years, more and more interest is dedicated to Ma-
chine Learning. This branch of Artificial Intelligence has proved to be extremely
powerful and for this reason has found wide applications in countless fields like
computer vision, robotics, search engines, finance, medicine, just to name a few.
It is natural that also the space field is interested by Machine Learning, which
is very promising in the perspective of performing difficult tasks autonomously
and in real-time. The following work applies Machine Learning, in particular
supervised imitation learning techniques, to implement a control feedback loop
for autonomous optimal lunar landing. Supervised imitation learning for optimal
landing has already been subject of a few studies, but none of them considered the
fact that sequential prediction problems, where future observations depend on pre-
vious predictions, violate the independent-and-identically-distributed assumption
commonly used in statistical learning, and this often leads to poor performances
both in theory and practice. The solution proposed in this work to such problem
is the systematic application of the DAgger approach, which is supposed to in-
crease the performances of the Machine Learning model at prediction time. The
landing problem is studied for energy optimal and fuel optimal landing, both in
1D and 3D cases. Two different Machine Learning models, which are Deep Neural
Network and Extreme Learning Machine, are used and compared.
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Chapter 1

Introduction

Being the nearest celestial body to the Earth, it is natural that the Moon has
always been of interest for space science and exploration. The exploration of
the Moon started during the Cold War between the Soviet Union and the United
States of America [11]. After World War II, it began what is called the Space Race,
that is a kind of technological competition between the two main world powers on
who would achieve first in spaceflight capabilities. The first lunar mission was in
1959, just two years after the launch of the Sputnik, with the Soviet probe Luna
1, which was followed in the later years by a large number of other Soviet and
American missions. In 1966 the first lander Luna 9, by Soviet Union, reached
the lunar surface. The Soviet Union achieved a few others primacies, but it was
the United States that, thanks to the rocket technology brought by the legendary
German aerospace engineer Wernher Von Braun, achieved the primacy of bringing
the man to the Moon in 1969 with the Apollo 11 mission [12], from the Apollo
Program. Apollo 11 was followed by other successful Apollo missions (except
Apollo 13), some of which installed on the lunar surface scientific instruments
and brought back to the Earth samples of lunar rocks. From the mid-1960s to the
mid-1970s there were 65 Moon landings, but after Luna 24 in 1976 they suddenly
stopped: the Soviet Union started focusing on Venus and space stations and the
U.S. on Mars and beyond, and on the Skylab and Space Shuttle programs.
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In more recent years, new countries decided to send their own probes to carry
out scientific exploration of the Moon. In particular Japan, with the Hiten space-
craft in 1990 and with the SELENE spacecraft in 2007, with the goal ”to obtain
scientific data of the lunar origin and evolution and to develop the technology
for the future lunar exploration”, according the the JAXA official website [13].
Also ISRO, India’s space agency, sent a spacecraft on the Moon, discovering the
presence of water molecules. China recently sent a rover on the dark side of the
Moon, to explore a zone that we know very little about. The Moon is of scientific
interest in order to better understand the origins of the solar system. There is
still a lot to explore on the Moon, because the Apollo Missions only covered a bit
part of the surface, in particular on the equatorial zone.

While SpaceX is working to colonize Mars in order to make Humanity a multi-
planetary specie [14], other space agencies like the European Space Agency (ESA)
have targeted the Moon as a possible outpost to build a base [15]. In order to
achieve this, it is required a robust technology to perform planetary landing. The
number of landing failures also in recent years proves that the technology is still
not mature enough. During the landing of Apollo 11, the lander risked of fin-
ishing the fuel, and it was mainly thank to the exceptional piloting skills of Neil
Armstrong that it managed to perform a soft landing in a safe zone. Mars was
denominated the Great Galactic Ghoul because of the great number of probes
lost trying to reach its surface [16]. The problem of Mars is that it is so far that
also the telecommunications suffer a delay big enough to jeopardize the mission.
The failures on Mars were not only restricted to human errors, but also software
failures (the most recent was the Schiaparelli lander). These are all reasons why it
is desirable to be able to rely on a robust software than can perform autonomous
and optimal landing. The optimal landing problem requires to solve a two-points-
boundary-value-problem (TPBVP), which is computationally intense and thus
cannot be performed on-board in real-time. The goal of this thesis is contributing
in the study of Machine Learning techniques to perform an optimal landing in
real-time.
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1.1 State of the art

Supervised imitation learning has been applied to optimal lunar landing in a few
research studies. In one of these works, Sanchez and Izzo [1] implemented a
deep neural network (DNN), assuming perfect knowledge of position and veloc-
ity, for 2D a fuel optimal (FO) landing problem. They demonstrated how DNNs
can be trained to learn the optimal state-feedback in a number of continuous
time, deterministic, non-linear systems of interest in the aerospace domain. They
suggested that the networks trained did learn the solution to Hamilton-Jacobi-
Bellman (HJB) equations underlying the optimal control problem, because they
were able to generalize on points well outside the train set. They also analyzed
and tried different network architectures, varying the number of hidden layers and
neurons per layer, and different activation functions, demonstrating that shallow
networks are not sufficient to represent satisfactorily the complexity of the prob-
lem.

In another study, Bloise and Orlandelli [2] implemented a recurrent neural
network (RNN) for the fuel optimal landing problem. They generated the optimal
trajectories for the train set with the General Pseudospectral Optimal Control
Software (GPOPS), both in 1D and 2D cases. They trained the network on two
main problems: first, assuming perfect knowledge of position and velocity and
mapping them to the thrust; then, generating images of the Moon surface and
mapping them to the thrust, thus avoiding the need of knowing position and
velocity. A RNN combined to a CNN is used for the second problem, because
having a series of image is needed in order to have information about the lander
velocity. The CNN processes the images, while the RNN extracts information
from the images sequence.

None of these studies considered the fact that sequential prediction problems
such as imitation learning, where future observations depend on previous pre-
dictions (actions), violate the independent-and-identically-distributed (i.i.d.) as-
sumption commonly made in statistical learning. In the following section it is
explained what this means and what consequences it implies.
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1.2 Work justification and purposes

As Ross et al. stated in [3]: ”Sequential prediction problems such as imitation
learning, where future observations depend on previous predictions (actions), vi-
olate the common i.i.d. assumptions made in statistical learning. This leads to
poor performance in theory and often in practice. In particular, a classifier that
makes a mistake with probability ε under the distribution of states/observations
encountered by the expert, can make as many as T 2ε mistakes in expectation over
T-steps under the distribution of states the classifier itself induces.”. Put in other
words, it means that the agent can be trained with optimal trajectories, but when
it comes to the simulation, every prediction error will cause the agent to find itself
in a state which is likely not present in the training set (unless the train set covers
the entire space of possible states). This increases the probability of committing
another prediction error, thus making the trajectory diverge from the target. The
solution to this problem proposed in [3] is the DAgger algorithm (which will be
explained in detail in section 2.4), an iterative procedure to train a deterministic
policy that achieves good performances guarantees under its induces distribution
of states. In that paper, DAgger is applied to simple classification problems in
video games. The aim of this work is to prove that the DAgger algorithm can
be applied to the optimal landing problem successfully and effectively improving
the performances of the ML model during the Monte Carlo simulation. It will be
shown that the DAgger algorithm allows achieving good performances with rela-
tively small datasets, and to outperform classical supervised learning with parity
of training set size.

1.3 Proposed approach

The approach proposed to carry out the purposes explained in the previous sec-
tion is demonstrating the effectiveness of the DAgger algorithm to problems with
gradually increasing difficulty. The energy optimal (EO) problem is first tackled:
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the nature of the EO problem is much simpler than FO problem, and the thrust
provided by the engine is not constrained in order to simplify even further. Then,
once the DAgger procedure has been tested and proved to work, the FO problem
is studied. For both problems, it is first studied the 1D case and then the 3D
case. Considerations on the train set size, type of network, model architecture
and input feature are made for each case, as well as the criteria to apply DAgger.

The software used to generate optimal trajectories are respectively ZEM/ZEV
for the EO problem and GPOPS for the FO problem. They are both implemented
in Matlab. The Machine Learning framework used is Keras/Tensorflow, and the
code used to train the models, to perform the Monte Carlo simulations and to
carry out all the data analysis is in Python.

1.4 Thesis structure

Chapter 2 covers the basics of Machine Learning theory, starting from the def-
inition of supervised and imitation learning, to the explanation of DAgger and
finally the theory behind the two ML models used in this work, that is DNN and
ELM. The performance indexes used to quantify the quality of the training for
each kind of problem are explained. Chapter 3 is on the EO landing problem. It
begins formalizing the EO problem and giving some useful information about the
software used to generate the train and test trajectory for this problem. Then,
it shows how the train set is generated, the procedure to apply DAgger to the
EO problem, the tools to visualize the improvements brought by the applization
of DAgger, and the performances of DNN and ELM, both in 1D and 3D cases.
Chapter 4 follows the same structure of the previous chapter, but this time on
FO problem. Chapter 5 is about conclusions and future work.



Chapter 2

Machine Learning Theory

In this chapter are presented the theoretical aspects of Machine Learning that are
required to better understand what is done in the next chapters.

2.1 Supervised Machine Learning

Machine Learning (ML) is a particular branch of Artificial Intelligence (AI), and
it aims at making computer systems able to perform high-level complex tasks
effectively and without receiving explicit instructions, relying instead on patterns
learned from data. Machine Learning systems can be classified according to the
amount and type of supervision they get during training. There are four major
categories: supervised learning, unsupervised leaning, semisupervised learning and
reinforcement learning. In supervised learning, the training data fed to the model
includes both the input featuresXi and the desired solutions yi, called labels. The
train set is thus constituted by the pairs {Xi,yi}, i = 1, . . . , N , where N is the
number of samples in the train set. The goal of the training is making the model
able to learn the relation between the input features and the target labels, so
that it is able to generalize on new, never seen, inputs. A model is said to overfit
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if it does perform well on the train data, but poorly on never seen data [7], [8].
Instead, it is said to underfit if does not perform well on the train data either. In
this work supervised learning algorithms are used, and the pairs state-actions will
be provided to the learner during training.

It is possible to make a further distinction of the problem: if the label y is
categorical, it is a classification problem, while if it is numerical, it is a regression
problem. It will be seen every combination of these problems: only regression (EO
problem 1D and 3D), only classification (FO problem 1D) and both classification
and regression (FO problem 3D).

2.2 Imitation Learning

Imitation learning is a control design paradigm that seeks to learn a control policy
reproducing demonstrations from experts. For the landing problem studied in this
work, the expert is a software which generates optimal trajectories. The pairs of
states and control actions are fed to the ML model during training, so that it
learns to map a given state to an optimal control action. This makes the type of
Machine Learning supervised.

Consider the following scenario: an agent, which is the ML model, receives in
input some observations ot, and takes an action ut basing its decision on a policy
πθ(ut|ot), which can be deterministic or stochastic (in this work a deterministic
policy is trained) and depends on some parameters θ. The actions have an effect
on future observation. The goal of imitation learning is to train the best policy
possible, in order to perform the optimal actions for each observation, learning
from what is called the expert policy. The expert can be a human, or in this
case a software which solves the optimal landing problem and generates optimal
trajectories.
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2.3 The Markov Property

A process has the Markov property if the conditional probability distribution of
future states of the process (conditional on both past and present states) depends
only upon the present state, not on the sequence of events that preceded it. This
property can be formalized as following:

P (st | st−1, st−2, . . . , s1) = P (st | st−1) (2.1)

where P is the probability of happening the state s at time t, given the states
at previous times. Thus, the full knowledge of the dynamics of the system, and
so of the state xt other than the equations of motion, is required to assume the
Markov property. The observation indicates the quantity of information that is
available to the agent, and is in general different from the state. In this work it is
assumed complete knowledge of the state, so that there is no distinction between
the state xt and the observation ot, and in the following sections they will be
used interchangeably. The Markov assumption is important because it allows to
use models like DNNs and ELMs, which take only one observation at a time, and
are not able to reconstruct information from previous observations like recurrent
neural networks (RNNs).

2.4 DAgger

Dataset Aggregation (DAgger) techniques are already used in Machine Learning,
and they usually consist in modifying slightly the train data (e.g. adding noise),
and augmenting with that new artificial data the train set. For the sequential
prediction problem, instead, DAgger works in a different way, and it aims at solv-
ing a very specific issue. As already observed in section 1.2, sequential prediction
problems violate the i.i.d. assumption because future observations depend on
previous predictions. Taking as a reference fig. 2.1, the model is trained on the
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distribution of data coming from the expert policy pdata(ot), but at simulation
time it encounters a distribution of data coming from a different policy pπθ(ot) of
the model. In fact, the distribution of observations induced by pπθ(ot) is not the
same as the distribution of observations from which the train data came from,
because of the prediction errors.

Figure 2.1: The issue of sequential prediction problems in imitation learning. Image taken
from [17].

To this problem, there are in particular two possible solution: one is training a
very good policy, which is the same of the expert policy, but this is very difficult
to achieve; a simpler solution is to use DAgger, whose purpose is to make the
distribution of data encountered at prediction time, the same on which the model
has been trained (pdata(ot) = pπθ(ot)). This is done just running the policy
πθ(ut|ot) and augmenting the train data with the observations encountered during
the simulation. The DAgger algorithm can be summarized as follow:

1. Train πθ(ut|ot) from human data D = {o1,u1, . . . ,oN ,uN}

2. Run πθ(ut|ot) to get dataset Dπ = {o1, . . . ,oN}

3. Ask human to label Dπ with actions ut

4. Aggregate: D← D ∪ Dπ and return to point 1.
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The DAgger algorithm has already been applied to situations where the model is
supposed to learn from human behavior, for example in problem such as driving
car [10] or video games [27], [28]. In the landing problem, however, a human
cannot label the observations with optimal actions; instead, a software is used to
generate optimal trajectories: ZEM/ZEV for the EO problem, and GPOPS for
the FO problem. The following algorithm is then applied:

1. Train πθ(ut|ot) from software data D = {o1,u1, . . . ,oN ,uN}

2. Run πθ(ut|ot) to get dataset Dπ = {o1, . . . ,oN}

3. Use the software to label Dπ with actions ut

4. Aggregate: D← D ∪ Dπ and return to point 1.

2.5 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a Machine Learning model that take inspi-
ration from the biological brain’s architecture. They are versatile, powerful and
scalable, characteristics that make them ideal for highly complex AI tasks.

Artificial neural networks can be grouped in feedforward neural networks and
recurrent neural networks, depending on the structure of the connections between
the neurons. Recurrent neural networks are structured in a way that some neurons
receive in input their own output, plus the input of other neurons, and this makes
these kind of networks ideal to process sequences of input and extract information
about their history. If there are no such feedback connections, the network is
classified as a feedforward neural network. The simplest feedforward architecture
is the Single Layer Feedorward Network (SLFN), which is composed by an input
layer, a hidden layer and an output layer.
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Figure 2.2: Scheme of recurrent and feedforward neural networks. Image taken from [18].

Figure 2.3: Scheme of a SLFN. Image taken from [19].

In general, the output of function of a SLFN can be written as:

fL(x) =
L∑
i=1
βihi(x,wi, bi) (2.2)

where L is the number of neurons in the hidden layer, βi with i = 1, . . . , L is
the output weights vector of the i-th node, wi and bi are respectively the input
weights vector and the bias, x is the input vector. Functions hi are the activation
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functions of the neurons and are in general non linear piece-wise continuous. Their
purpose is to introduce in the network a non linearity, which is necessary for the
model to represent complex non linear dynamics. Different activation functions
have different behavior: for example, they can be discontinuous in the zero (step),
continuous but not differentiable (ReLU) or continuous and differentiable (sigmoid
and tanh); furthermore, they can be saturating (step, sigmoid, tanh, ReLU for
negative inputs) if the output is bounded, or non saturating (ReLU for positive
inputs) if the output is not bounded. These properties ultimately affects the
model behavior and the activation functions have to be chosen for each problem.
A list of activation functions commonly used in ML is reported in tab. 2.1.

Activation Formula Plot Output range
Step

h(x) =

0 x < 0
1 x ≥ 1

h = 0 ∨ h = 1

ReLU (rec-
tified linear
unit) h(x) = max(0, x)

h ∈ [0,∞)

Sigmoid

h(x) = 1
1 + e−x

h ∈ (0, 1)

Tanh (hyper-
bolic tangent)

h(x) = ex − e−x

ex + e−x

h ∈ (−1, 1)

Table 2.1: Common activation functions

Deep neural networks are feedforward neural networks with two ore more hidden
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layers, and every layer except the output layer is fully connected to the next
layer. Training a neural networks it means finding the values of the weights and
biases such that, given an input, the desired output is obtained. The training
is done with an algorithm called backpropagation, which can be described as a
gradient descent algorithm with reverse-mode autodiff. It works as follows: for
each training instance, the backpropagation algorithm first makes a prediction
computing the output of every neuron in each consecutive layer (forward pass),
than measures the error (it knows the true label, since it is supervised learning),
and then goes back through each layer to measure the error contribution from each
connection (reverse pass), and finally tweaks the connection weights to reduce the
error (gradient descent step).

There are some parameters, called hyperparameters, which can be chosen and
are fundamental in determining the quality and success of the training. The most
common and important hyperparameters are:

• Number of hidden layers: having more hidden layers allows the model to
represent more complex structures. Too many hidden layers may lead to
overfitting and slow all the computations (training and prediction), but
not enough layers may not be adequate to represent the complexity of the
problem (underfit).

• Number of neurons per layer: the number of neurons in the input and output
layer are determined by the input and output size. The number of neurons
in the hidden layers are hyperparameters, and like the number of layers, too
many of them cause overfitting, but not enough underfitting.

• Activations: depending on the problem, it may be desirable to choose a
saturating activation (like step, sigmoid or tanh) or a non saturating one
(like ReLU, for positive inputs).

• Learning rate: influences the speed of the weight update. If it is too high,
the training is very fast but may not reach convergence. If it is too low, the
training is too slow and may be stuck in a local minimum.
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• Mini-batch size: indicates the number of samples fed to the network at each
iteration to update the weights.

• Normalization: all the inputs are rescaled within a specified range. In this
way, it is avoided having input features with different orders of magnitude,
which in general helps the training.

Unfortunately, there are only a few rule of thumbs, but other than, that there
is no strict rule to choose the hyperparameters. They absolutely depend on the
nature and kind of problem that has to be solved, so a trial and error procedure
is required.

2.6 Extreme Learning Machine

Extreme learning machines are a type of single layer feedforward networks, but
their training process is completely different from classical ANNs. In fact, it has
been proved by Huang et al. [4] that if a SLFN with tunable hidden nodes param-
eters can learn a regression of a target function f(x), then, if the hidden nodes
activation functions hi(x,wi, bi), i = 1 . . . L are non-linear piecewise continuous,
training of the network does not require tuning of those parameters. This means
that input weights wi and biases bi of hidden nodes can be assigned randomly, and
a SLFN will still maintain the property of universal approximator, as long as the
output weights βi are computed properly. Referring to eq. 2.2 and generalizing
to N samples, the output of a SLFN can be expressed as:

yi =
L∑
i=1
βihi(xj,wi, bi) j = 1 . . . N (2.3)

with βi ∈ Rmout×1 and wi ∈ Rmin×1, being min the input size and mout the output
size. Fig. 2.4 represents a SLFN with the connections between input, hidden and
output layer. The network is fed a batch of N samples xi and gives in output N
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predictions yi.

Figure 2.4: Scheme of a SLFN with connections. Image taken from [6].

The hidden layer matrix of the network is called H , whose i-th column is the
output of the i-th hidden note with respect to the set of inputsX = [x1, . . . ,xN ] ∈
Rmin×N :

H =


h(x1,w1, b1) . . . h(x1,wL, bL)

... . . . ...
h(xN ,w1, b1) . . . h(xN ,wL, bL)

 , H ∈ RN×L (2.4)

Now it is possible to write in matrix formulation eq. 2.3:

fL(X) = Y = Hβ with β =


βT1
...
βTL

 β ∈ RL×mout (2.5)

The training algorithm of ELM is aimed to minimize the cost functional E which
represents the training error of the SLFN:
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E = ||Hβ − T ||2, with T =


tT1
...
tTL

 , T ∈ RN×mout (2.6)

Where T is the matrix collecting the true labels. The trained network is a uni-
versal approximator if β are assigned according to the least square error of the
ovedetermined system:

Hβ = T (2.7)

In order to have the solution β with minimum L2 norm among all least squares
solutions, it is necessary and sufficient condition to evaluate β using the Moore-
Penrose generalized inverse of the hidden layer matrix H . Thus, the training
algorithm of ELM can be written as:

β = H†T , H† = (HTH)−1HT (2.8)

Note that the training algorithm of ELM does not require iterative tuning as
backpropagation does, but it just consists of the evaluation of the pseudo-inverse
of H , usually obtained via single value decomposition with a computational com-
plexity O(NL2). For this reason, training an ELM requires in general much less
time and computational resources than training a deep network.

2.7 Performance Indexes

Performance indexes are used to verify the quality of the training. The choice of
the indexes depends on the problem and on the information that is needed. In
this work for the regression problem, it is used the root mean square error:
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RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2 (2.9)

The RMSE represents the average error made for every prediction, compared to
the true label, and it is used also as loss function to train the DNN. A visual tool
used to verify the quality of a regressor is the regression curve. An example of
regression curve is represented in fig. 2.5: on the x-axis are the target labels, on
the y-axis the predictions. The more the predictions are similar to the targets,
the more the blue points lie on the orange 45 degrees line.

Figure 2.5: Example of regression curve

For the classification problem instead, as loss function for the training of the DNN
is used the binary cross-entropy, or log loss:

Hp(q) = − 1
N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (2.10)

It is a particular case of the more general cross-entropy loss, but for binary classi-
fication. The idea if the cross-entropy is to compute the confidence of the model
in predicting a certain class, and penalize the weights associated if it is wrong, or
reinforce the weights if it is right, in a way proportional to the confidence of the
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prediction. As a performance index, it is used the accuracy, which is the ratio
between the number of correct predictions over the total number of predictions:

Accuracy = Number of correct predictions
Number of predictions = 1

N

N∑
i=1

(1− ||yi − ŷi||) (2.11)

Another tool to evaluate the performance of a classifier is the confusion matrix.
The idea is to count the number of times that instances of class A are classified
as class B.

Figure 2.6: Confusion matrix. Image taken from [20].

Taking as a reference the confusion matrix for binary classification reported in fig.
2.6: there are two classes, Positive (1) and Negative (0). The confusion matrix
counts:

• How many Positive values are predicted as Positive (true positive, TP)

• How many Negative values are predicted as Negative (true negative, TN)

• How many Positive values are predicted as Negative (false negative, FN)
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• How many Negative values are predicted as Positive (false positive, FP)

With the confusion matrix, it is possible to have a much deeper insight of the
classifier’s behavior than just looking at the accuracy.



Chapter 3

Energy Optimal Landing Problem

Consider a lander in a 3D cartesian reference system with axes {x̂, ŷ, ẑ}, subject
to the gravity field g and control thrust T . It starts at time t0 from initial position
r0 with initial velocity v0, and it has to reach the target state rf , vf at time tf .
The equations of motion are:



ṙ = v

v̇ = T

m
+ g

ṁ = − ||T ||
Isp · g0

BC :


r(t0) = r0

v(t0) = v0

m(t0) = m0

r(tf ) = rf

v(tf ) = vf
(3.1)

where g = −gẑ is the gravitational field vector of the Moon, and g is assumed
constant and equal to 1.62 N/kg. Isp = 200 s is the specific impulse of the lander
engine, and g0 = 9.81 N/kg is the value of the gravitational field of the Earth at
sea level.

ZEM/ZEV provides in output the control acceleration a instead of the thrust
T , furthermore, as explained in Section 1.3, the control acceleration is not con-
strained, so it is assumed that the engine is always able to provide enough ac-
celeration. This means that the dynamics is not dependent on the mass, which
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can be computed a posteriori. The equations of motion for the EO problem are
re-written as:


ṙ = v

v̇ = a+ g
BC :

r(t0) = r0

v(t0) = v0

r(tf ) = rf

v(tf ) = vf
(3.2)

Solving the energy optimal (EO) problem means finding the control acceleration
which minimizes the cost function:

JEO = min
∫ tf

t0
a · a dt (3.3)

3.1 ZEM/ZEV

ZEM/ZEV is the software used to generate the trajectories for the energy optimal
landing problem. At the core of the theory of ZEM/ZEV there are the two
variables zero-effort-miss (ZEM) and zero-effort-velocity (ZEV) which are defined
as the respectively difference of position and velocity between the target and the
lander once the equation of motions 3.2 are integrated without control until final
time tf :

ZEM (t) = rT (tf )− r(tf )

ZEV (t) = vT (tf )− v(tf )
for t < ξ < tf (3.4)

For the minimum energy problem it is demonstrated in [5] that the control ac-
celeration for every time t can be computed as a function of ZEM, ZEV and
tgo:

a(t) = 6
t2go
ZEM (t)− 2

tgo
ZEV (t) (3.5)
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where time-to-go tgo = tf − t is defined as the time to arrive at the terminal state.
If the gravitational field g is assumed constant, it is demonstrated in [5] that for
the EO problem the tgo can be obtained solving numerically the following quartic
equation:

t4goA+ t2goB + tgoC +D = 0

A = g · g

B = −2 (v · v + vf · v + vf · vf )

C = 12(rf − r) · (v + vf )

D = −18(rf − r) · (rf − r)

(3.6)

In the landing problem the target state is fixed and is placed at rf = [0, 0, 0] m
and vf = [0, 0, 0] m/s, so eq. 3.6 can be simplified:

g · g t4go − 2 v · v t2go − 12 r · v tgo − 18 r · r = 0 (3.7)

In Fig. 3.1 is reported an example of solution of ZEM/ZEV for a 1D landing
problem:
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Figure 3.1: Example of ZEM/ZEV solution for 1D case

3.2 Choice of the input features

The choice of the input features is critical in every ML problem. The input
features in fact represent the information given in input to the model in order
to make a prediction. It is then desirable that the input features reflect as much
as possible the relevant information about the data. Consider as an example a
regression problem where the price of a house has to be predicted: in this case the
features that are more likely to affect the price of a house may be the location,
the number of rooms/bathrooms, the walkable area, just to name a few. Instead,
some information like the color of the walls may not be so relevant in determining
the price of the house.

The input features chosen for the EO problem are position, velocity and time-
to-go. While the first two are trivial, one may wonder why it is used the tgo. The
reason is that, other than proving to increase the performances with respect to not
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using it, looking at eq. 3.6 one can see that it does add information, that is the
target state rf and vf , which would be otherwise unknown to the model. Thus,
during the simulation it is assumed perfect knowledge of position and velocity,
which are computed during the integration of the dynamics, and of time-to-go,
which is computed with eq. 3.7.

3.3 1D case

The unidimensional problem is of interest for two main reasons: first, it is a
simplified problem which allows to test the network training and the DAgger
techniques fast and easily, since it requires less training data than a more complex
3D case; second, the reduced number of dimensions allows to visualize results that
offer interesting insights of the ML model behavior, and that would be otherwise
more difficult to visualize with more dimensions.

3.3.1 Problem formulation

Consider a lander subject to the gravity field and control acceleration. It starts
at time t0 = 0 s from altitude h0 with initial velocity v0, and it has to reach the
target state hf = 0 m and vf = 0 m/s at time tf . The equations of motion 3.2
become:


ḣ = v

v̇ = a− g
BC :

h(0) = h0

v(0) = v0

h(tf ) = 0

v(tf ) = 0
(3.8)

where h is the altitude, v the vertical velocity, a the control acceleration.

The goal is to train a network able to give for each state of the trajectory
an optimal control acceleration a, such that the lander reaches the target state
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minimizing the cost function:

JEO = min
∫ tf

0
||a||2 dt (3.9)

In order to train the model, supervised learning techniques are used. The altitude
h, velocity v and time-to-go tgo are used as input features. The target is the
control acceleration a:

• Input features:
X = [h, v, tgo] X ∈ R3×1

• Target:
y = a y ∈ R1×1

3.3.2 Train and test dataset generation

For the EO 1D landing problem, 500 optimal trajectory are generated with ZEM/ZEV
for the train set, for a total of approximately 450.000 states (as it will explained in
the next sections, it is not necessary to use all these states for the train set). The
initial conditions for these trajectories are sampled uniformly randomly within
the ranges in Table 3.1:

Variable Min. value Max. value
h0 1000 m 1500 m
v0 -40 m/s -20 m/s

Table 3.1: EO 1D train set initial condition

The train set is visualized in Fig. 3.2, where the red rectangle represents the area
of the initial conditions.
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Figure 3.2: EO problem 1D train set

For each DAgger iteration, 50 new optimal trajectories are generated as test set.
In this way, at each iteration the Monte Carlo simulation is run on different
trajectories.

3.3.3 Dynamics simulator

In order to perform the Monte Carlo simulation integrating the predicted trajec-
tories, a dynamics simulator is implemented in Python. The pseudo-code is:

For each initial condition of the test trajectories:

1. Initialize position h = h0 and velocity v = v0

2. Compute tgo solving eq. 3.7
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3. Apply MinMaxScaler to input features X = [h, v, tgo], and predict control
acceleration ypred = a

4. Integrate equation of motion 3.8 with a time step of 0.1 s (10 Hz)

5. If the altitude h > 0 m and the velocity v < 0 m/s go back to point 2,
otherwise interrupt integration

The integration is performed with a frequency of 10 Hz, which is a common
frequency for landing engines, and it is stopped either when the lander reaches
the ground or when its vertical velocity is no more negative (i.e. the lander starts
rising before touching ground).

3.3.4 DAgger procedure

Here it is explained how the DAgger algorithm already described in section 2.4 is
implemented in practice for the EO unidimensional problem:

1. The train set is generated with ZEM/ZEV. The next step is to choose the
best architecture for the ML model. In order to do this, different architec-
tures are trained and the best in terms of validation loss is chosen. This
step is critical since, as it will be shown later, the same model that performs
well on the original train set, may not be so good on the augmented train
set. This means that for each DAgger it is required an analysis to search the
best architecture possible. As will be shown in sections 3.3.6 and 3.3.7, dif-
ferent techniques will be used for DNN and ELM to carry out such analysis
systematically.

2. A Monte Carlo simulation is performed: the current policy is run on the
test trajectories to obtain the predicted trajectories.

3. The predicted trajectories are labeled with ZEM/ZEV: each state of all the
predicted trajectories is used as initial condition to generate an optimal tra-
jectory with ZEM/ZEV, and only the first labeled state is retained. In this
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way it is possible to compare for each predicted state the acceleration pre-
dicted ypred and the optimal acceleration yopt. This is useful to visualize the
network performance at the simulation time, and also to have a criterion to
collect new states for DAgger. The predicted states where the prediction
error yerr = ||ypred−yopt|| is larger than a threshold εmin and below a thresh-
old εmax are collected. Taking as a reference Fig. 3.3, the left plot shows a
single trajectory: for each time it compares the predicted acceleration with
respect to the optimal one (corrected with ZEM/ZEV at previous point).
The states collected are those where the prediction error is in a certain range
(error between 5 % and 50 %). On the right plot, it is shown the predicted
trajectory inside the train set, and it is confirmed that the prediction errors
are bigger where the input states are outside the train set, and this causes
the trajectory to diverge from the target state.

4. The train set is augmented with the states collected in the previous point.
The procedure is repeated going back to point 1 and training a new model
on the augmented train set.

Figure 3.3: Collection criteria of the new states for DAgger
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Point 3 of the previous list is the one that required the most number of experiments
to come up with. First, it was to be decided if, when augmenting the dataset,
retaining only the first state of the corrected trajectory or the entire trajectory.
Various tests proved that it is better to augment with only the first state for a
few reasons: adding the entire trajectory does not increase the performances in a
significant way with respect to adding only the first state, but it increases a lot
the train set; moreover, adding the entire trajectory basically means to add data
from the expert policy pdata(ot) (with reference to Fig. 2.1), whereas only the first
state is taken from the trained policy pπθ(ot). Remember that the goal of DAgger
is collecting data from the trained policy instead of the expert policy. That said,
it would be perfectly possible to add the entire trajectory, but it would be less
efficient.

Another decision taken in point 3 is the criteria to collect only states where
the prediction error is in a certain range. The reason why there is a minimum
threshold, is to avoid adding states that the model already predicts well. The
reason for the maximum threshold, is to avoid adding states that are so outside
the train set that is likely that the model in a future iteration will not encounter.
Again, it would be possible to simply augment the train set with all the predicted
states, but this would be less efficient.

3.3.5 Visualize DAgger benefits

In this section are presented a few metrics and plots used to visualize and quantify
the benefits provided by the application of DAgger. Fig. 3.4 shows how augment-
ing the train dataset helps the predicted trajectories to converge to the target
state [0 m, 0 m/s]. In fact, before DAgger (a), the policy is trained on the origi-
nal train set, and the predicted trajectory tend to diverge toward the last states
because the model finds itself in states that it was not trained on, and so the error
predictions are bigger as shown in Fig. 3.3. After DAgger (b), the train set has
been augmented with the states collected as described in the previous section, and
now the predicted trajectory tend to converge much better to the target state.
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(a) Before DAgger (b) After DAgger

Figure 3.4: Predicted trajectories over train set, before and after DAgger

Another tool to visualize the improvements on the policy is the plot in Fig. 3.5
which compares the states distribution of the predicted trajectories and the op-
timal ones. On the x-axis, there is a specific variable (i.e. position or velocity),
on the y-axis the normalized frequency of states that fall in a specific range. The
more the two distributions - optimal and predicted - match, the more the predicted
trajectories are similar to the optimal ones, which is indeed desirable. It can be
observed how the application of DAgger make the distribution match better, in
particular in the last states where altitude and velocity are near zero.

Finally, it is here defined a quantity that will be used to measure how two
distributions are similar. It is the Cramer-Von Mises distance:

DCM =
∑
i

(hpred(i)− hopt(i))2 (3.10)

where h(i) is the normalized frequency of a certain state. For example, referencing
to Fig. 3.5, before DAgger the Cramer-Von Mises distance is DCM = 7.5 · 10−4,
while after DAgger is DCM = 3.3 · 10−4.
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(a) Before DAgger

(b) After DAgger

Figure 3.5: 1D State distribution, before and after DAgger

3.3.6 Deep Neural Network

The deep neural network is the first ML model used. The original size of the
1D train set with 500 trajectories is approximately 450.000 states, but there is no
need to use them all. In fact, applying DAgger means being smart about the train
set, and a little sized original train set is sufficient to train a fair enough initial
policy to collect new states to augment. This in fact is the philosophy of DAgger:
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collect data in a clever way from the trained policy instead of the expert policy.
Thus, for the initial train set of DNN, only 20.000 states are sampled randomly
from the original train set.

As already explained in section 3.3.4, the main problem of training the ML
model, is to find the most performing architecture in terms of validation loss, at
each DAgger iteration. In order to carry out such analysis systematically for the
DNN, it is used TensorBoard [22], a visualization tool offered by TensorFlow. It
allows to visualize the training graphs of different architectures, in order to choose
the best.

An interesting result obtained during the application of DAgger, is that aug-
menting the train set usually requires to change the model architecture. In fact,
an architecture that performs well on the original train set, may perform much
worse on the augmented train set. In general, going forward with the iterations,
it is needed to increase the complexity of the network, for example adding hidden
layers and neuron per layer. For example, Table 3.6 shows that on the original
train set (iteration 0), the architecture chosen has 2 hidden layers and 64 neurons
per layer, while after a few DAgger iterations (iteration 4), the architecture chosen
has 4 hidden layers and 128 neurons per layer.

(a) Iteration 0 (b) Iteration 4

Figure 3.6: EO 1D DNN architecture
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The following hyperparameters are common to all the architectures:

• Learning rate: 10−3, decreases by a factor of 0.9 each time the validation
loss does not decreases for 5 consecutive epochs.

• Mini-batch size: 8, same used by Izzo in [1].

• Activation function: ReLU, same used by Izzo in [1].

• Normalization: input features are rescaled in a range [0, 100] using the Min-
MaxScaler of Keras.

The following hyperparameters, instead, are searched again for each iteration:

• Number of hidden layers.

• Number of neurons per layer.

During the training phase, not the whole train set is actually used for the training,
because a fraction of it (15%) is used for the validation set. The validation set
consists in data which the model has never seen during the training, and it is
useful to avoid overfitting. The same train-validation split ratio will be used for
all the other cases. The train is stopped if the validation loss does not decrease
for 20 consecutive epochs.

In Table 3.2 are reported the results of the DNN over DAgger iterations. The
performances shown are the validation loss, the average final position and velocity
reached during the Monte Carlo simulation and the Cramer-Von Mises distance
DCM . Finally, there is the number of training data collected during DAgger at
the previous iteration, and the total training set size. It is interesting how just a
little amount of training data collected with DAgger (in this case about 13% of
the initial train set size) is enough to increase dramatically the performances of
the network.
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Iter Val loss Pos [m] Vel
[m/s]

DCM New
data

Data

0 2.0·10−2 0.56 1.94 7.5·10−4 - 20, 000
1 4.3·10−3 0.06 0.44 8.3·10−5 724 20, 724
2 2.0·10−2 0.03 0.16 4.9·10−5 951 21, 675
3 6.5·10−3 0.01 0.12 1.1·10−4 589 22, 264
4 6.7·10−3 0.01 0.10 3.3·10−4 360 22, 624

Table 3.2: EO 1D DNN results DAgger

In Fig. 3.7 the performance of DAgger against classical supervised learning is
plotted, with parity of train set size. The difference in the train set is that
for DAgger, new states are collected running the policy trained in the previous
iteration, while for classical supervised, they are collected running the expert
policy. It is clear how DAgger outperforms classical supervised, in particular in
final position and velocity, which reach a precision respectively of centimeters and
centimeters per second.
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Figure 3.7: EO 1D DNN results DAgger vs Supervised. The subplots represent the validation
loss, the average final position, the average final velocity and the Cramer-Von Mises distance.

3.3.7 Extreme Learning Machine

One drawback of ELMs is that they are counter intuitive. Sometimes, they give
better results in terms of generalization with less train data, which is the opposite
to what is usually expected instead in Deep Learning, and in general in Machine
Learning [7], [8]. After a few experiments, it is chosen to use an initial train set
with 10.000 states for the ELM.

On the bright size, one of the advantages of ELM is that it is easier to tune
than a DNN, because there is only one hyperparameter, which is the number of
neurons. The procedure adopted to choose the best architecture for each itera-
tion is in principle the same of the one already used for DNN. Different models
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with different number of neurons are trained, and the model which achieves the
minimum validation loss is chosen. The code with the implementation of ELM
in Python has been downloaded from [24]. The input features are rescaled in a
range [0, 1] with the MinMaxScaler of Keras.

Fig. 3.8 shows that the optimal number of neurons (where the validation
loss reaches a minimum) increases along the DAgger iterations. This is the same
phenomena encountered with the DNN: augmenting the train size with DAgger,
a more complex network is required.

(a) Iteration 0 (b) Iteration 3

Figure 3.8: EO 1D ELM architecture

ELM proved to be extremely powerful on the regression problem, obtaining al-
ready on the original training set performances as good as DNN after DAgger.
This is even more impressing, considering that they needed a training set half of
the size and a training time in the order of few seconds, instead of several minutes
needed by the neural networks. The performances of ELM over the DAgger iter-
ations are reported in Table 3.3, and compared to classical supervised learning in
Fig. 3.9.
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Iter Val loss Pos [m] Vel
[m/s]

DCM New
data

Data

0 5.2·10−4 0.01 0.11 3.0·10−4 - 10, 000
1 2.9·10−4 0.01 0.09 3.9·10−4 120 10, 120
2 3.8·10−3 0.0 0.07 3.2·10−4 385 10, 505
3 3.7·10−3 0.0 0.08 2.6·10−4 100 10, 605

Table 3.3: EO 1D ELM results DAgger

Figure 3.9: EO 1D ELM results DAgger vs Supervised. The subplots represent the validation
loss, the average final position, the average final velocity and the Cramer-Von Mises distance.
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3.4 3D case

Once DAgger has been successfully applied to the 1D case, it is now time to tackle
the more complete 3D case.

3.4.1 Problem formulation

Consider a lander subject to the downward gravity force and a 3D vector control
force. It starts at time t0 = 0 at initial position [x0, y0, z0] with initial velocity
[vx0, vy0, vz0], and it has to reach the final state xf = yf = zf = 0 m and
vxf = vyf = vzf = 0 m/s at time tf . The equations of motion are:



ẋ = vx

ẏ = vy

ż = vz

v̇x = ax

v̇y = ay

v̇z = az − g

BC :



x(0) = x0

y(0) = y0

z(0) = z0

vx(0) = vx0

vy(0) = vy0

vz(0) = vz0



x(tf ) = 0

y(tf ) = 0

z(tf ) = 0

vx(tf ) = 0

vy(tf ) = 0

vz(tf ) = 0

(3.11)

The goal is to train a network able to give for each state of the trajectory a control
acceleration a = axx̂ + ayŷ + azẑ, such that the lander reaches the final state
minimizing the cost function:

JEO = min
∫ tf

0
a · a dt (3.12)

where v = vxx̂+ vyŷ + vzẑ.

The input features and target are the same as in the 1D case, but in three dimen-
sions:
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• Input features:

X = [x, y, z, vx, vy, vz, tgo] X ∈ R7×1

• Target:
y = [ax, ay, az] y ∈ R3×1

3.4.2 Train and test dataset generation

For the EO 3D landing problem, 1000 optimal trajectory are generated with
ZEM/ZEV for the train set, for a total of approximately 1.000.000 states (even
in this case, it is not necessary to use all these states for the train set). The ini-
tial conditions for these trajectories are sampled uniformly randomly within the
following ranges:

Variable Min. value Max. value
x0 1500 m 2000 m
y0 -100 m 100 m
z0 1000 m 1500 m
vx0 -60 m/s -50 m/s
vy0 -10 m/s 10 m/s
vz0 -30 m/s -20 m/s

Table 3.4: EO 3D train set initial condition

The train set is visualized in Fig. 3.10, where the red volume indicates the zone
where the initial conditions are sampled:
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Figure 3.10: EO 3D train set

For each DAgger iteration, 100 new optimal trajectories are generated as test
set. In this way, at each iteration the Monte Carlo simulation is run on different
trajectories.

3.4.3 Dynamics simulator

The dynamics simulator for the 3D case is the same as the one for 1D case, de-
scribed in section 3.3.3, with the appropriate modifications for the 3D case. The
pseudo-code is:

For each initial condition of the test trajectories:
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1. Initialize position x = x0, y = y0, z = z0 and velocity vx = vx0, vy = vx0,
vz = vz0

2. Compute tgo solving eq. 3.7

3. Apply MinMaxScaler to input features X = [x0, y0, z0, vx0, vy0, vz0, tgo], and
predict control acceleration ypred = [ax, ay, az]

4. Integrate equation of motion 3.11 with a time step of 0.1 s

5. If the altitude z > 0 m and the vertical velocity vz < 0 m/s go back to
point 2, otherwise interrupt integration

3.4.4 DAgger procedure

The application of DAgger is very similar to the procedure described in section
3.3.4 for the 1D case:

1. The train set is generated with ZEM/ZEV and the ML model is trained.

2. A Monte Carlo simulation is performed: the current policy is run with the
test trajectories to obtain the predicted trajectories.

3. The predicted trajectories are labeled with ZEM/ZEV. The predicted states
where the prediction error yerr = ||ypred − yopt|| is bigger than a threshold
εmin and below a threshold εmax are collected.

4. The train set is augmented with the states collected in the previous point.
The procedure is repeated going back to point 1 and training a new model
on the augmented train set.
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3.4.5 Visualize DAgger benefits

It is still possible to plot the predicted state distribution over the optimal one
for each dimension of position and velocity. An example is shown in Fig. 3.11,
in which it can be observed again how the predicted distribution improves after
DAgger, in particular in the final states.

(a) Before DAgger

(b) After DAgger

Figure 3.11: 3D State distribution, before and after DAgger
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3.4.6 Deep Neural Network

The original size of the 3D train set with 1000 trajectories is approximately
1.000.000 states. With the same considerations taken for the 1D case, for the
initial train set of DNN, only 30.000 states are sampled randomly from the orig-
inal train set. Also like the 1D case, the network complexity increases over the
DAgger iterations: for example, Fig. 3.12 shows that on the original train set (it-
eration 0), the architecture chosen has 2 hidden layers and 64 neurons per layer,
while after a few DAgger iterations (iteration 3), the architecture chosen has 5
hidden layers and 256 neurons per layer.

(a) Iteration 0 (b) Iteration 3

Figure 3.12: EO 3D DNN architecture

The following hyperparameters are common to all the architectures:

• Learning rate: 10−3, decreases by a factor of 0.9 each time the validation
loss does not decreases for 5 consecutive epochs.

• Mini-batch size: 8, same used by Izzo in [1].

• Activation function: ReLU for all layers and outputs, except tanh for y
output.
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• Normalization: input features are rescaled in a range [0, 100] using the Min-
MaxScaler of Keras.

The following hyperparameters, instead, are searched again for each iteration:

• Number of hidden layers.

• Number of neurons per layer.

Fig. 3.13 shows an example of TensorBoard: in this case the architecture with
2 layers and 64 neurons per layer and tanh activation is chosen (actually tanh
activation only for y output), because it reaches a validation loss of 5.52 ·10−4, by
far the smallest with respect to all the other architectures tested. The intuition
behind the fact that a tanh activation performs better for the y output, is that,
given this problem and symmetric initial conditions, the values of y assume both
positive and negative values. This makes tanh, which is non saturating on the
origin, preferable to ReLU, which outputs zero for all the negative inputs.

Figure 3.13: Choosing the best architecture with TensorBoard

Fig. 3.14 represents an example of regression curve for each component of the
target acceleration. It is quite unclear the presence of the outlier points in each



CHAPTER 3. ENERGY OPTIMAL LANDING PROBLEM 45

curve. At first sight it may seem that the quality of the training is very bad, but
the Monte Carlo simulation proved that these outliers do not prevent the model
to obtain good performance at simulation time. Still, these regression curves do
suggest that it should be possible to find an even better architecture to train.

Figure 3.14: EO 3D DNN example of regression curve

The performances of DNN over the DAgger iterations are reported in Table 3.5,
and compared to classical supervised learning in Fig. 3.15. Since there are three
dimensions, the average final position and velocity are defined as following:

Pos:
√
x2
f + y2

f + z2
f

Vel:
√
vx2
f + vy2

f + vz2
f

Iter Val loss Pos [m] Vel
[m/s]

DCM New
data

Data

0 5.5·10−2 2.03 1.39 9.5·10−4 - 30, 000
1 5.2·10−2 0.60 1.05 3.1·10−4 1674 31, 674
2 5.7·10−2 0.85 0.64 1.5·10−4 1602 33, 276
3 1.1·10−1 0.79 0.75 1.1·10−3 3695 36, 971

Table 3.5: EO 3D DNN results DAgger
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Figure 3.15: EO 3D DNN results DAgger vs Supervised. The subplots represent the vali-
dation loss, the average final position, the average final velocity and the Cramer-Von Mises
distance.

3.4.7 Extreme Learning Machine

For the ELM it is chosen to use an initial train set with just 10.000 states. In
order to choose the number of neurons for each iteration, it is used the same
procedure of the 1D case. The input features are rescaled in a range [0, 1] with
the MinMaxScaler of Keras.

Fig. 3.16 shows that the optimal number of neurons (where the validation
loss reaches a minimum) increases along the DAgger iterations. This is the same
phenomena encountered with the DNN: augmenting the train size with DAgger,
a more complex network is required.
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(a) Iteration 0 (b) Iteration 3

Figure 3.16: EO 3D ELM architecture

It is interesting to observe the presence of outliers in the regression curves if Fig.
3.17 even in this case, even though the ELM proved to be very powerful on the
regression problem and achieved better results than the DNN on the Monte Carlo
simulation.

Figure 3.17: EO 3D ELM example of regression curve

The performances of DNN over the DAgger iterations are reported in Table 3.5,
and compared to classical supervised learning in Fig. 3.15. Position and velocity
are defined as in the DNN 3D case.
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Iter Val loss Pos [m] Vel
[m/s]

DCM New
data

Data

0 2.0·10−3 2.10 3.22 4.9·10−4 - 10, 000
1 6.7·10−4 0.69 2.39 6.6·10−4 604 10, 604
2 7.9·10−4 0.14 0.41 3.6·10−4 1107 11, 711
3 6.2·10−1 0.06 0.33 7.9·10−3 1942 13, 653

Table 3.6: EO 3D ELM results DAgger

Figure 3.18: EO 3D ELM results DAgger vs Supervised. The subplots represent the vali-
dation loss, the average final position, the average final velocity and the Cramer-Von Mises
distance.



Chapter 4

Fuel Optimal Landing Problem

While the EO problem was mostly used as a case study to test and understand
DAgger, the FO problem is more interesting for practical application, since it
represents an optimal landing where the fuel consumption is minimized. Further-
more, the module of the control thrust is constrained between a minimum value
Tmin and a maximum value Tmax as it would be in a real situation.

Consider a lander in a 3D Cartesian reference system with axes {x̂, ŷ, ẑ}, subject
to the gravity force g and control thrust T . It starts at time t0 from initial position
r0 with initial velocity v0, and it has to reach the target state rf , vf at time tf .
The equations of motion are:



ṙ = v

v̇ = T

m
+ g

ṁ = − ||T ||
Isp · g0

BC :


r(t0) = r0

v(t0) = v0

m(t0) = m0

r(tf ) = rf

v(tf ) = vf
(4.1)

where g = 1.62 N/kg is the gravitational field of the Moon, g0 = 9.81 N/kg the
gravitational field of the Earth and Isp = 200 s the specific impulse of the lander’s
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engine. The cost function is:

JFO = min
∫ tf

t0
||T || dt (4.2)

4.1 GPOPS

GPOPS, which stands for General Pseudospectral Optimal Control Software, is
the software used to generate optimal trajectories for the FO problem. It uses a
direct method for solving the two-points-boundary-value-problem (TPBVP), and
for this reason the solution is not very accurate, compared to a software using an
indirect method. Anyway, it is accurate enough to generate a dataset to train a
ML model. GPOPS has in particular one parameter called mesh tolerance which
influences the accuracy of the solution. Fig. 4.1 shows two examples of GPOPS
solutions for a 1D trajectory, one with a mesh tolerance of 10−4 and one with a
mesh tolerance of 10−8. It is clear that a smaller mesh tolerance gives a more
accurate solution (in particular for the output) and also more points.

It is known from optimal control theory for a fuel optimal landing problem that
the thrust profile is bang-bang. For this reason, the output is categorical: 0 means
that the thrust is minimum (1000 N), 1 means that it is maximum (3400 N). The
thrust is then computed as T = 1000+2400 ·Tc [N ]. As Fig. 4.1 (a) and (b) show,
in the output solution there is in both cases a middle point during the switching
time: that is a collateral effect of the direct method used to solve the TPBVP.
Different parameters, other than the mesh tolerance, have been tweaked in order
to try to remove it, but without success. As a solution, the middle points are just
removed from the train set.
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(a) Mesh tolerance 10−4 (b) Mesh tolerance 10−8

Figure 4.1: Examples of GPOPS solution for 1D case

4.2 Choice of the input features

It is worth to explain the choice of using the mass as input feature. In fact, Izzo [1]
used a DNN for a FO problem, and he assumed complete knowledge of position
and velocity, but did not use the mass as input feature. However, the state of
the dynamics includes the mass, which indeed is a variable in the equations of
motions 4.1. The DNNs and ELMs, unlike RNNs which consider the observation’s
history, only take one observation at a time to predict the output: this means that
it is needed to respect the Markov Property discussed in section 2.3, otherwise
the model lacks information about the spacecraft’s state, and may make wrong
predictions because of it. For example, consider the following initial conditions
for a 1D problem:

• X1 = [450 m,−40 m/s, 1000 kg]

• X2 = [450 m,−40 m/s, 950 kg]

After generating a trajectory from these initial conditions with GPOPS, the first
state is labeled with a maximum thrust y1 = 1, while the second state is labeled
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with a minimum thrust y2 = 0. This explains why the mass needs to be used as
input feature.

Note that this matter was not present in the EO problem, because the con-
trol acceleration was not constrained and so the dynamics was ultimately not
dependent on the mass, as eqs. 3.2 show.

Finally, it is pointed out that the mass variation is usually not measured on-
board by the spacecrafts, but it actually could be easily calculated in real time
from the initial mass and the control thrust history:

m(tk) = m(t0)−
k∑
i=1

||Ti−1||
Isp · g0 (tk − tk−1) (4.3)

4.3 1D case

4.3.1 Problem formulation

Consider a lander subject to the gravity force and the control force. It starts at
time t0 = 0 s from the initial altitude h0 with the initial velocity v0 and the initial
mass m0, and it has to reach the final state hf = 0 m and vf = 0 m/s at time tf .
The equations of motion are:

ḣ = v

v̇ = T

m
− g

ṁ = − T

Isp · g0

BC :


h(0) = h0

v(0) = v0

m(0) = m0

h(tf ) = 0

v(tf ) = 0
(4.4)

where h is the altitude, v the vertical velocity, T the control thrust. Unlike the
EO problem, now the thrust is constrained to be between 1000 N and 3400 N. As
will be explained in section 4.3.4, this causes practical issues during the DAgger
procedure that need to be solved with some trick.
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The goal is to train a network able to give for each state of the trajectory a
control thrust T , such that the lander reaches the final state minimizing the cost
function:

JFO = min
∫ tf

0
||T ||dt (4.5)

In order to train the model, supervised learning techniques are used. The altitude
h, velocity v and mass m are used as input features. The target tc is categorical
(0-1).

• Input features:
X = [h, v,m] X ∈ R3×1

• Target:
y = tc y ∈ R1×1

4.3.2 Train and test dataset generation

For the FO 1D landing problem, 500 optimal trajectory are generated with GPOPS,
setting the mesh tolerance of GPOPS to 10−5, obtaining a total of approximtely
10.000 states. The initial conditions for these trajectories are sampled uniformly
randomly within the following ranges:

Variable Min. value Max. value
h0 1000 m 1500 m
v0 -40 m/s -20 m/s
m0 1200 kg 1400 kg

Table 4.1: FO 1D train set initial condition

The train set is visualized in Fig. 4.2, both from a 2D and 3D perspective. The
points in red represent states in which the optimal thrust is maximum, while the
points in blue represent states where the optimal thrust is minimum.
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(a) 2d view (b) 3d view

Figure 4.2: FO 1D train set

One may wonder why the train set is generated varying the initial condition of the
mass; after all, it is reasonable to assume that the lander will have a fixed known
mass when it begins the landing. Before explaining the reason of this choice, it
is introduced a plot called partial dependence plot (PDP), which is a tool used in
ML to get an insight of the model’s behavior. Partial dependence plots show how
each variable affects the model’s predictions. This is done making one variable
to vary, while fixing all other variables, and looking how the predictions of the
model depend on that variable (like a partial derivative). Figure 4.3 shows an
example of PDP: there are three plots, one where the position is varied, one for
the velocity and one for the mass. When they do not vary, position is fixed to
700 m, velocity to −40 m/s and mass to 1300 kg. The first two plots look correct,
in fact with parity of velocity and mass, it is intuitive that the thrust is maximum
if the position is lower; and it is intuitive that, with parity of position and mass,
the thrust is maximum if the negative velocity is higher in absolute value. What
looks wrong is the fact that, with parity of position and velocity, the thrust is
predicted maximum if the mass is lower.
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Figure 4.3: Partial dependence plot 1

This happens because if all the training trajectories begin with the same initial
mass, the model learns a wrong correlation between the mass and the output.
From an intuitive point of view, this is because, if there is a limited space of
initial conditions, what the model sees is just a pattern that links low mass (i.e.
when the lander is in an advanced phase of the landing) to maximum thrust. If,
instead, the training trajectories are generated by varying the initial mass, the
PDP obtained is the one represented in Fig. 4.4, and now the third plot shows
the behavior that is expected.

Figure 4.4: Partial dependence plot 2
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4.3.3 Dynamics simulator

The dynamics simulator works like the one implemented for the EO problem, with
a few changes.

For each initial condition of the test trajectories:

1. Initialize position h = h0, velocity v = v0 and mass m = m0

2. Apply MinMaxScaler to input features X = [h, v,m], and predict thrust
ypred = tc

3. Compute the thrust as T = 1000+2400 ·tc [N ]; integrate equation of motion
4.4 with a time step of 0.1 s (10 Hz)

4. If the altitude h > 0 m and the velocity v < 0 m/s go back to point 2,
otherwise interrupt integration

4.3.4 DAgger procedure

Here it is explained how the DAgger algorithm already described in section 2.4 is
implemented for the FO one-dimensional problem:

1. The train set is generated with GPOPS and the ML model is trained.

2. A Monte Carlo simulation is performed: the current policy is run with the
test trajectories to obtain the predicted trajectories.

3. The predicted trajectories are labeled with GPOPS. The states where the
predicted thrust is wrong (ypred 6= yopt) are collected.

4. The train set is augmented with the states collected in the previous point.
The procedure is repeated going back to point 1 and training a new model
on the augmented train set.
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As anticipated in section 4.3.1, the constraint on the thrust levels causes some
problems in the DAgger procedure that was not present in the EO problem, where
the control acceleration was not bounded. In particular, point 3 of the previous
list is not trivial as it seems: it may happen that the predicted trajectories deviate
that much from the optimal trajectories that some states are out of the reachability
point for the optimal solution, and GPOPS is not able to solve the FO problem
from the those states because the thrust is limited (e.g. the altitude is too low
and the downward velocity is too high). A few solutions to this problem have
been considered:

• Increase the mesh tolerance of GPOPS (e.g. to 10−3−10−2). A bigger mesh
tolerance reduces the accuracy of the solution, but makes GPOPS more
flexible in finding a solution; this is acceptable, since only the first state of
the trajectory is of interest for DAgger.

• Just remove the states from where GPOPS is not able to solve the FO
problem. This is feasible only for a few states, because it has to be done
manually each time that GPOPS is stuck in trying to solve the FO problem.
If a lot of states are out of the reachability zone, then consider the third
solution.

• Start the first iteration correcting the predicted trajectories only until a
certain point (e.g. half of each trajectory); then, gradually increase the stop
point with the iterations. In fact, the trained policy is supposed to improve
along the iterations and therefore it should be able to reach states more and
more near to the target state without deviating too much from the optimal
trajectory.

A mix of all the three solutions proposed has been applied.
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4.3.5 Visualize DAgger benefits

As for the EO 1D case, it is possible to visualize how applying DAgger makes
the predicted trajectories to converge better to the target state. Figure 4.5 and
4.6, respectively from a 2D and 3D perspective, show how augmenting the train
dataset helps the predicted trajectory to converge to the target state [0 m, 0 m/s].

(a) Before DAgger (b) After DAgger

Figure 4.5: Predicted trajectories over train set, before and after DAgger, 2D view

(a) Before DAgger (b) After DAgger

Figure 4.6: Predicted trajectories over train set, before and after DAgger, 3D view
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4.3.6 Deep Neural Network

The original size of the 1D train set with 500 trajectories is approximately 10.000
states. Like in the other cases, the network complexity increases over the DAgger
iterations, as Fig. 4.7 shows.

(a) Iteration 0 (b) Iteration 4

Figure 4.7: FO 1D DNN architecture

The following hyperparameters are common to all the architecures:

• Learning rate: 10−3, decreases by a factor of 0.9 each time the validation
loss does not decreases for 5 consecutive epochs.

• Mini-batch size: 8, same used by Izzo in [1].

• Activation function: ReLU, same used by Izzo in [1].

• Normalization: input features are rescaled in a range [0, 100] using the Min-
MaxScaler of Keras.

The following hyperparameters, instead, are searched again for each iteration:

• Number of hidden layers.

• Number of neurons per layer.
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An example of confusion matrix is represented in Fig. 4.10. It shows that over a
total of 5000 test states:

• 3547 are correctly predicted as max thrust (100% of the states with max
thrust)

• 1442 are correctly predicted as min thrust (99.2% of the states with min
thrust)

• 11 are wrongly predicted as max thrust (0.8% of the states with min thrust)

• 0 are wrongly predicted as min thrust (0% of the states with max thrust)

Figure 4.8: FO 1D DNN Confusion matrix

The performances of DNN over the DAgger iterations are reported in Table 4.2,
and compared to classical supervised learning in Fig. 4.9.
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Iter Val acc Pos [m] Vel
[m/s]

DCM New
data

Data

0 0.99 13.6 3.91 1.9·10−3 - 9, 117
1 0.99 3.72 1.94 1.8·10−3 397 9, 514
2 0.99 2.60 4.27 1.7·10−3 43 9, 556
3 0.99 1.54 0.81 1.3·10−3 293 9, 849
4 0.99 0.48 1.02 8.4·10−4 905 10, 754

Table 4.2: FO 1D DNN results DAgger

Figure 4.9: FO 1D DNN results DAgger vs Supervised. The subplots represent the validation
loss, the average final position, the average final velocity and the Cramer-Von Mises distance.
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4.3.7 Extreme Learning Machine

While the ELM proved to be extremely powerful for the regression problem, it
showed poor performances on the classification problem. It is not clear this kind
of behavior, because in general ELMs are supposed to work well also on classi-
fication and multi-classification problems [4]. Figure 4.10 shows an example of
classification matrix, while Fig. 4.11 shows and example of distribution of states.
Application of DAgger did not bring any improvement on the performances of
ELM, for this reason ELM is not used for the FO problem where classification is
required.

Figure 4.10: FO 1D ELM Confusion Matrix

Figure 4.11: FO 1D ELM State Distribution
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4.4 3D case

Once DAgger has been successfully applied to the 1D case, it is now time to tackle
the more complete and realistic 3D case.

4.4.1 Problem formulation

Consider a lander subject to the downward gravity force and a 3D vector control
force. It starts at time t0 = 0 at initial position [x0, y0, z0] with initial velocity [vx0,
vy0, vz0] and initial mass m0, and it has to reach the final state xf = yf = zf = 0 m
and vxf = vyf = vzf = 0 m/s at time tf . The equations of motion are:



ẋ = vx

ẏ = vy

ż = vz

v̇x = Tx
m

v̇y = Ty
m

v̇z = Tz
m
− g

ṁ = − ||T ||
Isp · g0

BC :



x(0) = x0

y(0) = y0

z(0) = z0

vx(0) = vx0

vy(0) = vy0

vz(0) = vz0

m(0) = m0



x(tf ) = 0

y(tf ) = 0

z(tf ) = 0

vx(tf ) = 0

vy(tf ) = 0

vz(tf ) = 0

(4.6)

The goal is to train a network able to give for each state of the trajectory a control
thrust T , such that the lander reaches the final state minimizing the cost function:

JFO = min
∫ tf

0
||T || dt (4.7)

where T = Txx̂+Tyŷ+Tzẑ. The module of the thrust vector ||T || is constrained
to be between 1000 N and 3400 N.
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The input features are again position, velocity and mass. The target is a vector
of 4 components: the first three [tx, ty, tz] are the unity components of the thrust
and are numerical, while the last tc is categorical (0-1): 0 indicates minimum
thrust and 1 maximum thrust.

• Input features:

X = [x, y, z, vx, vy, vz,m] X ∈ R7×1

• Target:
y = [tx, ty, tz, tc] y ∈ R4×1

4.4.2 Train and test dataset generation

For the FO 3D landing problem, 1000 optimal trajectory are generated with
GPOPS for the train set, for a total of approximately 250.000 states (even in
this case, it is not necessary to use all these states for the train set). The ini-
tial conditions for these trajectories are sampled uniformly randomly within the
following ranges:

Variable Min. value Max. value
x0 1500 m 2000 m
y0 -100 m 100 m
z0 1000 m 1500 m
vx0 -60 m/s -50 m/s
vy0 -10 m/s 10 m/s
vz0 -30 m/s -20 m/s
m 1200 kg 1400 kg

Table 4.3: EO 3D train set initial condition

The train set is represented in Fig. 4.12, where the red volume indicates the zone
where the initial conditions are sampled.
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Figure 4.12: FO 3D train set

4.4.3 Dynamics simulator

For each initial condition of the test trajectories:

1. Initialize position x = x0, y = y0, z = z0, velocity vx = vx0, vy = vx0,
vz = vz0 and mass m = m0

2. Apply MinMaxScaler to input features X = [x0, y0, z0, vx0, vy0, vz0,m0], and
predict ypred = [tx, ty, tz, tc]

3. Compute the thrust as T = [txx̂, tyŷ, tzẑ]·T , where T = 1000+2400·tc [N ];
integrate equation of motion 4.6 with a time step of 0.1 s

4. If the altitude z > 0 m and the vertical velocity vz < 0 m/s go back to
point 2, otherwise interrupt integration
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4.4.4 DAgger procedure

1. The train set is generated with GPOPS and the ML model is trained.

2. A Monte Carlo simulation is performed: the current policy is run with the
test trajectories to obtain the predicted trajectories.

3. The predicted trajectories are labeled with GPOPS. Since both regression
and classification are implied, in order to collect the states for DAgger it is
used the following criteria: the predicted states where the prediction error on
the regression yerr = ||[tx, ty, tz]pred− [tx, ty, tz]opt|| is bigger than a threshold
εmin and below a threshold εmax are collected; also, the predicted states
where the classification is wrong ([tc]pred 6= [tc]opt) are collected.

4. The train set is augmented with the states collected in the previous point.
The procedure is repeated going back to point 1 and training a new model
on the augmented train set.

4.4.5 Deep Neural Network

The original size of the 1D train set with 1000 trajectories is approximately 30.000
states. Like in the other cases, the network complexity increases over the DAgger
iterations, as Fig. 4.7 shows.
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(a) Iteration 0 (b) Iteration 4

Figure 4.13: FO 3D DNN architecture

The following hyperparameters are common to all the architectures:

• Learning rate: 10−3, decreases by a factor of 0.9 each time the validation
loss does not decreases for 5 consecutive epochs.

• Mini-batch size: 8, same used by Izzo in [1].

• Activation function: ReLU for all layers and outputs, except tanh for y
output.

• Normalization: input features are rescaled in a range [0, 100] using the Min-
MaxScaler of Keras.

The following hyperparameters, instead, are searched again for each iteration:

• Number of hidden layers.

• Number of neurons per layer.

The performances of DNN over the DAgger iterations are reported in Table 4.4,
and compared to classical supervised learning in Fig. 4.14. The average final
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position and velocity are defined as following:

Pos:
√
x2
f + y2

f + z2
f

Vel:
√
vx2
f + vy2

f + vz2
f

Iter Val loss Pos [m] Vel
[m/s]

DCM New
data

Data

0 0.08 8.03 3.91 1.9·10−3 - 9, 117
1 0.05 6.74 1.94 1.8·10−3 397 9, 514
2 0.06 6.54 4.27 1.7·10−3 43 9, 556
3 0.05 1.54 0.81 1.3·10−3 293 9, 849
4 0.09 0.48 1.02 8.4·10−4 905 10, 754

Table 4.4: FO 3D DNN results DAgger
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Figure 4.14: FO 3D DNN results DAgger vs Supervised. The subplots represent the vali-
dation loss, the average final position, the average final velocity and the Cramer-Von Mises
distance.



Chapter 5

Conclusions and future work

5.1 Conclusions

In this work it has been demonstrated that the DAgger approach can be applied
to the optimal landing problem, and that it effectively improves the performance
of the Machine Learning model at prediction time. The energy optimal and fuel
optimal landing problem have been analyzed, both in 1D and 3D cases, using
different kind of ML models such as Deep Neural Netowrk and Extreme Learning
Machine. Supervised imitation learning has been applied for the first time to EO
landing problems, using the time to go as input feature. It has been shown how
ELMs are a powerful tool for regression landing problems, while they are a poor
choice for classification problems.

A great number of experiments have been performed to choose the train set
size, the model’s architecture, the input features and how to implement DAgger.
It has been proven that the application of DAgger outperformes classic supervised
imitation learning, and allows to obtain good performance in sequence prediction
problems even with very small datasets (in [1], more than 13.000.000 points were
used for the train set for a 2D FO problem, still reaching a final position in the
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order of meters).

It has been explained the choice of the input features for each problem, in
particular in the FO problem where the choice of using the mass as input features
is explained by the Markov property.

In conclusion, this work put the basis for a DAgger approach for supervised
imitation learning applied to autonomous lunar landing.

5.2 Future work

In a real mission, the complete knowledge of the state is not easily available, and
the Markov property is not trivial. Bloise and Orlandelli showed in [2] that a
combination of CNN and RNN can be used to bypass the need of the knowledge
of the state, and the model can be trained instead with sequences of image-action
pairs to perform an autonomous lunar landing. A natural continuation of this work
is the application of the DAgger procedure to an image-guided landing scenario.
This would require adapting the DAgger algorithm to sequences of inputs.

Another possible work is the application of the DAgger approach to navigation,
such as interplanetary orbit transfers. In this case the main difference with respect
to the lunar landing is the dimension of the train set, which would be much bigger
because the trajectories would cover hundreds of thousands/millions of kilometers
instead of just a few kilometers. A DAgger approach would help to achieve better
performance avoiding a training set too large which may affect the feasibility of
the training.



Bibliography

[1] C. Sanchez, D. Izzo, ”Real-time optimal control via Deep Neural Networks:
study on landing problems”, Journal of Guidancem Control and Dynamics,
2018

[2] I. Bloise, M. Orlandelli, ”A deep learning approach to autonomous lunar
landing”, Politecnico di Milano, 2018

[3] S. Ross, G. Gordon, J. Bagnell, ”A Reduction of Imitation Learning and
Structured Prediction to No-Regret Online Learning”

[4] G. B. Huang, H. Zhou, X. Ding, R. Zhang, ”Extreme Learning Machine for
Regression and Multiclass Classification”, IEEE, 2012

[5] Y. Guo, M. Hawkins, B. Wie, Optimal feedback guidance algorithms for plan-
etary landing and asteroid intercept, 2011

[6] R. Barocco, ”Applications and optimizations of Extreme Learning Machines
for the realization of on-board, real-time guidance algorithms”, Politecnico di
Milano, 2018
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