

POLITECNICO DI MILANO

School of Industrial and Information Engineering
Master of Science in Computer Science and Engineering

Dipartimento di Elettronica, Informazione e Bioingegneria

Item Rating or Feature Rating?

Which is the Key for Building a User Profile?

Supervisor: Prof. Paolo Cremonesi

Co-Supervisor: Dr. Yashar Deldjoo

Master Thesis by:

Luca Luciano Costanzo, 862725

Academic Year 2018 - 2019

Luca Luciano Costanzo: Item Rating or Feature Rating? Which is the Key for
Building a User Profile? | Master Thesis in Computer Science and Engineering,
Politecnico di Milano.
c© Copyright 2019.

Politecnico di Milano:
www.polimi.it

School of Industrial and Information Engineering:
www.ingindinf.polimi.it

http://www.polimi.it
http://www.ingindinf.polimi.it

To my family, my friends
and my special person,

who have always supported me...

When something is important
enough, you do it
even if the odds are not
in your favour

— Elon Musk

Ringraziamenti

Dopo un percorso accademico lungo e tortuoso, dopo aver incontrato decine
di persone nuove, dopo aver studiato centinaia di formule e risolto migliaia di
equazioni, sono felice e orgoglioso di presentare questo elaborato di Tesi di Laurea
Magistrale in Computer Science and Engineering.

Desidero ringraziare le persone che in questo percorso, con il loro aiuto, le loro
parole o soltanto con la loro presenza, mi hanno permesso di andare avanti e di
raggiungere questo arduo, ma bellissimo traguardo:

la mia famiglia, che con pazienza ed entusiasmo mi ha, in primis, permesso di
frequentare un istituto prestigioso quale il Politecnico di Milano, e in seguito,
sostenuto, pungolato e consolato durante i miei studi;

ai miei amici, M., F., A., J. protagonisti di serate divertenti, presenti da tem-
po immemore, sia durante le fatiche e lo sconforto, sia nei momenti di gioia e
soddisfazione.

alla mia persona speciale, Teresa la mia Stella Polare, sempre dietro alle
mie spalle, pronta a darmi il suggerimento perfetto, l’occhiataccia giusta, o a
farmi sorridere con una battuta. Grazie di essere e di essere stata parte di
tutto questo.

Prof. Paolo Cremonesi, il mio relatore per i suoi preziosi consigli, per
aver ideato e promosso questo progetto di ricerca.

Dott. Yashar Deldjoo, il mio correlatore per avermi fornito tutti gli stru-
menti di cui avevo bisogno per intraprendere la strada giusta e portare a
compimento la mia tesi; per avermi seguito con attenzione e dedizione, anche
a distanza; per avermi dedicato tempo e conoscenze, volte a migliorare ed
impreziosire questo mio progetto. Grazie.

Dott. Maurizio Ferrari Da Crema per essere stato l’intermediario tra
me e il Professore, riproponendo i dubbi e i problemi sorti.

vii

viii

a tutti gli altri, ai miei colleghi e a tutte le persone che sono state parte di
questa fase della mia vita sia provenienti dall’ambito accademico che dal mio
nuovo mondo di lavoro.

Vi ringrazio, sinceramente, dal profondo del cuore.

Milano, 2019 L. L. C.

Abstract

In order to improve the accuracy of recommendations, many recommender
systems (RSs) nowadays use side information beyond the user rating matrix, such
as item content. These systems build user profiles as estimates of users’ interest on
content (e.g., movie genre, director or cast) and then evaluate the performance of
the recommender system as a whole e.g., by their ability to recommend relevant
and novel items to the target user. The user profile modelling stage, which is a key
stage in hybrid content-driven RSs, is barely properly evaluated. One of the main
reason for this is the lack of publicly available datasets that contain user preferences
on content features of items.

With respect to the state of the art, our work advances user profile modelling
for RS in several dimensions: (i) first, we investigate differences between explicit
user preferences and implicit user profiles built via a suite of user profiling models
consisting of 4 models, while previous work by Nasery et al. [34] only applied a
basic method (comparing the number of times each feature is explicitly rated and
the number of times it appears in the content of all rated movies); (ii) second, we
evaluate the quality of user profiling models by integrating them into a recommender
system, similar to the previous work of Nasery et al. [33]; (iii) lastly, we publicly
release the collected dataset which includes ratings on movie content features.

Our results show a maximum average pairwise cosine similarity of 58.07%
between the explicit feature preferences and the implicit user profiles modelled by
the best investigated profiling method and considering movies’ genres only. For
actors and directors, this maximum similarity is only 9.13% and 17.24%, respectively.
This low similarity between explicit and implicit preference models encourages a
more in-depth study to investigate and improve this important user profile modelling
step, which will eventually translate into better recommendations.

To further investigate this study in a real recommendation setting, we tested
the integration and evaluation of user profiles by using 3 recommendation models,
namely: (i) item-based collaborative filtering, considering only movie ratings, (ii)
explicit user-user hybrid RS, embedding explicit feature ratings, and (iii) implicit
user-user hybrid RS, embedding implicit user profiles built with the best-investigated

ix

x

method. The two hybrid RS integrating feature ratings present higher accuracy
scores than the CF model, which consider only items ratings. Furthermore, the
explicit hybrid RS performed better than the implicit one, hence more efforts should
be done to improve user profiling methods in order to reach the final RS accuracy
provided by the integration of true feature ratings.

Keywords: Recommender System, User Profiling, Features, Dataset, PoliMi,
Master Thesis

Sommario

Al fine di aumentare il livello di accuratezza delle raccomandazioni, molti sistemi
di raccomandazioni (RSs) oggigiorno sfruttano alcune informazioni secondarie oltre
alla matrice di valutazioni degli utenti, come ad esempio il contenuto degli oggetti.
Questi sistemi modellano i profili utente come stima degli interessi degli utenti
riguardo il contenuto degli oggetti (ad esempio, i generi cinematografici, i registi o
il cast) e successivamente valutano le prestazioni del sistema di raccomandazione
nel suo insieme, ad esempio dall’abilità di suggerire oggetti rilevanti e nuovi per
l’utente desiderato. La fase di modellazione del profilo utente, che rappresenta un
elemento chiave nei RSs ibridi basati sui contenuti, viene valutata raramente. Uno
dei motivi principali è la mancanza di un set di dati disponibili al pubblico che
contengano le preferenze degli utenti sulle features (ovvero attributi/caratteristiche)
degli oggetti.

Rispetto allo stato dell’arte, il nostro lavoro prosegue la modellazione del profilo
utente per i RS in diversi modi: (i) prima, indaghiamo le differenze tra le preferenze
esplicite degli utenti e i loro profili impliciti creati tramite un insieme di modelli
di profilazione utente, composta da 4 metodi, mentre nel precedente lavoro di
Nasery et al. [34] è stato applicato solo un metodo di base (confrontando il numero
di volte in cui ciascuna feature viene votata esplicitamente e il numero di volte in
cui appare nel contenuto di tutti i film votati); (ii) in secondo luogo, valutiamo
la qualità dei modelli di profilazione degli utenti integrandoli in un sistema di
raccomandazione, similmente al precedente lavoro di Nasery et al. [33]; (iii) infine,
distribuiamo pubblicamente il set di dati raccolto che include le valutazioni sulle
feature dei contenuti dei film. I nostri risultati mostrano una media di cosine
similarity a coppie del 58,07% tra le preferenze esplicite riguardo le feature e i
profili utente impliciti modellati dal miglior metodo di profilazione analizzato,
considerando solo i generi come feature dei film. Considerando attori e registi,
questa similarità massima è solo del 9,13% e del 17,24%, rispettivamente. Questa
bassa somiglianza tra i modelli espliciti e quelli impliciti incoraggia uno studio più
approfondito per indagare e migliorare questa importante fase di modellazione del
profilo utente, che eventualmente si tradurrà in raccomandazioni migliori.

xi

xii

Per approfondire ulteriormente questo studio in una situazione reale di racco-
mandazioni, abbiamo collaudato l’integrazione e la valutazione dei profili utente
tramite 3 modelli di racommandazione, i seguenti: (i) item-based collaborative
filtering, che considera solo le valutazioni dei film, (ii) user-user hybrid RS esplicito,
che incorpora le valutazioni riguardo le feature, e (iii) user-user hybrid RS implicito,
che incorpora i profili utente impliciti modellati tramite il miglior metodo preso
in esame. I due RS ibridi, che integrano le valutazioni delle feature, presentano
punteggi di accuratezza più elevati rispetto al modello di CF, il quale considera
solamente le valutazioni dei film. Inoltre, il RS ibrido esplicito ha performato
meglio di quello implicito, dunque maggior impegno dovrebbe essere applicato per
migliorare i metodi di profilazione utente al fine di raggiungere l’accuratezza finale
fornita dal RS che integra le valutazioni reali delle feature.

Parole chiave: Recommender System, Profilazione utente, Feature, Dataset,
PoliMi, Tesi

Contents

1 Introduction 1

2 Foundations and State of the art 5

2.1 Foundations in recommender systems 5

2.1.1 Basic Concepts . 5

2.2 Standard recommendation models 7

2.2.1 Content-Based Filtering . 7

2.2.2 Collaborative Filtering . 7

2.3 Evaluation of recommender systems 10

2.3.1 Predictive accuracy metrics 10

2.3.2 Classification accuracy metrics 11

2.3.3 Ranking accuracy metrics 12

2.3.4 Beyond-accuracy measures 12

2.4 State of the art in user profile modelling 13

2.4.1 Zhang Method . 14

2.4.2 Li Method . 15

2.4.3 Symeonidis Method . 16

2.4.4 Kim Method . 17

2.4.5 TF-IDF Method . 19

2.5 Similarity Indices . 20

2.5.1 Cosine Similarity . 20

2.5.2 Jaccard Similarity . 20

3 Data Collection System 23

3.1 Movie Interests (mints) . 23

3.2 Data collection . 25

3.2.1 Volunteer users . 26

3.2.2 Crowdsourcing users . 27

xiii

xiv CONTENTS

4 Methodology 31
4.1 User profiling with binary ratings 31

4.1.1 Zhang Method . 31
4.1.2 Li Method . 32
4.1.3 Symeonidis Method . 32
4.1.4 Kim Method . 32
4.1.5 TF-IDF Method . 33
4.1.6 Assumptions . 33

4.2 Recommender System . 35
4.2.1 Collaborative filtering . 36
4.2.2 Hybrid . 36

5 Experimental Results 37
5.1 Data Characteristic . 37

5.1.1 Summary statistics . 41
5.2 Global analysis of explicit/implicit preferences 41

5.2.1 Movie . 42
5.2.2 Genre . 44
5.2.3 Actor . 46
5.2.4 Director . 52

5.3 Evaluation of user profiling methods 57
5.3.1 Overview on pairwise similarity between user profiles 57
5.3.2 Genre . 60
5.3.3 Actor . 62
5.3.4 Director . 64

5.4 Recommender System Evaluation 66
5.5 Insights from user profiling and recommendation evaluation 67

Conclusions 71

Acronyms 73

Bibliography 75

List of Figures

1.1 Main steps involved in a recommendation system leveraging content
information, highlighting our contributions. 2

2.1 Example of user ratings represented as a bipartite graph 8

3.1 High-level architecture of our web application mints 24

3.2 Sequence diagram for the selection of a favorite actor inside a movie
details page . 25

3.3 Typical user scenario on mints . 26

3.4 Sign-up web page . 27

3.5 First web page shown to crowdsourcing users with instructions . . . 28

4.1 Cosine similarity of explicit and implicit user profiles 34

5.1 Distribution of users category . 38

5.2 Distribution of reliable and unreliable users of each category 39

5.3 Distribution of users’ gender . 39

5.4 Distribution of users age ranges . 40

5.5 Distribution of users countries . 40

5.6 Total and unique selections of favoured elements 41

5.7 Common genres in the most selected k attributes, either explicitly
or implicitly . 45

5.8 Top-5 genres with the highest std across explicit profiles and across
implicit profiles (respectively, at top) and the top-5 with the lowest
std (at bottom) . 47

5.9 Common quota of actors between the most selected k attributes,
either explicitly or implicitly . 48

5.10 Top-5 actors with the highest std across explicit profiles and across
implicit profiles (respectively, at top) and the top-5 with the lowest
std (at bottom) . 51

xv

xvi LIST OF FIGURES

5.11 Common quota of directors between the most selected k attributes,
either explicitly or implicitly . 53

5.12 Top-5 directors with the highest std across explicit profiles and across
implicit profiles (respectively, at top) and the top-5 with the lowest
std (at bottom) . 55

5.13 Average pairwise similarity between all explicit and implicit user
profiles related to genres for all the methods 59

5.14 Average pairwise similarity between all explicit and implicit user
profiles related to actors for all the methods 59

5.15 Average pairwise similarity between all explicit and implicit user
profiles related to directors for all the methods 60

5.16 Number of user profiles within each range of pairwise cosine similarity
between explicit and implicit, considering only genres as features . . 60

5.17 Number of user profiles within each range of pairwise Jaccard simi-
larity between explicit and implicit, considering only genres as features 61

5.18 Number of user profiles within each range of pairwise cosine similarity
between explicit and implicit, considering only actors as features . . 62

5.19 Number of user profiles within each range of pairwise Jaccard simi-
larity between explicit and implicit, considering only actors as features 63

5.20 Number of user profiles within each range of pairwise cosine similarity
between explicit and implicit, considering only directors as features 65

5.21 Number of user profiles within each range of pairwise Jaccard sim-
ilarity between explicit and implicit, considering only directors as
feature . 65

5.22 AUC scores for explicit and implicit user-user hybrid RS 68
5.23 MAP scores for explicit and implicit user-user hybrid RS 68

List of Tables

2.1 List of abbreviations used throughout the thesis. 6

2.2 Example of movies with some of their features 8

2.3 Example of user rating matrix . 8

2.4 Common symbols for user profile modelling methods 14

2.5 Pros and cons of Zhang method . 14

2.6 Symbols used for Zhang method . 15

2.7 Pros and cons of Li method . 15

2.8 Symbols used for Li method . 15

2.9 Pros and cons of Symeonidis method 16

2.10 Symbols used for Symeonidis method 16

2.11 Pros and cons of Kim method . 18

2.12 Symbols used for Kim method . 18

4.1 Common symbols for similarity indices applied to user profiles . . . 33

5.1 Reliable and unreliable users of each category 38

5.2 Summary statistics of the collected dataset 42

5.3 Top-20 favoured movies . 43

5.4 Genres extracted from explicit set and from implicit set 44

5.5 Common genres in the most selected k attributes, either explicitly
or implicitly . 44

5.6 Most selected 10 genres, either explicitly or implicitly, by male and
female users;

∣∣Rexp
f

∣∣ — number of explicit selections of genres,
∣∣Rimp

f

∣∣
— number of implicit selections of genres. 45

5.7 Genres with the highest std across explicit and implicit user profiles 46

5.8 Genres with the lowest std across explicit and implicit user profiles 46

5.9 Actors extracted from explicit set and from implicit set 46

5.10 Common quota of actors between the most selected k attributes,
either explicitly or implicitly . 48

xvii

xviii LIST OF TABLES

5.11 Most selected 10 actors, either explicitly or implicitly, by male and
female users;

∣∣Rexp
f

∣∣ — number of explicit selections of considered
feature,

∣∣Rimp
f

∣∣ — number of implicit selections of considered feature. 49
5.12 Actors with the highest std across explicit and implicit user profiles 50
5.13 Actors with the lowest std across explicit and implicit user profiles . 50
5.14 Directors extracted from explicit set and from implicit set 52
5.15 Common quota of directors between the most selected k attributes,

either explicitly or implicitly . 52
5.16 Most selected 10 directors, either explicitly or implicitly, by male and

female users;
∣∣Rexp

f

∣∣ — number of explicit selections of considered
feature,

∣∣Rimp
f

∣∣ — number of implicit selections of considered feature. 53
5.17 Directors with the highest std across explicit and implicit user profiles 54
5.18 Directors with the lowest std across explicit and implicit user profiles 54
5.19 Average pairwise similarity between explicit and implicit user profiles,

for all the methods. 58
5.20 95% confidence intervals of pairwise similarity between explicit and

implicit user profiles, for all the methods. 58
5.21 Number of user profiles within each range of pairwise similarity

between explicit and implicit, considering only genres as features . . 61
5.22 Number of user profiles with pairwise similarity between explicit and

implicit equal to 0% and 100%, considering only genres as features . 62
5.23 Number of user profiles within each range of pairwise similarity

between explicit and implicit, considering only actors as features . . 63
5.24 Number of user profiles with pairwise similarity between explicit and

implicit equal to 0% and 100%, considering only actors as features . 64
5.25 Number of user profiles within each range of pairwise similarity

between explicit and implicit, considering only directors as features 64
5.26 Number of user profiles with pairwise similarity between explicit and

implicit equal to 0% and 100%, considering only directors as features 65
5.27 Results of CF KNN, explicit user-user hybrid and implicit user-user

hybrid, depending on k neighbors considered and similarity function 68
5.28 Summary results of user profiling and recommendations evaluation . 69

Listings

3.1 Example of a json document representing a favorite actor 24

xix

Chapter 1

Introduction

Across the web, users are able to provide feedbacks with the simplicity of a
mouse click, for instance a five-star rating assigned to a product on Amazon, which
will represent a user’s taste regarding that item, [1, 39]. The increasing size of this
information and the interest on how to use them led to the birth of recommender
systems (RSs). Recommender systems leverage users’ interactions on items to
understand their tastes and to recommend new relevant items that they would
probably like [1, 39]. RSs play a fundamental role in research and particularly in
business corporates interested into many decision making processes, in order to
obtain several advantages [1, 39]. For instance, Amazon uses RS to recommend
new products to users, while Netflix uses them to propose new movies or series to
watch, improving customers’ experience and retention.

The main paradigms of recommendation models include: (i) content-based
filtering (CBF), which analyzes content features of items favoured by the target
user in order to build a user profile, representing her taste and preferences on the
content features [1, 36], (ii) collaborative filtering (CF), which uses the correlations
between preferences of target users and other like-minded users [1, 36, 43] and, (iii)
hybrid systems, which combine CBF and CF techniques to improve the effectiveness
of both [1].

Over the last years, the performance of collaborative filtering (CF) recommen-
dation models have reached a remarkable level of maturity. These models are now
widely adopted in real-world recommendation engines because of their state-of-the-
art recommendation accuracy. To further improve the quality of recommendation,
new trend of recommendation models consider using various additional information
sources (aka side information) beyond the user rating matrix [47]. A prominent
example—and the one we focus on—is item content.

In the movie domain, for instance, a variety of content features have been

1

2 Introduction

Expl. user
profile p'u

Rated
Items

All Items

USER PROFILE
MODELLING

ITEM CONTENT
EXTRACTION

RECOMMENDER
SYSTEM MODEL

Item
contents

Item
contents

Feature
vector fi

Recommended
items

COSINE/JACCARD
SIMILARITY
sim(pu , p'u)

Impl. user
profile pu

Rated
features

OUR MAIN FOCUS:
USER PROFILING EVALUATION

User profiling
evaluation

STANDARD RECOMMENDATION
BASED ON CONTENT

Figure 1.1: Main steps involved in a recommendation system leveraging content infor-
mation, highlighting our contributions.

considered, such as metadata or features extracted directly from the core audio-
visual signals. Metadata-based movie recommender systems typically use genre [16,
17, 23, 48] or user-generated tags [30, 53, 60] over which user profiles are built,
assuming that these aspects represent the semantic content of movies [12]. In
contrast, audio-visual signals represent the low-level content (e.g., color, lighting,
spoken dialogues, music, etc.) [11, 14–17]. Some approaches try to infer semantic
concepts from low-level representations, e.g., via word2vec embeddings [4], deep
neural networks [52, 57], fuzzy logic [50], or genetic algorithms [32]. For these
reasons, it is evident that item content plays a key role in building hybrid or
content-based filtering (CBF) models and, furthermore, it is important to correctly
distinguish and weight the item features by their estimated relevance for a target
user, to better model his or her tastes.

A shortcoming of typical RS evaluation is that the user profiling stage, which is
a key part of the RS, is barely evaluated. Usually, only the performance of the entire
RS, which is composed of several components, is assessed and how effectively the
user profiling step functions remains an open question. We hypothesize that correct
modelling and evaluation of the user profiling stage can have a substantial impact
on the rightfulness of the user profile and improvement of the final recommendation
quality. In Figure 1.1 we illustrate a simplified diagram of user profile modeling in
a CBF recommendation model (the lower part of the figure) and the contribution
of our work (the upper part of the figure). In the upper part of the figure we
depict how we evaluate the effectiveness of user profiling methods, by computing

Introduction 3

the similarity sim(pu,p
′
u) between the modeled user profile pu and the explicit user

profile p′
u, built from rated features.

The goal of this work is therefore to investigate the difference between explicit
user ratings on individual movie content features (e.g., genre, actors, or directors)
and implicit models inferred via state-of-the-art user modelling techniques from
explicit ratings of the whole movies. To this end, (i) first, we evaluate several user
profiling methods by comparing the modeled implicit preferences about movies’
features against the true explicit ones, (ii) second, we integrate and evaluate the best
user profiling method tested in a recommender system and (iii) lastly, we publicly
release the dataset containing movies and features ratings which we collected and
used for our analysis.

With respect to previous research, to the best of our knowledge, the only work
that evaluates implicit user profiles against true ratings on content features is [34].
Nasery et al. compare actually rated features with the ones implicitly derived from
rated movies, but no concrete user profiling methods are investigated. Instead,
the number of times each feature is explicitly rated and the number of times it
appears in the content of all rated movies is counted, and these counts are compared.
The authors create a dataset of movies’ feature ratings (genres, actors/cast, and
directors), dubbed PoliMovie,1 through a survey web application they built. Their
approach, using limited survey questions and a fixed reduced dataset of top popular
movies and features, extracted from IMDb,2 tends to push users to limited and
convergent preferences. In contrast, we systematically investigate 4 methods to
model implicit user profiles and we compare them with explicit user profiles obtained
by feature ratings.

To further investigate user profiling methods in a concrete application we
evaluate them also via Recommender System, comparing several models to embed
item ratings and feature ratings. Also Nasery et al. [33] incorporate known feature
preferences in a recommender system using an adapted matrix factorization model.

Another contribution of the work at hand is the creation of a dataset3 that
includes ratings on movie content features. Other datasets commonly used in movie
recommender systems research, but which do not contain such feature ratings,
include MovieLens 20M (ML-20M) [21], IMDB Movies Dataset [27], The Movies
Dataset [5], MMTF-14K and MVCD-7K4 [10, 13] and the Netflix Prize dataset [35].

The structure of this thesis is organized as follows: (i) In chapter 2 we present

1PoliMovie: http://bit.ly/polimovie
2Internet Movie Database (IMDB): www.imdb.com
3The collected dataset is available at http://bit.ly/2XzIYyL
4MMTF-14K and MVCD-7K provide metadata plus audio and visual descriptors for thousands

of movie trailers and movie clips.

http://bit.ly/polimovie
www.imdb.com
http://bit.ly/2XzIYyL

4 Introduction

the foundations in recommender systems and the state of the art in user profile
modelling, in particular by presenting 4 methods proposed in literature, plus a basic
TF-IDF; (ii) in chapter 3 we show the system used to collect the dataset of binary
ratings on movies and their attributes; (iii) in chapter 4 we present the methodology
used for the evaluation of user profiling stage, including the adaptation of user
profile methods described in chapter 2, in order to apply them to our binary dataset;
(iiii) in chapter 5 we present the experimental results of the analysis of user profile
modelling methods proposed in the literature, compared with the set of true feature
ratings included in our collected dataset.

Chapter 2

Foundations and State of the art

The goal of this chapter is to provide a tutorial on the fundamental concepts in
recommender systems (RS) and provide an overview of the start-of-the-art research
in user profile modeling. Toward this goal, this chapter is divided into two main
sections: (i) foundation in recommendation system (section 2.1) and (ii) state of
the art in user profile modeling (section 2.4).

2.1 Foundations in recommender systems

Recommender systems (RSs) are a sub-family of information retrieval (IR)
techniques, they both aim to give user access to information or products [39]. RSs
can be applied to various decision-making processes, such as what items to buy,
what music to listen to [39], or, like in our considered case, what movies to watch.
“Item” is the general term used to identify the element recommended to users [39].

Nowadays recommender systems are used in many application domains and
the interest on them is growing because they have a strong impact on customer
satisfaction and on profit for corporations. Our case of interest is the domain
of movie recommendation systems (MRSs), hence the "item" is the movie to be
recommended to a user. Famous services in which MRSs are used, are for instance
Netflix1 R©, TMDb2 R© and MovieLens3 R©.

2.1.1 Basic Concepts

The use of recommender systems and their algorithms is related to different types
of information. This information can be categorized in the following dimensions [31]:

1www.netflix.com
2The Movie Database (TMDb): www.themoviedb.org
3MovieLens: movielens.org

5

www.netflix.com
www.themoviedb.org
movielens.org

6 Chapter 2. Foundations and State of the art

Table 2.1: List of abbreviations used throughout the thesis.

Abbreviation Term

RS Recommender system

IR Information retrieval

MRS Movie recommender system

URM User rating matrix

ICM Item content matrix

UCM User content matrix

CS Cold start

WS Warm start

CBF Content-based filtering

CF Collaborative filtering

VSM Vector space model

TF-IDF Term Frequency-Inverse Document Frequency

• User content : information related to the user and given in two ways, (i)
explicit : information given directly by the user and related to a specific item,
for instance, the rating given to a movie by the user, (ii) implicit: information
inferred from user behaviour, for instance, a movie details page viewed by the
user.

• Item content : information strictly related to the item itself and not to the
user, i.e. the characteristics of the item, called also attributes or, more
commonly, features. For instance, the features of a movie can be its genre,
year of production, country, cast and crew.

The above information are commonly used in recommender systems in several
data structures, like bipartite graphs [29] or in the following matrix formats, where
I and U are a set of items and users and F is the set of features:

• User rating matrix (URM): is a U × I matrix used to represent explicit or
implicit ratings given by users to items. The values for each cell of the matrix
usually are binary (0 or 1) if we want to model only the presence or absence
of interaction between user and item, or real numbers if we want to represent
a rating (e.g. from 1 to 5) given by a user to an item.

• Item content matrix (ICM): is a I × F matrix used to represent the profiles
of the items, that are the set of features defining their content. The values

2.2. Standard recommendation models 7

of a feature can be of different types: real valued, categorical, binary and so
on. This diversity in data representation can create difficulties in calculating
the similarity between item profiles, so, usually, the different types of feature
values are encoded in a binary profile. This means that a cell at position (i, j)

of ICM will have value 1 if item identified by row index i contains the feature
identified by the column index j, otherwise it will have value 0.

• User content matrix (UCM): is a U × F matrix used to represent the profiles
of the users, i.e. their content. In this case we call F the set of features
attributed to users. This matrix has the same meaning of ICM matrix and is
encoded in a binary profile in the same way.

2.2 Standard recommendation models

In this section we describe two main paradigms of recommendation models: (i)
content-based filtering (CBF) [36] and (ii) collaborative filtering (CF) [43].

2.2.1 Content-Based Filtering

Content-based filtering (CBF) techniques analyze item descriptions to identify
items that are of particular interest to the user [36]. The standard recommendation
process based on content (CBF or hybrid) is structured in three main steps: (i) first,
the content of each item i is extracted, to build a feature vector fi; (ii) second, the
profile of the target user pu is modeled, i.e., a structured representation of the user’s
preference over item content features; (iii) finally, the user profile pu is matched
against the feature vector fi of each item to output the list of recommended items
most similar to the target user’s tastes.

Let us consider, for instance, two movies with some of their features, in table 2.2,
and a user A. If A rated only the movie "Matrix" its profile uA would be composed
of all the features of that movie. Considering fF the feature vector of "Fury" and
fM the feature vector of "Matrix", a CBF algorithm would match the attributes of
uA with the ones of fF to estimate if A would like Fury.

In section 2.4 we will present the state of art in modelling user profile with some
techniques to estimate the relevance of a feature for users.

2.2.2 Collaborative Filtering

Collaborative filtering (CF) is the process of filtering or evaluating items using
the opinions of other people. CF takes its roots from something humans have been

8 Chapter 2. Foundations and State of the art

Table 2.2: Example of movies with some of their features

Movies Genres Actors Director

Fury Action, Drama, War Brad Pitt, Jon Bern-
thal

David Ayer

Matrix Action, Science fiction Keanu Reeves, Lau-
rence Fishburne

Lana Wachowski, Lili
Wachowski

Table 2.3: Example of user rating matrix

V for Vendetta Matrix Fury

Alan 4 5 -
Bob - 5 4

doing for centuries, sharing opinions with others [43]. Let us take, for instance, two
users, Alan and Bob, with similar preferences. If Alan gives a positive rating to an
item unknown to Bob, also the latter one will probably like that item, no matter of
its features (unlike CBF), this is the assumption of CF algorithms. To be more
formal, a rating consists of the association of two things, user and item, often by
means of some value [43]. There are several ways of representing ratings in a CF
algorithm, one of them is a matrix called user rating matrix (URM) (e.g. table 2.3),
consisting of a table where each row represents a user, each column represents a
specific movie, and the number at the intersection of a row and a column represents
the user’s rating value. The absence of a rating score at this intersection indicates
that user has not yet rated the item [43]. Another representation of user ratings in
CF could be a bipartite graph [29], for instance, the one shown in Figure 2.1

Ratings in a collaborative filtering system can take on a variety of forms [43] :

• Scalar ratings : can consist of either numerical ratings, such as the 1-5 stars

4

5

Alan

V for Vendetta

5

4

Bob

Matrix

Fury

Users Movies

Figure 2.1: Example of user ratings represented as a bipartite graph

2.2. Standard recommendation models 9

provided in MovieLens or ordinal ratings such as strongly agree, agree, neutral,
disagree, strongly disagree.

• Binary ratings : model choices between agree/disagree or good/bad.

• Unary ratings: can indicate that a user has observed or purchased an item,
or otherwise rated the item positively. The absence of a rating indicates that
we have no information relating the user to the item (perhaps they purchased
the item somewhere else).

Ratings may be gathered through explicit means, implicit means, or both. Explicit
ratings require the user to actively provide his/her opinion on an item. Implicit
ratings are those inferred from a user’s actions [43]. For instance, adding a movie
to favorites could be considered an explicit rating, while an implicit rating could be
the visit to a movie details page.

CF algorithms can be (i) memory-based or (ii) model-based [42].
Memory-based techniques use the stored ratings directly in the prediction

and they are usually easier to implement [46]. The ratings are based on user
neighborhoods, that can be defined in two ways:

• User-based : user-based recommendation methods employ statistical tech-
niques to find a set of users, known as neighbors, that have implicit or explicit
ratings similar to the target user u. Once a neighborhood of users is formed,
these systems use different algorithms to combine the preferences of neighbors
to produce a prediction or top-N recommendation for the active user [42]. So
we have to define a preference similarity sim(u, v), that should summarize
in a singular value how much two users u and v have similar tastes. This
similarity value, then, will be used to weight the contribution of the ratings
of user v to the prediction of the ratings of user u. The predicted rating ˆru,i

for user u and item i can be estimated as:

ˆru,i =

∑
v∈U rv,i · sim(u, v)∑
v∈U |sim(u, v)|

(2.1)

• Item-based : item-based methods make rating predictions for an item by the
target user based on neighborhood of that item. The idea is that two items
are similar if many users have rated rated them both [42]. We have to define
a similarity sim(i, j) between the target item i and another item j in order
to compute the predicted rating ˆru,i for user u and item i as:

ˆru,i =

∑
j∈I ruj · sim(i, j)∑

j∈I sim(i, j)
(2.2)

10 Chapter 2. Foundations and State of the art

Model-based collaborative filtering algorithms instead provide item recommenda-
tion by first developing a model of user ratings. Algorithms in this category take a
probabilistic approach and envision the collaborative filtering process as computing
the expected value of a user prediction, given his/her ratings on the other items [42].
The item-based approach looks into the set of items the target user has rated and
computes how similar they are to the target item i and then selects k most similar
items {i1, i2, ..., ik}. At the same time their corresponding similarities {s1, s2, ..., sk}
are also computed. Once the most similar items are found, the prediction is then
computed by taking a weighted average of the target user’s ratings on these similar
items [42].

As the Content-Based algorithm, Collaborative Filtering suffers from the Cold-
start problem [9, 45], that can be of two types, cold-user or cold-item. The first
problem occurs when a new user is inserted into the system, because there is no way
to know his/her preferences a-priori [2]. A way to solve this problem is to invite
new users to select some preferences in order to compute their recommendations.
The second problem occurs when an item is rated by few users [59], hence its hard
to build a relationship between these items and the others via ratings. A solution
to this problem could be the use of hybrid systems that embed the information
about items content to compute their similarity.

2.3 Evaluation of recommender systems

In the literature, many methods have been used to analyze the accuracy of a
RS output, the list of recommended items. The challenge faced by researchers is to
select the best metric to measure the accuracy of their RS algorithm in a specific
context [22]. Recommendation accuracy metrics can be classified in: (i) predictive
accuracy metrics (section 2.3.1), (ii) classification accuracy metrics (section 2.3.2),
(iii) ranking accuracy metrics (section 2.3.3) [20, 22, 44] and (iiii) beyond-accuracy
measures [44] (section 2.3.4).

2.3.1 Predictive accuracy metrics

Predictive accuracy metric measures how close the RS’s predicted ratings are to
the true users ratings [20, 22, 44].

Mean absolute error (MAE) is one of the most used predictive metrics. It
measures how close the rating predictions generated by a RS are to the real user

2.3. Evaluation of recommender systems 11

ratings by computing the average absolute deviation between these two vectors [22,
44]:

MAE =
1

|T |
∑
ru,i∈T

|ru,i − ˆru,i| (2.3)

where ru,i and ˆru,i, respectively, denote the actual and the predicted ratings of item
i for user u. MAE sums over the absolute prediction errors for all ratings in a test
set T [44].

Root-mean-square error (RMSE) is similar to MAE and is computed as:

RMSE =

√√√√ 1

|T |
∑
ru,i∈T

(ru,i − ˆru,i)2 (2.4)

2.3.2 Classification accuracy metrics

Classification metrics measure how often a RS makes correct or incorrect deci-
sions about whether an item is good [22].

Precision at K recommendations (P@K) measures the accuracy of a recommender
system in predicting relevant items in the top K recommended. For each user u,
Pu@K is computed as:

Pu@K =

∣∣∣Lu ∩ L̂u∣∣∣∣∣∣L̂u∣∣∣ (2.5)

where Lu is the set of relevant items for user u in the test set T and L̂u denotes the
recommended set containing the K items in T with the highest predicted ratings
for the user u [44].

Recall at top K recommendations (R@K) is defined as:

Ru@K =

∣∣∣Lu ∩ L̂u∣∣∣
|Lu|

(2.6)

where Lu is the set of relevant items for user u in the test set T and L̂u denotes the
recommended set containing the K items in T with the highest predicted ratings
for the user u [44].

12 Chapter 2. Foundations and State of the art

2.3.3 Ranking accuracy metrics

Ranking accuracy metrics measure the ability of a RS algorithm to produce a
recommended ordering of items that matches how the user would have ordered the
same items. Unlike classification metrics, ranking metrics are more appropriate
particularly to evaluate algorithms that will be used to present ranked recommenda-
tion lists to the user, in domains where the user’s preferences in recommendations
are non-binary [22].

Mean average precision at K (MAP@K) computes the average precision of the
system at different sizes of recommendation lists [22, 44]. MAP@K is the arithmetic
mean of the average precision at K (AP@K) over the entire set of users in the test
set T . AP@K is computed as:

AP@K =
1

N

K∑
i=1

P@i · rel(i) (2.7)

where rel(i) is an indicator of relevance of ith recommended item, it can assume
value 1 if relevant or 0 otherwise [44].

2.3.4 Beyond-accuracy measures

The quality of a recommender system can also be evaluated according to some
properties beyond-accuracy. Some of them are business-related because they are
mainly interesting from a point of view of business and revenue [39, 44].

Coverage can be split into (i) prediction coverage and (ii) catalogue coverage [18].
The first one represents the percentage of things (items, users, ratings) that the
recommender system is able to recommend. Not being able to predict a particular
set of items is usually caused by an insufficient number of ratings, and is generally
known as the cold start problem [18, 44]. Prediction coverage is computed as:

Prediction coverage =

∣∣∣T̂ ∣∣∣
|T |

(2.8)

where |T | is the size of the test set and
∣∣∣T̂ ∣∣∣ is the number of ratings in T for which

the system can predict a value. Catalogue coverage instead is usually measured
on a set of recommendation sessions, for example by examining for a determined
period of time the recommendations returned to users [18].

2.4. State of the art in user profile modelling 13

Diversity measures how much the recommended items are different from each
other, where difference can relate to various aspects [44]. Diversity can be de-
fined in several ways, the most common is the list diversity, computed as the
pairwise distance between all items in the recommendation set, either averaged or
summed [44]:

diversity(L) =

∑
i∈L
∑

j∈L\i disti,j

|L| · (|L| − 1)
(2.9)

where disti,j is some distance function defined between items i and j.

Novelty determines how unknown recommended items are to a user. To measure
the surprise of an item, its probability as a function of its rank for all users is
determined [58]. A user’s average novelty over the n items in their recommended
list L can then be defined as [44]:

novelty =
1

|U |
∑
u∈U

∑
i∈Lu

− log2 popi
N

(2.10)

where popi is the popularity of item i measured as percentage of users who rated i,
Lu is the recommendation list of the top N recommendations for user u.

Serendipity is the measure of how surprising the successful or relevant recommen-
dations are. On a general level, serendipity of a recommendation list Lu provided
to a user u can be defined as [44]:

serendipity(Lu) =

∣∣Lunexpu ∩ Lusefulu

∣∣
|Lu|

(2.11)

where Lunexpu and Lusefulu denote subsets of L containing, respectively, recommenda-
tions unexpected to and useful for the user.

2.4 State of the art in user profile modelling

As described in section 2.2.1, CBF exploits the content of data items to predict
its relevance based on the user’s profile [31]. In order to build a user profile the
features of his rated items are matched against the ones of all the other items. We
can categorize the features as audio, visual and textual, but in most CBF systems,
item descriptions are textual features extracted from Web pages, emails, news
articles or products descriptions [31]. The wide area of features related to an item,

14 Chapter 2. Foundations and State of the art

Table 2.4: Common symbols for user profile modelling methods

Symbol Description

U Set of users
I Set of items
F Set of features
hu,f Weight of relevance of feature f implied for user u
ru,i Rating that user u assigned to the item i
rτ Threshold rating value

implies that even if a user rates it, he may be impressed by some of its features and
not impressed by others [31, 56]. The relevance of a feature has to be derived in
some way from the rating assigned by user to items. The issue is how to properly
derive this implicit weight of feature relevance. In the literature, this problem has
been addressed many times and several methods to compute feature weights in user
profiles have been proposed [26, 28, 31, 38, 49, 56].

We analyze 4 state-of-the-art methods from literature to model user profiles and
we refer to them according to the first author of the corresponding publication, for
simplicity: (i) Zhang method [56] (section 2.4.1), (ii) Li method [28] (section 2.4.2),
(iii) Symeonidis method [49] (section 2.4.3) and (iiii) Kim method [26] (section 2.4.4).
In addition, we investigate a 4th method (section 2.4.5) which applies the TF-IDF
(term frequency–inverse document frequency) term weighting idea, which is widely
used in CBF and, in general, in information retrieval [31, 41, 51].

We will present the adaptation of the following methods in case of binary
movie ratings, in chapter 4, then in chapter 5 we will show the results obtained by
comparing the implicit user profiles produced by these methods, with the explicit
user profiles collected by our web application. We will also integrate the best-
investigated method in a RS to eveluation the accuracy of final recommendations.

We will use common symbols described in table 2.4.

2.4.1 Zhang Method

Table 2.5: Pros and cons of Zhang method

Pros Cons

It can be applied both in tag-based RSs
that support explicit feature ratings and
in classic CBF that imply feature rele-
vance from rated items

It assigns the same weight to all the
unrated features belonging to a rated
item for a user

2.4. State of the art in user profile modelling 15

Table 2.6: Symbols used for Zhang method

Symbol Description

tu,f Rating that user u explicitly assigned to the feature f
{hu,f (i)} Bag of defined ratings hu,f (i) for all items i ∈ I

Zhang et al. [56] build the user profile based on item ratings or explicit feature
ratings.

Let U and I denote the set users and items, respectively, and F the set of
all features of the items. Zhang method builds the profile of each user u in U by
assigning weight hu,f to each feature f in F , based on ratings explicitly given by u
to the feature f or to the items containing f . Hence, depending on ratings, hu,f
can assumes the following values [56]:

hu,f =

tu,f , if user rated feature f

ru,i, if user rated item i but not its feature f

undefined, otherwise

(2.12)

where tu,f is the explicit rating given by user u to feature f .

For user u and feature f , {hu,f (i)} denotes the bag of defined ratings hu,f (i) for
all items i ∈ I.

2.4.2 Li Method

Table 2.7: Pros and cons of Li method

Pros Cons

It reduces the number of items with low
rating and improves the recommenda-
tion quality, by using a threshold value

The threshold rating value is unique
and fixed a-priori for all the user profiles

Table 2.8: Symbols used for Li method

Symbol Description

Nu,f,rtau Number of items containing feature f with rating greater than rτ , by
given user u

Mu,rtau Number of items with rating greater than rτ , by given user u

16 Chapter 2. Foundations and State of the art

Li et al. [28] ignore items with low rating and improve the recommendation
quality by using a threshold value.

Let U and I denote the set of users and items, respectively, the relevance weight
hu,f of each feature f for a user u is computed as [25, 28, 37, 38]:

hu,f =
Nu,f,rtau

Mu,rtau

(2.13)

where:

• Nu,f,rtau is the number of items containing feature f with rating greater than
rτ , by given user u:

Nu,f,rtau = |{∀i ∈ I : ru,i > rtau and f ∈ i}| (2.14)

• Mu,rtau is the number of items with rating greater than rτ , by given user u:

Mu,rtau = |{∀i ∈ I : ru,i > rtau}| (2.15)

2.4.3 Symeonidis Method

Table 2.9: Pros and cons of Symeonidis method

Pros Cons

It weights more properly the relevance
of rare features contained in less user
profiles, by using a weighting factor con-
ceptually similar to TF-IDF

A threshold rating value is unique and
fixed a-priori for all the user profiles,
like Li method

Table 2.10: Symbols used for Symeonidis method

Symbol Description

FF (u, f) Is the feature frequency of feature f in the profile of user u

Nu,f,rtau Number of items containing feature f with rating greater than rτ , by
given user u

|U| Total number of users

UF (f) User frequency of feature f , i.e. the number of user profiles containing
feature f

IUF (f) Inverse user frequency

2.4. State of the art in user profile modelling 17

Symeonidis et al. [49] adopt an approach similar to TF-IDF to compute feature
relevance weights, but define them in the vector space of user profiles. The rationale
of using TF-IDF is to increase the relevance of rare features contained in less user
profiles. Symeonidis et al. also use a fixed rating threshold to consider only the
most relevant items.

Let U and I denote the set of users and items, respectively, the user profiles
with this method are built in 3 steps:

1. The feature frequency FF (u, f) is defined for feature f in the profile of user
u [49]:

FF (u, f) = Nu,f,rtau = |{∀i ∈ I : ru,i > rtau and f ∈ i}| (2.16)

where Nu,f,rtau is the number of items containing feature f with rating greater
than rτ , by given user u.

2. Then the Inverse user frequency IUF (f) of feature f is computed as:

IUF (f) = log
|U|

UF (f)
(2.17)

where UF (f) is the user frequency of feature f , i.e. the number of users
whose profile contains feature f at least once.

3. Finally the relevance weight hu,f of feature f for user u is computed as [24,
49]:

hu,f = FF (u, f) · IUF (f) (2.18)

2.4.4 Kim Method

Kim et al. [26] for each user separate the items in two sets, the ones with high
rating versus the ones with low ratings, in order to separate the relevance of the
features contained in this sets of items.

The two sets of items, for each user u, are [26]:

• positive items Iposu , the items whose rating is greater or equal than the average
of all ratings given by u,

• negative or irrelevant items Inegu , the items whose rating is less than the
average of all ratings given by u

18 Chapter 2. Foundations and State of the art

Table 2.11: Pros and cons of Kim method

Pros Cons

It separates the items rated by a user
and its belonging features into two sets
depending on rating

It cannot be used in case of binary
ratings because the the two sets of
items would collapse into one unique
set, obtaining the same results of Zhang
method (except for a normalization
factor)

The threshold rating, used to separate
the items in this method, is not fixed
like in Li and Symeonidis methods, but
is computed as the average of all ratings
for each user

Table 2.12: Symbols used for Kim method

Formula Description

wu,i(f) associated to each item i containing the feature f by user u√√∑
k∈I r

2
u,k L2-norm of all ratings given to items by user u

Iposu Set of positive items rated by user u containing feature f

Iposu Set of negative items rated by user u containing feature f

hposu,f Relevance weight of feature f belonging to Iposu

hnegu,f Relevance weight of feature f belonging to Inegu

2.4. State of the art in user profile modelling 19

Let U and I denote the set of users and items, respectively, first this methods
computes the weight wu,i(f) associated to each item i containing the feature f [26]:

wu,i(f) =
ru,i√∑
k∈I r

2
u,k

(2.19)

where ru,i is the rating given by user u to item i and
√∑

k∈I r
2
u,k is the L2-norm

of all ratings given to items by user u.
Therefore, for each feature belonging to the set of positive and negative items,

the average weight of the feature is computed, because it may appear in multiple
items, both positive and negative [26]:

hposu,f =
1

|Iposu (f)|
·
∑

i∈Ipos
u (f)

wu,i (2.20)

hnegu,f =
1

|Inegu (f)|
·
∑

i∈Ineg
u (f)

(2.21)

where:

• Iposu (f) is the set of positive items rated by the user u containing the feature
f ,

• Inegu (f) is the set of negative items rated by the user u containing the feature
f .

Finally the relevance weight hu,f of feature f for user u is computed as [7, 19,
26]:

hu,f =

hposu,f+h

neg
u,f

2
, if f ∈ Iposu (f) and f ∈ Inegu (f)

hposu,f , if f ∈ Iposu (f) and f /∈ Inegu (f)

hnegu,f , if f /∈ Iposu (f) and f ∈ Inegu (f)

(2.22)

2.4.5 TF-IDF Method

Most CBF systems use Vector Space Model (VSM) with basic TF-IDF weight-
ing [31]. In VSM the item is considered as a text document represented by a vector
in n-dimensional space, where each dimension corresponds to a term from the overall
vocabulary of a given document collection, or to a feature of the item [31]. Let I
and F the set of items and all features, respectively, each item ij is represented in
a n-dimensional space, so ij = {w1j, w2j..., wnj}, where wkj is the weight of feature
fk in item ij.

20 Chapter 2. Foundations and State of the art

With TF-IDF weighting, features that occur frequently in one document (TF =
term-frequency), but rarely in the rest of items (IDF = inverse-document-frequency),
are more likely to be relevant to the content of the item [31]. The TF-IDF value
for each feature in each item is computed as:

TF -IDF (fk, ij) = TF (fk, ij) · IDF (fk) = TF (fk, ij) · log
|I|
nk

(2.23)

where nk denotes the number of items in I in which the feature fk occurs at least
once.

2.5 Similarity Indices

In order to compare two profiles, composed by different units, various statistical
techniques are used.

In general all the statistical functions that compute the similarity between two
statistical units are called similarity indices. Some of the most popular and used
similarity indices are Cosine similarity (2.5.1) and Jaccard similarity (2.5.2).

2.5.1 Cosine Similarity

Cosine similarity is a similarity measure that applies to the vector space ap-
proach. It computes the normalized proximity between two vectors by using the
cosine of the angle they form (eq. 2.24). This measure has been applied to several
text classification applications [3, 8, 54]:

sim(A,B) = cos(ϑ) =
A ·B
‖A‖ ‖B‖

=

∑n
k=1AkBk√∑n

k=1(Ak)
2 ∗
√∑n

k=1(Bk)2
(2.24)

The cosine domain is defined between -1 and 1, but as a similarity measure
is particularly used in positive space, so the completely opposite non-correlation
between two vector is indicated with value “0” and completely similarity between
two vector is indicated with value “1”.

2.5.2 Jaccard Similarity

Jaccard similarity, also known as Jaccard Index, measures the similarity between
finite sets or between binary attributes of two vectors, by taking the intersection of
both and dividing it by their union [55]. In other words, in case of binary attributes,

2.5. Similarity Indices 21

given two sets, A and B, with n binary attributes, the Jaccard similarity measures
the overlap of attributes of A with attributes of B.

In terms of the above definitions this gives (eq. 2.25):

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
=

M11

M01 +M10 +M11

(2.25)

where:

• M11 is the total number of binary values where both vectors have the value 1,

• M01 is the total number of binary values where first vector has value 1 and
second has value 0,

• M10 is the total number of binary values where first vector has value 0 and
second has value 1,

• M00 is the total number of binary values where both vectors have the value 0.

Chapter 3

Data Collection System

In this chapter, we present which data we used for the analysis of user profiling
methods (described in chapter 4) and how we collected them.

First, in section 3.1, we describe the web application built for acquiring data
from users and their ratings on movies and features. Then, in section 3, we present
the phases of data collection and the structure of the dataset.

3.1 Movie Interests (mints)

Movie Interests (mints) is the responsive web application that we built for
collecting the dataset of true feature ratings. It is still online, hosted on Heroku1,
at movieinterests.herokuapp.com . The high-level architecture of the system main
components is illustrated in figure 3.1.

The main component of our system is the web application itself, represented at
the centre of figure 3.1. We developed mints by using Node.js (Node)2 as back-end
framework and some of the best technologies nowadays for the front-end of web
applications: HTML5, JavaScript (JS) and Bootstrap3. mints is designed as a
responsive web application that can be easily navigated by any device (desktop,
mobile, tablet) with immediate and simple user experience. The key idea of our
system is to let users be free to search and select any movie or feature they like,
without annoying them and pushing them to selections similar to each other user
with survey-like questions. On mints the features are unrelated to movies, in the
sense that users can search and add features alone as favorites in dedicated pages,
even without searching them inside movies’ contents.

1Heroku: www.heroku.com
2Node.js: nodejs.org
3Bootstrap: getbootstrap.com

23

https://movieinterests.herokuapp.com
www.heroku.com
https://nodejs.org
https://getbootstrap.com

24 Chapter 3. Data Collection System

Web Application
movie Interests (mints)

Hosted on Technologies

Database
mongoDB

Read/write users' data
and favorites

Compute recommended
movies

Daily dataset export

CSV Dataset

Recommender
System service

Hosted on Developed with

Stored on

Fetch movies' information
on-the-fly via APIs

Figure 3.1: High-level architecture of our web application mints

Across the entire web application we use asynchronous JS requests for fetching
or updating information, in order to make the actions and loadings faster. For
instance, to read/write data related to users or favorites, asynchronous JS requests
start from client’s browser, directed to internal APIs in the back-end service of
server, then the application communicates with mongoDB4 database (left component
of figure 3.1). Data on mints database are stored as json documents, for instance,
a favorite actor is represented as:

Listing 3.1: Example of a json document representing a favorite actor

1 {

2 "user" : "00000111122222" ,

3 "tmdb_id" : "3223",

4 "type" : "actor",

5 "name" : "Robert Downey Jr."

6 "createdAt" : "2019 -04 -06 T18 :22:56Z 20190406 T182256Z",

7 "updatedAt" : "2019 -04 -06 T18 :22:56Z 20190406 T182256Z"

8 }

The information about movies and their features (plot, vote, genres, cast,
4mongoDB: www.mongodb.com

www.mongodb.com

3.2. Data collection 25

crew,...) are retrieved on-the-fly from TMDb via javascript requests to its APIs,
starting directly from the client’s browser. Then, these information are combined
with the ones stored on internal database, in order to allow users to view and
modify their favoured movies and attributes. An example of the sequence for the
selection of a favorite actor, inside the web page of a specific movie, is illustrated
with a sequence diagram in figure 3.2.

Actor selection - Sequence Diagraminteractioninteractioninteractioninteraction

ClientClientClientClient mints APImints APImints APImints API TMDb APITMDb APITMDb APITMDb APImints DBmints DBmints DBmints DB

Check if the visited movie
or its attributes are
contained in the current
list of favorites

1 : Fetch movie web page

2 : Web page layout

3 : Fetch movie content

4 : Movie content

5 : Fetch user favorites
6 : Fetch user favorites

7 : User favorites
8 : User favorites

9 : Check favoured
movies and attributes

10 : Select favorite actor

11 : Save favorite actor

12 : Status OK saved
13 : Status OK saved

Figure 3.2: Sequence diagram for the selection of a favorite actor inside a movie details
page

3.2 Data collection

As the system does not know about the preference of the target user, the goal
is to invite him to choose a set of preferences which include movies and attributes,
by repeatedly displaying the number of missing preferences to reach the minimum
required. These required favorites include the movies, which can be found by direct
search (through a search bar on top) or via navigation between popular movies (or

26 Chapter 3. Data Collection System

Figure 3.3: Typical user scenario on mints

search with filters), and attributes, which can be found (and selected) independently
from movies (e.g., by direct search an actor) or inside movies content (e.g., inside
the page of movie details).

The collection of the data is divided into two phases: the first involved volunteers,
the second, instead, involved users coming from the crowdsourcing platform Amazon
Mechanical Turk (MTurk5). First, we started the data collection of volunteers, and
then, after addressing the feedbacks received, we started the crowdsourcing phase.
The user experience was different for the two groups, as we will show in the next
sections.

3.2.1 Volunteer users

Collection

The group of volunteers is composed of family, friends and colleagues that
wanted to freely contribute to the dataset. A typical user scenario on mints is
shown in figure 3.3.

Volunteers have to register by creating a local account with email and password
or by signing in with social accounts (Google +, Facebook or Twitter) (figure 3.4);
then, in case of a local account (i.e., email and password), they had to confirm the
activation with a link sent via mail. After that users could add all the favorites
required during the navigation through the web appplication.

Initially, the preferences required were: 4 movies, 2 actors, 2 genres, 1 director,
1 production company, 2 release years. After collecting the first feedbacks from
some registered users, which selected all the favoured elements required, we figured
out that requiring some specific information as release years was too much difficult.
Hence, we changed the required favorites to:

5Amazon Mechanical Turk (MTurk): www.mturk.com

www.mturk.com

3.2. Data collection 27

Figure 3.4: Sign-up web page

• 5 movies,

• 3 actors,

• 1 director,

• 2 genres.

and they remained the same till the entire data collection phase.

Reward

When all the preferences required were selected, users could see in homepage
and in a dedicated page 20 recommended movies as a reward, computed with CBF
algorithm based on favorite features selected during the data collection.

3.2.2 Crowdsourcing users

Collection

During the crowdsourcing phase, the users were found using the platform MTurk.
We published on MTurk a task with brief instructions and a specific link to our
web application 6. By clicking on this link the users were redirected to a web page
containing all the instructions to complete the crowdsourcing task on mints and

6https://movieinterests.herokuapp.com/crowdsourcing/mturk

https://movieinterests.herokuapp.com/crowdsourcing/mturk

28 Chapter 3. Data Collection System

Figure 3.5: First web page shown to crowdsourcing users with instructions

to be paid (figure 3.5). The difference between usage experience of crowdsourcing
users and volunteer ones (depicted in figure 3.3) mainly concern the phases of
registration, instruction and consistency test. In fact, crowdsourcing users did
not have to complete the registration on mints7, because they were already logged
through an account with timed login, automatically created in background. Using
timed login means that users couldn’t log out or re-login at the end of the fixed
time of 1 hour. This trick was used to guarantee that users completed the task only
once and couldn’t change their preferences a posteriori.

Following the initial instructions, the users added all the preferences and, when
completed the task, they had to click on the submit button, to definitively confirm
the favorites. After that, users couldn’t change their preferences anymore.

Consistency test

In order to verify the reliability of the information collected, crowdsourcing
users had to complete a final form called "consistency test", to demonstrate that
they had not randomly completed the task, but that they were conscious of their
preferences. During the consistency test some of the preferences previously selected
were proposed (only with name or title), mixed with other popular elements not
chosen by users. They had to select only the features they remembered to have
added before. Obviously, the more was the similarity between the preferences added
before and the elements selected in the test, the more reliable was the user. In fact,
the score was calculated as the "precision" of true favorites between the selected
elements.

7movie Interests (mints): movieinterests.herokuapp.com

movieinterests.herokuapp.com

3.2. Data collection 29

The consistency test was useful to understand which user deserved to be paid
on Amazon MTurk platform and to filter collected information by reliable users, as
depicted in chapter 5.

Chapter 4

Methodology

In the following chapter, we will show the methodology that we applied to study
the user profiling stage. (i) First, in section 4.1, we will describe our adaptation
of user profiling methods (introduced in section 2.4), to apply them in case of
binary ratings (like in our dataset), giving particular attention to the assumption on
threshold value (in methods 2, 3 and 4). We will explain the assumptions done for
the two similarity indices, cosine similarity and Jaccard similarity, used to compute
the overlap between the implicit preferences of user and their explicit selections.
(ii) Finally, in section 4.2, we will present our proposed methodology to integrate
feature preferences, explicit or implicitly modeled, into a recommender system.

4.1 User profiling with binary ratings

In chapter 2 we introduced 5 methods to build implicit user profiles. These
methods are commonly related to datasets with scalar ratings belonging to a fixed
range (e.g. from 1 to 5) or they are adjusted for specific datasets.

In our case, the dataset is composed by binary ratings with values 1 if an item
(movie) or a feature is liked, 0 if the rating is missing, i.e. if a user didn’t add
an element to his favorites. We made some assumptions to create "implicit" user
profiles on features from items.

4.1.1 Zhang Method

Zhang method presented in section 2.4.1 can be easily applied in our case of
binary ratings. The relevance weight hu,f of each feature f for a user u is computed
as:

hu,f =

1, if ru,i = 1 and f ∈ i

0, otherwise
(4.1)

31

32 Chapter 4. Methodology

where ru,i is the rating given by user u to item i.

4.1.2 Li Method

Li method presented in section 2.4.2 can be applied in case of binary ratings
by setting the rating threshold rtau to 0. Hence the relevance weight hu,f of each
feature f for a user u is computed as:

hu,f =
Nu,f

Mu

(4.2)

where:

• Nu,f is the number of items rated by user u containing feature f :

Nu,f = |{∀i ∈ I : ru,i > 0 and f ∈ i}| (4.3)

• Mu is the number of items rated by user u:

Mu = |{∀i ∈ I : ru,i > 0}| (4.4)

4.1.3 Symeonidis Method

Symeonidis method presented in section 2.4.3 can be applied to binary ratings
by setting the threshold rating rτ to 0, like done for Li method. Hence the formula
of feature frequency FF (u, f) becomes the sum of items rated by user u containing
feature f :

FF (u, f) = Nu,f = |{∀i ∈ I : ru,i > 0 and f ∈ i}| (4.5)

The other steps are computed in the same way described in section 2.4.3:

IUF (f) = log
|U|

UF (f)
(4.6)

hu,i = FF (u, f) · IUF (f) (4.7)

4.1.4 Kim Method

Kim method presented in section 2.4.4 cannot be applied in our case of binary
ratings, because if we set the rating threshold rtau to 0, the two sets Iposu and Inegu

would collapse into one unique set, obtaining the same results of Zhang method

4.1. User profiling with binary ratings 33

(except for a normalization factor). Therefore we will not apply this method to
analyze the collected data.

4.1.5 TF-IDF Method

After having reviewed the state-of-art methods described above, we decided to
investigate another variant of TF-IDF as a user profiling method. The Symeonidis
method above is similar to TF-IDF, but it is user-centric because it considers the
vector space of user profiles. Instead, our proposed TF-IDF method is item-centric
as it considers the vector space of items (movies). In section 2.4.5 we described
TF-IDF weighting in general, now we are going to present how we applied it as a
user profiling method.

Let U , I and F denote the set of users, items and all existing features of the
items, respectively. First, we computed the IDF of each feature f as:

IDF (f) = log
|I|
nf

(4.8)

where nf denotes the number of items in I in which the feature f occurs at least
once. Then, for each user u we computed the relevance weight hu,f of a feature f
as:

hu,f = TF (f, u) · IDF (f) (4.9)

where TF (u, f) is equivalent to FF (u, f) of the Symeonidis method (i.e., number
of times feature f occurs in items rated by user u).

4.1.6 Assumptions

Table 4.1: Common symbols for similarity indices applied to user profiles

Symbol Description

F Set of all features

Tu Number of features explicitly selected as favorites by user u

pu Implicit profile of user u

p′
u Explicit profile of user u

Since we asked users to add at least three types of features (genre, actor,
director), we built the implicit profiles pu with each method described above, for
each of these three types of features. Then, in order to make a complete analysis

34 Chapter 4. Methodology

θ
u'

u

Figure 4.1: Cosine similarity of explicit and implicit user profiles

of each method in chapter 5, we compared the implicit profiles obtained, with the
explicit profiles p′

u, consisting of favorite features explicitly selected by the users on
our web application. In this way we made statistical analysis in terms of pairwise
similarity sim(pu,p

′
u) between each couple of user profiles.

In order to build the implicit profiles, we needed an offline dataset of movies
content so that we could extract their features. Therefore we started from a subset
of 4̃5,000 movies, belonging to "The Movies Dataset"1 on Kaggle. Then we extended
the dataset with the content of missing movies rated by users on our web application.
We obtained a final dataset containing features of 45395 movies.

In order to use the cosine similarity, we considered user profiles as vectors.
Therefore, given the explicit profile p′

u of the user u and the implicit profile pu of
the same user, built with one of the four methods, we computed the cosine similarity
between these couple of profiles as:

sim(pu,p
′
u) = cos(ϑ) =

pu · p′
u

‖pu‖ ‖p′
u‖

(4.10)

Regarding Jaccard similarity, since it can be applied only to binary attributes,
but implicit profiles contain scalar weights for the relevance of features, we had to
transform their resulting profiles to make them binary, through the following steps:

1. considering user u, we computed the weight hu,f of each feature f contained
in the implicit profile u

2. given Tu, the number of features explicitly selected by user u, we assigned
value 1 to the top Tu features with the highest weight, and 0 to the others.

1The Movies Dataset: https://www.kaggle.com/rounakbanik/the-movies-dataset/
version/7

https://www.kaggle.com/rounakbanik/the-movies-dataset/version/7
https://www.kaggle.com/rounakbanik/the-movies-dataset/version/7

4.2. Recommender System 35

3. at the end we obtained pu composed of Tu features with weight 1 and the
others with 0.

Finally, the Jaccard similarity J between profiles pu and p′
u, transformed as

described, was computed as:

J(pu,p
′
u) =

|pu ∩ p′
u|

|pu ∪ p′
u|

=
|pu ∩ p′

u|
|pu|+ |p′

u| − |pu ∩ p′
u|

=
M11

M01 +M10 +M11

(4.11)

where:

• M11 is the total number of attributes whose value is equal to 1 both in implicit
profile pu and explicit profile p′

u,

• M01 is the total number of attributes whose value is equal to 0 in pu and 1 in
p′
u,

• M10 is the total number of attributes whose value is equal to 1 in pu and 0 in
p′
u

For instance, if user u explicitly selected 5 favoured genres, we assigned value
1 to the 5 genres with the highest weight in the implicit profile pu, built with
a considered method. Zhang method (section 4.1.1), instead, doesn’t need any
transformations, we didn’t make assumptions on it because it already assign binary
weights to features.

4.2 Recommender System

To further investigate user profiling methods in a concrete application, we
evaluate the best performing user profiling method (among the ones described
above) also via Recommender System, comparing accuracy of a RS which embeds
implicitly modeled feature preferences, versus the same RS embedding true feature
ratings. For the evaluation of the RSs, we divided the movie ratings randomly
(with seed 2147483647) with a holdout strategy in two sets, 80% for the train set
(1,389 movie ratings), 20% for the test set (347 movie ratings). We cut the output
of recommendation list to 3 predicted items and we evaluated two scores for the
accuracy of recommendations, AUC (Area Under the Curve) and MAP (Medium
Average Precision).

36 Chapter 4. Methodology

4.2.1 Collaborative filtering

Before integrating feature ratings and user profiling methods, we decided to
apply a typical item-based CF RS as a baseline. We considered in this case only
movie ratings. The specific algorithm used is item-based CF KNN (k-Nearest
Neighbors) with several values for k, where k is the number of neighbors considered.

4.2.2 Hybrid

After that, we experimented a hybrid approach with two models, one built from
explicit feature ratings and the other one from implicit feature ratings modeled
by the best-investigated user profiling method, i.e. Li method, as we report in
section 5.3.1.

Regarding the first hybrid recommender, we extracted the favoured attributes of
each user, then we built a user-user hybrid RS with item feature ratings treated like
user attributes, composing in fact their explicit user profiles. The specific algorithm
used is KNN with a cut-off size of predicted items equal to 3 and several values for
k, where k is the number of neighbors considered. To find similar neighbors in the
KNN algorithm the correlation was computed on user profiles.

The latter hybrid RS, that we call implicit, was built by applying the best-
investigated user profiling method to extract the implicit user profiles from rated
movies contained in the train set only. Then, we kept for each user and for each
type of attribute (genres, actors, directors) only n implicit preferences with the
highest relevance score (computed by profiling method), where n is the number
of explicit preferences expressed for that attribute type. For instance, if a user
explicitly selected 2 favoured genres on mints, then only the 2 implicit genres with
the highest relevance score were considered.

Chapter 5

Experimental Results

In this chapter, we present the experimental results of the evaluation of user
profiling methods, by using the dataset that we collected on mints, as described in
section 3, and the methods discussed in section 4.1.

The structure of this chapter is structured as follows: (i) in section 5.1 we
provide an overview about the characteristics of our collected dataset, including
some simple statistics; (ii) in section 5.2 we analyze the global differences between
the implicitly selected features (i.e. contained in their rated movies) and the real
ones explicitly selected by users; (iii) in section 5.3 we study the user profiling
step in-depth by investigating the 4 user profiling methods described in section 4.1,
analyzing the similarity (i.e., the overlap) between the implicitly modelled user
profiles and the real explicit tastes of users; (iiii) finally, in section 5.4 we show the
comparison between the accuracy of some proposed recommender systems which
integrate the preferences about movies and attributes, either implicit or explicit.

5.1 Data Characteristic

Users: After the data collection phase, the total number of participants registered
on mints was 194 users. Before analyzing the 4,109 responses (preferences), we
cleaned the data by taking a series of prepossessing steps:

• First, we removed the users who have not provided all the minimum number
of required movies and attribute (genres, actors, directors) lists. After this
step, the remained number of users was equal to 180 (93%) users.

• Afterwards, we removed the crowdsourcing users who scored less than 50%
of precision during the consistency test (see section 3.2). After this step, the
remained number of users was equal to 155 users, we call them reliable users.

37

38 Chapter 5. Experimental Results

The total number of their preferences is 3,341 (81%), including movies and
attributes.

Among reliable users, 67 (43%) are volunteers and 88 (57%) are paid ones,
referred to as crowdsourcing users, like shown in figure 5.1. The distribution of
reliable users among volunteers and crowdsourcing ones is shown in table 5.1 and
in figure 5.2. The reliable users are the ones kept after data cleaning step, while
the unreliable are the ones discarded.

crowdsourcing

57%

volunteer

43%

Figure 5.1: Distribution of users category

Table 5.1: Reliable and unreliable users of each category

User category Reliable Unreliable Total

Crowdsourcing 88 25 113
Volunteers 67 14 81

Regarding users’ gender, 92 users (59.4%) are male, 55 are female (35.5%) and
8 (5.2%) did not specify it, like shown in figure 5.3.

Most of the users (53%) are between 24 and 30 years old, as depicted in figure 5.4.
We received registrations from users coming from 10 different countries, mainly

from Italy (43%), India (26%) and United States (21%), like shown in figure 5.5.
Preferred movies and attributes: We collected a total 4,109 preferred movies
and attributes selected by participants, including 1,212 unique elements, i.e., ele-
ments selected by at least one user. In the following experiments, we include only
the preferences of reliable users after the data cleaning step described above. This
obtained number of preferences is 3,341 (81%), including 1,737 favoured movies, 461
genres, 698 actors, 198 directors, 74 production companies, 92 production countries,
39 producers, 17 screenwriters, 21 release years, and 4 sound crew members. The
dataset is available at http://bit.ly/2XzIYyL.

http://bit.ly/2XzIYyL

5.1. Data Characteristic 39

crowdsourcing

58%

volunteers

42%

reliable
crowdsourcing

45%

unreliable
crowdsourcing 13%

reliable
volunteers

35%

unreliable
volunteers

7%

Figure 5.2: Distribution of reliable and unreliable users of each category

male

59.4%

female

35.5%

not set5.2%

Figure 5.3: Distribution of users’ gender

40 Chapter 5. Experimental Results

24
-3

0

18
-2

3

31
-4

0

41
-5

0

no
t s

et

<
18

51
-6

0

>
60

Age ranges

0

10

20

30

40

50

60

70

80
Nu

m
be

r o
f u

se
rs

82

22 19

8 7 6 6 5

Age ranges

Figure 5.4: Distribution of users age ranges

IT IN US

no
t s

et CA PL IE BD M
X GB NL

Countries

0

10

20

30

40

50

60

70

80

Nu
m

be
r o

f u
se

rs

77

59

37

12

2 1 1 1 1 1 1

Users per country

Figure 5.5: Distribution of users countries

5.2. Global analysis of explicit/implicit preferences 41

We show the total selections and the unique selections of each favoured movie
and attributes in figure 5.6.

ac
to

r

co
m

pa
ny

di
re

ct
or

ge
nr

e

m
ov

ie

pr
od

uc
er

pr
od

uc
tio

n
co

un
try

sc
re

en
wr

ite
r

so
un

d

ye
ar

Favorite types

0

250

500

750

1000

1250

1500

1750

Nu
m

be
r o

f s
el

ec
tio

ns

698

74
198

461

1737

39 92 17 4 21

299

41 100 18

618

28 7 14 4 4

Selections of each favorite type
Total selections
Unique selections

Figure 5.6: Total and unique selections of favoured elements

5.1.1 Summary statistics

Summarizing the statistics of the collected dataset, we have 155 reliable users,
45,392 movies considered as an offline dump for the analysis, 1,737 rated movies
(618 unique), 1,604 rated features (515 unique), a mean number of movie ratings
per user equal to 11.21 and a median equal to 5, a mean number of feature ratings
per user equal to 10.35 and a median equal to 8. These statistics are represented
also in table 5.2.

5.2 Global analysis of explicit/implicit preferences

In this section, we present an initial global comparison between all the features
explicitly selected by users, which we call explicit set, and the features implicitly
favored by extracting them from rated movies, which we call implicit set.

42 Chapter 5. Experimental Results

Table 5.2: Summary statistics of the collected dataset

Users 155
Movies 45,392
Movie ratings 1,737 (618 unq.)
Mean number of movie ratings per user 11.21
Median number of movie ratings per user 5
Feature ratings 1,604 (515 unq.)
Mean number of feature ratings per user 10.35
Median number of feature ratings per user 8

The implicit set is built by extracting for each user the set of unique features
contained in his rated movies, that is its implicit user profile without any feature
weighting algorithm. Then the total implicit selections that we show in the next
subsections for each feature is the total number of its occurrences in the implicit
user profiles.

We focus on the features that we consider most important and that we explicitly
requested as minimum, that are genres, actors and directors, as explained in
section 3.2. We want to show the difference between the implicit user profiles
and explicit profiles. For this scope, we analyze separately for genres, actors and
directors, the total number of features selected by the users and the implicit ones
extracted by their favoured movies.

5.2.1 Movie

Users selected 1,737 favorite movies containing 618 unique movies. The top-20
of them are shown in table 5.3. All of these 618 unique movies are the ones which
features are extracted from to build the implicit set and the implicit user profiles
with the 4 methods in section 5.3.

As we can see in table 5.3, users’ tastes are varied, even if the first movie is liked
by a high number of users (38.7%) and the first 5-6 movies were really popular at
the moment of acquiring data.

In the following sub-sections, we present separately for genres, actors and
directors an initial statistical analysis, which highlights main differences between
the set of all explicitly rated features and the set of all implicit features extracted
from rated movies.

5.2. Global analysis of explicit/implicit preferences 43

Table 5.3: Top-20 favoured movies

Pos. Explicit movies Explicit selections

1 Avengers: Infinity War 60
2 Aquaman 40
3 Glass 36
4 Bohemian Rhapsody 33
5 Venom 33
6 Mortal Engines 27
7 Creed II 27
8 How to Train Your Dragon: The Hidden World 26
9 A Star Is Born 24
10 Escape Room 24
11 Spider-Man: Into the Spider-Verse 22
12 Guardians of the Galaxy 22
13 Bumblebee 21
14 Robin Hood 21
15 Serenity 19
16 Widows 18
17 The Mule 18
18 The Avengers 18
19 Polar 18
20 T-34 17

44 Chapter 5. Experimental Results

5.2.2 Genre

In table 5.4 we report the total number of genres selected by users, hence that
belong to the explicit set, and the total number of genres extracted from content of
favorite movies, hence that belong to the implicit set.

Table 5.4: Genres extracted from explicit set and from implicit set

Explicit genres selected Implicit genres extracted

461 1463

In Table 5.5 and in Figure 5.7, we present a comparison between the explicit and
implicit sets of features, in percentage of common attributes (features), focusing on
the k most frequently selected genres. We will repeat the same analysis for actors
and directors in the next sections. These tables generally highlight a low overlap
between the explicitly preferred features and the implicitly estimated ones (derived
from favourite movies), in particular for actors and directors. The only exception is
the genre attribute, which reveals a maximum overlap of 94.74% when considering
all 19 genres.

Table 5.5: Common genres in the most selected k attributes, either explicitly or implicitly

k No. common genres % common genres

5 3 60.00%
10 8 80.00%
15 13 86.67%

All genres (19) 18 94.74%

We further provide a finer-grained analysis of the gap between explicit and
implicit preferences of users according to their gender.

In Table 5.6, we compare the 10 most frequently selected genres, either explicitly
or implicitly, by male and female users, respectively.

Regarding genre, the preferences of male and female users are similar. Further-
more, it is surprising that the genre “action” is highly ranked by female users. This
could be due to the fact that the genre tastes of young women might be changing
nowadays, especially because many popular action movies, like the Marvel ones,
are liked by many people (especially under 30, i.e., the largest age group in our
dataset), irrespective of gender.

We further provide an analysis of the convergence or divergence of users’ tastes,
defined by explicitly rated genres or implicitly extracted. Let F denote the set of
all possible genres contained in items and df the distribution of a genre f across

5.2. Global analysis of explicit/implicit preferences 45

5 10 15 19
top-selected size

60

65

70

75

80

85

90

95

%
 o

f c
om

m
on

 g
en

re
s

60.00%

80.00%

86.67%

94.74%
% of common genres between explicit and implicit

Figure 5.7: Common genres in the most selected k attributes, either explicitly or implic-
itly

Table 5.6: Most selected 10 genres, either explicitly or implicitly, by male and female
users;

∣∣∣Rexp
f

∣∣∣ — number of explicit selections of genres,
∣∣∣Rimp

f

∣∣∣ — number of
implicit selections of genres.

Pos. Explicitly selected
∣∣Rexp

f

∣∣ Implicitly selected
∣∣Rimp

f

∣∣

Male users

1 Action 51 Action 86
2 Drama 31 Adventure 83
3 Adventure 30 Drama 80
4 Thriller 28 Science Fiction 76
5 Science Fiction 28 Thriller 74
6 Thriller 10 Thriller 25
7 Fantasy 5 Fantasy 24
8 Family 4 Crime 18
9 Horror 4 Romance 17
10 Western 3 Family 17

Female users

1 Drama 26 Drama 52
2 Action 22 Adventure 48
3 Adventure 14 Action 47
4 Comedy 14 Fantasy 45
5 Thriller 13 Science Fiction 43
6 Thriller 10 Thriller 25
7 Fantasy 5 Fantasy 24
8 Family 4 Crime 18
9 Horror 4 Romance 17
10 Western 3 Family 17

46 Chapter 5. Experimental Results

all user profiles. df is a vector consisting of binary attributes (f1, f2, ..., fn) in
which fk = 1 if feature f is contained in the profile of user k. We computed the
distribution of all possible genres across explicit and implicit user profiles and their
corresponding standard deviation (std), denoted as σf,e and σf,i, respectively.

In table 5.7 the genres with the highest std across explicit and implicit profiles
are shown, i.e. the genres for which users’ tastes diverge most. In table 5.8 instead
we show the ones with the lowest std.

Table 5.7: Genres with the highest std across explicit and implicit user profiles

Genre with the highest std σf,e σf,i |σf,e − σf,i|

Across explicit profiles Action 0.501527 0.287573 0.213954
Across implicit profiles Mystery 0.268122 0.501527 0.233405

Table 5.8: Genres with the lowest std across explicit and implicit user profiles

Genre with the lowest std σf,e σf,i |σf,e − σf,i|

Across explicit profiles Western 0.159071 0.329018 0.169947
Across implicit profiles Action 0.501527 0.287573 0.213954

The most interesting result that can be noticed from tables 5.7 and 5.8 regards
"Action", in fact, that is the genre for which users’ tastes diverge most across
explicit user profiles, but on the contrary it is the one for which they converge most
across implicit profiles. The possible reason is the genre "action" is contained in
many movies rated in our dataset, as already underlined in the previous analysis.

For the completeness of our analysis, in figure 5.8 we also show 4 charts of the
top-5 genres with the highest std across explicit profiles and across implicit profiles
(respectively, at top) and the top-5 with the lowest std (at bottom).

5.2.3 Actor

In table 5.9 we show the total number of actors selected by users, hence that
belong to the explicit set, and the total number of actors extracted from content of
favorite movies, hence that belong to the implicit set :

Table 5.9: Actors extracted from explicit set and from implicit set

Explicit actors selected Implicit actors extracted

698 73558

5.2. Global analysis of explicit/implicit preferences 47

Ac
tio

n

Dr
am

a

Ad
ve

nt
ur

e

Th
ril

le
r

Co
m

ed
y

Genres

0.0

0.1

0.2

0.3

0.4

0.5

st
d

ac
ro

ss
 u

se
r p

ro
fil

es

0.5015
0.4855

0.4665
0.4492 0.4459

0.2876
0.3052 0.3052

0.4425
0.478

Top-5 genres with the highest std across explicit profiles
Std across explicit prof.
Std across implicit prof.

M
ys

te
ry

Ro
m

an
ce

Cr
im

e

Fa
m

ily

An
im

at
io

n

Genres

0.2681

0.3052
0.3214

0.2576

0.3052

0.5015 0.5011 0.5004 0.4999 0.4887

Top-5 genres with the highest std across implicit profiles
Std across explicit prof.
Std across implicit prof.

W
es

te
rn

M
us

ic

Do
cu

m
en

ta
ry

Hi
st

or
y

W
ar

Genres

0.0

0.1

0.2

0.3

0.4

0.5

st
d

ac
ro

ss
 u

se
r p

ro
fil

es

0.1591
0.1773

0.222 0.222 0.222

0.329

0.469

0.2966

0.3964

0.4611

Top-5 genres with the lowest std across explicit profiles
Std across explicit prof.
Std across implicit prof.

Ac
tio

n

Do
cu

m
en

ta
ry

Dr
am

a

Ad
ve

nt
ur

e

W
es

te
rn

Genres

0.5015

0.222

0.4855
0.4665

0.1591

0.2876 0.2966 0.3052 0.3052
0.329

Top-5 genres with the lowest std across implicit profiles
Std across explicit prof.
Std across implicit prof.

Figure 5.8: Top-5 genres with the highest std across explicit profiles and across implicit
profiles (respectively, at top) and the top-5 with the lowest std (at bottom)

48 Chapter 5. Experimental Results

In Table 5.10 and in Figure 5.9, we present a comparison between the explicit
and implicit sets of features, in percentage of common attributes (features), focusing
on the k most frequently selected actors, like already analyzed for genres in previous
section.

Table 5.10: Common quota of actors between the most selected k attributes, either
explicitly or implicitly

k No. of common actors % of common actors

10 1 10.00%
20 4 20.00%
30 7 23.33%
40 9 22.50%
50 10 20.00%
60 10 16.67%
70 13 18.57%
80 16 20.00%
90 20 22.22%
100 20 20.00%

10 20 30 40 50 60 70 80 90 100
top-selected size

10

12

14

16

18

20

22

24

%
 o

f c
om

m
on

 a
ct

or
s

10.00%

20.00%

23.33%
22.50%

20.00%

16.67%

18.57%

22.50%

21.11% 21.00%

% of common actors between explicit and implicit

Figure 5.9: Common quota of actors between the most selected k attributes, either
explicitly or implicitly

These results generally confirm the previous findings in [34] regarding existing
gaps (i.e., low quota of common attributes) between explicitly selected features
and implicitly estimated ones, with a different dataset containing more up-to-date
movies and not limited to the most popular movies as used in [34].

In Table 5.11, we compare the 10 most frequently selected actors, either explicitly
or implicitly, by male and female users, respectively.

5.2. Global analysis of explicit/implicit preferences 49

Table 5.11: Most selected 10 actors, either explicitly or implicitly, by male and female
users;

∣∣∣Rexp
f

∣∣∣— number of explicit selections of considered feature,
∣∣∣Rimp

f

∣∣∣—
number of implicit selections of considered feature.

Pos. Explicitly selected
∣∣Rexp

f

∣∣ Implicitly selected
∣∣Rimp

f

∣∣

Male users

1 Robert Downey Jr. 16 Samuel L. Jackson 64
2 Johnny Depp 15 Stan Lee 56
3 Jason Statham 10 Bradley Cooper 51
4 Leonardo DiCaprio 10 Paul Bettany 47
5 Tom Hardy 8 Vin Diesel 47
6 Harrison Ford 3 Sean Gunn 15
7 Bruce Willis 3 Terry Notary 15
8 Sean Bean 3 Bradley Cooper 15
9 Vin Diesel 2 Zoe Saldana 15
10 Leonardo DiCaprio 2 Scarlett Johansson 14

Female users

1 Robert Downey Jr. 12 Stan Lee 27
2 Leonardo DiCaprio 7 Samuel L. Jackson 26
3 Jennifer Lawrence 5 Bradley Cooper 23
4 Chris Hemsworth 5 Djimon Hounsou 21
5 Bruce Willis 4 James McAvoy 21
6 Harrison Ford 3 Sean Gunn 15
7 Bruce Willis 3 Terry Notary 15
8 Sean Bean 3 Bradley Cooper 15
9 Vin Diesel 2 Zoe Saldana 15
10 Leonardo DiCaprio 2 Scarlett Johansson 14

50 Chapter 5. Experimental Results

Investigating the results for the preferences about actors, we notice a substantial
difference between male and female users. it is surprising that in Table 5.11, for
both male and female users’ preferences, Stan Lee is among the top implicitly
preferred actors even if he barely acted as a main character in any movie. The
most probable reason is that even though he has not been selected explicitly as
favourite actor by study participants, he appeared in all Marvel movies (in small
“cameo roles”), so he is included in the implicit profiles.

Like previously done for genres (in section 5.2.2), we further provide an analysis
of the convergence or divergence of users’ tastes, defined by explicitly rated actors or
implicitly extracted. Let F denote the set of all possible actors contained in items
and df the distribution of an actor f across all user profiles. df is a vector consisting
of binary attributes (f1, f2, ..., fn) in which fk = 1 if feature f is contained in the
profile of user k. We considered two subset of top-50 selected actors in explicit
profiles and implicit profiles and we computed their corresponding distribution and
standard deviation (std), denoted as σf,e and σf,i, respectively.

In table 5.12 the actors with the highest std across explicit and implicit profiles
are shown, i.e. the actors for which users’ tastes diverge most. In table 5.13 instead
we show the ones with the lowest std.

Table 5.12: Actors with the highest std across explicit and implicit user profiles

Actor with the highest std σf,e σf,i |σf,e − σf,i|

Across explicit profiles Robert Downey Jr. 0.401297 0.499853 0.098557
Across implicit profiles Bradley Cooper 0.159071 0.501360 0.342288

Table 5.13: Actors with the lowest std across explicit and implicit user profiles

Actor with the lowest std σf,e σf,i |σf,e − σf,i|

Across explicit profiles Anthony Hopkins 0.113223 0.350115 0.236892
Across implicit profiles Samuel l. Jackson 0.193527 0.487119 0.293592

Considering tables 5.11, 5.12 and 5.13, Robert Downey Jr is the most explicitly
rated actor but it also the one for which explicit user tastes diverge most. Instead
Bradley Cooper is the one for which implicit user tastes diverge most but it is not
even contained in the top-10 list of explicitly rated actors.

For completeness of our analysis, in figure 5.10 we also show 4 charts of the
top-5 actors with the highest std across explicit profiles and across implicit profiles
(respectively, at top) and the top-5 with the lowest std (at bottom).

5.2. Global analysis of explicit/implicit preferences 51

Ro
be

rt
do

wn
ey

 jr
.

Jo
hn

ny
 d

ep
p

Le
on

ar
do

 d
ica

pr
io

Ja
so

n
st

at
ha

m

To
m

 h
ar

dy

Actors

0.0

0.1

0.2

0.3

0.4

0.5

st
d

ac
ro

ss
 u

se
r p

ro
fil

es

0.4013

0.3135 0.3135

0.2681 0.2681

0.4999

0.3433 0.3433

0.2346

0.4554

Top-5 actors with the highest std across explicit profiles
Std across explicit prof.
Std across implicit prof.

Br
ad

le
y

co
op

er

Gw
yn

et
h

pa
ltr

ow

Vi
n

di
es

el

Pa
ul

 b
et

ta
ny

Ro
be

rt
do

wn
ey

 jr
.

Actors

0.1591

0

0.1773

0

0.4013

0.5014 0.5004 0.5004 0.5004 0.4999
Top-5 actors with the highest std across implicit profiles

Std across explicit prof.
Std across implicit prof.

M
er

yl
 st

re
ep

Ni
co

le
 k

id
m

an

Jo
hn

 c
. r

ei
lly

Du
st

in
 h

of
fm

an

An
th

on
y

ho
pk

in
s

Actors

0.0

0.1

0.2

0.3

0.4

0.5

st
d

ac
ro

ss
 u

se
r p

ro
fil

es

0.1132 0.1132 0.1132 0.1132 0.1132

0.2781

0.4639

0.4277

0.1773

0.3501

Top-5 actors with the lowest std across explicit profiles
Std across explicit prof.
Std across implicit prof.

Sa
m

ue
l l

. j
ac

ks
on

Ol
an

iy
an

 th
ur

m
on

Po
m

 k
le

m
en

tie
ff

Aa
ro

n
la

za
r

Ja
co

b
ba

ta
lo

n

Actors

0.1935

0 0 0 0

0.4871 0.4887 0.4901 0.4901 0.4915
Top-5 actors with the lowest std across implicit profiles

Std across explicit prof.
Std across implicit prof.

Figure 5.10: Top-5 actors with the highest std across explicit profiles and across implicit
profiles (respectively, at top) and the top-5 with the lowest std (at bottom)

52 Chapter 5. Experimental Results

5.2.4 Director

In Table 5.14 we show the total number of directors selected by users, hence
that belong to the explicit set, and the total number of directors extracted from
content of favorite movies, hence that belong to the implicit set :

Table 5.14: Directors extracted from explicit set and from implicit set

Explicit directors selected Implicit directors extracted

198 4349

In Table 5.15 and in Figure 5.11, we present a comparison between the explicit
and implicit sets of features, in percentage of common attributes (features), focusing
on the k most frequently selected directors, like already analyzed for genres and
actors in previous sections.

Table 5.15: Common quota of directors between the most selected k attributes, either
explicitly or implicitly

k No. of common directors % of common directors

10 3 30.00%
20 4 20.00%
30 7 23.33%
40 11 27.50%
50 16 32.00%
60 17 28.33%
70 20 28.57%
80 26 32.50%
90 30 33.33%
100 33 33.00%

These results show remarkable differences (i.e., low quota of common attributes)
between explicitly selected directors and implicitly estimated ones, like the results
reported for actors in section 5.2.3 and by Nasery et al. in [34].

In Table 5.16, we compare the 10 most frequently selected directors, either
explicitly or implicitly, by male and female users, respectively.

The differences between tastes of male and female users, shown for preferences
about directors in table 5.16 (but also for actors in previous section), suggest to
embed gender information in a recommender system.

Like previously done for genres and actors (in sections 5.2.2 and 5.2.3), we
further provide an analysis of the convergence or divergence of users’ tastes, defined
by explicitly rated directors or implicitly extracted. Now let F denote the set of

5.2. Global analysis of explicit/implicit preferences 53

10 20 30 40 50 60 70 80 90 100
top-selected size

20

22

24

26

28

30

32

34

%
 o

f c
om

m
on

 d
ire

ct
or

s 30.00%

20.00%

26.67%
27.50%

30.00% 30.00%

28.57%

32.50%

34.44%

33.00%

% of common directors between explicit and implicit

Figure 5.11: Common quota of directors between the most selected k attributes, either
explicitly or implicitly

Table 5.16: Most selected 10 directors, either explicitly or implicitly, by male and female
users;

∣∣∣Rexp
f

∣∣∣— number of explicit selections of considered feature,
∣∣∣Rimp

f

∣∣∣—
number of implicit selections of considered feature.

Pos. Explicitly selected
∣∣Rexp

f

∣∣ Implicitly selected
∣∣Rimp

f

∣∣

Male users

1 Quentin Tarantino 11 Hajar Mainl 42
2 Steven Spielberg 9 Chris Castaldi 41
3 Joe Russo 7 Mark Rossini 41
4 M. Night Shya-

malan
6 Lori Grabowski 41

5 Christopher Nolan 6 Eli Sasich 41
6 Marcel Carné 1 Lori Grabowski 12
7 Alfred Hitchcock 1 Hajar Mainl 12
8 Ermanno Olmi 1 Chris Castaldi 12
9 Elia Kazan 1 Steven Spielberg 10
10 George Lucas 1 Bryan Singer 10

Female users

1 Joe Russo 4 Anthony Russo 16
2 Christopher Nolan 4 Joe Russo 16
3 Steven Spielberg 4 Bryan Singer 15
4 Martin Scorsese 2 Hajar Mainl 14
5 Ridley Scott 2 Chris Castaldi 14
6 Marcel Carné 1 Lori Grabowski 12
7 Alfred Hitchcock 1 Hajar Mainl 12
8 Ermanno Olmi 1 Chris Castaldi 12
9 Elia Kazan 1 Steven Spielberg 10
10 George Lucas 1 Bryan Singer 10

54 Chapter 5. Experimental Results

all possible directors contained in items and df the distribution of a director f
across all user profiles. df is a vector consisting of binary attributes (f1, f2, ..., fn)
in which fk = 1 if feature f is contained in the profile of user k. We considered two
subset of top-50 selected directors in explicit profiles and implicit profiles and we
computed their corresponding distribution and standard deviation (std), denoted
as σf,e and σf,i, respectively (like done for genres in section 5.2.2).

In table 5.17 the directors with the highest std across explicit and implicit
profiles are shown, i.e. the directors for which users’ tastes diverge most. In
table 5.18 instead we show the ones with the lowest std.

Table 5.17: Directors with the highest std across explicit and implicit user profiles

Director with the highest std σf,e σf,i |σf,e − σf,i|

Across explicit profiles Quentin Tarantino 0.278093 0.296608 0.018516
Across implicit profiles Anthony Russo 0.113223 0.491486 0.378263

Table 5.18: Directors with the lowest std across explicit and implicit user profiles

Director with the lowest std σf,e σf,i |σf,e − σf,i|

Across explicit profiles Bryan Singer 0.080322 0.435347 0.355025
Across implicit profiles Aleksey Sidorov 0.000000 0.313500 0.313500

Investigating results of tables 5.16, 5.17 and 5.18, it can be noticed that "Quantin
Tarantino" is the director for which explicit user tastes diverge most, but at the
same time it is also the most explicitly rated director by male users, together with
"Steven Spielberg". The same interesting result regards also "Anthony Russo"
across implicit profiles, it is the most implicitly favoured by female users but the
one with the highest implicit std (i.e., for which implicit users tastes diverge most).

For completeness of our analysis, in figure 5.12 we also show 4 charts of the top-5
directors with the highest std across explicit profiles and across implicit profiles
(respectively, at top) and the top-5 with the lowest std (at bottom).

5.2. Global analysis of explicit/implicit preferences 55

Qu
en

tin
 ta

ra
nt

in
o

St
ev

en
 sp

ie
lb

er
g

Jo
e

ru
ss

o

Ch
ris

to
ph

er
 n

ol
an

M
. n

ig
ht

 sh
ya

m
al

an

Directors

0.0

0.1

0.2

0.3

0.4

0.5

st
d

ac
ro

ss
 u

se
r p

ro
fil

es

0.2781 0.2781 0.2681
0.2465

0.222

0.2966

0.3363

0.4915

0.3135

0.439

Top-5 directors with the highest std across explicit profiles
Std across explicit prof.
Std across implicit prof.

An
th

on
y

ru
ss

o

Jo
e

ru
ss

o

Ch
ris

 c
as

ta
ld

i

Ha
ja

r m
ai

nl

El
i s

as
ich

Directors

0.1132

0.2681

0 0 0

0.4915 0.4915 0.4901 0.4901 0.4887
Top-5 directors with the highest std across implicit profiles

Std across explicit prof.
Std across implicit prof.

Do
ug

 li
m

an

Al
fo

ns
o

cu
ar

ón

Gu
ille

rm
o

de
l t

or
o

Ju
liu

sz
 m

ac
hu

lsk
i

Br
ya

n
sin

ge
r

Directors

0.0

0.1

0.2

0.3

0.4

st
d

ac
ro

ss
 u

se
r p

ro
fil

es

0.0803 0.0803 0.0803 0.0803 0.0803

0.1382

0.1773

0.0803 0.0803

0.4353
Top-5 directors with the lowest std across explicit profiles

Std across explicit prof.
Std across implicit prof.

Da
vi

d
le

itc
h

Lis
a

c.
 sa

tri
an

o

Al
ek

se
y

sid
or

ov

Tr
ud

y
ra

m
ire

z

Jo
ss

 w
he

do
n

Directors

0.1132

0 0 0

0.1132

0.3135 0.3135 0.3135 0.3214 0.3214

Top-5 directors with the lowest std across implicit profiles
Std across explicit prof.
Std across implicit prof.

Figure 5.12: Top-5 directors with the highest std across explicit profiles and across
implicit profiles (respectively, at top) and the top-5 with the lowest std (at
bottom)

5.3. Evaluation of user profiling methods 57

5.3 Evaluation of user profiling methods

In this section we study the user profiling step in-depth by investigating the 4
user profiling methods described in Section 4.1. Our aim is to analyze the similarity
(i.e., the overlap) between the implicitly modelled user profiles and the real explicit
tastes of users. For each target user u, we built his or her explicit profile p′

u as
vector composed of relevance weights equal to 1, for all the features explicitly rated
by u, and weight 0 for the ones not rated. Then we computed the pairwise similarity
between the explicit user profiles and implicit profiles pu produced by each method,
using cosine similarity and Jaccard similarity, given the assumptions described in
section 4.1.6. The highest is this similarity, the most accurate is the implicit user
profile modelled.

In the first subsection we provide an overview of effectiveness of profiling methods,
then in the next subsections we analyze in deep the methods considering only genres,
actors and directors, separately.

5.3.1 Overview on pairwise similarity between user profiles

The average pairwise similarity sim(pu,p
′
u) between implicit user profile pu and

explicit one p′
u is shown in Table 5.19 and in separated charts for each feature type,

in figures 5.13, 5.14 and 5.15.

In table 5.20 we show the 95% confidence intervals for the pairwise similarity
sim(pu,p

′
u), for each user profiling method and each type of feature). To compute

the confidence intervals for each method and feature type we used the t-distribution
score, considering the average of pairwise similarity reported in Table 5.19 and
the standard deviation σ/

√
|U|, in which σ is the standard deviation of pairwise

similarity of profiles and the denominator is the number of users (i.e., equal to the
number of user profiles considered).

As revealed in the tables and already anticipated in Section 4.1, the TF-IDF
method yields better results than Symeonidis even if they are intrinsically similar,
hence the item-centric TF-IDF approach outperforms the user profle-based one.
In general, the average pairwise similarities are remarkably low, even for the best
investigated method, i.e., Li. The overlap between explicit and implicit profiles
increases if we consider only genres; the reason is that the catalogue of all possible
genres in the dataset is rather limited (19) compared to actors (567K) and directors
(58K). The Jaccard measure yields lower similarities because it can be applied
only to vectors composed of binary attributes while our tested profiling methods
compute scalar weights (except for Zhang); hence we had to cut-off some feature

58 Chapter 5. Experimental Results

weights by considering only the k most relevant features in the implicit profile of
each user considered, in which k is the number of explicit features rated by that
user.

The confidence intervals reported in table 5.20 show the intervals which the
average pairwise similarities would fall into with a sample of user profiles different
from the one analyzed (i.e., greater or less than our 155 users), with a confidence
equal to 95%. For instance, the best performing method tested, i.e., Li, builds
implicit user profiles whose average pairwise similarity with explicit profiles is
between 54.72% and 61.42%, with confidence 95%.

Table 5.19: Average pairwise similarity between explicit and implicit user profiles, for
all the methods.

Similarity Feature Zhang m. Li m. Symeonidis m. tf-idf m.

Cosine
Genre 48.52% 58.07% 42.00% 53.08%
Actor 7.03% 9.13% 6.50% 7.24%
Director 15.17% 17.24% 15.32% 16.14%

Jaccard
Genre 27.49% 36.19% 18.54% 33.36%
Actor 0.97% 5.73% 2.87% 4.64%
Director 5.22% 10.24% 6.30% 8.17%

Table 5.20: 95% confidence intervals of pairwise similarity between explicit and implicit
user profiles, for all the methods.

Cosine similarity
Feature Zhang m. Li m. Symeonidis m. tf-idf m.

Genre (45.99%, 51.04%) (54.72%, 61.42%) (38.59%, 45.42%) (49.64%, 56.52%)
Actor (6.10%, 7.96%) (7.95%, 10.31%) (5.49%, 7.51%) (6.26%, 8.22%)
Director (12.51%, 17.83%) (14.20%, 20.27%) (12.40%, 18.24%) (13.25%, 19.02%)

Jaccard similarity
Feature Zhang m. Li m. Symeonidis m. tf-idf m.

Genre (25.19%, 29.78%) (34.09%, 43.15%) (15.31%, 21.77%) (29.00%, 37.71%)
Actor (0.74%, 1.19%) (3.90%, 7.70%) (1.65%, 4.09%) (2.82%, 6.46%)
Director (3.65%, 6.79%) (5.45%, 14.00%) (2.87%, 9.74%) (4.25%, 12.08%)

In the next sub-sections we analyze in deep the number of user profiles within
each range of pairwise similarity, considering only genres, actors and directors as
features, separately.

5.3. Evaluation of user profiling methods 59

Zh
an

g Li

Sy
m

eo
ni

di
s

tf-
id

f

User profile modelling methods

0

10

20

30

40

50

60

%
 A

ve
ra

ge
 p

ai
rw

ise
 si

m
ila

rit
y

48.52

58.07

42

53.08

27.49

36.19

18.54

33.36

Average pairwise similarity of user profiles related to genre
Cosine sim.
Jaccard sim.

Figure 5.13: Average pairwise similarity between all explicit and implicit user profiles
related to genres for all the methods

Zh
an

g Li

Sy
m

eo
ni

di
s

tf-
id

f

User profile modelling methods

0

2

4

6

8

%
 A

ve
ra

ge
 p

ai
rw

ise
 si

m
ila

rit
y 7.03

9.13

6.5
7.24

0.97

5.73

2.87

4.64

Average pairwise similarity of user profiles related to actor
Cosine sim.
Jaccard sim.

Figure 5.14: Average pairwise similarity between all explicit and implicit user profiles
related to actors for all the methods

60 Chapter 5. Experimental Results

Zh
an

g Li

Sy
m

eo
ni

di
s

tf-
id

f

User profile modelling methods

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
%

 A
ve

ra
ge

 p
ai

rw
ise

 si
m

ila
rit

y
15.17

17.24

15.32
16.14

5.22

10.24

6.3

8.17

Average pairwise similarity of user profiles related to director
Cosine sim.
Jaccard sim.

Figure 5.15: Average pairwise similarity between all explicit and implicit user profiles
related to directors for all the methods

5.3.2 Genre

To compare the outcomes of the user profile modelling methods, considering
only genres as features, we show the number of user profiles within each range of
similarity between explicit and implicit.

The results for genres are shown in Table 5.21 and in figures 5.16 and 5.16.

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%
cosine similarity ranges

0

10

20

30

40

50

Nu
m

. o
f u

se
r p

ro
fil

es
 in

 ra
ng

e

3
6

11
9

1
5

19

4

19

7

16

11 1110

30

14

39

16
19

27

52

26
2223

20

37

21

27

6

28

13

29

3

16

3

8

1
4
1
3

User profiles related to genre within each cosine similarity range, for each method
Zhang
Li
Symeonidis
tf-idf

Figure 5.16: Number of user profiles within each range of pairwise cosine similarity
between explicit and implicit, considering only genres as features

5.3. Evaluation of user profiling methods 61

Table 5.21: Number of user profiles within each range of pairwise similarity between
explicit and implicit, considering only genres as features

Similarity Similarity ranges Zhang m. Li m. Symeonidis m. tf-idf m.

Cosine

0-10% 3 6 11 9
10-20% 1 5 19 4
20-30% 19 7 16 11
30-40% 11 10 30 14
40-50% 39 16 19 27
50-60% 52 26 22 23
60-70% 20 37 21 27
70-80% 6 28 13 29
80-90% 3 16 3 8
90-100% 1 4 1 3

Jaccard

0-10% 9 33 71 36
10-20% 30 2 8 9
20-30% 72 11 17 9
30-40% 22 57 39 53
40-50% 15 9 6 10
50-60% 4 19 7 16
60-70% 3 7 5 8
70-80% 3 1 1 1
80-90% 1 0 0 0
90-100% 0 16 1 13

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%
jaccard similarity ranges

0

10

20

30

40

50

60

70

Nu
m

. o
f u

se
r p

ro
fil

es
 in

 ra
ng

e

9

33

71

36
30

2
89

72

11
17

9

22

57

39

53

15
9
6
10

4

19

7

16

3
75
8

3111 1000 0

16

1

13

User profiles related to genre within each jaccard similarity range, for each method
Zhang
Li
Symeonidis
tf-idf

Figure 5.17: Number of user profiles within each range of pairwise Jaccard similarity
between explicit and implicit, considering only genres as features

62 Chapter 5. Experimental Results

In particular, the number of user profiles with pairwise similarity exactly equal
to 0% and 100% are shown in Table 5.22.

Table 5.22: Number of user profiles with pairwise similarity between explicit and implicit
equal to 0% and 100%, considering only genres as features

Similarity Similarity score Zhang m. Li m. Symeonidis m. tf-idf m.

Cosine 0% 3 3 3 3
100% 0 0 0 0

Jaccard 0% 3 33 71 36
100% 0 16 1 13

These results underline that Li and TF-IDF methods are the ones performing
better, they produce the highest number of implicit user profiles with high range of
similarity with explicit profiles, especially considering Jaccard similarity.

5.3.3 Actor

The results of pairwise similarity ranges of user profiles, considering only actors
as features, are shown in Table 5.23 and in figures 5.18 and 5.18.

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%
cosine similarity ranges

0

20

40

60

80

100

120

Nu
m

. o
f u

se
r p

ro
fil

es
 in

 ra
ng

e

121

91

121118

27

48

2730

7
15
67

0110 0000 0000 0000 0000 0000 0000

User profiles related to actor within each cosine similarity range, for each method
Zhang
Li
Symeonidis
tf-idf

Figure 5.18: Number of user profiles within each range of pairwise cosine similarity
between explicit and implicit, considering only actors as features

In particular, the number of user profiles with pairwise similarity exactly equal
to 0% and 100% are shown in Table 5.24.

The pairwise similarities between user profiles are very low if we consider only
actors, even with the best performing method (e.g., Li). Hence, these result
underline the need of further research on user profiling methods, especially in case

5.3. Evaluation of user profiling methods 63

Table 5.23: Number of user profiles within each range of pairwise similarity between
explicit and implicit, considering only actors as features

Similarity Similarity ranges Zhang m. Li m. Symeonidis m. tf-idf m.

Cosine

0-10% 121 91 121 118
10-20% 27 48 27 30
20-30% 7 15 6 7
30-40% 0 1 1 0
40-50% 0 0 0 0
50-60% 0 0 0 0
60-70% 0 0 0 0
70-80% 0 0 0 0
80-90% 0 0 0 0
90-100% 0 0 0 0

Jaccard

0-10% 155 119 135 126
10-20% 0 15 9 9
20-30% 0 14 9 16
30-40% 0 4 0 2
40-50% 0 0 0 0
50-60% 0 2 2 1
60-70% 0 0 0 0
70-80% 0 0 0 0
80-90% 0 0 0 0
90-100% 0 1 0 1

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%
jaccard similarity ranges

0

20

40

60

80

100

120

140

160

Nu
m

. o
f u

se
r p

ro
fil

es
 in

 ra
ng

e

155

119

135
126

0

15
99

0

149
16

0402 0000 0221 0000 0000 0000 0101

User profiles related to actor within each jaccard similarity range, for each method
Zhang
Li
Symeonidis
tf-idf

Figure 5.19: Number of user profiles within each range of pairwise Jaccard similarity
between explicit and implicit, considering only actors as features

64 Chapter 5. Experimental Results

Table 5.24: Number of user profiles with pairwise similarity between explicit and implicit
equal to 0% and 100%, considering only actors as features

Similarity Similarity score Zhang m. Li m. Symeonidis m. tf-idf m.

Cosine 0% 30 30 32 32
100% 0 0 0 0

Jaccard 0% 30 110 126 119
100% 0 1 0 1

of features like actors because the cast of each movie contains a high number of
actors, which are implicitly estimated (wrongly) as favorites.

5.3.4 Director

The results of pairwise similarity ranges of user profiles, considering only directors
as features, are shown in Table 5.25 and in figures 5.20 and 5.20.

Table 5.25: Number of user profiles within each range of pairwise similarity between
explicit and implicit, considering only directors as features

Similarity Similarity ranges Zhang m. Li m. Symeonidis m. tf-idf m.

Cosine

0-10% 66 67 76 68
10-20% 32 23 29 30
20-30% 31 28 24 26
30-40% 18 21 11 16
40-50% 3 6 7 8
50-60% 2 6 3 3
60-70% 0 0 2 0
70-80% 2 2 2 2
80-90% 1 2 1 2
90-100% 0 0 0 0

Jaccard

0-10% 129 131 137 135
10-20% 19 2 4 1
20-30% 3 1 1 2
30-40% 1 6 5 6
40-50% 0 2 1 1
50-60% 2 0 0 0
60-70% 0 1 0 1
70-80% 1 0 0 0
80-90% 0 0 0 0
90-100% 0 12 7 9

In particular, the number of user profiles with pairwise similarity exactly equal
to 0% and 100% are shown in Table 5.26.

5.3. Evaluation of user profiling methods 65

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%
cosine similarity ranges

0

10

20

30

40

50

60

70

Nu
m

. o
f u

se
r p

ro
fil

es
 in

 ra
ng

e

6667

76

68

32

23
2930 31

28
2426

18
21

11
16

3
678

2
6
33

0020 2222 1212 0000

User profiles related to director within each cosine similarity range, for each method
Zhang
Li
Symeonidis
tf-idf

Figure 5.20: Number of user profiles within each range of pairwise cosine similarity
between explicit and implicit, considering only directors as features

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%
jaccard similarity ranges

0

20

40

60

80

100

120

140

Nu
m

. o
f u

se
r p

ro
fil

es
 in

 ra
ng

e

129131
137135

19

241 3112 1
656

0211 2000 0101 1000 0000 0

12
79

User profiles related to director within each jaccard similarity range, for each method
Zhang
Li
Symeonidis
tf-idf

Figure 5.21: Number of user profiles within each range of pairwise Jaccard similarity
between explicit and implicit, considering only directors as feature

Table 5.26: Number of user profiles with pairwise similarity between explicit and implicit
equal to 0% and 100%, considering only directors as features

Similarity Similarity score Zhang m. Li m. Symeonidis m. tf-idf m.

Cosine 0% 65 65 65 65
100% 0 0 0 0

Jaccard 0% 65 131 137 135
100% 0 12 7 9

66 Chapter 5. Experimental Results

Considering only directors as features, the overlap (i.e., the similarity) between
implicit user profiles and explicit is slightly higher with respect to the results
presented for actors (particularly with cosine similarity). The reason for this small
improvement is that each movie contains only few directors, hence it’s slightly
more probable that these extracted attributes from rated movies are similar the
ones explicitly rated by users. Anyway, all these 4 profiling methods have in
general a low effectiveness, especially compared to the results reported for genres
(in section 5.3.2).

5.4 Recommender System Evaluation

The results presented in previous sections for all the three types of features,
underline the low effectiveness of the investigated user profiling methods to model
real user tastes. This finding gives rise to the need of further research on this
important user profiling step when devising recommender systems. If user profiles
are not properly modelled before applying any RS technique, the accuracy of
the final recommendations will likely be affected and lowered by an inaccurate
representation of the user’s tastes.

In this section we present the results obtained by experimenting 3 models of
recommender systems: (i) collaborative filtering and (iii) 2 different hybrid RS. The
settings for these RS models and for the evaluation are described in section 4.2. For
all the RS models tested, we used the same train and test sets of movie ratings. We
divided the movie ratings randomly (with seed 2147483647) with a holdout strategy,
80% for the train set (1,389 movie ratings), 20% for the test set (347 movie ratings).
We cut the output of recommendation list to 3 predicted items.

Collaborative filtering (CF): We experimented an item-based CF recommender
system, by considering only movies rated by the reliable users. The results shown
in the first 2 columns of AUC and MAP in table 5.27 are obtained in specific with
item-based CF KNN considering several values for k neighbors in the KNN.

As revealed in table 5.27, the best accuracy for item-based CF KNN with cosine
similarity is obtained by setting k = 2 as number of neighbors considered, because
it gives the highest values of AUC and MAP. Also with Jaccard similarity the best
result is obtained with k = 2 and this is also the most accurate overall, among
cosine and Jaccard results.

After that, we experimented an hybrid approach with two models, one built from

5.5. Insights from user profiling and recommendation evaluation 67

explicit feature ratings and the other one from implicit feature ratings obtained
by the best modelled user profiling method, i.e. Li method, as we revealed in
section 5.3.1.
Explicit user-user hybrid: The first user-user hybrid RS, that we call explicit,
is built with user-user hybrid KNN considering reliable users, their rated movies
and their explicit profiles composed by their favoured attributes (genres, actors,
directors) to compute the correlation. The results for the explicit hybrid RS are
reported in the second pair of columns AUC and MAP in table 5.27.

Implicit user-user hybrid: The latter hybrid RS, that we call implicit, is built
by applying the Li method to extract the implicit user profiles from rated movies
contained in the train set only. Then, we kept for each user and for each type of
attribute (genres, actors, directors) only n implicit preferences with the highest
relevance score (computed by Li method), where n is the number of explicit prefer-
ences expressed for that attribute type. For instance, if a user explicitly selected 2
favoured genres on mints, then only the 2 implicit genres with the highest relevance
score are considered. The results for the implicit hybrid RS are reported in the
third (and last) pair of columns AUC and MAP in table 5.27.

The explicit hybrid RS provided the best results (i.e., the highest AUC and
MAP values) by using Jaccard similarity and k = 4 neighbors in the KNN, while
the implicit hybrid RS was more accurate with cosine similarity and k = 4. Overall,
both the the two user-user hybrid RS performed much better than the CF KNN
because their AUC and MAP values are much higher. In table 5.27 we highlighted
in bold the best result for each RS, depending on k and similarity function.

In figures 5.22 and 5.23 we represent the comparison between AUC and MAP
scores, respectively, for the explicit and implicit hybrid RS, by considering only
the similarity function providing better results, i.e., cosine for the explicit RS and
Jaccard for the implicit one.

5.5 Insights from user profiling and recommenda-

tion evaluation

In table 5.28 we summarize the best results of the evaluation of user profiling
stage and of recommendations, extracted from what has been shown in the entire
chapter 5.

The best investigated user profiling method, i.e., Li, provided, as average, poor

68 Chapter 5. Experimental Results

Table 5.27: Results of CF KNN, explicit user-user hybrid and implicit user-user hybrid,
depending on k neighbors considered and similarity function

Item-based CF Explicit Hybrid Implicit Hybrid
Similarity k AUC MAP AUC MAP AUC MAP

Cosine
2 0.60679 0.05799 0.61588 0.11263 0.62024 0.09106
3 0.59391 0.04678 0.63739 0.11867 0.62477 0.11565
4 0.59388 0.04760 0.64599 0.11867 0.63340 0.11927

Jaccard
2 0.61119 0.06640 0.61587 0.11215 0.60295 0.07512
3 0.61111 0.06339 0.63312 0.12436 0.61179 0.09874
4 0.61116 0.05872 0.64174 0.12509 0.61610 0.10236

2 3 4
k neighbors considered in KNN

0.615

0.620

0.625

0.630

0.635

0.640

AU
C

0.61587

0.63312

0.64174

0.62024

0.62477

0.63340

AUC scores for explicit and implicit user-user hybrid RS
Explicit RS
Implicit RS

Figure 5.22: AUC scores for explicit and implicit user-user hybrid RS

2 3 4
k neighbors considered in KNN

0.090

0.095

0.100

0.105

0.110

0.115

0.120

0.125

M
AP

0.11215

0.12436 0.12509

0.09106

0.11565

0.11927

MAP scores for explicit and implicit user-user hybrid RS
Explicit RS
Implicit RS

Figure 5.23: MAP scores for explicit and implicit user-user hybrid RS

5.5. Insights from user profiling and recommendation evaluation 69

results of similarity between the modeled implicit user profiles (by the method)
and the explicit preferences selected by the users. The only exception is given by
considering only genre attributes because the catalogue of existing genres is limited.
Hence, our isolated evaluation of user profiling stage encourages to improve user
profiling methods to better model the real users’ tastes. The two hybrid RS models
proposed, in order to integrate explicit feature ratings, in one case, and implicit
preferences from modeled user profile, in the second case, confirmed the need and
the usefulness of embedding the preferences about item attributes in a RS, as much
accurate as possible (i.e., most similar to real user tastes). In fact, the two hybrid
RS presented higher values of AUC and MAP than the CF algorithm, which did not
integrate information on user profiles and item content. Furthermore, the explicit
hybrid RS, embedding true explicit feature preferences, produced more accurate
recommendations than the implicit one, embedding implicit user profile with Li
method.

Overall, our evaluation results of user profiling step alone and of recommenda-
tions, highlight the importance and the need for more in-depth research on user
profiling methods and on RS models to embed this information.

Table 5.28: Summary results of user profiling and recommendations evaluation

Best investigated profiling method Li
Maximum avg. pairwise similarity between ex-
plicit and implicit user profiles, considering genres
only

58.07%

Maximum avg. pairwise similarity between ex-
plicit and implicit user profiles, considering actors
only

9.13%

Maximum avg. pairwise similarity between ex-
plicit and implicit user profiles, considering direc-
tors only

17.24%

Highest AUC and MAP of CF RS 0.61119 AUC, 0.06640 MAP
Highest AUC and MAP of explicit hybrid RS 0.64174 AUC, 0.12509 MAP
Highest AUC and MAP of implicit hybrid RS 0.63340 AUC, 0.11927 MAP

Conclusions

In this work, we analyzed in-depth the user profile modeling problem, which is
a key part of personalized recommender systems based on content, by studying the
differences between explicit user preferences and implicit user profiles. The explicit
user profile is composed of feature-level preference scores provided by the user (e.g.,
through surveys or ratings), while the implicit profile is built by inferring feature-
level preference scores starting from item-level ratings. Typically recommender
systems use the implicit user profiles, mainly because they do not collect explicit
feature-level preference scores from users. The goal of this work was, therefore, to
investigate the importance and effectiveness of user profiling stage by studying the
implicit profiles inferred via state-of-the-art user profiling techniques. To this end,
we analyzed the gap between explicit and implicit profiles and we evaluated the
final accuracy of recommendations based on these profiles.

We built a web application, called mints, in order to collect explicit feature-level
ratings from users via a free navigation through any existing movie or related feature
(genres, actors, directors,...). Then we used the collected ratings as a ground-truth
to evaluate user profiling methods, by analyzing the pairwise similarity between
explicit and implicit user profiles.

Our results showed a maximum average pairwise cosine similarity of 58.07%
between the explicit feature preferences and the implicit user profiles modelled by the
best investigated profiling method and considering movies’ genres only. Considering
actors and directors, this maximum similarity is only 9.13% and 17.24%, respectively.
These results mean that there is a low overlap (i.e., a gap) between modelled implicit
profiles and true explicit preferences, hence that the investigated user profiling
methods do not model real users’ tastes accurately.

To provide a finer-grained analysis on the quality/usefulness of user profiling
stage we also experimented 3 RS models: (i) item-based collaborative filtering,
considering only movie ratings, (ii) explicit user-user hybrid RS, embedding explicit
feature ratings, and (iii) implicit user-user hybrid RS, embedding implicit user
profiles built with the best-investigated method. We showed that both the hybrid
RSs, which integrate feature preferences, resulted in better recommendation quality

71

72 Conclusions

compared with a classical item-based CF, which considers only item ratings, with
respect to AUC and MAP@3 metrics. Furthermore, our hybrid RS with explicit
preferences performed better than the same model integrating the implicit user
profiles, built with the best-investigated profiling method. Therefore, these results
underline again that user profiling methods are extremely important in content-
driven recommender systems and they should be studied more in-depth in order to
reach the accuracy provided by true feature preferences, evaluated also on the final
output of RS.

The imperial results of evaluation performed in this research showed that if
user profile are not computed accurately, they can in turn affect the quality of
recommendations. It is therefore our belief, that more efforts should be made on
collecting novel preference elicitation methods that can collect reliable user opinion
on content features and the core user modelling stage thereby.

As a contribution to research in this field, we publicly release the web application1,
which can be used in the future to acquire explicit preferences of more users in
order to enrich the current dataset, which we provide at http://bit.ly/2XzIYyL.
Other ways to acquire feature ratings, without asking them explicitly, could be, for
instance, the collection of implicit feedbacks provided by users. For instance, if a
user searches movies filtered by "action" genre, it could be estimated that the user
implicitly likes this genre.

The limitations of our work are the following: (i) first, we evaluated only 4 user
profiling methods proposed in the literature, (ii) second, we evaluated only two
hybrid RS models. Surely future studies on more user profiling methods and hybrid
RS models embedding user profiles could advance furthermore the research, also by
using a larger dataset than ours.

1mints: movieinterests.herokuapp.com

http://bit.ly/2XzIYyL
https://movieinterests.herokuapp.com/

Acronyms

RS Recommender system

IR Information retrieval

MRS Movie recommender system

URM User rating matrix

The user rating matrix (URM) is matrix form used to represent the ratings of
users to items (see section 2.1.1).

ICM Item content matrix

The item content matrix (ICM) is matrix form used to represent the profiles of
the items (see section 2.1.1).

UCM User content matrix

CS Cold start

WS Warm start

CBF Content-based filtering

CF Collaborative filtering

VSM Vector space model

TF-IDF Term Frequency-Inverse Document Frequency

IMDb Internet Movie Database (IMDb): www.imdb.com

IMDb (Internet Movie Database) is an online database of information related to
films, television programs, home videos and video games, and internet streams,
including cast, production crew and personnel biographies, plot summaries, trivia,
and fan reviews and ratings. An additional fan feature, message boards, was
abandoned in February 2017. Originally a fan-operated website, the database is
owned and operated by IMDb.com, Inc., a subsidiary of Amazon.
www.imdb.com

73

www.imdb.com
www.imdb.com

74 Acronyms

TMDb The Movie Database (TMDb): www.themoviedb.org

The Movie Database (TMDb) is a community built movie and TV database.
Every piece of data has been added by our amazing community dating back
to 2008. TMDb’s strong international focus and breadth of data is largely
unmatched and something we’re incredibly proud of. Put simply, we live and
breathe community and that’s precisely what makes us different.
www.themoviedb.org

MovieLens MovieLens: movielens.org

MovieLens is a research site run by GroupLens Research at the University
of Minnesota. MovieLens uses "collaborative filtering" technology to make
recommendations of movies that you might enjoy, and to help you avoid the ones
that you won’t. Based on your movie ratings, MovieLens generates personalized
predictions for movies you haven’t seen yet. MovieLens is a unique research
vehicle for dozens of undergraduates and graduate students researching various
aspects of personalization and filtering technologies. GroupLens Research has
collected and made available rating data sets from the MovieLens web site.
movielens.org

MTurk Amazon Mechanical Turk (MTurk): www.mturk.com

Amazon Mechanical Turk (MTurk) is a crowdsourcing marketplace that makes
it easier for individuals and businesses to outsource their processes and jobs to a
distributed workforce who can perform these tasks virtually. This could include
anything from conducting simple data validation and research to more subjective
tasks like survey participation, content moderation, and more. MTurk enables
companies to harness the collective intelligence, skills, and insights from a global
workforce to streamline business processes, augment data collection and analysis,
and accelerate machine learning development.
www.mturk.com

mints movie Interests (mints): movieinterests.herokuapp.com

movie Interests (mints) is the web application built by us for the project in order
to collect the dataset of users and their explicit favorite movies and features.
movieinterests.herokuapp.com

target user target user: the user we are recommending items to

www.themoviedb.org
www.themoviedb.org
movielens.org
movielens.org
www.mturk.com
www.mturk.com
movieinterests.herokuapp.com
movieinterests.herokuapp.com

Bibliography

[1] Charu C Aggarwal. “An introduction to recommender systems”. In:
Recommender systems. Springer, 2016, pp. 1–28 (cit. on p. 1).

[2] Hyung Jun Ahn. “A new similarity measure for collaborative filtering to
alleviate the new user cold-starting problem”. In: Information Sciences 178.1
(Jan. 2008), pp. 37–51. issn: 0020-0255. doi: 10.1016/J.INS.2007.07.024.
url: https:
//www.sciencedirect.com/science/article/pii/S0020025507003751

(cit. on p. 10).

[3] James Allan et al. “Topic Detection and Tracking Pilot Study Final Report”.
In:
Proceedings of the Darpa broadcast news transcription and understanding
(1998), pp. 194–218. url:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.6373

(cit. on p. 20).

[4] Fahad Anwaar et al. “HRS-CE: A hybrid framework to integrate content
embeddings in recommender systems for cold start items”. In:
J. Comput. Science 29 (2018), pp. 9–18. doi:
10.1016/j.jocs.2018.09.008. url:
https://doi.org/10.1016/j.jocs.2018.09.008 (cit. on p. 2).

[5] Rounak Banik. The Movies Dataset. Dataset on Kaggle. Version 7. 2017.
url: https://www.kaggle.com/rounakbanik/the-movies-dataset
(cit. on p. 3).

[6] Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, eds.
The Adaptive Web, Methods and Strategies of Web Personalization.
Vol. 4321. Lecture Notes in Computer Science. Springer, 2007. isbn:
978-3-540-72078-2. doi: 10.1007/978-3-540-72079-9. url:
https://doi.org/10.1007/978-3-540-72079-9.

75

https://doi.org/10.1016/J.INS.2007.07.024
https://www.sciencedirect.com/science/article/pii/S0020025507003751
https://www.sciencedirect.com/science/article/pii/S0020025507003751
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.6373
https://doi.org/10.1016/j.jocs.2018.09.008
https://doi.org/10.1016/j.jocs.2018.09.008
https://www.kaggle.com/rounakbanik/the-movies-dataset
https://doi.org/10.1007/978-3-540-72079-9
https://doi.org/10.1007/978-3-540-72079-9

76 Bibliography

[7] Francesca Carmagnola et al. “Tag-based user modeling for social multi-device
adaptive guides”. In: User Modeling and User-Adapted Interaction 18.5
(Nov. 2008), pp. 497–538. issn: 0924-1868. doi:
10.1007/s11257-008-9052-2. url:
http://link.springer.com/10.1007/s11257-008-9052-2 (cit. on p. 19).

[8] William Cohen and Haym Hirsh. “Joins that Generalize: Text Classification
Using WHIRL”. In:
Proc. of the 4th Int’l Conference on Knowledge Discovery and Data Mining.
1998, pp. 169–173 (cit. on p. 20).

[9] Paolo Cremonesi and Roberto Turrin. “Analysis of cold-start
recommendations in IPTV systems”. In:
Proceedings of the 3th ACM conference on Recommender systems. New
York, New York, USA: ACM Press, 2009, p. 233. isbn: 9781605584355. doi:
10.1145/1639714.1639756. url:
http://portal.acm.org/citation.cfm?doid=1639714.1639756 (cit. on
p. 10).

[10] Yashar Deldjoo and Markus Schedl. “Retrieving Relevant and Di-
verse Movie Clips Using the MFVCD-7K Multifaceted Video Clip Dataset”. In:
Proceedings of the 17th Int. Workshop on Content-Based Multimedia Indexing.
2019 (cit. on p. 3).

[11] Yashar Deldjoo et al. “Audio-visual encoding of multimedia content for
enhancing movie recommendations”. In:
Proceedings of the 12th ACM Conference on Recommender Systems.
Ed. by Sole Pera et al. ACM, 2018, pp. 455–459. isbn: 978-1-4503-5901-6.
doi: 10.1145/3240323.3240407. url:
https://doi.org/10.1145/3240323.3240407 (cit. on p. 2).

[12] Yashar Deldjoo et al. “Content-Based Multimedia Recommendation Systems:
Definition and Application Domains”. In:
Proceedings of the 9th Italian Information Retrieval Workshop. Ed. by
Nicola Tonellotto, Luca Becchetti, and Marko Tkalcic. Vol. 2140. CEUR
Workshop Proceedings. CEUR-WS.org, 2018. url:
http://ceur-ws.org/Vol-2140/paper15.pdf (cit. on p. 2).

[13] Yashar Deldjoo et al. “MMTF-14K: a multifaceted movie trailer feature
dataset for recommendation and retrieval”. In:
Proceedings of the 9th ACM Multimedia Systems Conference. Ed. by
Pablo César, Michael Zink, and Niall Murray. ACM, 2018, pp. 450–455. doi:

https://doi.org/10.1007/s11257-008-9052-2
http://link.springer.com/10.1007/s11257-008-9052-2
https://doi.org/10.1145/1639714.1639756
http://portal.acm.org/citation.cfm?doid=1639714.1639756
https://doi.org/10.1145/3240323.3240407
https://doi.org/10.1145/3240323.3240407
http://ceur-ws.org/Vol-2140/paper15.pdf

Bibliography 77

10.1145/3204949.3208141. url:
https://doi.org/10.1145/3204949.3208141 (cit. on p. 3).

[14] Yashar Deldjoo et al. “Movie genome: alleviating new item cold start in
movie recommendation”. In: User Model. User-Adapt. Interact. 29.2 (2019),
pp. 291–343. doi: 10.1007/s11257-019-09221-y. url:
https://doi.org/10.1007/s11257-019-09221-y (cit. on p. 2).

[15] Fuhu Deng et al. “Leveraging Image Visual Features in Content-Based
Recommender System”. In: Scientific Programming 2018 (2018),
5497070:1–5497070:8. doi: 10.1155/2018/5497070. url:
https://doi.org/10.1155/2018/5497070 (cit. on p. 2).

[16] Mehdi Elahi et al. “Exploring the Semantic Gap for Movie
Recommendations”. In:
Proceedings of the 11th ACM Conference on Recommender Systems.
Ed. by Paolo Cremonesi et al. ACM, 2017, pp. 326–330. isbn:
978-1-4503-4652-8. doi: 10.1145/3109859.3109908. url:
https://doi.org/10.1145/3109859.3109908 (cit. on p. 2).

[17] Ralph Jose Rassweiler Filho, Jonatas Wehrmann, and Rodrigo C. Barros.
“Leveraging deep visual features for content-based movie recommender
systems”. In:
2017 International Joint Conference on Neural Networks, IJCNN. IEEE,
2017, pp. 604–611. isbn: 978-1-5090-6182-2. doi:
10.1109/IJCNN.2017.7965908. url:
https://doi.org/10.1109/IJCNN.2017.7965908 (cit. on p. 2).

[18] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. “Beyond
accuracy”. In:
Proceedings of the fourth ACM conference on Recommender systems. New
York, New York, USA: ACM Press, 2010, p. 257. isbn: 9781605589060. doi:
10.1145/1864708.1864761. url:
http://portal.acm.org/citation.cfm?doid=1864708.1864761 (cit. on
p. 12).

[19] DANIELA GODOY and ANALIA AMANDI. “User profiling in personal
information agents: a survey”. In: The Knowledge Engineering Review 20.04
(Dec. 2005), p. 329. issn: 0269-8889. doi: 10.1017/S0269888906000397.
url:
http://www.journals.cambridge.org/abstract_S0269888906000397

(cit. on p. 19).

https://doi.org/10.1145/3204949.3208141
https://doi.org/10.1145/3204949.3208141
https://doi.org/10.1007/s11257-019-09221-y
https://doi.org/10.1007/s11257-019-09221-y
https://doi.org/10.1155/2018/5497070
https://doi.org/10.1155/2018/5497070
https://doi.org/10.1145/3109859.3109908
https://doi.org/10.1145/3109859.3109908
https://doi.org/10.1109/IJCNN.2017.7965908
https://doi.org/10.1109/IJCNN.2017.7965908
https://doi.org/10.1145/1864708.1864761
http://portal.acm.org/citation.cfm?doid=1864708.1864761
https://doi.org/10.1017/S0269888906000397
http://www.journals.cambridge.org/abstract_S0269888906000397

78 Bibliography

[20] Asela Gunawardana and Guy Shani. “A Survey of Accuracy Evaluation
Metrics of Recommendation Tasks”. In:
Journal of Machine Learning Research 10.Dec (2009), pp. 2935–2962. issn:
ISSN 1533-7928. url:
http://www.jmlr.org/papers/v10/gunawardana09a.html (cit. on p. 10).

[21] F. Maxwell Harper and Joseph A. Konstan. “The MovieLens Datasets:
History and Context”. In: TiiS 5.4 (2016), 19:1–19:19. doi:
10.1145/2827872. url: https://doi.org/10.1145/2827872 (cit. on p. 3).

[22] Jonathan L. Herlocker et al. “Evaluating collaborative filtering recommender
systems”. In: ACM Transactions on Information Systems 22.1 (Jan. 2004),
pp. 5–53. issn: 10468188. doi: 10.1145/963770.963772. url:
http://portal.acm.org/citation.cfm?doid=963770.963772 (cit. on
pp. 10–12).

[23] Tae-Gyu Hwang et al. “An algorithm for movie classification and
recommendation using genre correlation”. In: Multimedia Tools Appl. 75.20
(2016), pp. 12843–12858. doi: 10.1007/s11042-016-3526-8. url:
https://doi.org/10.1007/s11042-016-3526-8 (cit. on p. 2).

[24] Xin Jin, Yanzan Zhou, and Bamshad Mobasher. “A maximum entropy web
recommendation system”. In:
Proc. of the eleventh ACM SIGKDD international conference... New York,
New York, USA: ACM Press, 2005, p. 612. isbn: 159593135X. doi:
10.1145/1081870.1081945. url:
http://portal.acm.org/citation.cfm?doid=1081870.1081945 (cit. on
p. 17).

[25] Byeong Man Kim, Qing Li, and Jong-Wan Kim. “Extraction of user
preferences from a few positive documents”. In:
Proc. of the 6th international workshop on Information retrieval with Asian...
Vol. 11. Morristown, NJ, USA: Association for Computational Linguistics,
2003, pp. 124–131. doi: 10.3115/1118935.1118951. url:
http://portal.acm.org/citation.cfm?doid=1118935.1118951 (cit. on
p. 16).

[26] Heung-Nam Kim et al. “Collaborative user modeling with user-generated
tags for social recommender systems”. In: Expert Syst. Appl. 38.7 (2011),
pp. 8488–8496. doi: 10.1016/j.eswa.2011.01.048. url:
https://doi.org/10.1016/j.eswa.2011.01.048 (cit. on pp. 14, 17, 19).

http://www.jmlr.org/papers/v10/gunawardana09a.html
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1145/963770.963772
http://portal.acm.org/citation.cfm?doid=963770.963772
https://doi.org/10.1007/s11042-016-3526-8
https://doi.org/10.1007/s11042-016-3526-8
https://doi.org/10.1145/1081870.1081945
http://portal.acm.org/citation.cfm?doid=1081870.1081945
https://doi.org/10.3115/1118935.1118951
http://portal.acm.org/citation.cfm?doid=1118935.1118951
https://doi.org/10.1016/j.eswa.2011.01.048
https://doi.org/10.1016/j.eswa.2011.01.048

Bibliography 79

[27] Orges Leka. IMDB Movies Dataset. Dataset on Kaggle. 2016. url:
https://www.kaggle.com/orgesleka/imdbmovies (cit. on p. 3).

[28] Qing Li and Byeong Man Kim. “Constructing User Profiles for Collaborative
Recommender System”. In:
Advanced Web Technologies and Applications, 6th Asia-Pacific Web Conference.
Ed. by Jeffrey Xu Yu et al. Vol. 3007. Lecture Notes in Computer Science.
Springer, 2004, pp. 100–110. isbn: 3-540-21371-6. doi:
10.1007/978-3-540-24655-8_11. url:
https://doi.org/10.1007/978-3-540-24655-8_11 (cit. on pp. 14, 16).

[29] Xin Li and Hsinchun Chen. “Recommendation as link prediction in bipartite
graphs: A graph kernel-based machine learning approach”. In:
Decision Support Systems 54.2 (2013), pp. 880–890. doi:
10.1016/j.dss.2012.09.019. url:
https://doi.org/10.1016/j.dss.2012.09.019 (cit. on pp. 6, 8).

[30] Haibo Liu, Shi Feng, and Ge Yu. “An interest propagation based movie
recommendation method for social tagging system”. In:
2017 International Conference on Machine Learning and Cybernetics.
IEEE, 2017, pp. 130–135. isbn: 978-1-5386-0406-9. doi:
10.1109/ICMLC.2017.8107754. url:
https://doi.org/10.1109/ICMLC.2017.8107754 (cit. on p. 2).

[31] Pasquale Lops, Marco de Gemmis, and Giovanni Semeraro. “Content-based
Recommender Systems: State of the Art and Trends”. In:
Recommender Systems Handbook. Ed. by Francesco Ricci et al. Springer,
2011, pp. 73–105. isbn: 978-0-387-85819-7. doi:
10.1007/978-0-387-85820-3_3. url:
https://doi.org/10.1007/978-0-387-85820-3_3 (cit. on pp. 5, 13, 14,
19, 20).

[32] Juergen Mueller. “Combining aspects of genetic algorithms with weighted
recommender hybridization”. In:
Proc. of the 19th International Conference on Information Integration...
Ed. by Maria Indrawan-Santiago et al. ACM, 2017, pp. 13–22. doi:
10.1145/3151759.3151765. url:
https://doi.org/10.1145/3151759.3151765 (cit. on p. 2).

[33] Mona Nasery, Matthias Braunhofer, and Francesco Ricci. “Recommendations
with Optimal Combination of Feature-Based and Item-Based Preferences”.
In: Proceedings of the 2016 Conference on User Modeling Adaptation...

https://www.kaggle.com/orgesleka/imdbmovies
https://doi.org/10.1007/978-3-540-24655-8_11
https://doi.org/10.1007/978-3-540-24655-8_11
https://doi.org/10.1016/j.dss.2012.09.019
https://doi.org/10.1016/j.dss.2012.09.019
https://doi.org/10.1109/ICMLC.2017.8107754
https://doi.org/10.1109/ICMLC.2017.8107754
https://doi.org/10.1007/978-0-387-85820-3_3
https://doi.org/10.1007/978-0-387-85820-3_3
https://doi.org/10.1145/3151759.3151765
https://doi.org/10.1145/3151759.3151765

80 Bibliography

Ed. by Julita Vassileva et al. ACM, 2016, pp. 269–273. isbn:
978-1-4503-4368-8. doi: 10.1145/2930238.2930282. url:
https://doi.org/10.1145/2930238.2930282 (cit. on pp. ix, xi, 3).

[34] Mona Nasery, Mehdi Elahi, and Paolo Cremonesi. “PoliMovie: a
feature-based dataset for recommender systems”. In: Jan. 2015. doi:
10.13140/RG.2.2.20636.49286 (cit. on pp. ix, xi, 3, 48, 52).

[35] Netflix. Netflix Prize Data. Dataset on Kaggle. Version 1. 2009. url:
https://www.kaggle.com/netflix-inc/netflix-prize-data (cit. on
p. 3).

[36] Michael J. Pazzani and Daniel Billsus. “Content-Based Recommendation
Systems”. In:
The Adaptive Web, Methods and Strategies of Web Personalization. Ed. by
Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl. Vol. 4321. Lecture
Notes in Computer Science. Springer, 2007, pp. 325–341. isbn:
978-3-540-72078-2. doi: 10.1007/978-3-540-72079-9_10. url:
https://doi.org/10.1007/978-3-540-72079-9_10 (cit. on pp. 1, 7).

[37] Alexandrin Popescul, David M Pennock, and Steve Lawrence. “Probabilistic
Models for Unified Collaborative and Content-based Recommendation in
Sparse-data Environments”. In:
Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence.
UAI’01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001,
pp. 437–444. isbn: 1-55860-800-1. url:
http://dl.acm.org/citation.cfm?id=2074022.2074076 (cit. on p. 16).

[38] Qi Qi et al. “Using inferred tag ratings to improve user-based collaborative
filtering”. In: Proceedings of the ACM Symposium on Applied Computing.
Ed. by Sascha Ossowski and Paola Lecca. ACM, 2012, pp. 2008–2013. isbn:
978-1-4503-0857-1. doi: 10.1145/2245276.2232110. url:
https://doi.org/10.1145/2245276.2232110 (cit. on pp. 14, 16).

[39] Francesco Ricci, Lior Rokach, and Bracha Shapira. “Recommender Systems:
Introduction and Challenges”. In: Recommender Systems Handbook. Ed. by
Francesco Ricci, Lior Rokach, and Bracha Shapira. Springer, 2015, pp. 1–34.
isbn: 978-1-4899-7636-9. doi: 10.1007/978-1-4899-7637-6_1. url:
https://doi.org/10.1007/978-1-4899-7637-6_1 (cit. on pp. 1, 5, 12).

[40] Francesco Ricci et al., eds. Recommender Systems Handbook. Springer,
2011. isbn: 978-0-387-85819-7. url:
http://www.springerlink.com/content/978-0-387-85819-7.

https://doi.org/10.1145/2930238.2930282
https://doi.org/10.1145/2930238.2930282
https://doi.org/10.13140/RG.2.2.20636.49286
https://www.kaggle.com/netflix-inc/netflix-prize-data
https://doi.org/10.1007/978-3-540-72079-9_10
https://doi.org/10.1007/978-3-540-72079-9_10
http://dl.acm.org/citation.cfm?id=2074022.2074076
https://doi.org/10.1145/2245276.2232110
https://doi.org/10.1145/2245276.2232110
https://doi.org/10.1007/978-1-4899-7637-6_1
https://doi.org/10.1007/978-1-4899-7637-6_1
http://www.springerlink.com/content/978-0-387-85819-7

Bibliography 81

[41] Diego Sánchez-Moreno et al. “Inferring User Expertise from Social Tagging
in Music Recommender Systems for Streaming Services”. In:
Hybrid Artificial Intelligent Systems - 13th International Conference, HAIS.
Ed. by Francisco Javier de Cos Juez et al. Vol. 10870. Lecture Notes in
Computer Science. Springer, 2018, pp. 39–49. isbn: 978-3-319-92638-4. doi:
10.1007/978-3-319-92639-1_4. url:
https://doi.org/10.1007/978-3-319-92639-1_4 (cit. on p. 14).

[42] Badrul Munir Sarwar et al. “Item-based collaborative filtering
recommendation algorithms”. In:
Proceedings of the 10th International World Wide Web Conference. Ed. by
Vincent Y. Shen et al. ACM, 2001, pp. 285–295. isbn: 1-58113-348-0. doi:
10.1145/371920.372071. url:
https://doi.org/10.1145/371920.372071 (cit. on pp. 9, 10).

[43] J. Ben Schafer et al. “Collaborative Filtering Recommender Systems”. In:
The Adaptive Web, Methods and Strategies of Web Personalization. Ed. by
Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl. Vol. 4321. Lecture
Notes in Computer Science. Springer, 2007, pp. 291–324. isbn:
978-3-540-72078-2. doi: 10.1007/978-3-540-72079-9_9. url:
https://doi.org/10.1007/978-3-540-72079-9_9 (cit. on pp. 1, 7–9).

[44] Markus Schedl et al. “Current challenges and visions in music recommender
systems research”. In:
International Journal of Multimedia Information Retrieval 7.2 (June 2018),
pp. 95–116. issn: 2192-6611. doi: 10.1007/s13735-018-0154-2. url:
http://link.springer.com/10.1007/s13735-018-0154-2 (cit. on
pp. 10–13).

[45] Andrew I. Schein et al. “Methods and metrics for cold-start
recommendations”. In:
Proc. of the 25th annual international ACM SIGIR conference. New York,
New York, USA: ACM Press, 2002, p. 253. isbn: 1581135610. doi:
10.1145/564376.564421. url:
http://portal.acm.org/citation.cfm?doid=564376.564421 (cit. on
p. 10).

[46] Guy Shani and Asela Gunawardana. “Evaluating Recommendation Systems”.
In: Recommender Systems Handbook. Ed. by Francesco Ricci et al.
Springer, 2011, pp. 257–297. isbn: 978-0-387-85819-7. doi:

https://doi.org/10.1007/978-3-319-92639-1_4
https://doi.org/10.1007/978-3-319-92639-1_4
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/371920.372071
https://doi.org/10.1007/978-3-540-72079-9_9
https://doi.org/10.1007/978-3-540-72079-9_9
https://doi.org/10.1007/s13735-018-0154-2
http://link.springer.com/10.1007/s13735-018-0154-2
https://doi.org/10.1145/564376.564421
http://portal.acm.org/citation.cfm?doid=564376.564421

82 Bibliography

10.1007/978-0-387-85820-3_8. url:
https://doi.org/10.1007/978-0-387-85820-3_8 (cit. on p. 9).

[47] Yue Shi, Martha Larson, and Alan Hanjalic. “Collaborative filtering beyond
the user-item matrix: A survey of the state of the art and future challenges”.
In: ACM Computing Surveys (CSUR) 47.1 (2014), p. 3 (cit. on p. 1).

[48] Márcio Soares and Paula Viana. “The Semantics of Movie Metadata:
Enhancing User Profiling for Hybrid Recommendation”. In:
Recent Advances in Information Systems and Technologies. Ed. by
Álvaro Rocha et al. Vol. 569. Advances in Intelligent Systems and
Computing. Springer, 2017, pp. 328–338. isbn: 978-3-319-56534-7. doi:
10.1007/978-3-319-56535-4_33. url:
https://doi.org/10.1007/978-3-319-56535-4_33 (cit. on p. 2).

[49] Panagiotis Symeonidis, Alexandros Nanopoulos, and Yannis Manolopoulos.
“Feature-Weighted User Model for Recommender Systems”. In:
User Modeling 2007, 11th International Conference, UM. Ed. by
Cristina Conati, Kathleen F. McCoy, and Georgios Paliouras. Vol. 4511.
Lecture Notes in Computer Science. Springer, 2007, pp. 97–106. isbn:
978-3-540-73077-4. doi: 10.1007/978-3-540-73078-1_13. url:
https://doi.org/10.1007/978-3-540-73078-1_13 (cit. on pp. 14, 17).

[50] Pooja Bhatt Vashisth, Purnima Khurana, and Punam Bedi. “A fuzzy hybrid
recommender system”. In: Journal of Intelligent and Fuzzy Systems 32.6
(2017), pp. 3945–3960. doi: 10.3233/JIFS-14538. url:
https://doi.org/10.3233/JIFS-14538 (cit. on p. 2).

[51] Donghui Wang et al. “A content-based recommender system for computer
science publications”. In: Knowl.-Based Syst. 157 (2018), pp. 1–9. doi:
10.1016/j.knosys.2018.05.001. url:
https://doi.org/10.1016/j.knosys.2018.05.001 (cit. on p. 14).

[52] Jian Wei et al. “Collaborative filtering and deep learning based
recommendation system for cold start items”. In: Expert Syst. Appl. 69
(2017), pp. 29–39. doi: 10.1016/j.eswa.2016.09.040. url:
https://doi.org/10.1016/j.eswa.2016.09.040 (cit. on p. 2).

[53] Shouxian Wei et al. “A hybrid approach for movie recommendation via tags
and ratings”. In: Electronic Commerce Research and Applications 18 (2016),
pp. 83–94 (cit. on p. 2).

https://doi.org/10.1007/978-0-387-85820-3_8
https://doi.org/10.1007/978-0-387-85820-3_8
https://doi.org/10.1007/978-3-319-56535-4_33
https://doi.org/10.1007/978-3-319-56535-4_33
https://doi.org/10.1007/978-3-540-73078-1_13
https://doi.org/10.1007/978-3-540-73078-1_13
https://doi.org/10.3233/JIFS-14538
https://doi.org/10.3233/JIFS-14538
https://doi.org/10.1016/j.knosys.2018.05.001
https://doi.org/10.1016/j.knosys.2018.05.001
https://doi.org/10.1016/j.eswa.2016.09.040
https://doi.org/10.1016/j.eswa.2016.09.040

Bibliography 83

[54] Yiming Yang. “An Evaluation of Statistical Approaches to Text
Categorization”. In: Information Retrieval 1.1/2 (1999), pp. 69–90. issn:
13864564. doi: 10.1023/A:1009982220290. url:
http://link.springer.com/10.1023/A:1009982220290 (cit. on p. 20).

[55] Lisna Zahrotun. “Comparison Jaccard similarity, Cosine Similarity and
Combined Both of the Data Clustering With Shared Nearest Neighbor
Method”. In: Computer Engineering and Applications Journal 5.1 (Jan.
2016), pp. 11–18. issn: 2252-5459. doi: 10.18495/comengapp.v5i1.160.
url: http://www.comengapp.unsri.ac.id/index.php/comengapp/
article/view/160 (cit. on p. 20).

[56] Chenyi Zhang et al. “Are Features Equally Representative? A
Feature-Centric Recommendation”. In:
Proc. of the 29th AAAI Conference on Artificial Intelligence. Ed. by
Blai Bonet and Sven Koenig. AAAI Press, 2015, pp. 389–395. isbn:
978-1-57735-698-1. url:
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9287

(cit. on pp. 14, 15).

[57] Shuai Zhang et al. “Deep Learning Based Recommender System: A Survey
and New Perspectives”. In: ACM Comput. Surv. 52.1 (2019), 5:1–5:38. url:
https://dl.acm.org/citation.cfm?id=3285029 (cit. on p. 2).

[58] Yuan Cao Zhang et al. “Auralist”. In:
Proc. of the 5th ACM international conference on Web search... New York,
New York, USA: ACM Press, 2012, pp. 13–22. isbn: 9781450307475. doi:
10.1145/2124295.2124300. url:
http://dl.acm.org/citation.cfm?doid=2124295.2124300 (cit. on
p. 13).

[59] Zi-Ke Zhang et al. “Solving the cold-start problem in recommender systems
with social tags”. In: EPL (Europhysics Letters) 92.2 (Oct. 2010), p. 28002.
issn: 0295-5075. doi: 10.1209/0295-5075/92/28002. url:
http://stacks.iop.org/0295-5075/92/i=2/a=28002?key=crossref.

680c912446eac1481a3b9d5207671f1f (cit. on p. 10).

[60] Zhou Zhao et al. “Social-Aware Movie Recommendation via Multimodal
Network Learning”. In: IEEE Transactions on Multimedia (2017) (cit. on
p. 2).

https://doi.org/10.1023/A:1009982220290
http://link.springer.com/10.1023/A:1009982220290
https://doi.org/10.18495/comengapp.v5i1.160
http://www.comengapp.unsri.ac.id/index.php/comengapp/article/view/160
http://www.comengapp.unsri.ac.id/index.php/comengapp/article/view/160
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9287
https://dl.acm.org/citation.cfm?id=3285029
https://doi.org/10.1145/2124295.2124300
http://dl.acm.org/citation.cfm?doid=2124295.2124300
https://doi.org/10.1209/0295-5075/92/28002
http://stacks.iop.org/0295-5075/92/i=2/a=28002?key=crossref.680c912446eac1481a3b9d5207671f1f
http://stacks.iop.org/0295-5075/92/i=2/a=28002?key=crossref.680c912446eac1481a3b9d5207671f1f

	Colophon
	Dedica
	Ringraziamenti
	Abstract
	Sommario
	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Foundations and State of the art
	Foundations in recommender systems
	Basic Concepts

	Standard recommendation models
	Content-Based Filtering
	Collaborative Filtering

	Evaluation of recommender systems
	Predictive accuracy metrics
	Classification accuracy metrics
	Ranking accuracy metrics
	Beyond-accuracy measures

	State of the art in user profile modelling
	Zhang Method
	Li Method
	Symeonidis Method
	Kim Method
	TF-IDF Method

	Similarity Indices
	Cosine Similarity
	Jaccard Similarity

	Data Collection System
	Movie Interests (mints)
	Data collection
	Volunteer users
	Crowdsourcing users

	Methodology
	User profiling with binary ratings
	Zhang Method
	Li Method
	Symeonidis Method
	Kim Method
	TF-IDF Method
	Assumptions

	Recommender System
	Collaborative filtering
	Hybrid

	Experimental Results
	Data Characteristic
	Summary statistics

	Global analysis of explicit/implicit preferences
	Movie
	Genre
	Actor
	Director

	Evaluation of user profiling methods
	Overview on pairwise similarity between user profiles
	Genre
	Actor
	Director

	Recommender System Evaluation
	Insights from user profiling and recommendation evaluation

	Conclusions
	Acronyms
	Bibliography

