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Abstract

The aim of Predictive Maintenance is to detect a fault before it leads to a
system failure. While some kinds of fault are sudden, some others (such as
the wear of a mechanical component) are incremental, and they may affect
its nominal behavior before the failure occurs.

If the nominal behavior of the system were known, it would be possible to
detect the changes caused by faults, however disturbances and other factors
also affect its behavior. A mathematical model of the system can be useful to
analyze its behavior in both healthy and faulty conditions, and to understand
whether a change in its behavior has been caused by a fault or by other
reasons.

This research shows many possible uses for the models, analyzing their
advantages and disadvantages.
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Notation

Notation Meaning (unless differently specified)

v , vT column or row vector
vj sub-vector of v
vi ith element of a (column or row) vector
vj , vj

T numbered column or row vector
(vj)i or vj i ith element of a numbered (column or row) vector vj

M or (mij) matrix
Mr×c matrix with r rows and c columns
MT transposed matrix
Mi,∗ or Mi ith row of a matrix M
M∗,j or mj jth column of a matrix M (column vector)
mij , (mj)i , mj i element at the ith row and jth column of a matrix M

In , I identity matrix of size n, or appropriate size
[0]n , [0]n×m , [0] null matrix of size n× n, n×m, or appropriate size
0n , 0 null (column) vector of size n or appropriate size

F (s) continuous-time transfer function (or transfer matrix)
F (z) discrete-time transfer function (or transfer matrix)
Fij(s) , Fij(z) continuous- or discrete-time transfer function from jth

input to ith output, i.e. yi(t) = Fij(s)uj(t)

x(t) , x(k) continuous- and discrete-time signal (mono- or multi-
dimensional)

v(t), v(k) time-dependent column vector

A = {a1, a2, ...} set (collection of elements)

x , expr. definition (mathematical relation)
x := expr. assignment (numerical value)

v
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Introduction
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Chapter 1

Introduction to Maintenance

According to the Oxford Dictionary, maintenance is the action of keeping
something in working order. Maintenance of a technical system (mechanical,
electrical, . . . ) aims to keep the system in an operational condition, or restore
the operational condition after a failure, and can be carried out according to
different strategies:

i Corrective Maintenance (CM) consists in identifying a fault after
it has occurred (“Run-to-failure”), and restoring the system to a working
operational condition.

ii Preventive Maintenance (PvM) consists in scheduling maintenance
operations before the failure is expected to occur, according to theoreti-
cal, statistical or empirical considerations, such as the expected lifetime
of a component (“Time-based Maintenance”).

iii Predictive Maintenance (PdM) consists in a real-time monitoring
of the system aimed to estimate the health status of a component
(“Condition-based Maintenance”) and detect an imminent failure of the
system, in order to perform maintenance operations before the failure
occurs.

Maintenance

Corrective
Maintenance

(CM)

Run-to-failure
(RTF)

Preventive
Maintenance

(PvM)

Time-based
Maintenance (TBM)

Predictive
Maintenance

(PdM)

Condition-based
Maintenance (CBM)

Digital
twin
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1.1 Maintenance strategies

1.1.1 Corrective Maintenance

Corrective maintenance is the earliest and, apparently, the simplest main-
tenance strategy: equipment is allowed to run until a functional failure occurs
(“Run-to-failure”, or RTF), then the damaged component has to be identified
and replaced.

RTF approach has the advantage that it does not require maintenance
planning. On the other hand, equipment becomes unavailable until the fault
has been identified and repaired, and costs due to unplanned downtime may
be higher than the ones associated to maintenance planning. Moreover,
secondary damages may be observed in the system as consequence of the
primary failure.

1.1.2 Preventive Maintenance

Unlike corrective maintenance, preventive maintenance is a strategy whose
intent is avoiding failures: equipment undergoes periodical maintenance
actions, according to a planned schedule (either with a “time-based” or “expe-
rience-based” approach), before it is expected to break down.

With this strategy, equipment failures are usually avoided, and planned
maintenance actions can often be carried out while the equipment is still
working (otherwise, a planned downtime still has a minor impact than an
unplanned one), but unnecessary corrective actions are often performed.

1.1.3 Predictive Maintenance

Predictive maintenance can be considered as the evolution of preventive
maintenance: the health status of the equipment is continuously monitored,
and maintenance actions are planned only when failure is believed to be
imminent (“condition-based” maintenance). This approach requires continual
measurements on the plant, together with a deeper understanding of how the
system works, but it allows to reduce unnecessary corrective actions.

Degradation models Nowadays CBM techniques make use of degrada-
tion-based measures, which are sensory informations that can be used to
estimate the health of a piece of equipment, i.e. its Remaining Useful Life
(RUL). Such measures, which usually concern vibrations, temperatures or
sounds) often exhibit characteristic patterns, known as degradation signals,
which can be used to estimate the residual life of those components which
are subject to wear.
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The Digital Twin A new approach in PdM consists in running a simulation
of the system in parallel with the system itself. If the simulation results start
to diverge from the measurements on the actual system, a failure may be
imminent and the cause of the divergence should be investigated.

1.2 Main aspects of predictive maintenance

Faults and failures A failure is an event that ceases the ability of an
entity (a piece of equipment) to perform specific functions. A fault is the
inability of an entity to perform a specific function. Failure can be associated
to the concept of event, and fault can be associated to the concept of state
in which the entity can be found due to a failure. Corrective Maintenance
deals with fault detection (identification) and fault diagnosis (isolation), and
Predictive Maintenance deals with fault prediction.

Process monitoring Process monitoring (PM) is the act of monitoring a
system in order to identify significant changes which may be indicative of
a fault or an imminent fault. PM requires to distinguish between common-
cause variations, i.e. the natural variability of the process, and special-cause
variations, i.e. malfunctions of the system. A process with special-cause
variations is said to be out of control.

Condition monitoring In CBM, Condition monitoring (CM) is the act
of monitoring a parameter of condition in the equipment (degradation-based
measure), in order to identify significant changes which may be indicative of
a developing fault. Condition monitoring techniques include:

• vibration monitoring
• acoustic emissions monitoring
• infrared thermography inspection
• lubricant analysis
• electrical insulation analysis

Redundancy Redundancy allows to improve the reliability of a system.
Physical redundancy consists of equipping the system with redundant

physical devices, like sensors and actuators, so that if a fault occurs, the
redundant device replaces the functionality of the faulty one. Additionally,
redundant sensors allow to detect faults of the sensors themselves.

Analytical redundancy is a completely different approach, which con-
sists of using an accurate model of the system to simulate the real process
behavior. If a fault occurs, the difference between a measurement on the real
system and the corresponding output of the model, which is called the residual
signal, allows to detect a malfunction. The digital twin is the evolution of
this approach.
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1.3 Diagnostics and prognostics

Diagnostics deals with fault detection, isolation and identification of
faults when a failure occurs. Prognostics deals with fault prediction before
failure occurs and attempts to estimate the Remaining Useful Life (RUL) of
a piece of equipment.

Both diagnostics and prognostics make use of automated methods to
detect, diagnose and analyze the degradation of the performance of the
equipment.

Some methods for diagnostics will be shown in chapters 4 and 5.

Data-driven methods Data-driven models are based upon statistical and
learning techniques, such as statistical hypothesis testing, Statistical Process
Control (SPC) for univariate analysis and Principal Component Analysis
(PCA) for multivariate analysis. The main disadvantage of these methods is
that the behavior of the system may depend on many internal and external
factors, thus making necessary to collect and elaborate a huge amount of
training data.

Analytical methods (mathematical models) Analytical methods
make use of mathematical models which are directly tied to the physical
processes that affect the health of related components in the equipment.
These methods include the analytical redundancy approaches, like the digital
twin, which make use of residuals, combined with statistical techniques to
define thresholds for detecting the presence of faults.

Mathematical models work well under any load profile and in different
operating conditions, and they can also be used to simulate component
failures.
(peng) functional mapping between drifting parameters and selected
prognosis features can be established...

1.4 Failure analysis

Maintenance can be very complicated in large systems, because every
component may be associated with many failure modes, and it is difficult to
understand how the failure of a single component affects the whole system.
Independently from the maintenance strategy, it may be useful to preform a
Failure Mode and Effect Analysis (FMEA) and to build a fault tree in order
to have a better understanding of the system from a maintenance point of
view.



Chapter 2

The role of the models in
Predictive Maintenance

Mathematical models are widely used in engineering application for both
design and control of dynamical systems. They can be very useful during
the project phase because they allow to simulate the behavior of the system,
they are used on the real plant to tune control parameters, and they are
required by advanced control techniques (such as Kalman filtering and MPC).
With the introduction of predictive maintenance techniques, models have
been assuming an increasingly important role in maintenance applications: a
good model allows to study the behavior of a system in both healthy and
faulty conditions, and this leads to many possible uses.

2.1 Classification of mathematical models

Physical systems can be modeled in many ways. In order to simulate the
dynamic behavior of a system, the differential algebraic equations (DAEs)
that describe it are commonly used. On the other hand, transfer functions
are widely used in control engineering applications to describe the dynamic
behavior of a system with the purpose of tuning a control system.

Causal vs. acausal models Depending on how the equations are written
and solved, it is possible to identify two types of models. Acausal models
are those in which equations are written as implicit relations between some
variables, that is, implicit functions in the form f(v1(t), v2(t), . . . ) = 0,
and they are not intended as “right-to-left” assignments; equations can be
written in any order, and the way of solving them is left to the simulation
algorithm. Causal models are those in which equations are written as
explicit assignments and solved in a specific order; in other words, equations
can be seen as functions which take some known arguments as input in order
to calculate the value of an output variable, that is, o(t) = f(i1(t), i2(t), . . . ).

6
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While causal models are written having in mind the resolving algorithm,
acausal models focus on the physical reality they want to describe, and
it is simpler to write and solve them as they don’t require to manipulate
mathematical expressions and to solve differential equations. Traditionally,
simulation environments make use of causal models, but nowadays modern
simulation environments allow to use acausal models.

First-principle models A first-principles model (FPM) is a mathematical
model that is made up of the fundamental equations describing the underlying
physical laws of a system, that is, the behavior of its component and the
connections among them.

For example, the behavior of a simple RC circuit powered by a constant
voltage source is described by the following equations:

vR(t) = R iR(t) constitutive equation of the resistor
iC(t) = C dvC(t)/dt constitutive equation of the capacitor
vR(t) + vC(t) = v(t) Kirchhoff’s voltage law
iR(t)− iC(t) = 0 Kirchhoff’s current law
v(t) = VDC voltage source

(2.1)

The set of equations (2.1) describes an acausal model. Depending on what
we want to know, some of the equations of a FPM may become unnecessary.
For example, if we want to know vC(t) and iC(t) we can write:

iC(t) = C dvC(t)/dt , R iC(t) + vC(t) = VDC (2.2)

If we are only interested in knowing vC(t) given v(t) we can write:

RC
dvC(t)

dt
+ vC(t) = VDC (2.3)

The reduced set of equations (2.2) and equation (2.3) alone are no longer
FPMs, but they still represent acausal models, and they require further
elaboration in order to be solved. Equation (2.3) is a simple DAE whose
solution is:

vC(t) = [vC(0)− VDC ] · e−t/RC + VDC (2.4)

Equation (2.4) is a causal model, as it is possible to identify one input
v(t) = vDC and one output vC and it can be written as vC(t) = f(v(t)).

Block diagrams Block diagrams are based on oriented blocks and connec-
tions. A block is a graphical element representing a mathematical function,
and it has input and output ports. A connection between two (or more)
blocks represent the oriented signal flow from an output of the first block to
an input of the second block (an output can be connected to more inputs).
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The value of the output of the first block must be computed before being
given as input to the second block. Block diagrams are causal models.

Although blocks can contain any kind of mathematical functions, they
are often used to represent transfer functions, which allow to model dynamic
systems in an easier way.

Simulink is a commercial modelization and simulation environment fo-
cused on casual models. The modelization environment allows to build block
diagrams in both continuous and discrete time domains. A block can have
both input and output ports, and an input port can be connected to one or
more output ports. A connection represent an oriented signal flow. Commonly
used blocks represent:

• transfer functions, dynamical systems in state-space form, non-
linearities and discontinuities (blocks with one input and one output)

• mathematical operations (blocks with two inputs and one output)
• signal and data sources (blocks with one output) and sinks (blocks with

one input)
• subsystems (blocks with many inputs and/or outputs)
Block diagrams for control design applications are described in chapter 7.

Object diagrams Other kinds of diagrams, such as electrical schematics
and Piping and Instrumentation Diagrams (P&IDs), represent physical objects
and the connections between them. These diagrams are acausal models.

Modelica is an object oriented modelization language focused on acausal
models. The language itself is open source, and many implementations exist,
both free (like OpenModelica and JModelica) and commercial (like Dymola
and SimulationX ). Some implementations include a graphical modelization
environment which allow to build an object diagram that is automatically
translated into Modelica code. Unlike Simulink, Modelica objects mostly
represent acausal block, whose ports, or interfaces, represent physical con-
nections and are not oriented. Casual blocks and oriented signals are also
allowed.

2.2 Purpose and complexity of the models

Mathematical model can be used for many purposes. These include:

• System design. Models are often used in project phase to check if
the system behaves as expected, and if it meets the requirements.

• Control design. Many control techniques require to know the be-
havior of the system. Regulator tuning often relies on the transfer
function of the system, and advanced techniques require the state-space
representation of the system.
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• Hazard analysis. A model allow to simulate the behavior of the
system in a worst-case scenario.

• State observation. In some applications the value of non-observable
state variables can be estimated from a measurement of input and
output variables.

• Parameter identification. Given a model of the system, it is possible
to estimate unknown parameters given some measurements on the
system.

• Hazard and degradation model. The failure probability, the degra-
dation level and the RUL of a component can be estimated from its
age and from external operating condition.

• Digital twin. A model of the healthy system is continuously compared
to the real system in order to detect abnormal behaviors.

The complexity of a model depend on its application: some require the
model to be as precise as possible, some allow to do huge approximations.

Maintenance applications With the introduction of predictive mainte-
nance techniques, models have been assuming an increasingly important role
in fault detection, especially with the introduction of the digital twin. The
main issue with model-based techniques is that it’s almost impossible, or
extremely difficult and time-consuming, to create a good model, especially
for larger systems. Furthermore, the effect of boundary conditions such as
the external temperature is difficult to be considered in the model, as this
would requires additional measures on the actual system which would have
to be given as input to the model simulation.

If the model isn’t good enough the simulation diverges from the actual
system independently from the health status of the equipment. Therefore,
it’s important to understand whether the divergence is caused by modeling
errors or equipment failures. This can be done using a machine learning
system, which have to be trained using data collected from the plant.

Control design applications On the contrary, models used in control
applications are never complete, and don’t need to be, as a good feedback
controller should be robust enough with respect to modeling approximations
and parametric uncertainties, as well as measurement errors and exogenous
variables. Similarly, models used in project phase take into account only the
behaviors of the system we are interested in. However, it could be possible
to adapt these simple models for maintenance applications.
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Approximations Depending on the application, the following characteris-
tics of a system may be left out of the model:

• boundary conditions (e.g. the external environment)
• noises an disturbances
• other exogenous variables
• parameter shifts

From the modelization point of view, the following approximations may be
introduced:

• linearization of non-linear behaviors (before writing the equations)
• linearization of non-linear equations around the operating point

If the system is described through its transfer functions, the following ap-
proximations are common:

• approximation of a transfer functions to its dominant poles
• approximation of a closed-loop transfer function to a low-pass filter

Online and offline uses in maintenance applications Online use con-
sists in running a real-time simulation of a model in order to check if the real
system is behaving as expected. In this case the non-negligible exogenous
variables acting on the real system should be measured and given as input to
the model. The typical example of online use is the digital twin.

Offline use consist in running many simulations in order to study the
behavior of the system in different operating conditions. Collected data
may be used to compare the behavior of the real system with the different
behaviors of the model in order to identify the operating condition of the
system that most likely led to the observed behavior.

2.3 Possible uses for the models

The main purpose of this research is to understand whether and how
simple models such as the ones built for system and control design could be
also employed for Predictive Maintenance (PdM) purposes. These models
are usually too simple to be used as digital twins, but other possible uses can
be found.

The main idea is to modify these models in order to simulate faults and
disturbances, then compare the behavior of the model in different faulty
conditions with its nominal behavior, and see if results of the comparison can
be used on the real plant in order to detect and identify faults, as shown in
fig. 2.1. Many ideas arose, for both online and offline uses:

• Offline use

◦ Data-driven methods for diagnostics, which will be described in
chapter 4, require to know the behavior of the system in healthy
condition. If it is not possible to collect data from the system,
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Nominal
condition

Faulty
condition

Nominal
condition

Faulty
condition

Model Plant

Figure 2.1: Model vs. Plant

they can be generated by the model, although the variance of the
generated data may be smaller.

◦ The model allow to simulate a large number of different operating
condition, and to collect and classify data for each of these. A
measurement on the real plant can be compared to the simulation
data in order to identify the operating condition that most likely
led to the observed behavior.

◦ The model allow to see how any variation (of inputs, parameters, ...)
propagates in the model, that is, which variables affects. This may
allow to study how the effect of faults and degradation propagates,
thus making possible to build fault trees and to understand how
to structure a monitoring system.

◦ A model that include fault probability for each component allows
to determine which faults are most likely to happen, and most
important to happen simultaneously, so that the fault analysis can
focus on these (combinations of) faults.

◦ The useful life of a component often depend on the environmental
conditions and on its “mechanical” age (e.g. the number of revolu-
tions of a rotating component), which can both be determined by
using the model.

• Online use

◦ Although the creation of the digital twin of the whole system may
be extremely difficult, many small digital twins could be created
for critical components only.

◦ In many cases the effect of a failure in a system with a feedback
control system may be compensated by the action of the controller.
For example, the wear of a mechanical transmission may cause
an increase of consumption of the actuator upstream, if the speed
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of the component downstream is controlled. The value of control
variables on the plant can be compared with the corresponding
value on the model in order to detect an abnormal behavior.

• Other uses

◦ The violation of a balance equation is a common symptom of a
fault. The model can be useful to identify balance equations whose
variables are measurable on the real system, in order to use these
measures to detect faults.



Chapter 3

Critical analysis

3.1 Faults vs. disturbances

A fault can be seen as an event that leads to the failure of the system,
that is, the inability to perform its function. A disturbance can be seen
as a phenomenon that may affect the system performances but is often
unavoidable; to a certain extent, its effects can be compensated or tolerated.
Disturbances include signal noises, exogenous variables, unwanted harmonics
(e.g. mechanical vibrations), and uncertainties of the model.

Sometimes the same phenomenon can be seen as both a fault or a dis-
turbance, depending on its entity. For example, the increasing wear of a
rotational mechanical component may introduce vibrations that are consid-
ered as a disturbance until they start to compromise the correct behavior
of the system. In other cases, a fault and a disturbance may have the same
effect on the system. The main issue with fault identification is to understand
whether an unexpected behavior of the system is caused by a fault or by a
disturbance.

In predictive maintenance applications, as both faults and disturbances
may affect monitored variables of the real system it is necessary to under-
stand what causes the deviation from the nominal behavior obtained from
simulations. The following criteria may be used:

• Threshold. When the same phenomenon can be considered as both
a fault or a disturbance, a threshold can be set. The entity of the
phenomenon determines the entity of its effect on a monitored variable:
this allows to set the maximum acceptable entity of the effect and
determine the corresponding entity of the phenomenon, or vice versa.

• Triggering limit. In many cases it is possible to assume that the
effect of disturbances on the monitored variables is negligible with
respect to the effect of faults, therefore a triggering limit could be set.
If the deviation of the monitored variable with respect to the nominal

13
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behavior

• Trends. Wear is usually increasing in time, therefore the entity of its
effect on the system is also increasing. The entity of the effect of noises
is usually constant or depends on external factors such as environmental
causes or electromagnetic fields. Exogenous variables may affect the
system in many ways, and their effect may have the same entity as
the effect of a fault, but in this case the entity may both increase
and decrease in time. Keeping track of the past values of monitored
variables can be useful to understand the cause of a phenomenon.

• Harmonic content. If the bandwidth of a noise is known, it is possible
to know its effect on monitored variables.

• Speed of change. The speed of change of some disturbances and
the incremental wear rate may be knewn a priori. In case of sudden
faults, the effect on monitored variable may be gradual as most physical
systems act as a low-pass filter, but the speed of change can be computed
or simulated.

3.1.1 Modelization of disturbances

Disturbances are usually not included in the model, unless it is important
to know their effect. Even if they were included, they are unknown by nature,
although some characteristics such as their harmonic content may be known
a priori. However, most of the aforementioned criteria require to know the
effect of disturbances.

Transfer function block diagrams Casual models used for control design
(block diagrams) usually model additive disturbances as generic inputs whose
bandwidth is known (see sections 5.1 and 7.1). These models allow to find the
transfer functions from any disturbance to any other variable of the system.
This allow to design the controller so that the effect of the disturbances is
mitigated, that is, the magnitude of these transfer functions is smaller than
1 dB in the disturbance bandwidth.

In predictive maintenance applications, transfer functions allow to know the
effect of a disturbance on the monitored variables. In case of high-frequency
noises, their bandwidth is often known and determining the bandwidth of
their contribution on the monitored variables is trivial. In case of exoge-
nous variables, the analysis could be restricted to their step and frequency
response in the following cases: average value, maximum and minimum value,
maximum admissible step variation. These analysis can be performed using
Simulink or any simulation environment for acausal models. It must be
remembered that transfer functions often approximate the behavior of the
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Real system

Digital twin Fault detector

i(t) o(t)

ô(t)

-

∆o(t)

d(t)

Figure 3.1: Digital twin

system in a specific operating point, and the results of these analysis may be
not reliable.

Object diagrams and other acausal models Blocks in object diagrams
usually describe the behavior of the component in the time domain. In this
case it is not possible to obtain the step and frequency response of disturbances
in analytical way, but any kind of disturbance can be simulated. As for the
block diagrams, the analysis could be restricted to some cases.

3.2 Digital twin

The digital twin shown in fig. 3.3 is a model of the system which is
run in parallel with the system itself. In order to perfectly replicate the
behavior of the system, the digital twin must know all variables acting on
it, including command inputs, exogenous variables, and other disturbances.
While command inputs are known, disturbances must be measured on the
real system. In predictive maintenance applications, the digital twin can be
used to replicate the nominal behavior of the system. In order to detect faults,
some measurements on the system (output variables o(t)) are compared with
the corresponding output ô(t) of the simulation. If the model were a perfect
replica of the system, including disturbances, in absence of faults it must be
∆o(t) = o(t)− ô(t) = 0. Unfortunately, as previously discussed in chapter 2,
the model is never a perfect replica, and unmodeled disturbances often affect
monitored variables, therefore ∆o(t) 6= 0.

However, if the system is simple enough, a precise model can be built,
so that the result of the simulation is very close to the behavior of the
real system, that is, ∆o(t) ≈ 0. If the effect of unmodeled disturbances is
negligible with respect to the effect of faults, it is possible to set a tolerance
threshold on ∆o(t) below which the difference between ô(t) and o(t) is most
likely caused by disturbances and modeling errors.

In the case of complex systems, it is still possible to build a digital twin for
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some components only. This also allows to avoid the amplification of errors,
as the digital twin of a subsystem will take as input the measurement of the
output of the upstream component of the real system and not the result of
the simulation of its model.

Plant

Controller Actuator Process Sensor
y◦ e u m ỹ y

-

Figure 3.2: Typical feedback control scheme

Digital twin and feedback control systems Figure 3.2 shows the typi-
cal feedback control scheme. A first example of digital twin for a feedback
control system consists in a model of the plant that is fed with the output of
the controller, as shown in fig. 3.3. Another possible solution is to model the
process and the sensors only, and feed the model with a measurement of the
manipulated variable m(t), as shown in fig. 3.4.

Plant

Plant model

u(t) yP (t)

yM (t)

-

∆y(t)

Figure 3.3: Digital twin of the whole plant

Process + sensors

Process + sensors
model

m(t) yP (t)

yM (t)

-

∆y(t)

Figure 3.4: Digital twin of the process only
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In some situations, the presence of a fault may not affect the controlled
variable y(t), as its effect could be balanced by the controller. In other words,
the fault of a component may not lead to a system failure, as the system
may be still able to perform its main function, and it would be ∆y(t) ≈ 0.
We consider for example a water level control system consisting of a tank
and a controlled valve that regulates the inlet flow. In presence of a small
leakage, the inlet flow may be sufficient to compensate it, however the valve
aperture would be bigger than in absence of leakages, that is, the value of
the control variable u(t) would be bigger. In this case, the configuration for
the digital twin shown in fig. 3.5 could allow to detect the fault, as it would
be ∆u(t) 6= 0.

Controller Plant

Controller
replica

Plant
model

y◦(t) eP (t) uP (t) yP (t)
-

eM (t) uM (t) yM (t)-

∆y(t)

-

∆u(t)

-

Figure 3.5: Digital twin (plant and controller)

In some situations the digital twin could be used in presence of unmodeled
exogenous variables even if their effect is not negligible, such as highly variable
external temperatures in a chemical plant. If exogenous variables can be
measured, and an approximate transfer function from these variables to
the monitored variables can be obtained, then it is possible to estimate the
duration of their effect on the system, and increase the tolerance on ∆y(t)
for the duration of the transient.

3.3 Residual generator (EDIT)

Residual generators are similar to the digital twin, and are based on the
discrete-time transfer function of the model. The residual generator takes as
input both the input and the output of the system, and gives as output a
vector of residuals which can be used to detect and isolate one or more faults.
This technique will be described in chapter 5.
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Plant

Residual
generator

u y

r

Figure 3.6: Residual generator

3.4 Fault incidence matrix

Fault detection techniques require to monitor some variables. Different
faults may affect different variables to different degrees. In order to detect
and, more importantly, to isolate a fault, it is important to know a priori
which variables should be monitored and how each fault affects each of these
variables. This analysis should also be extended to disturbances, so that
more information is available to distinguish between faults and disturbances.

An incidence matrix is a matrix that shows the relationship between the
elements corresponding to rows and the elements corresponding to columns.
In predictive maintenance applications, incident matrices can be used to show
how input variables of parameter changes affect output variables. An input
variable can be a command, a disturbance, or the output of a component
upstream.

A(s) G(s)
u m y

dm

The incidence matrix of this simple block diagram is:

m y

u 3 3

dm 3

m 3

The elements of a fault incidence matrix M may be boolean or real. In
the first case, mij is true if a change of the variable corresponding to the
ith row of the matrix causes a change of the one corresponding to its jth

column (a threshold may be set in order to exclude variations caused by
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other reasons). In the second case, mij may be an indicator of how much the
variable changes.

The incidence matrix can be generated by analyzing the model or by
simulating it many times for different values of input variables. Observations
on the real plant may also allow to build an incidence matrix for a reduced
set of variables.
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Diagnostics
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Chapter 4

Data-driven methods

Data-driven methods for diagnostics based on statistical analysis can be
divided in two classes: univariate and multivariate analysis. The former
involves the analysis of a single variable, the latter considers two or more
variables.

4.1 Statistical Process Control

Statistical Process Control (SPC) is a quality control technique which
employs statistical methods in order to understand if a significant change
in a monitored variable of a process is due to the natural variability of the
process (common-cause variations, process in control), or may be caused by
malfunctions of the system (special-cause variations, process out of control).

Statistical distribution of a variable Assuming that the process is in
control, if the monitored variable had a normal distribution X ∼ N

(
µ, σ2

)
,

where µ and σ are the mean and the standard deviation of the variable (see
definition A.2.1), then 99.7% of the observations would fall in the range
µ ± 3σ. If the observations of the variable start to appear outside these
limits, the process is likely to be out of control with respect to that variable.
Narrower control limits, e.g. ±2σ, could be used, allowing to detect more
special-cause variations but increasing the risk of false positives.

If the distribution of X is not normal, according to Chebyshev’s inequal-
ity1the number of observations that fall in the range µ± 3σ is lower (down
to 89%). However, many physical measurements are approximately normally
distributed. The idea behind SPC is that the approximation can be improved
by using means of groups of observations.

1Chebyshev’s inequality states that no more than 1/k2 values of X can be more than
kσX away from µX , i.e. at least 100 · (1− 1/k2)% of the values of X are within µX ± kσX

21
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zone A
zone B
zone C

µ+ 3σ

µ+ 2σ

µ+ σ
µ

µ− σ

µ− 2σ

µ− 3σ
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LCL

•

•

•
•

•
•

•
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•

•

•
•

•
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Figure 4.1: Centerline and control limits in control charts

Control charts SPC makes use of control charts, each one representing a
statistic, and decision rules to discriminate between common- and special-
cause variations.

A typical control chart consist of:
• points representing a statistic, such as the sampled mean and variance

of groups of data (see appendix A.4)
• a centerline, representing the expected value of the statistic when the

process is in control
• upper and lower control limits (UCL and LCL), representing an accept-

able range for the statistic (tipically ±3σ)

4.1.1 X̄-R and X̄-s charts

X̄-R and X̄-s charts are used to monitor the variations of the measurements
of a process variable X. Given k groups of data of n samples each (tipically,
k ≥ 20 and n = 3÷ 6) we compute for each group i the sample mean X̄i and
the dispersion (range R or sample standard deviation s).

The centerline of the X̄ chart is the average ¯̄X of X̄i, and the control limits
are X̄±3σ̂X̄ , where σ̂X̄ is an estimate of the standard deviation σ2

X̄
= σ2/

√
n

of ¯̄X. These values are computed as follows, using the parameters in table C.1.
Finally, empirical rules are used to identify special-cause variations.

X̄-R charts

In X̄-R charts ¯̄X ± σ̂X̄ is estimated from the range R as ¯̄X ± A2R̄, and
the standard deviation of X is estimated as σ2

X = R̄/d2.
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X̄ charts R charts

Centerline ¯̄X =
1

k

k∑
i=1

X̄i R̄ =
1

k

k∑
i=1

Ri

Upper Control Limit UCLX̄ = ¯̄X +A2R̄ UCLR = D4R̄

Lower Control Limit LCLX̄ = ¯̄X −A2R̄ LCLR = D3R̄

X̄-s charts

In X̄-s charts ¯̄X ± σ̂X̄ is estimated from the sample standard deviation s
as ¯̄X ±A3s̄, and the standard deviation of X is estimated as σ2

X = s/c4.

X̄ charts s charts

Centerline ¯̄X =
1

k

k∑
i=1

X̄i s̄ =
1

k

k∑
i=1

si

Upper Control Limit UCLX̄ = ¯̄X +A3s̄ UCLs = B4s̄

Lower Control Limit LCLX̄ = ¯̄X −A3s̄ LCLs = B4s̄

Western Electric Rules (WER)

Western Electric Rules are a set of empirical decision rules for detecting
non-random patterns in control charts [Com58].

A process is out of control when one of the following conditions hold:
• one or more points exceeding the control limits
• 2 out of 3 consecutive points exceeding the warning limits ±2σ2

X

• 4 out of 5 consecutive points exceeding the band ±σ2
X

• 8 consecutive points on the same size of the centerline
If a non-random pattern has been detected, the procedure in fig. 4.2 is

followed.
Control limits must be recomputed when:
• the process is changed
• the cause of the change is known
• the cause is expected to be persistent
• enough data are available

4.2 Multivariate analysis

Univariate analysis produces many indicators that cannot be easily cor-
related to the presence of faults, and some faults do not result in threshold
violations. In these cases a multivariate analysis is required in order to
properly consider the correlation among the variables.
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Start

Search and remove special causes

Collect new data

Recompute the R chart

Is process
still out of
control?

Recompute the X̄ chart

Is process
still out of
control?

Stop

yes no

yes

no

Figure 4.2: Identification of non-random patterns

The statistical distance T2 allows to define a multivariate confidence region
which can be used with hypothesis testing (see appendix A). Principal Com-
ponent Analysis (PCA) is a technique that can be used when there are many
variables and few measurements, as it allows to reduce the dimensionality of
the training set.



Chapter 5

Analytical methods

5.1 Classification of faults and disturbances

The behavior of a system may differ from the behavior of its model due
to the presence of:

• additive faults on the sensors and the actuators
• noises affecting the sensors, the actuators and the plant signals
• additive disturbances (exogenous variables) acting on the plant
• additive faults on the plant (leakages, ...)
• multiplicative faults on the plant (variations of the model parameters)
• modeling errors on the plant (uncertainty of the model transfer function

or of the underlying parameters)

Additive Multiplicative

Faults Sensor faults fy Parametric plant faults δϑF
Actuator faults fu
Additive plant faults fM

Disturbances Plant disturbances dM Modeling errors ∆M, δϑE

Noises Sensor noises ξy –
Actuator noises ξu
Plant noises ξM

Table 5.1: Classification of faults, noises and disturbances

Additive fault, noises and disturbances Some kinds of fault, like sensor
and actuator faults and leakages in the plant, can be represented as unknown
extra signals that sum up to the input, output and internal signals of the
plant. These signals may exhibit different behaviors (drifts, steps, intermittent,
sinusoidal). Signals of the plant are also affected by noises, which usually are

25
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faults and noises
on actuators

faults and noises
on sensors

parametric faults and noises
on the plant

M(z)
u(k) y(k)

Su(z) Sy(z)

fu(k) fy(k)fM (k)
dM (k)

ξu(k) ξy(k)ξM (k)

E
δϑM

Figure 5.1: Faults and disturbances

persistent signals with zero mean and high frequencies and can be treated
differently from the additive faults. Finally, the system may be affected by
disturbances, that are exogenous inputs (like the external temperature) that
don’t represent a fault.

Multiplicative faults and disturbances Other kinds of fault can be
represented as a change in the behavior of the plant, that is, the transfer
function of the faulty plant becomes different from the model one. In a
similar way, the latter may be already different from the (healthy) plant one,
because of the unavoidable modeling errors.

Multiplicative faults and disturbances can be described in two ways:
• We denote with M̃(z) the transfer function of the system, and with
M(z) the transfer function of its model. We define:

◦ the discrepancy ∆M̃F (z) between the system M̃(z) in its current
(healthy or faulty) state and the healthy system M̃◦(z);

◦ the discrepancy ∆M◦E(z) between the healthy system M̃◦(z) and
its model M◦(z).

Hence we write:

M̃◦(z) = M◦(z) + ∆M◦E(z) , M̃◦ = M̃(z)−∆M̃F (z) =⇒
M̃(z) = M◦(z) + ∆M(z) , ∆M(z) , ∆M̃F (z) + ∆M◦E(z)

• If all the parameters of the model that are subject to faults and un-
certainty can be defined with respect to a small set ϑ = (ϑi) of under-
lying parameters, we can define M(z) as a function of ϑ = ϑ◦ + δϑ,



CHAPTER 5. ANALYTICAL METHODS 27

where ϑ◦ represents the real value of the underlying parameters and
δϑ = δϑF + δϑE the discrepancy due to faults and modeling errors.
The transfer function of the model of the healthy system is M(z;ϑ◦);
note that, in general, M(z;ϑ◦) 6= M̃◦(z), because the model is still an
approximation of the reality, independently from the accuracy of its
parameters.

5.2 Parity space methods

The purpose of parity space methods is to check the parity (consistency)
of the measurements acquired from the monitored system with their expected
value (in absence of faults). These methods make use of parity equations,
which are relations between the observable signals of a system that always
hold when no unknown inputs (faults and disturbances) are present, e.g.
f(y(t)) = g(u(t)) or p(y(t), u(t)) = 0.

Parity equations can be used to generate residuals, which are quantities
that have to be zero in absence of faults.

5.2.1 Generic residual generator

Consider a discrete-time MIMO system described with the generic I/O
relationship:

y(k) = M(z)u(k) + S(z) f(k) (5.1)

where u(k) ∈ Rm is the vector of inputs, y(k) ∈ Rp is the vector of outputs,
f(k) ∈ Rν is the vector of additive faults acting on the system, and M(z)
and S(z) are transfer functions of the appropriate size.

The generic residual generator is a linear discrete-time system:

r(k) = V (z)u(k) +W (z) y(k) (5.2)

where r(k) ∈ Rq is the vector of residuals (or residual set), and V (z) and
W (z) are transfer functions of the appropriate size such that the parity
equation r(k) = 0 is verified when f(k) = 0 ⇔ y(k) = M(z)u(k).

Substituting eq. (5.1) into eq. (5.2) gives:

r(k) = V (z)u(k) +W (z) · [M(z)u(k) + S(z) f(k)] =

= [V (z) +W (z)M(z)]u(k) +W (z)S(z) f(k)
(5.3)

Hence, in order to have the residuals equal to zero when no faults occur,
the transfer functions V (z) and W (z) must satisfy the parity equation:

[V (z) +W (z)M(z)]u(k) = 0

from which we obtain:
V (z) = −W (z)M(z) (5.4)
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Process (5.1)

Residual generator (5.2)

M(z)

S(z)

u(k)

f(k)

y(k)

W (z)

V (z)
r(k)

Figure 5.2: Generic residual generator from eqs. (5.1) and (5.2)

Substituting eq. (5.4) into eq. (5.2) gives the following equation, called
computational form of the residual generator:

r(k) = W (z) · [y(k)−M(z)u(k)] (5.5)

Finally we substitute eq. (5.4) into eq. (5.3) (or equivalently we combine
eqs. (5.1) and (5.5)), and we obtain:

r(k) = −W (z)M(z)u(k) +W (z) · [M(z)u(k) + S(z) f(k)]

which leads to the following equation1, called internal form of the residual
generator, where Z(z) = W (z)S(z) and f̃(k) = S(z) f(k):

r(k) = W (z)S(z) f(k) = W (z) f̃(k) = Z(z) f(k) (5.6)

While we use eq. (5.5) to actually generate the residuals, eq. (5.6) shows
how they depend on the faults. By properly choosing the transfer function
Z(z) we can give them the desired form, that is, the one which better allows
to detect failures.

The response set to a fault fi is defined as:

r(k|fi) = W (z)S∗,i(z) fi(k) = Z∗,i(z) fi(k) (5.7)

and the response of a single residual rh(k) is:

rh(k|fi) = Wh,∗(z)S∗,i(z) fi(k) = zh,i(z) fi(k) (5.8)
1Since we only know an approximation M of the real transfer function M̃ , we should

write eq. (5.1) as r = (V +WM̃)u+WSf , and hence eq. (5.6) as r =W (M̃−M)u+WSf̂ ,
so that r =W (M̃ −M)u ≈ 0 for f = 0 and M ≈ M̃
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Residual generator

M(z)

W (z)
r(k)y(k)

u(k)
-

S(z) W (z)
f(k) f̃(k) r(k)

(eq. 5.5)

(eq. 5.6)

Figure 5.3: Generic residual generators (parity space equations)

Specification and implementation Detection and isolation properties
of a residual rh depend on the given specification Zh(z), which is realized
through a suitable implementation Wh(z).

A specification Zh(z) =
[
0 . . . 0

]
, which is made by ν rational functions

for f ∈ Rν , is said homogeneous, otherwise it is said non-homogeneous.
An implementation Wh(z) is made by p rational functions, therefore it

can’t satisfy more than p conditions. A specification with ν = p is said full,
and a specification with ν = p− 1 is said almost-full. There is a special case
of specification which contains p− 1 zero elements and one non-zero element,
and this is called full almost-Heneous specification.

5.2.2 Isolation properties of the residual generator

A single residual allows to detect the presence of a fault, but its isolation
among ν independent faults F = {f1, . . . , fν} requires a set of at least q ≥ ν
residuals r =

[
r1 . . . rq

]T.
Structured residuals

When a fault fi occurs, some residuals respond, and the others do not.
Structured residuals are designed so that each residual rh is sensitive to a
different subset Fh of faults.

Each fault fi is characterized by the pattern of the response set r(k|fi).
We define the fault signature, or fault code, as the binary column vector
ϕi ∈ Rq whose hth element is 1 if rh is sensitive to fi, and 0 otherwise:

ϕi =
[
ϕ1,i . . . ϕq,i

]T
(ϕi)h =

{
0, fi ∈ Fh
1, fi /∈ Fh
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The matrix of the signatures Φ = (ϕh,i) =
[
ϕ1 . . . ϕν

]
is the q × ν

matrix whose columns ϕi are the fault signatures. It can be defined as a
matrix whose elements are 1 if the fault fi(k) affects the residual rh(k), and
0 otherwise, and it represents the pattern of the specification Z(z).

Φ =

f1 f2 · · · fν
r1 1 1 · · · 0
r2 0 1 · · · 1
...

...
...

. . .
...

rq 1 0 · · · 0

Φ∗,i = ϕi =

ϕ1,i
...
ϕq,i

 ϕh,i =

{
0, zh,i(z) ≈ 0

1, zh,i(z) 6= 0

Observed fault code and fault isolation When a non-null response set
is observed, we apply a threshold test:

εh =

{
0 , |rh(k)| < λh

1 , |rh(k)| ≥ λh
, h = 1 . . . q

where λi ≥ 0 is the threshold beyond which the residual is considered to be
responding. The vector ε =

[
ε1 . . . εq

]T is the observed fault signature,
and we can isolate the fault by comparing ε with the known fault signatures:
if ε = ϕi then the fault fi has occurred.

Triggering limit Assuming that a fault fi has a (known) nominal value
f̄i, the steady-state step response of rh to fi is:

lim
k→∞

∣∣∣rh(k ∣∣∣ f̄ stepi

)∣∣∣ = |Wh,∗(z) fi(z)|z=1 (5.9)

We define the (normalized) triggering limit as:

ηh,i =
λh

f̄i |Wh,∗(z) fi(z)|z=1
(5.10)

A small triggering limit ηh,i indicates a high sensitivity of rh to the fault
fi. If ηh,i > 1 the fault fi does not bring the residual rh to its threshold λi
at steady-state, so it should be ηh,i < 1 , ∀ (h, i).

Multiple fault isolation with structured residuals When more than
one fault is present simultaneously, the response set to these faults is equal
to the sum of the individual response sets to each fault2, that is:

r( · | fi ∈ Fl) =
∑
fi∈Fl

r( · | fi) , Fl ⊆ F

2in some very rare cases, the effects of the faults may cancel each others
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The signature ϕFl
of a combination of faults Fl is generally equal to the

boolean sum of the signatures ϕi of the faults fi ∈ Fl, and we can define an
augmented matrix of the signatures that includes all the fault combinations
Fl or the most probable ones (e.g. all the combinations of 2 or 3 faults):

Φaug =

f1 f2 · · · fν F1 F2 · · ·
r1 1 1 · · · 0 1 1 · · ·
r2 0 1 · · · 1 0 1 · · ·
...

...
...

. . .
...

...
...

rq 1 0 · · · 0 1 1 · · ·

5.2.3 Linear systems in state-space representation

We consider the following linear state-space representation for a discrete-
time dynamical system of the nth order, describing a process subject to
additive faults: {

x(k + 1) = Ax(k) +Bu u(k) +Bf f(k)

y(k) = C x(k) +Du u(k) +Df f(k)

(5.11a)
(5.11b)

where f is the vector of faults, and:

x ∈ Rn u ∈ Rm A ∈ Rn×n Bu ∈ Rn×m Bf ∈ Rn×ν

y ∈ Rp f ∈ Rν C ∈ Rp×n Du ∈ Rp×m Df ∈ Rp×ν p ≤ n

Assuming that the pair (C,A) is observable, the behavior of the system
in the sliding time window [k −N, k] is described by:

y(k −N)
y(k −N + 1)

...
y(k)

︸ ︷︷ ︸
Y (k)

=


C
CA
...

CAN


︸ ︷︷ ︸

O

x(k −N)+

+


Du 0 . . . 0
CBu Du . . . 0
...

...
. . .

...
CAN−1Bu CAN−2Bu . . . Du


︸ ︷︷ ︸

K


u(k −N)

u(k −N + 1)
...

u(k)

︸ ︷︷ ︸
U(k)

+

+


Df 0 . . . 0
CBf Df . . . 0
...

...
. . .

...
CAN−1Bf CAN−2Bf . . . Df


︸ ︷︷ ︸

H


f(k −N)

f(k −N + 1)
...

f(k)

︸ ︷︷ ︸
F (k)

(5.12)
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O : matrix (N + 1) p× n Y ∈ R(N+1)p

K : matrix (N + 1) p× (N + 1)m U ∈ R(N+1)m

H : matrix (N + 1) p× (N + 1) ν F ∈ R(N+1)ν

Y (k) = Ox(k −N) +K U(k) +H F (k) (5.13)

The observability matrix O, the Hankel matrices K and H, the inputs
U(k) and the outputs Y (k) in the sliding window are known, while the faults
F (k) in the sliding window and the state x(k −N) are not known.

We assume that p ≤ n and RankC = p. The pair (A,C) is observable if
and only if RankO = n.

Primary and secondary residuals

Starting from eq. (5.13) we define the primary residuals as:

o(k) = Y (k)−KU(k) = (5.14a)

= Ox(k −N) +HF (k) ∈ R(N+1)p (5.14b)

and the secondary residuals, or simply residuals, as:

r(k) = wT · [Y (k)−KU(k)] = (5.15a)

= wT · [Ox(k −N) +HF (k)] ∈ R (5.15b)

where wT =
[
wT
N wT

N−1 . . . wT
0

]
is a row vector of (N + 1) p free param-

eters, with wκ ∈ Rp for κ = 0 . . . N .
Both primary and secondary residuals depend on the state x(k −N) and

the vector of faults F (k). The design of the secondary residuals consist in
the choice of a vector w such that:

• wTO = 0Tn , so that r(k) = wTH F (k) is insensitive to the state
x(k −N);

• wTH = zT, where zT =
[
zTN zTN−1 . . . zT0

]
is a row vector of

(N + 1) ν free design parameters, with zκ ∈ Rν for κ = 0 . . . N , which
has to be chosen in order to guarantee identification and isolation
properties.

The space of all the vectors w that decouple the residuals r from the state
x, defined as P = {w |wTO = 0Tn} is called parity space, and any vector
w ∈ P is called parity vector.

If the conditions above are satisfied, the expression of secondary residuals
in internal form (eq. 5.15b) becomes:

r(k) = wTH F (k) = zT F (k) (5.16)
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which can be expanded as:

r(k) = zT F (k) =
N∑
κ=0

zTκ f(k − κ) =
N∑
κ=0

ν∑
i=1

zκ,i fi(k − κ) (5.17)

By properly choosing the vector zT we can decide which faults does r
depend on, as shown in eq. (5.17). Then, the parameters wT can be obtained
from zT by solving the following linear system of n+ (N + 1) ν equations in
(N + 1) p unknowns:

wT
[
O H

]
=
[
0Tn zT

]
(5.18)

A vector zh is a residual specification; the corresponding vector wh
that allows to compute rh(k) from input and output data is the residual
implementation.3

Equivalence with the generic residual generator

Equations (5.15a) and (5.16) can be rewritten as:

r(k) = wT Y (k) + vT U(k) = wTH F (k) = zT F (k) (5.19)

where vT = −wTK =
[
vTN vTN−1 . . . vT0

]
, vk ∈ Rm. If we define the

transfer function matrices

W (z) =

N∑
κ=0

wT
κ z
−κ , V (z) =

N∑
κ=0

vTκ z
−κ , Z(z) =

N∑
κ=0

zTκ z
−κ

of size (1× p), (1×m) and (1× ν), respectively, we can write:

wT Y (k) =

N∑
κ=0

wT
κ y(k − κ) =

N∑
κ=0

wT
κ z
−κ y(k) = W (z) y(k)

vT U(k) = · · · = V (z)u(k) , zT F (k) = · · · = Z(z) f(k)

and eq. (5.19) can be rewritten as:

r(k) = W (z) y(k) + V (z)u(k) = Z(z) f(k) (5.20)

which is identical to eqs. (5.2) and (5.6).
If we pre-multiply each member of eq. (5.13) by wT, recalling that wTO =

0T we get:

wT Y (k) = wTK U(k) +wTH F (k) = −vT U(k) + sT F (k)

3the (boldface) index h in zh and wh identifies a particular residual specification and
the corresponding implementation, and it should not be confused with the index κ = 1 . . . N
denoting subvectors of z and w in the previous equations
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where zT = wTH =
[
zTN zTN−1 . . . zT0

]
, zi ∈ Rν .

Assuming that we can find two transfer function matrices M(z) and S(z)
such that W (z)M(z) = −V (z) and W (z)S(z) = Z(z), we can write:

W (z) y(k) = −V (z)u(k) + Z(z)f(k) = W (z)M(z)u(k) +W (z)S(z) f(k)

from which we obtain

y(k) = M(z)u(k) + S(z) f(k)

which is identical to eq. (5.1).
Equation (5.19) can be expanded as:

r(k) =
wT
N z

N + · · ·+wT
1 z +wT

0

zN
y(k) +

vTN z
N + · · ·+ vT1 z + vT0

zN
u(k)

This shows that the residual has a dead-beat response of N th order, which
settles in at most N steps.

Residual specifications

In order to be able to freely choose the structure of the secondary residuals,
assuming that z 6= 0 (non-homogeneous specification) the number of the
unknowns must be greater than or equal to the number of equations:

z 6= 0 #unknowns ≥ #equations =⇒
(N + 1) p ≥ n+ (N + 1) ν =⇒ (N + 1)(p− ν) ≥ n

In order to make a residual insensitive to faults, we need to set z = 0
(homogeneous specification) and solve the homogeneous system wT

[
O H

]
=

0Tn+(N+1) ν . In this case the condition becomes:

z = 0 #unknowns ≥ #equations + 1 =⇒
(N + 1) p ≥ n+ (N + 1) ν + 1 =⇒ (N + 1)(p− ν) ≥ n+ 1

In summary:

(N + 1) p ≥
{
n+ (N + 1) ν, z 6= 0 (5.21a)
n+ (N + 1) ν + 1, z = 0 (5.21b)

These conditions can be fulfilled only if ν < p.

Strictly input faults and reduced system

A fault fi which doesn’t directly affect the output y of the system, i.e.
such that the ith column of the matrix Df is null, is called strictly input fault.
If there are νI strictly input faults, we can define from Df a new matrix D∗f
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without the νI null columns, obtaining from the matrix H a reduced matrix
H∗ of size [(N + 1) p]× [(N + 1) ν−νI ], and from the system (5.18) a reduced
system of n+ (N + 1) ν − νI equations in (N + 1) p unknowns:

H∗ =


Df 0 . . . 0
CBf Df . . . 0
...

...
. . .

...
CAN−1Bf CAN−2Bf . . . D∗f


wT

[
O H∗

]
=
[
0Tn z∗T

]
(5.18 red.)

where z∗T =
[
z∗N

T . . . z∗0
T
]
is a row vector of (N + 1) ν − νI parameters,

with z∗κ ∈ Rν for κ = 1 . . . N , and z∗0 ∈ Rν−νI . The complete specification z
is obtained by adding a zero to z∗0 (in the correct position) for each strictly
input fault.

In summary, conditions in section 5.2.3 become:

(N + 1) p ≥
{
n+ (N + 1) ν − νI , z 6= 0 (5.22a)
n+ (N + 1) ν − νI + 1, z = 0 (5.22b)

These conditions can be fulfilled only if ν ≤ p.

Implementation of the minimum complexity solution

The minimum complexity solution is the one with the smallest horizon N
that allows to solve the system (5.18) with respect to w, and it is obtained
when the number of equations is equal to the number of unknowns (+1):

(N + 1) (p− ν) =

{
n− νI , z 6= 0 (5.23a)
n− νI + 1, z = 0 (5.23b)

We consider the following cases:

• non-homogeneous specification (z 6= 0)
Minimum complexity solution: (N + 1) (p− ν) = n− νI

◦ ν = p (full specification): it requires n = νI and the condition
(5.22) is satisfied for any N ∈ N; this is a special case which implies
p = n and νI = ν, that is, Df = [0], therefore

[
O H∗

]
would be

singular for N = 0 and it must be N ≥ 1.
◦ ν = p−1 (almost-full specification): the condition (5.22) is satisfied
for N ≥ n− νI − 1; in the special case of p = n and νI = ν, the
condition is satisfied for any N ∈ N, but

[
O H∗

]
would be

singular for N = 0 and it must be N ≥ 1.
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In summary, the minimum complexity solution is:

z 6= 0 ⇒ N =


1 p = n = ν = νI

1 p = n and ν = νI = p− 1

n− νI − 1 p < n and ν = p− 1

(5.24)

In both cases, wT :=
[
0Tn z∗T

] [
O H∗

]−1

• Homogeneous specification (z = 0)
Minimum complexity solution: (N + 1) (p− ν) = n− νI + 1

◦ ν = p (full specification): this requires νI = n + 1, which is not
possible since νi ≤ ν = p ≤ n, therefore a full homogeneous
specification cannot be given.

◦ ν = p−1 (almost-full specification): the condition (5.22) is satisfied
for N ≥ n− νI .

In summary, the minimum complexity solution is:

z = 0 ⇒ N = n− νI , ν = p− 1 (5.25)

In the case of almost-full specification, in order to find an implemen-
tation w such that wT

[
O H∗

]
=
[
0Tn z∗T

]
we have to assume the

value of one of the elements of w. If we set (wN−j′)k′ := c we can
rearrange eq. (5.18 red.) as:[
wT
N . . . (wT

N−κ′)¬k′ . . . wT
N

]
= −c

[
Or′ H∗r′

] [
O¬r′ H∗¬r′

]−1

where (wT
N−κ′)¬k′ is w

T
N−j′ without its (k′)th element, Or′ and H∗r′ are

the (r′)th rows4 of O and H∗, and Õ¬r′ and H̃∗¬r′ are the matrices O
and H∗ without their (r′)th row, and r′ = κ′N + k′.

Insensitivity to faults

In order to make a residual insensitive to a specific subset F̃ of ν̃ faults, we
can consider the subsystem (A, Bu, B̃f , C, Du, D̃f ) subject to those faults
only, and find an implementation w for the homogeneous specification z̃ = 0:

1. we define the sub-matrices B̃f and D̃f composed of the columns Bf ∗,i
and Df ∗,i such that fi ∈ F

2. we define the corresponding matrix H̃ (or H̃∗ if D̃f has ρ̃ null columns)
3. we set z̃ := 0T(N+1)ν̃−ρ̃ (homogeneous specification) and we find

the corresponding residual implementation w by solving the system
wT

[
O H̃∗

]
=
[
0Tn 0T(N+1)ν̃−ρ̃

]
4according to the row numbering of the full matrix H
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4. we compute the (non-homogeneous) specification zT := wTH for the
full set of faults F (where zi+νj = (zj)i = 0 , ∀ i : fi ∈ F̃ , j = 0 . . . N)

5. we check a posteriori that the residual r(k) = wTH F (k) = zT F (k) is
sensitive to the other ν − ν̃ faults fi /∈ F̃

Example (5.2.1)
Consider the following system, with p = ν = n = 2:

A =

[
0.8 0
1 0.5

]
Bu =

[
2 0
1 3

]
Bf =

[
1 2
0 3

]
C =

[
1 0
0 1

]
Du =

[
0 0
0 0

]
Df =

[
1 0
1 0

]
We want to find a residual which is sensitive to f2 only (full non-homogeneous
specification). The matrix Df has one null column, therefore νI = 1 and the
condition (5.22a) can’t be fulfilled. In order to make the residuals insensitive
to f1, we consider the subsystem with this fault only, and we search an
implementation for the homogeneous specification z̃ = 0:

B̃f =
[
Bf ∗,1

]
=

[
1
0

]
D̃f =

[
Df ∗,1

]
=

[
1
1

]
ν̃ = 1 ν̃I = 0

Since p = ν − 1, the specification is almost-full. According to eq. (5.23), the
minimum complexity solution is the one with N = n− ν̃I = 2. The matrices
H̃ and O are:

O =

 C
CA
CA2

 , H̃ =

 D̃f 0 0

CB̃f D̃f 0

CAB̃f CB̃f D̃f



O =



1 0
0 1
0.8 0
1 0.5
0.64 0
1.3 0.25

 , H̃ =



1 0 0
1 0 0
1 1 0
0 1 0
0.8 1 1
1 0 1


We set (w2)1 := 1 and we compute:[

(w2)2 (w1)1 (w1)2 (w0)1 (w0)2

]
:=

= −1
[
1 0 1 0 0

]


0 1 1 0 0
0.8 0 1 1 0
1 0.5 0 1 0
0.64 0 0.8 1 1
1.3 0.25 1 0 1


−1

=

∼=
[
0.071 −0.929 0.214 0.714 −0.714

]
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The implementation of the homogeneous specification is:

wT ∼=
[
1 0.071 −0.929 0.214 0.714 −0.714

]
The (reduced) matrix H∗ for the original system is:

H∗ =

 Df 0 0
CBf Df 0
CABf CBf D∗f

 =



1 0 0 0 0
1 0 0 0 0
1 2 1 0 0
0 3 1 0 0
0.8 1.6 1 2 1
1 3.5 0 3 1


The specification z for the full set of faults is:

z∗T =
[
z∗2

T z∗1
T (z∗0 )1

]T
:= wTH∗ =

[
0 −2.57 0 −0.71 0

]
with (z0)2 = 0 as f2 is a strictly-input fault and it does not affect the output
at the current time instant. The same result can be obtained from the:

zT := wTH =
[
0 −2.57 0 −0.71 0 0

]
Finally, we check if the residual is sensitive to f2:

r(k) = zT F (k) =
[
0 −2.57 0 −0.71 0 0

]


f1(k − 2)
f2(k − 2)
f1(k − 1)
f2(k − 1)
f1(k)
f2(k)

 =

= −2.57 f2(k − 2)− 0.71 f2(k − 1)

The equation of the residual can be rewritten as:

r(k) = Z(z) f(k) = Z2 f2(k) = −(2.57 z−2 + 0.71 z−1) f2(k)

Z(z) =
[
Z1(z) Z2(z)

]
=
[
0 −(2.57 z−2 + 0.71 z−1)

]
5.2.4 Linear systems in transfer function form

We consider the transfer function representation for a discrete-time dy-
namical system:

y(k) = M(z)u(k) + S(z) f(k) (5.26)

from which we obtain:

y(k)−M(z)u(k) = S(z) f(k) (5.27)
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Transfer functions can be obtained from sate-space representation as:

M(z) = C(zI −A)−1Bu +Du , S(z) = C(zI −A)−1Bf +Df

Since y(k)−M(z)u(k) = 0 for f(k) = 0 we can define the primary and
secondary residuals as:

o(k) = y(k)−M(z)u(k) = S(z) f(k) (5.28a, 5.28b)

r(k) = wT · [y(k)−M(z)u(k)] = (5.29a)

= wT · [S(z) f(k)] ∈ R (5.29b)

where wT ∈ Rp. The definition of secondary residuals in eq. (5.29) is identical
to those given in eqs. (5.5) and (5.6) for the computational and internal forms
of the generic residual generator.

The naïve implementation w(z) = Z(z)S(z)−1, which requires p = ν, is
generally wrong, because:

• it may be unstable (the residual would diverge even with no faults);
• it may be non-casual (not realizable)
When p = ν we can set:

w(z) = Z(z)T (z)S(z)−1

T (z) , π(z)

zγ
diag

{
1

zα1
, . . . ,

1

zαp

}
, π(z) =

γ∏
i=1

(z − ai)

where a1, ..., aγ are the unstable invariant zeros of S(z), and αi is the maxi-
mum of the relative degrees of the transfer functions in the ith row of S(z)−1.

Multiplicative faults

In order to consider parametric faults, we use the parametric form of the
transfer function:

y(k) = M(z;ϑ)u(k) , ϑ = ϑ◦ + δϑ (5.30)

This equation can be expanded as:

y(k) ∼= M(z;ϑ◦)u(k) +
ν∑
j=1

δmj δϑj(k)u(k) , δmj ,
∂M(z;ϑ)

∂ϑj

∣∣∣∣
ϑ◦

which can be rewritten as:

y(k) ∼= M◦(z)u(k)︸ ︷︷ ︸
nominal model

+N(z; k) δϑ(k)

M◦(z) ,M(z;ϑ◦) , N(z; k) ,
[
δm1(z)u(k) . . . δmν(z)u(k)

]
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where M◦(z) is the transfer function of the healthy system.
Primary and secondary residuals are defined as:

o(k) = y(k)−M◦(z)u(k) ∼= N(z; k) δϑ(k)

r(z) = W (z; k) · [y(k)−M◦(z)u(k)] ∼=
∼= W (z; k)N(z; k) δϑ(k) = Z(z) δϑ(k)

Since the matrix N(z) is time-varying, in order to have the same specification
Z(z) the implementation W (z; k) should be computed at every time instant.

The use of parity equations with multiplicative faults is limited by the
fact that different parametric faults δi affecting the same row of M(z) can
be detected but not isolated, as their effect can’t be distinguished.

5.2.5 State observers

Consider again the state-space representation (5.11):{
x(k + 1) = Ax(k) +Bu u(k) +Bf f(k)

y(k) = C x(k) +Du u(k) +Df f(k)

(5.11a)
(5.11b)

The state observer x̂( · ) is defined by:{
x̂(k + 1) = A x̂(k) +Bu u(k) + L · [y(k)− ŷ(k)]

ŷ(k) = C x̂(k) +Du u(k)

(5.31a)
(5.31b)

The estimation errors are defined as:{
ex(k) = x(k)− x̂(k)

ey(k) = y(k)− ŷ(k)

(5.32a)
(5.32b)

and they evolve according to the dynamical system:{
ex(k + 1) = (A− LC) ex(k) + (Bf − LDf ) f(k)

ey(k) = C ex(k) +Df f(k)

(5.33a)
(5.33b)

where eq. (5.33a) is obtained by subtracting eq. (5.31a) from eq. (5.11a), after
replacing y(k) and ŷ(k) with eq. (5.11b) and eq. (5.31b), and eq. (5.33b) is
obtained by subtracting eq. (5.31b) from eq. (5.11b).

Estimation error and primary residuals

If we choose L such that (A− LC) is asymptotically stable, then:

f = 0 =⇒ ex(k) , ey(k)→ 0 , for k →∞
therefore the estimation error ey(k) can be used as a residual for the identifi-
cation of faults. A suitable choice of L can guarantee fault identification and
isolation properties.
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Computational form The estimation error ey(k) can be expressed as
function of inputs u(k) and outputs y(k). Equation (5.31a) can be rewritten
as:

x̂(k) = (zI −A)−1Bu u(k) + (zI −A)−1 Ley(k) (5.34)

Equation (5.32b), combined with eq. (5.31b) and eq. (5.34), gives:

o(k) = [I − C (zI −A)−1 L] ey(k) = y(k)−M(z)u(k) (5.35)

where M(z) , [C (zI − A)−1Bu + Du]. This equation is identical to the
primary residuals as defined in eq. (5.14a).

If we apply the matrix inversion lemma5 to [I − C (zI −A)−1 L] we can
write:

ey(k) = [I − C (zI −A+ LC)−1 L] · (y(k)−M(z)u(k)) (5.36)

This is a residual in computational form, as it depends on inputs u(k) and
outputs y(k) only.

Internal form Equation (5.33a) can be rewritten as:

ex(k) = (zI −A+ LC)−1 (Bf − LDf ) f(k)

By substituting this in eq. (5.33b) we obtain:

ey(k) = [C (zI −A+ LC)−1 (Bf − LDf ) +Df ] · f(k) (5.37)

This is a residual in internal form, as it depends on faults f(k) only.

Secondary residuals

If we multiply the primary residuals (5.36) by a matrix Hq×p we get:

r(k) = W (z) · [y(k)−M(z)u(k)] ∈ Rq (5.38)

where W (z) , H · [I − C (zI −A+ LC)−1 L].
Choosing of the transfer function matrix W (z) is equivalent to finding

a pair of matrices (L, H) which guarantee the asymptotic stability of the
observer and the required isolation properties for the secondary residual in
internal form:

r(k) = H · [C (zI −A+ LC)−1 (Bf − LDf ) +Df ] · f(k) (5.39)

5Woodbury matrix identity: (A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1
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Chapter 6

Fault implementation with
Modelica

6.1 Introduction to Modelica language

Modelica is an object-oriented programming language focused on first-
principles models (FPMs).

A dynamic system is described using a declarative (acausal) notation, that
is, through its physical equations, which can be written in any order. This
makes Modelica different from procedural programming languages, which
use an imperative (casual) notation, that is, a set of assignments which are
executed in a specific order.

The main advantages of a declarative notation are that:
• there is no need to write equations in closed-form (as assignments) and

in a specific order;
• there is no need to identify inputs and outputs among all variables;
• the model structure is easy to understand.

Modelica classes According to the principles of object-oriented program-
ming (OOP), Modelica language is based on classes and objects (instances of
a class). A Modelica class has the following structure:

class newClass
// LIST OF DECLARATIONS
// Variables, parameters, constants, and objects

equation
// LIST OF EQUATIONS

initial equation
// LIST OF INITIAL EQUATIONS (used to initialize the

simulation)
end newClass;

Modelica also defines seven specialized classes: model, connector,
record, block, type, package, and function. While model and

43
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class keywords are interchangeable, classes defined with other keywords
can have restrictions (e.g. a connector class cannot contain equations) or
enhancements.

A class can represent a component or system model, and can be simulated.
In order for there to be a unique solution, a model must be balanced, that is,
the number of variables and equations of a model (including the inherited
ones) must be the same. This applies to any non-specialized and non-partial1

class.
The following class allows to simulate the differential algebraic equation

ẋ(t) = 1− x, with x(0) = 0:
class FirstOrderDAE
Real x;

initial equation
x = 0;

equation
der(x) = 1-x;

end FirstOrderDAE;

Components and interfaces Modelica allows to create components that
can be connected to each others through physical interfaces. Basic components
(such as electrical one-ports) are defined by a model class, and physical
interfaces (such as electrical pins) are defined by a connector class.

More components can be connected together in a new model class, con-
taining an instance of each component and a connect statement for each
connection between any two interfaces of the components2 . This allows to
create complex components, subsystems, and systems.

Modeling and simulation environments like OpenModelica Connection
Editor and Dymola allow to create two kinds of graphical views for each
class:

• an icon, which represents the class (in the library browser) and its
instances (in the diagram of another class), including its interfaces;

• a diagram, which allows to build a model by placing components from
the library and drawing connections between their interfaces.

Each time a component is placed on a model diagram a new object is declared,
and each time two interfaces are connected a new connect statement is
created.

Flow and effort variables A connector can contain two kinds of variables:
effort variables (which are the default kind) and flow variables (defined
through the flow keyword). The connection of two interfaces generates an
equality equation for each pair of effort variables, and a balance equation for
each pair of flow variables.

1see paragraph “Partial classes” on page 45
2see paragraph “Connect equations” on page 46
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For example, an electrical pin interface is a connector class that contains
two variables: the voltage (effort) and the current (flow):

connector Pin
Real v "voltage (effort variable)";
flow Real i "current (flow variable)";

end Pin;

A connector can be instantiated as an object inside a component model,
and its variables can be accessed using the dot notation:

model Resistor
Pin p "positive pin";
Pin n "negative pin";
Real v "voltage";
Real i "current";
parameter Real R "Resistance";

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;
R*i = v; // constitutive equation

end Resistor;

If an interface is not connected, when the model is instantiated all flow
variables are set to zero by adding a new equation. In the previous example,
the current through the pin interfaces must be zero, therefore the equations
p.i = 0.0 and p.i = 0.0 are automatically created.

Partial classes When more components share some common features, it is
possible to gather them together in a partial class. The partial keyword
defines a class as incomplete, and therefore it cannot be instantiated nor
simulated. A partial class can only be inherited by another class through the
extends keyword.

For example, all electric one-port components share the following features,
according to the passive sign convention:

• they have a positive and a negative electrical pin;
• there is a voltage drop from the negative to the positive pin;
• the current flowing into the the positive pin is equal to the current

flowing out from the negative pin;
These features can be modeled as a partial model OnePort, then for each
one-port component it is sufficient to create a class that extends OnePort
and defines the missing equation, that is, the constitutive equations between
voltage and current:

partial model OnePort
Pin p, n;
Real v, i;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;
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end OnePort;

model Resistor
extends OnePort;
parameter Real R "Resistance";

equation
R*i = v;

end Resistor;

model Capacitor
extends OnePort;
parameter Real C "Capacitance";

equation
C*der(v) = i;

end Capacitor;

When the Resistor class is instantiated, all the inherited equations and
declarations are included, thus making the model balanced (6 equations and
6 variables):

model Resistor
Real p.v "voltage (effort variable)";
Real p.i "current (flow variable)";
Real n.v "voltage (effort variable)";
Real n.i "current (flow variable)";
Real v "voltage";
Real i "current";
parameter Real R "Resistance";

equation
R * i = v;
v = p.v - n.v; // inherited from OnePort
0.0 = p.i + n.i; //
i = p.i; //
p.i = 0.0; // automatically created
n.i = 0.0; //

end Resistor;

Connect equations The connect statement takes two compatible con-
nector instances as argument and creates equality and balance equations
between any pair of effort and flow variables.

The following example shows how to connect a resistor and a capacitor:
model RC
Pin p "positive pin";
Pin n "negative pin";
Resistor R1;
Capacitor C1;

equation
connect(R1.n, C1.p);

end RC;

The connect statement creates the following equations:
C1.p.v = R1.n.v; // equality equation
R1.n.i + C1.p.i = 0.0; // balance equation
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In addition, the following balance equations are created for unconnected pins:
R1.p.i = 0.0;
C1.n.i = 0.0;

In order to use the previous model as a component, interfaces RC.p and
RC.n should be added, as it would be unpractical to access to RC.R1.p
and RC.C1.n. It is also possible to define the voltage drop across and the
current through the new component:

model RC
Pin n, p;
Real v, i;
Resistor R1;
Capacitor C1;

equation
v = p.v - n.v;
i = p.i;
connect(R1.p, p);
connect(R1.n, C1.p);
connect(C1.n, n);

end RC;

Conditional models Modelica allows to write models that behave differ-
ently depending on the value of a conditional equation. This can be done
using an if-then-else statement.

Unlike other programming languages, the if statement is subject to some
restrictions, in order to guarantee that the number of equations doesn’t
change: each branch of the statement must compute the same variables, and
there must always be the else alternative.

model ConditionalModel
// set of m+n variables

equation
// set of m equations
if [conditional expression] then
// set of n equations

elseif [conditional expression] then
// set of n equations

else
// set of n equations

end if;
end ConditionalModel;

Implicit connections Implicit connections allow to share the value of a
variable in a class (the superclass) with other objects (instances of subclasses)
that are declared in the same class. The variable must appear in the superclass
with the inner prefix, and in the subclasses with the outer prefix. The
value of the variable is determined by the superclass, either as a declaration
or as the result of the equations.
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model Pipe;
outer Temperature EnvironmentTemp "reference value";
// ...

equation
// ...

end Pipe;

model Tank;
outer Temperature EnvironmentTemp "reference value";
// ...

equation
// ...

end Tank;

model Plant
inner Temperature EnvironmentTemp "shared values";
Tank T1, T2, T3;
Pipe P1, P2;

equation
// ...

end Plant;

I/O variables and casual blocks Modelica allows to define input/output
variables according to the casual “block diagram” paradigm. These variables
are defined through the input and output prefixes. Input variables can be
only connected to output variables, and vice versa.

A connector can contain both input and output variables, together with
flow and effort variables. A block class has the restriction that a connect
statement can only contain one input and one output variable.

6.2 Fault implementation in Modelica

The Modelica Association develops the free Modelica Standard Library
(MSL), which contains hundreds of component models, none of which considers
the faulty behavior. The problem of fault implementation in Modelica has
been widely studied in the last few years, but a standardized implementation
doesn’t exists yet.

Fault characteristics A fault can be either in active or inactive state, and
some kinds of fault may have different levels of severity. The activation of
a fault may require a Boolean variable, or an Integer variable to choose
among different fault behaviors; the specification of the level of severity
require a Real variable. It is possible to use parameter variables to set
fault state and severity before the simulation, and input connectors or
outer variables to set them during the simulation.

In view of this, existing approaches to fault implementation focuses on
three aspects:
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• fault classification
• fault architecture (concerning the way fault are modeled)
• fault activation (concerning the way the system choose which faults

are active during the simulation)

6.2.1 State of the art

Existing approaches aim to simulate one or more faulty behaviors in
addition to the nominal behavior, but they use different architectures for the
fault modelization and different methods to activate fault.

The FAME framework De Kleer et al. [dKle+13] developed the FAME
framework, a semiautomatic way to extend the Modelica Standard Library
(MSL) models in order to allow the simulation of faulty behaviors. For each
basic component of the library which is susceptible to faults they created a
new fault-augmented model that describes the behavior of each fault mode, as
well as the nominal behavior from the original model. Basic components are
those without internal connect statement; fault augmentation for non-basic
components is made by inserting faults in the basic components they include.

When a component is susceptible to faults, a new set of equations is
written for each fault mode, and the new model of the component allows
to select the operating mode – among the nominal one and the fault ones –
through a conditional statement. An Integer parameter allows to choose
the operating mode (which cannot change during the simulation), and a Real
variable interface allows to select the fault amount, where 0 is the absence of
the fault and 1 is its maximum severity.

The partial automation of fault implementation relies on the identification
of standard power interfaces, which contain an effort and a flow variable. In
the case of faults that affect the power flow between two or more components,
the fault augmentation process adds a power dissipation component.

The Fault Triggering library Van der Linden [vdLin14] proposed a new
standard for the implementation of faults in Modelica. The Fault Triggering
library introduces a set of standardized “fault-output” causal blocks3 which
allow to create component models that include optional faults. These blocks
indicates if the fault is active and, depending on the type of fault, its intensity.
Care has been taken to make sure that all the types of faults can be modeled
through these blocks, and that the nominal system can be simulated as well.

The library contains function createFaultPackage, which detects all
the fault blocks in a model and creates a “model wrapper” package that
contains the model of the system and a fault trigger block, which is used to
activate faults.

3see paragraph “I/O variables and casual blocks” on page 48
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The Fault library Gundermann et al. [Gun+19] developed the Fault
Library, which is is based on both the fault augmented models of the FAME
library [dKle+13] and the standardized blockset of the Fault Triggering
library [vdLin14]. This library relies on both fault augmented models, like
the FAME framework, and additional blocks for connector and bridge faults
(see paragraph “Within the fault library”, page 51) .

Comparison of the different approaches While the FAME Framework
models all kinds of faults through the fault augmentation of the components,
the Fault Library uses a mixed approach, in which the fault augmentation
is used only when the fault affects a component internally, and additional
components are used when the fault affects the connection between two
components.

The Fault Triggering library introduces blocks whose output specify the
fault state and intensity, but de Kleer et al. don’t define a standard for
fault implementation, as the purpose of the library is centralizing the fault
activation rather than simplifying the fault modelization.

Drawbacks The aforementioned approaches present many drawbacks.
First of all, none of them works with OpenModelica. The Fault Trigger-
ing library [vdLin14] requires Dymola, and the Fault Library [Gun+19]
requires SimulationX, which are both commercial environments. Additionally,
the Fault Library is no longer mantained and the last version (0.6.6) is not
compatible with the current version of Dymola. The FAME Framework
[dKle+13] works with JModelica and relies on other external tools.

Another drawback is that the FAME framework and the Fault Library
approaches required to create from scratch the fault-augmented components,
although the process

6.2.2 Fault classification and architecture

A proper classification of faults is a critical aspect in view of their imple-
mentation in a Modelica model. A first classification of faults and disturbances
has been given in section 5.1, but it is functional to block schemes, which
represent casual models.

A fault may affect an internal parameter of a component, a constitutive
relation (that is, a relation between two physical quantities), the whole
behavior of the component, or the connection between more components.
Different kinds of faults may require to be implemented in completely different
ways, and it is fundamental to classify them in view of this.

Within the FAME framework De Kleer et al. [dKle+13] divided the
faults in three classes:
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• catastrophic faults, which change the behavior of a component into
something different (e.g. ruptures);

• power flow faults, which affect the power flow to or from a component
(e.g. short circuits and leakages);

• parametric faults, which reflect the shifting of a supposedly fixed
physical quantity that describes the component (e.g. wear and fatigue).

This classification is functional to the automatic augmentation of the MSL
components. While the modelization of catastrophic faults require a physical
understanding of the system, the modelization of parametric faults is trivial.
Regarding power flow faults, the way components are implemented in Modelica
language makes easy to detect power flow interfaces (which usually are
connectors containing both effort and flow variables), and this allows to model
power dissipation (e.g. fluid leakages, loose mechanical joints or bad electrical
contact) or unwanted power bridges (e.g. parasitic capacitance between
two electrical connectors) in a semiautomatic way. A power dissipation is
modeled through the insertion of a damper element, which is attached to
each interested external interface (connector) of the component, and a power
bridge is modeled through the insertion of an element which connects each
interested pair of connectors of the component.

Within the FaultTriggering library Van der Linden [vdLin14] defines
three types of faults:

• "on-off" faults, which have only one discrete faulty state (in addition
to the nominal state) and can be modeled through a Boolean variable;

• case faults, which have more than one discrete faulty state (in addition
to the nominal state) and can be modeled through an Integer variable;

• continuous faults, whose entity is modeled through a Real variable.
From the simulation point of view, the faults are classified as:

• parameter faults, which have a low time constant with respect to the
simulation time, so that it’s not necessary to model the fault transients;

• variable faults, which have a high time constant with respect to the
simulation time, so that it is necessary to model the fault transients
(this is often the main purpose of the simulation).

The combination of these two classifications leads to six different types of
faults.

Within the fault library Gundermann et al. [Gun+19] defines two types
of faults:

• continuous faults, whose intensity is modeled through a Real vari-
able, which is 0 when the fault is not present (nominal behavior) and
1 when the fault is maximum.

• discrete faults, whose state is modeled through a Boolean variable,
which is true if the fault is active.
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From the modelization point of view, the faults are classified as:
• connector faults, which can be:

◦ components with two interfaces that can cut an existing connection
(e.g. open circuits, pipe obstructions, ...);

◦ components with one interface that can be added to an existing
connection (e.g. additional frictions, fluid leakages, ...);

• bridge faults, which can be inserted between existing connections (e.g.
short circuits);

• fault augmented models with parametric faults

6.2.3 A new classification for a hybrid fault architecture

The classification introduced in the Fault library reflects the mixed ap-
proach to fault implementation, but it is incomplete as it does not consider the
case in which the dynamic equations of the system change. The classification
introduced in the FAME framework also includes that missing case and, even
though it is functional to the fault augmentation approach, it can be easily
adapted to the mixed approach.

FAME Fault Library FaultTriggering library

Power flow faults Connector/bridge faults Continuous, on-off
Catastrophic faults – Case, on-off
Parametric faults Fault augmented models Continuous

The following classification is an attempt to combine the aforementioned
ones in view of a hybrid fault architecture that makes use of both additional
connectors and fault augmented components:

• Power flow faults. These faults can be modeled through additional
connectors which depend on a Real variable (the fault is maximum
if the variable is 1) or a Boolean variable (the fault is active if the
variable is true).

◦ Interposed connectors (two interfaces). They cut an existing
connection.

◦ Juxtaposed connectors (one interface). They can be added
to an existing connection.

◦ Bridge connectors (two interfaces). They can be inserted
between existing connections.

• Internal faults. These faults can be modeled through fault augmented
components.

◦ Parametric faults. A fixed parameter becomes a Real variable
◦ Behavioral faults. The system can have one or more faulty
behaviors, in addition to the nominal behavior, corresponding
to different sets of dynamic equations; the choice of the proper
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behavior may depend on a Boolean variable if there is only
one faulty behavior (which is false in the nominal case) or an
Integer variable (which is 0 in the nominal case),

Implementation of connector faults Depending on the application do-
main (electric, hydraulic, ...) a connector fault may be continuous (0 if
inactive, 1 if maximum) or discrete (false if inactive, true if active). An
example of discrete connector fault is a welding on an electric board, which
is a short circuit that becomes an open circuit when broken. An example
of continuous connector fault is a mechanical transmission belt that may
work at maximum efficiency (the fault intensity is 0), get too loose (the fault
intensity is between 0 and 1) or break (the fault intensity is 1).

Implementation of parametric faults The main issue with parametric
faults is the impossibility to express their intensity as a percent scale, as the
parameter may vary in a non-finite range. A solution could be to express the
difference δp between a parameter p and its nominal value pn (which could be
assumed to be its expected value µp), with respect to the parameter variance
σ2
p, that is, as εp , δp/σ2

p. If |εp| ≤ 2÷ 3 the parameter can be assumed to
be at its nominal value, otherwise a fault may have occurred. The acceptable
range of εp may vary according to the parameter and the specific application.

6.3 The role of probability

6.3.1 Failure mechanisms in the FAME framework

De Kleer et al. also modeled some parametric failure mechanisms, including
wear, fatigue, corrosion, and stress rupture. In the case of progressive damage
mechanisms, the FAME framework allows to compute the PDF of the amount
of damage for a determined set of parameters, such as the component age and
geometry; given the PDFs for a limited set of parameter values it is possible
to use interpolation in order to get the PDFs for other values. For a sudden
rupture mechanism it is possible to compute the PDF of the age at which
the rupture happens.

Possible uses for Predictive Maintenance The paper suggests some
possible uses of these failure mechanisms for both design and diagnostic
purposes:

• determining whether a system requirement is met, given the components
age or a set of faults.

• determining the RUL and the MTTF of a compoment;
• performing FMEA and FMECA.
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In view of predictive maintenance, the following possibilities should be
investigated:

• Given the age of each component, determine which components are
most likely to fail next, then study the behavior of the system when
each of those components fail.

• Given the PDFs, determine which components are most likely to fail
simultaneously, then study the behavior of the system in the case of
simultaneous failure.

• Given some performance requirements on the system, determine the
maximum acceptable wear of each component.

• ...

6.3.2 Using Bayesian inference for diagnostic purposes

Minhas et al. [Min+14] propose a diagnosis framework based on the
Bayesian inference and the augmented models generated by the FAME
framework [dKle+13]. The main idea behind the diagnosis framework is
to assess through Bayesian inference the likelihood of a (nominal or faulty)
model given the observed data. Numerical simulations of fault augmented
Modelica models are used to obtain a statistical model of the system for all of
its operating modes through an Approximate Bayesian Computation (ABC)
approach.

Prior and posterior probability Let M(ϑ) be a model characterized by
a parameter ϑ. This can be considered as the realization of a random variable4

Θ, whose probability density distribution5 f(ϑ), called prior distribution, is
known.

Any datum xi generated from the model (such as the value of a physical
variable in a specified time instant, its settling time or its average value)
can be considered as the outcome of an experiment (the simulation), that
is, the realization of a random variable Xi. Assuming that the value of the
parameter is ϑ, we define the joint probability density function f(x1, . . . , xn|ϑ)
as the likelihood of X1, . . . , Xn. Conversely, if the observed data are X1 =
x1, . . . , Xn = xn then the probability density function of ϑ becomes [Ros04]:

f(ϑ|x1, . . . , xn) =
f(ϑ, x1, . . . , xn)

f(x1, . . . , xn)
=

f(ϑ) f(x1, . . . , xn|ϑ)∫
f(x1, . . . , xn|ϑ) f(ϑ) dϑ

The conditional density function f(ϑ|x1, . . . , xn) is called posterior density
function, and can be considered as the prior density function which has been
updated with a new evidence, that is, the observed data through a process
that is called Bayesian updating.

4see definition A.1.2
5see definition A.1.4
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Bayes estimator Since the best estimate of a random variable is its mean
(see definition A.1.6), the best estimate of ϑ given the dataX1 = x1, . . . , Xn =
xn, denoted with E[ϑ|X1, . . . , Xn], is the mean of its posterior density func-
tion:

E[ϑ|X1, . . . , Xn] =

∫
ϑf(ϑ|x1, . . . , xn) dϑ

Bayes estimator can be useful in order to estimate the value of those parame-
ters which are related to faults.

Bayes factor Bayes’ theorem (A.3.1) allows to get the posterior probability
of a specific parameter value ϑ given an observation x1, . . . , xn:

P (ϑ|X1, . . . , Xn) =
P (X1, . . . , Xn|ϑ)P (ϑ)

P (X1, . . . , Xn)

Bayes factor Bij is defined as the ratio between the posterior probabilities of
two different parameter values ϑi and ϑj :

Bi,j ,
P (ϑi|X1, . . . , Xn)

P (ϑj |X1, . . . , Xn)
=
P (X1, . . . , Xn|ϑi)P (ϑi)

P (X1, . . . , Xn|ϑj)P (ϑj)

This value describes the likelihood of ϑi over ϑj . Different scales exist in order
to determine the likelihood: generally speaking, if Bi,j > 3 the likelihood can
be considered substantial.

This approach can be also used to compare the likelihood of different
models or different operating modes of the same model.

Approximate Bayesian Computation ABC consists in a class of com-
putational methods that can be used to approximate the likelihood function
through a large number of simulations and estimate the posterior distributions
of model parameters. The most basic ABC method is the rejection algorithm,
which consists in the following steps:

1. sample a set of parameter values ϑ1, . . . , ϑN from the prior distribution;

2. use the model to generate a set of data d̂j for each sampled value ϑj ;

3. compare each generated set of data d̂j – or an appropriate statistical
descriptor Φ[d̂j ] – with the observed set of data d – or Φ[dj ]) – using
an appropriate distance metric ρ

(
Φ[d̂j ],Φ[dj ]

)
;

4. define for the distance metric a threshold ε above which the generated
set of data, and the corresponding parameter value, is rejected for the
observed set of data.



Chapter 7

Feedback control systems

Feedback control systems are commonly modeled through transfer func-
tions. This chapter shows the effects of linearization, parametric errors,
parametric faults, and disturbances.

7.1 Feedback control scheme

7.1.1 Block diagrams

Block diagram of the physical system The block diagram shown in
fig. 7.1 describes a system with feedback control, where:

• P (s) is the transfer function of the process;
• y(t) is the physical variable of the process which has to be controlled,

and the signal ys(t) is its measure;
• w(t) is the desired value for y(t), and ws(t) is the desired value (reference

signal) for its measure ys(t);
• the error es(t) is the difference between the reference signal ws(t) and

the measurement signal ys(t) of the output;
• T (s) is the stable transfer function of the transducer (sensor) and
RSG(s) is the reference signal generator (ideally, RSG(s) = T (s));

• A(s) is the transfer function of the actuator, and m(t) is the physical
variable which the actuator is acting on;

• R(s) is the transfer function of the controller, and its output ũ(t) is the
control variable;

• dA(s), dP (s) and dT (s) are exogenous variables, which represent noises
and disturbances acting on the actuator, the process and the transducer,
respectively, through the corresponding transfer function H∗(s).

Simplified block diagram for control design purposes The block
diagram in fig. 7.1 can be elaborated as shown in fig. 7.2, where the block

56
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R(s) A(s) P (s)

RSG(s)

T (s)
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Figure 7.1: Block diagram of a feedback control system

T (s) R(s) A(s)P (s)

T−1(s) RSG(z)
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n
-

d

Figure 7.2: Re-elaborated block diagram of a feedback control system
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R(s) G(s) = T (s)A(s)P (s)

RSG(z) · T−1(s) ≈ 1
w

y◦ e u y

-

n
-

d

Figure 7.3: Feedback control scheme (full)

T (s) has been moved at the beginning of the forward line, according with
block diagram elaboration rules. In this diagram:

• the control system error e(t) is the difference between the actual output
variable y(t) and its filtered desired value y◦(t), where y◦(t) ≈ w(t) if
RSG(s) ≈ T (s);

• n(t) = T−1(s)HT (s)dT (t) represents the noises and disturbances on the
transducer;

• d(t) = HP (s)dP (t) + P−1(s)Ha(s)dA(t) represents the noises and dis-
turbances on the plant and the actuator.

Finally, by replacing the block R(s) with T−1(s)R(s)T (s) we obtain the
simplified feedback control scheme shown in fig. 7.3, where:

• the block T (s) has been moved at the beginning of the forward line,
according to block diagram elaboration rules;

• the control system error e(t) is the difference between the actual output
variable y(t) and its filtered desired value y◦(t), where y◦(t) ≈ w(t) if
RSG(s) ≈ T (s);

• the (strictly proper) transfer function G(s) represents the whole process,
which is made of the actuator, the transducers and the actual plant.

It should be noted that the block R(s) shown in fig. 7.4 apparently has
a different input and output with respect to the block shown in fig. 7.1.
However, recalling that the blocks R(s) and G(s) are actually a simplification
of T (T−1RT )AP , this control scheme is equivalent to the physical control
system, although the variables es(t) and ũ(t) have been hidden by the sim-
plifications. The simplified control scheme allows to design the controller
considering the actual physical variable instead of its measurement, inde-
pendently of the dynamics of the transducer (which are part of the process’
transfer function G(S)).
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L(s) = R(s)G(s)
y◦ e y

-

n
-

d

Figure 7.4: Feedback control scheme (simplified)
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L(s)

F (s)

S(s)

Figure 7.5: Sensitivity Functions

7.1.2 Open-loop transfer function and sensitivity functions

We define the open-loop transfer function L(s) , R(s)G(s) as the forward
path of the loop. Starting from L(s), we define the sensitivity S(s), the
complementary sensitivity F (s) and the control sensitivity Q(s) as:

S(s) , 1

1 + L(s)
, F (s) , L(S)

1 + L(s)
, Q(s) , R(S)

1 + L(s)

Sensitivity functions are the transfer functions between the input and
output signals of the feedback control scheme in fig. 7.3:

out
in

W (s) D(s) N(s)

Y (s) F (s) S(s) −F (s)
U(s) Q(s) −Q(s) −Q(s)
E(s) S(s) −S(s) F (s)

If Bode hypotheses hold (see appendix B.2), it can be shown that:
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Figure 7.6: Approximation of the complementary sensitivity functions

|F (jω)| ≈
{
µF , , ω ≤ ωc
|L(jω)| , ω > ωc

, µF =

{
1 , gL > 0

µL/(1 + µL) , gL = 0

|S(jω)| ≈


1

|L(jω)| , ω ≤ ωc

µS , ω > ωc

, µS =

{
1/(1 + µL) , gL > 0

1 , gL = 0

|Q(jω)| ≈


1

|G(jω)| , ω ≤ ωc

|R(jω)| , ω > ωc

Approximation of the complementary sensitivity function

Dominant poles of F (s) are close to the gain crossover frequency ωc (see
definition B.2.1), therefore F (s) can be approximated with a low-pass filter
with gain µF and cut-off frequency ωc. Figure 7.6 shows the Bode plots of F (s)
together with its dominant pole approximation F̃dp(s) and its approximation
F̃ωc(s) to a low-pass filter with cut-off frequency ωc

Given the phase margin ϕm of L(s) (see definition B.2.1), the following
empirical rule holds:
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Figure 7.7: Magnitude plot and step response F (s)

• if ϕm ≥ 75◦ then F (s) is likely to have a real dominant pole, whose
time constant is τ ' 1/ωc, and the settling time of the step response is
ts ' 5τ ;

• if ϕm ≤ 75◦ then F (s) is likely to have two complex conjugated dominant
poles, with ωn ' ωc and ξ ' sin (ϕm/2) ' ϕm/100◦, and the settling
time is ts ' 5/ξωc.

The approximated transfer function is:

F (s) ≈


Freal(s) =

µF
1 + sτ

, ϕm ≥ 75◦

Fc.c.(s) =
µF

1 + 2 ξ s/ωn + s2/ω2
n

, ϕm < 75◦

The approximation is usually good for ω ≤ ωc; since high frequencies poles
are neglected, the real transfer function usually have a higher slope and a
different phase for ω � ωc.

Example (7.1.1)
We consider a process described by the transfer function G(s), and two different
closed-loop regulators RI(s) and RII(s):

G(s) =
0.05

(1 + 2s)(1 + 100s)
, RI(s) =

1 + 100s

s
, RII(s) =

20 (1 + 100s)

s
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The open-loop transfer functions are:

LI(s) =
0.05

s (1 + 2s)
, LII(s) =

1

s (1 + 2s)

In the first case ϕm = 84.3° and ωc = 0.0497 rad/ sec; the dominant pole of
F (s) is real, as expected, at −0.0564 rad/ sec. In the second case ϕm = 38.7°
and ωc = 0.6248 rad/ sec; the dominant poles of F (s) are complex conjugate,
as expected, with ωn = 0.7071 and ξ = 0.3536; an approximation of these
values can be obtained as ωc ' ωn and ξ ' ϕm/100° = 0.387 rad.

Figure 7.7 shows the approximations of F (s) and their step response.

7.2 Transfer functions and parametric faults

The parameters of a transfer function, such as the gain µ and the time
constants τi, depend on the physical quantities characterizing the system.
In case of parametric faults, that is, undesired variations of the physical
quantities of the system, the transfer function of the faulty system will have
different parameters, but its expression (i.e. the type g and the number of
singularities) won’t change.

For example, the transfer function of a low-pass RC filter is T (s; τ) =
1/(1 + sτ), where the time constant is τ = R · C. If the resistor breaks
down, its resistance R becomes very small, and the time constant of the filter
changes accordingly: the new transfer function will be T (s; τ̃) = 1/(1 + sτ̃),
with τ̃ � τ .

Any variation of the parameters causes a variation of the (step or fre-
quency) response of the system. A parametric fault causes the system to
behave differently from its (healthy) model, and unavoidable uncertainties
and approximations of the parameters always cause the model to behave
differently from the system. With the only knowledge of the responses of the
system and the transfer function there is no way to attribute the cause of
their difference to a fault rather than to an approximation. However, the
variation of a parameter due to a fault usually has a higher magnitude than
any uncertainty or approximation. Besides that, the transfer function is
often a further simplification of the model, as it could be a dominant pole
approximation or a linearization, and this also causes its response to be
different.

In summary, the differences between the transfer function model and the
real system can be attributed to the following reasons:

• model parameters are an approximation of the real parameters
• the transfer function is a dominant pole approximation
• the real system is not LTI (parameters depend on time and linearization

point)
• the transfer function doesn’t include delays
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7.2.1 Linearization effects

In order to describe a non-linear system through a transfer function it is
necessary to linearize the system around a given operating or equilibrium
point. If the dynamic equations of the system are regular enough, the transfer
function has the operating point as parameter. If we change the operating
point without updating the transfer function we are introducing a parametric
error, which may become bigger (diventa più grande più ci si allontana dal
punto di lavoro). Intuitively, trespassing a singular point may introduce
unpredictable effects on the step response, which may be difficult to quantify
and may be confused with a fault.

Example: Pendulum position control (7.2.1)
The following equation describes the dynamic of a pendulum consisting of a
mass M which is linked to a rigid weightless bar of length l, to which are
applied a torque u(t) and a friction torque which is proportional to the angular
speed (with a coefficient k > 0):

Ml ϑ̈(t) = −Mg sin(ϑ(t))− k ϑ(t)

l
+
u(t)

l
=⇒

ϑ̈(t) = −g
l

sin(ϑ(t))− k

Ml2
ϑ̇(t) +

1

Ml2
u(t) = f(ϑ, u) (7.1)

The state-space representation of the system is:
ẋ1(t) = x2(t) = f1(x1, x2, u)

ẋ2(t) = −g
l

sin(x1(t))− k

Ml2
x2(t) +

1

Ml2
u(t) = f2(x1, x2, u)

y(t) = x1(t) = g(x1, x2, u)

x(t) =
[
x1(t) x2(t)

]T
=
[
ϑ(t) ϑ̇(t)

]T
, f(x, u) =

[
f1(x, u) f2(x, u)

]T
Given a constant input u(t) = ū, an equilibrium state for the pendulum is

a constant solution x̄ =
[
x̄1 x̄2

]T
=
[
ϑ̄ 0

]T such that f2(ϑ̄, 0, ū) = 0, and
the variables can be written as:

x1(t) = x̄1 + δx1(t) , x2(t) = δx2(t) , u(t) = ū+ uϑ(t)

The linearized equations are:
δẋ1(t) = δx2(t)

δẋ2(t) = −g
l

cos(ϑ̄) · δx1(t)− k

Ml2
δx2(t) +

1

Ml2
δu(t)

ȳ + δy(t) = x̄1(t) + δx1(t)

In matrix form: {
δẋ(t) = AP δx(t) +BP u(t)

δy(t) = CP δx(t)
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AP
(
ϑ̄
)

=

[
1 0

−g
l

cos(ϑ̄) − k

Ml2

]
, BP =

[
0
1

Ml2

]
, CP =

[
1 0

]
Assuming l = 1, M = 1, k = 1, the transfer function of the linearized

system is:

P (s; ϑ̄) = CP
[
sI −AP

(
ϑ̄
)]−1

BP =
1

s2 − s+ g cos ϑ̄

The actuator’s dynamic is described by the transfer function:

A(s) =
1

1 + 0.5 s

We assume that the transfer function of the transducer is T (s) = 1, so
that G(s) = A(s)P (s). Figure 7.8 shows the block diagram of the non-linear
(a) and of the linearized (b) system.

C A P
Controller Saturation Actuator Process

ws es ũ m y ys

-

dT

(a) Non-linear system

R(s) A(s) P (s;π/2)

Controller Actuator Process

ws es ũ m y ys

-

dT

(b) linearized system
(
ϑ̄ = π/2

)
Figure 7.8: Bock diagram of the pendulum position controller

We consider two regulators, with (R1) and without (R2) integral action:

R1(s) =
20 (1 + 0.3 s) (1 + 3 s)

s (1 + 0.003 s)
, R2(s) =

100 (1 + 0.1 s)

1 + 0.01 s

The output of the regulators has been limited to [−50,+50] in the non-linear
model.
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Figure 7.9: Bode Diagram of L(s) with R1(s)

The loop transfer functions are given by Li(s; ϑ̄) = Ri(s)A(s)P (s; ϑ̄); the
Bode plots are shown in figs. 7.9 and 7.10, and gain cross-over frequency and
margin are:

L1(s) L2(s)

ϑ̄ 0 π/2 π 0 π/2 π

ωc 15.25 14.79 14.30 11.91 11.42 10.90
ϕm 32.56 33.12 33.70 7.26 7.55 7.81

The response ȳ + δy(t) of the linearized system introduces an error εy(t)
with respect to the response y(t) of the non-linear system. Figures 7.11 to 7.14
show the response of the non-linear and the linearized system to a step signal
and a sine (on the left side), and the error introduced by the linearization
εy(t) = ((ȳ + δy(t))− y(t)) (on the right side).
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Figure 7.10: Bode Diagram of L(s) with R2(s)
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Setpoint ϑ◦(t) ϑ0 Lin. points ϑ̄ Figure

π/2 · step(t) 0 0,±π/2, π/4, π 7.11 (R1 and R2)
π/2 + π/4 · sin(π t) 0 0, π/2 7.12 (R1 and R2)
π/2 + π/4 · sin(10π t) π/2 0, π/2 7.13 (R1) – 7.14 (R2)

Step response has the following characteristics:
• with integral action (R1):

◦ the response of the non-linear system doesn’t have oscillations;
◦ the response of the linearized system has oscillations;
◦ both responses tend to zero
◦ the response of the linearized systems with ϑ̄ = ±π/2 are closer to
the response of the non-linear system;

• without integral action (R2):
◦ both the responses of the non-linear and of the linearized systems
have oscillations;

◦ the response of the non-linear system is faster, and its oscillations
are smaller and slower;

◦ both responses don’t generally tend to zero due to the lack of integral
action (with the only exception of the responses of the linearized
system with ϑ̄ = ±π/2, as P (s;±π/2) has a pole in the origin);

Sine response has the following characteristics:
• at a low sine frequency (π rad/s < ωc) the difference εy(t) is similar to
the step response case, with both regulators;

• at a high sine frequency (10π rad/s > ωc) the system is not able to track
the reference:

◦ the period of the response signal is the same as that of the reference
signal, but out of phase

◦ the amplitude of the response of the linearized system with ϑ̄ = π/2
is reduced to 43.1% (|F (j10π;π/2)| = 0.431)

◦ the amplitude of the response of the non-linear system is reduced
to 4.28%

◦ the linearized system have better performances than the non-linear
system, as the regulators have been tuned on the former

• with integral action (R1) the response is centered on π/2
• without integral action (R2) the response is centered below π/2 (except
for the case with ϑ̄ = ±π/2)

Disturbances. We introduce a disturbance dT (t) = 0.05 sin (ωt) (with a
peak-to-peak amplitude of 0.1) on the measurement of y = ϑ and we measure
its effect on the system.
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Figure 7.11: Step response
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Figure 7.12: Sine response – ϑ◦(t) = π2 + π/4 · sin(π t)
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Freq. response linearized (π/2) Non-linear

ω |F (jω)| |−S(jω)| yPP ys PP yPP ys PP

R
1
(s

)

1 1.0139 0.0217 0.1014 0.0022 0.1018 0.0023
10 1.6045 0.9501 0.1604 0.0950 0.1355 0.0803
50 0.1525 1.1508 0.0152 0.1151 0.0152 0.1149
1000 0.0001 1.0000 10−5 0.1000 ≈ 10−5 0.0999

R
2
(s

)

1 1.0104 0.0142 0.1010 0.0014 0.1000 0.0010
10 4.3618 3.4828 0.4361 0.3483 0.2824 0.2234
50 0.0724 1.0689 0.0072 0.1069 0.0072 0.1070
1000 ≈ 10−5 1.0000 ≈ 10−6 0.1000 ≈ 10−6 0.0999

Table 7.1: Effect of disturbances on the output variable

R1(s) R2(s)

ω ∆yPP ∆ys PP ∆yPP ∆ys PP

1 ≈ 0% 4.5% 1.0% 28.6%
10 7.4% 15.5% 35.2% 35.6%
50 ≈ 0% ≈ 0% ≈ 0% ≈ 0%

1000 n.d. ≈ 0% n.d. ≈ 0%

Table 7.2: Effect of disturbances on the output variable

Table 7.1 show the effect of the disturbance on both the position y and
its measurement ys, as its peak-to-peak amplitude. Table 7.2 compares the
effect on the linearized system with the effect on the non linear system. At
low frequencies, the effect is higher on the linearized system.



Chapter 8

Conclusions

The possible role of the models has been discussed in chapters 2 and 3,
together with related issues.

Chapters 4 and 5 shows different techniques to detect abnormal behaviors
in the system. Data-driven methods require to know the normal behavior
of the plant, that is, the expected value of some monitored variables, and
models can be useful to generate data when it is not possible to obtain them
from the real system.

Chapter 6 shows how faults can be implemented and simulated in Modelica
models. There are many ways to use data generated by simulations, as
discussed in chapters 2 and 3. A possible use is Bayesian inference, that allow
to identify the configuration of the system that led to its observed behavior.

The first part of Chapter 7 describes the structure of a feedback control
system and the effect of additive disturbances and parametric faults. Block
diagram elaboration rules allow to easily obtain the transfer function from a
disturbance to any monitored variable. Many systems can be approximated
to a first or second order transfer function, and this allow to understand
the magnitude and the speed of the effect of a parametric fault. However,
as discussed in the second part of the chapter, the effect of approximations
introduced by transfer function models may be non negligible, and the
behavior of a linearized model can be very different from the behavior of the
real system, therefore any conclusion must be treated with great caution.
For these reasons, transfer functions and block diagram may be very useful
in order to understand how disturbances and parametric faults affect the
system, but they not be used as digital twins as they are not reliable.

Other techniques that are based on transfer functions, such as residual
generators, are very useful for fault isolation, but great care must be taken
and the transfer function must be a good approximation of the model.
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Appendix A

Statistics

A.1 Random variables

Definition: probability (A.1.1). Probability is the measure P (E) ∈ [0, 1]
of the likelihood that an event E will occur. An event that never occurs
has probability P = 0, while an event that certainly occurs has probability
P = 1.

Definition: random variable (A.1.2). A random variable X (also called
aleatory variable or stochastic variable) is a variable whose possible values
are outcomes of a random phenomenon.

A random variable whose set of possible values can be written either as a
finite sequence x1, x2, . . . , xn (e.g. the result of a die roll) or as a countable
infinite sequence x1, x2, . . . (e.g. N or the positive multiples of 3) is said to
be discrete. A random variable that take values on a continuum of possible
values (e.g. R or any subset B ⊆ R) is said to be continuous.

Definition: probability mass function (A.1.3). The probability mass
function pX(x) of a discrete random variable X assuming values x1, x2, . . .
is defined as the probability of X being equal to a:

pX(x) = P{X = x}
{
> 0 , x ∈ {x1, x2, . . . }
= 0 , x /∈ {x1, x2, . . . }

(A.1)

The probability mass function has the following property:∑
i=1, 2...

pX(xi) = 1 (A.2)

Definition: probability density function (A.1.4). The probability den-
sity function (PDF) of a continuous random variable X is the function fX(x),
defined for x ∈ R, such that:

P{X ∈ B} =

∫
B
fX(x) dx

75
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It follows that:

P{X = a} =

∫ a

a
fX(x) dx = 0 , P{X ∈ R} =

∫ ∞
−∞

fX(x) dx = 1

P{a < X < b} = P{a ≤ X ≤ b} =

∫ b

a
fX(x) dx

Definition: distribution function (A.1.5). The (cumulative) distribution
function F of the random variableX is defined for any x ∈ R as the probability
that the value of a random variable X is less than or equal to x:

FX(x) = P{X ≤ x} ⇐⇒ X ∼ FX (A.3)

We write X ∼ F to indicate that F is the distribution function of X.
For continuous random variables:

FX(a) = P{X ∈ (−∞, a)} =

∫ a

−∞
fX(x) dx (A.4)

For discrete random variables:

FX(a) =
∑
x≤a

pX(x)

In both cases, FX(x) is monotonically non-decreasing, and:

FX(x)→ 0 for x→ −∞ , FX(x)→ 1 for x→∞

Definition: expected value or mean (A.1.6). The expected value of a
random variable X, also called mean, is a weighted average of all the values
that the variable can assume. For a discrete random variable it’s defined as:

E[X] =
∑
i

xi P (X = xi) (A.5a)

and for a continuous random variable it’s defined as:

E[X] =

∫ +∞

−∞
x fX(x) dx (A.5b)

Definition: variance (A.1.7). The variance of a random variable X rep-
resents its spread and it is defined as the expected value of the squared
deviation from its mean µ:

σ2
X = E[(X − µ)] (A.6)

Definition: standard deviation (A.1.8). The standard deviation of a
random variable X is the (positive) square root σX of its variance σ2

X .
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A.2 Probability distributions

A.2.1 Normal distribution

Definition (A.2.1). A random variable X is said to be normally distributed
with mean µ and variance σ2, and we write X ∼ N (µ, σ2), if its PDF is:

fX(x) =
1√

2πσ2
e
−

(x− µ)2

2σ2 (A.7)

The standard normal distribution is a special case with zero mean and unit
variance; a random variable with standard normal distribution is usually
denoted with the letter Z, and we write Z ∼ N (0, 1).

Proposition: Standardization (A.2.1). If Z ∼ N (0, 1) is a standard
normal variable, then X = σ2Z + µ ∼ N (µ, σ2). Conversely, given a normal
variable X ∼ N (µ, σ2), then Z = (X − µ)/σ2 ∼ N (0, 1) has a standard
normal distribution, and it is called the standardized form of X.

Normal distribution table When z ≥ 0, the probability P (0 < Z ≤ z)
(corresponding to the shaded area in fig. A.1) can be read from table C.2.
For example, P (0 < Z ≤ 1.96) is:

z . . . 0.05 0.06 0.07 . . .
...

...
...

...
1.8 . . . 0.46784 0.46856 0.46926 . . .
1.9 . . . 0.47441 0.47500 0.47558 . . .
2.0 . . . 0.47982 0.48030 0.48077 . . .
...

...
...

...

P{0 < Z ≤ z}

0 z Z

fZ(z)

Figure A.1: Standard normal distribution

Since the normal distribution is symmetrical, this table can also be used
to read P (z < Z ≤ 0) for z ≤ 0. The following probabilities can be read from
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dedicated tables, or computed from P (0 < Z ≤ z) as follows:

P{Z > z} =

{
0.5− P{0 < Z ≤ z} , z ≥ 0

0.5 + P{0 < Z ≤ z} , z < 0

P{Z ≤ z} =

{
0.5 + P{0 < Z ≤ z} , z ≥ 0

0.5− P{0 < Z ≤ z} , z < 0

P{|Z| ≤ |z|} = 2P{0 < Z ≤ z}
P{|Z| > |z|} = 1− 2P{0 < Z ≤ z} = 2 (0.5− P{0 < Z ≤ z})

−σ +σ−2σ +2σ−3σ −3σ

68%

95%

99.7%

Figure A.2: Confidence intervals of the normal distributions

A.3 Conditional probability

Definition: conditional probability (A.3.1). The conditional probability
of A given B, written as P (A|B), is the measurement of the probability of
the event A occurring given that the event F has occurred. If P (A|B) then
the events A and B are said to be independent. If P (B) > 0 we can write:

P (A|B) =
P (AB)

P (B)

Theorem: Bayes’ theorem (A.3.1). The conditional probability P (A|B)
can be written as:

P (A|B) =
P (B|A)P (A)

P (B)

Supposing that A1, . . . , An are mutually exclusive events of which one and
only one must occur we can write:

P (Aj |B) =
P (BAj)

P (B)
=

P (B|Aj)P (Aj)∑n
i=1 P (B|Aj)P (Ai)
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A.4 Summary Statistics

Definition: average or mean (A.4.1). The average of a group of data is
a single numerical value that synthetically describes the whole group. The
most common average is the arithmetic mean, or simply mean1. Other kinds
of average are the median, the mode and the geometric mean. Given a set of
n numerical values x1, . . . , xn, the arithmetic mean is defined as 1

n

∑n
k=1 xk.

Definition: population mean and variance (A.4.2). Given a finite
population of N elements, i.e. a collection of independent random variables
{Xi}i=1...N representing all its elements, the population mean µX is defined
as its average value (i.e. the arithmetic mean), and the population variance
σ2
X is defined as the average squared deviation from the mean:

µX =
1

N

N∑
i=1

Xi (A.8)

σ2
X =

1

N

N∑
i=1

(Xi − µX)2 (A.9)

Definition: sample mean and variance (A.4.3). Given a population
sample of size n < N , i.e. a subset of data {Xj}j=1...n, sample mean and
variance are estimators of the population mean and variance, defined as:

X̄(n) =
1

n

n∑
j=1

Xj (A.10)

s2 =
1

n− 1

n∑
j=1

(Xj − X̄(n))
2 (A.11)

Proposition: variance of the sample mean (A.4.1). The sample mean
X̄is a random variables itself, which depend on the chosen subset of data,
and have its own distribution. Its expected value µX̄ and variance σ2

X̄
are

given by:

¯̄X = E
[
X̄(n)

]
= E

 1

n

n∑
j=1

Xj

 =
1

n

n∑
j=1

E[Xj ] =
1

n

n∑
j=1

µX = µX (A.12)

σ2
X̄ = Var

[
X̄(n)

]
= Var

 1

n

n∑
j=1

Xj

 =
1

n2

n∑
j=1

Var[Xj ] =
1

n2

n∑
j=1

σ2
X =

σ2
X

n

(A.13)

1here the terms (arithmetic) mean and average are used without distinction
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and the standard deviation of X̄(n) is σX̄ = σX/
√
n. Therefore, the sample

mean X̄(n) is also centered on the population mean µX , but its spread
σ2
X̄

decreases as the sample size n increases. If the population is normally
distributed, then also the sample mean is, independently from the number of
samples n.

Theorem: Central limit (A.4.2). For a large sample size (usually n ≥ 30)
the sample mean X̄(n) is approximately normally distributed, regardless of
the distribution of the population, that is, X̄ ∼ N (µX , σ

2
X/n).

A.5 Hypothesis testing

Hypothesis testing aims to make a decision about observed data, and
specifically, to choose among two or more statistical hypotheses that usually
concern the parameters of their distribution:

• the null hypothesis H0, which is generally assumed to be true unless
evidence indicates otherwise

• one or more alternative hypotheses Hi, i = 1, 2, . . . representing a
situation that the test should be able to diagnose

Four possible situations may arise:

H0 is true H0 is false

H0 is not rejected 3 correct decision 7 Type II error
(false positive)

H0 is rejected 7 Type I error 3 correct decision
(false negative)

For example, assuming to have a population sample X1, . . . , Xn whose dis-
tribution’s mean µ is unknown, we may want to test the following hypotheses
on µ given the sample mean X̄:

Null hypothesis Alternative hypotheses

(a) H0 : µ = µ0 H1 : µ 6= µ0

(b) H0 : µ = µ0 H1 : µ > µ0

(c) H0 : µ = µ0 H1 : µ = µ1

(d) H0 : µ = µ0 H1 : µ = µ1 , H2 : µ = µ2

Table A.1: Examples of null and alternative hypotheses

We define the significance level α ∈ (0, 1) as the maximum acceptable
probability of making a type I error (often expressed as percentage). It’s
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generally assumed α = 5%, unless differently specified. The set of values of
X such that the null hypothesis is rejected is called critical region.

A test can be two-tailed, as in example (a), when the statistical significance
is tested in two directions, or two-tailed, as in example (b), when it is tested
in one direction. The tails correspond to the critical region: in two-tailed
tests the area of each tail is α/2, while in one-tailed tests the area of the
single tail is α, as shown in fig. A.3.

µ0α/2 α/2

(a) two-tailed test

µ0 α

(b) one-tailed test

Figure A.3: One- and two-tailed tests

The probability of making a type II error is denoted with β, as shown in
fig. A.4 for example (c). We refer to (1− β) as the power of the test.

µ0
(H0)

µ1
(H1)

α

2

α

2
β

Figure A.4: Critical region (α) and power of the test (β)

In predictive maintenance the null hypothesis H0 usually represents the
absence of faults, and the alternative hypotheses (such as a different mean or
a larger variance) the presence of faults. Rejecting the null hypothesis means
detecting a fault, with a probability α of making a type I error.

The p-value is the probability that a given result would occur under the
null hypothesis. If the p-value is smaller than the significance level, then the
null hypothesis is rejected.
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Normal distribution Given a normal distribution X ∼ N (µ, σ2), in the
case of a two-tailed test we want to find xα/2 > 0 such that P{|X| > xα/2} =
α. Recalling that Z = (X − µ)/σ2, we can find from table C.2 the value
zα/2 of z, called z-score, such that P{|Z| < zα/2} = 1−α, and then compute
xα/2 = σ2zα/2 + µ. If α = 0.05 then z0.025 = 1.96.

0 1.96

0.025

Z

fZ(z)



Appendix B

Control theory

B.1 Transfer functions

The transfer function of a continuous-time linear time-invariant (LTI)
system can be written in two forms:

G(s) =
ρ ·∏i (s+ zi) ·

∏
i (s2 + 2 ζi αni s+ α2

ni)

sg ·∏i (s+ pi) ·
∏
i (s2 + 2 ξi ωni s+ ω2

ni)

G(s) =
µ ·∏i (1 + τis) ·

∏
i (1 + 2 ζi s/αni + s2/α2

ni)

sg ·∏i (1 + Tis) ·
∏
i (1 + 2 ξi s/ωni + s2/ω2

ni)

µ =
ρ ·∏i zi ·

∏
i α

2
ni∏

i pi ·
∏
i ω

2
ni

, ρ =
µ ·∏i τi ·

∏
i ω

2
ni∏

i Ti ·
∏
i α

2
ni

, τi =
1

zi
, Ti =

1

pi

(1 + 2 ζi s/αni + s2/α2
ni) =

= [s+ cos(ξ)ω + j sin(ξ)ω] · [s+ cos(ξ)ω − j sin(ξ)ω]

(NOMENCLATURA - INDICARE TIPO g E SIGNIFICATO FDT
STRETTAM PROPRIA)

se g = 0 e sistema alimentato da ingr costante u-bar e trasf U(s)=u-bar/s,
l’uscita y-bar è costante e vale per il teor del val finale

ȳ = lim
t→∞

y(t) = lim
s→0

sG(s)
ū

s
= G(0) ū

con riferimento alla tf sopra ȳ = µ ū
se g 6= 0 si def guadagno generalizzato µ = lims→0 s

g G(s)
rho zero-pole gain?

Definition: Minimum phase transfer function (B.1.1). If L(s) has a
positive gain and no delay, and it doesn’t have singularities (zero and poles)
with real part, then it is said to be a minimum phase transfer function.

83
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B.2 Closed loop systems

We consider the closed-loop system shown in fig. B.1, where L(s) is a
strictly proper transfer function representing a continuous-time LTI system.

L(s)
y◦ e y

-

n
-

d

Figure B.1: Feedback system

Bode hypotheses We assume that:
1. L(s) doesn’t have poles with positive real part;
2. the magnitude plot |L(jω)|dB crosses the axis at 0 dB exactly once.1

Definition: Gain cross-over frequency and gain margin (B.2.1). Un-
der the Bode hypotheses, we define:

• the gain cross-over frequency ωc as the angular frequency such that
|L(jωc)| = 1 = 0 dB;

• the critical margin ϕc , ∠L(jωc);
• the phase margin ϕm , 180◦ − |ϕc|.

Theorem: Bode stability criterion (B.2.1). Under the Bode hypotheses,
the closed-loop system is asymptotically stable if and only if µL > 0 and
ϕm > 0◦.

B.3 Low-pass filters

BREVISSIMO Filtri primo e secondo ordine (poli cc)
pag 14

1having assumed that L(s) is a strictly proper transfer function, |L(jω)| crosses the
0 dB axis with a negative slope.
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Table C.1: Anti-biasing parameters for X̄-R and X̄-s charts
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Table C.2: Standard Normal Distribution: P (0 < Z ≤ z)
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