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A B S T R A C T

The research community has spent much effort in tackling the problem of
grasping novel objects in different settings [30, 31, 37, 61, 62] with the ob-
jective of holding objects robustly with robotic manipulators; however, real
manipulation tasks go far beyond holding the objects, and the quality of
a grasp depends on the task it is meant to support. While many quality
metrics exist to evaluate the quality of a grasp by itself [9, 48], no clear quan-
tification of the quality of a grasp relatively to a task has been defined. In
this thesis we propose a framework to extend the concept of quality metric
to task-oriented grasping by defining general physical measures for an open
set of task affordances. We evaluate both the results provided by such met-
rics and their applicability in practice by learning to infer them from vision.
To validate our framework, we have collected a dataset of grasps and com-
puted elementary grap metrics by using the GraspIt! simulator [18] on the
Princeton Shape Benchmark object models [19]. Then we have trained deep
models to infer these elementary metrics from range images taken in a simu-
lated camera-in-hand setting to assess the applicability of our framework to
more realistic partial-information settings. Experimental results show that a
direct search in a perfect information simulation with our novel framework
produces new and creative grasps which fit the specific actuator in use for
the selected task, while inference of such metrics from synthesized vision
provides already meaningful results, leaving margins for further improve-
ment.





S O M M A R I O

La comunità di ricerca ha speso molte energie per affrontare il problema
di afferrare oggetti non noti a priori in diversi contesti [30, 31, 37, 61, 62]
con l’obiettivo di generare prese robuste con manipolatori robotici; tuttavia
le applicazioni reali vanno molto oltre il tenere semplicemente gli oggetti, e
la qualità di una presa dipende dal compito di manipolazione che la stessa
deve supportare. Esistono molte metriche per valutare la qualità di una presa
a sé stante [9, 48], tuttavia non esiste una chiara quantificazione della qualità
di una presa relativamente ad un compito di manipolazione. In questa tesi
proponiamo una metodologia per estendere il concetto di metrica alle prese
orientate ad un compito definendo misure fisiche generali per un insieme
aperto di possibili compiti. Valutiamo sia la validità di queste metriche che la
loro applicabilità pratica apprendendo l’inferenza delle stesse dalla visione.

individuazione del problema

Una caratteristica molto distintiva dei primati sono le mani. Queste permet-
tono una manipolazione agile degli oggetti trovati nell’ambiente circostante
e, con ragionevoli limitazioni, garantiscono questa abilità indipendentemen-
te da molte caratteristiche dell’oggetto come la forma, le dimensioni e la
consistenza. Poiché questa caratteristica rende le mani degli attuatori estre-
mamente generali e versatili per interagire con l’ambiente, oggi le imitiamo
nei robot, costruendo mani robotiche.

Tuttavia usare davvero delle mani per interagire con l’ambiente è un pro-
blema estremamente complesso. Ad oggi la maggiore applicazione di mani e
bracci robotici è nell’automazione delle linee di assemblaggio, non per caso:
le linee di assemblaggio spesso presentano un grado di incertezza basso o
nullo nell’ambiente di lavoro, e richiedono azioni ripetitive che non necessi-
tano di una pianificazione della presa sul momento. Molti bracci robotici di
successo nel mercato delle linee di assemblaggio sono infatti progettati per
eseguire dei movimenti fissi con tempi e posizionamenti molto precisi, azio-
ne che richiede un controllo meccanico molto elaborato (un altro problema
molto complesso che non consideriamo in questa tesi), ma nessuna pianifica-
zione, ponendosi quindi molto lontano dall’attuatore generale rappresentato
dalle mani dei primati.

Più recentemente, con gli ultimi avanzamenti nel campo della Computer
Vision, si è riusciti a raggiungere una pianificazione della presa, gestendo
più o meno limitati gradi di incertezza nell’ambiente, ma ancora delle ap-
plicazioni di successo nel mercato in cui c’è incertezza sulla geometria stes-



sa degli oggetti sono estremamente rare a causa della difficoltà di questo
problema. Esempi di applicazioni, come nella gestione dei rifiuti [42], sono
ancora limitate al riposizionamento di oggetti e sono ancora molto lontane
dall’afferrare oggetti per manipolarli come strumenti.

Sbloccare tutte le potenzialità delle mani robotiche permetterebbe un’inte-
razione molto più ricca dei robot autonomi con l’ambiente circostante. Per
arrivare a questo, abbiamo bisogno di pianificare prese sugli oggetti in fun-
zione di ciò che dobbiamo fare con quesi oggetti; questo problema va sotto il
nome di Task Oriented Grasping. Il Task Oriented Grasping è un campo di ri-
cerca molto recente e molto attivo da cui, al meglio della nostra conoscenza,
non è scaturito ancora nessun esempio maturo di applicazione di mercato
ed ha al contempo il potenziale di essere applicato in molte situazioni.

In questa tesi ci concentreremo sull’applicazione del braccio robotico come
assistente di cucina, che deve essere in grado di usare strumenti di cucina
per compiere compiti comuni e insoliti con gli oggetti disponibili che può
raggiungere. Esempi di compiti in questo contesto sono spostare oggetti,
tagliare, versare, spingere, tirare e battere. Inoltre, non ammettiamo nessuna
ipotesi sulla natura degli strumenti a disposizione, che potrebbero essere di
qualsiasi forma e dimensione.

contributi

Con questa tesi portiamo un contributo di ricerca nel campo della Percezione
dell’Affordance per il Task Oriented Grasping.

Nel nostro contributo:

1. Definiamo e validiamo qualitativamente un framework per valutare la
qualità di una presa orientata ad un task

2. Produciamo un plugin per GraspIt! [18] per generare dati annotati
con minima o nulla necessità di intervento umano, dunque in modo
estremamente scalabile

3. Generiamo due dataset distinti di 400M e 100M di prese annotate su
22 oggetti dal Princeton Shape Benchmark [19] che pianifichiamo di
rendere pubblici nel futuro prossimo

4. Proponiamo e valutiamo quantitativamente e qualitativamente dei mo-
delli per affrontare il problema di imparare a predire dalla visione le
nostre metriche di qualità orientate a task

5. Proponiamo un nuovo modello, che chiamiamo Local PointNet, che
mette insieme l’idea della PointNet [56] di costruire embeddings dei
punti da una nuvola di punti con l’elemento convoluzionale delle Con-
volutional Neural Networks che modella efficacemente le correlazioni



locali e gerarchiche negli input, e mostriamo che supera tutti gli altri
modelli provati in alcuni dei nostri problemi di learning

I risultati sperimentali mostrano che una ricerca diretta in un contesto di
informazione completa in simulazione con il nostro nuovo framework pro-
duce prese nuove e creative che si adattano bene alla specifica mano robotica
in uso e al compito selezionato, mentre l’inferenza delle metriche proposte
da visione sintetica produce già risultati significativi, lasciando margini per
ulteriori miglioramenti.

Una versione preliminare di questa ricerca è stata proposta ed accettata
per la poster session del Second International Workshop on Computational
Models of Affordances in Robotics (IWCMAR), alla International Conference
on Robotics and Automation (ICRA) tenutasi a Maggio 2019, ed è allegata in
questa tesi nell’Appendice A.

metodologia e struttura del documento

Questa tesi è strutturata come un lavoro di ricerca nel contesto dell’Honours
Programme Scientific Research in Information Technology; ogni Capitolo descrive
un passo fondamentale verso la definizione, formulazione e valutazione di
questa ricerca.

1. Definizione del Problema: nel Capitolo 1 (da cui è tratto questo estrat-
to) formuliamo la definizione del problema, esponendo le ragioni ed il
metodo per ricercare in questo campo.

2. Stato dell’Arte: nel Capitolo 2 definiamo meglio la specifica area di
ricerca e selezioniamo le direzioni di ricerca più promettenti analizzan-
do le limitazioni dello stato dell’arte corrente. Questa analisi è divisa in
due fasi, descrivendo prima il contesto della ricerca della robotica au-
tonoma alla larga, e successivamente focalizzando l’analisi sul settore
specifico che è pertinente al problema che trattiamo.

3. Prerequisiti Principali: nel Capitolo 3 descriviamo i principali model-
li per l’elaborazione di immagini e di nuvole di punti che saranno
utilizzati per implementare il sistema descritto.

4. Formulazione della Soluzione: nel Capitolo 4 proponiamo e formaliz-
ziamo la nostra soluzione mantenendo una prospettiva teorica. Fin da
questa fase consideriamo il problema dell’applicabilità della soluzione
in un contesto reale, pur mantenendo il trattato teorico.

5. Generazione dei dati: nel Capitolo 5 descriviamo il processo di raccol-
ta dei dati producendo un plugin GraspIt! per la generazione dei dati
come implementazione del sistema proposto nel Capitolo 4.



6. Validazione Sperimentale: nel Capitolo 6 descriviamo gli esperimen-
ti condotti con i dati generati per valutare la soluzione proposta nel
Capitolo 4 e discuterne i risultati.

7. Conclusioni: nel Capitolo 7 discutiamo i risultati e sottolineiamo le li-
mitazioni del lavoro corrente, tracciando possibili linee di future esten-
sioni.

8. Review: nell’Appendice A alleghiamo il poster paper accettato e pre-
sentato nel Second International Workshop on Computational Models
of Affordances in Robotics ad ICRA 2019.



1
I N T R O D U C T I O N

The research community has spent much effort in tackling the problem of
grasping novel objects in different settings [30, 31, 37, 61, 62] with the ob-
jective of holding objects robustly with robotic manipulators; however, real
manipulation tasks go far beyond holding the objects, and the quality of a
grasp depends on the task it is meant to support. While many quality metrics
exist to evaluate the quality of a grasp by itself [9, 48], no clear quantification
of the quality of a grasp relatively to a task has been defined. In this thesis
we propose a framework to extend the concept of quality metric to task-
oriented grasping by defining general physical measures for an open set of
task affordances. We evaluate both the results provided by such metrics and
their applicability in practice by learning to infer them from vision.

1.1 problem statement

One very distinctive feature of primates is hands. Hands allow for dexterous
manipulation of objects taken from the environment and, within reasonable
limitations, they grant this ability regardless of many object properties such
as shape, size and softness. As this feature makes hands an extremely gen-
eral and versatile actuator to interact with the environment, nowadays we
imitate them in robots, building robotic hands.

However, actually using hands to interact with the environment is an ex-
tremely complex problem. Today the most important application of robotic
hands and arms is in assembly line automation, not by chance: assembly
lines usually have a very low degree of uncertainty in the working envi-
ronment, requiring repetitive actions that do not need online planning of
the grasp. Many successful robotic arms for assembly lines are indeed in-
structed to perform some fixed movements with perfect timing and posi-
tioning, which requires very fine mechanical control (another very complex
problem that we do not consider in this thesis), but no planning at all, thus
being very far from the general actuator that primate hands represent.

More recently, with advances in Computer Vision, we were able to achieve
grasp planning, allowing for some degrees of uncertainty in the target en-
vironment, but still successful market applications in which there is uncer-
tainty on the shape of the grasped objects are extremely rare due to the
difficulty of the problem. Example applications such as in trash manage-
ment [42] are still limited to the pick-and-place task and are very far from
tool manipulation.
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Unlocking the full potential of robotic hands would allow a much richer
interaction of autonomous robots with the environment. In order to achieve
this, we need to be able to plan grasps on objects as a function of what we
need to do with such objects, which goes under the name of Task Oriented
Grasping. Task Oriented Grasping is an active and very recent research field
which, to the best of our knowledge, has no mature market example and the
potential to be applied in many situations.

In this thesis we focus on the target application of the kitchen assistant
robotic arm, which should be able to use kitchen tools to perform common
and uncommon kitchen tasks with the available objects to reach. Sample
tasks in this context can be pick-and-place, cutting, pouring, pulling, push-
ing and beating. Moreover, no hypothesis is allowed on the available tools,
which may be of any size and shape.

1.2 contributions

With this thesis we provide a research contribution within the field of Affor-
dance Perception for Task Oriented Grasping.

In our contribution:

1. We define and qualitatively validate a framework for quality assess-
ment of task-oriented grasps

2. We provide a GraspIt! [18] plugin to produce labelled data with mini-
mal to no human intervention, thus in an extremely scalable way

3. We generated two distinct datasets of 400M and 100M evaluated grasps
on 22 objects of the Princeton Shape Benchmark [19] which we plan to
make public in the near future

4. We propose, benchmark and qualitatively validate models to tackle the
problem of learning to infer our task oriented metrics from vision

5. We propose a novel model, that we call Local PointNet, that merges the
PointNet [56] idea of embedding points from a point cloud with the
convolutional element of Convolutional Neural Networks that models
effectively local and hierarchical correlations between inputs, and we
prove that it outperforms all other tested models in some of our learn-
ing tasks

Experimental results show that a direct search in a perfect information sim-
ulation with our novel framework produces new and creative grasps which
fit the specific actuator in use for the selected task, while inference of such
metrics from synthesized vision provides already meaningful results, leav-
ing margins for further improvement.
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An early version of this work has been proposed and accepted for the
poster session of the Second International Workshop on Computational Mod-
els of Affordances in Robotics (IWCMAR), at the International Conference on
Robotics and Automation (ICRA) held in May 2019, and is included in this
thesis in Appendix A.

1.3 methodology and document structure

This thesis is structured as a research work within the context of the Hon-
ours Programme Scientific Research in Information Technology; each Chapter de-
scribes a fundamental step towards the definition, formulation and evalua-
tion of this piece of research.

1. Problem Statement: in Chapter 1 we formulate the problem statement,
giving the reasons for researching in this field.

2. State of the Art: in Chapter 2 we better define the specific research
field and select the promising research directions by analyzing the lim-
itations of the current State of the Art. This is performed in two steps,
by first describing the wide context of the Autonomous Robotics re-
search field and then focusing on the specific sector which is pertinent
to our problem statement.

3. Main Model Prerequisites: in Chapter 3 we review the main computa-
tional models for image and point cloud processing, that are employed
to implement the system.

4. Solution Formulation: in Chapter 4 we propose and formalize our so-
lution from a theoretical perspective. At this point we already address
the problem of applicability of the solution in a real context, but still
the problem is treated theoretically.

5. Data Generation: in Chapter 5 we describe the process of data collec-
tion by building the GraspIt! data generation plugin as an implemen-
tation of the system proposed in Chapter 4.

6. Experimental Evaluation: in Chapter 6 we describe the experiments
conducted with the generated data to evaluate the solution proposed
in Chapter 4 and discuss their results.

7. Conclusions: in Chapter 7 we discuss the results, and underline the
limitations of the current work, drawing possible lines of future works.

8. Review: in Appendix A we include the poster paper accepted and pre-
sented in the Second International Workshop on Computational Mod-
els of Affordances in Robotics at ICRA 2019.
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G R A S P I N G A N D A F F O R D A N C E B A C K G R O U N D

In this chapter we identify the research fields of Task Oriented Grasping and
Affordance Perception. We review and classify the related works to analyse
the explored paths and expose the limitations of the current research works
to identify open problems.

2.1 robotic grasping

The Robotic Grasping research field tackles the problem of automating grasp-
ing actions on novel objects under different sensorimotor conditions; it is
tightly connected with the broader field of affordance perception, that we
describe in Section 2.2. The core community is in the Robotics research area
as main field of application, but connections exist also with the areas of
Computer Vision, Machine Learning and Artificial Intelligence in general
as they provide fundamental tools to tackle this problem. Analyzing the af-
fordance perception literature we can also find significant connections with
the area of Human Computer Interaction with the aim of studying effec-
tive human-robot collaboration, with a particular focus on language-based
communication.

The challenges and opportunities of our research can be better framed in
the more general context of affordance perception, as it gives a more pow-
erful and general high level perspective in planning successive and related
actions, introducing to Task Oriented Grasping.

2.1.1 Basic tools in robotic grasping

Fundamental tools for grasping come from physics, and they are used to
quantitatively evaluate the quality of a grasp given the hand model, its con-
figuration, and contact points. These tools are based on the definition of a
Grasp MatrixGGG and a Hand Jacobian JJJ. Let nc be the number of contact points
and nq be the number of joints in the hand, the Grasp Matrix GGG maps the
object twists to the transmitted twists in each contact point, while the Hand
Jacobian JJJ maps the joint velocities to the transmitted contact twists on the
hand as shown in Equation 2.1.
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Let ννν be the twist of the object with respect to a global reference, νννc,obj be
the transmitted twists on the object expressed with respect to each contact
point, νννc,hnd the same on the hand and q̇̇q̇q the joint velocities, then we have:

νννc,obj = GGG
Tννν

νννc,hnd = Jq̇Jq̇Jq̇ (2.1)

The choice of what twists are transmitted between object and hand encodes
the contact model; the most used are Point-contact-without-Friction (only
normal component transmitted, and no momentum), Hard Finger (all trans-
lational components, no momentum) and Soft Finger (all translational com-
ponents and normal momentum). These matrices only depend on the con-
tact point geometry and hand configuration, and encode all the information
about the grasp.

The quantification of the actual closure and robustness of a grasp config-
uration can be encoded into a linear programming problem, and thus effi-
ciently extracted. We refer to [28] for an in depth analysis on this topic. Many
optimization algorithms and simulation tools have been devised around this,
in particular we refer to GraspIt! which collects a number of evaluation and
optimization tools in an open simulated environment [18].

2.2 affordance and task oriented grasping

Since the first definition of affordances, by Gibson in 1966, [1, 2] a long
discussion evolved, of which we consider some main voices, for a complete
discussion refer to [60]. We report here the very first definition by Gibson [1],
where the affordance is defined as what things furnish to an observer as a
consequence of the object properties:

When the constant properties of constant objects are perceived
(the shape, size, color, texture, composition, motion, animation,
and position relative to other objects), the observer can go on to
detect their affordances. I have coined this word as a substitute
for values, a term which carries an old burden of philosophi-
cal meaning. I mean simply what things furnish, for good or ill.
What they afford the observer, after all, depends on their proper-
ties (Gibson 1966, p. 285).

This definition later evolved [2] suggesting that animals directly perceive
affordances as peculiar combinations of properties that suggest some possi-
bility of action:

The psychologists assume that objects are composed of their
qualities. But I now suggest that what we perceive when we look
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at objects are their affordances, not their qualities. We can dis-
criminate the dimensions of difference if required to do so in an
experiment, but what the object affords us is what we normally
pay attention to. The special combination of qualities into which
an object can be analyzed is ordinarily not noticed (Gibson 1979,
p. 134).

Subsequent authors [3, 5, 7, 12–17] either supported and detailed the main
concept by Gibson, underlining the relational nature of affordances as being
emergent properties embodied in the relations between an animal and its
environment directly connected with the possibility of action of the animal
with the environment [3, 14, 16, 17], or suggested some substantially differ-
ent model like hypothesizing the need for a semantic internal representa-
tion of actions in order to conceive affordances, that are thus not directly
perceived [5].

Applied to robotics, by affordance perception we mean understanding the
possibility of action of a robot depending on the possible relations between
its actuators and the environment to achieve high level tasks. In this context
grasping represents an affordance for the control of some or all degrees of
freedom of some object with a hand-like physical actuator.

Task Oriented Grasping extends the concept of Robotic Grasping by adding
a later action to be done with the grasped object. This extension comes with
the trivial observation that the same object is better grasped in very different
ways depending on what it is planned to be used later for: as an example
we can think about how we grasp a hammer far from its center of mass for
beating, and how we grasp it near its center of mass for pick-and-place.

In the wider context of affordances, task-oriented grasping enables the
possibility of tool use, which in turns allows an enormous range of new pos-
sibilities of action (this concept of unlocking new actions through actions
goes under the name of affordance chaining in the Affordance research com-
munity). Being able to model and understand the environment is a critical
point to plan a solid grasp, and even more to relate the grasp with a task;
for this reason research in Affordance Perception for Robotic Grasping is
necessary to achieve general task-oriented grasping.

The recent interest in the field of Affordance Perception is also witnessed
by the organization of dedicated workshops; the latest ones include Learning
Object Affordances: a fundamental step to allow prediction, planning and tool use?
at the International Conference on Intelligent Robots and System (IROS) 2015,
the International Workshop on Computational Models of Affordances in Robotics at
Robotics: Science and Systems (RSS) 2018, and the Second International Work-
shop on Computational Models of Affordances in Robotics at the International
Conference on Robotics and Automation (ICRA) 2019.
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2.3 related works in robotic grasping

In order to better understand the research landscape around Task Oriented
Grasping, we first need to review and classify the research works in the
broader field of Robotic Grasping. Such analysis not only describes the
broader research context of task-oriented grasping, but it also highlights
important research directions that we follow.

2.3.1 Classification of main related works

The research community in Robotic Grasping has proposed very different
and heterogeneous perceptual models, within very different settings. Focus-
ing only on the perception and modeling of the environment we can notice
a strong correlation between the perceptual basis of a model and its limi-
tations. In particular we classify the main related works according to the
dimensionality of the vision system which models the environment:

• Blind Perception: in this category we include all systems which do not
employ vision. It is important to underline that here we mean vision
in its most general sense, as any perceptual system that can provide a
global view of the environment, as a laser system could do. As such,
blind systems have only access to local information about the contact
points of the fingers, with the consequent strong limitation of not being
able to plan any new grasp. The purpose of these works is usually to
evaluate or improve an existing grasp to make it more solid via contact
information like local pressure maps or motors torque.

• Appearance Perception: in this category we include all systems em-
ploying at least a monocular vision system or equivalent. They do not
necessarily perceive nor model any clue of absolute spacial dimensions
and shapes on which to plan grasps, although they have some global
perception of the environment.

• Geometry Perception: there are many ways a system can estimate
real distances and have a notion of three-dimensional space and object
shape, ranging from RGB-D cameras to model priors. All works that
perceive or model information connected with metric distances about
the environment have a clear extra opportunity as they can employ ge-
ometrical models to plan accurate grasps. Inside this broad category
we can further differentiate according to the span of the spacial model:

– Focused: these works try to estimate or consider a detailed spacial
model of the object to be grasped
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– Global: these works try to model the whole environment and
perceive many objects at once, usually but not necessarily with
greater uncertainty than focused models.

– Mixed: these works estimate a model of the environment and also
identify distinct object models and their locations

• Physics Perception: a further dimension of perception of the envi-
ronment for its understanding includes the physical perception. Its
relevance in understanding the environment comes from the predic-
tive power of physics as a model of the interaction with and between
objects. As a consequence, physical quantities efficiently encode the
knowledge of the agent about the evolution of the environment in time
and as such become a general perceptive model of the "dynamic state" of
objects, as shape and position encodes their spacial "static state". In this
category we deliberately leave apart the perception of local physical
entities like touch pressure as they do not provide any global infor-
mation about the environment and alone should be regarded as Blind
Perception. The reason for this is the limited exploitability of such in-
formation, as already discussed in the appropriate section.

We must notice that this classification is partially hierarchical: a model ex-
ploiting physics perception must perceive also geometry, and in turn a model
perceiving geometry also perceives appearance. The category of Blind Per-
ception instead includes all systems that do not access global information
and thus cannot be included in the others. When classifying a work we label
it with the most restrictive category in which it can be included.

2.3.2 Blind Perception

Blind perception research works under the assumption of knowing only lo-
cal contact or joint information, with no concern about the environment.
Some works like Arimoto et al. [20, 21] deviate from the usual objective
of statically stable closures and suggest a control theory approach on two-
parallel-finger grippers, which cannot achieve force closure statically. Al-
though interesting, the idea is limited by the need of grippers with fine
and strong finger control and only two parallel fingers, which is impractical.
As a result, the authors could validate their methods theoretically and by
simulations, but no experiment on real robots has been done.

More recent works like Dang et al. [34, 37] pose the objective of evaluating
or improving a given grasp in terms of its closure and robustness. In their
first work [34] the authors provide a machine learning approach using Sup-
port Vector Machines to evaluate the robustness of a grasp based on tactile
feedback. Data are collected through simulation, and the generalization of
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Figure 2.1: Examples of grasps obtained by iterative blind correction of random
grasps by Dang et al.; image taken from [37]

Figure 2.2: Diagram of the mechanism for iterative blind grasp correction by Dang
et al.; image taken from [37]
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their approach has been tested again only in a simulated environment with
a model of the three-fingered Barrett Hand [10]. Their next work [37] (Fig-
ure 2.1), instead, subsumes the task of evaluation by trying to improve a given
grasp. Dang uses the same pattern of collecting significant data from simula-
tions and extracting operative knowledge from them, this time through the
use of a K-nearest neighbors. By mimicking a hand pose and joint configu-
ration similar to the known stable grasps which are nearest to the current
grasp as shown in Figure 2.2, the hand is supposed to end to a more robust
configuration. The authors proved, with experiments on a real Barrett hand,
that random grasps on novel objects can be significantly improved in terms
of robustness with their blind policy.

A common limitation of all these works, which is intrinsic to the category
of blind perception, is the inability to plan any new grasps on objects whose
position in space is not known a priori. A good opportunity, instead, comes
from the reduced (though not insignificant) uncertainty of local measure-
ments, which allows good generalization of simulation data to real applica-
tions.

2.3.3 Appearance Perception

The works under this category consider global knowledge of the world, but
no explicit geometrical notion of distance and space is considered. This cate-
gory received very limited attention from the research community and only
few works are available as the great majority of researchers considering vi-
sion explicitly model and estimate at least some key spacial cues.

A relevant work in this context is the one by Levine et al. [61] who trained
a deep learning based controller by leveraging on an extremely large scale
data collection phase. The robots they used are arms with two-finger grip-
pers positioned in front of a box with different small objects, with a single
RGB uncalibrated camera facing towards the box as shown in Figure 2.3.
The learned controller had the objective of successfully gripping every time
a different object to lift it and place it back again. The authors proved that
a learned controller could generalize well on different camera illumination
and calibration conditions and different finger tension or tearing levels.

This work shows that under constrained settings it is possible to extract
an implicit model of the required information for grasping from data even if
the input information is extremely uncertain, variable, and incomplete. We
must still take into consideration that this approach is limited by the extreme
effort in collecting the required data and by the inability to produce a single
model that generalizes over different tasks and settings.
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Figure 2.3: Experimental setting for the work of Levine et al.; image taken from [61]

2.3.4 Geometry Perception

Most of the works in Robotic Grasping belong to this class, thus very dif-
ferent approaches and settings have been defined. Some models extract just
essential spacial information, like Kim et al. [30] who roughly estimate the
3D position of the target object from stereo vision for the first gross hand ap-
proaching movement. They use the interesting idea of positioning a stereo
camera on the hand itself, to be able to detect the target in the environment
and then focus on it while approaching, thus we can classify this work as
being mixed span. Another important contribution is the one from the MIT
Princeton team at the Amazon Challenge 2017 [62]: their work has analogies
with the one from Levine [61] as it works in unstructured environments with
many objects cluttered in a container, but they use four RGB-D cameras for
a more informative perception with global span and directly infer gripper
or suction affordance maps from deep models while employing simpler arm
controllers to move as shown in Figure 2.4: in this case, space, differently
from Levine, is explicitly known.

Other works in this category go in the direction of grasping complex ob-
jects after the analysis of their surface. Erkan et al. [31] propose to detect
short segment edges on the surface of the object through Early Cognitive
Vision descriptors and classify pairs of co-planar segments, shown in Fig-
ure 2.5, according to the quality of the grasp they afford, through semi-
supervised learning. Their approach has a clearly focused span on a single



2.3 related works in robotic grasping 13

Figure 2.4: Grasp planning mechanism from the MIT Princeton team at the Amazon
Challenge 2017, image taken from [62]

object whose interesting surface features are mapped in the space and jointly
suggest grasp possibilities.

The works seen so far do successfully grasp objects, but they ignore com-
pletely that different grasps are required for different tasks: they fix the
task of grabbing and eventually moving a target object, but they can hardly
be generalized to different tasks. Biasing grasps towards the completion of
some task is a key aspect for the relevance of grasping as discussed in Sec-
tion 2.1. One of the first works integrating grasp planning with tasks is Prats
et al. [25]. They use simple hardcoded 3D models of home objects (doors,
drawers, windows) and preshapes of standard hand configurations to enact
some task encoded in physical interactions like applying force or torque on
specific degrees of freedom of the object, as shown in Figure 2.6. Their heuris-
tic method has been successful on experiments with a real Barrett hand with
a very rough model of the target object, but still it requires a 3D model of the
object and it does not account for the high uncertainty of directly perceiving
the model. We do not classify this work as Blind Perception as it takes into
account geometrical knowledge of the environment, even if endowed and
not perceived, nor it falls in the category of Physical Perception as physical
quantities are used to model the task, not the object, although such physi-
cal quantities are the primary link between a task and its associated grasp
passing through preshapes.

2.3.5 Physics Perception

The physical understanding of the environment is recently receiving atten-
tion from the Computer Vision community, trying to estimate various quan-
tities such as mass [58], material [39, 44] or manipulation forces [47]. How-
ever, rarely researchers in the Robotic Grasping fields use similar techniques
to physically model the environment.
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Figure 2.5: Example of positive and negative edges detected by Early Cognitive
Vision features in the training set of Erkan et al.; image taken from [31]

Figure 2.6: Example of physical representation of opening a door through the han-
dle with associated preshape, image taken from [25]

Figure 2.7: Physical quantities analysis pipeline in Zhu et al.; image taken from [50]
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A significant work in our analysis is the one by Zhu et al. [50], in the more
general framework of affordance learning, but still relevant for task-oriented
grasping. They provide a model to estimate the best suited tool for a task
among the ones presented on a planar surface through vision. The task is
presented to the system through a video of a human demonstrator choos-
ing the best tool among a different set and using it to perform a task like
nut-cracking. The model involves the optimization of physical quantities in
imagined tool uses as shown in Figure 2.7, and the choice of the best area of
the tool for grasping and for functional use. The method is validated through
benchmarking of the system choices compared against the ones taken by hu-
mans. The main limitation in this is the lack of an intrinsic definition of task
which would enable further elaboration and adaptation to robotic actuators
which are different from humans; moreover we miss a concrete connection
between the planned grasp area on the tool and the actual grasp pose to
effectively execute the task.

2.3.6 Open Problems in Robotic Grasping

As we have seen, the problems of evaluating the robustness of a grasp and
planning grasps with perfectly known object models have been fully as-
sessed, while consistent research efforts are currently producing good results
towards the same problems under uncertain object models. On the contrary,
the problem of task-oriented manipulation is still an open problem in the
Robotic Grasping field: few works have been attempted, lacking a general-
ized framing of tasks either limiting task expressivity [50] or categorizing ac-
tion possibilities [25]. Moreover, the modeling of physical quantities, which
explain the connection between actions, tools and tasks, received almost no
attention from the Robotic Grasping community and remains an unexplored
opportunity.

2.4 related works in affordance learning for grasping

As seen in Section 2.3.6, our broader research landscape lacks general frame-
works for task-oriented manipulation and in particular the modeling of phys-
ical quantities is still a widely open path in this field. Moreover, as we are
in a context of uncertain and incomplete perception from the environment,
here we focus on a learning approach to infer useful knowledge from sensor
inputs. Therefore, in this section we focus more specifically on the much
more specific field of Affordance Learning in order to define more precisely
the main limitations of the works most closely related to ours.
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2.4.1 Analysis of main related works

Many researchers have worked towards the understanding and formaliza-
tion of the concept of affordances [1–3, 5, 7, 12–17, 26]; they have been inspir-
ing for roboticists to work within the affordances framework to define the
autonomous interaction of a robot with an unknown environment.

Within this context, one of the first approaches towards task-oriented
grasping, as we have already seen in Section 2.3, is reported in [25]; they
proposed to encode the task in physical terms (e.g., applying a momentum
on a handle to open a door, as in Figure 2.6) and then to solve the problem
of grasp planning by hardcoding hand postures and their association with
tasks; the method has shown good performance in the expected domain, but
poor generalization capabilities.

Later works formalized the problem via graphical models, distinguishing
task, object features, action features and constraint features. In particular, au-
thors of [33] proposed the use of such formalization and they have been able
to effectively learn to infer the likelihood of grasp approach directions with
respect to a human-labelled ground truth as shown in Figure 2.8. The main
limitation of this work, in our opinion, is the human intervention, which
makes the real definition of the tasks implicit and prevents the scalability of
the dataset that can be generated for learning without tedious human teach-
ing. The direct intervention of human judgment on semantics to evaluate
the quality of grasp hypotheses with respect to a given task is nevertheless
a common approach to many research works, like [36] and [40] in which
authors prove the effectiveness of a human-labelled semantic approach with
real robot manipulations.

More recently, [54] has proposed to label mesh vertices in simulated ob-
jects as being graspable or not according to some task as shown in Figure 2.9,
so that many scene examples can be produced and automatically labeled via
simulation. This allowed the system to automatically segment graspable and
not graspable regions of objects in cluttered scenes, but still the expressivity
of this method is restricted to specifying graspable or not graspable surfaces.

Authors of [64] proposed a bottom-up approach for affordance perception
by object parts which detects the local geometry of patches of the object
and provides pixel-level affordance segmentation for pre-defined affordance
classes. Their method is again based on a dataset [46] of 10000 pixel-labelled
RGB-D images which have been hand labelled.

2.4.2 Common limitations

A common limitation of the works analysed in Section 2.4.1 is the vague
definition of task affordances which passes through the human labeling of
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Figure 2.8: Affordance maps inferred by Song et al., referred to the suitability of a
grasp direction towards some task on some object; image taken from [33]

Figure 2.9: Labelled object meshes according to task constraints, on the left for the
handover task, on the right for the pouring task; image taken from [54]
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the ground truth. Defining task affordances through human-labelled ground
truths intrinsically poses many limitations:

• Optimality: humans are used to categorizing objects and object us-
ages, as well as grasps on standard objects. While on many standard
tools which are built on purpose for some tasks we can expect that the
human-chosen grasp is sufficiently optimal for the specific objective
task of the tool, we largely lack this guarantee for non-standard objects
or for non-standard object-task couples.

• Bias: even standard grasps on standard objects which have been de-
signed on purpose for such grasps are biased by the embodiment of
the human hand and arm. Human hands and arms largely differ from
common robotic arms for the number of fingers, available degrees of
freedom on both fingers and the arms, and extremely different friction
and softness. Such differences completely change the statics of grasps
and the dynamics of manipulation, changing task execution and, con-
sequently, the available affordances. Such bias is not only present on
the design of standard objects, but it is also intrinsic on the judgement
of human labelers who are unavoidably biased towards their own ma-
nipulation experience.

• Scalability: a common limitation of any system requiring human la-
beling of data is scalability of the size of the produced dataset. Even
producing a dataset of the order of the tens of thousands of examples
is a very expensive and time-consuming task to require from humans.
Machine-generated data, on the other side, have the potential to be pro-
duced at scale by many cores/servers in parallel and can easily surpass
the size of human labelled datasets by many orders of magnitude.

2.5 conclusions

As we have seen, the research field of Robotic Grasping is very broad and
very active. We have identified Task Oriented Grasping as a still open field,
and the use of physics-based models as an unexplored opportunity. Within
Task Oriented Grasping we have focused on Affordance Learning, and we
have seen that a common limitation of current research works is the use of
human-labelled data.

As a consequence, the main objective of this thesis is to provide a novel
framework for Task Oriented Grasping that could enable scalable and unbi-
ased grasp affordance data collection for affordance learning, while reducing
the human intervention in the definition of the tasks. Such automated data
collection is based on state of the art physical grasp models that allow the
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execution of grasps in a perfectly known simulated environment from which
ad-hoc physical measures are extracted and logged as grasping data.
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C O M P U TAT I O N A L M O D E L S F O R I M A G E S A N D P O I N T
C L O U D S

In this thesis we make use of models intended for image and point cloud
processing, therefore here we provide a brief explanation of such models.
The necessity of computational models for images and point clouds comes
from the idea of enabling computational processing of the data coming from
vision sensors, among which here we distinguish mainly RGB sensors (col-
ored images cameras) and range sensors (depth camera). The main feature
of such sensors is that they provide dense spacial information about the
environment that can enable a much deeper understanding of it from the
machine, in perfect analogy with vision for humans, at a relatively low price.
However, much of the useful information that humans take from vision, like,
e.g., the identification and localization of objects, are high level concepts that
need to be extracted from raw vision, hence the need of the computational
models to extract such knowledge from vision sensors. The aim of this chap-
ter is not to make a full review of said models of Computer Vision, but rather
to provide a more in-depth description of the main models employed in this
thesis.

3.1 representation

Images bring dense information discretized in the form of a rectangular grid
of pixels, where each pixel is itself a vector composed of multiple channels.
Therefore, we can represent an image of size w × h and c channels as a
tensor I ∈ Tw,h,c where the first two coordinates are jointly significant and
bring spacial information, while the last coordinate distinguishes between
different channels of information corresponding to the same location. This
distinction becomes important when speaking about Inception models in
Section 3.2.3.

The most common use case for this representation is for RGB images,
which encode separately the information about red, green and blue color
into three separate channels, therefore having c = 3. Together with their
equivalent representations (like HSV images which encode equivalently hue,
saturation and value in the three separate channels) and reduced represen-
tations (like grayscale, which reduces a linear combination of color channels
into a single value channel) color images represent the most common and
important use case that first drove research in this direction and still takes
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much research attention, however in this thesis we are mainly interested in
range images, which represent more directly the geometry of the scene.

Range images only have one channel, encoding for each pixel location the
distance from the camera to the first obstable encountered by the viewing ray
in the scene up to a maximum sensible distance. These images describe the
geometry of the environment more directly than color images, thus they are
used in this thesis to provide partial information about the object geometry
to neural models that are intended to process such information.

3.1.1 Point cloud representation

An even more explicit representation of the same information contained in
a range image is a point cloud. Point clouds are sets of points, each point
represented as the three-dimensional vector coordinates of its location in the
real world with respect to some coordinate axes.

While point clouds are a different representation and concept than range
images, they are strictly more powerful and any range image, with known
camera parameters, can be mapped to its equivalent point cloud by mapping
each pixel to its backprojection in space. If the camera is in the origin and
looking along the z axis, (CX, CY) are the pixel coordinates of the virtual
camera center and fX and fY its focal lengths, then each pixel (u, v) with
depth channel value d(u, v) is mapped to a point (X, Y, Z) as follows:

Z = d(u, v)

X =
(u−CX)Z

fX

Y =
(v−CY)Z

fY

while the reverse is not possible in the case of a general point cloud.
Point clouds are usually used also to incorporate in a single coherent rep-

resentation the information extracted from multiple images, as there is no
constraint on the represented locations while images are constrained to a
rectangular grid of points and exactly one point on each viewing ray, thus
producing models that are able to process general point clouds would allow
them to be extended naturally to the case of multiple views.

3.2 convolutional neural network

Convolutional Neural Networks (CNN) are neural networks specifically de-
signed to capture local patterns, encoding them in subsequently higher level
feature spaces. Although they have been initially designed specifically to
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capture bidimensional patterns along the two spacial dimensions of images,
the concept is valid for any number of dimensions, and there are examples
of both one-dimensional convolutions to analyze patterns in sequences like
in speech analysis and three-dimensional convolutions to find volumetric
patterns in voxel grids. Here we focus only on the standard bidimensional
convolutional neural network as these are the models we are going to use.
In this section we do not go into details about neural network models in
general, which are taken as a prerequisite.

3.2.1 Convolutions

Convolutions are a basic image processing operation in computer vision.
Let I1 ∈ Tw1,h1,c and I2 ∈ Tw2,h2,c with w2 < w1 and h2 < h1, then the
convolution I1 ~ I2 = I3 is defined as follows:

I
i,j,0
3 =

w1∑
k=0

h1∑
l=0

c∑
m=0

Iw1−k,h1−l,m1 I
k+i,l+j,m
2 (3.1)

While this general definition of convolution between two images can be use-
ful in some cases, we are mainly interested in using one image I ∈ Tw,h,c
as an input image and an image ω ∈ T2wk+1,2hk+1,c (that we usually index
with symmetric index ranges centered around zero) as a kernel that deter-
mines the kind of operation that we are performing on the input image I.

In this specific context we can reframe the convolution ω~ I = J as fol-
lows:

Ji,j,0 =

wk∑
k=−wk

hk∑
l=−hk

c∑
m=0

ωk,l,mIi−k,j−l,m (3.2)

Convolutions, optionally combined with a non-linear function, are widely
used as a basic operator for image manipulation and to extract features from
images. Classically the kernel ω is hand-designed to extract some specific
feature like image derivatives or to obtain some effect like gaussian blur;
some grayscale examples are reported in Figure 3.1.

3.2.2 Basic Convolutional Neural Network

The main intuition of a Convolutional Neural Network (CNN), first proposed
by Yann LeCun [6] with the LeNet architecture, is to let the network learn the
convolutional kernels that can extract the image features which are useful
to accomplish the learning task: the kernel of the convolution becomes the
parameter tensor which is optimized to minimize the loss function.
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(a) Cameraman, original (b) 5× 5 gaussian blur (c) sharpen

(d) Sobel vertical deriva-
tive

(e) Sobel gradient mag-
nitude

(f) Sobel horizontal
derivative

Figure 3.1: Common convolution operations in image processing. Notice that the
Sobel gradient magnitude (3.1e) is obtained as the magnitude of the vector of the
vertical and horizontal Sobel derivatives.
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Such approach has been demonstrated to be far superior to classical fully
connected neural networks as far as GPU training and large enough datasets
became available [38], thus it attracted much research attention in the follow-
ing years.

A convolutional layer maps an input image feature space Iin ∈ Twin,hin,cin
into an output image feature space Iout ∈ Twout,hout,cout through a kernel
matrix K ∈ Twk,hk,cin,cout by performing cout basic convolutions:

I·,·,iout = K
·,·,·,i ~ Iin, (3.3)

where ~ is the basic convolution operation as defined in Equation 3.2. The
dimensions wout, hout depend on the kernel sizes, padding strategies, and
strides (regular subsampling of the output space). A stack of such linear op-
eration is completely equivalent to a linear MLP applied to a small patch of
the input image, on every possible patch location with shared parameters.
Sharing parameters to this level allows the number of parameters not to
scale with the dimension of the image, while incorporating into the architec-
ture the very local nature of the strong correlations that exist between pixels.
This is a strong architectural prior that greatly fits the image domain, sub-
stantially reducing the dimensionality problem which is intrinsic in images.

The overall CNN is not only composed as a plain succession of convolu-
tional layers, as they would just result into mapping one image to a different
image feature space through a linear transformation. A plain CNN is usually
composed by the following elements:

• convolutional layers: as described above, they constitute the main ele-
ment of the network

• non-linear activations: each convolution is usually followed by a non-
linear activation function to introduce non-linearities into the network;
as the convolutions stack is usually very deep, the most common is
ReLU due to the problems of shrinking and exploding gradient with
non-unitary derivative activation functions

• pooling layers: these layers perform subsampling of a feature space
over the spacial dimensions, usually reducing regular squares of the
input space into their maximum or their average. Such layers greatly
increase the area of the input image that activations after the layer
depend on (receptive field). Notice that, although they are commonly
used this way, there are relevant cases such as that of the Inception in
which they are not used to subsample, but rather to provide alternative
aggregated features.

• a MLP: when the network task is not compatible with having an image
in output, the last layer cannot be a convolutional layer. In these cases,
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Figure 3.2: LeNet architecture, image taken from [6]

which are extremely common (e.g., image classification), the output
image of the last convolutional layer, with much lower dimensionality
and spacial correlations than the input, is used as feature vector for a
MLP, which performs the task with meaningful features.

The structure of a plain CNN is summarized in Figure 3.2, which is the
architecture of a LeNet [6], the first proposed convolutional neural network.

3.2.3 The Inception Networks

As anticipated before, many variations of CNN architectures have been pro-
posed after the first successes with AlexNet [38], both in task and in struc-
ture. In this Section we review some structural improvements following the
Inception networks that we use later in Chapter 6. The main objective of
such modifications is to improve in the task of classification over the Ima-
geNet dataset [29], which comprises millions of labelled color images over
one thousand different classes.

3.2.3.1 Inception-v1

The first Inception architecture [49] was proposed for the ImageNet Large-
Scale Visual Recognition Challenge 2014; it is composed of modules based
on the following principles:

• Images from the same class in ImageNet usually display great vari-
ability in the size of the salient region. A solution inspired by a neu-
roscience model of the primate visual cortex is having many parallel
paths with a different receptive field each

• Using larger filter sizes can produce a computational bottleneck when
the number of filters raises significantly. Under the assumption that
activations can be clustered and thus reduced in dimensionality, 1× 1
convolutions can reduce the computational load and allow the training
of deeper networks in a reasonable time
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Figure 3.3: Inception v1 module, image taken from [49]

Figure 3.4: GoogLeNet architecture, image taken from [49]

The result is the Inception-v1 module shown in Figure 3.3. It contains
three alternative convolutional paths with different filter sizes (1 × 1, 3 ×
3, 5 × 5), where the largest two are anticipated by a 1 × 1 convolution for
dimensionality reduction. The authors [49] stack such modules obtaining a
22-layers deep CNN that they name GoogLeNet (Figure 3.4) which is trained
with the help of auxiliary classifiers to address the problem of the shrinking
gradient.

3.2.3.2 Inception-v2 and Inception-v3

Inception-v2 and Inception-v3 were proposed in the same paper [52] to in-
corporate a number of improvements based on the following principles:

• Avoid representational bottlenecks for any cut in the model, especially
early in the network. This is done by gently reducing the dimensionality
of the representation towards the output, even though this rough crite-
rion ignores other factors like the correlations between components
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• Higher dimensional representations are easier to process locally in a
network, allowing to disentangle relevant features and speeding up
training

• Spacial aggregation can be perfomed over lower dimensional features
with not much loss in representational power as they can leverage the
strong spacial correlations between units

• Depth and width of the network should be balanced to improve the
representational power without introducing representational bottlenecks,
and vice-versa

Such principles drove the design of new Inception modules used within
the Inception-v2 architectures, where Inception-v3 is a model with a tuned
combination of all the improvements they introduced.

The three new modules are shown in Figure 3.5. The module in Figure 3.5a
is obtained by the original Inception-v1 module of Figure 3.3 and decompos-
ing the 5× 5 convolution into two successive 3× 3 convolutions, using less
parameters overall, and with lower dimensionality in between to reduce the
feature vector size at the presence of spacial convolutions; it is used in the
early stages of the network. The module in Figure 3.5c is used just after the
one described above, and applies the same principle even further by decom-
posing very large n×n convolutions into 1×n followed by n× 1, in partic-
ular the Inception-v3 network uses such modules with n = 7. The module
in Figure 3.5b is used just before the final MLP classifier and enlarges the
dimensionality of the available features to disentangle the correlations for
the final classification.

Moreover, Inception-v3 includes some minor improvements such as batch
normalization within auxiliary classifiers, label smoothing and a different
optimizer (from momentum to RMSProp).

3.2.3.3 ResNet

The ResNet architecture, proposed in [51], is a separate branch from the
Inception series that introduce the concept of residual learning and inspired
the design of the following Inception.

The main concept behind residual learning is that deeper networks are
more difficult to optimize due to the stack of composed function that they
represent, independently of the problem of the shrinking or exploding gra-
dient. Therefore, the results of training deeper networks get worse (degrada-
tion) even in terms of training set performances, with the present optimizers.
This is in contrast with the theoretical reasoning that a network N′ which is
one layer deeper than a network N should be able to perform at least as well
as N in training error, as it could just learn the identity function in its extra
layer and reduce to the case of network N.
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(a)
(b)

(c)

Figure 3.5: Inception v2 modules, image taken from [52]
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Figure 3.6: ResNet modules, with (right) and without (left) dimensionality reduc-
tion inspired by Inception modules, image taken from [51]

The solution proposed by the ResNet authors is to help the optimizer to
find this backup solution in complete analogy with the theoretical proof by
decomposing each layer that has to learn a function H over an input x into
the identity and a residual function F = H− x so that the backup solution
of learning the identity is equivalent to shrinking the learned function F to
zero.

This results into the design of the ResNet modules shown in Figure 3.6,
which use an identity skip connection to leave to the convolutions the task
of learning the residual function F; this led to the successful optimization of
much deeper architectures with over 100 layers, with some experimentation
over 1000 layers.

3.2.3.4 Inception-v4 and Inception-ResNet

The Inception-v4 and Inception-ResNet [59] architectures were presented to-
gether in the same work. Inception-v4 is meant to apply the guiding princi-
ples of the previous inceptions to the stem of the network, which is the first
set of convolutions, making the network structure more uniform. The main
novelty is in the Inception-ResNet idea, that applies the approach from [51]
explained in Section 3.2.3.3 to redesign the Inception modules as residual
functions.

The new modules are shown in Figure 3.7: they generally reduce the com-
plexity of the single module to stack more modules while having a com-
parable complexity, and substitute the pooling path with the identity skip
connection. The resulting architecture performs comparably with Inception-
v4 and has comparable complexity, but has much faster training time and
can achieve better performances under the same training resources budget.
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Figure 3.7: Inception-ResNet-v2 modules, image taken from [59]. Inception-ResNet-
v1 modules are perfectly equivalent, with reduced number of filters.

3.2.3.5 Extreme Inception

The Extreme Inception [53] (Xception) architecture is largely inspired from
the Inception and ResNet works.

The author reframes the Inception modules as following a weak assump-
tion of independence between cross-channel correlations and spacial corre-
lations, thus taking advantage from a weak separation of the processing of
such correlations. The Xception architecture aims at bringing this assump-
tion to the extreme, processing cross-channel correlations and spacial corre-
lations in two distinct independent steps respectively of pointwise convolu-
tion and depthwise convolution.

The Xception basic building block is built starting by a simplified version
of the Inception module (Figure 3.8a) which is transformed into an equiva-
lent form where the outputs of each pointwise convolution is concatenated
(Figure 3.8b) to highlight the weak assumption on the independence of cross-
channel and spacial correlations which are separated in blocks, and finally
bringing such scheme to the extreme of complete separation (Figure 3.8c).

The actual implementation of the Xception is by using standard depth-
wise separable convolutions, that is a succession of a depthwise convolution
followed by a pointwise convolution (inverse order with respect to the ex-
treme Inception module). Depthwise separable convolutions are regularly
supported by skip connections that imitate the ResNet residual identity con-
nections, with the difference of being 1× 1 strided convolutions to match
the output spacial and channel depth dimensions. The complete Xception
architecture, that we use in this thesis, is reported in Figure 3.9.

3.3 pointnet

The PointNet model [56] shown in Figure 3.10 has been designed specifically
to effectively process unordered sets of points and tested on many tasks in-
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(a) (b) (c)

Figure 3.8: Strengthening the independence assumption on Inception modules, im-
age taken from [53]

Figure 3.9: Xception architecture, image taken from [53]. All SeparableConvolution
layers have depth multiplier of 1 and are followed by batch normalization [45].
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volving inputs in the form of point clouds, such as point cloud classification,
part segmentation or semantic segmentation.

More specifically, it is designed for classification and segmentation upon
unordered sets of points in a Euclidean space in Rn, thus satisfying the
following properties:

• Invariance under permutations: as input data are unordered sets of
points, the network needs to be invariant to different permutations in
which the points may be presented as input.

• Interaction among points: the input data is expected to represent a
complex geometry out of which subsets of points may display mean-
ingful structures. Therefore, being able to capture the interactions among
points is vital for the designed network.

• Invariance under transformations: as the classes of objects and single
points (for segmentation tasks) do not depend on the reference system
of the point cloud, the designed network also needs to be invariant to
transformations of the system of reference.

If x1 . . . xk are the input points in Rn, then the network computes a func-
tion f(x1 . . . xk) decomposed as:

f(x1 . . . xk) = g(h(x1) . . . h(xk)), (3.4)

where g is a symmetric function and h is a shared feature extractor, thus
granting invariance under permutations. In the PointNet architecture g is a
max pooling between the extracted features of each point computed indepen-
dently, while h is a shared MLP with some extra learned matrix multiplica-
tions which depend on global features (the outputs of T-Nets in Figure 3.10).
Such matrices are applied on the coordinates of points and on later features
to enforce invariance under transformations: a basic version of the network
(MLP and max pooling) is used to compute some global features to feed to
a MLP that outputs the transformation matrix, aware of the global context,
that is expected to learn to normalize the reference system. Finally, global
features are either used for direct classification or fed back to point features
for the segmentation task, modeling interaction among points through the
correlations between point features and global features.
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Figure 3.10: PointNet reference architecture. Image taken from [56]



4
P R O P O S E D A P P R O A C H

As we have seen in Chapter 2, the research community has spent much ef-
fort in tackling the problem of grasping novel objects in different settings [30,
31, 37, 61, 62] with the aim of holding objects robustly with robotic manip-
ulators; however, real manipulation tasks go far beyond holding the objects
and the quality of a grasp depends on the task it is meant to support. While
many quality metrics exist to evaluate the quality of a grasp by itself [9,
48], no clear quantification of the quality of a grasp relatively to a task has
been defined. In this chapter we formulate our theoretical framework, ex-
tending the concept of quality metric to task-oriented grasping by defining
general physical measures for an open set of task affordances. This lays the
foundations of our method in a very broad and general sense in the perfect
information context. Then we extend our own framework to a vision context
of partial information to bring our theoretical tools nearer to real applica-
tions, defining the models that we use for inference. Finally, we specialize
our framework onto the analysis of specific physical quantities oriented to
some selected target tasks within the sample domain of the kitchen robot, as
described in Chapter 1.

4.1 task oriented grasping framework

Let O be the set of possible object surfaces with friction and softness proper-
ties defined at each point, let G(O) defined on an object O ∈ O be the set of
possible grasps determined by the hand embodiment, degrees of freedom,
contact locations on the object and contact nature (e.g., frictionless, hard con-
tact or soft contact), and U(O) be the set of points on the surface of the same
object that can be considered as locations where the object can be used to
perform some task.

Let O ∈ O, G ∈ G(O), U ∈ U(O), then we define the affordance function
of task T as FT (O,G,U) 7→ R such that FT (O1, G1, U1) > FT (O2, G2, U2) if
and only if the grasp and use hypothesis (O1, G1, U1) is more suitable than
the hypothesis (O2, G2, U2) to perform task T , thus defining an affordance
ordering of an object grasp for task T . The objective of the affordance func-
tion definition is giving a score to any grasp and use hypothesis on different
objects to be able to extract a best hypothesis by optimization over G and U
upon FT :



36 proposed approach

G∗, U∗ = arg max
(G,U)∈G(O)×U(O)

FT (O,G,U) (4.1)

As we want a compact representation of the affordance function that we
can practically express, we approximate FT as a F̃T : φ ∈ Rn 7→ R by map-
ping the triplet (O,G,U) into a metric vector φ ∈ Rn through a function
Φ(O,G,U) 7→ Rn. This metric vector is a collection of metrics encoding the
geometrical and static physical properties of the triplet (O,G,U) which are
relevant to approximate FT . Therefore, the vector φ is used as a feature vec-
tor describing the triplet (O,G,U) to compute the affordance represented
by FT (or, more precisely, its approximation F̃T ), while it is also a vector of
metrics that we require to be perfectly interpretable, precisely defined to be
potentially measured or explicitly computed from the triplet (O,G,U) in a
perfect information context. The reason for such extra requirement on met-
rics φ is to enable the explicit computation of such metrics in a simulated
perfect information environment and collect a dataset of such measurements,
to subsequently learn from the collected dataset to infer metrics φ from vi-
sion; finally computing F̃T (φ) with a hardcoded F̃T for any task T .

In Section 4.3.1 we provide some examples of basic metrics φ and exam-
ples on how they could be used to hardcode F̃T for some reference tasks.

4.1.1 Achieving Object Semantics Independence

The complete object geometry is generally not available in real world appli-
cations, in particular when our long term goal is to infer object affordance
from vision with no hardwired semantics. To achieve such goal, we need to
frame the problem in the context of uncertain and incomplete information
about the object by decoupling the grasp and use location description from
the exact object geometry and possibly its semantics.

4.1.1.1 Decoupling grasps

Recall here that the complete description of a grasp requires the geometry
and nature of contact points on the grasped object, and the grasp itself needs
to be actuated by a grasping policy. If we assume the grasping policy to be
deterministic, then we can define it as a function GP(p0, O) 7→ G(O) that
maps an initial state p0 ∈ P0 and an object O into the final grasp G ∈ G(O).
To decouple from the specific grasp, and its parameters, we fix a grasping
policy that allows a sufficient exploration of the grasps space G via the space
P0 of possible initial states, which we call pregrasps.

In particular, we select a simple, but effective, grasping policy depicted in
Figure 4.1 defined as follows: from an initial position of the hand with open
fingers (4.1a), we advance towards a fixed direction until the first contact is
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(a)
(b) (c)

Figure 4.1: The three phases of our grasp policy.

made (4.1b), then the fingers are closed until all of them either make contact
or are completely closed (4.1c).

4.1.1.2 Extension to use locations

Use locations are points on the bidimensional surface of each specific object;
we decouple them from the specific object by defining use directions and a
direction mapping function DM(d,O) 7→ U(O) in complete analogy to the
grasp decoupling solution. Our direction mapping assumes d ∈ R2 to be
the spherical coordinates of a directed ray centered in the center of mass of
object O and outputs the farthest point U ∈ U(O) which is the intersection
of such ray with the outer object surface.

While grasps require decoupling from the object, as otherwise they would
need to be expressed as a set of contacts precisely located on a surface that
we do not know exactly, the localization of use locations do not require
the same precision. As a consequence, although formalizing a decoupling
method for use locations, we must take into consideration the possibility
to express use locations directly as points loosely localized on the surface
of the object. Such direct expression has the obvious advantage of being
much simpler with respect to the one passing through the direction mapping
function, which translates to less complexity in the learning models that we
need to define for inference, thus we consider and compare both alternatives
in two distinct settings that we describe more in detail in Section 5.3.1.2.

4.2 inference from vision

As our goal is to make robots able to use unknown objects in a task consistent
way, we need the robot to be able to perceive their affordances via sensors.
In particular, we focus on vision being it an extremely common and effec-
tive tool to take information from the environment in real applications. We
define our inference setting by focusing on the specific case of single range
images taken from camera-in-hand perspective: such case provides only lo-
cal geometry information about the object around the expected location of
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the planned grasp. We want to learn a model that predicts the elementary
metrics φ ∈ Rn of a triplet (O,G,U) with only partial information about the
observed object O. Indeed, predicting the vector φ would allow to estimate
the affordance function FT for any task T for which we can define an F̃T .

Let D : P0 × O 7→ Rh×w be the function that maps a pregrasp p0 on an
object O to the depthmap of size h×w from the camera-in-hand perspective
of p0. Then we want to learn a model MΦ that approximates the mapping
from (p0, D(p0, O), d) to Φ(O,GP(p0, O), DM(d,O)) where O is an object,
p0 is a pregrasp, d is a use direction, and Φ is the metric extraction function,
under the grasping policy GP and the direction mapping function DM.

We assume to be able to learn model MΦ from a dataset of tuples <
O,p0, d,Φ(O,GP(p0, O), DM(d,O) > obtained via uniform sampling of p0
and d values on a set of available objects models and computing the true
values of Φ(O,GP(p0, O), DM(d,O)) via simulation. Details on our data col-
lection setup are explained in Chapter 5.

4.2.1 Model definition

To structure the learning task, we define the model MΦ as the composition
of two models: an input value (p0, D(p0, O), d) is first classified by a bi-
nary classifier MΦ

C that outputs the probability for the input grasp of being
a “good” grasp worth further evaluation or not. We define “good” grasps
those respecting a minimum quality independently from the task, thus em-
ploying state of the art grasp quality metrics to generate the ground truth.
The samples classified as positive then pass through a regression model MΦ

R

that infers the metrics φ with the implicit assumption that the grasp is in-
deed a quality grasp.

The model MΦ is therefore constituted as in Algorithm 1, where g is an
input grasp, u is an input use location, τC is a classification threshold to
allow grasps from the classifier MΦ

C and vfail is a special return value that
indicates that the grasp is not suitable for any task.

Algorithm 1
1: function MΦ(g, u)
2: if MΦ

C (g) < τC then
3: return vfail
4: else
5: return MΦ

R (g, u)

6: end if
7: end function

For both models MΦ
C and MΦ

R we propose and evaluate the use of many
variations of the Convolutional Neural Network (CNN) and the PointNet
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(PN) [56] architectures which have been discussed in Chapter 3. Both archi-
tectures encode the available geometry information (in the form of range im-
age for the CNN or as the equivalent projected point cloud for the PointNet)
in a feature vector, we condition the models with the other input parame-
ters p0 and d either early with the geometry input or late with the extracted
features, and output the classification label or the inferred regression value
with a classical Multi-Layer Perceptron (MLP).

4.3 task oriented grasp metrics

After the definition of our theoretical framework for Task Oriented Grasp-
ing, we need to instantiate it concretely: we choose sample tasks from our
application domain on which the system is evaluated, we select important
geometrical and static features to incorporate into φ, and finally we define
affordance function approximations F̃T for all chosen tasks T.

From our application domain of the kitchen assistant robot we want to
select few very diverse tasks to test on. The typical pick-and-place, which
we call picking, must be included in our tests as it is an extremely common
task in any application domain. An effective pick does not only require grasp
robustness, but also the minimization of the torque of gravity on the grasp
location, which translates to grasping near the center of mass of the object.
Cutting, on the other side, requires understanding the local geometry of
the use location which should be sharp, and at the same time requires a
grasp which is able to statically load as much pressure as possible on the
cut location. Finally, the beating task requires a similar optimization, but
directed towards the momentum that the beating motion would be able to
discharge on the beating location, involving completely different dynamics.

4.3.1 Basic Grasp Metrics

We consider the following set of elementary metrics of (O,G,U), which have
been selected based on the chosen tasks, and therefore should not be consid-
ered as exhaustive:

grasp robustness (ε ∈ R) ε is a real number describing the robustness
of the grasp. It is defined as the Epsilon metric described in [9] which is
builtin in the GraspIt! simulator [18]. Force closure grasps have ε > 0, where
a higher value of ε imply that a greater minimum perturbance is needed to
break the grasp.

rotational inertia (I ∈ R) I quantifies the rotational inertia around
the axis of rotation of the wrist of the hand assuming a unitary density of
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the object and assuming the hand to be integral with the whole object. It
does not take into account the mass of the hand itself.

hand effort on impact (Ei ∈ R) Ei describes the effort of the hand
to balance the impact forces after a rotation around the wrist. It assumes
a fixed average inertial torque in a small ∆t during the impact which is
directly proportional to I and a free contact force on the use location towards
the normal direction. This metric takes the value of the minimum sum of the
contact forces of the hand constrained to the contact friction cones to balance
the inertial torque, ∞ if the minimization problem is unfeasible.

hand effort on hold (Eh ∈ R6) Eh is a vector of six independent val-
ues which quantify the hand effort to balance a different gravity vector for
each component of Eh. The hand effort is the minimum sum of all contact
forces constrained to the contact friction cones that balance a given unitary
force of gravity, ∞ if such problem is unfeasible. The six gravity vectors cho-
sen are aligned with the three coordinate axes (once in the same direction,
once opposite) of the object mesh as all meshes that we used in the Prince-
ton Shape Benchmark have been designed by humans that gave a semantic
meaning to the coordinate axes directions, aligning them with the sides of
objects with an implicit notion of up, down, left, right, front and back. We
use such design bias as a prior of where the gravity is more likely to be
aligned, as objects are usually lying on one of such sides.

momentum discharge efficiency (δ ∈ R) δ quantifies the efficiency
of discharging the rotational inertia of the wrist on the object use location.
It quantifies the alignment between the inertial torque and the torque gen-
erated by a force aligned with the use location normal vector towards the
inside of the object surface. It is computed as the dot product of the two
normalized vectors, clipped to zero in case of negative values.

force transmitted to use (Uτ ∈ R) Uτ quantifies the force that
can be transmitted to the use location using constrained contact forces. It
assumes all contact forces are constrained by their friction cones and have
unitary maximum normal forces. It takes the value of the maximum force
on the use location towards the use location normal guaranteeing static con-
ditions.

use local geometry (Ug ∈ R) Ug describes how much the use loca-
tion has the shape of an edge. It is obtained by fitting a quadratic function
on the vertices of the triangles near the use location (including all the trian-
gles that share at least one vertex with the triangle where the use location
lies) and extracting the eigenvalues of the hessian matrix of such quadratic
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function. The two eigenvalues λ1 and λ2 are the two principal component
curvatures, so we quantify an edge with the expression (λ1−λ2)

2 to identify
locations with a great difference in local curvatures.

4.3.2 Affordance Functions from Basic Metrics

On top of the metrics defined in Section 4.3.1 we define the affordance func-
tions for T ∈ {beat, cut,

pick}. In this preliminary study affordance functions have been designed by
hand, to validate the feasibility of the framework, in future works we aim to
learn them by optimizing task execution efficacy.

beating The classical beating action of a hammer with a human hand
requires dexterous movements of the wrist which would need moving the
whole robotic arm to be reproduced on any robotic hand with a reasonably
simple wrist. For this reason we assume that the beating action is executed
by the robotic actuator by simply rotating the hand clockwise around the
wrist. We require that the hold is stable over a minimum threshold and that
the rotational energy gets discharged almost entirely on the point of use,
therefore we assign a fitness of −∞ if the ε or δ are below some thresholds
τε and τδ. We want to maximize the ratio of the energy that we can incorpo-
rate into the rotation (assuming a maximum rotational speed it translates to
the metric I) over the actual hand effort of keeping the object stable on the
impact, which is the metric Ei. This is detailed in Algorithm 2.

Algorithm 2
1: function F̃beat(ε, δ, I, Ei)
2: if (ε < τε || δ < τδ) then
3: return −∞
4: else
5: return I

Ei
6: end if
7: end function

cutting The action of cutting is extremely complex by itself and varies
greatly with different materials and their surface and micro-structural prop-
erties. A complete physical study of this particular task is not our objective;
we simplify it considering as approximation that greater force provides bet-
ter cuts if executed on a thin enough edge. Therefore, we require a minimum
robustness and a minimum edge score, assigning a value of −∞ if metrics ε
or Ug are below thresholds τε and τuseGeom respectively. In case this con-
dition is respected, the fitness for cutting is given directly by the Uτ metric
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quantifying the force that can be executed by the grasp upon the use location.
This is detailed in Algorithm 3.

Algorithm 3
1: function F̃cut(ε,Uτ, Ug)
2: if (ε < τε || Ug < τUg) then
3: return −∞
4: else
5: return Uτ
6: end if
7: end function

picking Picking an object (as the first part of the pick-and-place task)
only strictly requires a stable grasp for a successful pick. However, different
stable grasps may imply very different effort from the hand actuator to bal-
ance the force of gravity on the object. For this reason we require a stable
grasp and minimize the sum of the contact forces required to balance the
force of gravity in the six directions evaluated by the Eh metric. Notice that
an unstable grasp needs to have at least one evaluated direction of gravity
that the grasp cannot hold, thus we do not check the ε metric, while the fit-
ness value for minimizing the sum of the hand effort on holding the object
is given by the negative of the sum of Eh. This is detailed in Algorithm 4.

Algorithm 4
1: function F̃pick(Eh)
2: return −

∑6
i=1 Eh[i]

3: end function

4.4 conclusions

The theoretical framework described in this chapter has the aim of overcom-
ing the limitations on the current state of the art highlighted in Section 2.5.
The affordance of an object O with respect to a task T is expressed implic-
itly within the ordering that the affordance function FT defines upon the
triplets (O,G,U) with a fixed object O. Therefore, by hardcoding a function
F̃T which acts as a feature-based approximation of FT , we are effectively
defining the affordance of a task T on objects. As discussed in Section 4.1 we
require the features φ to be both interpretable and measurable or explicitly
computable, thus we call them metrics, for two important reasons:

• Interpretability of metrics allows us to hardcode affordance functions
F̃T for sample tasks like picking, cutting and beating, based on the intu-
itive human understanding of the meaning of such tasks. This reduces
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the human intervention to the bare minimum of translating the fuzzy
semantics of the idea of each task into an exact definition that can be
used to automate the evaluation of such tasks from metrics. We discuss
going beyond this interpretability requirement in Section 7.1.

• Explicit computability of metrics allows us to actually compute them
in a perfect information simulated environment. This is a fundamental
step to allow the inference of the same metrics in more realistic partial
information settings such as from vision, as it enables the automatic
collection of a dataset of computed metrics associated to pregrasps
and use location hypotheses, used to learn models for the inference of
computed metrics from simulated vision.

By hardcoding function F̃T and predicting the metrics φ from vision, we
are finally able to estimate the fitness of a grasp and use hypothesis on an
object with respect to a task by looking at the object, therefore we can obtain
a best grasp and use candidate by estimating the fitness of a set of grasp and
use hypotheses.





5
L E A R N I N G F R A M E W O R K A N D D ATA G E N E R AT I O N

In this chapter we describe the process of data collection by building our
implementation of the system proposed in Chapter 4 as a GraspIt! plugin
for data generation. Moreover, we detail the learning framework around all
the models that we experimented with in Chapter 6.

5.1 the graspit! simulator

As anticipated in Section 4.4, we need to produce a simulation environ-
ment which is capable of computing static physical interactions of grasps
efficiently. Thanks to a mature community of researchers in Robotic Grasp-
ing, one common tool in simulation of grasps is the GraspIt! [18] simulator,
shown in Figure 5.1. It has been designed for researchers with many built-in
implementations of some of the most recent methods for simulating, evalu-
ating and planning grasps. The main interesting functionalities for us are:

• Loading geometrically correct and consistent models of commercially
available hands.

• Built-in support for eigengrasps of common simulated hands.

• Loading objects from many common formats for meshes, including the
Object File Format (.off) used in the Princeton Shape Benchmark [19],
a mesh database that we better detail in Section 5.2.

• Moving the robotic hands consistently with their real joints constraints.

• Collision detection in static movements (grasp approach), and compu-
tation of the set of contacts with the respective friction cones.

• Management of the reference change matrices in loaded objects. These
matrices encode the position and orientations of objects in the simu-
lated worls, as the reference change matrix of an object O maps coor-
dinates expressed in the system of reference of object O to coordinates
expressed in a global reference system.

• Built-in support for state of the art grasp robustness metrics.

While being an excellent starting point, still we need to implement extra
features to build a data generation tool to collect tuples in the form <

O,p0, d,Φ(O,GP(p0, O), DM(d,O) > as described in Section 4.2. In particu-
lar, we implement a GraspIt! plugin with the following additional features:
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Figure 5.1: A standard world on the GraspIt! GUI

• Grasp parameterization: we need to automatically extract random pre-
grasps p0 and use directions d and to set the initial hand posture and
position accordingly.

• Grasp actuation: we need to implement our grasping policy GP to ef-
fectively produce a simulated grasp from the pregrasps.

• Metrics computation: we need to compute the metrics listed in Sec-
tion 4.3 from the simulated grasps, by implementing function Φ.

• Data generation: we need to consistently compute and log the metrics
φ with the corresponding pregrasps p0 and use directions d in a con-
tinuous loop.

We employ the built-in model of the Barrett Hand [10] as it is a very
common choice in research, both in simulation and in real experiments.
This hand provides the minimum necessary functionality to achieve com-
plex grasps, with three metal fingers, with one active DoF each, while one
more DoF, the distal joint of the finger, is active only when the previous joint
is locked. One finger is fixed on the palm, while the other two share the same
rotational DoF around the base of the wrist, which can only rotate around its
axis as well. An eigengrasps decomposition of such degrees of freedom is
discussed in Section 5.3.1 and shown in Figures 5.2 and 5.3.

5.2 the princeton shape benchmark

The Princeton Shape Benchmark [19] is a dataset containing 1814 object
meshes in Object File Format collected from the World Wide Web, each
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(a) (b)
(c)

Figure 5.2: Pregrasp degree of freedom (a) set to 0, (b) set to 0.25, (c) set to 1

classified with respect to many semantic criteria. It was proposed in 2004

to represent a single, large reference database to compare new methods for
3D shape matching and classification which were usually compared against
different datasets, thus with not completely comparable performances.

We use this dataset as a source of object models as it contains many
meshes of objects that can be related to the chosen tasks of cutting, beat-
ing and picking. In particular, we look for household objects like hammers,
glasses, bottles, kitchen knives; moreover we take objects with similar se-
mantics but different geometries like blades and axes, and some outliers like
ice creams and chess pieces. A complete list of the objects involved in our
experiments is in Figures 6.3 to 6.6.

We directly load object models from the Princeton Shape Benchmark in
Object File Format. This is a very simple mesh description standard, and
while GraspIt! provides a built-in parser for this format, we built our own
for further uses out of the GraspIt! environment.

5.3 extending graspit!

As discussed in Section 5.1 we need to implement some specific extra func-
tionalities to the GraspIt! simulator to build our data collection engine. This
simulator can be easily extended through plugins written in C++ that have
full control over the internal simulation environment.

5.3.1 Representing the pregrasps and use locations

Correctly encoding the pregrasps is a sensible step that can potentially bias
the grasp search distribution.

Pregrasps need to describe the posture of the hand (thus its degrees of
freedom) and its initial position and orientation in the space. A trivial repre-
sentation of pregrasps would be encoding them directly with the d degrees
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(a) (b)
(c)

Figure 5.3: Clutch degree of freedom (a) set to 0, (b) set to 0.5, (c) set to 1

of freedom of the hand actuator and 6 more degrees of freedom for transla-
tion and orientation in space, thus defining a mapping Rd+6 7→ P0.

5.3.1.1 Efficient representation of pregrasps through eigengrasps

As a general rule, a representation is as much effective as it is concise, with
the lowest possible dimensionality of the parameter vector, while preserving
the identity of the corresponding pregrasps. Finding an effective parame-
terization of grasps is not an easy nor new problem in Robotic Grasping,
thus we shall start from state of the art parameterization concepts. As first
underlined in [8] the classical effective hand postures that humans perform
on everyday objects display a high degree of redundancy, so that the first
2 principal components over the 15 degrees of freedom measured in their
experiment explained 80% of common hand postures variability. Such find-
ing has been ported to the field of Robotic Grasping in [23] through the
definition of eigengrasps as low dimentional bases in the high dimensional
DoF space that can parameterize very accurately the effective grasps while
counting much less parameters than the number of degrees of freedom.

Jointly with the use of eigengrasps to describe the degrees of freedom of
the hand, our selected policy allows for a further reduction in the dimen-
sionality of the pregrasp description for the translational degree of freedom
saved in describing the position of the hand in the space, as approaching
the object in a straight line makes the approach direction invariant with re-
spect to the policy. We can further divide the eigengrasp parameters into
h parameters used to close the grasp and k parameters used to set the ini-
tial hand posture: the h eigengrasp parameters used to close the hand are
fixed to an open position on the pregrasp, thus they do not contribute to the
dimensionality of the pregrasp itself. Therefore, we can describe the initial
posture of our grasps with only h parameters and the position of the hand
in space with 5 parameters, defining a mapping Rh+5 7→ P0 which is way
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more efficient than the trivial baseline and scales much better with complex
hands.

For our Barrett hand we can use very simple and intuitive eigengrasps:
one eigengrasp shown in Figure 5.2 controls the finger shared rotational DoF

alone, while one other in Figure 5.3 collectively controls the closure of the
fingers. As the latter is fixed to open in pregrasps, we finally use only the
former to describe the hand posture in pregrasps.

5.3.1.2 Parameterization definition

To control the hand initial location and rotation, we implement two different
grasp parameterizations: the first aims at using the minimum number of
parameters possible, the second instead aims at eliminating any positional
bias in the pregrasp and use location search.

minimal pregrasp parameterization The minimal parameteriza-
tion aims at using the minimum possible number of parameters. As we use
one degree of freedom for the hand posture and a minimum of five for the
location and rotation of the hand, we use exactly six parameters.

The parameterization is obtained by extracting a point Poff on a fixed ref-
erence plane, the xy plane, (two parameters) in mesh relative coordinates
to be used as offset with respect to the center of mass of the target object,
and three rotations (roll, pitch, yaw) to be applied to the hand in standard
position to determine its approaching angle. The approach direction is de-
termined by the rotated image of the hand front versor, applied on Poff.
The actual initial hand position is obtained by translating Poff backward
along the approach direction ga by a sufficiently long distance as shown in
Figure 5.4, while the hand posture is encoded by its single pregrasp DoF as
anticipated. Use locations, on the other side, are produced similarly by ex-
tracting a use direction (only two rotations in spherical coordinates, as the
third is invariant) and intersecting a ray from the center of mass with such
direction with the object mesh.

Initial testing with this method highlighted that, although minimal, this
encoding requires significant preprocessing computational effort to repro-
duce the grasp and use location information from the raw parameters, while
not providing significant advantages for its brevity. Moreover and more
importantly, extracting raw parameters from uniform distributions leads
to highly biased distributions of grasps and uses which are concentrated
around the center of mass of the object, and more rarely consider grasping
or using in farther locations.
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Figure 5.4: Schema of minimal pregrasp parameterization.

unbiased pregrasp parameterization The unbiased parameteriza-
tion aims at solving the problems highlighted with the first experiments,
which are the grasp distribution bias and the high preprocessing cost.

To eliminate the bias around the center of mass, we extract grasp and use
locations Pg and Pu uniformly with respect to the surface of the object mesh
by using state of the art methods [35] which are equivlent to extracting two
independent samples from a uniform distribution in the unitary interval and
feeding them into the procedure that we describe in detail in Section 6.4.1.1.
This guarantees no bias in the extraction of grasp and use locations and,
logging the points directly, it needs no preprocessing at all, but it uses three
parameters instead of the usual two.

The approach direction is chosen by uniformly extracting unitary quater-
nions q by a known method from [4], which can be found as a built-in
function in the Eigen [32] library, following the formula:

h =
(√

1− r1sin2πr2,
√
r1cos2πr3,

√
r1sin2πr3,

√
1− r1cos2πr2

)
(5.1)
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where r1, r2, r3 are repeatedly extracted independently from a uniform dis-
tribution in the unitary interval until the encoded approach direction ~da
applied on Pg is coming from the outside with sufficient angle, which is
equivalent to:

~da · ~nPg > τg (5.2)

being ~nPg the unitary normal vector in Pg directed inward and τg is a thresh-
old that we fix to 0.1 to define a large cone of admitted grasp directions.

This method uses far more parameters than the biased one (three param-
eters for the grasp location Pg and three more independent parameters for
the unitary quaternion q, and again three parameters for the use location
Pu), but this disadvantage becomes minor if the grasp direction is implic-
itly modeled later in the learning problem. On the other side, the quantities
produced are describing more directly the translation and rotation of the
hand, requiring much less preprocessing time to be used, while granting a
sufficiently unbiased exploration of the pregrasp space.

5.3.2 Performing the grasp

Performing a grasp from a given pregrasp is equivalent to implementing our
grasping policy already described in Section 4.1.1.1 and shown in Figure 4.1.

The pregrasp already sets the hand in its correct initial location and ro-
tation, also setting the value of the one degree of freedom that controls the
angle between the two mobile fingers. To maximize the probability to effec-
tively wrap the target object in a wider grasp, we open the hand by setting
the clutch eigengrasp to 0 as in Figure 5.3a. We approach the object by ad-
vancing on a straight line in the grasp direction until a contact is made, or a
threshold distance has passed without any contact, in which case (very rare
with the minimal parameterization, impossible with the unbiased one due
to the explicit grasp target Pg on the object surface) the grasp is discarded.

Advancement in discrete steps towards the grasp location is already imple-
mented in GraspIt! as a built-in, as well as the detection of any intersection
between rigid bodies (hand and object) and the backward interpolation of
the motion to obtain a more precise contact. Once one contact is made, the
clutch is closed by gradually increasing the clutch eigengrasp until a contact
is made with each finger. Every finger advances until it makes a contact in-
dependently of all the others, thus the final grasp is formally out of the space
defined by the eigengrasp basis, which we use only to parameterize pregrasps
which, given a mesh, are deterministically mapped to a free grasp on it.
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5.3.3 Metrics computation

Computation of metrics is a core functionality of this work that deserves par-
ticular attention. The considered physical metrics, described in Section 4.3.1,
are heterogeneous and need both geometrical and static analysis of the mesh
and the grasp. Before solving the problem of each metric independently, we
make the following assumptions:

• Rigid body assumption: we assume that both the grasped body and
the hand are rigid bodies, thus they are not subject to macroscopic
deformations.

• Hard contact assumption: we assume that all contacts are hard contacts,
thus considering only the transmission of normal forces and tangential
forces within a friction cone (see Reference [28] for a detailed explana-
tion of contact models). In particular we always consider objects to be
in hard plastic and fingers to be in metal, thus friction cones’ aperture
follows the plastic-metal static friction coefficient.

• Arbitrary joint control assumption: we assume that the hand joints
control allows the hand to actuate any combination of forces within
the friction cones of its contacts.

• Beating motion assumption: we assume that the task of beating is per-
formed by a Barrett Hand by rotation around its wrist, as anticipated
and explained in Section 4.3.2.

Taking the εmetric aside, which uses the built-in Epsilon metric in GraspIt!,
the computed metrics can be divided in two groups: some require geomet-
rical considerations irrespectively of the specific contacts, while others are
intrinsically framed as optimization problems on the allowed forces, with
eventual external forces.

5.3.3.1 Geometrical metrics

The geometrical metrics include the I, δ and Ug. We report here again their
description, together with more specific implementation details than in Sec-
tion 4.3.1.

rotational inertia (I ∈ R) I quantifies the rotational inertia around
the axis of rotation of the wrist of the hand assuming a unitary density of
the object and assuming the hand to be integral with the whole object. It
does not take into account the mass of the hand itself. The implementation
of this metric relies on the code from [22] to compute the inertial matrix of
a body described by a mesh, then the actual value of inertia with respect to
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the wrist rotation axis is computed, taking into consideration the distance of
the axis with respect to the center of mass.

momentum discharge efficiency (δ ∈ R) δ quantifies the efficiency
of discharging the rotational inertia of the wrist on the object use location.
It quantifies the alignment between the inertial torque τI and the torque τ̃u
generated by a force aligned with the use location normal vector towards
the inside of the object surface. It is computed as follows:

δ = max(0,
τ̃u

||τ̃u||
· τI
||τI||

) (5.3)

use local geometry (Ug ∈ R) Ug describes how much the use loca-
tion has the shape of an edge. It is obtained by fitting a quadratic function
on the vertices of the triangles near the use location (including all the trian-
gles that share at least one vertex with the triangle where the use location
lies) and extracting the eigenvalues of the hessian matrix of such quadratic
function. The two eigenvalues λ1 and λ2 are the two principal component
curvatures, so we quantify an edge with the expression (λ1−λ2)

2 to identify
locations with a great difference in local curvatures. Both the idea and the
algorithm of fitting a quadratic surface onto the mesh are taken from [24]
who uses the same technique to estimate the contact surface in soft contact
modeling. The code is taken from the GraspIt! implementation of the soft
finger model.

5.3.3.2 Optimization metrics

Optimization metrics include Eh, Ei and Uτ. They are intrinsically formu-
lated as either minimization or maximization problems onto the contact
forces within the friction cone constraints. We frame such problems as Lin-
ear Programming problems, taking contact forces as variables, friction cones
and equilibria as constraints with possibly either controllable or fixed exter-
nal forces and torques included.

We produce a general linear grasp optimizer built on top of the CGAL [27]
optimization library to setup the linear problems encoding a set of contact
forces. The set of contacts C1 . . . Cnc with external fixed wrenches W̄1 . . . W̄k
and external variable wrenches W1 . . .Wv are encoded in the following con-
straints:
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8∑
j=1

ti,j 6 µsni, i = 1 . . . nc

nc∑
i=1

Mi




ti,1
...

ti,8

ni



+

k∑
j=1

W̄j+

v∑
l=1

Wlwl = 0,

0 6 ti,j, i = 1 . . . nc, j = 1 . . . 8

0 6 ni 6 τN, i = 1 . . . nc

0 6 wl, l = 1 . . . v

where variables ni are the length of the used normal component in each
contact Ci, variables ti,j are the tangential components of the friction cone
of contact Ci along the direction j as shown in Figure 5.5 (here we consider
8 directions equally distributed on a unitary circle as a discrete approxima-
tion of friction cones), wl are the variables associated with the usage of vari-
able wrenches Wl. Matrix Mi maps the coefficient vector [ ti,1 ... ti,8 ni ]T of a
contact Ci to the corresponding wrenches in the global system of reference.
MatrixMi is composed by a fixed cone encoding matrix Γ that maps the coef-
ficient vector [ ti,1 ... ti,8 ni ]T into a force vector in contact coordinates within
the friction cone according to Figure 5.5, and a reference change matrix Ri
to switch from contact to the global reference system.

hand effort on impact (Ei ∈ R) describes the effort of the hand to
balance the impact forces after a rotation around the wrist. It assumes a fixed
average inertial torque in a small ∆t during the impact which is directly
proportional to I and a free contact force on the use location towards the
normal direction.

Let Pu be the point of use with its normal ~nPu , OCOG the center of gravity
of the object, ~zg the grasp approach direction versor, then the problem is
formulated as a grasp LP with the following parameters:
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Figure 5.5: Friction cone parameterization with aperture α = tan−1(µs) to describe
contact Ci in the LP solver.

k = 1 v = 1 τN = +∞
W̄1 =

[
0

I~zg

]

W1 =

[
−~nPu

−(Pu −OCOG)× ~nPu

]

With objective:

minimize
nc∑
i=1

ni (5.4)

hand effort on hold (Eh ∈ R6) is a vector of six independent values
which quantify the hand effort to balance a different gravity vector for each
component of Eh. The hand effort is the minimum sum of all contact forces
constrained to the contact friction cones that balance a given unitary force of
gravity, ∞ if such problem is unfeasible. The six gravity vectors chosen are
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aligned with the three coordinate axes (once in the same direction, once op-
posite) of the object mesh as all meshes that we used in the Princeton Shape
Benchmark have been designed by humans that gave a semantic meaning
to the coordinate axes directions, aligning them with the sides of objects
with an implicit notion of up, down, left, right, front and back. We use such
design bias as a prior of where the gravity is more likely to be aligned, as
objects are usually lying on one of such sides.

In particular, if ~g is the chosen gravity vector, then the problem is formu-
lated as a grasp LP with the following parameters:

k = 1 v = 0 τN = +∞
W̄1 =

[
~g

0

]

With objective:

minimize
nc∑
i=1

ni (5.5)

force transmitted to use (Uτ ∈ R) quantifies the force that can be
transmitted to the use location using constrained contact forces assuming
that the object is aligned with the gravity vector parallel to the normal of the
use location. It assumes also that all contact forces are constrained by their
friction cones and have unitary maximum normal forces. It takes the value
of the maximum force on the use location towards the use location normal
guaranteeing static conditions.

Let Pu be the point of use with its normal ~nPu , OCOG the center of gravity
of the object,M the estimated mass of the object (assuming uniform material,
it is proportional to its volume), then the problem is formulated as a grasp
LP with the following parameters:

k = 1 v = 1 τN = 1

W̄1 =

[
M~nPu

0

]

W1 =

[
−~nPu

−(Pu −OCOG)× ~nPu

]

With objective:
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maximize w1 (5.6)

5.3.4 Data generation loop

Having the tools for grasp simulation and for metrics evaluation, we re-
quire an effective data generation loop to maximize the amount of quality
data that we log. We initially implemented a trivial loop that just performs
a fixed number of random simulations, hypothesizing a fixed number of
grasps and a fixed number of use locations for each grasp, computing all
metrics and logging all results. This initial solution allowed us to test and
understand the bottlenecks in the data generation process and which grasps
bring differentially more valuable information to the dataset.

After experimental tests we determined that the main bottleneck of our
system was in the LP solver for the metrics computation, initially accounting
for the vast majority of computational time, and the great majority of LP

metric runs was due to the multiple use locations. At the same time most of
the random grasps (one over twenty) were not even stable, making complex
metrics not meaningful to be computed.

We greatly optimized effective data collection by evaluating robustness as
early as possible to know when a grasp is worth evaluating more or being
discarded. Unstable grasps are not evaluated along multiple points of use,
as their value lies only in detecting their lack of force closure, while robust
grasps are fully evaluated in multiple use locations. Moreover, as unstable
grasps provide the great majority of random examples with any simple ran-
domization policy, they are going to build an unbalanced dataset. We di-
rectly balance the produced dataset by counting the number of stable grasps
produced and logging unstable grasps only when they equal the number
of stable grasps, thus saving further computational time. With the described
policy, the running time spent is more balanced between searching for grasps
and evaluating metrics for stable and interesting grasps.

5.3.5 Known problems

The following is the list of the known problems:

• The program occasionally freezes on the LP problem resolution during
the computation on metrics. This problem is more frequent on some
meshes, suggesting that it may be caused by degenerate cases that are
randomly picked up. Tests show that a pregrasp that causes a freeze on
a specific metric computation deterministically produces the freezing
on the same LP, however even a very slight perturbation (10−5 rela-
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tive perturbation on any single parameter of the pregrasp) solves the
problem.

• The meshes in the Princeton Shape Benchmark models often approxi-
mate sharp edges with either flat closed surfaces or open plains. Such
approximations usually make blade edges difficult to be detected by
the Ug metric in simulation.

5.4 automated data generation

Data generation should be as much scalable as possible. This is translated
into two main requirements: it needs to be parallelizable on multi-core ma-
chines and it is requires little to no interaction and maintenance. Both these
features are not readily available with GraspIt! as it is a research simulator
which has not been developed specifically to grant parallelism and reliabil-
ity, therefore we satisfy these requirements by wrapping the main simulator
for data collection with an automated process management tool that we de-
signed on purpose.

5.4.1 Parallelism

In this context scalability comes with the ability to parallelize data collec-
tion, both in the process and data logging. The actual simulation process
is intrinsically highly parallel as single simulations are independently exe-
cuted for randomized grasp parameters, while logging of results can easily
be done on different files that are merged later, as explained in Section 5.4.3.
The main obstacle is the fact that the GraspIt! simulator is not designed to
be executed in a multithreaded environment, having only partial and exper-
imental support to multithreading. Therefore, we step back to a multipro-
cessing solution: our process management tool monitors available data and
launches different independent processes collecting data for a limited period
of time on different objects, logging on different target files. This method al-
lows to easily monitor and balance data collection, dynamically allocating
more cores to the collection of objects which require more effort to collect
and measure valid grasps.

5.4.2 Reliability

A highly parallel infrastructure is not sufficient to scale data collection if
independent processes are unreliable and need frequent human intervention.
As underlined in Section 5.3.5, the simulation process alone is subject to
unpredictable freezes during data collection, which requires a hard restart
of the process.
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To grant reliability we inserted a timer into the simulator to terminate the
process to free the resources if any grasp metric computation takes much
more than the observed regular maximum (which is two seconds on the
machine we used, with a timer of ten seconds). At the same time the process
management tool monitors the running processes and restarts a new process
whenever one dies for any reason. The new process is started on the object
that counts the least amount of available data, to balance the dataset.

5.4.3 Data merging

The output of our wrapped data collection system is a set of text files where
each line logs a pregrasp, a use location and all the relative measured met-
rics. Each file is relative to a single object mesh from the Princeton Shape
Benchmark [19], and multiple files relative to the same mesh exist to ensure
that multiple processes do not have to synchronize to simulate on the same
mesh.

The ideal shape of the dataset is a zipped archive with a neat structure:
as we separate training, validation and test sets based on the target objects,
we want one single data file for each object mesh. For this reason a last post-
processing script is run to merge all available data samples of each mesh
into a single data file, finally zipping all data files into an archive.

5.5 learning from data

The long term objective of this research is achieving affordance inference
from vision on novel objects, thus we address the applicability of our frame-
work through learning from the data we collected.

5.5.1 Data preprocessing

While the raw data are in the form of tuples of values encoding grasps, use
locations and metrics, the models described in Section 6.1 expect high dimen-
sional data as it comes from range cameras: a data preprocessing pipeline is
necessary to connect data with the available models, decoding the pregrasp
information and synthesizing depth images and point clouds.

As pregrasps are encoded into implicit parameters, they need to be de-
coded into a directly useful form as the explicit reference change matrix to
switch from world to grasp coordinates. This step is potentially performance
sensitive as it needs to be performed for every single grasp ready from data:
a first implementation using the pyquaternion package resulted into a bot-
tleneck of the whole data preprocessing pipeline, therefore we base our final
implementation upon the numpy-quaternion package, as it is based on a
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Figure 5.6: Example synthesized depth images. Red is near, blue is far.

C++ implementation built onto numpy. We considered the hypothesis of
providing a GPU implementation to greatly speed up this step, but the cur-
rent solution does not take a significant enough portion of the preprocessing
time anymore.

The actual implementation highly depends on the encoding used into the
data, as explained in Section 5.3.1. The minimal parameterization requires
performing many subsequent rotations of the canonical reference system to
decode the spherical coordinates, while the unbiased parameterization, built
upon the experience of the previous one, has the intrinsic advantage of pro-
viding directly the quaternion encoding the destination reference change,
thus it only needs to decode the quaternion into its equivalent transforma-
tion matrix form.

The next step of the preprocessing phase is generating the range images of
the object from the grasp reference. As this is clearly the most computational
intensive task of the whole preprocessing pipeline, we spent much effort in
its optimization as it is the main reason for the preprocessing time.

We provide a GPU implementation based on OpenGL: the mesh vertices
are directly loaded to the GPU memory by buffers, the camera reference is
moved according to the grasp reference, mirroring the z axis to match the
looking direction with the grasp direction, and the OpenGL pipeline is exe-
cuted with standard shaders, backface culling and z-buffering. We use a per-
spective projection with parameters inspired to the Kinekt 2 depth camera
(70x60° field of view angle): we generate subsampled images of resolution
128× 128 using a 60° field of view taken from an object-length distance from
the center of the object. The z-buffer is extracted and the normalized depth
image is obtained from it according to the following formula:
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Figure 5.7: Sample synthesized point clouds with the corresponding original im-
ages.

d(u, v) = 2
ZfarZnear

Zfar +Znear − (Zfar −Znear)B(u, v)
,

D(u, v) =
1

Zfar −Znear
(d(u, v) −Znear),

where B is the z-buffer, Znear is the near plane, Zfar is the far plane, d is
the actual depth map, and D is the normalized depth map used as input for
the networks. Examples of synthesized images are shown in Figure 5.6.

Point clouds hold the same information as a depth image, thus they can
be generated directly from them. If (CX, CY) are the pixel coordinates of the
virtual camera center and fX and fY its focal lengths, then each pixel (u, v)
is mapped to a point (X, Y, Z) as follows:
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Z = d(u, v)

X =
(u−CX)Z

fX

Y =
(v−CY)Z

fY

For performance reasons this function is not implemented in pure python,
but it is based on the Open3D [63] package which is a wrapper for the C++
library.

The produced point cloud incorporates both the object and the planar
background at Zfar, therefore it is cleaned by eliminating all points which
are too near to Zfar. This cleaning procedure makes all meshes to have a
variable number of points, which is incompatible with batch learning as it
needs to fill precise tensors with batches of point clouds that must have the
same number of points. Therefore, we fix a number of points that each point
cloud must have: if after the cleaning it contains too many points, the needed
number of random points is dropped; if it contains fewer points then the
needed amount of points are added all in (0, 0, 0). Sample point clouds with
their original range images are shown in Figure 5.7. This last step of point
cloud cleaning is not performed in the specific case of the Local PointNet
described in Section 6.1.3 as it needs to map each point to its corresponding
pixel position in the original depth image.

5.5.2 Training setup

The whole training infrastructure has been written with the Keras package
with Tensorflow backend, with additional integrations directly in Tensorflow,
and Tensorboard logging to monitor the training.

We train using the Adam Optimizer [41] with a learning rate λ that decays
according to the formula:

λt =
λ0
1+ t

(5.7)

Where t is the epoch counter from 0 to tmax. We use dropout [43] and
early stopping to reduce overfitting [11]. We use the maximum batch size
possible, which depends on the memory requirements of the trained model
and on the hardware available for training, which is run on GPU.

As the memory requirements to train with millions of synthesized im-
ages of point clouds are extremely high, we store the images in RAM in a
quantized form to byte precision, to be restored to full precision type only
for the batch forward and backward passes. Such practice determines a loss
in precision on the input data at training time that we do not reproduce
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when testing, but experimental evidence (no significant difference between
training losses on the reduced and full precision samples) suggests that this
practice does not have any true effect on the learning process of the models.
We think that this finding is very reasonable as we expect the geometrical
pattern to be learned to lie in aggregate high level structures rather than
in fine micropatterns two orders of magnitude smaller than the maximal
distance (which is the precision still granted by bytes).





6
E X P E R I M E N TA L VA L I D AT I O N

To assess the feasibility of the proposed framework we performed a set of
experiments focused on the tasks selected in Section 4.3, aiming at:

1. Validating the framework by showing that arg maxG,U F̃T (Φ(O,G,U)),
based on grasp metrics Φ, for some selected tasks T , provides grasps
and use locations that are semantically meaningful with respect to the
semantics of task T ∈ {beat, pick, cut}. This step questions the intrin-
sic validity of the theoretical framework in a perfect information set-
ting, assessing qualitatively that the best grasps obtained by exhaus-
tive search over the collected data are suitable for the selected tasks.
The quality obtained at this step can be considered an upper bound of
what an applied system can achieve in a real environment with partial
information for two strong reasons: firstly in this case we consider to
have full information about the object, secondly the models for par-
tial information are expected to be trained on these same data, thus
they are not expected to be able to surpass the quality level which is
intrinsic in data.

2. Assessing the feasibility of learning a model MΦ that can infer ba-
sic grasp metrics φ from partial information about a target object as
detailed in Section 4.2. This step questions the applicability of such
framework to a context of uncertainty and partial information, which
is typical of real contexts. Currently, our validation is limited to the
quantitative evaluation of MΦ

C and MΦ
R learning modules, and the qual-

itative evaluation of the integrated model MΦ, while no test has been
performed with real robots for now.

All experiments have been run on a machine with an Intel Xeon E5-2630

v4 CPU with 40 cores, 8 Nvidia GeForce 1080 GPUs and 256GB of RAM, but
for the experiments only 2 GPUs and 20 to 25 cores have been used.

6.1 structuring the learning problem

As anticipated in Section 4.2, we want to learn a model MΦ from a dataset of
tuples < O,p0, d,Φ(O,GP(p0, O), DM(d,O) >, where MΦ is divided into
a first classifier MΦ

C that filters stable grasps worth considering, and a re-
gressor MΦ

R that infers the basic metrics Φ(O,GP(p0, O), DM(d,O)) from
filtered grasps.
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The depth maps D(p0, O) are synthesized with camera-in-hand perspec-
tive to encode both local information about the object geometry and implicit
information about the grasp location and orientation. The DoF information
is considered as an extra input to the model together with the depth image,
to complete the description of the pregrasp p0.

The classifier MΦ
C performs a binary classification, thus its output is al-

ways a value in the range [0, 1] which represents the probability of having
a stable grasp. As we require positively filtered grasps to be viable for the
execution of some task, requiring strict force closure (ε > 0) would be not
enough, thus we employ a custom and more restrictive definition of stable
grasp that involves a minimum general robustness τε and a maximum over-
all effort to hold the object against gravity τEh :

ε > τε ∧

6∑
i=1

Eh[i] < τEh (6.1)

where empirically we set τε = 0.15, τEh = 250.
Since we use a custom definition of stable grasp which incorporates more

stringent and complex requirements than the regular stability, for the sake
of formal correctness from now on we refer to them as viable grasps, which
are the positive class of our classification network MΦ

C .
We provide several models for both the classifier MΦ

C and the regressor
MΦ
R which come from variations of the Xception Convolutional Neural Net-

work [53] model and a PointNet [56] model.

6.1.1 Convolutional Neural Network model

We tested some configurations of Convolutional Neural Networks for both
the regressor and the classifier networks. All of them take a normalized
depth image as input and are conditioned with the DoF parameter to finally
output a single score which is either the classification label or a single metric
φ for regression.

As Convolutional Neural Networks have attracted much research atten-
tion in the last years and were greatly improved both in performance and in
efficiency, we take one very recently proposed architecture as starting point.
The base specific architecture we use is the Xception architecture [53], shown
in Figure 3.9. This architecture takes to the extreme the Inception [49] assum-
pion of the separation between pointwise and spacial correlations in per-
forming convolutions efficiently using its parameters only with depthwise
separable convolutions (channel-wise independent convolutions followed by
1× 1 convolutions). Moreover, it includes the residual connections [51] intro-
duced into the Inception family with Inception-ResNet [59] to allow effective
optimization along its 36 convolutional layers. A much more in depth expla-
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nation of the techniques and assumptions used in this architecture have been
explained in Section 3.2.3.

The following are the two main variations considered:

• Late fusion CNN: the DoF input is concatenated to the encoding of the
image after the convolutional segment of the network, within the fully
connected layers section of the exit flow in Figure 3.9, as depicted in
the upper side of Figure 6.1. Such technique is very simple, but the
local geometry is encoded independently of the DoF input, which may
be a relevant element to consider to give more importance to different
features of the object geometry. We call this variant with the codename
of CNNL.

• Early fusion CNN: the DoF input is replicated into an image channel
and concatenated directly to the image input, to be considered early
in the network encoder, as depicted in the lower side of Figure 6.1.
This technique has the advantage of conditioning the image encoding
features with the secondary input, however the receptive field at the
point of first encoding the secondary input itself is very limited with
respect to the late fusion alternative. To overcome this limitation, we
propose the input DoF parameter again to the fully connected segment
of the network, exactly as in the late fusion alternative. We call this
variant with the codename of CNNE.

The possibility of performing transfer learning from pretrained CNNs is
an extension of the late fusion alternative rather than an alternative by itself.
This is clearly not compatible with the early fusion as, to the best of our
knowledge, there are no early fusion CNNs with the conditioning input
having sufficiently strong similarities with our DoF parameter. Moreover, as
shown in [57], transfer learning from RGB CNNs is detrimental for depth-
based CNNs, thus we require models trained with depth images for relevant
tasks. Such alternatve has been considered but not implemented yet due to
the lack of available suitable pretrained models for our task.

6.1.2 PointNet model

The PointNet model [56] shown in Figure 3.10 has been designed specifically
to effectively process unordered sets of points and tested on many tasks in-
volving inputs in the form of point clouds, such as point cloud classification,
part segmentation or semantic segmentation. We skip a detailed explanation
of the PointNet architecture and its underlying assumptions as it can be
found in Section 3.3 of this thesis and in [56].

Considering the assumptions on which the PointNet is based in our spe-
cific case, having invariance under permutations and capturing the geomet-
rical interactions among points is extremely useful, but the invariance under
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Figure 6.1: Schema of early and late fusion variations on the Xception CNN archi-
tecture.
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transformations is detrimental as the reference system of the point cloud is
meaningful in our case. Such invariance, however, is not intrinsically built in
the architecture of the PointNet model, instead the model has the potential
to learn it when relevant.

Under these considerations, the PointNet model is a promising model for
our task, where the actual need for the transformation net components is
uncertain; therefore we test four variations of the PointNet architecture:

• Full PointNet: exactly as the classification PointNet described in the
original paper, with an additional late fusion of the DoF. As the Point-
Net embeds each point of the input into a feature vector independently,
finally merging all point embeddings by a max pooling, we do not con-
sider that early fusion of the DoF input may be of any use for condi-
tioning each point embedding considered independently of the others.
Testing also the early fusion alternative for all PointNet variants would
lengthen considerably the list of models under test, therefore for now
we reserve the validation of this assumption for future works. We call
this variant with the codename of PNFULL.

• PointNet with Features transform Only: as the invariance under sys-
tem of reference is obtained through the initial transformation net (T-
net) that infers a 3× 3 transformation matrix to learn the invariant, we
directly cut this section of the PointNet to fix the refernce change to
identity, which we assume to be the correct prior reference change. We
call this variant with the codename of PNFO.

• PointNet with Points transform Only: as the feature transform net
makes up for most of the complexity of the PointNet model, we test a
variant in which this transform net is removed (equivalently to fixed to
identity) as a strong regularization of the PointNet. We call this variant
with the codename of PNPO.

• Slim PointNet: we test a combination of the two elements introduced
in the PNFO and PNPO variants of the PointNet: we remove both trans-
form nets, producing a much lighter and simpler model. The resulting
network with no transform is perfectly equivalent to embedding each
point with a MLP, performing max-pooling of all point embeddings,
and finally producing the output with an MLP conditioned with the
DoF input. We call this variant with the codename of PNSLIM.

6.1.3 Local PointNet model

The PointNet architecture, discussed in Section 6.1.2, combines the two as-
sumptions of unordered set of points in input and interaction among points
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Figure 6.2: Schema of the Local PointNet architecture.

by modeling global interactions with global max pooling, as no specific cou-
ple of points is supposed to be more likely correlated than others a priori.

As we expect to detect simple geometrical patterns within our point cloud,
we expect to have stronger correlations between nearby points in the point
cloud, which we want to capture. On the other side, classical image process-
ing convolutional architectures are specialized in capturing precisely these
local correlations between nearby pixels to build up on subsequently higher
level representations of the input image.

Following these observations, we propose the Local PointNet architecture,
with the objective of introducing the hierarchical encoding of convolutional
neural networks to point clouds to capture local geometrical patterns. The
Local PointNet is constituted by a base full PointNet that encodes each point
independently while considering global features only within the transforma-
tion nets, as discussed in Section 3.3. The points are fed in the same order as
they appear within the depth image that generated them, so that this order
(which is assumed and used as main indicator of locality) is preserved by
the PointNet that only produces a feature encoding of length 256 of each
single point. The feature encodings are presented into an image in the same
shape and order as in their original depth image, and passed through a
CNN that hierarchically captures local to global patterns. We use the Xcep-
tion [53] architecture as CNN architecture for the same reasons explained in
Section 6.1.1, introducing the DoF conditioning both between the PointNet
and the Xception and after on the Xception features, as shown in Figure 6.2.
We call this variant with the codename of LPN.

6.2 direct optimization over collected data

Direct optimization over collected data has been implemented as a trivial
extensive search for the collected data samples whose metrics vector φ max-
imizes a given affordance function F̃T .
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(a) Model 1110

(b) Model 1114
(c) Model 489

(d) Model 493 (e) Model 495 (f) Model 710

(g) Model 720 (h) Model 725

(i) Model 750

(j) Model 758

Figure 6.3: Objects from the PSB included in the training set.
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(a) Model 1111 (b) Model 490

(c) Model 718 (d) Model 722

(e) Model 724

Figure 6.4: Objects from the PSB included in the validation set.
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(a) Model 482
(b) Model 730

(c) Model 1116

Figure 6.5: Objects from the PSB included in the test set.

(a) Model 660 (b) Model 1610 (c) Model 1614 (d) Model 500

Figure 6.6: Objects from the PSB not included in any learning set.
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Round core days Samples[M] GGS[M] UGG[M] UGG/obj[K]

1 350 400 20 1.25 56.82

2 280 97 91.3 5.7 259

Table 6.1: Data collection rounds description.

The results of direct optimization differ based on the randomization pol-
icy used, which depends on the parameterization, described in Section 5.3.1,
and on the data generation loop, described in Section 5.3.4. We passed
through two rounds of data collection over all the 22 objects shown in Fig-
ures 6.3 6.4 6.5 6.6; we summarize the results in Table 6.1, where we report for
each data collection round the core days as a measure of runtime (number of
cores multiplied by number of days), the number of samples collected, the
Good Grasp Samples count (GGS), Unique Good Grasp samples (UGG) and
UGG for each single object:

1. The first round lasted two weeks on 25 cores, and collected data us-
ing the minimal parameterization with the trivial data generation loop.
For this reason it collected many grasp hypotheses, but only a small
amount of them is differentially very significant: the great majority of
grasps are not viable, bringing no information for the metric regres-
sion and constituting a highly unbalanced dataset for the classification
task.

2. The second round lasted two weeks on 20 cores, and collected data
using the unbiased parameterization with the optimized data genera-
tion loop. Even though the overall number of logged samples per unit
of computational time is reduced by a factor of 3.3, the collection of
significant (viable) grasp samples per unit of computational time is
increased by a factor of 5.7.

We represent resulting grasps using the builtin GraspIt! GUI: the target
grasp to be represented is performed within the simulated environment,
then it is rendered on the Graphical User Interface and captured as an image.
Rendered images include the target object, the Barrett hand, normals of the
fingers (red lines, not always visible), friction cones in contact locations and
coordinate axes. When coordinate axes have not been considered useful they
have been removed through an image editing program before being included
in this document.
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6.2.1 Picking

Picking grasps have been optimized according to the approximate affor-
dance function F̃pick described in Section 4.3.2 and reported in Algorithm 5

with the default hyperparameters of Table 6.2.

Algorithm 5
1: function F̃pick(Eh)
2: return −

∑6
i=1 Eh[i]

3: end function

Picking grasps (Figures 6.7 6.9 6.8) generally wrap around the center of
mass as a direct result of the minimization of the total contact forces for
holding against gravity.

Some of the produced grasps do not appear intuitive, such as the grasps
produced for picking blades in Figure 6.9, because they exploit features of
their physical actuator which are very different from a human hand. In this
particular case we observe that the hand achieves a stable grasp by pinching
the edge of the blade between the joint of some finger. This pinch provides
multiple contacts with very different normals that provide much greater
stability of the grasp on a low friction material. The emergence of such so-
lution is very unlikely to happen from human evaluation of grasps, as the
human intuition is heavily biased by the human hand with much more fin-
gers, much higher tangential and torsional friction and more susceptible to
damage than the metal Barrett hand assumed in our experiments.

The change in sampling policy from the first (Figure 6.7) to the second (Fig-
ure 6.8) data collection round did not substantially influence the quality of
the resulting grasps, while the employed strategy for the second round dis-
plays more variance. As the minimal parameterization sampling was indeed
biased around the center of mass, such bias resulted in a positive influence
for the picking task which takes an objective advantage around this location
in terms of the Eh metric. For this reason more extensive search of grasp
locations and angles in the second data collection round did not produce
any better result, only increasing the variance in the optimal strategy thus
reducing, while not eliminating, the occurrence frequency of the joint pinch
strategy.

6.2.2 Cutting

Cutting grasps have been optimized according to the approximate affor-
dance function F̃cut described in Section 4.3.2 and reported in Algorithm 6

with the default hyperparameters of Table 6.2.
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(a)
(b)

(c)
(d)

Figure 6.7: Optimized grasps from the picking task on sample objects. First data
collection round.

(a)
(b)

(c)

(d)

Figure 6.8: Optimized grasps from the picking task on sample objects. Second data
collection round.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.9: Optimized grasps from the picking showing the joint pinch strategy.
The edge of the blade is pinched between two joints to improve the stability of the
grasp; (b), (d), (f) show the detail of the joint pinch on the blade. (a-b) and (c-d) are
from the first data collection round, (e-f) is from the second data collection round.
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Algorithm 6
1: function F̃cut(ε,Uτ, Ug)
2: if (ε < τε || Ug < τUg) then
3: return −∞
4: else
5: return Uτ
6: end if
7: end function

On the first data collection round (Figure 6.10) adaptive behaviours are
evident: with thin blades the hand exercises pressure on the edge by rota-
tion, using the handle as a fulcrum, while with larger blades where such
technique is not feasible a direct pressure is preferred.

On the second data collection round (Figure 6.11) the unbiased parameteri-
zation caused the variability of developed strategies to increase substantially.
The exploration of grasp and use locations is not biased around the center
of mass, thus the selection of the cutting point is much more expressive, as
shown in Figure 6.11a where the cut location has been selected on a sharp
decoration on the edge of the sword. Moreover, for the same reason opti-
mal grasps move towards the handles as well, being able to obtain more
heterogeneous contacts more easily.

However, complete exploration for the use location gave substaintial prob-
lems with the inaccurate rendering of blade edges in meshes, as anticipated
in Section 5.3.5. Specifically, the edge of the kitchen knife model (Figure 6.4e)
displays a very large and flat edge and sharp angles on the handle, attract-
ing cutting locations towards the handle. This behaviour, while correct from
a formal point of view, is undesired in our qualitative validation, thus to pre-
serve semantic coherence the grasp shown in Figure 6.11c has been obtained
by explicitly excluding all grasps with use location on the handle.

6.2.3 Beating

Beating grasps have been optimized according to the approximate affor-
dance function F̃beat described in Section 4.3.2 and reported in Algorithm 7

with the default hyperparameters of Table 6.2.
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(a) (b)

(c) (d)

Figure 6.10: Optimized grasps from the cutting task on the first data collection
round showing two different cutting strategies: thin blade tools like (a) and (b)
exercise pressure by rotation, wide blade tools like (c) and (d) instead prefer a
direct pressure strategy.

(a) (b)

(c)

(d)

Figure 6.11: Optimized grasps from the cutting task on the second data collection
round.
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Algorithm 7
1: function F̃beat(ε, δ, I, Ei)
2: if (ε < τε || δ < τδ) then
3: return −∞
4: else
5: return I

Ei
6: end if
7: end function

Beating grasps (Figure 6.12 6.13) display greater variance in general and
usually achieve a stable grasp on the object far from the center of mass to in-
crease the rotational inertia of the object and choose a use location very well
aligned with the rotation direction to effectively discharge the rotational en-
ergy on the target (the values of δ for the optimal grasps are far nearer to 1

than the required values for the selected threshold τδ). The use location is
selected slightly off the center of mass from the opposite side of the hand
to balance the beating impulse and produce a torque that contrasts the rota-
tional inertia of the beating movement.

For what concerns the use of hammers, we must take into consideration
that simulated hammers are assumed to be homogeneous in material den-
sity, thus their center of mass is effectively on the handle. This important
difference with real hammers change the optimal use from beating on their
head to beating on their handle.

The second data collection round (Figure 6.13) substantially improved the
quality of the beating task results, as more extensive exploration far from the
center of mass allows evaluating grasps which are farther from the center
of mass and use location. Hammers are now more effectively grasped on
the head, which offers more diverse surface for a solid grasp, as the optimal
beating point is always on the handle for the same considerations mentioned
before. The main strategies for beating with chess pieces did not change,
while the easier selection of a farther point of use makes them generally
more effective.

6.2.4 Affordance function parameters fluctuation experiment

As a further validation test we changed the ε threshold requirement for the
tasks of beating and cutting according to Table 6.2. The results of such ex-
periment conducted on the model of a typical kitchen knife are shown in
Figure 6.14. The produced grasps for beating with a knife display a similar
strategy with respect to the ones for more classical objects as seen in Fig-
ure 6.12: the grasp is as far as possible from the center of mass, switching to
the handle only when greater robustness is required. The cutting task on the
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(a) (b)

(c) (d)

Figure 6.12: Optimized grasps from the beating task on sample objects from the
first round of data collection. Notice that the center of mass of hammers in (a) and
(b) is on the handle, as the material is assumed homogeneous.

Table 6.2: Affordance function thresholds

Mode name τε τUg τδ

Default 0.3 10 0.95

No robustness required −∞ 10 0.95

Extra robustness required 0.5 10 0.95
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(a)
(b)

(c)
(d)

Figure 6.13: Optimized grasps from the beating task on sample objects from the
second round of data collection. Notice that the center of mass of hammers in (a)
and (b) is on the handle, as the material is assumed homogeneous.
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(a) Beating, no robust-
ness required

(b) Beating, default
(c) Beating, extra robust-
ness required

(d) Cutting, no robust-
ness required

(e) Cutting, default
(f) Cutting, extra robust-
ness required

Figure 6.14: Affordance function parameter variability. The grasp strategy varies
slightly while changing the requirement of the robustness of grasp.

knife shows less variance, producing robust grasps even when not explicitly
required by the fitness function.

6.2.5 Validation results discussion

The outcomes of this experiment define the upper bound of performance of
the final system as we are selecting the best grasp and use hypothesis directly
among all the available data, collected in a perfect information environment.

The three selected tasks produced qualitatively meaningful grasps, some-
times displaying unusual but smart strategies like joint pinching in Fig-
ure 6.9, exploiting the features of the robotic hand in use. Most of the grasps
produced represent feasible and effective alternatives where the more con-
ventional grasps that a human would perform would fail due to the enor-
mous differences between the human hand, an underlying hypothesis intrin-
sic in human intuition, and the actual robotic hand which has less fingers,
with squared rigid surfaces, low friction coefficient and very limited degrees
of freedom.

Nonetheless, the experiment underlined criticalities and limitations on the
current system. We have seen that the distribution of data highly influences
the outcomes of this validation step, thus the upper bound of the quality
of the system, introducing biases in the exploration of alterntives that are
difficult to overcome even with millions of samples. Moreover, especially for
some tasks like beating, the different materials of each part of an object are
an important factor to determine the real best grasp and use hypothesis on
the same object, like in beating with hammers (Figure 6.12 and 6.13), which
requires further complexity in the simulation and a more informative mesh
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dataset than the Princeton Shape Benchmark which is designed for shape
matching and classification algorithms.

6.3 learning results

As a first step for learning, we separated training, validation and test sets
based on object meshes. The training set shown in Figure 6.3 counts ten dif-
ferent meshes including many tools, common objects and some uncommon
geometries to help generalize to the actual geometry of the mesh, not on
the semantic category. The validation set shown in Figure 6.4 counts five
different meshes with tools and common objects which highly resemble the
shapes found in the training set. Finally, the test set shown in Figure 6.5
counts three objects with a common bottle example (Fig 6.5a), an uncom-
mon tool (Fig 6.5c) which only resembles a single training example, and an
axe (Fig 6.5b) whose geometry resembles no other object in the previous sets.
Not all objects have been used for learning, as the ones in Figure 6.6 do have
either shapes or sizes that are too distant from the training and validation
distributions and have been found to be detrimental for our learning task.

6.3.1 Performance measures

We evaluate our learned models by benchmarking against a set of metrics
that we select to capture the operating performance of the model when
plugged into a complete system. Metrics are designed to be reproducible,
thus we prefer standard metrics when possible.

classifier as the classifier model is intended to be used as a filter, we
are mainly interested in the probability of a selected grasp, thus a positive
sample, to actually be a true positive (thus we need a high precision score).
At the same time we cannot tolerate too many viable grasps to be discarded,
thus we have to monitor the recall as well.

Therefore, we draw the precision-recall curves for all classifiers and set a
tolerance threshold τr on the recall, ranking them by the achieved precision
for that value of recall.

regressor We consider three performance measures for the regressor
models:

• MSE: the Mean Squared Error (MSE) is the classical metric used to assess
basic regression, it gives an overall score of how near the regression
goes to real values. As our goal is optimization, not estimation, we
consider this metric relevant but incomplete.
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• CA: the Comparison Accuracy (CA) is obtained by sampling random
couples of samples and measuring the standard accuracy in telling
which input sample corresponds to a greater value of the metric. This
is considered a more specialized indicator than the MSE as optimization
within a number of choices is built by comparisons.

• GMS: as the regressor model has to find the optimal sample within a
set of possible choices, we design the Global Minimum Score (GMS) to
quantify directly the optimality that we expect from the chosen sam-
ple. Let Imin be the input sample that minimizes the predicted output
MΦ
R (Imin) over a set S of samples, then we define the GMS of the model

for the set S as the rate of samples that actually have a greater ground
truth value than the ground truth value of Imin.

While the MSE and CA performance measures are stable with a high enough
number of test samples, we found that the GMS measure as defined above is
not. As the GMS is extremely sensible to adversarial examples, which have
extremely low score for the learned model and high ground truth value (like,
e.g., an object seen from a perspective where it is mostly occluded may look
easy to be grasped in the visible center while being in reality very unbal-
anced, as in Figure 6.19e), the presence of even a single adversarial example
within the test set can change drastically the resulting value of GMS.

6.3.1.1 Stable formulation the Global Minimum Score

The GMS is our most significant performance measure to discriminate be-
tween different models as it quantifies directly the optimality of their can-
didate best, which is the only sample we preserve while exploring a set of
grasp hypotheses. However, the important dependence on the chosen test
set of the GMS as it was defined above, even with large test sets indepen-
dently sampled from the same distribution, makes it a very unreliable per-
formance measure. We want to stabilize the GMS metric while capturing the
phenomenon of adversarial samples, which may appear also in real use cases
and must not be selectively eliminated. As a first stabilization technique, we
repeatedly subsample the test set S with rate r by extracting a subset S ∈ S

such that |S| = dr|S|e and compute the GMS onto S. As we get multiple differ-
ent values, we can draw a probability distribution and compute its expected
value E[GMS]. The results of such technique performed on the trained regres-
sors with r = 1

10 and 105 repetitions over 105 test samples are shown in
Figure 6.15. The cumulative distribution (up in the figure) of all models rises
in significant steps, corresponding to irregular spikes in the density (bottom
in the Figure): the expected value of the distribution is still very sensible to
the specific adversarial samples that are present within the test set.

In the following we identify the dependence of the final GMS distribution
with each sample in the test set to understand the reason of its instability
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Figure 6.15: Unstable GMS distributions for regression models, with density peak
prediction curves.
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even with large test sets, showing that undesired spikes in the density are
bound to happen with a predictable pattern in height and in different lo-
cations for any test set S, being determined by few samples in the test set;
then we validate our modeling by predicting the height of some spikes in
Figure 6.15.

Let α ∈ S, let φ : S 7→ R be the ground truth function and gS : S 7→ R be
the relative ground truth score function defined as:

gS(α) =
|{β ∈ S : φ(β) > φ(α)}|

|S|
(6.2)

Let Iba be the open interval between reals a and b, then we can formulate
the interval probability of the GMS following our current sampling technique
as:

P(GMS ∈ It+δt−δ)

= P

(
gS(arg min

β∈S
(MΦ

R (β)) ∈ It+δt−δ

)
(6.3)

= P

(⋃

α∈S
gS(α) ∈ It+δt−δ ∧α ∈ S∧α = arg min

β∈S
(MΦ

R (β))

)
(6.4)

= P

(⋃

α∈S
gS(α) ∈ It+δt−δ ∧α ∈ S∧ @β ∈ S : MΦ

R (β) <MΦ
R (α)

)
(6.5)

Let us now consider that we are performing the union of perfectly disjoint
events as there must be a unique value of α such that α = arg minβ∈S(M

Φ
R (β)),

therefore we can sum the probabilities of the single events. Moreover, for
|S| → ∞, we can assume that the three events of Equation 6.5 are indepen-
dent and can be factored as:

P(GMS ∈ It+δt−δ)

=
∑
α∈S

P (α ∈ S)P
(
gS(α) ∈ It+δt−δ

)
P
(
@β ∈ S : MΦ

R (β) <MΦ
R (α)

)
(6.6)

=
∑
α∈S

rP

(
Bin(|S|, gS(α))

|S|
∈ It+δt−δ

)
P
(
@β ∈ S : MΦ

R (β) <MΦ
R (α)

)
(6.7)

where we substituted P (α ∈ S) =
|S|
|S|

with the sampling rate r and we as-
sumed independent sampling for gS(α), that therefore is distributed as a nor-
malized binomial Bin(|S|,gS(α))

|S| , with mean gS(α) and variance gS(α)(1−gS(α))
|S| .

We can observe that the model MΦ
R defines a strict ordering among sam-

ples α ∈ S, therefore we can index samples α0, α1, . . . α|S|−1 in inceasing
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order of MΦ
R (α). We can rewrite the righmost probability in Equation 6.7 for

a specific αk as:

P
(
@β ∈ S : MΦ

R (β) <MΦ
R (αk)

)

= P


∧

j<k

αj /∈ S


 (6.8)

=
∏
j<k

P(αj /∈ S) = (1− r)k (6.9)

Therefore we can obtain a final formulation for the discrete density of
the GMS for |S| → ∞ (Equation 6.10) or a continuous approximation based
on the observation that Binomials are sums of iid Bernoulli distributions
(Equation 6.11):

P(GMS ∈ It+δt−δ) =

|S|−1∑
k=0

(
r(1− r)kP

(
Bin(dr|S|e, gS(αk))

dr|S|e ∈ It+δt−δ

))
(6.10)

pGMS(t) =

|S|−1∑
k=0

(
r(1− r)kN

(
gS(αk),

gS(αk)(1− gS(αk))

dr|S|e

))
(6.11)

where, with a slight abuse of notation, by N(µ, σ2) we denote the usual den-
sity function of the normal distribution with mean µ and variance σ2. Equa-
tion 6.11 shows that the density function pGMS is well approximated by
a mixture of gaussians whith exponentially decaying contributions of each
sample of the test set, and where each gaussian has extremely low variance.
This produces a peak pattern in the discrete density, where each peak k is
located around t = gS(αk) with height r(1− r)k when the sampling interval
is wide enough to capture most of the density of the corresponding bino-
mial around its mean, while for larger sampling intervals some peaks can
overlap and be summed. In Figure 6.15 we verify this model experimentally
by drawing the curves for the expected overlapped peak height for samples
{α0}, {α1, α2}, {α0, α1}, {α0, α1, α2}; the curvature is due to the gaussian com-
ponent integrated over the sampling interval, which has a different variance
based on the location of the peak.

The variability of the resulting GMS density even with very large test sets
is due to the fact that its density function depends mainly on few peculiar
samples of the test set, which is rooted to the intrinsic instability of the min
function over ordered sets. As we cannot drop the use of the min function,
we act upon the Equations 6.10 and 6.11 to spread the importance evenly
to all samples. We achieve this by nearing the exponential decay coefficient
1− r to 1, thus for r → 0, which in turn would drastically reduce the size
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Figure 6.16: GMS distributions for regression models.

of subsets S for a fixed cardinality of the whole test set S. We bring this rea-
soning to the limit by dropping the sampling phase in favour of partitioning
of S: each data sample is used only once and compared against a partition
of the original test set. The new method is much more stable, producing the
distributions in Figure 6.16, therefore it has been used for the evaluation of
regressor models.

6.3.2 Hyperparameters

We test many variations of Convolutional Neural Network (CNN) and Point-
Net (PN) models varying many hyperparameters. All models in Tables 6.3
and 6.4 have been trained on both the classification and regression tasks; in
the following we explain the meaning of each hyperparameter and name
used in defining our models.

Names and hyperparameters used for both CNN and PointNet models:

• Model code: a conventional code used to identify a model defined by a
set of hyperparameters. It summarizes the main features of the model.

• λ0: the initial learning rate at the starting epoch. We refer to Sec-
tion 5.5.2 for the decaying update rule.
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Table 6.3: CNN Architectures

Model code λ0 Dropout Early/Late H C Params

CNNL 10−4 0.75 L 192 36 21070K

CNNE 10−4 0.75 E 192 36 21070K

Table 6.4: PointNet Architectures

Model code Reduction method λ0 Dropout TC TF Params

PNFULL Max pool 10−4 0.5 yes yes 3471K

PNFO Max pool 10−4 0.5 no yes 2667K

PNPO Max pool 10−4 0.5 yes no 1613K

PNSLIM Max pool 10−4 0.5 no no 810K

LPN Xception [53] 10−4 0.75 yes yes 22019K

• Dropout: the dropout keep rate used in training the network. It is the
probability that an activation is not zeroed into a dropout layer.

• Params: total count of trainable parameters. This is a dependent pa-
rameter that we include to give an overall measure of the complexity
of the model.

Names and hyperparameters used for CNN models:

• Early/Late: whether early fusion or late fusion is used in the CNN, as
explained in Section 6.1.1.

• H: number of hidden units used on the top of the CNN, after convolu-
tions.

• C: number of convolutional layers in the encoder section of the CNN.

Names and hyperparameters used for PN models:

• Reduction method: the method employed to reduce the point-wise
features extracted by the PointNet. As anticipated in Section 6.1.3 we
propose a novel reduction method for the PointNet architecture to cap-
ture local features, constituted by an Xception [53] model instead of
the classical max pooling layer.

• TC: whether the coordinate transformer net is included into the model.

• TF: whether the feature transformer net is included into the model.
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Table 6.5: Classifiers fixed recall precision benchmark ranking

Model code Cross entropy Precision

LPN 0.3842 0.856

PNFULL 0.4398 0.829

PNFO 0.4403 0.820

PNPO 0.4628 0.819

CNNE 0.4400 0.818

PNSLIM 0.4696 0.800

CNNL 0.5537 0.741

6.3.3 Classifier

The classifier MΦ
C filters viable grasps from input data based on the pregrasp

and on the input range image with camera-in-hand perspective. All architec-
tures in Tables 6.3 and 6.4 have been trained on this task using 500K training
samples from the second round of data collection.

In Figure 6.17 we plot the precision-recall curves of all tested classifiers,
obtained by varying the acceptance thresholds for the output of the classifier.
We rank the available models by the precision that they can achieve with a
fixed recall level of 0.75, drawing the ranking in Table 6.5.

While most models have very similar performances, the Local PointNet
results as the clearly superior model for the classification task, both from a
qualitative evaluation of the precision-recall curve and from the quantitative
ranking. On the other side, the late fusion Xception architecture performed
the worst, with far greater loss than its early fusion counterpart, suggesting
that the geometrical features that are relevant for the classification of suitable
grasps are significantly dependent on the pregrasp p0.

6.3.4 Regressor

The regressor MΦ
R infers the metric vector φ for later computation of the

affordance function relative to the input sample. In this thesis we trained
regressor networks to infer only the value of

∑6
i=1 Eh[i] for testing with the

picking affordance function on the picking task. Output values are linearly
normalized in the interval [0, 1] from the original domain [0, τEh ] granted
by the assumption that input values come from the positive class of viable
grasps. All models in Tables 6.3 and 6.4 have been trained on the same re-
gression task using 500K training samples from the second round of data
collection.
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Figure 6.17: Precision-recall curves for classification models.

Table 6.6: Regression results

Model code MSE CA E[GMS]

PNPO 0.033 0.73 0.818

PNSLIM 0.034 0.72 0.824

PNFULL 0.034 0.71 0.771

PNFO 0.035 0.72 0.770

LPN 0.037 0.69 0.785

CNNE 0.038 0.69 0.781

CNNL 0.050 0.58 0.649



6.4 optimization over learned models 93

Results on the regression task are shown in Table 6.6, and GMS distribu-
tions computed as described earlier with 500K test samples are plotted for
comparison in Figure 6.16.

All models appear to have a similarly shaped distribution of GMS, while
most of the models locate at E[GMS] ≈ 0.775. Similarly to the case of the
classification task, the late fusion Xception model performs much worse than
the others, including the early fusion Xception that stays in the main cluster.
Surprisingly enough, the two lightest models perform significantly better in
terms of all considered metrics, while the distinction between the two is not
significant.

6.4 optimization over learned models

As a final validation step we test the learned system as a whole: based on the
benchmarks of all available models, we choose a specific implementation for
MΦ
C and MΦ

R with a pass threshold to accept samples based on the precision-
recall curve of the chosen MΦ

C .
Referring to Algorithm 1 described in Section 4.2.1, we select MΦ

R as the
PointNet regressor with point transform only (PNPO), model MΦ

C as the
Local PointNet (LPN) with threshold τC = 0.6355 that corresponds to the
value of 0.75 recall on the test set benchmark, and fail value vfail = 1.0
which is the maximum theoretical output of the regressor model.

Our model MΦ predicts a normalized value in [0, 1] for the sum of the
hand effort on hold feature

∑6
i=1 Eh[i] for viable grasps and 1.0 for not vi-

able grasps, therefore we can search for a grasp that minimizes the output
of MΦ to equivalently search for one that maximizes the affordance func-
tion F̃pick described in Algorithm 5. Therefore we produce an algorithm to
extract the best grasp hypothesis for picking from vision by combining our
evaluation model MΦ with a minimization algorithm. For the selection of
the minimization algorithm we tested on standard smart optimization algo-
rithms available in the scikit-optimize package [55] that try to build a simple
model of the objective function, assumed expensive, while evaluating sam-
ples of it to make smart guesses on where the minimum is expected to lie,
performing at most ntries function evaluations. We evaluated the efficacy
of a method based on the rate of acceptance of its guesses through the clas-
sifier, while looking for a trade-off between efficacy and run time. For our
experiment we choose the optimizer based on the random forest regressor
as it could reach very effective rates of acceptance while still maintaining an
acceptable run time and variance between proposed samples.
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6.4.1 Grasp extraction

The chosen optimizer models the objective function it is required to optimize
on a domain as simple as an hypercube from which it draws smart guesses
on the next try to find the minimum. Our domain of pregrasps P is defi-
nitely non-standard, thus we need to produce a biunivocal mapping from
an hypercube [0, 1]n of dimension n to P. We want to achieve the following
properties on this mapping:

1. Preserve uniformity: under the assumption of uniform distribution
of input parameters, we require that the image through the designed
mapping follows a uniform distribution in the target space. Note that
the uniformity of our target space of pregrasps P must be defined ac-
cording with the task of exhaustively searching grasp hypotheses. This
property is fundamental to avoid the introduction of search biases into
the model, which could result to detrimental effects as with the bias
present in the first round of data collection as discussed in Section 6.2.

2. Be deterministic: as we want to obtain exactly reproducible results,
repeatability of optimization runs is an extremely positive property,
therefore we wish to introduce no random component within the pro-
cess of computing the mapping

We determine the dimensionality of the space P by decomposing pre-
grasps in a grasp orientation γ, a target location λ on the object surface,
and the DoF δ of the hand:

• The grasp orientation γ is itself a rotation in R3, which can be uniquely
described by three Euler angles, which are a minimal encoding, thus it
has dimension three.

• The target location λ is itself a point on a bidimensional surface in
space, thus it has two dimensions.

• The DoF vector δ highly depends on the hand used and the eigengrasps
that we plan to use to reduce its dimensionality. While it could easily
surpass the dimensionality of 20 (for the case of the human hand),
in our case we could reduce it to dimensionality one, as discussed in
Section 5.3.1.

.
The minimal overall target dimensionality is six, thus we look for a map-

ping [0, 1]6 7→ P ⊂ H×S(O)× [0, 1] where H is the set of all unit quaternions,
that encode rotations in R3, and S(O) is the set of points on the surface of
a fixed object O. Moreover, we define the uniformity of the target pregrasp
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space P as being uniform into the respective subspace of H, S(O) and [0, 1]

that are included in P.
Given an input sample x ∈ [0, 1]6, we compute the corresponding unique

pregrasp in the following steps:

1. As the whole domain [0, 1] of the pregrasp DoF is fully available in-
dependently on the other dimensions, it can be determined first. It is
trivially obtained by identity with the first component of x.

2. We want to consider only grasp approach directions coming from out-
side of the object, therefore the legal pregrasp quaternion subspace of
H depends on the particular grasp target location chosen, which must
be selected first. We describe in Section 6.4.1.1 the selection of the grasp
target location from the second and third components of the input sam-
ple x uniformly with respect to the surface of the object mesh.

3. Finally we compute the quaternion encoding the pregrasp orientation
such that the approach direction is towards the object and within a
cone around the normal to the grasp target location. The exact pro-
cedure for this computation of a parameterized uniformly distributed
quaternion within a constrained subspace of H is explained in Sec-
tion 6.4.1.2.

6.4.1.1 Uniform location in mesh

We decompose again the problem of determining a location on the mesh
uniformly with respect to the surface of the mesh from a generator (s0, s1) ∈
[0, 1]2 into two subproblems: selecting a target triangle on the mesh and
selecting a specific point on the triangle.

triangle selection Given a set of mesh triangles T = {t1, t2, . . . tn}

with areas a(t1), a(t2), . . . a(tn) we want to select a triangle t̄ from input s0
such that:

s0 ∼ U(0, 1) =⇒ P(t̄ = ti) =
a(ti)

A
, (6.12)

where we take A =
∑n
j=1 a(tj) to be the total surface area of the mesh.

As the target distribution of t̄ follows a categorical over the n triangles, we
partition the [0, 1] domain interval of s0 in n subsequent intervals I1 . . . In
such that the length of interval Ii is exactly a(ti)

A . In particular, if we name
Ai =

∑i
j=1 a(tj) with A0 = 0, we define the succession of intervals as Ii =

[Ai−1A , AiA ), and select the triangle:

t̄ = ti ∈ T : s0 ∈ Ii (6.13)
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Thus satisfying the condition in Equation 6.12 while defining a determin-
istic mapping [0, 1] 7→ T. This search is implemented as a binary interval
search over the array of precomputed values A0, A1, . . . An.

point selection on triangle After the selection of a target triangle
t̄ = tī at index ī, the first problem is understanding the hypothesis to be
made on the distribution of the input samples s0 and s1. While s1 is trivially
a uniform distribution in the unit interval, s0 is now conditioned by the
selection of the triangle tī, thus the hypothesis on its distribution is changed.

Let us observe that, if u ∼ U(a1, b1), and a1 6 a2 6 a3 6 b3 6 b2 6 b1
then:

P(u ∈ (a3, b3)|u ∈ (a2, b2)) =
P(u ∈ (a3, b3)∩ (a2, b2))

P(u ∈ (a2, b2))

=
P(u ∈ (a3, b3))

P(u ∈ (a2, b2)
=

b3−a3
b1−a1
b2−a2
b1−a1

=
b3 − a3
b2 − a2

(6.14)

therefore the distribution of a uniform conditioned to the belonging to a
subinterval is a uniform over that same subinterval. The same applies to our
input sample s0 which is conditioned to belonging to [

Aī−1
A ,

Aī
A ), therefore

we update it to s′0 to restore the distribution to uniform to the unit interval:

s′0 =
s0 −

Aī−1
A

Aī
A −

Aī−1
A

=
As0 −Aī−1
Aī −Aī−1

(6.15)

We now extract a point P on the triangle t̄with vertices v1, v2, v3 uniformly
with respect to its surface by the two input samples s′0, s1 which are assumed
to be independent and uniform in the unit interval.

Referring to Figure 6.18, we first determine by the coefficient r1 ∈ [0, 1]

the segment v′2v
′
3 parallel to v2v3, and then the exact point P within segment

v′2v
′
3 by the coefficient r2 ∈ [0, 1]. This is translated in the formula:

P = r2v
′
2 + (1− r2)v

′
3

= r2((1− r1)v1 + r1v2) + (1− r2)((1− r1)v1 + r1v3)

= (1− r1)v1 + r1r2v2 + r1(1− r2)v3 (6.16)

While r1 must select the segment with a probability density proportional
to its length, the final selection of P by r2 is trivially uniform, thus we can
directly derive r2 = s1. We set r1 = f(s′0) for some function f : [0, 1] 7→ [0, 1]

with the following condition on the density function of r1:

pr1(x) =
|v′2v

′
3|

a(t̄)
∝ |v′2v

′
3| ∝ x (6.17)
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Figure 6.18: Triangle uniform point selection.

Thus, as we have ps′0(x) ∝ 1 being s′0 uniform, we have the following
condition on f:

∂f−1(x)

∂x
∝ x

f−1(x) ∝ x2

f(x) ∝
√
x (6.18)

The constant for f(x) is determined to fit the image space to [0, 1], thus we
set r1 =

√
s′0 and we obtain the final formula for the extracted point P:

P =
(
1−

√
s′0

)
v1 +

√
s′0s1v2 +

√
s′0 (1− s1) v3 (6.19)

6.4.1.2 Uniform constrained quaternion

The selection of a uniform constrained quaternion intrinsically depends on
the selection of the target triangle t̄ and in particular on the direction of its
normal n̄ that is the axis of the cone of legal approach directions, according
to Equation 5.2.

We first encode this dependency into a rotation Rn̄ that maps the z versor
vz = [0, 0, 1], corresponding to the grasp approach direction, into n̄, so that
we only need to extract a rotation Rτg that respects the property of Equa-
tion 5.2 only around the z axis, and the desired rotation is the composition
of the two. Rotation Rn̄ is trivially obtained as a reference change matrix
where the image of vz is n̄ and the images of vx and vy are any two versors
that are normal to each other and to n̄.
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This step normalizes the legal regions L(t̄) of accepted quaternions accord-
ing to Equation 5.2 into a standard legal region L′ which does not depend
on t̄ and follows the condition:

L′ = {h ∈ H : Rh(vz) · vz > τg}, (6.20)

where Rh is the rotation encoded by quaternion h.
Our method to determine Rτg is based on the method from Shoemake et

al. [4] in analogy to our unbiased grasp parameterization method described
in Section 5.3.1. The extra requirement in this case is that we already have
the uniform samples, which cannot be sampled again, thus the re-sampling
method used before is not viable anymore.

According to [4], given three values r1, r2, r3 ∼ U([0, 1]) we can sample a
random quaternion h = S(r1, r2, r3) uniformly within the space of rotations
with the simple expression, which we call S:

h =
(√

1− r1sin2πr2,
√
r1cos2πr3,

√
r1sin2πr3,

√
1− r1cos2πr2

)
, (6.21)

where we swapped the x and z components from the original formula. This
modification does not change the properties of the distribution as it only
mirrors the rotation axis of each quaternion with respect to the plane x = z.

Our objective is to obtain a procedure S′ that behaves like the resampling
method from Section 5.3.1 without the need of resampling, thus respecting
the following condition:

r1, r2, r3, r
′
1, r
′
2, r
′
3 ∼ U([0, 1]) iid

h′ = S′(r′1, r
′
2, r
′
3) h = S(r1, r2, r3)

∀H′ ⊆ H P(h′ ∈ H′) = P(h ∈ H′|h ∈ L′) (6.22)

We recall that a quaternion h = (hw, hx, hy, hz) encodes the rotation ma-
trix:

Rh =




1− h2y − h
2
z 2hxhy − 2hzhw 2hxhz + 2hyhw

2hxhy + 2hzhw 1− 2h2x − 2h
2
z 2hyhz − 2hxhw

2hxhz − 2hyhw 2hyhz + 2hxhw 1− 2h2x − 2h
2
y


 , (6.23)

thus we can compute the image of the z versor vz according to 6.21 and 6.23:

Rh(vz) =



2hxhz + 2hyhw

2hyhz − 2hxhw

1− 2h2x − 2h
2
y


 =



2
√
r1(1− r1)cos2π(r3 − r2)

2
√
r1(1− r1)sen2π(r3 − r2)

1− 2r1


 , (6.24)
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We can therefore constrain the distribution of sampled quaternions by con-
straining the z component of the images of vz, in particular we can enforce
the condition in Equation 5.2 by constraining τg 6 1 − 2r1 6 1, which is
equivalent to:

0 6 r1 6
1− τg
2

(6.25)

Therefore, we can set our procedure S′ as a function of our input uniform
parameters r1, r2, r3:

S′(r1, r2, r3) = S

(
r1
1− τg
2

, r2, r3

)
(6.26)

In the following, we prove that such expression respects Condition 6.22. We
first notice that r1

1−τg
2 ∼ U([0,

1−τg
2 ]) and therefore by Equation 6.14, refer-

ing to Condition 6.22 we can rewrite:

P(h′ ∈ H′) = P
(
h ∈ H′|0 6 r1 6

1− τg
2

)
(6.27)

Therefore to prove Condition 6.22 we need to prove the equivalence be-
tween events 0 6 r1 6 1−τg

2 and h ∈ L′, which is trivially given by the
following sequence of equivalent statements:

0 6 r1 6
1− τg
2

τg 6 Rh(vz)z 6 1

τg 6 Rh(vz) ·
[
0 0 1

]T
6 1

Rh(vz) · vz > τg
h ∈ L′

Finally, we can determine the final uniform rotation R from three uniform
parameters s0, s1, s2:

R(s0, s1, s2) = Rn̄ ◦ S
(
s0
1− τg
2

, s1, s2

)
(6.28)

6.4.2 Optimization results

The complete model MΦ as described above has been tested on the ob-
jects on the test set and on some objects of the unused set, which we con-
sider valid test objects which are especially difficult. Figures 6.19 and 6.20

show sample grasp results obtained with the random forest optimizer with
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ntries = 1000 finally reaching on all objects an acceptance rate from the
classifier of 0.7 to 0.8 depending on the object.

The resulting grasps resemble the grasps obtained directly from extensive
search over all the dataset, shown in Figures 6.7 and 6.8, generally imple-
menting the strategy of wrapping the center of mass. There are failure cases
in which the vision from one very partial perspective, with no global in-
formation on the object grasps an object far from the center of mass, like in
Figures 6.19e and 6.19f where the head of the chess pawn hid completely the
geometry of the whole object. In general we observe that simpler objects usu-
ally converge fast to similar optimal grasps, while more complex objects like
the axe and the chess pawn still display a considerable variability of results
even with the current level of ntries. Moreover, as shown in Figure 6.20, the
learned models are able to recognize and perform the same strategy of joint
pinching that we recognized analysing directly the data as in Figure 6.9.
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(a) (b)

(c) (d)

(e) (f)

(g)
(h)

(i)
(j)

Figure 6.19: Results on grasp search from vision on some test objects.
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(a)

(b)

Figure 6.20: Results on grasp search from vision on a cutting tool in the test set.
Detail on the joint pinching strategy.



7
C O N C L U S I O N S

In this thesis we formulate and propose a novel framework for task-oriented
grasping based on task dependent metrics to evaluate grasps and use hy-
potheses in a task-oriented setting. The main advantages of our framework
over the current state of the art in task oriented robotic grasping research
are:

• it decouples the grasp measurement from the task affordance defini-
tion, allowing the use of fixed grasp metrics to evaluate an open set of
task affordances

• it allows for the automatic evaluation of grasps in a simulation envi-
ronment

• being run automatically in a simulation environment it allows the col-
lection of labelled grasp data with no human interaction

• by eliminating the need for human intervention in the grasp labeling
process it clears the main bottleneck that prevents grasp datasets to
scale, allowing for a scalable automatic data collection

• evaluating the grasps objectively it clears the biases that humans have
in labeling grasps due to the significant differences between human
and robotic hands.

We provide a GraspIt! [18] plugin that implements the data collection of
our framework and we showed that we can easily generate millions of la-
belled grasps on different objects, collecting the two datasets described in
Section 6.2 in Table 6.1. Hand-designed affordance functions sufficed for the
emergence of smart and unintuitive techniques for grasping for the exempli-
fied tasks of picking, cutting and beating as in Figures 6.9 and 6.10.

From this we extended our framework to be applied with partial infor-
mation and we experimented with convolutional and PointNet [56] architec-
tures, proposing and testing several variations of the two architectures and
a new architecture that we name Local PointNet to learn to infer basic grasp
stability and holding hand effort from vision and benchmarked their results,
which we consider very promising. Finally, we assembled our learned mod-
els into an optimizer that applies our framework to search for the best grasp
for picking from vision, with only very partial knowledge of the object to
be grasped. The produced grasps on novel objects suggest a great general-
ization capability of this framework, which is based on the estimation of
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physical interactions rather than fixed labels. The models for the task of
picking do not only generally produce grasps with force closure, but they
also try to locate and wrap the center of mass of objects to the best of their,
even partial, knowledge, being able to reproduce also elaborate techniques
on novel objects when possible, like joint pinching as in Figure 6.20.

7.1 limitations and future works

There are many directions in which this work can be improved and extended
to account for its limitations. The most obvious directions are by validat-
ing on more tasks or by accounting for more metrics in simulation such as
different materials in compound objects, with different friction coefficients
and softness values. While this may be not relevant for some tasks on some
objects, such additional information would also provide more realistic loca-
tions for the center of mass, which is crucial to determine the optimal grasp
in many other situations such as for the beating with hammers.

Moreover, from the learning side, the current work is limited to learning
metrics which are not related with the use location, thus an additional vali-
dation step to extend the partial information models to the tasks of cutting
and beating is foreseen for the near future.

As a natural follow up of our validation currently limited to benchmarks
and simulation, we foresee a validation step on a real robotic arm to prove
the generalization capability from simulation to reality. Indeed, we plan to
integrate the learned models with a real Barrett hand and test on similar
manipulators (with three or even two fingers) to assess the robustness of
performance with inaccurate manipulator models.

The current hypothesis of camera-in-hand substantially limits the explo-
ration capability of the algorithm that needs to physically move the arm
to evaluate different grasp approach directions. The usage of general point
cloud based models allows to easily overcome this limitation as they are a
general representation basis for the knowledge on the object geometry. This
would not only allow to integrate knowledge from multiple range images
(not necessarily from the hand) but also to rotate the object representation
to face any hypothesized approach direction to search for more appropriate
directions with the current integrated knowledge, without the need of ac-
tually moving the cameras if not to gather richer knowledge on the object
geometry.

An important limitation of the current work is the definition of the affor-
dance functions F̃T which, at this stage, define the tasks themselves for the
system and must be hardcoded by a human. A direction of improvement is
towards a different description of tasks from which functions F̃T can be ex-
tracted or learned. Reference [50] extracts a representation of a task in terms
of relevant physical quantities from the demonstration of a human choosing
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a tool and executing the task, such representation can be used to drive the
automatic synthesis of the affordance function from a human demonstration.
An alternative approach can be the definition of the execution of the task and
a performance index of its end effectiveness: this would allow the optimiza-
tion of the affordance function by reinforcement learning by simulation of
the execution of the task itself, again with no further human intervention.
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Abstract—While many quality metrics exist to evaluate the
quality of a grasp by itself, no clear quantification of the quality of
a grasp relatively to the task the grasp is used for has been defined
yet. In this paper we propose a framework to extend the concept
of grasp quality metric to task-oriented grasping by defining
affordance functions via basic grasp metrics for an open set of
task affordances. We evaluate both the effectivity of the proposed
task oriented metrics and their practical applicability by learning
to infer them from vision. Indeed, we assess the validity of our
novel framework both in the context of perfect information, i.e.,
known object model, and in the partial information context,
i.e., inferring task oriented metrics from vision, underlining
advantages and limitations of both situations. In the former,
physical metrics of grasp hypotheses on an object are defined
and computed in known object model simulation, in the latter
deep models are trained to infer such properties from partial
information in the form of synthesized range images.

Index Terms—task-oriented grasping, robotic grasping, affor-
dance, vision

I. INTRODUCTION

The research community has spent much effort in tack-
ling the problem of grasping novel objects in different set-
tings [1] [2] [3] [4] [5] with the objective of holding objects
robustly with robotic manipulators; however, real manipulation
tasks go far beyond holding the objects and the quality of
a grasp depends on the task it is meant to support. While
many quality metrics exist to evaluate the quality of a grasp
by itself [6] [7], no clear quantification of the quality of a grasp
relatively to a task has been defined. In this paper we propose
a framework to extend the concept of quality metric to task-
oriented grasping by defining general physical measures for
an open set of task affordances. We evaluate both the results
provided by such metrics and their applicability in practice by
learning to infer them from vision.

More formally, given a grasp G on an object O and a
point U on the surface of O (which is the point where we
plan to use the object, when the task requires one), we define
the affordance function FT : (O,G,U) 7→ R to define the
affordance of any possible grasp G and use hypothesis U with
respect to task T . The final objective is to optimize for the
best grasp, object and use location (O,G,U) that maximizes
a given affordance function, as shown in Figure 1. We are
interested in finding a set of metrics, as functions of the
triplet (O,G,U), to encode significant static and geometric
properties of the (O,G,U) system itself. Examples of such

Fig. 1. Best grasp, according to the proposed metrics, relatively to the
affordance function F̃cut defined in Section IV-B for the cutting task using
a common kitchen knife

metrics are the local geometry of O around U , or the minimum
sum of contact forces needed to hold the object O with grasp
G under a given gravity vector. A complete description of the
metrics used in this work, not to be considered as an exhaustive
list, is reported in Section IV-A.

The proposed approach allows the inference of the affor-
dance of objects without having it bound to their seman-
tic category: semantic information on objects defines their
standard use meant for humans, which is not necessarily
the only nor even optimal use for robots. Semantics greatly
simplifies the task of affordance perception, but it gives no
guarantee of optimality, particularly with robot actuators which
differ substantially from human hands and arms. Take, for
instance, the classical human grasp of a hammer with the
wrist direction parallel to the beating direction: actuating such
grasp with a Barrett hand [8] which has only a rotational
degree of freedom on the wrist would have the same efficacy
in beating as a human with a locked wrist, even without taking
into consideration the decreased number of fingers and much
reduced tangential and torsional friction in contacts.

To validate our framework, we have collected a dataset
of grasps and computed elementary graps metrics by using
the GraspIt! simulator [9] on the Princeton Shape Benchmark
object models [10]. Then we have trained deep models to
infer those elementary metrics from range images taken in a
simulated camera-in-hand setting to assess the applicability of
our framework to more realistic partial-information settings.

In our contribution, we define a framework for quality
assessment of task-oriented grasps, we qualitatively validate
such framework, we provide a GraspIt! plugin to produce



labelled data with minimal to no human intervention, thus
in an extremely scalable way, and we generated a dataset
of 400M evaluated grasps on 22 objects of the Princeton
Shape Benchmark which we plan to make public in the near
future. Moreover, we propose and benchmark models to tackle
the problem of learning to infer such metrics from vision.
Preliminary results shows direct optimization of affordance
functions in simulation produces new and creative grasps
which fit the specific actuator in use for the selected task, while
direct inference of such metrics from vision is yet an open
challenge and there are great margins for further improvement.

II. RELATED WORKS

Many researchers have worked towards the understanding
and formalization of the concept of affordances [11] [12] [13];
they have been inspiring for roboticists to work within the
affordances framework to define the autonomous interaction
of a robot with an unknown environment. In our work we
investigate the broad category of robot affordances focusing
on the specific application of task-oriented grasping. Within
this context, one of the first approaches towards task-oriented
grasping, reported in [14], proposed to encode the task in phys-
ical terms (e.g., applying a momentum on a handle to open
a door) and then to solve the problem of grasp planning by
hardcoding hand postures and their association with tasks; the
method has shown good performance in the expected domain,
but poor generalization capabilities. Later works formalized
the problem via graphical models, distinguishing task, object
features, action features and constraint features. In particular,
authors of [15] proposed the use of such formalization and
they have been able to effectively learn to infer the likelihood
of grasp approach directions with respect to a human-labelled
ground truth. The main limitation of this work, in our opinion,
is the human intervention, which makes the real definition of
the tasks implicit and prevents the scalability of the dataset that
can be generated for learning without tedious human teaching.
The direct intervention of human judgment on semantics
to evaluate the quality of grasp hypotheses with respect to
a given task is nevertheless a common approach to many
research works, like [16] and [17] in which authors prove
the effectiveness of a human-labelled semantic approach with
real robot manipulations. More recently, [18] has proposed to
label mesh vertices in simulated objects as being graspable
or not according to some task, so that many scene examples
can be produced and automatically labeled via simulation.
This allowed the system to automatically segment graspable
and not graspable regions of objects in cluttered scenes, but
still the expressivity of this method is restricted to specifying
graspable or not graspable surfaces. Reference [19] proposed
a bottom-up approach for affordance perception by object
parts which detects the local geometry of patches of the
object and provides pixel-level affordance segmentation for
pre-defined affordance classes. Their method is again based on
a dataset [20] of 10000 pixel-labelled RGB-D images which
have been hand labelled.

A common limitation of these approaches is the vague
definition of task affordances which passes through the human
labeling of the ground truth. This entails a great limitation in
the size of the data that can be produced for learning and poses
questions about the optimality and validity of the labels with
respect to the actual task performance with a different actuator
than the human hand.

III. PROPOSED APPROACH

Let O be the set of possible object surfaces with friction and
softness properties defined at each point, let G(O) defined on
an object O ∈ O be the set of possible grasps determined by
the hand embodiment, degrees of freedom, contact locations
on the object and contact nature (e.g., frictionless, hard contact
or soft contact), and U(O) be the set of points on the surface
of the same object that can be considered as points of use.

Let O ∈ O, G ∈ G(O), U ∈ U(O) , then we define
the affordance function of task T as FT (O,G,U) 7→ R
such that FT (O1, G1, U1) > FT (O2, G2, U2) if and only if
the grasp and use hypothesis (O1, G1, U1) is more suitable
than the hypothesis (O2, G2, U2) for task T , thus defining an
affordance ordering of an object grasp for task T .

As we want a compact representation of the affordance
function, we approximate FT as a F̃T : Rn 7→ R by
mapping the triplet (O,G,U) into a metric vector φ ∈ Rn
through a function Φ(O,G,U) 7→ Rn. This metric vector is
a collection of metrics encoding the geometrical and static
physical properties of the triplet (O,G,U) which are relevant
to approximate FT . In Section IV we provide some examples
of basic metrics φ and examples on how they could be used
to hardcode F̃T for some reference tasks.

A. Achieving Object Semantics Independence

The complete object geometry is generally not available in
real world applications, in particular when our long term goal
is to infer object affordance from vision with no hardwired
semantics. To achieve such goal, we need to frame the problem
in the context of uncertain and incomplete information about
the object by decoupling the grasp and use location description
from the exact object geometry and possibly its semantics.

Recall here that the complete description of a grasp requires
the geometry and nature of contact points on the grasped
object, and the grasp itself needs to be actuated by a grasping
policy. If we assume the grasping policy to be deterministic,
then we can define it as a function GP (p0, O) 7→ G(O) that
maps an initial state p0 ∈ P0 and an object O into the final
grasp G ∈ G(O). To decouple from the specific grasp, and its
parameters, we fix a grasping policy that allows a sufficient
exploration of the grasps space G via the space P0 of possible
initial states, which we call pregrasps.

In particular, we select a simple, but effective, grasping
policy defined as follows: from an initial position of the hand
with open fingers, we advance towards a fixed direction until
the first contact is made, then the fingers are closed until all of
them either make contact or are completely closed. Jointly with
the use of eigengrasps [21] to describe the degrees of freedom
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Fig. 2. The three phases of our grasp policy: (a) the pregrasp parameters determine the initial position and posture of the hand (b) the hand approaches in a
straight line until a contact is made (c) fingers close until they make contact or they are completely closed

of the hand, this policy allows for a further reduction in the
dimensionality of the problem for the translational degree of
freedom saved in describing the position of the hand in the
space, as approaching the object in a straight line makes the
approach direction invariant with respect to the policy. If the
eigengrasp parameters are divided into h parameters used to
close the grasp and k parameters used to set the initial hand
posture, then we can consider p0 ∈ R5+k, where the 5 extra
parameters describe the initial position and rotation of the
hand. The h eigengrasp parameters used to close the hand
are fixed to an open position on the pregrasp, thus they do not
contribute to the dimensionality of the pregrasp itself.

On the other hand, use locations are points on the bidimen-
sional surface of each specific object; we decouple them from
the specific object by defining use directions and a direction
mapping function DM(d,O) 7→ U(O) in complete analogy to
the grasp decoupling solution. Our direction mapping assumes
d ∈ R2 to be the spherical coordinates of a directed ray
centered in the center of mass of object O and output in the
farthest point U ∈ U(O) which is the intersection of such ray
with the outer object surface.

B. Metrics Inference from Vision
As our goal is to make robots able to use unknown objects

in a task consistent way, we need the robot to be able to
perceive their affordances via sensors. In particular, we focus
on vision being it an extremely common and effective tool to
take information from the environment in real applications. We
define our inference setting by focusing on the specific case
of single range images taken from camera-in-hand perspective:
such case provides only local geometry information about the
object around the expected location of the planned grasp. We
want to learn a model that predicts the elementary metrics
φ ∈ Rn of a triplet (O,G,U) with only partial information
about the observed object O. Indeed, predicting the vector φ
would allow to estimate the affordance function FT for any
task T for which we can define an F̃T .

Let D : P0 × O 7→ Rh×w be the function that maps a
pregrasp p0 on an object O to the depthmap of size h × w
from the camera-in-hand perspective of p0. Then we want
to learn a model MΦ that approximates the mapping from

(p0, D(p0, O), d) to Φ(O,GP (p0, O), DM(d,O)) where O is
an object, p0 is a pregrasp, d is a use direction, and Φ is the
metric extraction function, under the grasping policy GP and
the direction mapping function DM .

We assume to be able to learn model MΦ from a
dataset of tuples (O, p0, d,Φ(O,GP (p0, O), DM(d,O)) ob-
tained via uniform sampling of p0 and d values on a set of
available objects models and computing the true values of
Φ(O,GP (p0, O), DM(d,O)) via simulation. Details on our
data collection setup are explained in Section V-A.

To structure the learning task, we define the model
MΦ as the composition of two models: an input value
(p0, D(p0, O), d) is first classified by a binary classifier MΦ

C

to infer whether it represents a “good” grasp worth further
evaluation or not. We define “good” grasps those respecting a
minimum quality independently from the task, thus employing
state of the art grasp quality metrics to generate the ground
truth. The samples classified as positive then pass through
a regression model MΦ

R that infers the metrics φ with the
implicit assumption that the grasp is indeed a quality grasp.

For both modelsMΦ
C andMΦ

R we propose and evaluate the
two architectures of the convolutional neural network (CNN)
and the PointNet architecture [22]. Both architectures encode
the available geometry information (in the form of range image
for the CNN or as the equivalent projected point cloud for the
PointNet) in a feature vector, we then apply late-fusion of the
other input parameters p0 and d on this feature vector and
output the classification label or the inferred regression value
with a classical fully connected network.

IV. TASK ORIENTED GRASP METRICS

In this work we concentrate on the sample tasks of beating,
cutting and picking, which are defined by their F̃beat, F̃cut and
F̃pick in Section IV-B. Such tasks have been selected with the
idea of the kitchen assistant robot in mind, considering some
very different tasks that may happen to be requested in this
sample application. We first define a set of grasp metrics, then
define from these the corresponding affordances.



A. Basic Grasp Metrics

We consider the following set of elementary metrics of
(O,G,U) which should not be considered as exhaustive:

a) Grasp robustness (ε ∈ R): is a real number describing
the robustness of the grasp. We use the Epsilon metric de-
scribed in [7] as a builtin in the GraspIt! simulator [9]. Force
closure grasps have ε > 0 and higher robustness implies a
greater minimum perturbance is needed to break the grasp.

b) Rotational inertia (I ∈ R): quantifies the rotational
inertia around the axis of rotation of the wrist of the hand
assuming a unitary density of the object and assuming the
hand to be integral with the whole object. It does not take
into account the mass of the hand itself.

c) Hand effort on impact (Ei ∈ R): describes the effort
of the hand to balance the impact forces after a rotation
around the wrist. It assumes a fixed average inertial torque
in a small ∆t during the impact which is directly proportional
to I and a free contact force on the use location towards the
normal direction. This metric takes the value of the minimum
sum of the contact forces of the hand constrained to the
contact friction cones to balance the inertial torque, ∞ if the
minimization problem is unfeasible.

d) Hand effort on hold (Eh ∈ R6): is a vector of six
independent values which quantify the hand effort to balance a
different gravity vector. The hand effort is the minimum sum of
all contact forces constrained to the contact friction cones that
balance a given unitary force of gravity, ∞ if such problem
is unfeasible. The six gravity vectors chosen are aligned with
the three coordinate axes (once in the same direction, once
opposite) of the object mesh as all meshes that we used in the
Princeton Shape Benchmark have been designed by humans
that gave a semantic meaning to the coordinate axes directions.

e) Momentum discharge efficiency (δ ∈ R): quantifies
the efficiency of discharging the rotational inertia of the wrist
on the object use location. It quantifies the alignment between
the inertial torque and the torque generated by a force aligned
with the use location normal vector towards the inside of the
object surface. It is computed as the dot product of the two
normalized vectors, clipped to zero in case of negative values.

f) Force transmitted to use (Uτ ∈ R): quantifies the force
that can be transmitted to the use location using constrained
contact forces. It assumes all contact forces are constrained by
their friction cones and have unitary maximum normal forces.
It takes the value of the maximum force on the use location
towards the use location normal guaranteeing static conditions.

g) Use local geometry (Ug ∈ R): describes how much
the use location has the shape of an edge. It is obtained by
fitting a quadratic function on the vertices of the triangles
near the use location (including all the triangles that share at
least one vertex with the triangle where the use location lies)
and extracting the eigenvalues of the hessian matrix of such
quadratic function. The two eigenvalues λ1 and λ2 are the two
principal component curvatures, so we quantify an edge with
the expression (λ1 − λ2)2 to identify locations with a great
difference in local curvatures.

B. Affordance Functions from Basic Metrics

On top of these metrics we define the affordance functions
for T ∈ {beat, cut, pick}. In this preliminary study affordance
functions have been designed by hand, to validate the feasi-
bility of the framework, in future works we aim to learn them
by optimizing task execution efficacy.

a) Beating: The classical beating action of a hammer
with a human hand requires dexterous movements of the
wrist which would need moving the whole robotic arm to be
reproduced on a Barrett hand. For this reason we assume that
the beating action will be executed by the robotic actuator
by simply rotating the hand clockwise around the wrist. We
require that the hold is stable over a minimum threshold and
that the rotational energy gets discharged almost entirely on
the point of use. We want to maximize the ratio of the energy
that we can incorporate into the rotation (assuming a maximum
rotational speed) over the actual hand effort of keeping the
object stable on the impact.
Input: ε, δ, I, Ei, Eh
Output: F̃beat

1: if ε < τε OR δ < τδ OR
∑6
i=1Eh[i] ==∞ then

2: return −∞
3: else
4: return I

Ei

5: end if

b) Cutting: The action of cutting is extremely complex
by itself and varies greatly with different materials and their
surface and micro-structural properties. A complete physical
study of this particular task is not our objective; we simplify it
considering as approximation that greater force provides cuts if
executed on a thin enough edge.
Input: ε, Uτ , Ug
Output: F̃cut

1: if ε < τε OR Ug < τUg then
2: return −∞
3: else
4: return Uτ
5: end if

c) Picking: Picking an object (as the first part of the
pick-and-place task) only strictly requires a stable grasp for a
successful pick. However, different stable grasps may imply
very different effort from the hand actuator to balance the
force of gravity on the object. For this reason we require
a stable grasp and minimize the sum of the contact forces
required to balance the force of gravity in the six directions
evaluated by the Eh metric. Notice that an unstable grasp
will need to have at least one evaluated direction of gravity
that the grasp cannot hold, thus we do not check the ε
metric.
Input: Eh
Output: F̃pick

1: return −∑6
i=1Eh[i]
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Fig. 3. Pregrasp degree of freedom (a) set to 0, (b) set to 0.25, (c) set to 1

V. FRAMEWORK VALIDATION

To assess the feasibility of the proposed approach we
performed a set of experiments focused on the tasks of beating,
cutting and picking; this choice has driven the selection of
basics metrics to encode in function Φ and the definition of
functions F̃beat, F̃cut and F̃pick in the previous section. In the
validation we aim at:

1) Validating the framework by showing that
argmaxG,U F̃T (Φ(O,G,U)) for some selected tasks T
provides grasps and use locations that are semantically
meaningful with respect to the semantics of task
T ∈ {beat, pick, cut}

2) Assessing the feasibility of learning a model MΦ that
can infer basic grasp metrics from partial information
about a target object.

We provide an implementation of the metric extraction
function Φ for the selected metrics (which we describe in
Section IV-A) as a plugin for the GraspIt! [9] simulator,
some of which are formulated as linear programming problems
which we solve through the CGAL library [23]. Input object
models are selected from the Princeton Shape Benchmark [10]
dataset and assumed to be constituted of homogeneous plastic,
and grasps are produced using the model of a Barrett hand [8].
All simulated grasps are evaluated and results are logged
into a dataset, preserving both stable and unstable grasps. We
structure the modelMΦ as a classifier that filters stable grasps
only and a regressor that estimates the metric vector φ of stable
grasps from the available partial information.

A. Data collection

We collected a dataset of grasp and use hypotheses to
compute metrics for learning purposes. We sample pregrasps
and use directions with uniform distribution in their domain
and then simulate the grasp and determine the exact use
location on the mesh of an object from the Princeton Shape
Benchmark [10]. The grasp is simulated with GraspIt! [9] on
a Barrett hand [8] with the policy in Figure 2: from an initial
hand position and orientation, the manipulator advances in a
straight line until a first contact is made with the object, then
the three fingers of the Barrett hand are closed independently
until a contact is made or the finger is completely closed.

B. Optimization of Task Grasp Metrics via Simulation

We consider only one pregrasp degree of freedom for the
Barrett hand to encode the angle between the two joint fingers
as shown in Figure 3, thus the domain in which we uniformly

TABLE I
AFFORDANCE FUNCTION THRESHOLDS

Mode name τε τUg τδ
Default 0.3 10 0.95

No robustness required −∞ 10 0.95
Extra robustness required 0.5 10 0.95

(a) (b)

(c) (d)

Fig. 4. Optimized grasps from the picking showing the joint pinch strategy.
The edge of the blade is pinched between two joints to improve the stability
of the grasp; (c) and (d) show the detail of the joint pinch on the blade.

randomize the pregrasps is [−1, 1]5 × [0, 1]: two values in
[−1, 1] encode the hand approach direction in normalized
spherical coordinates, one value in [−1, 1] encodes the hand
rotation around its approach axis, two values in [−1, 1] are
the approach offset on the xy-plane relatively to the bounding
box of the considered object and one value in [0, 1] is the
pregrasp degree of freedom of the Barrett hand; use directions
are encoded in normalized spherical coordinates in [−1, 1]2.
Data collection can be run in parallel on multiple cores
and machines, producing millions of data samples each day.
Running on 20 cores of an Intel Xeon E5-2630 v4 for a week
we could produce a dataset of over 400 million samples of
random grasps with metrics, out of which 20 million samples
are viable grasps which respect the condition in Section V-C.

To assess the validity of our framework we extract
argmaxG,U F̃T (Φ(O,G,U)) for our three selected tasks by
brute force search on our dataset samples. The parametric
thresholds used are the default values reported in Table I.
Sample results of this procedure are shown in Figures 4, 5, 6,
and 7. Some of the produced grasps do not appear intuitive,
such as the grasps produced for moving blades in Figure 4,
because they exploit features of their physical actuator which
are very different from a human hand. In this particular case
we observe that the hand achieves a stable grasp by pinching
the edge of the blade between the joint of some finger. This
pinch provides multiple contacts with very different normals
that provide much greater stability of the grasp on a low
friction material. The emergence of such solution is very
unlikely to happen from human evaluation of grasps, as the
human intuition is heavily biased by the human hand with
much more fingers, much higher tangential and torsional



(a) (b)

(c) (d)

Fig. 5. Optimized grasps from the cutting task showing two different cutting
strategies: thin blade tools like (a) and (b) exercise pressure by rotation, wide
blade tools like (c) and (d) instead prefer a direct pressure strategy.

(a) (b)

(c) (d)

Fig. 6. Optimized grasps from the picking task on sample objects.

friction and more susceptible to damage than the metal Barrett
hand assumed in our experiments.

Adaptive behaviours are evident in Figure 5: with thin
blades the hand exercises pressure on the edge by rotation,
using the handle as a fulcrum, while with larger blades where
such technique is not feasible a direct pressure is preferred.
Picking grasps (Figure 6 and 4) generally wrap around the
center of mass as a direct result of the minimization of the
total contact forces for holding against gravity. Beating grasps
(Figure 7) display greater variance and generally achieve a
stable grasp on the object far from the center of mass to
increase the rotational inertia of the object and choose a
use location very well aligned with the rotation direction to
effectively discharge the rotational energy on the target (the
values of δ for the optimal grasps are far nearer to 1 than
the required values for the selected threshold τδ). The use
location is selected slightly off the center of mass from the
opposite side of the hand to balance the beating impulse and
produce a torque that contrasts the rotational inertia of the
beating movement.

As a further validation test we changed the ε threshold
requirement for the tasks of beating and cutting according
to Table I. The results of such experiment conducted on the
model of a typical kitchen knife are shown in Figure 8. The
produced grasps for beating with a knife display a similar

(a) (b)

(c) (d)

Fig. 7. Optimized grasps from the beating task on sample objects. Notice
that the center of mass of hammers in (a) and (b) is on the handle, as the
material is assumed homogeneous.

(a) Beating, no robust-
ness required

(b) Beating, default (c) Beating, extra ro-
bustness required

(d) Cutting, no robust-
ness required

(e) Cutting, default (f) Cutting, extra ro-
bustness required

Fig. 8. Affordance function parameter variability. The grasp strategy varies
slightly while changing the requirement of the robustness of grasp.

strategy with respect to the ones for more classical objects as
seen in Figure 7: the grasp is as far as possible from the center
of mass, switching to the handle only when greater robustness
is required. The cutting task on the knife shows less variance,
producing robust grasps even when not explicitly required by
the fitness function.

C. Learning Grasp Metrics from Vision

For the learning phase we defined exactly what a viable
grasp should be to generate the ground truth for the classifier
network and define the actual dataset for the regressor. We
define a viable grasp sample if:

ε > τε ∧
6∑

i=1

Eh[i] < τEh
∧ Ei < τEi

where empirically we set τε = 0.15, τEh
= 250, τEi

= 100.
Range images are generated using OpenGL with a per-

spective projection using common parameters. We take the
Kinekt 2 depth camera as a reference with a 70x60 field
of view angle: we generate subsampled images of resolution
128x128 using a 60 field of view taken from an object-
length distance from the center of the object, as shown in
Figure 9. We formally consider point clouds equivalent to
range images as they are generated to hold the same exact
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Fig. 9. Synthesized range images with camera-in-hand perspective.

TABLE II
RESULTS ON REGRESSORS

Model MSE Comparison accuracy Expected GMS
PointNet Full 0.050 0.63 0.63
PointNet Slim 0.049 0.60 0.73

CNN 0.049 0.66 0.82

information as the input image. We use Open3D [24] to
project the synthesized range image to a point cloud which
is cleaned from the background. The resulting point cloud is
either randomly subsampled of filled with extra points in the
origin to match a standard number of points to build batches
for efficient learning. We selected the training, validation and
test set from the Princeton Shape Benchmark to propose
examples of very different geometries in the training set (1
hammer, 1 screwdriver, 2 bottles, 1 glass, 1 sword, 1 dagger,
1 meat cleaver, 2 ice creams) and to propose similar interesting
semantic categories in the validation (1 hammer, 1 bottle, 1
sword, 1 dagger, 1 knife) and test (1 screwdriver, 1 bottle, 1
axe) sets. Validation and test comprise different objects from
train but with overlapping semantic categories.

a) The Classifier: filters viable grasps from input data
based on the pregrasp and on the input range image with
camera-in-hand perspective. As the overall data distribution
from our random policy is highly biased towards the negative
class (20 times more likely than the positive class), we sample
the training data to balance positive and negative samples.

b) The Regressor: infers the metric vector φ for later
computation of the affordance function relative to the input
sample. In this work we trained regressor networks to infer
the value of

∑6
i=1Eh[i] for testing with the picking affordance

function on the picking task. Output values are linearly nor-
malized in the interval [0, 1] from the original domain [0, τEh

]
granted by the assumption that input values come from the
positive class of viable grasps.

The precision-recall curve of the test set for the two trained
classifiers are reported in Figure 10. As this classifier model
is intended as a filter of good grasp hypotheses, our main
metric of interest is the precision of the positive class as this
represents the probability that a grasp that passes the filter does
really satisfy the expected stability conditions. The recall of the
positive class is relevant as well, as it describes the efficiency
of the system in missing less good grasp.

Fig. 10. Recall-precision curve for CNN and PointNet classifiers. Curves are
drawn on the performance on the test set.

Fig. 11. Global minimum score cumulative distributions for the three
regressors. The PointNet full regressor is the standard PointNet, the PointNet
slim is the standard PointNet with transformation layers fixed to the identity.
The vertical lines of each distribution is the expected value for the GMS.

The results on the test set of the trained regressors are in
Table II. The mean squared error, the classical metric used to
assess basic regression, gives an overall score of how near the
regression goes to real values, but as our goal is optimization,
not estimation, we elaborated on two different metrics. As
optimization is mainly built by comparisons, we elaborate the
comparison accuracy by sampling random couples of samples
and measuring the standard accuracy in telling which input
sample corresponds to a greater value of the metric. We define
the Global Min Score (GMS): let Imin be the input sample
that minimizes the predicted output MΦ

R(Imin) over a set
S of samples, then the Global Min Score of the model for
the set S is the rate of samples that actually have a greater
ground truth value than the ground truth value of Imin. As
this score is very sensible to different choices of S, we
sample random subsets of 10% of the available samples in
S to plot the probability distribution of the value of GMS.
Figure 11 shows the cumulative GMS distributions and their
respective expected value. This is the most specialized measure
of performance of our regressor models as it directly quantifies
the relative optimality of the selection of the model relatively
to the available choices.

VI. DISCUSSION ON LIMITATIONS AND FUTURE WORK

In this work we proposed task dependent metrics to evaluate
grasps and use hypotheses in a task-oriented setting. Our



framework allows for the automatic evaluation of grasps in a
simulation environment and to collect labelled grasp data with
minimal human interaction; eliminating the need for human
intervention in the grasp labeling process allows both for a
widely more scalable data collection and clears the biases
that humans have in labeling grasps due to the significant
differences between human and robotic hands. We showed
that we can easily generate millions of labelled grasps on
different objects and that roughly hand-designed affordance
functions suffice for the emergence of smart and unintuitive
techniques for grasping for the exemplified tasks as in Fig-
ures 4 and 5. From this we experimented with convolutional
and PointNet [22] architectures to learn to infer basic grasp
stability and holding hand effort from vision and benchmarked
their results, which we consider promising.

There are many directions in which this work can be
improved and extended to account for its limitations. The
most obvious directions are by validating on more tasks
or by accounting for more metrics in simulation such as
different materials in compound objects, with different friction
coefficients and softness values. This would also provide more
realistic locations for the center of mass, which is crucial
to determine the optimal grasp in many situations such as
for the beating with hammers. As a natural follow up, we
foresee a validation step on a real robotic arm to prove the
generalization capability from simulation to reality. Indeed,
we plan to integrate the learned models with a real Barrett
hand and test on similar manipulators (with three or even
two fingers) to assess the robustness of performance with
inaccurate manipulator models. An important limitation of the
current work is the unstructured definition of the affordance
functions F̃T which at this stage define the tasks themselves for
the system. A direction of improvement is towards a different
description of tasks from which functions F̃T can be extracted
or learned. Reference [25] extracts a representation of a task
in terms of relevant physical quantities from the demonstration
of a human choosing a tool and executing the task, such
representation can be used to drive the automatic synthesis
of the affordance function from a human demonstration. An
alternative approach can be the definition of the execution of
the task and a performance index of its end effectiveness: this
would allow the optimization of the affordance function by
reinforcement learning by simulation of the execution of the
task itself with no further human intervention.
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Framework Validation

 

Experimental results

 

We built a scalable GraspIt! plugin
to simulate random grasps and 
automate metric data collection

We collected a dataset of millions of grasps with pre-computed 
metrics by simulation via the GraspIt! simulator with the purpose of 
learning inference

We qualitatively show that maxima in the affordance function of 
some selected tasks correspond to semantically coherent grasps with 
interesting emerging behaviours

We assess the feasibility of learning a model that can infer basic 
grasp metrics from partial information about a target object

2nd IWCMAR @

Metrics inference from vision
We infer metrics Φ from a depth image D of the object, an initial 
hand position p0 and a use direction d assuming a fixed grasp policy 
GP and a direction to location mapping DM

Base Grasp Metrics

 

We measure properties of the grasp by its geometry and statics
● Grasp robustness (ε ∈ R)
● Rotational  inertia  (I ∈ R)
● Hand effort on impact (Ei∈R)
● Hand  effort  on  hold  (Eh∈R6)
● Momentum  discharge  efficiency  (δ∈R)
● Force transmitted to use (Uτ∈R)
● Use  local  geometry  (Ug∈R)

We hard code affordance function approximations for some sample 
tasks (picking, cutting, beating) via relevant basic grasp metrics

Proposed Task Oriented Grasping Framework
Define affordance with respect to a task as a function of basic grasp metrics encoding 
geometry and statics of any hypothesis on grasp and point of use.

Affordance function for task T based on object O, grasp G, and usage point U:

Approximated as a function of base grasp metrics: 
The higher the more suited 

(O, G, U) are for task T, 
e.g., for cutting

Grasp G

Object O
Use point U

These should/could be 
learned instead of 

coded!

Pick

Cut
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