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Sommario

Quello dei meccanismi economici è uno dei campi attualmente studiati della

comunità scienti�ca. Abbiamo applicato strumenti della teoria dei giochi

algoritmica a problemi d'asta con l'obiettivo di progettare un meccanismo

in grado di guidare il sistema verso uno stato con un Social Welfare migliore

rispetto a quello dell'equilibrio di Nash. Abbiamo studiato ed analizzato i

meccanismi della First Price, Generalized Second Price e della GSP ripetuta

con budget �ssato. Ogni giocatore che prende parte al meccanismo uti-

lizza strategie adattive, comunemente dette di learning. Oggetto di studio

sono state le dinamiche evolutive del Q-Learning, FAQ e Gradient Ascent.

Per modellare le dinamiche di apprendimento e studiare la calibrazione dei

parametri abbiamo utilizzato strumenti di teoria dei sistemi, mentre, per lo

studio di biforcazione, abbiamo utilizzato MATCONT un tool di Matlab in

grado di analizzare sistemi di equazioni dinamiche. In�ne è stato progettato

un meccanismo in grado di guidare il sistema verso uno stato con Social

Welfare migliore rispetto a quello del Nash che non è raggiungibile nel caso

di giocatori razionali.
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Abstract

This thesis focuses on the �eld of algorithmic applied to problems of deci-

sion with opponents, commonly called algorithmic game theory. This �eld

combines mathematical models, which describe situations of strategic inter-

action, with algorithmic tools, which allow to �nd solutions that prescribe to

each player the best strategies to be implemented. Within this framework, a

topic currently studied by the scienti�c community is the development of eco-

nomic mechanisms when the players, who will take part in the mechanism,

use adaptive strategies, commonly called learning strategies. For example, a

typically used algorithm is Q-Learning. To design the best economic mecha-

nism it is necessary to model the learning dynamics of the players and study

the calibration of the parameters of the mechanism using system theory tools,

such as bifurcation studies. The objective of this project is to study this type

of problem in the context of the auction scenarios. In particular, online ad-

vertising auctions (used, for example, by Google, Microsoft, Amazon) have

been analyzed.
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Chapter 1

Introduction

1.1 Aim of the work

This work focuses on the �eld of Algorithmic Game Theory. This �eld com-

bines mathematical models, which describe situations of strategic interac-

tion, with algorithmic tools, which allow one to �nd for each player the best

strategy to implement. A topic currently studied by the scienti�c community

is the development of economic mechanisms satisfying notable properties. In

this work, we will study this problem in the context of auction scenarios.

In particular, we focus on mechanisms for online advertising. This sce-

nario represents the main source of marketing and, in the recent years, its

revenue is dramatically increasing. This growth is due to the fact that the

number of people connected to the Internet in the world and the time spent

online are constantly growing and, also compared to other communication

channels such as radio, TV, print, etc. is faster and more accessible. On-

line advertising is the main source of revenue of important companies like

Google, Microsoft, Yahoo etc. Online adds are sold throw actions where bid-

ders compete for the available slots. The study of auctions for advertising

is central in Arti�cial Intelligence community and explored along di�erent

perspectives, e.g., Ceppi et al. [2011]; Gatti et al. [2012, 2015]

We will study and analyze three auction mechanisms: First Price Sealed

bid auction, Generalized Second Price auction, and Repeated GSP with bud-

get constraints.

First Price Sealed Bid Auction, simply called First Price (FP), is the sim-

plest and most common used auction mechanism where the winner player is

allocated in the �rst slot and pays the same amount he bids. The Gener-

alized Second Price auction (GSP) is a non-truthful mechanism and it is a

little more involved with respect the FP. Each player for the allocation pays

1



1.1. Aim of the work 2

a value equal to the bid value of the player allocated in the next slot. The

third auction we study is a slightly modi�cation of GSP in which constraints

are introduced. The allocation mechanism is the same as GSP, the auction is

repeated over time and each player participates until it runs out of budget.

These mechanisms will be analyzed from a dynamic perspective in which

each agent will learn the best strategy through learning algorithms. This

perspective is very common in practice. Reinforcement Learning is a �eld of

Machine Learning in which each agent learns the optimal strategy through it-

eration with the environment. Agent selects an action and the environments

respond to this action presenting a new situation to the agent and providing

a reward which is a value that the agent wants to maximize. Learning in

a Multi-Agents environment is signi�cantly more complex than single-agent

learning, as the optimal behaviour will depends not only form the environ-

ment but also from the strategy of other players.

Recently evolutionary game theory has been linked to reinforcement

learning algorithms, we will analyze the Q-Learning, FAQ and Gradient

Ascent dynamics. The Q-learning is a value-iteration method for solving the

optimal strategies in Markov decision process where agent learns his strategy

throw Q-learning and Boltzmann selection rules. The tread o� between ex-

ploration and exploitation is controlled by the temperature parameter. The

FAQ dynamics is a variation of Q-Learning which uses a softmax activation

function for policy generation. Gradient Ascent is a well-known optimisation

technique in the �eld of machine learning, given a set of di�erential equation

the learning process follows the direction of the gradient in order to �nd

the local optima. This concept can be applied to multiagent learning where

each agent learns the optimal policy following the gradient direction of its

individual expected reward. This approach assumes that the expected payo�

function is known to the agents, which may not be feasible in real context.

To design the best economic mechanism is necessary to model the learn-

ing dynamics and study the calibration of parameters using system theory

tools such as bifurcation studies. Bifurcation theory is a mathematical study

of qualitatively changes in systems dynamics produced by varying parame-

ters. We have studied and analyzed the stability of the system of dynamic

equations using MATCONT, a MATLAB tool for the interactive bifurcation

analysis of dynamical systems.

Finally, we design an Optimal Control Mechanism capable of driving the

system towards a state with a Social Welfare higher than the Nash Equilibria.

Using the Q-Learning dynamics and controlling the temperature parameters

we are able to reach a better state than those achievable by perfectly rational

agent.
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1.2 Thesis structure

The thesis is structured in the following way:

• Chapter 2 provides the basics of game theory, evolutionary game the-

ory, multiagent learning and it also presents the state of art.

• Chapter 3 presents the auction mechanism that we study and the �rst

positive result: auction games cannot be trace back to coordination

games.

• Chapter 4 provides the basic notion of dynamical system and presents

the results of the bifurcation study applied to auctions problems.

• Chapter 5 designs a mechanism to improve the social welfare control-

ling the temperature parameter.

• Chapter 6 contains the conclusions drawn from the results obtained in

the previous chapters.



Chapter 2

Preliminaries and state of art

2.1 Game Theory

Game Theory is the �eld which studies mathematical models of strategic in-

teraction between rational decision-makers, that are commonly called agents

or players. Each player has a goal to pursue and based on this he will choose

his actions, that will a�ect the outcome of all the other decision makers.

Each player is perfectly rational, he has a clear preference over outcomes

and chooses the action that maximizes his reward assuming that also the

others do the same.

A game G is described by the following elements:

• a set of players: N = {1, ..., n};

• a set of actions: Ai for each player;

• payo� function: ui : A → R for each player.

The main representation of a game is the Normal Form, that is a matrix-

based representation which describes situations in which decision makers

play simultaneously and each entry of the matrix corresponds to an outcome

of the game.

2.1.1 Games in normal form

Normal form games model the scenario in which agents execute actions si-

multaneously according to their strategies. The fact that agents play simul-

taneously does not mean that they play at the same time but that a player

does not know what the opponents will do.

De�nition 1 (Normal Form Game). The normal-form representation of a

game is a triplet (N ,A,U) where:

4
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• N = {1, ..., n} is the set of player;

• A = {A1,A2, ...,An} is the set of actions of all the players where

Ai = {a1, a2, ..., ami} is the set of player i's actions;

• U = {u1, u2, ..., un} is the set of the utility functions of all the players

where ui : A1 ×A2 × ...×An → R is the utility function of player i.

These games can be represented as n-dimensional matrix where the row

corresponds to a possible action of player A and column to possible actions of

player B, the combination of actions will lead to an outcome that is reported

in the corresponding cell. An example is reported below

A =

(
a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)
,

Figure 2.1: 2× 2 Normal Form Game.

where A and B are the payo� matrix of the two players, element aij is

the reward of player A when he chooses actions i and his opponent chooses

action j and similarly for element bij .

De�nition 2 (Action pro�le). An action pro�le a is a tuple (a1, a2, ..., an)

with ai ∈ Ai, containing one action per player. Action pro�le a−i is a tuple

(a1, a2, ..., ai−1, ai+1, ..., an) with aj ∈ Aj, containing one action per player

except for player i.

We denote by A−i = A1 ×A2 × ...Ai−1 ×Ai+1 × ...An the space of a−i.

2.1.2 Strategies

In normal form games the behaviour of each player is described by his strat-

egy which is the set of actions that he plans to choose during the game. A

strategy pro�le is a collection of strategy one for each player. Formally:

De�nition 3 (Strategy). Strategy σi : Ai → [0, 1] with σi ∈ ∆(Ai) is a

function returning the probability with which each action ai ∈ Ai is played
by player i.

De�nition 4 (Strategy pro�le). A strategy pro�le σ is a tuple (σ1, σ2, ..., σn)

containing one strategy per player. Strategy pro�le σ−i is a tuple

(σ1, σ2, ..., σi−1, σi+1, ..., σn), containing one strategy per player except for

player i.
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If an agent plays deterministically one action the strategy is pure other-

wise if there is a probability distribution over actions the strategy is mixed.

A pure strategy can be seen as a special case of mixed strategy where the

agent plays one of his actions with probability of 1 and the other with 0

probability.

De�nition 5 (Pure/mixed strategies). Strategy σi is pure, if there is action

a ∈ Ai such that σi(a) = 1, and it is mixed otherwise. Strategy σi is fully

mixed if it holds σi(a) > 0 for each action a ∈ Ai.

The expected utility of a player can be computed as the sum over the

payo� of all possible strategy pro�les.

De�nition 6 (Expected utility). Expected utility Ea∼σ[Ui(a)] returns the

expected value of the utility of player i given strategy pro�le σ. The formula

Ea∼σ[Ui(a)] can be written as:

Ea∼σ[Ui(a)] =
∑
a1∈A1

∑
a2∈A2

...
∑
an∈An

σ1(a1)σ2(a2)...σn(an)Ui(a1, a2, ..., an)

The degree of the polynomial is n and, given player i, the expected utility is

linear in player i's strategy.

The main problem for a player in strategic form game is to decide which

strategy to play making prediction about what other players will do while

predicting how the other players will play is easy when a player has a dom-

inant strategy which is the one that produces the highest payo� regardless

the strategies undertaken by the opponents.

De�nition 7 (Dominant strategy). Let σi and σ
′
i be two strategies for player

i and Σ−i the set of all strategy pro�les of the remaining players. Strategy

σi is a dominant strategy for player i if ui(σi, σ−i) ≥ ui(σ
′
i, σ−i) for all σ′i

and all σ−i ∈ Σ−i. A strategy is strictly dominant if ui(σi, σ−i) > ui(σ
′
i, σ−i).

2.1.3 Nash equilibrium

Nash Equilibrium (NE) is one of the most important concepts in Game

Theory and is named from mathematician John Forbes Nash Jr. Informally,

a strategy pro�le is a Nash Equilibrium if no player has incentive to change

his strategy.

The concept of Best Response is linked with NE and is de�ned as the

strategy that will lead to the most favorable outcome for a player. Due to

rationality assumption, all player are assumed to choose their best action. A
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mixed strategy σi is a best response for player i if there is no other strategy

σ′i that allows player i to achieve a better outcome. Formally:

De�nition 8 (Best Response). Player i's best response to the strategy pro�le

σ−i is a mixed strategy σ∗i ∈ Σ such that ui(σ
∗
i , σ−i) ≥ ui(σi, σ−i) for all

strategies σi ∈ Σi.

The concept of best response is central in the de�nition of Nash Equi-

librium, in which no player has incentive to change his strategy if he knows

what strategy the other players will follow. A game can have multiple Nash

Equilibria. Formally:

De�nition 9 (Nash Equilibrium). A strategy pro�le σ = (σ1, ..., σn) is a

Nash Equilibrium if, for all the agents i, σi is a best response to σi.

Example 1 (Prisoner's dilemma). In this game there are two players who

are suspected of having committed a crime, they are placed into two di�erent

rooms and they can "confess" or "defect" the crime: a1 = {C,D} and a2 =

{c, d}.

c d

C 3,3 0,5

D 5,0 1,1

Figure 2.2: Prisoner's dilemma.

If both confess they will spend 3 years in jail, if only one of them confess

and the other does not the collaborator will be free while the other will spend

5 years. If nobody confesses, but there is enough evidence to charge them for

a minor crime, both will spend 1 year in jail.

Individually, defection is a best response against any opponent strategy,

and as a result mutual defection is the single Nash equilibrium of the game.

However, both players would be better o� if both would cooperate − hence the

dilemma.

A central problem is computer science is the computation of equilib-

ria, e.g., algorithms to compute Nash equilibria with two players as those

proposed by Ceppi et al. [2010], algorithms to verify Nash equilibria with

speci�c properties as those proposed by Gatti et al. [2013b], or algorithms to

compute other solution concepts as those proposed by Coniglio et al. [2017].

Many application of this research �eld can be found in security, see, e.g., the

works by Munoz de Cote et al. [2013]; Basilico et al. [2016, 2017], or in nego-

tiations, see, e.g., the works by Di Giunta and Gatti [2006]; An et al. [2009,
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2013]; Lopes and Coelho [2014]. In this thesis, our aim is not to compute an

equilibrium, but to learn it. In the following sections, we survey the topics

related to learning.

2.2 Evolutionary Game Theory

Evolutionary Game Theory (EGT) has origin from a series of publications by

the mathematical biologist John Maynard Smith (Sandholm [2010], Shoham

and Leyton-Brown [2010]). EGT studies the evolution of populations of

agents and dynamical systems. The two central concepts are the Replicator

Dynamics and Evolutionary Stable Strategy (ESS).

The replicator dynamics describe how a population evolves over time. It

is composed of a set of di�erential equations that are derived from biological

operators such as selection, mutation and cross-over.

In biology the replicator dynamic can be interpreted as a model of natural

selection while in economic as a model of imitation (Sandholm [2007]).

In Evolutionary game theory the notion of Nash equilibrium is rede�ned

with the concept of Evolutionary Stable Strategy (ESS). An evolutionary

stable strategy is a strategy that is immune to invasion by a small group of

mutants who play an alternative mixed strategy.

2.2.1 Replicator Dynamics

The replicator dynamics describe how a population of individuals evolves

over time under an evolutionary process. The probability distribution of the

individuals inside the population is described by the vector x = {x1, x2, ..., xn},
with 0 ≤ xi ≤ 1∀i and

∑
i xi = 1,that is equivalent to a policy for one player

where xi represents the probability of playing action i, or the fraction of the

population that belongs to species i.

Let fi(x) be the �tness function of species i and ¯f(x) =
∑

j xjfj(x) the

average �tness of the population. The change of the population over time is

described by

ẋi = xi[fi(x)− f̄(x)], (2.1)

where ẋi is used to denote dxi
dt . Equation 2.1 is the general formulation of

the replicator dynamics.

If two populations x and y are present in the model then two systems of

di�erential equations are needed, one for player. Let A and B be the payo�

matrices of the two players, the �tness function can be written as
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fi(x) =
∑
j

aijyj = (Ay)i, (2.2)

and the average population �tness as

f̄(x) =
∑
i

xi
∑
j

aijyj = xTAy, (2.3)

the same holds for the other players.

Substituting 2.2 and 2.3 in 2.1 the di�erential equation of replicator dy-

namics for two players game can be derived

ẋi = xi[(Ay)i − xTAy]

ẏi = yi[(x
TB)i − xTBy]

(2.4)

The replicator dynamics can be extended to case of N players and n

actions per player as follows:

ẋia(t) = xia(t)F̂ia(t) (2.5)

where

F̂ia = eiaUi
∏
j 6=i

xj(t)− Ui
∏
j

xj(t). (2.6)

eiaUi
∏
j 6=i xj(t) is the expected payo� when a player is playing his pure

strategy while Ui
∏
j xj(t) represent the expected payo�.

In addition to the Replicator Dynamics, other dynamical equations are

studied. We mention, e.g., the Logit, Smith, and BNN. Furthermore, dy-

namical equations may di�er according to the speci�c game representation

to which they are applied. We point an interested reader to Gatti et al.

[2013a]; Gatti and Restelli [2016]

2.2.2 Evolutionary Stable Strategies

An evolutionary stable strategy(ESS) is a stability concept that was inspired

by the replicator dynamics. However, its de�nition is of general interest,

being applicable regardless the speci�c dynamic equation one uses. ESS is

a mixed strategy that is resistent to invasion by new strategies. Suppose to

have a population that is playing a particular strategy then introduce a new

population "the invaders" that is playing a di�erent strategy. The original

strategy is ESS if it leads to a higher payo� against the resulting combination

of the old and the new strategies.
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Let f(x,y) be the �tness of x against y. The strategy x is ESS if for

every mutant strategy y the following two properties hold:

• f(x,x) ≥ f(y,x) and,

• if f(x,x) = f(y,x), then f(x,y) ≥ f(y,y).

The �rst condition says that an ESS strategy is also a Nash Equilibrium of

the original game. The second condition states that if the invading strategy

does as well against the original strategy as the original strategy does against

itself, then the original strategy must do better against the invader than the

invader does against itself.

Every ESS is an asymptotically stable �xed point of the replicator dy-

namics (Weibull [1997]).

2.3 Multi-Agent Learning

A Multi-Agent System (MAS) is a collection of multiple intelligent agents

that can cooperate or compete to achieve their personal goals. Multi-Agent

learning (MAL) is a research �eld that integrates Machine Learning tech-

niques in Multi-Agent System. The most common is Reinforcement Learning

(RL) that is based on the concept of "trial−and−error" (Sutton and Barto

[1998]).

Performing an action the agent will receive a reward, that depends on

the interaction with other agents and the environment. The reward can be

seen as a measure of the goodness of an action, if an action is followed by low

reward, in the future the agent may choose to change his policy and select

another action in the same situation.

The goal of RL is to �nd the optimal policy which is the one that maxi-

mizes the cumulative reward over long run of the game.

The most important challenge in RL is the tradeo� between exploration

and exploitation, to avoid getting stuck in local optima. The agent must bal-

ance between exploiting what is already known and exploring other actions.

Two alternative can be used: ε-greedy and softmax.

• ε-greedy is based on the idea of behaving greedily most of the time,

but once in a while select a random action to make sure the better

actions are not missed in the long term. Using this approach the greedy

option is chosen with high probability 1�ε, and with a small probability

ε a random action is played;
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• the softmax, or Boltzmann exploration, which uses a temperature

parameter τ to balance exploration and exploitation.

pi =
eQ(s,ai)/τ∑
j e

Q(s,aj)/τ
(2.7)

Good actions have an exponentially higher probability of being selected

and the degree of exploration is based on the temperature parameter

τ .

For τ → 0 the agent always acts greedly and choose the strategy that

corresponds to the highest Q-value (pure exploitation), while for τ →
∞ the agent strategy is completely random (pure exploration).

The single−agent reinforcement learning setting can be formalized as

Markov decision process (MDP).

De�nition 10 (Markov process). AMarkov process is a tuple 〈S,A,P,R, γ, µ〉

• S is the set of states;

• A is the set of actions;

• P is a state transition probability matrix,

P (St+1 = s′|St = s,At = a) =
∑

r∈R p(s
′, r|s, a);

• R is the reward function,

r(s, a) = E[Rt+1|St = s,At = a] =
∑

r∈R r
∑

s′∈S p(s
′, r|s, a);

• γ is a discount factor,γ ∈ [0, 1]. If γ = 0 the agent is "myopic" and

maximize only the immediate reward while if γ = 1 the agent has a

"far-sighted" evaluation. γ can be interpreted as a probability that the

process will go on.

• µ is the set of initial probability, µ0
i = P (X0 = i).

The learning goal for an agent is to �nd the policy π that maps states to

action selection probabilities, maximizing the expected reward.

The value function V π denotes the values of being in state s following

policy π as the total amount of reward R the agents expects to accumulate

when starting in state s and following π:

V π(s) = Eπ[vt|st = s] = Eπ[

∞∑
k=0

γkRt+k+1|St = s] (2.8)
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Values indicate the long-term desirability of the states. For example, a

state might always yield a low immediate reward but still have a high value

because it is regularly followed by other states that yield high rewards. Or

the reverse can be true.

The optimal value V ∗(s) = maxπ V
π(s) ∀s ∈ S gives the value of the

state given the optimal policy.

A policy is optimal if it achieves the best expected return from any initial

state.

The value function can be iteratively computed using the Bellman equa-

tion

V π(s) =
∑
a∈A

π(a|s)(R(s, a) + γ
∑
s′∈S

P (s′|s, a)V π(s′)) (2.9)

which expresses the relationship between the value of a state and the value

of its successor.

Similarly, it is possible to de�ne the action value function Qπ(s, a),

as the expected reward starting from state s, taking action a and following

policy π

Qπ(s, a) = Eπ[vt|st = s, at = a] = Epi[
∞∑
k=0

γkRt+k+1|St = s,At = a]. (2.10)

The optimal action-value function can be de�ned as

Q∗(s, a) = max
π

qπ(s, a) s ∈ S, a ∈ A(s) (2.11)

V π and Qπ can be estimated from experience.

2.3.1 Algorithms

In this section the main learning algorithm and their relation with the repli-

cator dynamics will be illustrated.

Cross Learning

One of the most famous learning algorithms is the Cross Learning (Daan Bloem-

bergen and Kaisers [2015]).

At each iteration of the game the agent behaviour can be described by

the policy π = {π1, π2, ..., πn}, the algorithm updates the policy on the base

of the received reward r after taking action j.
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π(i)← π(i) +

{
r − π(i)r ifi = j

−π(i)r otherwise
(2.12)

The update maintains a valid policy as long as the reward are normalized,

i.e 0 ≤ r ≤ 1. At each iteration, the probability of selecting an action

is increased unless the payo� is exactly equal to 0, the aim is to increase

probability of actions that lead to an higher expected payo�.

The behavior of Cross learning converges to the replicator dynamics in

the in�nitesimal time limit.

Equation 2.12 describes how the probability of taking action i is updated,

this probability is updated both if i is selected and if another action j is

selected. Let E[∆π(i)] be the expected change in the policy and Ei[r] be the

expected reward of taking action i de�ned as follows:

E[∆π(i)] = π(i)
[
Ei[r]− π(i)Ei[r]

]
+
∑
j 6=i

π(j)
[
− Ej [r]π(i)

]
= π(i)

[
Ei[r]−

∑
j

π(j)Ej [r]
] (2.13)

Assuming to have small steps of update, the continuous time limit of

Equation 2.13 is

πt+δ(i) = πt(i) + δ∆πt(i)

with limδ→0. This yields a continuous time system that can be expressed

with the following partial di�erential equation

π̇(i) = π(i)
[
Ei[r]−

∑
j

π(j)Ej [r]
]

(2.14)

For two players games Equation 2.14 is equivalent to equation of repli-

cator dynamics 2.4.

Regret Minimization

The notion of Regret Minimization (RM) forms the basis for another type of

reinforcement-learning algorithm. Each agent calculates the loss (or regret)

li of taking action i rather than the best action in hindsight as li = r∗ − r
where r∗ is the reward of taking the best actions.

The learner maintains a vector of weights w for all actions and this vector

is updated according to the perceived loss as follows:
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wi ← wi[1− αli]

πi =
wi∑
j wj

(2.15)

The algorithm ensures a valid policy until reward are normalized.

It is shown (Klos et al. [2010]) that the in�nitesimal time limit of regret

minimization can similarly be linked to a dynamical system with replicator

dynamics in the numerator:

ẋ =
αxi[(Ay)i − xTAy]

1− α[maxk(Ay)k − xTAy]
(2.16)

This dynamic can be extended to the case of N players and n actions

per player

˙xia =
αxia(t)F̂ia(t)

1− α
[

max eiaUi
∏
j 6=i xj(t)− Ui

∏
j xj(t)

] (2.17)

Q-Learning

Another learning algorithm is theQ-Learning (Daan Bloembergen and Kaisers

[2015]). Q-learning maintains a value function over state-action pairs, Q(s, a),

which it updates based on the immediate reward and the discounted expected

future reward according to Q:

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)] (2.18)

γ is the discount factor for future rewards and α ∈ [0, 1] is the learning rate

that determines how quickly Q is updated based on a new reward informa-

tion, r is the immediate reward. Q function expresses how good is taking

action a in state s.

In 2 × 2 games the corresponding dynamics is described by a pair of

di�erential equations:

ẋi = xi[(Ay)i − xTAy + Tx
∑
j

xj log
xj
xi

] (2.19)

where A is the payo� matrices, x the policy of the agent and Tx the

temperature parameter. This equation can be decomposed as the sum of

two terms that balance the exploration/exploitation tread o�. The �rst

term xi[(Ay)i − xTAy] is exactly the replicator dynamics which drives the
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system to a state with high utility for both players. It can be considered as

a selection process. The second therm xiTx
∑

j xj log
xj
xi

corresponds to the

mutation process. Mutation is controlled by the temperature Tx, from RL

point of view this term can be seen as an exploration process.

Similarly for the other player it holds

ẏi = yi

[
(xTB)i − xTBy + Ty

∑
j

yj log
yj
yi

]
. (2.20)

Equation 2.21 describes the Q-Learning dynamics for N players and n

actions per player

ẋia(t) = xia(t)
[
F̂ia(t) + Tx

∑
j

xj log
xj
xi

]
(2.21)

where F̂ia(t) is de�ned as in Equation 2.6.

Frequency-Adjusted Q-learning (FAQ) is a variation of Q-Learning dy-

namics which uses softmax activation function for policy-generation, and an

update rule inversely proportional to xi

Q(i)← Q(i) +
1

xi
α[r + max

j
Q(j)−Q(i)]. (2.22)

For two player matrix game FAQ-Learning is described by:

ẋi = xiα
(
τ−1[(Ay)i − xTAy]− log xi +

∑
j

xj log xj

)
ẏi = yiα

(
τ−1[(xTB)i − xTBy]− log yi +

∑
j

xj log yj

) (2.23)

In a similar way as Q-Learning dynamics we can derive the extension for

the case with N players and n actions per player.1

2.3.2 Learning Dynamics

Gradient ascent (or descent) is an optimization technique in the �eld of

Machine Learning.

The learning process follows the direction of the gradient in order to

�nd local optima. This concept can be applied to multi-agent learning by

improving the learning agents' policies along the gradient of their payo�

1It is known a similar derivation for the case in which the game is represented in

extensive form, see Panozzo et al. [2014].
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function. This approach assumes that the payo� function, or more precisely

the gradient of the expected payo�, is known to the learners.

Consider a two-agent normal form game, let ei denote the i
th unit vector

and let n be the number of actions. Gradient ascent is de�ned using the

orthogonal projection function Φ which projects the gradient onto the policy

simplex thereby ensuring a valid policy (∀πi : 0 ≤ πi ≤ 1)

∆πi ← α
δV (π, σ)

δπi
= α lim

δ→0

[π + Φ(δei)]Aσ
T − πAσT

δ

= αΦ(ei)Aσ
T = α

(
eiAσ

T − 1

n

∑
j

ejAσ
T
) (2.24)

In�nitesimal Gradient Ascent (IGA)

Each agent updates its policy by taking in�nitesimal steps in the direction

of the gradient of its expected payo�, Satinder Singh and Mansour [2000].

It has been proven that, in two-player two-action games, IGA converges to

a Nash equilibrium.

The policy update rule for IGA is de�ned as

∆xi ← α
δV (x)

δxi

x← projection(x + ∆x)

(2.25)

where α denotes the learning step size.

The intended change ∆x may take x outside of the valid policy space, if

this occurs the projection function will project it back to the nearest valid

policy.

Win or Learn Fast (WoLF)

Win or learn fast (IGA-WoLF) (Bowling and Veloso [2002]) is a variation of

IGA which uses a variable learning rate. The idea is to allow an agent to

adapt quickly if it is performing worse than expected, whereas it should be

more cautious when it is winning. The modi�ed learning rule of IGA-WoLF

is

∆xi ←
δV (x)

δxi

{
αmin if V (x) > V (x∗)

αmax otherwise

x← projection(x + ∆x)

(2.26)
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where x∗ a policy belonging to an arbitrary Nash equilibrium.

Weighted Policy Learner (WPL)

Another variation of IGA is the weighted policy learner (WPL) (Abdallah

and Lesser [2008]) that also modulates the learning rate, but di�erently from

IGA-WoLF it does not require a reference policy. The update rule of WPL

is de�ned as

∆xi ← α
δV (x)

δxi

{
xi if δV (x)

δxi
< 0

1− xi otherwise

x← projection(x + ∆x)

(2.27)

where the update is weighted by xi or by 1−xi depending on the sign of the

gradient.

For two actions two players game the dynamic model can be simpli�ed.

Let h = (1,−1), x = (x, 1 − x) and y = (y, 1 − y). The pair (ẋ, ẏ)

describes the learning dynamics. The simpli�ed version for CL is

ẋ = x[(Ay)1 − xTAy]

= x(1− x)[y(a11 − a12 − a21 + a22) + a12 − a22]

= x(1− x)[yhAhT + a12 − a22]

(2.28)

where a12 and a22 are elements of the payo� matrix A.

The shorten notation for gradient δ can be written as

δ = (AyT)1 − (AyT)2 = yhAhT + a12 − a22 (2.29)

while the dynamics examined are summarized in the following table:
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Algorithm ẋ

IGA αδ

IGA-WoLF δ

{
αmin if V (x) > V (x∗)

αmax otherwise

WPL αδ

{
x if δ < 0

1− x otherwise

CL x(1− x)δ

FAQ αx(1− x)[δτ−1 − log x
1−x ]

RM αx(1− x)δ

{
(1 + αxδ)−1 if δ < 0

(1− α(1− x)δ)−1 otherwise

Table 2.1: Learning dynamic of two-agent two-action game, Michael Kaisers and

Tuyls [2012].

2.4 Bifurcation Analysis for Mechanism Design

Pilouras in Bifurcation Mechanism Design � From Optimal Flat Taxes to

Better Cancer Treatments perform a quantitative analysis of bifurcation phe-

nomena connected to Q-learning dynamics in 2 × 2 games with the goal

of quantify the e�ects of rationaly-driven bifurcations to the social welfare

changing the temperature parameter.

He propose two di�erent types of mechanism: hysteresis and optimal

control mechanisms.

He starts with the following example:

Example 2 (Hysteresis e�ect). Consider a 2 × 2 coordination game with

two pure NEs and no dominant strategy for either players.

A =

(
10 0

0 5

)
, B =

(
2 0

0 4

)
,

Given x and Ty 2, the value of y can be uniquely determined. Assuming

the system follows the Q-learning dynamics, as we slowly vary Tx, x tends

to stay on the line segment that is the closest to where it was originally

corresponding to a stable but ine�cient �xed point.

2Tx and Ty are the temperature parameter of Q-Learning dynamics
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Figure 2.3: Bifurcation diagram for Ty = 0.5.

Figure 2.4: Bifurcation diagram for Ty = 2.

Figure 2.3 shows the Bifurcation diagram to vary Tx �xed Ty = 0.5. The
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horizontal axis correspond to the temperature while the vertical shows the

probability with which the player plays his �rst action. There exist three

branches, two of which are stable and the other unstable.

Figure 2.4 shows the bifurcation diagram to vary Tx �xed Ty = 2.

Before illustrating the two mechanisms it is necessary to introduce some

de�nitions:

De�nition 11 (Quantal response equilibrium). A strategy pro�le (xQRE , yQRE)

is a QRE with respect to temperature Tx and Ty if

xQRE =
e

1
Tx

(AyQRE)1∑
j∈{1,2}e

1
Tx

(AyQRE)j

1− xQRE =
e

1
Tx

(AyQRE)2∑
j∈{1,2}e

1
Tx

(AyQRE)j

yQRE =
e

1
Ty

(BxQRE)1∑
j∈{1,2}e

1
Ty

(BxQRE)j

1− yQRE =
e

1
Ty

(BxQRE)2∑
j∈{1,2}e

1
Ty

(BxQRE)j

QRE can be consider as the case where players not only maximize the

expected utility but considered also the entropy. QRE are the solutions that

maximize the linear combination of the following problem

xQRE ∈ arg max
x

{
xTAyQRE − Tx

∑
j

xj log(xj)
}

yQRE ∈ arg max
y

{
xTByQRE − Ty

∑
j

yj log(yj)
}

The social welfare provides the performance of a system, it can be de�ned

as the sum of the expected payo� of all agents in the system.

In the context of algorithmic game theory, comparing the best social

welfare with the social welfare of equilibrium system states is possible to

measure the e�ciency of a game. The strategy pro�le that achieves the

maximal social welfare is called the socially optimal (SO) strategy pro�le.

The notion of the price of anarchy (PoA) and the price of stability (PoS)

are used to describe the e�ciency of a game.

De�nition 12. Given a 2× 2 game with payo� matrices A and B,and a set

of equilibrium system states S ⊆ [0, 1]2, the price of anarchy (PoA) and the

price of stability (PoS) are de�ned as

PoA(S) =
max(x,y)∈[0,1]2 SW (x, y)

min(x,y)∈S SW (x, y)
PoS(S) =

max(x,y)∈[0,1]2 SW (x, y)

max(x,y)∈S SW (x, y)
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The hysteresis mechanism uses transient changes to the system pa-

rameters to induce permanent improvements to its performance via optimal

(Nash) equilibrium selection. It re�ects a time-based dependence between

the system's present output and its past inputs. This mechanism can en-

sure performance equivalent to the price of stability instead of the price of

anarchy.

In Example 2 by sequentially changing Tx, we move the equilibrium state

from around (0, 0) to around (1, 1), which is the social optimum state.

Theorem 1 (Hysteresis Mechanism). Consider a 2 × 2 game that satis�es

the following properties

1. Its diagonal form satis�es ax, bx, ay, by > 0.

2. Exactly one of its pure Nash equilibria is the socially optimal state.

Without loss of generality, we can assume ax ≥ bx. Then there is a mech-

anism to control the system to the social optimum by sequentially changing

Tx and Ty if (1) ay ≥ by and (2) the socially optimal state is (0, 0) do not

hold at the same time.

How the QRE improves the social welfare is illustrate through an exam-

ple.

Example 3. By given the following pair of utility matrices:

A =

(
ε 1

0 1 + ε′

)
, B =

(
1 + ε 0

1 ε′

)
,

where ε and ε′ are small number (ε > ε′ > 0). This game presents two PNE

in (1, 1) and (0, 0) with social welfare 1 + 2ε and 1 + 2ε′. For small ε and

small ε′ the social optimal state is (x, y) = (1, 0) with a social welfare of 2.

(1, 1) is the PNE with the highest SW.

At PNE, which is the point Tx = Ty = 0, the social welfare is 1 + 2ε.

Increasing Ty also the SW will increase.
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Figure 2.5: Social Welfare.

Optimal control mechanisms induce convergence to states whose per-

formance is better than even the best Nash equilibrium. Controlling the

exploration/exploitation trade o� is possible to achieve better states than

those achievable by perfectly rational agents.

De�nition 13. A state (x, y) ∈ [0, 1]2 is a QRE-achievable state if for every

ε > 0, there is a positive �nite Tx and Ty and (x′, y′) such that |(x′, y′) −
(x, y)| < ε and (x′, y′) ∈ QRE(Tx, Ty).

The set of QRE-achievable states can be described as

S =

{{
x ∈

[
1

2
, 1

]
, y ∈

[
bx

bx + ax
, 1

]}
∪
{
x ∈

[
0,

1

2

]
, y ∈

[
0,

bx
bx + ax

]}}
∩
{{

x ∈
[

by
by + ay

, 1

]
, y ∈

[
1

2
, 1

]}
∪
{
x ∈

[
0,

by
by + ay

]
, y ∈

[
0,

1

2

]}}
Theorem 2 (Optimal Control Mechanism). Given a 2×2 game, if it satis�es

the following property:

1. Its diagonal form satis�es ax, bx, ay, by > 0.

2. None of its pure Nash equilibria is the socially optimal state.

Without loss of generality, we can assume ax ≥ bx. Then

1. there is a stable QRE-achievable state whose social welfare is better

than any Nash equilibrium;

2. there is a mechanism to control the system to this state from the best

Nash equilibrium by sequentially changing Tx and Ty.
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Figure 2.6 shows the set of QRE-achievable states. A point (x, y)represents

a mixed strategy pro�le where the �rst agent chooses its �rst strategy with

probability x and the second agent chooses its �rst strategy with probabil-

ity y. The grey areas depict the set of mixed strategy pro�les (x, y) that

can be reproduced as QRE states for example i.e., these are outcomes for

which there exists temperature parameters (Tx, Ty) for which the (x,y) mixed

strategy pro�le is a QRE.

While Figure 2.7 shows the social welfare. The colour of the point (x, y)

corresponds to the social welfare of that mixed strategy pro�le with states

of higher social welfare corresponding to lighter shades. The optimal state

is (1, 0), whereas the worst state is (0, 1).

Figure 2.6: Set of QRE-achievable states.

Figure 2.7: Social Welfare.



Chapter 3

Auction Mechanism and

Coordination Games

In this chapter we illustrate di�erent types of auctions mechanisms and prove

if they can be modeled in terms of coordination games. We are interested in

this con�guration since we want to apply hysteresis mechanism in order to

drive players to a states that is socially optimal.

An auction can be seen as a game where players are the bidders and their

actions are the possible bid values. Each player has an intrinsic value for

the item being auctioned, that is called true value, which corresponds to the

maximum value he is willing to pay.

We consider three types of auction mechanisms:

1. First-Price Sealed-Bid Auction (FPSBA) simply called First price,

is the most common and used mechanism;

2. Generalized Second Price (GSP) is a generalization of the Second

Price sealed-bid auction in which truthfully bidding is not the optimal

strategy, it is used because it can lead to a greater revenue;

3. Repeated GSP with Budget Constrains (RGSPB), where each

player have a �xed budget and auction is repeated over time.

3.1 Auction Mechanism

3.1.1 First Price

In this auction mechanism, all the players simultaneously submit a "sealed-

bid" to the seller and the winner is the one that bids the highest value.

24
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Bid values do not only a�ect whether the player will win or not but also

how much he will have to pay for the item.

De�nition 14 (First Price Auction). Consider the following scenario:

• N = {1, 2, ..., n} is the set of players;

• Θ = [0, 1] for every player i ∈ N ;

• b = {b1, b2, ..., bn} set of bid, one bid per player;

Ui =

{
θi − bi if i is the winner

0 otherwise
(3.1)

N players take part to a single item sealed bid auction. Every player has

his own evaluation for the item (θi) but he will bid a value bi lower than θi,

the item is sold to the player with the highest value. �

Example 4 (First Price Auction). In this example a single auction with �ve

players and one bid value per player is considered:

• N = {A,B,C,D,E},

• Θ = {20, 43, 37, 77, 80},

• b = {10, 33, 15, 31, 52}.

Players are sorted by decreasing bid values, rnk = {E,B,D,C,A}. The
item is sold to player E and his utility is equal to 80 − 52 while the other

players have an utility equal to 0. �

Truthfully bidding is not the optimal strategy. Bidding the true value

(θi) the winner player i will get a zero pro�t while bidding a value bi smaller

than θi he will get a positive utility.

The challenge is to understand how a player should behave in this auction

mechanism. If a player bids a value close to his true value he will get a small

payo� while bidding a value that is too far from his true value the payo�

will increase but at the same time decrease the winning probability.

Finding the tradeo� between these two factors is a complex problem that

involves the knowledge of the bid value of other players and their distribution.

A general solution is to increase the bid value in relation with the number of

players that are involved in the auction. Increasing the number of players,

the highest bid is likely to be larger therefore the probability for an agent to

win the auction increase if he bid higher.

In a �rst price auction with two bidders whose values are drawn in-

dependently and uniformly in the interval [0, 1] there is a Bayesian-Nash

equilibrium when each player bids half of his value.
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3.1.2 Generalized Second Price

Generalized Second Price Auction (GSP) is a non-truthful mechanism for

multiple items. In online advertising each advertiser is a player, items are

the slots where to place adds and the bid value is the price that the player

is willing to pay per click and represents his strategy.

Players are ranked on the base of their bid value; the top slot is given to

the highest bid, the second to the second highest bidder, and so on. Slot i

is assigned to the ith highest bidder at a price per click that depends on the

ith+1 bidder. The utility of each player is given by the di�erence between

the allocation value and payment

ui = qibiλi − qi+1bi+1 (3.2)

De�nition 15 (Generalized Second Price Auction). Problem de�nition:

• N = {1, 2, ..., n} is the set of players;

• Θ = [0, 1] for every player i ∈ N represents the set of true values;

• b = {b1, b2, ..., bn} is the set of bid, one bid per player;

• q = [0, 0.1] for every player i ∈ N is the gain of the player when add

is clicked;

• K is the number of available slot;

• Λ = {λ1, λ2, ..., λK} is the set of discounts associated with the slots

values;

Uj =


qjbjλj − qj+1bj+1 if j < K j = 1...N

qKbKλK if j = K j = 1...N

0 if j > K j = 1...N

�

Example 5 (Generalized Second Price Auction). In this example it is con-

sidered the same scenario analyzed for the First Price Auction.

• q = {0.08, 0.0454, 0.0432, 0.0825, 0.0083};

• K = 10;

• Λ = {1, 0.71, 0.56, 0.53, 0.49, 0.47, 0.44, 0.44, 0.43, 0.43};
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Player E UE = −1.0666

Player B UB = −1.4938

Player D UD = 0.7842

Player C UC = −0.4566

Player A UA = 0.3920

Slot 6

Slot 7

Slot 8

Slot 9

Slot 10

Table 3.1: GSP Auction mechanism example.

�

In this scenario truthfully bidding is not a dominant strategy, below the

proof:

Proof. Suppose to be in the following situation

• N = 2 number of player;

• K = 3 number of slot;

• b1, b2 bid of player i;

• q1, q2 ∈ [0, 1];

• λ1 = 1 and λ2 ∈ [0, 1].

Generally speaking the payments for player i is given by pi = qi+1bi+1

qi
.

With two players if q1b1 ≥ q2b2 payment for player 1 and 2 are respectively

p1 = q2b2
q1

and 0. The displayed con�guration is

Player 1

Player 2

Under the assumption of truthfulness (b1 = θ1) the expected utility of

player 1 is u1 = (λ1)q1b1 − q2b2 and player 1 is allocated in the �rst slot.

Instead under non-truthfulness assumption b1 6= θ1, b1 � θ1 player 1 is

allocated in the second slot with a utility equal to u1 = q1b1(λ2)− 0.

GSP is not truthful because player 1 missreports his true value.
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3.1.3 Repeated GSP with budget constraints

In the previous mechanism budget constraints are not considered. In re-

peated GSP auction each player has a �xed budget and participates to the

auction until it runs out. Like in GSP players are displayed according to

their bid value, the top slot is assigned to the player with the highest bid

value the second to the second highest and so on, player i is allocated on

slot i. The utility of each player is given by

ui =
∑
T

qibiλi −
∑
T

qi+1bi+1 + bgti (3.3)

where T is the number of repeated auctions and
∑

T qi+1bi+1 = 0 if player

i is allocated in the last slot.

De�nition 16 (Repeated GSP with budget constraints). Problem de�nition:

• N = {1, 2, ..., n} is the set of players;

• Θ = [0, 1] for every player i ∈ N represents the set of true values;

• b = {b1, b2, ..., bn} is the set of bid, one bid per player;

• q = [0, 0.1] for every player i ∈ N is the gain of the player when add

is clicked;

• K is the number of available slot;

• Λ = {λ1, λ2, ..., λK} are the slot values;

• BGT = {bgt1, bgt2, ..., bgtn} is set of initial Budget;

• T is number of auction repetition;

Uj =


∑

T qjbjλj −
∑

T qj+1bj+1 + bgtj if j < K∑
T qKbKλK + bgtK if j = K

bgtn if n > K

�

Example 6 (Repeated GSP Auction with budget constraints).

• T = 100

• BGT = {14.9865; 65.9605; 51.8595; 97.2975; 64.8991};
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Player E UE = 37.1675 resE = 25.9459

Player B UB = 27.1223 resB = −0.5345
Player D UD = 117.6867 resD = 80.4495

Player C UC = 39.8998 resC = 31.0595

Player A UA = 25.1785 resA = 14.9865

Slot 6

Slot 7

Slot 8

Slot 9

Slot 10

Table 3.2: Repeated GSP Auction mechanism: at iteration 26 player B reaches

negative residual budget, at the next iteration he leaves the auction.

Player E UE = 35.0416 resE = 23.3884

Player D UD = 118.8545 resD = 79.8015

Player C UC = 39.5518 resC = 30.2595

Player A UA = 25.6025 resA = 14.9865

Player B UB = 27.1223 resB = −0.5345
Slot 6

Slot 7

Slot 8

Slot 9

Slot 10

Table 3.3: Repeated GSP Auction mechanism at iteration 27.

�

Repeated GSP is a non-truthfully mechanism, misreporting the bid value

a player can gain a better utility. Below the proof:

Proof. Suppose to be in the following situation:

• N = 2;

• bi bid of Player i for i = 1, 2;

• θi true value of player i;

• qi ∈ [0, 0.1] for i = 1, 2;

• λ1 = 1 and λ2 ∈ [0, 1] are the slot values.
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• Bi budget of player i for i = 1, 2.

We analyze the problem form the point of view of Player 1.

Slot 1 q1θ1λ1

Slot 2 q1b1λ1

Truthfully reporting: n′1(q1θ1λ1) − B1 where n′1 is the number of time

the player is visualized.

Miss-reporting: n′′1(q1b1λ1) − B1 where n′′1 is the number of time the

player is visualized.

To be in the �st slot the player pays more for the allocation therefore he

will deplete �rst the budget we can conclude that n′′1 � n′1.

3.2 Introduction to coordination games

In this analysis' auctions with 2 players and 2 possible values of bid per

player are considered. This situation can be seen as 2× 2 game where each

player can choose one action between two available options.

A and B are the payo� matrices of players A and B respectively

A =

(
a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)
,

where aij denotes the payo� of player A when he chooses action i and

player B action j while bij denotes the payo� of player B when he chooses

action j and player A action i.

The diagonal shape of the payo� matrix

A =

(
ax 0

0 bx

)
, B =

(
ay 0

0 by

)
,

is a coordination game if ax, bx, ay, by > 0, where:

• ax = a11 − a21,

• bx = a22 − a12,

• ay = b11 − b12,

• by = b22 − b21.



3.3. Auctions analysis 31

The aim is to understand under which conditions the First Price, Gener-

alized Second Price and Repeated GSP with budget constraints auction can

be modeled as a coordination game.

Under the assumption that overbidding 1 is not allowed, θ represents the

true value of the player and b his bid value, therefore θ > b for both players.

x1 and x2 refer to the bid values of player A while y1 and y2 to player

B. The analysis begins assuming that all bid values are di�erent x1 6= x2 6=
y1 6= y2 then the case in which player have equal bid values will be analyzed.

3.3 Auctions analysis

3.3.1 First Price

In the First Price auction the winning player i is the one that bids the highest

value and his utility is

ui = θi − bi (3.4)

that is always nonnegative (θ ≥ b), while the player who lost gets a utility

equal to 0.

Theorem 3. Given First Price auction with 2 players and 2 bids per players,

�xing ax to be positive, there is no way to satisfy the other condition of

coordination game regardless of how bid values are assigned.

Proof. ax is positive if the utility value in a11 is greater than the utility value

in a21. There are three cases in which this condition is satis�ed:

1. (a21 = 0 and a11 > 0)

To have a21 = 0 player B must win the auction and therefore y1 > x2

and b21 = θ2 − y1.

a11 > 0 if player A wins x1 > y1 than a11 = θ1 − x1 > 0 and b11 = 0.

So,

(
a11 ?

0 ?

)
,

(
0 ?

b21 ?

)
where '?' denotes that the value is unknown.

1Overbidding occurs when a player submit a bid value higher than his true value

(θi > bi)
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To satisfy ay > 0 being b11 = 0, b12 must be negative but this is not

possible under the assumption that overbidding is not allowed. There-

fore, it holds ay < 0 and thus this case does not lead to a coordination

game.

Below are the results of the simulation obtained for:

• θ =
[
0.47 0.64

]
;

• bgt =
[
0.4046 0.4484

]
;

• q =
[
0.094 0.0646

]
;

• T = 100.

0.1 0.05

0.22 0.25,0 0.25,0

0.09 0,0.54 0.38,0

Table 3.4: FP: a21 = 0 and a11 > 0.

2. (a21 > 0 and a11 = 0)

If a11 = 0, player B wins the auction y1 > x1 this means that the only

way to satisfy ax > 0 is having a21 < 0,

(
0 ?

a21 ?

)
,

(
b11 ?

0 ?

)
thus, this case does not lead to a coordination game.

Below the result of the simulation obtained for:

• θ =
[
0.77 0.8

]
;

• bgt =
[
0.7094 0.7547

]
;

• q =
[
0.0439 0.0382

]
;

• T = 100.

0.44 0.64

0.18 0,0.36 0,0.16

0.48 0.29,0 0,0.16

Table 3.5: FP: a21 > 0 and a11 = 0.
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3. (a21 > 0 and a11 > 0)

In this case player A always win against the �rst action of player B

then x1 > y1 and x2 > y1. ax is positive if the di�erence between

a11 and a21 is nonnegative, therefore it must holds that a11 > a21.

Winning the auction player A utilities in a11 and a21 are respectively

θ1 − x1 and θ1 − x2. To satisfy a11 > a21 then the bid value x1 must

be lower than the bid value x2 . If this condition is satis�ed, it holds

(
a11 ?

a21 ?

)
,

(
0 ?

0 ?

)

then ay > 0 only if b12 < 0, but this is not possible since b12 is > 0.

Below the results of the simulation obtained for:

• θ =
[
0.23 0.93

]
;

• bgt =
[
0.7792 0.9340

]
;

• q =
[
0.0254 0.0814

]
;

• T = 100.

0.04 0.53

0.19 0.04,0 0,0.4

0.07 0.16,0 0,0.4

Table 3.6: FP: a21 > 0 and a11 > 0.

3.3.2 Generalized Second Price

The Generalized Second Price (GSP) auction is a non-truthful auction mech-

anism where the winner player is allocated in the �rst slot and pay the price

bid by the second-highest bidder. If multiple slots are available, the loser

player is allocated in the second slot and pay nothing. The utility of the

winner player is

uw = qwbwλ1 − qlbl (3.5)

where λ1 is the slot value, qw and bw are respectively the q value and bid

value of the winner player while ql and bl refer to the loser.
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For sake of simplicity �rst the case in which there is only one available

slot is analyzed then the analysis is exetended to the case in which multiple

slot are available.

With one slot the loser player is not allocated, and he gets an utility

equal to 0, while with multiple slots both players are allocated, the loser one

pays nothing and his utility is equal to ul = qlblλ2. Four main scenarios can

be distinguished

(
W1, L1 W2, L2

W3, L3 W4, L4

)
,

(
W1, L1 W2, L2

W3, L3 L4,W4

)
,

(
W1, L1 L2,W2

W3, L3 L4,W4

)
,

(
W1, L1 W2, L2

L3,W3 L4,W4

)
,

Wi indicates that player i wins while Li that he loses. We refer to the

row player as player A while to the column player as player B.

The following case can be discarded

y1 y2

x1 W1, L1 L2,W2

x2 L3,W3 W4, L4

because the following set of conditions never occurs.

• W1 → x1 > y1,

• L3 → x2 < y1,

• x1 > x2,

• L2 → x1 < y2,

• W4 → x2 > y2,

• x2 > x1.

It is not possible to have at the same time x1 > x2 and x2 > x1.

For player A, we focus on the sign of (W1 − W3) and on the sign of

(W4 −W2) while for player B in the sign of (L1 − L2) and in the sign of

(L4 − L3).

The following cell numbering will be used

1 2

3 4

Theorem 4. Given Generalized Second Price auction with 2 players and 2

actions per player, independently on the number of available slot, there is no

way to assign bid value in order to satisfy the coordination games condition.



3.3. Auctions analysis 35

Proof. One slot

• Player A always wins

y1 y2

x1 W1, L1 W2, L2

x2 W3, L3 W4, L4

Since player A always wins we have that both his bid values are greater

than the bid values of player B. If the value of x1 is greater than the

value of x2 and since in cell 1 and cell 3 player A will pay the same

amount for the allocation is possible to derive that W1 is greater than

W3. For the same reasoning it follows that W2 is greater than W4, this

implies that ax is positive and bx is negative.

Having only one slot player B is not allocated and therefore ay and by
are both equal to 0, thus this is not a coordination game.

An example is:

θ =
[
0.78 0.71

]
; bgt =

[
0.7441 0.5

]
; q =

[
0.0654 0.0494

]
;T = 100.

0.19 0.02

0.33 -0.0242,0 0,0

0.7 0.0 0.0242,0

Table 3.7: GSP one slot: Player A always wins.

• Player A wins 3 times

y1 y2

x1 W1, L1 W2, L2

x2 W3, L3 L4,W4

To be in this situation the conditions x1 > x2 and y2 > y1 must

hold. Therefore W1 > W3 implies that ax is positive. With only one

slot L4 = 0 then the value of bx is greater than zero if the di�erence

between q1x1λ1 and q2y2 is negative, if it is satis�ed the sign of ay and

by must be analyzed. As L1, L2 = 0 then ay = 0, while the sign of by
will depends on the value of W4.

There are three con�gurations
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(
W1, L1 W2, L2

L3,W3 W4, L4

)(
L1,W1 W2, L2

W3, L3 W4, L4

)(
W1, L1 L2,W2

W3, L3 W4, L4

)

that can be seen as one rotation of the other. They will not be analyzed,

because they lead to the same result.

An example is:

θ =
[
0.38 0.45

]
; bgt =

[
0.7263 0.7133

]
; q =

[
0.0412 0.0476

]
;T = 100.

0.01 0.1

0.25 0.0091,0 0,0

0.03 0,0 -0.0055,0.0035

Table 3.8: GSP one slot: Player A wins 3 times.

• Player A always wins choosing an action and lose choosing

the other

y1 y2

x1 W1, L1 W2, L2

x2 L3,W3 L4,W4

With only one slot L3, L4 = 0 then ax is positive if q1x1λ1 − q2y1 > 0

and bx > 0 if q1x1λ − q2y2 < 0. As L1, L2 = 0 then ay = 0, for this

reason it is not possible to have a coordination game.

An example is:

θ =
[
0.71 0.78

]
; bgt =

[
0.0616 0.7802

]
; q =

[
0.0526 0.0730

]
;T = 100.

0.55 0.39

0.69 -0.0039,0 0,0

0.28 0,0 -0.0078,-0.0117

Table 3.9: GSP one slot: Player A always win choosing one action

and lose choosing the other.

• Player A always wins against one action on player B and

loose against the other
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y1 y2

x1 W1, L1 L2,W2

x2 W3, L3 L4,W4

The sign of ax depends on the di�erence betweenW1 andW3. Knowing

that W1 is equal to q1x1λ1 − q2y1 and W3 is equal to q1x2λ1 − q2y1

then ax is positive if the value of x1 is greater than the value of x2.

Against the second action of player B player A always loses, his utility

is equal to zero this imply that also bx is equal to zero, therefore we

cannot have a coordination game.

An example is:

θ =
[
0.91 0.86

]
, bgt =

[
0.6646 0.9169

]
, q =

[
0.0898 0.0836

]
, T = 100

0.01 0.37

0.17 0.0063,-0.0157 0,0

0.1 0,0 0,0.0220

Table 3.10: GSP one slot: Player A always win against one action

and lose against the other.

Situations in which player A always lose, lose three times, always lose

against one action and wins against the other or always lose choosing

one actions and win choosing the other

(
L1,W1 L2,W2

L3,W3 L4,W4

)(
L1,W1 L2,W2

L3,W3 W4, L4

)(
L1,W1 W2, L2

L3,W3 W4, L4

)(
L1,W1 L2,W2

W3, L3 W4, L4

)

are similar to those just described as it is like examining the same

problem but from the point of view of player B.

Multiple slots

Now the analysis is extended to the case in which more than two slots

are available. The same scenario as before will be discussed.

• Player A always wins

As already explained for the case in which only one slot is available, if

the value of x1 is greater than the value of x2 then ax is positive while

bx is negative.
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From the point of view of the player B, if the value of y1 is greater

than the value of y2 then the utility in cell 1 (L1) is greater than the

utility in cell 2 (L2), the same holds for L3 and L4. We can conclude

that ay is positive and by is negative.

If the value of y2 is greater than the value of y1 then L2 > L1 and

L4 > L3, this entails that ay is negative and by is positive.

If x2 > x1 and player A wins independently from player B the same

results but with opposite sign will be obtained.

An example is:

θ =
[
0.78 0.71

]
, bgt =

[
0.7441 0.5

]
, q =

[
0.0654 0.0494

]
, T = 100

0.19 0.02

0.33 -0.0242,0.006 0,0

0.7 0.0 0.0242,-0.006

Table 3.11: GSP N slot: Player A always wins.

• Player A wins 3 times

In this situation ax is positive. The sign of bx depends on the di�erence

between L4 and W2. If it is positive then the sign of ay and by must

be veri�ed.

Since the value of y1 is smaller than the value of y2 it follows that

L1 is smaller than L2 and this implies that ay < 0 and that is not a

coordination game.

An example is:

θ =
[
0.38 0.45

]
, bgt =

[
0.7263 0.7133

]
, q =

[
0.0412 0.0476

]
, T = 100

0.01 0.1

0.25 0.0091,-0.0030 0,0

0.03 0,0 -0.0047,0.0032

Table 3.12: GSP N slot: Player A wins 3 times.

• Player A always wins choosing an action and loses choosing

the other
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With N slot ax is positive if the value in cell 1 is greater than the value

in cell 3. This happens if q1x1λ1 − q2y1 > q1x2 is satis�ed.

bx > 0 if L4 > W2, this imply that q1x2λ2 > q1x1λ1− q2y2. These two

conditions depend on the combination of the values of x1, x2, y1, y2 and

q1, q2. If both are satis�ed (otherwise it is not a coordination game)

the sign of ay and by must be control.

Suppose that y1 is greater than y2 then L1 > L2 and this entails that

ay is positive while W3 > W4 leads to a negative value of by.

If the value of y1 is smaller than y2 then L2 > L1 and W4 > W3, it

follows that ay is negative while by is positive, thus this case does not

lead to a coordination game.

An example is:

θ =
[
0.71 0.78

]
, bgt =

[
0.0616 0.7802

]
, q =

[
0.0526 0.0730

]
, T = 100

0.55 0.39

0.69 -0.0143,0.0083 0,0

0.28 0,0 0.0026,-0.0117

Table 3.13: GSP N slot: Player A always win choosing one action

and lose choosing the other.

• Player A always wins against one action of player B and lose

against the other

With multiple slots if the value of x1 is greater than the value of x2

then W1 is grater than W3 because in cell 1 and in cell 3 player A will

pay the same amount for the allocation, this imply that ax is positive.

Player A lose against the second action of player B and he will be

allocated in the second slot without paying, as x1 > x2 then the value

in cell 2 (L2) is greater than the value in cell 4 (L4) then bx is negative.

Now suppose that x1 is smaller than x2, repeating the same reasoning

it follows that ax is negative while bx is positive.

In both cases coordination game conditions are not satis�ed.

An example is:

θ =
[
0.91 0.86

]
, bgt =

[
0.6646 0.9169

]
, q =

[
0.0898 0.0836

]
, T = 100
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0.01 0.37

0.17 0.0063,-0.0151 0,0

0.1 0,0 -0.0054,0.0214

Table 3.14: GSP N slot: Player A always win against one action

and lose against the other.

3.3.3 Repeated GSP with budget constraint

Now is considered the case in which GSP auction is repeated multiple time

(T ).

Each player has a �xed initial budget (bgt) and he takes part in the

auction until his residual budget (res) is non negative.

Player are ranked in decreasing order according to their bid values. The

winner gets a utility equal to∑
T

qwbwλ1 −
∑
T

qlbl + bgtw (3.6)

until his residual budget is positive. As soon as the residual budget becomes

negative, he leaves the auction and his utility will remain constant. The

residual budget is updated after each auction

rest = rest−1 − qlbl

where qlbl represent the payment for the allocation.

The loser player is allocated in the second slot without paying and his

utility is ∑
T

qlblλ2 + bgtl

If the winner player leaves the auction the loser will be allocated in the �rst

slot without paying.

Theorem 5. A 2 × 2 repeated GSP auction mechanism can be traced to a

coordination game only if the two player have the same bid values and parity

is broken randomly.

Proof. In the following analysis to the same scenarios seen for the GSP are

discussed.
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• Player A always win

In cell 1 and cell 3 and in cell 2 and cell 4 player A will pay the same

amount for the allocation, the residual budget is the same and the

Player will run out in the same auction repetition.

Suppose that the value of x1 is greater than the value of x2 then W1 >

W3 and W2 > W4 follows that ax is positive while bx is negative.

Instead if the value of x1 is smaller than the value of x2 then W1 < W3

and W2 < W4, this imply a negative value for ax and a positive value

for bx.

In both situation we do not have a coordination game.

An example is:

θ =
[
0.78 0.71

]
, bgt =

[
0.7441 0.5

]
, q =

[
0.0654 0.0494

]
, T = 100

0.19 0.02

0.33 -1.9358,0.6507 0,0

0.7 0.0 2.4198,-0.6507

Table 3.15: Repeated GSP: Player A always wins.

• Player A wins three times

Repeating the auction in cell 1 and cell 3 player A always wins and

pays the same amount therefore he runs out of budget at the same

time t and from time t+1 his utility remain constants. Since the value

of x1 is greater than x2 the di�erence between W1 and W3 is always

greater than zero then ax > 0.

In cell 2 player A sooner or later will consume his budget and his utility

will remain constant while in cell 4 he doesn't pay for the allocation

and he will never leave the auction this means that L4 continues to

grow. At the end of the game can happen that the value in cell 4 is

greater than the value in cell 2, this imply that bx is positive. If the

value in cell 4 is smaller than the value in cell 2 then bx is negative and

this doesn't lead to a coordination game.

Supposing that ax, bx > 0 the sign of ay and by must be controlled.

In cell 1 and cell 2 playerB always lose, he doesn't pay for the allocation

and he always remain in the auction then both L1 and L2 continue to

grow. Since the value of y1 is smaller than the value of y2 it follows
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that L1 < L2 and this imply that ay is negative. L3 grows over time

while W4 will remain constant if player B leaves the auction. It is

possible to have that L3 > W4 and in this case by < 0 or L3 < W4 and

therefore by > 0, both cases don't lead to a coordination game.

An example is:

θ =
[
0.38 0.45

]
, bgt =

[
0.7263 0.7133

]
, q =

[
0.0412 0.0476

]
, T = 100

0.03 0.25

0.01 -0.2397,-1.0480 0,0

0.1 0.0 0.2631,0.6776

Table 3.16: Repeated GSP: Player A wins 3 times.

• Player A always wins choosing an action and lose choosing

the other

As already explained in the case of GSP with a single auction repetition

we are not able to say if W1 − L3 > 0 or W1 − L3 < 0. Repeating

the auction multiple time in cell 1 player A may terminate his budget

and W1 become constant while L3 increase. It can happen that L3 >

W1 → ax < 0 otherwise ax > 0, the same considerations can also be

applied for W2 and L4. If ax < 0 or bx < 0 it is not a coordination

game, while, if ax, bx > 0 the sign of ay and by must be controlled.

Suppose y1 > y2 then until player A remain in the auction L1 > L2.

In cell 1 player A will leave the game before than in 2 because for the

allocation he pays more, therefore it can never happen that L2 > L1

then ay is positive. In cell 3 and cell 4 player B pays the same amount

hence W3 > W4 implies by < 0.

If y2 > y1 for the same reasoning as before L2 > L1 entails ay < 0 and

W4 > W3 implies by > 0.

An example is:

θ =
[
0.71 0.78

]
, bgt =

[
0.0616 0.7802

]
, q =

[
0.0526 0.0730

]
, T = 100

0.55 0.39

0.28 1.2541,0.619 0,0

0.69 0.0 -1.223,-1.1695

Table 3.17: Repeated GSP: Player A always win choosing one action

and lose choosing the other.
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• Player A always wins against one action of player B and al-

ways lose against the other

From player A point of view, we are interested in the di�erence between

value in cell 1 and 3 and the di�erence between value in cell 2 and 4.

In cell 1 and cell 3 player A win and pay the same amount given by

the bid value of player B and therefore if he exhausts his budget it will

happen at the same time t.

Suppose that x1 > x2 then the utility in cell 1 is greater than the utility

in cell 3, this implies a positive value for ax while L2 > L4 entails a

negative value for bx and this is not a coordination game.

If x1 < x2 then W1 < W3 implies ax < 0 while L2 < L4 implies bx > 0

and this is not a coordination game.

An example is:

θ =
[
0.55 0.92

]
, bgt =

[
0.054 0.5308

]
, q =

[
0.0831 0.0585

]
, T = 100

0.56 0.06

0.28 -0.8305,-0.1164 0,0

0.38 0.0 0.133,0.3146

Table 3.18: Repeated GSP: Player A always win against one action

and lose against the other.

• Players with the same bid values

If the bid values are generated randomly the probability that two play-

ers bid the same value is zero. However, in practice this event may

occurs. In this case it is necessary to de�ne a mechanism to break the

parity.

Parity can be broken randomly and in this case, no predictions on the

winning player can be made, or it may be broken in lexicographic order

and in this case player A always win.

Breaking parity in lexicographic order leads to the cases already ana-

lyzed therefore we do not have a coordination game.

An example is:

θ =
[
0.71 0.78

]
, bgt =

[
0.7441 0.5

]
, q =

[
0.0494 0.0654

]
, T = 100
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0.33 0.7

0.7 1.8278,0 0,0

0.33 0.0 -3.4580,4.5780

Table 3.19: Repeated GSP: equal bid values with parity breakage in favour of

player A.

If the parity is randomly broken and if x1 = y2 and x2 = y1 the

condition of coordination game can be satis�ed.

A =

(
W1 W2/L2

W3/L3 L4

)
, B =

(
L1 W2/L2

W3/L3 W4

)
In cell 2 and cell 3 player A sometimes wins and sometimes loses, since

is not possible to know a priori how many times parity will be break

in favour of player A, there is no way to say if ax > 0 or ax < 0.

Below two simulations with random parity breakage of the same prob-

lem where the �rst one is a coordination game while the second not.

0.33 0.7

0.7 0.3619,1.3811 0,0

0.33 0.0 1.4040,0.2445

Table 3.20: Repeated GSP: equal bid values with random parity breakage

(coordination game).

0.33 0.7

0.7 0.3619,-1.9982 0,0

0.33 0.0 1.4040,-0.6341

Table 3.21: Repeated GSP: equal bid values with random parity breakage

(non coordination game).

3.3.4 Extension to the case n bid values per player

Now the analysis is extended to games with two players and n bid values per

player {x1, x2, ..., xn} and {y1, y2, ..., yn}.

A =


a11 a12 ... a1n

a21 a22 ... a2n
...

... ...
...

an1 an2 ... ann

 , B =


b11 b12 ... b1n
b21 b22 ... b2n
...

... ...
...

bn1 bn2 ... bnn
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The diagonal shape of these utility matrix is a coordination game if the

values along the principal diagonal are all positive.

Corollary 5.1. An auction mechanism with N players and n bid values is

a coordination game if all the 2 × 2 submatrices satisfy the conditions of

coordination game.

Proof. Instead of analyzing this problem directly it can be broken down into

2×2 subproblems and examine if these can be traced to a coordination game.

Let's extract all possible 2× 2 matrices failing on the principal diagonal,

if all of them satisfy the coordination game conditions than is possible to

conclude that also the original problem is a coordination game.

It has been proven that in 2 × 2 games there is no way to assign bid

values in such a way as to obtain a coordination game, for this reason also

the extended problem is not a coordination game.

3.4 Remarks

The analysis carried out in the previous sections shows that the auction

problems studied do not allow coordination game structures. For this reason

it is not possible to use the hysteresis mechanism with the aim of increasing

social welfare.



Chapter 4

Bifurcation Analysis

In this chapter, the basic concepts of non-linear dynamic systems, stability

and bifurcations will be presented.

For this analysis games with two players and two actions per player were

considered.

4.1 Basic notions of Dynamics Systems and Bifur-

cation Theory

A dynamic system is de�ned as a set of di�erential equations that evolve

over time

ẋ(t) = f(x(t)) (4.1)

x and ẋ are n-dimensional vector (the state vector and its time derivative).

Given the initial state x(0), the state equations uniquely de�ne a trajectory

of the system, i.e., the state vector x(t) for all t ≥ 0. Trajectories can be

found through simulations and are represented in the space as curves starting

in x(0) and vector ˙x(t) is tangent to the curve at x(t).

One of the most important properties in the study of dynamic systems is

stability. In the case of non-linear dynamic systems, stability is studied by

linearization approximating the behaviour of the system in the neighborhood

of an equilibrium x̄.

δ̇x(t) =
∂f

∂x

∣∣∣
x=x̄

δx(t) (4.2)

Stability can be studied looking at the eigenvalues of the Jacobian matrix.

J =
∂f

∂x

∣∣∣
x=x̄

=


∂f1
∂x1

. . . ∂f1
∂xn

...
...

. . .
∂fn
∂x1

. . . ∂fn
∂xn


x=x̄

(4.3)
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If all eigenvalues λi, i = 1, ..., n of the Jacobian matrix have negative

real part the dynamical system is stable, otherwise if there is at least one

eigenvalues with positive real part the dynamical system is unstable.

Bifurcation theory, widely used in the study of dynamic systems, aims

at studying of qualitative changes in system dynamics produced by varying

parameters.

De�nition 17. In dynamical systems, a bifurcation occurs when a small

smooth change of the parameter values (the bifurcation parameters) of a sys-

tem causes a sudden "qualitative" or topological change in its behaviour.

Generally, at a bifurcation, the local stability properties of equilibria, peri-

odic orbits or other invariant sets changes. See Faye [2011] for more details.

The study of bifurcations is divided into two main classes:

• Local Bifurcation: it involves degeneracy of some eigenvalues of Jaco-

bians associated with equilibria or cycles;

• Global Bifurcation: it cannot be revealed by eigenvalue degeneracies.

The aim of the study of local bifurcation is to analyse the e�ect of pa-

rameter changes on system stability. In this case, the eigenvalues of Jacobian

matrix are studied, in particular the sign of their real part.

The saddle-node bifurcation is a local bifurcation in which varying a

parameter there is the creation or the disappearance of equilibrium points.

This phenomenon is also called fold or limit point.

Figure 4.1: Example of local bifurcation: saddle-node bifurcation Dercole and

Rinaldi [2011].

This bifurcation can be seen as a collision of two equilibria at p = p∗: for

p < p∗ the two equilibria are distinct, one is stable (node N) and the other
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is unstable (saddle S). Then, as p increases, the two equilibria approach one

each other and �nally collide when p = p∗.

The eigenvalues evaluated at the saddle are one positive and one negative

while the eigenvalues at the node are both negative therefore when they col-

lide one of the two eigenvalues must be equal to 0. For p > p∗ no equilibrium

is present.

In other words a saddle-node bifurcation can be identi�ed as a change in

the sign of one eigenvalues when p varies.

4.2 Application to Auctions

The results of the bifurcation study applied to the auction mechanism are

shown below.

The dynamics that are considered are Q-Leaning, FAQ and gradient as-

cent. Depending on the dynamics, it is possible to vary the values of di�erent

parameters.

• Q-Learning: Tx and Ty;

• FAQ: τ and α;

• Gradient Ascent: α.

The standard replicator dynamics (equation 2.4) has not been considered

because it does not have parameters that can vary.

The behaviour of the system of dynamic equations as each of the above

parameters varies has been analized below.

The dynamic of Q-Learning at varying the temperatures shows di�erent

behaviours depending on whether the matrices A and B are in the form

of a coordination game or not. The same behaviour is found for the FAQ

dynamics. When the value of α changes, the speed at which the system

reaches the equilibrium changes without a�ecting the stability.

Then the system has been analysed varying player's payo�.

4.2.1 Temperature parameter

The behaviour of the system when the temperature varies depends on the

structure of the matrices A and B. If the conditions for a coordination game

are not met, the dynamical system remains stable, it has only one equilibrium

point and does not show bifurcations regardless of the mechanism by which

these matrices were extracted.
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Results

• bid =

[
0.08 0.4

0.72 0.35

]
,

• q =
[
0.0616 0.0513

]
,

• bgt =
[
0.9744 0.3739

]
,

• T = 500,

• A =

[
−9.8559 0

0 −1.9884

]
B =

[
1.4428 0

0 8.4958

]
,

• α = 0.1,

• FAQ temperature τ = 1,

• Q-Learning temperature temp =
[
1 2

]
.

Evolutionary Dynamics
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Figure 4.2: Q-Learning Evolutionary Dynamics.

As the dynamics shows the systems converges to (0.52, 0.16). This point

is selected for the computation of equilibrium curve (see Figure 4.4).
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Figure 4.3: FAQ Evolutionary Dynamics for α = 0.1.

Equilibrium is at (0.65, 0.11).



4.2. Application to Auctions 52

Bifurcation

Figure 4.4: Q-Learning Bifurcation diagram for non coordination games.

Figure 4.5: FAQ Bifurcation diagram for non coordination games.

The �gures 4.4 and 4.5 show how the system reacts to temperature

changes. In both cases this parameter has no e�ect on the stability of the

system. Eigenvalues tend to be 0 without ever cancelling.
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A di�erent behaviour is obtained if A and B meet the conditions of

having a coordination game. In the previous chapter we have shown that it

is possible to have a coordination game only in the case where two players

have equal bid values. Under these conditions, as the temperature changes,

we see a change in the stability of the system reaching a limit point.

Results

• bid =

[
0.18 0.52

0.52 0.18

]
,

• q =
[
0.0491 0.0527

]
,

• bgt =
[
7.399 6.576

]
,

• θ =
[
0.82 0.94

]
,

• T = 2000,

• α = 0.1,

• FAQ temperature τ = 1,

• Q-Learning temperature temp =
[
1 2

]
.

A =

[
12.0482 0

0 3.5887

]
B =

[
8.4256 0

0 12.0822

]
In this situation the system shows two equilibrium points at (0.0282, 0.0031)

and (0.999, 0.985), this suggests that bifurcation points may occurs.
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Evolutionary Dynamics

Figure 4.6: Q-Learning Evolutionary Dynamics for Coordination games.
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Figure 4.7: FAQ Learning Evolutionary Dynamics for Coordination games.
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Bifurcation

Figure 4.8: Q-Learning Bifurcation diagram for coordination games.

Figure 4.9: FAQ Learning Bifurcation diagram for coordination games.

Q-Learning dynamics shows a LP at (0.39, 0.12) while FAQ dynamics at

(0.32, 0.1). Starting form the initial condition and increasing the temperature

the system remains stable until the LP is reached, than it becomes unstable
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when temperature starts decreasing. The other branch is always stable.

The same behaviour occurs with variations of Ty.

4.2.2 Learning rate α

In FAQ dynamics (Equation 2.23) and Gradient Ascent (Equation 2.24) the

learning rate can vary therefore the system may be a�ected by this param-

eter.

Observing the structure of this learning dynamics it is possible to derive

that this parameter does not a�ect the stability of the system but only

the speed with which it reaches the equilibrium. This behaviour occurs

regardless of whether the matrices, obtained from the auction mechanism,

under analysis meet the conditions for having a coordination game or not.

Figure 4.10: FAQ Evolutionary Dynamics for α = 0.01.
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Figure 4.11: FAQ Evolutionary Dynamics for α = 0.001.

From �gure 4.3, 4.10 and 4.11 we can see how the dynamics is in�uenced

by the learning rate.

Theorem 6. In FAQ and Gradient Ascent dynamics when the learning rate

changes it does not in�uence the stability of the system but only the speed

with which it reaches the equilibrium.

Proof. The set of di�erential equation is given by the pair:

ẋi = xiαfi(x)

ẏi = yiαgi(y)

The Jacobian matrices are

JA =
∂f

∂x
=

[
α ∂f1∂x1

α ∂f1∂x2

α ∂f2∂x1
α ∂f2∂x2

]
det(JA) = α2(...) = 0 (4.4)
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JB =
∂g

∂y
=

[
α∂g1∂y1

α∂g1∂y2

α∂g2∂y1
α∂g2∂y2

]
det(JB) = α2(...) = 0 (4.5)

Since α can assume a value between 0 and 1 from equations 4.4 and 4.5 it

follows that the sign of the eigenvalues does not depend on this parameter so

when α varies the system is not disrupted and it does not shows bifurcations.

Figure 4.12 shows the speed with which the system reaches equilibrium

as α changes. The more α tends to 1 the faster the system reaches the

equilibrium.

Figure 4.12: FAQ learning rate.

4.2.3 Payo� linear combination

This solution has been used for the particular case in which the two players

have the same bid values. The system receives as input four matrices: the

�rst couple (m,n) is obtained breaking the parity in favour of the �rst player

while the second pair breaking the parity in favour of the seconds (M,N).

Matrices A and B are obtained by a linear combination of the above:

A = m + εM

B = n + εN
(4.6)

In this way applying the Q-Learning or FAQ dynamics in addition to the

temperature, the bifurcation study can be carried out as the ε varies.
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As showed in the previous chapter the only way to have a coordination

game is when the two players have the same bid values and parity is randomly

broken. Breaking it in favour of one of the two players falls into the scenario

where a player wins three times, for this reason both pairs of matrices don't

satisfy the conditions to have a coordination game.

Looking at the structure of these matrices it is possible to notice how

changing the parity break in favour of one player rather than the other the

matrices payo� change their signs.

In the linear combination, varying ε between 0 and 1 means that one of

the two matrices have a lower weight, so that it does not cause any changes

in the game structure.

The system remains stable and does not show any bifurcation points.

When the temperature varies, the observed behaviour is the same for non

coordination games.

Results

• bid =

[
0.7 0.33

0.33 0.7

]
,

• θ =
[
0.71 0.78

]
,

• q =
[
0.0494 0.0654

]
,

• bgt =
[
0.7441 0.5

]
,

• T = 300,

• Parity broken in favour of player A

m =

[
0.6397 0

0 4.9344

]
n =

[
−7.3275 0

0 −5.3417

]
,

• Parity broken in favour of player B

M =

[
−4.2891 0

0 −5.4796

]
N =

[
6.0875 0

0 0.7501

]
,

• α = 0.1,

• FAQ temperature τ = 1,

• Q-Learning temperature temp =
[
1 2

]
.
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Linear combination

A =

[
0.6397 0

0 4.9344

]
+ ε

[
−4.2891 0

0 −5.4796

]

B =

[
−7.3275 0

0 −5.3417

]
+ ε

[
6.0875 0

0 0.7501

]
ε can vary between 0 and 1, the value of 0.1 has been chosen as the initial

condition.

A =

[
0.2108 0

0 4.3864

]
B =

[
−6.7188 0

0 −5.2667

]

Figure 4.13: Dynamics.
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Figure 4.14: Bifurcation for ε.

4.2.4 Varying q in GSP Auction Mechanism

Using the GSP auction mechanism is possible to study the behaviour of the

system as q varies. In this case inputs are the bid values of the two player

(b1, b2 for players A and b3, b4 for player B), q1 and q2.

The aim of this study is observing how the dynamical system evolves as

the payo� vary.

We consider now the same scenario considered in section 3.3.2. Attention

is focused on how payo�s are computed instead of their values.
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1. Player A always wins

A =

[
q1b1λ1 + q2b3 q1b1λ1 + q2b4
q1b2λ1 + q2b3 q1b2λ1 + q2b4

]

=

[
q1b1λ1 + q2b3 − q1b2λ1 − q2b3 0

0 q1b2λ1 + q2b4 − q1b1λ1bq2b4

]

= q1λ1

[
(b1 − b2) 0

(b3 − b4)

]

B =

[
q2b3λ2 q2b4λ2

q2b3λ2 q2b4λ2

]

=

[
q2b3λ2 − q2b4λ2 0

0 q2b4λ2 − q2b3λ2

]

= q2λ2

[
(b3 − b4) 0

0 (b4 − b3)

]
(4.7)

2. Player A wins two times

Suppose that b1 > b3; b1 > b4 e b2 < b3; b2 < b4 matrices payo� A e B

will be:

A =

[
q1b1λ1 − q2b3 q1b1λ1 − q2b4

q1b2λ2 q1b2λ2

]

=

[
q1(b1λ1 − b2λ2)− q2b3 0

0 q1(b2λ2 − b1λ1)− q2b4

]

B =

[
q2b3λ2 q2b4λ2

q2b3λ1 − q1b2 q2b4λ1 − q1b2

]

= q2λ2

[
b3 − b4 0

0 b4 − b3

]
(4.8)

If player A always wins against one action of player B and lose against

the other:
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A =

[
q1b1λ1 − q2b3 q1b1λ2

q1b2λ1 − q2b3 q1b2λ2

]

=

[
q1λ1(b1 − b2) 0

0 q1λ2(b2 − b1)

]

B =

[
q2b3λ2 q2b4λ1 − q1b1
q2b3λ2 q2b4λ1 − q1b2

]

=

[
q2(b3λ2 − b4) + q1b1 0

0 q2(b4λ1 − b3λ2)− q1b2

]
(4.9)

3. Player A wins three times

A =

[
q1b1λ1 − q2b3 q1b1λ1 − q2b4
q1b2λ1 − q2b3 q1b2λ2

]

=

[
q1λ1(b1 − b2) 0

0 q1(b2λ2 − b1)− q2b4

]

B =

[
q2b3λ2 q2b4λ2

q2b3λ2 q2b4λ1 − q1b2

]

=

[
q2λ2(b3 − b4) 0

0 q2(b4λ1 − b3λ2)− q1b2

]
(4.10)

From matrices in equations 4.8, 4.9 and 4.10 is possible to notice that

A and B show the same structure. Since q1 and q2 assume a value between

0 and 0.1 these parameters don't a�ect the stability of the system which

maintains only one equilibrium point. For this reason, no bifurcation will be

detected.
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Optimal Control Mechanism

The aim of this chapter is to illustrate a mechanism that improves the Social

Welfare (SW) controlling the temperature parameters.

5.1 Nash Equilibria and Social Optimal

As already explained in section 2.1.3, the NE is the state where each player

has no incentive to change his strategy.

In auctions problem NE may not coincide with the Social Optima (SO)

which is the state where the Social Welfare is maximum.

SW (x, y) :=

n∑
j=1

pj(x, y) (5.1)

For a 2 × 2 game with payo� matrices A,B, the social welfare is given

by:

SW (x, y) = xy(a11+b11)+x(1−y)(a12+b21)+y(1−x)(a21+b12)+(1−x)(1−x)(a22+b22)

where x is the probability with which Player A plays his �rst action and y

is the probability with which B plays his �rst action.

The social optimal state is given by the pair (x, y) which maximizes the

social welfare SW (x, y).

SO = max
(x,y)

SW (x, y) (5.2)

Our goal is to control the parameters of the learning process to drive the

system to a state (x, y) that is QRE-Achievable with a SW greather than

the Nash.

SW (x, y) > SW (xNE , yNE)

65
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where xNE , yNE are the probabilities of being at the NE.

De�nition 18. A state (x, y) ∈ [0, 1]2 is a QRE-Achievable state if for every

ε > 0, there is a positive �nite Tx and Ty and (x′, y′) such that |(x′, y′) −
(x, y)| < ε and (x′, y′) ∈ QRE(Tx, Ty). See Ger Yang and Piliouras [2018]

for more details.

If the Nash Equilibrium coincides with the Social Optimal starting from

any initial state we are always able to reach the SO decreasing the tempera-

ture parameters to zero which means that both player are playing rationally.

An example below:

Example 7. [
−5.57e− 04,−0.0406 0, 0

0, 0 5.57e− 04, 0.046

]

Figure 5.1: Social Optimal coincides with Nash Equilibrium.

On the top of �gure 5.1 we can see the trend of the Social Welfare chang-

ing x and y. The bottom one shows the position of the NE and SO and the

set of QRE-Achievable state.
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The situations in which SO and NE do not coincide are of greater inter-

est, below we will analyze the di�erent possible scenarios that will occur in

auction problems.

5.2 Analysis

In the following analysis we will consider the scenario for which Nash Equi-

librium does not coincide with Social Optimum. In all cases the starting

equilibrium point is found for Tx and Ty equal to 0.

Case 1 [
−1.9358, 0.6507 0, 0

0, 0 2.4198,−0.6507

]

This game has one NE for (0, 1) with a SW equal to 0. It does not coincide

with the SO that is not QRE-Achievable. Increasing Ty it is possible to guide

the system towards the point (0, 0.5) which is QRE-Achievable with a SW

equal to 0.8845 that is greater than the NE.

Theorem 7. Given a 2× 2 game if ax, by < 0 and ay, bx > 0 the game has

only one Nash equilibria and it is not the Social Optimal state than increasing
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Ty the mechanism allows to reach a state with an higher SW.

Case 2 [
0.1021,−1.8664 0, 0

0, 0 −0.1021, 2.2397

]

The game has only one NE for (1, 0) with a SW equal to 0. The NE

does not coincide with the SO which is not QRE-Achievable. Increasing Tx
it is possible to guide the system towards the point (0.5, 0) that is QRE-

Achievable with a Social Welfare equal to 1.0688 greater than the NE.

Theorem 8. Given a 2× 2 game if ax, by > 0 and ay, bx < 0 the game has

only one Nash equilibria which is not the Social Optimal state. Increasing Ty
the mechanism allows to reach a state with an higher SW.

Case 3: no pure Nash Equilibria[
−9.8559, 1.4428 0, 0

0, 0 −1.9884, 8.4958

]
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This game do not admits a pure Nash Equilibria but only a Mixed Nash

Equilibria (MNE) for (0.85, 0.15) as we can see form �gure above the SO do

not coincide with the MNE. Starting form any initial point and increasing

the temperature of Player 2 the system reaches a state close to the SO.

Theorem 9. Given a 2×2 game with ax, bx < 0 and ay, by > 0, if it has only

a Mixed Nash Equilibria which is not the Social Optimal state, increasing Ty
the mechanism allows to reach a state with an higher SW.

If ax, bx > 0 and ay, by < 0, increasing Tx the mechanism reaches a state

with an higher SW with respect the NE.

Case 4: Nash Equilibrium does not belong to the set of QRE-

Achievable state[
−0.4819,−0.1853 0, 0

0, 0 0.4805,−0.0918

]
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In this situation both Nash equilibrium and Social Optimal are not QRE-

Achievable. Increasing the temperature parameters Tx and Ty there is no

way to reach a state with an higher Social Welfare.

Theorem 10. Given a 2 × 2 game if the Nash equilibrium do not coincide

with the Social Optimal and both are not QRE-Achievable, increasing the

temperature parameters there is no way to reach a state with an higher social

welfare.



Chapter 6

Conclusions

In this work we have presented a bifurcation studied applied to auction mech-

anism. First, we analyze the structure of the game obtained by simulation

of the auction mechanism and we show that due to mechanism constraints

we are not able to trace it back to a coordination game.

We conducted the bifurcation study by analyzing the dynamics of Q-

Learning, FAQ and Gradient Ascent. The �rst two dynamics have a similar

behaviour being the FAQ dynamics a variation of the Q-learning which uses

a softmax activation function for policy-generation, and an update rule in-

versely proportional to xi.

For non-coordination games, varying the temperature parameters the sys-

tem remains stable and does not present any bifurcation point. An exception

is when players have the same bid values and ties are broken randomly. In

this situation, we can have a coordination game and the bifurcation study

shows a bifurcation point where the system stability changes. For the GSP

auction mechanism we also analyzed the behaviour of the system as it varied

by q under the Q-learning dynamics. Analyzing the structure of the matrices

we have noticed that they have similar structures between them and because

q assumes a value between 0 and 0.1 the system turns out to be immune to

the perturbations of this parameter. For the case in which the two players

have the same bid values, a further analysis has been carried out through

the linear combination of the matrices obtained by breaking the parity once

in favour of Player 1 and once in favour of Player 2. In this case, we have

analyzed the stability of the system to vary of ε. Since ε can assume a value

between 0 and 1, this means that we're weighing one of the two matrices

more heavily and for this reason the structure of the game do not change.

In the Gradient Ascent dynamics, the only parameter that can vary is

the learning rate α, as we prove this parameter does not a�ect the stability
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of the system but only the speed at which it reaches equilibrium.

Finally, we designed an Optimal Control Mechanism to drive the sys-

tem towards a state, which is not reachable by rational players, with Social

Welfare higher than the Nash Equilibrium.
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