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Abstract

In groundwater flow problems the complexity of the models and the
importance of having reliable tools for their interpretation made uncer-
tainty quantification an essential part of modelling itself. At the same
time Upscaling and Downscaling techniques helped modellers bridging
across different resolution scales to tackle scale inconsistency, while often
increasing even more the uncertainty. Information Theory (IT) provides
powerful tools to quantify information contained in a model, to investi-
gate information loss during Upscaling and to analyze the behaviour of
the spatial structure of a field at different resolution scales. While also
other studies used these IT metrics in groundwater modelling, this work
innovatively coupled them with Monte Carlo simulation method to analyze
Upscaling quality and effects in randomly generated hydraulic conductivity
fields. Nevertheless, the method presented here could be used with a broad
range of Upscaling techniques to asses their effectiveness.

Key words: Groundwater Flow, Uncertainty Quantification, Upscaling,
Information Theory, Monte Carlo Method.
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Sommario

Nei problemi di flusso delle acque sotterranee la complessità dei modelli e
l’importanza di avere strumenti affidabili per la loro interpretazione, ha reso
la quantificazione dell’incertezza una parte essenziale della modellazione
stessa. Allo stesso tempo, le tecniche di Upscaling e di Downscaling hanno
aiutato gli studiosi a muoversi tra diverse scale di risoluzione e ad ovviare a
problemi che rendevano i loro modelli inconsistenti, tuttavia incrementando
spesso l’incertezza. La Teoria dell’Informazione, o Information Theory
(IT), fornisce ottimi strumenti per quantificare l’informazione contenuta
in un modello, monitorare l’informazione persa durante il processo di
Upscaling ed analizzare l’evoluzione della struttura spaziale di un campo a
diverse scale di risoluzione. Già altri studi hanno usato alcune di queste
metriche nella modellazione di problemi relativi alle acque sotterranee, ma
l’innovazione di questo lavoro risiede nell’unirle con il metodo Monte Carlo
per analizzare la qualità e gli effetti dell’Upscaling su dei campi generati
casualmente. I metodi presentati rimangono comunque validi per studiare
una vasta gamma di problemi legati all’Upscaling.

Parole chiave: Flusso di Acque Sotterranee, Quantificazione dell’Incertezza,
Upscaling, Teoria dell’Informazione, Metodo Monte Carlo.
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Extended Abstract

0.1 Introduction

Groundwater system is a complex and open system, which is affected
by natural conditions and human activities. Natural hydrological processes
is conceptualized through relatively simple flow governing equations in
groundwater models. Moreover, observation data is always limited in field
hydrogeological conditions. Therefore, the predictive results of groundwa-
ter simulation often deviate from true values, as a result of the uncertainty
of groundwater numerical simulation [1]. Addressing uncertainty is an
indispensable part of prediction. Groundwater management faces uncer-
tainty on many fronts: in understanding the behaviour of the groundwater
system, in anticipating possible future climatic, economic or geopolitical
conditions, in prioritising objectives; all of them combining to add ambigu-
ity in the evaluation of management options. Focusing on the first, it is
apparent that scientific research has achieved relative success in reducing
this uncertainty, culminating in the ability to approximate the behaviour of
a groundwater system using a "model". There are, however, limits to the
ability of science. Far from being all known, there will always be recognised
and unrecognised unknowns this means that a model will always be a sim-
plification of reality, and the predictions it makes will always be uncertain
[2]. Moreover, often the scale at which transport and flow phenomena in
the porous media are best described could be different from the scale at
which measurements are available, but also different from the scale required
for management decisions [3]. In this cases, although it causes the loss of
information, it is necessary to use Upscaling or Downscaling techniques
to bridge the gap between scales. It goes without saying that, whichever
method is used, some information loss in Upscaling is inevitable. One of
the most applied modelling tools for analysing a system under conditions
of parameter uncertainty is the Monte Carlo simulation. In this technique,
we construct a large number of realizations of the considered domain, say
with respect to a property like hydraulic conductivity. Each realization

xv
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is investigated, yielding a forecast, and the collective behaviour of all
forecasts is then analysed, providing the probabilistic information needed
for making management decisions under conditions of uncertainty. When
it comes to quantify uncertainty, Information Theory (IT) [4] provides
powerful tools, as entropy and mutual information, to evaluate information
of random variables and to study their transmission across different models.
We note that information as proposed by Shannon and uncertainty are
equivalent concepts, as gaining information about something reduces at
the same time the uncertainty related to it. The scope of this study is to
use these IT metrics to qualify Upscaling technique as proposed in [16].
So far, only few efforts have been made to quantify how information loss
occurs when moving to coarser scales [5], while IT metrics had already
been applied to groundwater problems, we cite [6],[7] in this sense, while
[8],[9] focused on the study of hydrological time-series data. The paper is
organized as follow: Section 0.2 contains a brief overview of IT concepts
used to quantify information content at each scale and information transfer
between scales while in Section 0.3 we explain how we built our model
and the Upscaling technique. Results for case σ2

Y = 0.5 are presented
in Sections 0.4,5,6, which contain, respectively the entropy calculations
of different scales, the information partitioning between scales and the
evolution of spatial correlation during Upscaling. Finally, we analyze the
results in Section 0.7, while we refer to the Appendix for the results relative
to case σ2

Y = 2.

0.2 Theoretical background

This study aimed at uncertainty quantification for flow problems in
porous media. Its governing equations at Darcy’s scale, for a chemically
inactive, viscous, Newtonian fluid with constant temperature are:{

ϕV = −k
µ

(∇P + ρg)

∇ ·V = 0
(1)

where we could divide V into its horizontal and vertical components, for
our notation, respectively, Vy and Vx. Shannon [4] provided mathematical
tools for information quantification, which he has defined as "the resolution
of uncertainty". He stated that the amount of surprise related to an
outcome value of a random variable is a measure of information, as the
surprise increases as the probability of the outcome decrease. Given a
random variable X, which has a distribution p (X), the average amount of
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surprise (i.e. information) contained into it, is called the entropy of p (X),
it represented as H (X) and it has the unit of measure of bits. Entropy is
computed as follow:

H (X) = −
N∑
i=1

p (Xi) log2 p (Xi) (2)

Where i is the bin number, N is the number of populated bins of an his-
togram, and p (Xi) is the proportion of data falling into the i-th populated
bin. Given two random variables X, Y that are defined on a probability
space, the joint probability distribution p (Xi, Yj) for X, Y is a probabil-
ity distribution that gives the probability that each of X, Y falls in any
particular range or discrete set of values specified for that variable. The
corresponding joint entropy of X, Y is then computed as:

H (X, Y ) = −
N∑
i=1

M∑
j=1

p (Xi, Yj) log2 p (Xi, Yj) (3)

Where N is the number of different values of X and M is the number of
different values of Y , while p (Xi, Yi) is the joint probability of the Xi and
Yi values. In the case in which these two variables are somehow correlated,
whatever is the nature of the relationship, it is possible that they shared an
amount of information. This portion of information that the observation
of a variable provides about the other variable is called mutual information
and it can be computed as:

I (X, Y ) =
N∑
i=1

M∑
j=1

p (Xi, Yj) log2

p (Xi, Yj)

p (Xi) p (Yj)
(4)

When three variables are involved, it is possible to compute the information
that two variables, let’s say X and Y , provide about the other one, which
is Z in this case:

I (X, Y ;Z) =
N∑
i=1

M∑
j=1

K∑
k=1

p (Xi, Yj, Zk) log2

p (Xi, Yj, Zk)

p (Xi, Yj) p (Zk)
(5)

Where p (Xi, Yj, Zk) is the multivariate joint probability of the Xi, Yi and
Zi values. Recent research on information partitioning [8] has enabled
more precise classification of the nature of multivariate shared information.
Information partitioning categorizes shared information quantities between
multiple source variables and a target variable as either synergistic, unique,
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or redundant. Redundant information (R) is the information that multiple
sources provide to a target such that they overlap in their information
content. Unique information (U) from a source refers to the information it
shares with a target that is not redundant with information provided by
another source. Synergistic information (S) refers to the information that
two sources provide to a target only jointly. We can compute:

I (X, Y ;Z) = U1 (X;Z) + U2 (Y ;Z) +R + S (6)

Where U1, U2, R and S are non-negative quantities. U1 (X;Z) and
U2 (Y ;Z) are, respectively, the information that sources X and Y share
with the target Z; R is interpreted as overlapping shared information; S is
a cooperative provision of shared information that is possible to gain only
if X and Y are considered jointly. These metrics are useful to quantify
the amount of information contained in a variable and the information
that two or three variables share together; this powerful tool has been
used to analyze entropies and information partitioning of reference and
Upscaled fields for variables hydraulic conductivity (or better, as explained
in Section 0.3, Y ) and velocity fields (Vx and Vy). The studied variables
(Y , Vx and Vy) may have a spatial correlation within the field, that could
be linear or not; again IT metrics are useful to detect and quantify these
correlations and study their evolution during the Upscaling process. For a
variable X, sampling all its possible couples of values at (i) one location
and (ii) a location which is distant of a given lag, three coefficients, ρ, R
and U could be computed as [10],[11],[7]:

ρ (X,X (lag)) =
Cov (X (x) , X (x+ lag))

σX(x)σX(x+lag)

(7)

R (X,X (lag)) = {1− exp[−2I (X (x) , X (x+ lag))]}1/2 (8)

U (X,X (lag)) = 2
I (X (x) , X (x+ lag))

H (X (x))H (X (x+ lag))
(9)

being Cov (X (x) , X (x+ lag)) the covariance, σX(x) and σX(x+lag) the
standard deviations of X (x) and X (x+ lag), I (X (x) , X (x+ lag)) the
mutual information between two points of a couple and H (X (x)) and
H (X (x+ lag)) the entropies of the two points. Coefficient U (or uncer-
tainty coefficient) lies between 0 and 1: when the uncertainty coefficient is
zero, it means that X (x) and X (x+ lag) are not dependent on each other;
if its value is unitary, the knowledge of X (x) is able to completely predict
X (x+ lag), and the opposite is also true[7]. The Bravis-Pearson index, ρ,
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is known as the linear correlation coefficient or Pearson correlation coeffi-
cient. It is a measure of the linear dependence of two random variables. if
|ρ| = 1, a perfect linear relationship exists between X (x) and X (x+ lag)
and the variables are fully correlated; instead, if ρ = 0, the variables are
not correlated[7]. R takes values in the range [0,1]. R is zero if X (x)
and X (x+ lag) are independent, and is unity if there is an exact linear
or nonlinear relationship between X (x) and X (x+ lag) [23]. Taking the
spatial average, over all the possible pairs of spatial locations in the domain,
we could study the nature of the spatial dependence, investigating the
effect of Upscaling over the latter for fields Y , Vx and Vy.

0.3 Problem setting
Monte Carlo method requires the generation of random fields, in which

the hydraulic conductivity K is modelled as an isotropic randomly gener-
ated field with imposed statistical features. The domain is a 2D confined
aquifer of side L = 600 [m] with constant thickness on which it is imposed
a uniform grid with nx = ny = 600 squared elements. The hydraulic
conductivity is modelled as:

K = Kge
Y (x,y) (10)

where Kg is a typical value of limestone hydraulic conductivity and Y (x, y)
is a zero-mean second-order stationary random process characterized by a
truncated power law variogram (TPV) with correlation lengths lx = ly = 8
[m] and an isotropic covariance function:

C (h) = γ2
G (h, λu)− γ2

G (h, λl) (11)

where, for m = l, u:

γ2
G (h, λm) = σ2

Y (λm) ρ (h/λm) (12)

σ2
Y (λm) = A

λ2H
m

2H
(13)

ρ (h/λm) = e−
h
λm −

(
h

λm

)2H

Γ (1− 2H, h/λm) (14)

being h the distance (lag), H the Hurst coefficient (0.333 in our model), Γ
the gamma function, A the variance, λu the characteristic scale associated
with the upper frequency cut-off and λl the characteristic scale associated
with the lower frequency cut-off. The model studied here is based on
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(a) Y at η0 (b) Y at η16 (c) Vx at η0

(d) Vx at η16 (e) Vy at η0 (f) Vy at η16

Figure 1: Generated fields for scales η0 and η16 (σ2
Y = 0.5 case).

Upscaling by changing the characteristic scale λl, as in [16] starting from
value 1 [m] (reference scale) to values 2,4,8,16 [m]. Those fields will be
called, from now on, η0,2,4,8,16. 1000 Monte Carlo realization were generated
for every scale, first for a weakly heterogeneous (σ2

Y = 0.5) case, then for a
more heterogeneous (σ2

Y = 2) one. Flow problem was solved with a Finite
Element Method software (FEM) for each of this realization, prescribing
a fixed head on the left side of the domain and a fixed inflow flux on
the right side, while top and bottom borders where characterized by a
no-flow condition (impermeable boundaries). The impact of boundary
conditions have been eliminated by cutting-off the domain along each side
of 5 correlation scales (i.e. by 40 [m]), producing a reshaped squared
domain of side L = 520 [m]. Figure 1 shows the generated Y field and the
Vx and Vy fields for η0 and η16 for the σ2

Y = 0.5 case; it can be observed
that the average flow direction is along the horizontal plane (y axis in our
model).

0.4 Entropy fields

The entropy of the random variables Y , Vx and Vy has been computed
for each point of all the resolution scales. Entropy values in a point of
the domain, since they are computed by averaging across the Monte Carlo
realizations, actually represent a measure of heterogeneity; in other words
low values of entropy for a variable are detected where the likelihood that
the variable occurs is high. In fact, prescribed boundary conditions, such
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(a) Vx at η0 (b) Vx at η4 (c) Vx at η16

(d) Vy at η0 (e) Vy at η4 (f) Vy at η16

Figure 2: Reshaped fields entropies of Vx and Vy for scales η0, η4 and η16

(σ2
Y = 0.5 case).

Y η0 η2 η4 η8 η16

Hm 2.483 2.410 2.277 1.997 0.9590
Hmin 2.332 2.253 2.117 1.837 0.804
Hmax 2.643 2.553 2.429 2.129 1.114
% loss 0 2.93 8.30 19.55 61.37

Table 1: Entropy of Y for each scale (case σ2
Y = 0.5).

as fixed inflow flux across one side of the domain, resulted in values of
entropy close to zero for velocity in that area. An important observation
is that this border effect increased when we Upscaled; if we conceptually
think of Upscaling as a sort of average, it becomes clear that, moving on
coarser scales, this effect influences a growing area. This means as well
that we expect the entropy of a field to decrease with Upscaling, as it
decreases the variability. Figure 2 reports the entropy of reshaped fields
Vx and Vy for scales η0, η4 and η16 of the σ2

Y = 0.5 case. Tables 1,2 and
3 show instead a brief sum up of the results, reporting also the loss of
entropy in relative terms (with respect to η0) for Y , Vx and Vy.

0.5 Information partitioning

Considering the possible triplets formed by the finest scale field as
target variable and all the possible couples formed by other scales as source
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Vx η0 η2 η4 η8 η16

Hm 1.581 1.549 1.466 1.251 0.303
Hmin 1.412 1.373 1.296 1.072 0.163
Hmax 1.753 1.714 1.633 1.396 0.444
% loss 0 6.01 7.23 20.87 80.85

Table 2: Entropy of Vx for each scale (case σ2
Y = 0.5).

Vy η0 η2 η4 η8 η16

Hm 1.806 1.770 1.686 1.455 0.529
Hmin 1.622 1.612 1.512 1.253 0.388
Hmax 1.969 1.928 1.844 1.608 0.661
% loss 0 1.91 6.55 19.38 70.70

Table 3: Entropy of Vy for each scale (case σ2
Y = 0.5).

variables, we studied the evolution of information within Upscaling. Two
kind of representation has been made: Venn diagrams in Figure 3 (case
σ2
Y = 0.5) reports the information partitioning for triplets η0-η2-η4, η0-
η2-η8, η0-η4-η16 and η0-η8-η16, where every circle’s area is proportional to
the average entropy of the field it represents and the intersection between
circles depicts the mutual information between those variables. Instead,
pie diagrams in Figure 4 (case σ2

Y = 0.5) shows the shared information
partitioning components, normalized with respect to the multivariate
mutual information, for fields Y , Vx and Vy. Finally all the results are
summed up in Tables 4,5 and 6.

As we previously stated, during Upscaling the total information con-
tained in a model decreases in absolute value (the circles area decrease
while moving on coarser scales), moreover we observe that the models

Y η0−2−4 η0−2−8 η0−2−16 η0−4−8 η0−4−16 η0−8−16

I (xs1, xs2;xtar) 1.954 1.959 1.941 1.551 1.516 1.168
Uxs1 0.432 0.805 1.430 0.381 1.003 0.642
Uxs2 0.005 0.010 0.003 0.013 0.004 0.011
R 1.501 1.128 0.503 1.125 0.503 0.496
S 0.016 0.016 0.005 0.032 0.006 0.019

Table 4: Trivariate information of Y for each triplet (case σ2
Y = 0.5).
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Vx η0−2−4 η0−2−8 η0−2−16 η0−4−8 η0−4−16 η0−8−16

I (xs1, xs2;xtar) 1.306 1.309 1.305 1.035 1.031 0.732
Uxs1 0.279 0.591 1.168 0.313 0.892 0.588
Uxs2 0.001 0.002 0.002 0.003 0.004 0.010
R 1.023 0.711 0.134 0.711 0.132 0.126
S 0.004 0.004 0.002 0.003 0.003 0.008

Table 5: Trivariate information of Vx for each triplet (case σ2
Y = 0.5).

Vy η0−2−4 η0−2−8 η0−2−16 η0−4−8 η0−4−16 η0−8−16

I (xs1, xs2;xtar) 1.490 1.493 1.487 1.187 1.178 0.850
Uxs1 0.312 0.660 1.208 0.349 0.898 0.561
Uxs2 0.001 0.004 0.001 0.004 0.002 0.010
R 1.171 0.824 0.275 0.823 0.274 0.267
S 0.005 0.006 0.002 0.011 0.003 0.013

Table 6: Trivariate information of Vy for each triplet (case σ2
Y = 0.5).

(a) η0−2−4-Y (b) η0−2−8-Y (c) η0−4−16-Y (d) η0−8−16-Y

(e) η0−2−4-Vx (f) η0−2−8-Vx (g) η0−4−16-Vx (h) η0−8−16-Vx

(i) η0−2−4-Vy (j) η0−2−8-Vy (k) η0−4−16-Vy (l) η0−8−16-Vy

Figure 3: Venn diagram representations of entropy and mutual information
for Y , Vx and Vy for different triplets (case σ2

Y = 0.5). Red circle
represents the target field, while green and blue ones represent,
respectively, the more fine and the coarser source fields.
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(a) η0−2−4-Y (b) η0−2−8-Y (c) η0−4−16-Y (d) η0−8−16-Y

(e) η0−2−4-Vx (f) η0−2−8-Vx (g) η0−4−16-Vx (h) η0−8−16-Vx

(i) η0−2−4-Vy (j) η0−2−8-Vy (k) η0−4−16-Vy (l) η0−8−16-Vy

Figure 4: Trivariate information partitioning through pie diagrams for Y , Vx
and Vy for different triplets (case σ2

Y = 0.5).

become less representative of the reference one (the intersection area de-
creases more and more when we Upscale). We can see that Venn’s diagrams
are not made up of concentric circles, more specifically we note that also
coarser scales contains some original information in their model. This
can be explained considering that, when we Upscale, we are not simply
eliminating the extreme values, but we are calculating new values that will
tend to concentrate around the initial average values, but they will also be
numerically different from the initial ones. Pie diagrams described above,
may be used as well to monitor the transmission of information during
Upscaling; analyzing the metrics represented by them, we see how some
information is "lost" by the shifting of the shared information from the
redundant component to the unique component of the more fine source.

0.6 Spatial correlation evolution

Eq. 7,8 and 9 presented above, were applied for pairs of the same variable
(i.e.,Y or Vx or Vy) sampled at lags ranging from 0 to 32 correlation scales
ly (along the main flow direction). Two different tools are used to depict
the results obtained: a graphical one, in which all the collected couples of
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variables Y , Vx and Vy are collected into scatter plots and an analytical one,
that is the analysis of coefficients ρ,R,U versus the lag. Figure 5 reports
scatter plots at lag = 1 ly, lag = 6 ly, lag = 32 ly, for scales η0,η16 of
variables Y , Vx and Vy for the weakly heterogeneous case. A comparation
of the behaviour of ρ,R,U versus lag is presented in Figure 6 for the case
σ2
Y = 0.5.
Observing these plots we note the effect of homogenization that Upscal-

ing has, this could be seen by the concentration of the couples of points in
more and more narrow regions moving from more fine scales to coarse ones.
By analyzing the coefficients ρ, R and U we could state that Upscaling
has an effect of linearization on the variables, nevertheless the magnitude
of this effect seems also to be limited and not true for high lags.

0.7 Conclusions and future applications
This study aimed at quantifying information contained in a model,

investigating loss of information and quality of a model generated by means
of Upscaling. A new approach has been proposed coupling Monte Carlo
method with IT theory tools to analyze the effects of Upscaling on the Y ,
Vx and Vy fields. These three variables have been studied for two different
cases (σ2

Y = 0.5 and σ2
Y = 2), all of them leading to similar results. This

work could be divided into three main parts:

1. Quantification of information at a given resolution scale: as we
defined it, entropy, is not a measure of heterogeneity of a field, but
rather an indicator of the presence of likely or unlikely to occur
data (low and high entropy, respectively) in a specific point of the
grid. However when averaged on the entire field, entropy indicates
how variable is that field and consequently, the average amount of
surprise embedded in it. This latter definition let us use entropy
to quantify the amount of information included in a model, giving
us the possibility to study its behaviour throughout the Upscaling
process. Both the σ2

Y = 0.5 and the σ2
Y = 2 cases evidenced that

entropy, and so the amount of information of a model, decrease with
Upscaling. We propose to refer to relative entropies (compared with
reference case) as it will be less significative to consider absolute
values of entropy for our purposes.

2. Behaviour of information during Upscaling: while entropy let us
quantify the amount of information of different scales, we still did not
know enough about the evolution of information during the Upscaling
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(a) η0-lag = 1 ly (b) η0-lag = 6 ly (c) η0-lag = 32 ly

(d) η16-lag = 1 ly (e) η16-lag = 6 ly (f) η16-lag = 32 ly

(g) η0-lag = 1 ly (h) η0-lag = 6 ly (i) η0-lag = 32 ly

(j) η16-lag = 1 ly (k) η16-lag = 6 ly (l) η16-lag = 32 ly

(m) η0-lag = 1 ly (n) η0-lag = 6 ly (o) η0-lag = 32 ly

(p) η16-lag = 1 ly (q) η16-lag = 6 ly (r) η16-lag = 32 ly

Figure 5: Scatter plots of Y ((a)-(f)), Vx ((g)-(l)) and Vy ((m)-(r)) (case σ2
Y =

0.5).
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(a) ρ (b) R (c) U

(d) ρ (e) R (f) U

(g) ρ (h) R (i) U

Figure 6: ρ,R and U coefficients for variables Y ((a)-(c)), Vx ((d)-(f)) and Vy
((g)-(i)) (case σ2

Y = 0.5). Different colors refer to results associated
with different Upscaled fields.
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process. Given that the magnitude of information reduces when we
Upscale, it is not trivial to understand how much do two different
models have in common and how much information is transmitted
from one to another. By using the proposed IT metrics we could
answer to those questions and give some tools to decide when an
Upscaled model is too different from the reference one (and from
the finer scale ones). This might facilitate managerial decisions for
aquifer characterization, as it helps understanding precisely what
happens to information during the Upscaling process. As an example
of the application of these metrics, it could be observed that couples
η2−4 and η2−8 share the same amount of information with target
variable η0; using couple η2−8 to characterize η0 is equivalent to do it
by using η2−4.

3. Variation in the spatial correlation: lastly we investigated the nature
of the relations between different point of the same field, for variables
Y , Vx and Vy. It has been showed that Upscaling alters slightly
the structure of the fields, by increasing the linear correlation, but
not in a significant way, as coefficient U denotes still a low spatial
correlation between variables.

When we analyzed the strongly heterogeneous fields we could see that
the entropy of the Y field remained almost the same with respect to
the weakly heterogeneous ones; even though the variance increased, the
borders of the binning became more wide and, as the number of bins
did not change, this led to similar results with respect to the weakly
heterogeneous case. This was not true for velocity fields, as we could notice
an appreciable reduction of entropy for both fields. Moreover, with respect
to the σ2

Y = 0.5 case, the relative reduction of entropy during Upscaling
increased in this case, in particular for variable Vy (the mean direction of
the flow): for this case we observe that we lost more information relevant
to flow characterization when we Upscaled the field. Again, other small
differences were not significant nor qualitatively different from the previous
case. All the results were obtained with a fixed-binning technique, in order
to get probability functions from discrete variables, choosing to divide all
the data in 15 bins as suggested by [15]; we assert that this is a critical
part of our work, since it does not exist a rigorous binning procedure
for this case. We suggest that an improvement to this limitation could
be the use of Kernel Density Estimation (KDE), in order to obviate the
use of discrete variables. This could be then a starting point for future
applications; while future studies could be also based on real data, instead
of synthetic ones, as those provided by [18]; this would allow to develop an
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IT-based Upscaling technique starting from real data at different resolution
scales. Other possible future studies could analyze the Downscaling process,
which is much more obscure by now than Upscaling, or simply use this
same approach to study transport and multi-component reactive transport
problems instead of flow problems like the present study.





Chapter 1

Introduction

Groundwater system is a complex and open system, which is affected
by natural conditions and human activities. Natural hydrological pro-
cesses is conceptualized through relatively simple flow governing equations
in groundwater models. Moreover, observation data is always limited
in field hydrogeological conditions. Therefore, the predictive results of
groundwater simulation often deviate from true values, as a result of the
uncertainty of groundwater numerical simulation [1]. Addressing uncer-
tainty is an indispensable part of prediction. Groundwater management
faces uncertainty on many fronts, in understanding the behaviour of the
groundwater system, in anticipating possible future climatic, economic or
geopolitical conditions, in prioritising objectives, all of them combining to
add ambiguity in the evaluation of management options. Focusing on the
first, it is apparent that scientific research has achieved relative success in
reducing this uncertainty, culminating in the ability to approximate the
behaviour of a groundwater system using a "model". There are, however,
limits to the ability of science. Far from being all known, there will always
be recognised and unrecognised unknowns this means that a model will
always be a simplification of reality, and the predictions it makes will
always be uncertain [2]. Moreover, often the scale at which transport
and flow phenomena in the porous media are best described could be
different from the scale at which measurements are available, but also
different from the scale required for management decisions [3]. In this
cases, although it causes the loss of information, it is necessary to use
Upscaling or Downscaling techniques to bridge the gap between scales. It
goes without saying that, whichever method is used, some information
loss in Upscaling is inevitable. One of the most applied modelling tools
for analysing a system under conditions of parameter uncertainty is the
Monte Carlo simulation. In this technique, we construct a large number of

1



2 Chapter 1. Introduction

realizations of the considered domain, say with respect to a property like
hydraulic conductivity. Each realization is investigated, yielding a forecast,
and the collective behaviour of all forecasts is then analysed, providing
the probabilistic information needed for making management decisions
under conditions of uncertainty. When it comes to quantify uncertainty
Information Theory (IT) [4] provides powerful tools, as entropy and mutual
information, to evaluate information of random variables and to study
their transmission across different models. We note that information as
proposed by Shannon and uncertainty are equivalent concepts, as gaining
information about something reduces at the same time the uncertainty
related to it. The scope of this study is to use these IT metrics to qualify
Upscaling technique as proposed in [16]. So far, only few efforts have been
made to quantify how information loss occurs when moving to coarser
scales [5], while IT metrics had already been applied to groundwater
problems, we cite [6],[7] in this sense, while [8],[9] focused on the study
of hydrological time-series data. After recalling the governing equation
of the flow problem related to the studied scales, entropy in Chapter 2,
mutual information and other IT metrics will be presented. Chapter 3 will
set-up the problem, explaining the procedure and parameters of the Monte
Carlo simulation. Results are presented in Chapter 4, which contains,
the entropy calculations of different scales, the information partitioning
between scales and the evolution of spatial correlation during Upscaling.
Finally, we will analyze the results in Chapter 5. All the results refer to
the weakly heterogeneous case (σ2

Y = 0.5), while we refer to the Appendix
for the strongly heterogeneous case (σ2

Y = 2).



Chapter 2

Theoretical background

2.1 Modelling of groundwater flows

Groundwater is the water present beneath Earth’s surface in soil pore
spaces and in the fractures of rock formations. A unit of rock, or an
unconsolidated deposit, is called an aquifer when it can yield a usable
quantity of water. More specifically, an aquifer is a porous medium domain
that contains water (i.e. the entire interconnected void space is filled
with water) and that allows water to move through it under ordinary field
conditions. The study of the flow through a porous medium is involved in
all models of groundwater systems. The biggest problem is that we are
not able to know in detail the porous structure of the rock formations and
the spatial distribution of their properties. However, since it is neither
feasible nor required to model the detailed flow inside the pore space, we
shall discuss how the flow could be modelled without information both on
the spatial distribution of properties and on the details of the pore space
geometry. Uncertainty in groundwater modelling is caused, mostly, by the
heterogeneity in aquifer properties, primarily, hydraulic conductivity and
porosity. In fact, we can take measurements at certain locations, but they
cannot be used to describe with absolute certainty the surrounding areas.
In most practical cases, there are never enough data to describe the spatial
distributions of these properties in sufficient detail, and interpolation is
used to fill in missing data. One way to deal with uncertainty associated
with a phenomenon, or a process, is to envision it as a random process,
also called a stochastic process. Therefore, the basic idea is not to treat
the considered phenomenon (flow or transport) in a deterministic way, but
to interpret it in a stochastic way. In practice, we construct a large number
of realizations of the considered domain, say with respect to a property like

3
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hydraulic conductivity. Each realization is investigated, yielding a forecast.
The collective behaviour of all forecasts is then analysed, providing the
probabilistic information needed for making management decisions under
conditions of uncertainty. This requires the generating of a large number
of realizations of the parameter field and it is done by a random field
generation algorithms.

2.1.1 Flow equation

To start, we consider chemically inactive, viscous, Newtonian, of a
constant temperature fluid. Two different approaches could be used:

• Eulerian: a fixed control volume is considered in a space frame of
reference;

• Lagrangian: an individual fluid parcel is controlled as it moves
through space and time.

We will use the former approach, along with conservation of mass and
Navier-Stokes equation to derive the flow equation. The mass of the
infinitesimal element dΩ is dM , which could be calculated as:

dM = ρdΩ (2.1)

We assume the absence of sources and sinks terms. Since the control mass
M is conserved, recalling Reynolds transport theorem:

dM

dt
=

∫
Ω

dρ

dt
dΩ +

∫
Γ

ρV · ndΓ (2.2)

Which leads us to (using Gauss-Divergence theorem):

dρ

dt
+∇ · (ρV) = 0 (2.3)

According to [17], we assume relatively incompressible fluids in the pore
scale domain, where changes in pressure, hence density, are small compared
to the overall pressure, the density can be approximated as constant and
so eq. 2.3 can be rewritten as ∇ ·V = 0. The second equation we will
implement is the conservation of momentum, given by the Navier-Stokes
equation:

ρ

(
δV

dt
+ V · ∇V

)
= −∇P + µ∇2V (2.4)
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where P indicates pressure [MLt−2] and µ the viscosity [MLt−1]. According
to [17] and [21], the flow field changes slowly over time, and it is reasonable
to neglect any time dependence. We introduce Reynold’s Number Re,
ratio of inertial to viscous forces:

Re =
ρvcLc
µ

(2.5)

where vc and Lc are the characteristic velocity and length. Roughly
speaking, for a sand field and water fluid, typical values of the quantities,
involved in eq. 2.5, are Lc = 10−5 ÷ 10−4 [m] ρ = 103 [kg/m3], µ = 103

[Pa · s], vc = 10 [m/day], as consequence, assumption of laminar regime
is so reasonable (see [17]). It is possible to average the Navier-Stokes
equation and derive a linear relation between volumetric flow rate and
pressure gradient, known as Darcy’s law, as follows:

Q = −k

µ
A (∇P − ρg) (2.6)

where Q is the volumetric flow rate [L3t−1], k is the permeability [L2], A is
the cross sectional area [L2], P is the pressure, ρ is the density [ML−3], g
is gravitational acceleration [Lt−2]. In case of isotropic and homogeneous
media, permeability is reduced to a scalar quantity. In our case, we assume
to deal with an heterogeneous system, which is characterized in terms of
spatial distribution of permeability. We consider a permeability k = kI,
with I the identity matrix and random process k described in Chapter 3. It
is important to remind the flow occurs only in the pore space, therefore the
effective area has to take into account the porosity ϕ. This is particularly
significant in order to calculate the actual velocity, because only a fraction
of the total formation volume is available.

V =
q

ϕ
(2.7)

where we could divide V into its horizontal and vertical components, for
our notation, respectively, Vy and Vx. Putting together Darcy’s law with
the continuity equation we finally obtain a description of the fluid flow,
that could be summed up by:{

ϕV = −k
µ

(∇P + ρg)

∇ ·V = 0
(2.8)
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2.1.2 Monte Carlo Analysis

The Monte Carlo method assumes that the modelled phenomena can be
represented by a deterministic mathematical model, with known coefficient
values. Consider, for example, a single-phase flow in a two-dimensional
isotropic aquifer having the spatial structure of the field velocity driven by
the previous formulations. Given the knowledge of the domain geometry,
the initial conditions, the boundary conditions and the spatial distribution
of the hydraulic conductivity, we can solve eq. 2.8 to yield a unique
prediction (solution) of future head values and velocities. However, we
cannot face the problem in this way because we are uncertain about the
input information, in fact we are not able to determine the hydraulic
conductivity field in a deterministic way. The Monte Carlo method deals
this kind of uncertainty as a probability issue. In practice, instead of
attempting to obtain the uncertain, or missing information needed as input,
it uses the available data to produce the statistical characteristics (e.g.,
mean, standard deviation, covariance) of the parameters associated with
the considered flow domain (the hydraulic conductivity), and then creates
a large number of realizations, each of which is a possible manifestation of
the unknown reality. A large number of simulations is conducted in this
way, each making use (as input) of one of the realizations of the spatial
distribution of the model parameters. Each of the produced outputs
contains detailed information on the distributions of the sought variables.
In this way, instead of a single deterministic prediction, obtained by solving
the given mathematical model with known parameters, we obtain many
solutions, one for each realization of the parameter field. From them,
we obtain the statistical characterization of the solution. By applying a
probabilistic (or statistical) analysis to these many equally likely to occur
outcomes, we can provide quantitative, albeit probabilistic, answers to
questions like, what is the probability that, at a certain location, the flow
velocity is lower than a certain target? The Monte Carlo procedure seems
simple and straightforward despite that it has a high computational cost
and we need to know the probability distribution of the parameter of interest
(hydraulic conductivity) to generate the many realizations of its spatial
distribution. The procedure for the stochastic analysis described above is
the following. The generation of random realizations, required in the Monte
Carlo simulation, calls for the generation of a sequence of random numbers.
Although such sequence can be obtained, for example, by throwing a dice
repeatedly, we must use a computerized pseudo random number generator.
This is based on a mathematical algorithm, programmed for a computer,
that can generate a seemingly random sequence of numbers with a certain



2.2. Upscaling 7

precision. Actually, the process is only pseudo-random, because we need
a seed number to generate a sequence of random numbers by means of
a computer and it is possible that the same sequence of numbers will
be generated every time if we do not change the seed number. Using
an algebraic transformation, meaning replacing one variable by another,
defined by a functional relation, this sequence of random numbers, can be
mapped onto a Gaussian probability distribution. Armed with a random
number generator and a probability distribution, we can now generate
the random fields (of parameters, such as hydraulic conductivity) needed
as input for the Monte Carlo simulations of the considered mathematical
model. We divide the domain of interest into a number of small cells,
each assumed to be homogeneous. Selecting one cell to start from, we can
randomly (pseudo-randomly) assign to it a parameter value. We then move
to the next cell and assign to it another random hydraulic conductivity
value. We continue this process, until the entire transmissivity field is
defined. Summarising, to obtain a stochastic field of hydraulic conductivity
values, we start by inserting a seed number into a random number generator.
The random number generator then produces a sequence of pseudo-random
numbers taking into account the prescribed spatial covariance function
in order to accommodate the spatial correlation of the aquifer properties.
Based on the assumed pdf (for example, log-normal distribution), and a
provided mean and standard deviation, these numbers are then mapped into
the sought hydraulic conductivity values. The values that are assigned to
the various cells are not random but follow the properties of the probability
distribution specified. Thus, the values at neighbouring cells should be
conditionally generated, on the basis of known information concerning
the covariance. Generally, there are two types of random parameter fields
that can be generated: conditional and unconditional. The conditional (or
constrained) random parameter field must satisfy the requirement that its
values at sampled points should be exactly equal to those actually measured,
or observed, there. These measured values are true values (known by
measurements); hence, the generated realizations should conform to this
constraint, as in our case. In an unconditional (i.e., unconstrained) random
parameter field generation instead, the observed values are ignored, or
better, they are unknown.

2.2 Upscaling

In groundwater flow problems scale inconsistency is very common. The
scale at which transport and flow phenomena in the porous media are best
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described is usually very different from ( larger than) the scale at which
measurements are available, but also very different from (smaller than)
the scale required for management decisions [3]. When focusing at the
modelling of groundwater flow and transport the following spatial scales
are often distinguished:

The pore scale (10−6÷ 10−2 [m]): the scale at which flow and transport
through porous media is described in terms of forces and mass fluxes
within the fluid phase and the solid phase and between these phases.
Groundwater flow for instance is described by the Navier-Stokes
equations.

The core scale (10−1 ÷ 100 [m]): the scale at which flux and transport
are described in terms of continuity equations and simplified flux
equations such as Darcy’s law and Fick’s law. This is exactly the
scale at which measurements of hydraulic properties are performed
on samples from drilling cores;

The model block scale (101 ÷ 102 [m]): the scale of blocks or elements
of numerical flow and transport models;

The local scale (102 ÷ 103 [m]): the scale at which groundwater flow
and -transport is considered as three-dimensional. Examples of local
scale groundwater problems are pollution and remediation studies
around waste sites and the assessment of travel time distributions in
protection areas around drinking water wells;

The regional scale (horizontal dimensions 103 ÷ 105 [m]): the scale at
which the subsoil is divided into permeable layers (aquifers) and
less permeable layers (aquitards). The pore scale is usually not
considered in practical groundwater modelling studies. Instead,
one directly starts with the simplified core scale equations and the
representative parameters are measured directly on sediment cores.
These equations are then used to describe local scale and regional
scale groundwater problems. However, hydraulic properties such
as hydraulic conductivity and dispersivity, that are measured on
sediment cores, cannot be used to describe flow and transport at
larger scales. The reason for this is that hydraulic properties usually
exhibit a large spatial heterogeneity. The techniques we use to bridge
the gap between these scale discrepancies are called Upscaling and
Downscaling.
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2.2.1 Upscaling of hydraulic conductivity

The Upscaling of aquifers properties for flow simulation is one of the
most important steps in the workflow for building predictive models.
It is basically the process through which we scale-up properties
defined at a fine-grid system, like hydraulic conductivity, to equivalent
properties defined at a coarse-grid system in such a way that the
two systems act as similarly as possible. For example, the equivalent
hydraulic conductivity Keq of a homogeneous medium (upscaled
scale) is derived from the hydraulic conductivities of an equivalent
heterogeneous medium (reference scale) that, for the same boundary
conditions, would give the same flux. It goes without saying that,
whichever method is used, some information loss in Upscaling is
inevitable.

2.2.2 The Upscaling problem

Despite its importance, Upscaling is not a straightforward process
because we need to bridge the gap between the scale’s discrepancies
and, at the same time, we must retain the geological realism to
effectively represent fluid flow in the reservoir. The common problem
of Upscaling methods is that they tend to smear out the spatially
continuous extremes, such as shale barriers and open fractures. Two
strategies are possible for decreasing the information loss due to
Upscaling: one is to decrease the extent of Upscaling, while the other
to minimize the information loss in the Upscaling procedure. However,
there is not a well-established methodology to measure the quality of
Upscaling routines. So, how to qualify the Upscaling results, that is,
whether an Upscaled results provides a good or bad approximation, is
one of the outstanding problems remaining in this research field [20].
According to [20], the main method that could be used to assess the
quality of Upscaling are the following: The simulation results of the
Upscaled coarse model and the original fine model can be compared.
If they both have the same flow performances, the Upscaling results
can be considered to be a perfect representation of the original domain.
In practice this qualifying method is directly applicable, but it may
be time and money consuming because the simulation at the finest
grid are difficult to obtain. The simulation results can be compared
with performance parameters of the reservoir, such as well pressures,
cumulative produced oil, water breakthrough time or saturation at
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specific locations. The limitation of this approach is that usually
these parameters are not available at the finest grid scale or is too
expensive to obtain them. These are the simplest methods, nowadays
others have been proposed. For example [5] studies the conservation
of spatial autocorrelation to assess information loss through the
Upscaling process, while [6] have used concept of information theory
to develop an IT-based Upscaling technique.

2.3 Information Theory

In 1948, Claude Shannon published a paper called A Mathematical
Theory of Communication [4], which heralded a transformation in
our understanding of the concept of information. Before Shannon’s
paper, information had been viewed as a kind of poorly defined
miasmic fluid, but after his work it became clear that information
is a well-defined and, above all, measurable quantity [19]. The
importance of this theory is that it provides a mathematical definition
of information, which allows to quantify precisely the information
contained in discrete random variables.

2.3.1 Information and entropy

Information is the resolution of uncertainty [4]. Shannon not only
gave theoretical notions about the meaning of information, but above
all he has provided mathematical tools for its quantification. To
be useful, a mathematical formulation must have a minimal set of
properties which are known as "Shannon’s desiderata":

Continuity : The amount of information associated with an out-
come increases or decreases continuously as the probability of
that outcome changes.

Symmetry : The amount of information associated with a sequence
of outcomes does not depend on the order in which those out-
comes occur.

Maximal Value : The amount of information associated with a set
of outcomes cannot be increased if those outcomes are already
equally probable.

Additive : The information associated with a set of outcomes is
obtained by adding the information of individual outcomes.
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Information is inextricably related to probability, perhaps it is useful
to consider jointly the concept of surprise and probability to better
understand what is meant by information. For example, suppose we
are given a coin, and we are told that it lands heads up 90% of the
time. When this coin is flipped, we expect it to land heads up, so
when it does so, we are less surprised than when it lands tails up.
In practice, the more improbable a particular outcome is, the more
surprised we are to observe it. One way to express this might be to
define the amount of surprise of an outcome value X of a random
variable to be 1 divided by the probability of X or 1/p (X), so that
the amount of surprise associated with the outcome value X increases
as the probability of X decreases. However, in order to satisfy the
additivity condition above, Shannon showed that it is better to define
surprise as the logarithm of 1/p (X). This is known as the Shannon
information of X and it is also called surprisal because it reflects
the amount of surprise when that outcome is observed. If we use
logarithms to the base 2 then the Shannon information of a particular
outcome is measured in bits:

i (X) = log2

1

p (X)
(2.9)

where i stands for Shannon information. A general rule for logarithms
states that:

log2

1

p (X)
= − log2 p (X) (2.10)

So that the previous equation can be written as:

i (X) = − log2 p (X) (2.11)

In essence, Shannon information is a measure of surprise and, higher
is the surprise of an outcome, higher will be its information. We
must not confuse bits and binary digits because they are different
types of entities. Even though the word bit is derived from binary
digit, there is a subtle, but vital, difference between them. A binary
digit is the value of a binary variable, where this value can be either
a 0 or a 1, but a binary digit is not information per se. In contrast,
a bit is a definite amount of information. It is clear from previous
equations that to quantify the amount of surprise (i.e. information)
of the outcome of a random variable, we need to know the probability
of the possible outcomes which collectively define the probability
distribution p (X) of the random variable X. However, we are not
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usually interested in the surprise of one outcome of a random variable,
but we would like to know how much surprise (i.e. information), on
average, is associated with the entire set of possible values. That is,
we would like to know the average surprise defined by the probability
distribution of a random variable. For this purpose Shannon defined
the concept of entropy, which lies at the core of information theory
and allows to quantify average information. The average surprise of
a variable X which has a distribution p (X) is called the entropy of
p (X), this average surprise is represented as H (X) and it has the
unit of measure of bits (when the logarithm has base equal to 2). For
convenience, we often speak of the entropy of the variable X, even
though, strictly speaking, entropy refers to the distribution p (X) of
X. Entropy is computed as follow:

H (X) = −
N∑
i=1

p (Xi) log2 p (Xi) (2.12)

Where i is the bin number, N is the number of populated bins
of an histogram, and p (Xi) is the proportion of data falling into
the i-th populated bin, subjected to the condition

∑N
i=1 p (Xi) =

1. Previously, we have said that entropy quantifies the average
information of a random variable, but entropy can be also interpreted
as a measure of uncertainty. Conceptually, when we gain information
about something, its uncertainty is reduced, so information and
entropy are two sides of the same coin. Average information shares
the same definition as entropy, but whether we call a given quantity
information or entropy usually depends on whether it is being given
to us or taken away. For example, a variable may have high entropy,
so our initial uncertainty about the value of that variable is large
and is, by definition, exactly equal to its entropy. If we are then told
the value of that variable then, on average, we have been given an
amount of information equal to the uncertainty (entropy) we initially
had about its value. Thus, receiving an amount of information is
equivalent to having exactly the same amount of entropy (uncertainty)
taken away.

2.3.2 Joint entropy and mutual information

The concepts of information and entropy of one random variable can
be extended to the case of interacting random variables. In this case
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we do not refer to the probability of one single random variable, but
we must consider the joint probability of multiple variables. More
specifically, given two random variables X, Y that are defined on
a probability space, the joint probability distribution for X, Y is a
probability distribution that gives the probability that each of X, Y
falls in any particular range or discrete set of values specified for that
variable. In the case of only two random variables, this is called a
bivariate distribution, but the concept generalizes to any number of
random variables, giving a multivariate distribution. The entropy of
a joint distribution is a straightforward generalisation of the entropy
of a single variable:

H (X, Y ) = −
N∑
i=1

M∑
j=1

p (Xi, Yj) log2 p (Xi, Yj) (2.13)

Where N is the number of different values of X and M is the number
of different values of Y , while p (Xi, Yi) is the joint probability of
the Xi and Yi values. In the case in which these two variables are
somehow correlated, whatever is the nature of the relationship, it is
possible that they shared an amount of information. This portion
of information that the observation of a variable provides about the
other variable is called mutual information and it can be computed
as:

I (X, Y ) =
N∑
i=1

M∑
j=1

p (Xi, Yj) log2

p (Xi, Yj)

p (Xi) p (Yj)
(2.14)

When the variable X,Y are correlated, their joint entropy is not given
by the some of the entropy of X and the one of Y , because some
information is shared between them. The joint entropy of correlated
variables can be obtained in this way:

H (X, Y ) = H (X, ) +H (Y, )− I (X, Y ) (2.15)

While, for independent variables, it holds:

H (X, Y ) = H (X, ) +H (Y, ) (2.16)

Historically, entropy and mutual information have been represented
by means of Venn’s diagrams.

The graphical representation is straightforward: the area of circles is
proportional the entropy of variables, while the intersection between
circles represents the mutual information. This is also useful to
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Figure 2.1: Trivariate information partitioning

understand the meaning of entropy and mutual information when
three variables are considered. In this case the joint entropy is the
overall area given by the figure formed by the three circles, thus it is
lower than the entropy we would obtain by summing each entropy
individually. This because, as mentioned above, some information
is shared by the variables. When three variables are involved, it is
possible to compute the information that two variables, let’s say X
and Y , provide about the other one, which is Z in this case:

I (X, Y ;Z) =
N∑
i=1

M∑
j=1

K∑
k=1

p (Xi, Yj, Zk) log2

p (Xi, Yj, Zk)

p (Xi, Yj) p (Zk)
(2.17)

Where p (Xi, Yj, Zk) is the multivariate joint probability of the Xi,
Yi and Zi values. Moreover, we can also compute the information
I (X;Y ;Z) in common between all the three variables, which is
represented graphically by the central area (grey area):

I (X;Y ;Z) = I (X;Z) + I (Y ;Z)− I (X, Y ;Z) (2.18)

2.3.3 Information partitioning

In a complex natural system, we expect that many source variables
influence the behaviour of a target variable. Consider two source
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variable X,Y and a target one Z. The multivariate mutual informa-
tion I (X, Y ;Z) quantify the total information that sources provided
to the target, but it does not separate unique influences or indicates
how the sources may be acting jointly. Moreover, if we consider the
relationships between the target and a single source, we would there-
fore be neglecting the presence and the effects of the other source
variables. However, this is not a negligible aspect. For example, a
variable may be synchronized with another variable that is driving
the target, or many source variables may be jointly driving the target.
More specifically, when two sources inform a target, the target may
receive information uniquely from each source, redundantly from both
sources, synergistically from both sources, or in some combination of
these. These problems highlight the need to understand the nature of
multivariate mutual information I (X, Y ;Z), which can reveal much
about the function or process that physically links the two sources
with the target, in addition to any relationship between sources.
Recent research on information partitioning [8] has enabled more
precise classification of the nature of multivariate shared information.
Information partitioning categorizes shared information quantities
between multiple source variables and a target variable as either
synergistic, unique, or redundant. Redundant information (R) is the
information that multiple sources provide to a target such that they
overlap in their information content. Unique information (U) from a
source refers to the information it shares with a target that is not
redundant with information provided by another source. Synergistic
information (S) refers to the information that two sources provide
to a target only jointly. We can compute:

I (X, Y ;Z) = U1 (X;Z) + U2 (Y ;Z) +R + S (2.19)

Where U1, U2, R and S are non-negative quantities. U1 (X;Z) and
U2 (Y ;Z) are, respectively, the information that sources X and Y
share with the target Z; R is interpreted as overlapping shared
information; S is a cooperative provision of shared information that
is possible to gain only if X and Y are considered jointly. The
individual mutual information between each source and the target
can be decomposed as:

I (X;Z) = U1 (X;Z) +R (2.20)

I (Y ;Z) = U2 (Y ;Z) +R (2.21)
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If one source provides a larger amount of information than another
(i.e., I (X;Z) > I (Y ;Z)), as reflected through a higher reduction
in uncertainty of the target, it will have a higher uniqueness (U),
indicating its dominant influence as an individual source. A high syn-
ergy (S) indicates that two sources provide information jointly, since
both sources must be known together to reduce target uncertainty.
In contrast redundancy (R) indicates an overlap in information due
to lagged synchronization or correlation between sources, and the
extent to which either source reduces the same target uncertainty.
Since mutual information quantities in previous equations are directly
computable, one of the four components S, U1, U2, and R must be
obtained independently to solve this underdetermined system. To
address this, we perform information partitioning using a recently
developed approach where redundancy, R, is obtained based on scal-
ing by source dependency I (X;Y ), such that independent sources
are minimally redundant (maximally unique) and highly dependent
sources are assumed to be maximally redundant (minimally unique)
[9]. The redundancy can be computed as follows [8]:

R = Rmin + Is (RMMI −Rmin) (2.22)

Where:
RMMI = min[I (X;Z) , I (Y ;Z)] (2.23)

Rmin = max (0,−I (X;Y ;Z)) (2.24)

With:
Is =

I (X;Y )

min[H (X) , H (Y )]
(2.25)

RMMI denotes the minimum mutual information between sources
and target and it represents the upper limit for redundancy while Is
represent the source dependency. Rmin denotes the lower limit for
redundancy, but its interpretation is more subtle. In the case where
the sum of the two mutual information is greater than I (X, Y ;Z),
then I (X;Y ;Z) will be positive. In this case, some of the information
about Z provided by knowing X is also provided by knowing Y ,
causing their sum to be greater than the information about Z from
knowing both together. That is to say, there is a redundancy in the
information about Z provided by the X and Y variables. In the case
where the sum of the mutual information is less than I (X, Y ;Z), the
multivariate mutual information I (X;Y ;Z) will be negative. In this
case, knowing both X and Y together provides more information
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about Y than the sum of the information yielded by knowing either
one alone. That is to say, there is a synergy in the information about
Z provided by the X and Y variables. Rmin therefore provides
a minimum bound for R: for cases where I (X;Y ;Z) = S − R is
negative, indicating that R > S, any chosen metric for R must be
greater than or equal to the positive value of R− S in order to be S
non-negative.

2.4 Spatial correlation

One variable might exhibit a certain spatial correlation throughout
the field (depending on the lag) and this correlation might be linear
or non-linear. There are now two ways to visualize this kind of
relations: one is graphical and the other analytical. A graphical
method to detect correlations is by simply plotting into scatter plots,
for a given scale at a given lag all the possible couples of values
formed by a point and another point distant lag from the former.
For a variable X, sampling all its possible couples at (i) one location
and (ii) a location which is distant of a given lag (along the main
flow direction) three coefficients, ρ, R and U could be computed as
[10],[11],[7]: [10],[11],[7]:

ρ (X,X (lag)) =
Cov (X (x) , X (x+ lag))

σX(x)σX(x+lag)

(2.26)

R (X,X (lag)) = {1− exp[−2I (X (x) , X (x+ lag))]}1/2 (2.27)

U (X,X (lag)) = 2
I (X (x) , X (x+ lag))

H (X (x))H (X (x+ lag))
(2.28)

being Cov (X (x) , X (x+ lag)) the covariance, σX(x) and σX(x+lag)

the standard deviations ofX (x) andX (x+ lag), I (X (x) , X (x+ lag))
the mutual information between two points of a couple and H (X (x))
and H (X (x+ lag)) the entropies of the two points. Coefficient U
(or uncertainty coefficient) lies between 0 and 1: when the uncer-
tainty coefficient is zero, it means that X (x) and X (x+ lag) are
not dependent on each other; if its value is unitary, the knowledge
of X (x) is able to completely predict X (x+ lag), and the opposite
is also true [7]. The Bravis-Pearson index, ρ, is known as the linear
correlation coefficient or Pearson correlation coefficient. It is a mea-
sure of the linear dependence of two random variables. if |ρ| = 1,
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a perfect linear relationship exists between X (x) and X (x+ lag)
and the variables are fully correlated; instead, if ρ = 0, the variables
are not correlated [7]. R takes values in the range [0,1]. R is zero
if X (x) and X (x+ lag) are independent, and is unity if there is an
exact linear or nonlinear relationship between X (x) and X (x+ lag)
[23]. Taking the spatial average, over all the possible pairs of spatial
locations in the domain, we could study the nature of the spatial
dependence, investigating the effect of Upscaling over the latter for
Y , Vx and Vy.



Chapter 3

Methodology

In this chapter we present the setting of the problem and the method-
ology used to address it. It will include informations about the
software used and the Matlab scripts implemented and it will be
organized, into four parts:

• Problem setting
• Entropy calculations
• Information partitioning
• Spatial correlation

The first part will regard all the software settings and characteristic
that have been used in order the create and Upscale the aquifer model
with the Monte Carlo method. Secondly we will explain in details
the methodology used for the estimation of probability function for
variables Y , Vx and Vy and its application for entropy calculations.
Thirdly we will adapt the IT metrics introduced in Chapter 2 to our
problem and present the main features of the method implemented.
Finally we will introduce the methods used to evaluate linear and
non-linear correlations among our variables.

3.1 Problem setting

As stated in Chapter 2, the uncertainty that characterizes ground-
water flow could be tackled by using Monte Carlo method. This
requires the generation of random fields, in which the hydraulic con-
ductivity K is modelled as an isotropic randomly generated field with
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imposed statistical features. The domain is a 2D confined aquifer of
side L = 600 [m] with constant thickness on which it is imposed a
uniform grid with nx = ny = 600 squared elements. The hydraulic
conductivity is modelled as:

K = Kge
Y (x,y) (3.1)

where Kg is a typical value of limestone hydraulic conductivity and
Y (x, y) is a zero-mean second-order stationary random process char-
acterized by a truncated power law variogram (TPV) with correlation
lengths lx = ly = 8[m] and an isotropic covariance function:

C (h) = γ2
G (h, λu)− γ2

G (h, λl) (3.2)

where, for m = l, u:

γ2
G (h, λm) = σ2

Y (λm) ρ (h/λm) (3.3)

σ2
Y (λm) = A

λ2H
m

2H
(3.4)

ρ (h/λm) = e−
h
λm −

(
h

λm

)2H

Γ (1− 2H, h/λm) (3.5)

being h the distance (lag), H the Hurst coefficient (0.333 in our
model), Γ the gamma function, A the variance, λu the characteristic
scale associated with the upper frequency cut-off and λl characteristic
the scale associated with the lower frequency cut-off. These particular
kind of relationship has been proved to render the expressions for
integral scale and variance dependent on domain size in a manner
consistent with observation [16] by filtering out (truncating) high
and low-frequency cut-offs. The characteristic scales of the lowest
and highest frequency modes (cut-offs) are related, respectively, to
domain and sample (support) size. The model studied here is based
on Upscaling by changing the characteristic scale λl starting from
value 1 [m] (reference scale) to 2,4,8,16 [m] that will be called, from
now on, η0,2,4,8,16. 1000 Monte Carlo realization were generated for
every scale, first for a weakly heterogeneous (σ2

Y = 0.5) case, then
for a more heterogeneous (σ2

Y = 2) one, with the help of a software
produced by the DICA department of Politecnico di Milano, called
RF GEN. After noting that the horizontal direction coincides with
the y axis and the vertical direction with the x axis, we solved the
flow problem (as presented in Chapter 2) for each of this realization,
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prescribing a fixed head on the left side of the domain and a fixed
inflow flux on the right side, while top and bottom borders where
characterized by a no-flow condition (impermeable boundaries). We
used FreeFem++, a free and open source software to solve flow
equations using the Finite Element Method (FEM). The results,
along with Y fields, constituted the data set of our analysis.

3.2 Entropy calculations

Shannon’s entropy has been already presented in Chapter 2, nev-
ertheless to compute it we had implicitly considered that we were
given the probability functions of our study variables. This is clearly
not the case, so we had to find a way to obtain a probability function
starting from our discrete random variables. We decided to go for
the fixed-binning technique, that is to use a fixed number of bins and
compute for every point in the grid the probability to stay within a
specific bin. There are several studies that face the problem of density
estimation and optimal data-based histograms, we cite as a reference
[12],[13],[14],[15]. However, there is not a univocal procedure about
binning. In this work we decided to use a constant number of bins
equal to 15, as suggested by [15] when the observations of a variable
are between five hundred and a thousand, and we also maintained
fixed the width of the bins. The extreme borders of our bins will
be, for every variable at every scale, the maximum and minimum
value of that variable across all scales; as Upscaled fields are obtained
from the reference scale, these values will be located in it. We then
computed entropy of a variable for all the points in the domain across
all the Monte Carlo representations. As a result a grid of values
of entropies was generated, with low values of entropy in a point
indicating low uncertainty about the variable and high values of
entropy indicating high uncertainty about the considered variable.
The imposed boundary condition generated values of entropy close to
zero along the borders, with this effect growing in size as we Upscale
(this phenomenon will be explained later in Chapter 4 While an
averaged value of entropy has been considered for our studies, we
decided to cut-off the borders by eliminating a portion of external
frame of the domain (5 ly or 40 [m] per each side) finally obtaining a
2D domain of side L = 520 [m].
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3.3 Information partitioning

The IT metrics used in this part have been introduced in Chapter
2, in which we considered the possible triplets formed by the finest
scale field as target variable and all the possible couples formed by
other scales as source variables. All the metrics were computed as
described in Chapter 2 and for the probability function estimation
the bins used were the same as those described in the previous section.
The method used in the scripts written to compute them is actually
the same of the one used to compute entropies. We will propose a
graphic way to visualize concepts related to IT metrics using Venn
diagrams, used to present results of this part in Chapter 4.

3.4 Spatial correlation

For this part the coefficients used were those introduced in Chapter
2; a Matlab script was implemented, to compute them for every
scale and for every variable, collecting the results obtained, and
plotting them in the same graph. The couple of points (both used for
coefficient calculations and for scatter plots) were taken collecting
all the possible couples with an increasing lag between each other
along the mean flux direction (y). Being the correlation length of Y
along y axis ly = 8 [m], lags considered could range from 1 to 32 ly,
while the initial point had to stay within the left half of the domain.
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Results

In the following chapter the results of our simulation are presented.
This chapter is divided into two parts: in the first we will discuss
the main features of the weakly heterogeneous field (σ2

Y = 0.5),
that are, some representation of the fields produced by solving the
flow problem for every field, the entropy of variables Y , Vx and Vy,
computed with the equations presented in Chapter 1 and method
explained in Chapter 2 the information partitioning of the aforemen-
tioned variables, with the metrics proposed by [8] and finally we will
present a study of the transformation of the spatial correlation of
Y , Vx and Vy. In the second part we will briefly discuss the same
results for the strongly heterogeneous field (σ2

Y = 2), underlining
the possible differences with the former case, while we decided to
report the complete results in the Appendix. All the data mining
and calculations were performed on Matlab, using scripts written
specifically for this study.

4.1 Y and velocity fields

While we easily plotted the Y field by simply reshaping the output file
of the RF GEN software, we needed to rearrange the velocity fields
given by solving the flow problem with FreeFem++ by transforming
the triangular mesh values into a rectangular grid that we use also
later on to compute all the other statistics. From now on, we will refer
to the finest scale as η0, while the coarser fields will be called η2, η4,
η8, η16. Instead V is computed as the log10 of the velocity of the fluid.
Figure 4.1 reports the Y field for the Monte Carlo representation
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(a) η0 (b) η2 (c) η4

(d) η8 (e) η16

Figure 4.1: Y fields for each different resolution scale (case σ2
Y = 0.5).

number 1 for every scale, while Figures 4.2 and 4.3 represent the
Vx and Vy fields, respectively, for the same representations. Lastly,
velocity V is showed in Figure 4.4. Firstly we can observe the
structure of the conductivity (its log10) and relate it to the velocity
field and notice the presence of some preferential channels, this can
be seen especially from the plots of Vy. All the variables studied
tells us that upscaling reduced heterogeneity by "smoothing out"
the fields, and this can be understood clearly when observing the
figures. As it can be noted, the peak values smooths out and the
standard deviation decrease while we Upscale and the field becomes
more homogeneous; this can be explained considering Upscaling as
an operation in which the less likely to occur values are cut off.

4.2 Entropy

In this section we will firstly compute the entropies for Y and velocity
fields, being aware that border effects could affect our data. As
explained in Chapters 1 and 2, entropy is a measure of uncertainty;
this means, in our case, that a high entropy is related to a high
uncertainty about our model. Roughly speaking, the higher the
entropy, the higher the variability of the field (and the information
related to it). This means that we expect the entropy (and so the
information) of a field to decrease with Upscaling, with the decrease
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(a) η0 (b) η2 (c) η4

(d) η8 (e) η16

Figure 4.2: Vx fields for each different resolution scale (case σ2
Y = 0.5).

(a) η0 (b) η2 (c) η4

(d) η8 (e) η16

Figure 4.3: Vy fields for each different resolution scale (case σ2
Y = 0.5).
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(a) η0 (b) η2 (c) η4

(d) η8 (e) η16

Figure 4.4: V fields for each different resolution scale (case σ2
Y = 0.5).

of variability as proven from the figures in the subsequent section.

4.2.1 Entropy fields

The graphical results are now shown and later discussed in this
paragraph. The entropy of the random variables Y and x,y velocity
components has been computed for each point of all the resolution
scales. Figure 4.5 reports the entropy of the Y field for every scale,
while Figures 4.6 and 4.7 represent the Vx and Vy fields, respectively,
for all scales. We notice that all the variables share one important
feature, the decrease of entropy with Upscaling, as expected before.
The entropies of the velocity fields gives us a clear picture of the
border effects: from the entropy of Vy it can be observed that the
prescribed inflow flux (please remember that the horizontal direction
correspond to axes y in our plots) on the right side of the grid brings
the entropy of this variable to zero in that area. This result is not
unexpected: if a variable is constrained by some conditions, its value
will be no more random but instead fixed (and easy to predict), this
will bring its variability (and so its entropy) to zero. In the same
way we observe this phenomenon for Vx on the top and bottom side
and on the right side of the grid. Another important observation is
that the border effect increases when we Upscale; if we conceptually
think of Upscaling as a sort of average, it becomes clear that, moving
on coarser scales, this effect influences a growing area.
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(a) η0 (b) η2 (c) η4

(d) η8 (e) η16

Figure 4.5: Entropy of Y for each scale (case σ2
Y = 0.5).

(a) η0 (b) η2 (c) η4

(d) η8 (e) η16

Figure 4.6: Entropy of Vx for each scale (case σ2
Y = 0.5).
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(a) η0 (b) η2 (c) η4

(d) η8 (e) η16

Figure 4.7: Entropy of Vy for each scale (case σ2
Y = 0.5).

Y η0 η2 η4 η8 η16

Hm 2.483 2.410 2.277 1.997 0.9590
Hmin 2.332 2.253 2.117 1.837 0.804
Hmax 2.643 2.553 2.429 2.129 1.114
% loss 0 2.93 8.30 19.55 61.37

Table 4.1: Entropy of Y for each scale (case σ2
Y = 0.5).

4.2.2 Reshaped fields

As previously anticipated in Chapter 3, and recalled in previous
section a border effect affected our data, and we decided to address
this by eliminating a portion of external frame of the domain (5 ly
or 40 [m] per each side). The same calculations done in previous
section were repeated, leading to slightly higher entropies as expected.
The results are qualitatively the same, despite the change made to
correct the border effect; results for Vx and Vy are summed up in
Tables 4.1,4.2 and 4.3 (which contain also values referred to Y ) and
represented in Figures 4.9 and 4.10. Minimum and maximum values
of entropy throughout the field are reported, while a unique value
is then computed by taking an average over the entire grid and
taken as a reference for the scale. A quantification of entropy loss in
relative terms (from the reference case η0) is also proposed for a fast
comparation of different scales.
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Vx η0 η2 η4 η8 η16

Hm 1.581 1.549 1.466 1.251 0.303
Hmin 1.412 1.373 1.296 1.072 0.163
Hmax 1.753 1.714 1.633 1.396 0.444
% loss 0 6.01 7.23 20.87 80.85

Table 4.2: Entropy of Vx for each scale (case σ2
Y = 0.5).

Vy η0 η2 η4 η8 η16

Hm 1.806 1.770 1.686 1.455 0.529
Hmin 1.622 1.612 1.512 1.253 0.388
Hmax 1.969 1.928 1.844 1.608 0.661
% loss 0 1.91 6.55 19.38 70.70

Table 4.3: Entropy of Vy for each scale (case σ2
Y = 0.5).

(a) η0 (b) η2 (c) η4

(d) η8 (e) η16

Figure 4.8: Reshaped fields entropy of Y for each scale (case σ2
Y = 0.5).
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(a) η0 (b) η2 (c) η4

(d) η8 (e) η16

Figure 4.9: Reshaped fields entropy of Vx for each scale (case σ2
Y = 0.5).

(a) η0 (b) η2 (c) η4

(d) η8 (e) η16

Figure 4.10: Reshaped fields entropy of Vy for each scale (case σ2
Y = 0.5).
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It is important to notice that the reduce in entropy, and therefore
in uncertainty, does not come from acquiring new information, but
rather from an alteration of the nature of the data. This means
that we are not more confident about the model, but rather that the
coarser scale models contain less information than the finest one. As
a result the decrease of entropy can be interpreted as loss of the level
of detail contained in the reference scale.

4.3 Information Partitioning

While previous section quantified in terms of entropy the information
loss, giving us a magnitude of the loss of quality, we might be
interested in understanding how the information evolved from one
scale to another. Since the other scales (those different from the
finest one) could be seen as somehow derived from the latter, one
could argue that the coarser scale fields contain the same kind of
information of the finest one, but reduced of a certain percentage
(as we computed previously. We are going to see that this is not
true, for now it would be sufficient to note that during Upscaling new
information is generated, and although it has been derived from the
"old" one, it is different from that. Information partitioning metrics,
as stated by [22] and [8], is particularly useful when we want to study
how information is shared between scales. Given a target variable
(xtar) and two source variables (x1, x2), those two variables may
provide information to the target variable in many different ways.
In our case the source variables will be two coarse-scale fields (from
η2,4,8,16) and the target variable will be the fine-scale field (η0). This
study will be done separately for Y , Vx and Vy and all the possible
triplets will be investigated. While in [8] the source variables were
physically related to the target, the coarse-scale fields are generated
with an Upscaling process and consequently they are being generated
from it. The innovative part of this study is to apply these metrics to
evaluate an Upscaling mechanism; for this reason it has no meaning
to think of the shared information as an influence of source variables
on target one. Instead we may want to understand if knowing jointly
two "low-resolution" fields gives us more information than knowing
only the reference one. If the partitioning returns as a result high
synergic and unique components it could be more useful to consider
two scales rather than one, while a dominant redundant component
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Y η0−2−4 η0−2−8 η0−2−16 η0−4−8 η0−4−16 η0−8−16

I (xs1, xs2;xtar) 1.954 1.959 1.941 1.551 1.516 1.168
Uxs1 0.432 0.805 1.430 0.381 1.003 0.642
Uxs2 0.005 0.010 0.003 0.013 0.004 0.011
R 1.501 1.128 0.503 1.125 0.503 0.496
S 0.016 0.016 0.005 0.032 0.006 0.019

Table 4.4: Trivariate information of Y different triplets (case σ2
Y = 0.5).

would suggest the opposite. Studying the information partitioning
of our triplets will help us to evaluate the quality of our coarse-scale
models, in terms of ability to represent the reference model.

4.3.1 Information partitioning Y

Triplets η0-η2-η4, η0-η2-η8, η0-η2-η16, η0-η4-η8, η0-η4-η16, η0-η8-η16, η2-
η4-η8 and η4-η8-η16 are now considered. Please note that from now on
the finest scale model will be called as xtar and the other two scales
completing the triplets will be xs1 and xs2. Results are reported in
Table 4.4.

We can immediately see that the information shared between sources
and target decrease while we Upscale. The multivariate mutual infor-
mation I (xs1, xs2;xtar), decreases with the Upscaling extent and this
confirms what already said regarding the loss of information during
the upscaling process. Before further discussions could be useful to
use more immediate graphic tools to represent the partitioning: Fig-
ure 4.11 reports Venn diagrams to represent the shared information
among different scales, where every circle’s area is proportional to the
average entropy of the field it represents and the intersection between
circles depicts the mutual information between those variables. Red
circle represents the target field, while green and blue ones represent,
respectively, the more fine and the coarser source fields. Figure 4.12
uses pie diagrams to give an idea of the information partitioning of
the information shared between sources and variables by reporting
its components for every triplet considered; for these diagrams the
partitioning components are normalized with respect to the multi-
variate mutual information. Only the cases with η0 as target variable
are reported.
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(a) η0−2−4 (b) η0−2−8

(c) η0−4−8 (d) η0−2−16

(e) η0−4−16 (f) η0−8−16

Figure 4.11: Venn diagram representations of entropy and mutual information
for variable Y for different triplets (case σ2

Y = 0.5).
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(a) η0−2−4 (b) η0−2−8

(c) η0−4−8 (d) η0−2−16

(e) η0−4−16 (f) η0−8−16

Figure 4.12: Trivariate information partitioning through pie diagrams for Y
for different triplets (case σ2

Y = 0.5).
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We note that Venn’s diagrams are not made up of concentric circles.
As said before, when we Upscale, we are not simply eliminating the
extreme values, but we are calculating new values which represent a
more homogeneous nature than the heterogeneous one of the initial
situation. Therefore, the data will tend to concentrate around the
initial average values, but they will also be numerically different from
the initial ones. This is clear in the diagrams, where we can see that
the information of Upscaled fields is not only that transmitted by
the more fine scales (overlapping area of the circles), but there is
also some new information, values generated from the reference fields
but actually different from them. From pie diagrams we can observe
the evolution of the partitioning during Upscaling: the synergic
component and the unique component of the Upscaled variables
from the reference scale are almost always around 1%, while we
note a shifting from redundant component to unique component
(of the scale "closer" to reference). When redundant component
is high we can say that the two coarse models are similar, this is
true for triplets η0-η2-η4, η0-η4-η8 and to a lesser extent for η0-η2-
η8. Instead, when a unique component tends to be dominant it
means that the other model becomes not so representative of the
reference one, as it happens for scale η16 in every triplet, including
η0-η8-η16; this suggests us that scale η16 might be too far from the
reference scale η0. Recalling what has been previously stated, during
Upscaling the total information contained in a model decrease in
absolute value (the circles area decrease while moving on coarser
scales), and the models become less representative of the reference
one (the intersection area, which represents the shared information
between two models, decreases more and more when we Upscale),
while still maintaining some characteristics of it. Moreover some new
information is generated, this is represented by the circles area of the
coarser scales which do not overlap with those of the more fine scales;
this new information, although generated from previous models, it is
not describe of them.

4.3.2 Information partitioning Vx, Vy

The qualitative behaviour shown for variable Y is confirmed when
we analyze the velocity fields, for this reason we propose a summary
in Tables 4.5 and 4.6 and we decided to report the Venn and pie
diagrams in the Appendix. From all cases we could observe, as an
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Vx η0−2−4 η0−2−8 η0−2−16 η0−4−8 η0−4−16 η0−8−16

I (xs1, xs2;xtar) 1.306 1.309 1.305 1.035 1.031 0.732
Uxs1 0.279 0.591 1.168 0.313 0.892 0.588
Uxs2 0.001 0.002 0.002 0.003 0.004 0.010
R 1.023 0.711 0.134 0.711 0.132 0.126
S 0.004 0.004 0.002 0.003 0.003 0.008

Table 4.5: Trivariate information of Vx for different triplets (case σ2
Y = 0.5).

Vy η0−2−4 η0−2−8 η0−2−16 η0−4−8 η0−4−16 η0−8−16

I (xs1, xs2;xtar) 1.490 1.493 1.487 1.187 1.178 0.850
Uxs1 0.312 0.660 1.208 0.349 0.898 0.561
Uxs2 0.001 0.004 0.001 0.004 0.002 0.010
R 1.171 0.824 0.275 0.823 0.274 0.267
S 0.005 0.006 0.002 0.011 0.003 0.013

Table 4.6: Trivariate information of Vy for different triplets (case σ2
Y = 0.5).

example of possible applications of these metrics, that couples η2−4

and η2−8 share the same amount of information with target variable
η0; use couple η2−8 to characterize η0 is equivalent to do it by using
η2−4.

4.4 Spatial correlation

As a last part of this work we now present a study of the spatial
correlation of variables Y , Vx and Vy, as anticipated in Chapter 3, to
see if the structure of the fields are preserved trough Upscaling (and
if so, how). We have previously cut-off our domain, that now is a
square of side 520 [m], so, recalling that the correlation scale of field
Y is ly = 8 [m], we have 65 correlation scales in every direction. We
consider only 32 correlation scales in the mean flow direction (i.e. y
direction). Firstly, scatter plots between pairs of the same variable
(i.e.,Y or Vx or Vy) sampled at (i) one location and (ii) a location
which is distant of a given lag (along the main flow direction) are
presented. Note that we scroll over all the location and we consider
32 lags: Figure 4.13 reports scatter plots for variable Y only at scales
η0,η4,η16 and for lag = 1, 6, 32 ly, Figure 4.14 does the same for Vx
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(a) η0-lag = 1 ly (b) η0-lag = 6 ly (c) η0-lag = 32 ly

(d) η4-lag = 1 ly (e) η4-lag = 6 ly (f) η4-lag = 32 ly

(g) η16-lag = 1 ly (h) η16-lag = 6 ly (i) η16-lag = 32 ly

Figure 4.13: Scatter plots of Y (case σ2
Y = 0.5).

and Vy. Not all the fields and not all the lags have been reported in
the plots: we decided to present here only the cases for maximum and
minimum lag and one case at the lag that maximizes the difference
between R and ρ. Moreover, at a lag = 6 ly not only is maximized
the difference between R and ρ, but the behaviour of these variables
tends to be constant. For these reasons, the rest of the scatter plots
are presented in the Appendix. If a variable at a given lag has a
high linear correlation the pair of values will lay on a straight line
with unitary slope, or, in other words, points with high (low) Y are
surrounded (at distance equal to lag) only by points with high (low)
Y . As the non-linear correlation grows this line tends to transform
into a figure of uniform or circular shape: given let’s say, as input
a high vale of Y we will no more find only "high Y " points at a
distance equal to lag from the input.

Secondly we recall from Chapter 3 coefficients ρ, R and U , for a
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(a) η0-lag = 1 ly (b) η0-lag = 6 ly (c) η0-lag = 32 ly

(d) η4-lag = 1 ly (e) η4-lag = 6 ly (f) η4-lag = 32 ly

(g) η16-lag = 1 ly (h) η16-lag = 6 ly (i) η16-lag = 32 ly

(j) η0-lag = 1 ly (k) η0-lag = 6 ly (l) η0-lag = 32 ly

(m) η4-lag = 1 ly (n) η4-lag = 6 ly (o) η4-lag = 32 ly

(p) η16-lag = 1 ly (q) η16-lag = 6 ly (r) η16-lag = 32 ly

Figure 4.14: Scatter plots of Vx ((a)-(i)) and Vy ((j)-(r)) (case σ2
Y = 0.5).
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variable, say X as [10],[11],[7]:

ρ (X,X (lag)) =
Cov (X (x) , X (x+ lag))

σX(x)σX(x+lag)

(4.1)

R (X,X (lag)) = {1− exp[−2I (X (x) , X (x+ lag))]}1/2 (4.2)

U (X,X (lag)) = 2
I (X (x) , X (x+ lag))

H (X (x))H (X (x+ lag))
(4.3)

being Cov (X (x) , X (x+ lag)) the covariance, σX(x) and σX(x+lag)

the standard deviations ofX (x) andX (x+ lag), I (X (x) , X (x+ lag))
the mutual information between two points of a couple and H (X (x))
and H (X (x+ lag)) their entropies. Note that while ρ represents a
linear correlation, coefficient R tells if two variables are correlated,
linearly or not. It is interesting then to compare the evolution of
these two coefficients at increasing lag and Upscaling, to understand
if and when a variable becomes linearly or non-linearly correlated.
Finally, recalling from [23], we observe that typical values of R and
|ρ| of 0.6-0.7 mark and strong association (i.e. linear for rho), while
values of 0.2-0.3 marks a weak association (linear or not) between two
variables. Figures 4.15, 4.16, 4.17 report, respectively, the behaviour
of the coefficients for variables Y , Vx and Vy. Two consideration
can be made by observing those plots: firstly Upscaling has the
effect of homogenization, as stated also in previous sections, and this
could be seen by the concentration of the couples of points in more
and more narrow regions moving from more fine scales to coarse
ones. The second effect is less intuitive and needs some comment:
we note that Upscaling has also the effect of linearization, but this is
true only at low lags, while it becomes null when distance between
points increase. This becomes particularly evident, and true for all
the variables, when we analyze the behaviour of ρ: it grows with
Upscaling at low lags (less than 4 correlation scales) while it rapidly
goes to zero for every scale at high distances. The negative values of
ρ for variable Vx can be explained considering that, in some parts of
the grid, the speed of the fluid in the x direction inverts its direction,
showing then negative values. As expected U fastly goes to zero
after few correlation scales, as its numerator becomes low rapidly.
This tells us that, in any case, the points at different lags have low
relation between each other. About the R coefficient we observe an
opposite trend from ρ: it decreases when Upscaling increases, this
confirms that we are amplifying linear correlation and decreasing
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(a) ρ

(b) R

(c) U

Figure 4.15: ρ,R and U coefficients for variable Y (case σ2
Y = 0.5). Different

colors refer to results associated with different Upscaled fields.
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(a) ρ

(b) R

(c) U

Figure 4.16: ρ,R and U coefficients for variable Vx (case σ2
Y = 0.5). Different

colors refer to results associated with different Upscaled fields.



42 Chapter 4. Results

(a) ρ

(b) R

(c) U

Figure 4.17: ρ,R and U coefficients for variable Vy (case σ2
Y = 0.5). Different

colors refer to results associated with different Upscaled fields.
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non-linear one when we move to coarser scale fields. In some points,
at high lags, when rho coefficient goes to zero, R is not null; although
this means that a non-linear relation is presented at those lags, the
magnitude of R is not high enough to suggest a strong non-linear
component, as said initially.

4.5 Strongly heterogeneous field

All the analyses done previously in this chapter have been repeated
for a strongly heterogeneous field. The results obtained do not differ
substantially from those of the less heterogeneous field; although
slightly different values were obtained, the order of magnitude and
the qualitative behaviour of the it metrics analyzed are almost the
same. Nevertheless we could see that the entropy of the Y field
remained almost the same, even though the variance increased, the
borders of the binning became more wide and, as the number of bins
did not change, this led to similar results with respect to the weakly
heterogeneous case. This is not true for velocity fields, as we could
notice an appreciable reduction of entropy for both fields. Moreover,
with respect to the σ2

Y = 0.5 case, the relative reduction of entropy
during Upscaling increased in this case, in particular for variable Vy
(the mean direction of the flow): for this case we observe that we lost
more information relevant to flow characterization when we Upscaled
the field. Moreover a small difference from lower variance case has
been observed for the spatial correlation: linear correlation goes
faster to zero with the distance (among two points of the couple),
this follows from the nature of the field itself. For the complete
results please refer to the Appendix.





Chapter 5

Conclusions

This master Thesis aimed at quantifying information contained in
a model, investigating loss of information and quality of a model
generated by means of Upscaling. A new approach has been proposed
coupling Monte Carlo method with IT theory tools to analyze the
effects of Upscaling on the Y , Vx and Vy fields. These three variables
have been studied for two different cases (σ2

Y = 0.5 and σ2
Y = 2),

all of them leading to similar results. The initial part of the work
involved generating 1000 Monte Carlo representations for every one
of five models, each with different scales; this was done firstly for
a low heterogeneity case and then for a more heterogeneous one.
Flow problem, with proper border conditions, was then solved for
the porous media using a finite element method (FEM) software (i.e.
FreeFem++). As an output two velocity fields for each representation
were generated, one along x direction and one along y, while the
mean flow direction has been recognized to be direction y. At the
end of this preparation part, we started processing and analyzing
the generated data. This is the main part of the work and it could
be divided into three parts:

1. Quantification of information at a given resolution scale: as we
defined it, entropy, is not a measure of heterogeneity of a field,
but rather an indicator of the presence of likely or unlikely to
occur data (low and high entropy, respectively) in a specific point
of the grid. However when averaged on the entire field, entropy
indicates how variable is that field and consequently, the average
amount of surprise embedded in it. This latter definition let
us use entropy to quantify the amount of information included

45
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in a model, giving us the possibility to study its behaviour
throughout the Upscaling process. Both the σ2

Y = 0.5 and the
σ2
Y = 2 cases evidenced that entropy, and so the amount of

information of a model, decrease with Upscaling. We propose
to refer to relative entropies (compared with reference case) as
it will be less significative to consider absolute values of entropy
for our purposes.

2. Behaviour of information during Upscaling: while entropy let us
quantify the amount of information of different scales, we still
did not know enough about the evolution of information during
the Upscaling process. Given that the magnitude of information
reduces when we Upscale, it is not trivial to understand how
much do two different models have in common and how much
information is transmitted from one to another. By using the
proposed IT metrics we could answer to those questions and give
some tools to decide when an Upscaled model is too different
from the reference one (and from the finer scale ones). This
might facilitate managerial decisions for aquifer characterization,
as it helps understanding precisely what happens to information
during the Upscaling process. As an example of the application
of these metrics, it could be observed that couples η2−4 and
η2−8 share the same amount of information with target variable
η0; using couple η2−8 to characterize η0 is equivalent to do it by
using η2−4.

3. Variation in the spatial correlation: lastly we investigated the
nature of the relations between different point of the same field,
for variables Y , Vx and Vy. It has been showed that Upscaling
alters slightly the structure of the fields, by increasing the linear
correlation, but not in a significant way, as coefficient U denotes
still a low spatial correlation between variables.

When we analyzed the strongly heterogeneous fields we could see
that the entropy of the Y field remained almost the same with
respect to the weakly heterogeneous ones; even though the variance
increased, the borders of the binning became more wide and, as
the number of bins did not change, this led to similar results with
respect to the weakly heterogeneous case. This was not true for
velocity fields, as we could notice an appreciable reduction of entropy
for both fields. Moreover, with respect to the σ2

Y = 0.5 case, the
relative reduction of entropy during Upscaling increased in this case,
in particular for variable Vy (the mean direction of the flow): for
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this case we observe that we lost more information relevant to flow
characterization when we Upscaled the field. Again, other small
differences were not significant nor qualitatively different from the
previous case. All the results were obtained with a fixed-binning
technique in order to get probability functions from discrete variables,
choosing to divide all the data in 15 bins as suggested by [15]; we
assert that this is a critical part of our work, since it does not exist
a rigorous binning procedure for this case. We suggest that an
improvement to this limitation could be the use of Kernel Density
Estimation (KDE), in order to obviate the use of discrete variables.
This could be then a starting point for future applications; while
future studies could be also based on real data, instead of synthetic
ones, as those provided by [18]; this would allow to develop an
IT-based Upscaling technique starting from real data at different
resolution scales. Other possible future studies could analyze the
Downscaling process, which is much more obscure by now than
Upscaling, or simply use this same approach to study transport
and multi-component reactive transport problems instead of flow
problems like the present study.





Appendix

Here are presented all the missing results omitted in the results
chapter. They are mainly the σ2

Y = 2 "counterpart" of the results
presented for the σ2

Y = 0.5 case. Results for entropies and information
partitioning are summed up in tables, while all the fields, entropy
grids, Venn and pie diagrams of trivariate information and domain
conservation IT metrics are represented in figures, each one labelled
to be distinguished. Please note that for the last part scales η2 and
η8 are showed also for the weakly heterogeneous field as they haven’t
been presented in the main body of this work. Following all the
results, and this concludes this work. For the comments related to
this results please refer to Chapter 4.

(a) η0 (b) η2 (c) η4 (d) η8

Figure 5.1: Y fields for each different resolution scale (case σ2
Y = 2).

49
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(a) η0 (b) η2 (c) η4 (d) η8

Figure 5.2: Vx fields for each different resolution scale (case σ2
Y = 2).

(a) η0 (b) η2 (c) η4 (d) η8

Figure 5.3: Vy fields for each different resolution scale (case σ2
Y = 2).

(a) η0 (b) η2 (c) η4 (d) η8

Figure 5.4: V fields for each different resolution scale (case σ2
Y = 2).

(a) η0 (b) η2 (c) η4 (d) η8

Figure 5.5: Reshaped fields entropy of Y for each scale (case σ2
Y = 2).

(a) η0 (b) η2 (c) η4 (d) η8

Figure 5.6: Reshaped fields entropy of Vx for each scale (case σ2
Y = 2).
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(a) η0 (b) η2 (c) η4 (d) η8

Figure 5.7: Reshaped fields entropy of Vy for each scale (case σ2
Y = 2).

Y η0 η2 η4 η8

Hm 2.483 2.411 2.277 1.998
Hmin 2.333 2.255 2.117 1.834
Hmax 2.641 2.554 2.430 2.129
% loss 0 2.90 8.30 19.53

Table 5.1: Entropy of Y for each scale (case σ2
Y = 2).

Vx η0 η2 η4 η8

Hm 0.742 0.725 0.677 0.539
Hmin 0.550 0.538 0.506 0.367
Hmax 0.926 0.895 0.855 0.699
% loss 0 2.29 8.76 27.36

Table 5.2: Entropy of Vx for each scale (case σ2
Y = 2).

Vy η0 η2 η4 η8

Hm 0.896 0.850 0.734 0.465
Hmin 0.700 0.652 0.542 0.285
Hmax 1.082 1.055 0.950 0.639
% loss 0 5.13 18.08 48.10

Table 5.3: Entropy of Vy for each scale (case σ2
Y = 2).

Y η0−2−4 η0−2−8 η0−4−8

I (xs1, xs2;xtar) 1.955 1.956 1.551
Uxs1 0.433 0.805 0.381
Uxs2 0.005 0.010 0.013
R 1.501 1.128 1.125
S 0.016 0.016 0.032

Table 5.4: Trivariate information of Y for each scale (case σ2
Y = 2).
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(a) η0−2−4 (b) η0−2−8

(c) η0−4−8

Figure 5.8: Venn diagram representations of entropy and mutual information
for Y for different triplets (case σ2

Y = 2).

(a) η0−2−4 (b) η0−2−8

(c) η0−4−8

Figure 5.9: Trivariate information partitioning through pie diagrams for Y for
different triplets (case σ2

Y = 2).
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(a) η0−2−4 (b) η0−2−8 (c) η0−2−16

(d) η0−4−8 (e) η0−4−16 (f) η0−8−16

Figure 5.10: Venn diagram representations of entropy and mutual information
for Vx for missing triplets (case σ2

Y = 0.5).

(a) η0−2−4 (b) η0−2−8 (c) η0−2−16

(d) η0−4−8 (e) η0−4−16 (f) η0−8−16

Figure 5.11: Trivariate information partitioning through pie diagrams for Vx
for missing triplets (case σ2

Y = 0.5).
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(a) η0−2−4 (b) η0−2−8

(c) η0−4−8

Figure 5.12: Venn diagram representations of entropy and mutual information
for Vx for different triplets (case σ2

Y = 2).

(a) η0−2−4 (b) η0−2−8

(c) η0−4−8

Figure 5.13: Trivariate information partitioning through pie diagrams for Vx
for different triplets (case σ2

Y = 2).
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(a) η0−2−4 (b) η0−2−8 (c) η0−2−16

(d) η0−4−8 (e) η0−4−16 (f) η0−8−16

Figure 5.14: Venn diagram representations of entropy and mutual information
for Vy for missing triplets (case σ2

Y = 0.5).

(a) η0−2−4 (b) η0−2−8 (c) η0−2−16

(d) η0−4−8 (e) η0−4−16 (f) η0−8−16

Figure 5.15: Trivariate information partitioning through pie diagrams for Vy
for missing triplets (case σ2

Y = 0.5).
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(a) η0−2−4 (b) η0−2−8

(c) η0−4−8

Figure 5.16: Venn diagram representations of entropy and mutual information
for Vy for different triplets (case σ2

Y = 2).

(a) η0−2−4 (b) η0−2−8

(c) η0−4−8

Figure 5.17: Trivariate information partitioning through pie diagrams for Vy
for different triplets (case σ2

Y = 2).
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Vx η0−2−4 η0−2−8 η0−4−8

I (xs1, xs2;xtar) 0.598 0.599 0.460
Uxs1 0.139 0.305 0.167
Uxs2 4e− 4 0.001 0.001
R 0.456 0.290 0.290
S 0.002 0.002 0.003

Table 5.5: Trivariate information of Vx for each scale (case σ2
Y = 2).

Vy η0−2−4 η0−2−8 η0−4−8

I (xs1, xs2;xtar) 0.714 0.716 0.524
Uxs1 0.194 0.449 0.255
Uxs2 5e− 4 0.001 0.002
R 0.518 0.263 0.263
S 0.002 0.002 0.004

Table 5.6: Trivariate information of Vy for each scale (case σ2
Y = 2).

(a) η2-lag = 1 ly (b) η2-lag = 6 ly (c) η2-lag = 32 ly

(d) η8-lag = 1 ly (e) η8-lag = 6 ly (f) η8-lag = 32 ly

Figure 5.18: Missing scatter plots of Y (case σ2
Y = 0.5).
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(a) η2-lag = 1 ly (b) η2-lag = 6 ly (c) η2-lag = 32 ly

(d) η8-lag = 1 ly (e) η8-lag = 6 ly (f) η8-lag = 32 ly

(g) η2-lag = 1 ly (h) η2-lag = 6 ly (i) η2-lag = 32 ly

(j) η8-lag = 1 ly (k) η8-lag = 6 ly (l) η8-lag = 32 ly

Figure 5.19: Missing scatter plots of Vx ((a)-(f)) and Vy ((g)-(l)) (case σ2
Y =

0.5).
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(a) η0-lag = 1 ly (b) η0-lag = 6 ly (c) η0-lag = 32 ly

(d) η2-lag = 1 ly (e) η2-lag = 6 ly (f) η2-lag = 32 ly

(g) η4-lag = 1 ly (h) η4-lag = 6 ly (i) η4-lag = 32 ly

(j) η8-lag = 1 ly (k) η8-lag = 6 ly (l) η8-lag = 32 ly

Figure 5.20: Scatter plots of Y (case σ2
Y = 2).
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(a) η0-lag = 1 ly (b) η0-lag = 6 ly (c) η0-
lag = 32 ly

(d) η2-lag = 1 ly

(e) η2-lag = 6 ly (f) η2-
lag = 32 ly

(g) η4-lag = 1 ly (h) η4-lag = 6 ly

(i) η4-lag = 32 ly (j) η8-lag = 1 ly (k) η8-lag = 6 ly (l) η8-lag = 32 ly

(m) η0-
lag = 1 ly

(n) η0-lag = 6 ly (o) η0-
lag = 32 ly

(p) η2-lag = 1 ly

(q) η2-lag = 6 ly (r) η2-
lag = 32 ly

(s) η4-lag = 1 ly (t) η4-lag = 6 ly

(u) η4-
lag = 32 ly

(v) η8-lag = 1 ly (w) η8-lag = 6 ly (x) η8-
lag = 32 ly

Figure 5.21: Scatter plots of Vx ((a)-(l)) and Vy ((m)-(x)) (case σ2
Y = 2).
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(a) ρ

(b) R

(c) U

Figure 5.22: ρ,R and U coefficients for variable Y (case σ2
Y = 2). Different

colors refer to results associated with different Upscaled fields.



62 Appendix

(a) ρ

(b) R

(c) U

Figure 5.23: ρ,R and U coefficients for variable Vx (case σ2
Y = 2). Different

colors refer to results associated with different Upscaled fields.
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(a) ρ

(b) R

(c) U

Figure 5.24: ρ,R and U coefficients for variable Vy (case σ2
Y = 2). Different

colors refer to results associated with different Upscaled fields.
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