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ABSTRACT 

Power systems are complex dynamic systems. Once a power system loses stability, 
serious consequences may occur within a few seconds. The development of dynamic 
monitoring technique makes it possible to characterize global behaviors of the power 
system with data-driven methods. 

The thesis focuses on a new framework for electromechanical oscillations 
identification from observational data, based on dynamic mode decomposition (DMD) 
algorithm. Our work consists of modal estimates with conventional method and a data-
base generation for DMD analysis. 

Firstly, a simple two-area testing system is simulated in the DIgSILENT 
PowerFactory software. The eigenvalues and oscillation modes of the test system are 
calculated and identified with the use of model-based analysis method.  

Secondly, with a Matlab script simulating the stochastic load deviation in real time, 
selected variables of the system are measured in different scenarios, which provides a 
data-base for the validation of DMD. 

Lastly, DMD algorithm is applied to identify oscillation modes in two typical 
events. The comparison between the results obtained by DMD algorithm and model-
based method can validate the effectiveness of DMD algorithm for the 
electromechanical modes identification. 
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SOMMARIO 

Le reti elettriche di potenza sono sistemi dinamici complessi. Una perdita di 
stabilità da parte della rete può comportare gravi conseguenze nel giro di pochi secondi. 
Lo sviluppo di tecniche di monitoraggio in tempo reale, basate sull’analisi dei dati, 
consentirebbe di caratterizzare i comportamenti globali della rete. 

La tesi si concentra su una nuova tecnica per l'identificazione delle oscillazioni 
elettromeccaniche direttamente da dati osservati, basata sull'algoritmo noto come 
Dynamic Mode Decomposition (DMD). Il nostro lavoro consiste in un’analisi modale 
con metodo tradizionale e la generazione di un data-base per l'analisi attraverso la DMD. 

Viene inizialmente simulato un semplice sistema di test a due aree attraverso il 
software DIgSILENT PowerFactory. Gli autovalori e i modi oscillatori del sistema di 
test sono quindi calcolati e identificati con l'uso di un metodo model-based. 

Successivamente, grazie ad uno script Matlab che simula la deviazione stocastica 
del carico stocastico in tempo reale, le principali variabili del sistema vengono acquisite 
in diversi scenari, per generare così una base di dati per la convalida della DMD. 

Infine, l'algoritmo DMD viene applicato per identificare le oscillazioni in due 
eventi dinamici distinti. Il confronto tra i risultati ottenuti con l’analisi modale e la 
DMD conferma l'efficacia di quest’ultimo per l'identificazione delle oscillazioni 
elettromeccaniche. 

 
Key words：Oscillazioni elettromeccaniche；Identificazione dei Modi；DMD； 
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1   Introduction 

1.1 Background and Significance of Research 

Power systems are complex dynamic systems. On the one hand, they must always 
guarantee the necessary power quality and quantity, on the other hand, they are 
constantly disturbed.  

Time, place, type and severity of the disturbances are random. Once a power 
system loses stability, serious consequences may occur within a few seconds, causing 
great economic losses and social impact. Therefore, dynamic power system theory is 
the basis of power system planning, design and operation, so it has a great significance 
for a safe and stable operation. 

Power system stability may be broadly defined as the property of a power system 
to remain in a state of operating equilibrium under normal operating conditions and to 
regain an acceptable state of equilibrium after being subjected to a disturbance. 
Instability in a power system may be manifested in different ways, depending on the 
system configuration and operating mode. Traditionally, the stability problem has been 
the preservation of synchronous operations. Since power systems rely on synchronous 
machines, a necessary condition for a satisfactory system operation is that all generators 
remain in synchronism or, colloquially, “in step”. This aspect of stability is influenced 
by the dynamics of generator rotor angles and power-angle relationships. 

For convenience in analysis and to achieve useful insight into the nature of stability 
problems, it is usual to characterize the rotor angle stability phenomena in terms of the 
small-signal stability and transient stability. 

Small-signal (or small-disturbance) stability is the ability of the power system to 
maintain synchronism under small disturbances. Such disturbances occur continually 
on the system because of small variations in loads and generation. The disturbances are 
considered sufficiently small for a linearization of system equations. In large power 
systems, variable generation schemes and the stochastic characteristics of loads cause 
a higher probability of appearance of electromechanical oscillations, refers to inter-area 
modes (0.1-1 Hz) and local modes (1-5 Hz). These events may cause unsecured 
operations of the system and the possibility of generator outages and blackouts.  

At present, there are mainly two research methods for electromechanical 
oscillations analysis of the power system.  
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Figure 1.1 Methods of electromechanical oscillation identification 

The first one is the model-based analysis method, which is to obtain the system-
wide differential and algebraic equations by establishing the electromechanical 
transient models for all components. The system stability is then analyzed according to 
the first theorem of Lyapunov stability. However, this method is suitable only for offline 
analysis and depends on the accuracy of models and parameters. The second one is 
based on real-time measurement. The recent application of wide area measurement 
system (WAMS) provides strong support to measurement-based power system stability 
analysis. The oscillation phenomenon of the system is therefore analyzed by the signal 
processing technique. Advanced mathematical methods, such as Prony algorithm, 
Adaptive Local Iterative Filter Decomposition (ALIFD) algorithm and Principal 
Component Analysis (PCA) algorithm can be used. 
l Prony algorithm: In this method, the sample function is constructed through 

sampled data to determine the order of the signal and the autoregressive coefficient. 
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The eigenvalue corresponding to the oscillation mode is obtained, and the 
oscillation characteristic parameter identification is realized. Prony algorithm has 
a good effect on extracting the steady oscillation mode of the power system, which 
is widely applied in large-scale power grids. 

l ALIFD algorithm: Firstly, the smoothed intrinsic mode function (IMF) component 
is extracted based on ALIFD decomposition. With the use of Hilbert transform, the 
oscillation feature parameters are identified. The advantage of this method is that 
the false modal problem decomposed by EMD algorithm can be avoided. It is 
applicable to real-time measured signals, and truly reflects the inherent oscillation 
characteristics of various non-stationary power oscillation signals coupled by 
multi-mode. 

l Principal Components Analysis: PCA is a technique exploited in the multivariate 
statistics that allows to transform a number of possibly correlated variables into a 
smaller set of variables called principal components. The goal of PCA is to compute 
the most significant transformation in order to express variation among a high 
number of variables through a reduced number of components. 
Therefore, it is of great significance for the improvement of real-time monitoring 

and control of power system oscillation to well and truly identify oscillation modes and 
parameters based on filed measurement. 

1.2 Aim of the Research 

The necessity of new tools to identify in real time the oscillations and the behavior 
of the buses following an event leads Terna to commission this study. 

The study focuses on a new method for electromechanical oscillations 
identification based on Dynamic Mode Decomposition (DMD). Based on recent studies, 
DMD can be used to analyze the global behavior of electromechanical oscillation. The 
core objective of DMD algorithm is to find the low dimensional approximate matrix. 

A low dimensional approximate matrix is supposed to be obtained from 
measurements, whose eigenvalues and the corresponding eigenvector could be 
employed to describe the oscillation features. At this point, the electromechanical 
oscillation modes would be extracted without knowing the underlying dynamics. 

Our work is to first analyze the well-known Kundur testing grid using the model-
based method with the DIgSILENT PowerFactory software. Then, generate typical 
dynamic events of the system and obtain real-time measurement information, which 
will be used as a data base for DMD to validation to its effectiveness. 
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1.3 Scope of the Thesis 

The other chapters of this research are organized as follow: 
l Chapter 2 provides a general description of power system dynamics and small-

signal stability phenomena including fundamental concepts and classification. 
l Chapter 3 describes the tested system, selected variables and all the events, which 

offers data base and validation for dynamic model decomposition algorithm. 
l Chapter 4 describes the dynamic model decomposition theory and makes 

comparison between the results of model-based analysis method and dynamic 
model decomposition method. 

l Chapter 5 presents the conclusions of the thesis and highlights some possible future 
studies. 
 
 
 
 
 
 
 
 
 
 
 
Equation Chapter (Next) Section 1 
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2   Power System Stability: Small-Signal Stability 

2.1 Introduction 

The aim of this chapter is to provide a general presentation of power system 
stability problems concerning classification and physical aspects. It is very important 
to understand the different types of instability and how they are related to each other. 
According to the background in Chapter 1, our focus is the electromechanical 
oscillation problem, which belongs to small-signal stability. Fundamental concepts of 
small-signal stability are explained in this chapter, as a theoretical groundwork for the 
subsequent simulations. 

2.2 Power System Stability Problem 

Power systems are the largest and most complex man-made dynamic systems, 
which are continuously subjected to perturbations and experience transitions from one 
operating state to another also in form of oscillations [1]. Instability in a power system 
may be manifested in different ways depending on the system configuration and 
operating mode. Traditionally, the stability problem has been the preservation of 
synchronous operations. This aspect of stability is influenced by the dynamics of 
generator rotor angles and power-angle relationship. 

Classification of the stability problem is presented in Figure 2.1. 
 

 

Figure 2.1: Classification of power system stability [2]  
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Classification of the stability problem is presented in Figure 2.1. 

2.2.1 Voltage Stability 
Voltage stability refers to the ability of a power system to maintain the nominal 

voltage at all buses in the system after being subjected to a disturbance from a given 
initial condition. 

However, the major factor contributing to voltage instability is the voltage drop 
that occurs when active and reactive power flow through inductive reactance of the 
transmission grid; this limits the capability of the transmission network for power 
transfer and voltage support, which are limited when some of the generators hit their 
field or armature current time-overload capability limits[1]. Voltage stability is 
threatened when a disturbance increases the reactive power demand beyond the 
sustainable capacity of the available reactive power resources. 

2.2.2 Frequency Stability 
Frequency stability refers to the ability of a power system to maintain steady 

frequency following a severe system upset resulting in a significant unbalance between 
real power generation and load. It depends on the ability to maintain or restore 
equilibrium between system generation and load, with minimum unintentional loss of 
load. Instability may occurs in the form of sustained frequency swings leading to 
tripping of generating units and/or loads [4]. 

Any unbalance between generation and load demand causes deviation of the 
system frequency with respect to the nominal value. The system frequency is a global 
quantity, any unbalance affects the operation of all the synchronous machines of the 
power system. Any change in the angular frequency leads to a variation of the 
electromagnetic torque and finally unbalance between the electromagnetic torque and 
the mechanical torque of the synchronous machines. 

The change in the angular frequency is given by[19] 

   (2-1) 

Where  is the active power unbalance and  is the system inertia calculated as 

the summation of inertias of all the turbine generators in the power system. 

2.3 Rotor Angle Stability  

Rotor angle stability refers to the ability of inter-connected synchronous machines 
of a power system to remain in synchronism after being subjected to a disturbance. The 
stability problem involves the study of the electromechanical oscillations inherent in 

2 sys

P
H

w D
D =

PD sysH
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power systems. It depends on the ability to maintain or restore equilibrium between 
electromagnetic and mechanical torque of each synchronous machine in the system. 
Instability may occurs in the form of increasing angular swings of some generators 
leading to their loss of synchronism with the others. 

2.3.1 The stability phenomena 
Stability is a condition of equilibrium between opposing forces. The mechanism 

by which interconnected synchronous machines maintain synchronism with one 
another is through restoring forces, which act whenever there are forces tending to 
accelerate or decelerate one or more machines with respect to other machines. 

 Under steady-state conditions, there is an equilibrium between the input 
mechanical torque and the output electrical torque of each machine, and the rotor speed 
remains constant. If the system is perturbed this equilibrium will be upset, resulting in 
acceleration or deceleration of the rotors of the machines according to the laws of 
motion of a rotating body. If one generator temporarily runs faster than another, the 
angular position of its rotor will advance relative to that of the slower machine. The 
resulting angular difference transfer part of the load from the slow machine to the fast 
machine, depending on the power-angle relationship. This tends to reduce the speed 
difference and hence the angular separation. The power-angle relationship, as discussed 
above, is highly nonlinear. Beyond a certain threshold, the load transfer is reduced, 
leading to loss of synchronism and instability.  

In electric power systems, the change in electrical torque of a synchronous 
machine following a perturbation can be resolved into two components: 

   (2-2) 

where 

l  is the component of torque change in phase with the rotor angle perturbation 

 and is referred as the synchronizing torque component;  

l  is the synchronizing torque coefficient. 

l  is the component of torque in phase with the speed deviation  and is 

referred as the damping torque component;  

l  is the damping torque coefficient. 

System stability depends on the existence of both components of torque for all of 
the synchronous machines. Lack of enough synchronizing torque results in instability 
through an aperiodic drift in rotor angle. On the other hand, lack of sufficient damping 
torque results in oscillatory instability. It is usual to characterize the rotor angle stability 
phenomena in terms of the small-signal stability and transient stability. In this thesis, 

e S DT T Td wD = D + D

ST dD

dD

ST

DT wD wD

DT
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we are concerned about the former one. 

2.3.2 Small-signal Stability 
Small-signal (or small-disturbance) stability is the ability of the power system to 

maintain synchronism under small disturbances. Such disturbances occur continually 
on the system because of small variations in loads and generation. Disturbances are 
considered sufficiently small for linearization of system equations to be permissible for 
purposes of analysis. The nature of system response to small disturbances depends on 
several of factors including the initial operating point, the transmission system strength, 
and the type of generator excitation controls used. For a generator connected radially 
to a large power system, in the absence of automatic voltage regulators (i.e., with 
constant field voltage) the instability is due to lack of sufficient synchronizing torque. 
This results in instability through a non-oscillatory mode, as shown in Figure (a). With 
continuously acting voltage regulators, the small-disturbance stability problem is 
ensuring sufficient damping of system oscillations. Instability is normally through 
oscillations of increasing amplitude. Figure (b) illustrates the nature of generator 
response with automatic voltage regulators. 

In today’s practical power systems, small-signal stability is largely a problem of 
insufficient damping of oscillations. The following types of oscillations can be detected 
in power system: 

1) Local modes or machine-system modes, associated with the swinging of units at a 
generating station with respect to the rest of the power system. The term local is 
used because the oscillations are localized at one station or a small part of the power 
system. 

2) Interarea modes, associated with the swinging of many machines in one part of the 
system against machines in other parts. They are caused by two or more groups of 
the closely coupled machines being interconnected by weak ties. 

3) Control modes, associated with generating units and other controls. Poorly tuned 
exciters, speed governors, HVDC converters and static var compensators are the 
usual causes of instability of these modes. 

4) Torsional modes, associated with the turbine-generator shaft system rotational 
components. Instability of torsional modes may be caused by interaction with 
excitation controls, speed governors, HVDC controls, and series-capacitor-
compensated lines. 
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Figure2.2 Nature of small-signal response 
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2.4 Fundamental concepts of stability of dynamic system 

2.4.1 State-Space Representation 
The behavior of a dynamic system, such as a power system, may be described by 

a set of n first order nonlinear ordinary differential equations of the following form: 

   （2-3） 

where n is the order of the system and r is the number of inputs. This can be written in 
the following form by using vector-matrix notation: 

   （2-4） 

where 

  

The column vector x is referred as the state vector, and its entries xi as state 
variables. The column vector u is the vector of inputs to the system. These are the 
external signals the influence the performance of the system. Time is denoted by t, and 
the derivative of a state variable x with respect to time is denoted by . If the 
derivatives of the state variables are not explicit functions of time, the system is said to 
be autonomous. In this case, Equation (2-4) simplifies to 

   （2-5） 

We are often interested in output variables which can be observed on the system. 
These may be expressed in terms of the state variables and the input variables in the 
following form: 

   （2-6） 

where 

 

The column vector  is the vector of outputs, and  is a vector of nonlinear 

functions relating state and input variables to output variables. 
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2.4.2 The concept of state  
The concept of state is fundamental to the state-space approach. The state of a 

system represents the minimum amount of information about the system at any instant 
in time t0 that is necessary so that its future behavior can be determined without 
reference to the input before t0. 

Any set of n linearly independent system variables may be used to describe the 
state of the system. These are referred to as the state variables, they form a minimal set 
of dynamic variables that, along with the inputs to the system, provide a complete 
description of the system behavior. Any other system variables may be determined from 
a knowledge of the state. 

The state variables may be physical quantities in a system such as angle, speed, 
voltage, or they may be abstract mathematical variables associated with the differential 
equations describing the dynamics of the system. The choice of the state variables is 
not unique. This does not mean that the state of the system at any time is not unique; 
only that the means of representing the state information is not unique. Any set of state 
variables we may choose will provide the same information about the system. If we 
over specify the system by defining too many state variables, not all of them will be 
independent. 

The system state may be represented in an n-dimensional Euclidean space called 
the state space. When we select a different set of state variables to describe the system, 
we are in effect choosing a different coordinate system. 

Whenever the system is not in equilibrium or whenever the input is non-zero, the 
system state will change with time. The set of points traced by the system state in the 
state space as the system moves is called the state trajectory. 

2.5 Stability of a dynamic system 

The concept of state is fundamental for the state-space approach, since the state 
variables account for the amount of information at time t=t0 that is necessary to have in 
order to predict the behavior of the system for t > t0 [13]. State variables can be physical 
quantities (e.g., angle, speed or voltage) or abstract mathematical variables associated 
with the differential equations describing the dynamics of the system, or variable related 
to controls. 

Another important aspect is the concept of equilibrium points, where all the 
derivatives of vector dx/dt are zero; the equilibrium point is therefore described by the 
equation 

   （2-7） ( )0=0f x
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where x0 is the state vector x at the equilibrium point. Let us now consider u0, which is 
the input vector corresponding to the equilibrium point about which the steady-state 
stability is to be investigated. Equation (2-4) becomes 

   （2-8） 

It is possible to perturb the system from the above state by letting 

   （2-9） 

   （2-10） 

where △ represents a small deviation. After some calculations that can be found in [13] 

and after doing the same for equation (2-6), we get 

   （2-11） 
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where  
△x is the state vector of dimension n 

△y is the output vector of dimension m 

△u is the input vector of dimension r 

A is the state or plant matrix of size n×n  
B is the control or input matrix of size n×r  
C is the output matrix of size m×n 
D is the feed forward matrix which defines the proportion of input which appears 
directly in the output, size m×n 

Taking the Laplace transform of equations (2-11) and (2-12), we get the state 
equations in the frequency domain, whose block diagram is represented in Figure 2.3, 
where the initial conditions are assumed to be zero.  

   （2-14） 

   （2-15） 

 

Figure 2.3 Block diagram of the states-space representation. [3] 

The same happens for equation (2-16) obtaining 

   （2-16） 

The poles of △x(s) and △y(s) are the roots of the equation 

   （2-17） 

Equation (2-22) is called characteristic equation of matrix A. 
According to Lyapunov’s first method[1], which said a linear system is 

asymptotically stable if and only if all its eigenvalues have negative real part. The 
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stability analysis needs just a simple algebraic equation solution in order to evaluate the 
eigenvalues of the system [2]. These ones can be found considering that eigenvalues of 
a matrix are given by the values of the scalar parameter λ for which non-zero solutions 
to the equation exist: 

   （2-18） 

To find the eigenvalues, it is better to write equation (2-23) as 

   （2-19） 

whose non-zero solution is 

   （2-20） 

that is the same as equation (2-18). 
The time dependent characteristic of a mode corresponding to complex eigenvalue 

λi is given by eλit; for this reason, the stability of the system is determined by the 
eigenvalues as follows: 
l A real eigenvalue corresponds to a non-oscillatory mode. A negative real 

eigenvalue represents a decaying mode. A positive real eigenvalue represents 
aperiodic instability. 

l Complex eigenvalues occur in conjugate pairs, and each pair corresponds to an 
oscillatory mode. For example 

   （2-21） 

has the form 

   （2-22） 

that represents a damped sinusoid for negative values of σ. 
The real component of the eigenvalues gives the damping, while the imaginary 

part component gives the frequency of oscillation ω. A negative real part represents a 
damped oscillation whereas a positive real part represents oscillations of increasing 
amplitude. For a complex pair of eigenvalues 

   （2-23） 

The frequency of oscillation in Hertz is given by 

   （2-24） 

that represents the damped frequency. The damping ratio is given by 

A lF = F
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   （2-25） 

2.6 Properties of matrix A 

For any eigenvalue found from equation (2-21), the n-column vector Φi that 
satisfies equation (2-19) is called right eigenvector of A associated with λi For this 
reason, we can rewrite equation (2-19) as 

   （2-26） 

In the same way, considering a n-row vector Ψi that satisfies 
   （2-27） 

is called left eigenvector associated with . Left and right eigenvectors related to 

different eigenvalues are orthogonal. It means that, if  

   （2-28） 

On the other hand, considering normalized eigenvectors related to the same 
eigenvalue, we have that 

   （2-29） 

Let us now consider a zero input system (△u=0). We can rewrite equation (2-6) 

as 

   （230） 

The goal is to eliminate the coupling between the state variables in order to better 
study the motion of the system; to do this, a new vector z is introduced so that 

   （2-31） 

where Φ is defined as 

   （2-32） 

Inserting equation (2-33) in equation (2-32) we obtain 

   （2-33） 

and the new state equation can be written as 

   （2-34） 
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Introducing Λ as a diagonal matrix with the eigenvalues λ1, λ2,…, λn as diagonal 

elements, equation (2-34) becomes 

   （2-35） 

where Λ is defined as 

   （2-36） 

According to equation (1.35), the response in terms of the original state vector is 
given by 

   （2-37） 

keeping into consideration equation (1.33) in matrix form, that 

   （2-38） 

2.6.1 Mode shape 
Variables are the original state variables that represent the dynamic 

performance of the system, while variables  are the transformed state 

variables such as each of them is connected with only one mode. From equation (2-39) 
it is possible to notice that the right eigenvector gives the mode shape, that is the relative 
activity of the state variables when a particular mode is excited; on the other hand, from 
equation (2-40) we can see that the left eigenvector identifies which combination of the 

original state variables displays only the  mode. 

Thus, the element of  measures the activity of the variable  in the  

mode, while the  element of  weights the contribution of this activity to the 

 mode. 

2.6.2 Participation factor 
One problem exploiting right and left eigenvectors individually for identifying the 

relationship between the states and the modes is that the elements of the eigenvectors 
are dependent on units and scaling associated with the state variables. A solution for 

this problem is represented by the participation matrix  defined as the  state 

variables in  the mode. 

   （2-39） 
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with 

   （2-40） 

The generic element  is the so called participation factor, which describes 

the relative participation of the Participation factors are good indicators for the relative 
participations of the related states in the respective modes. 

2.6.3 Controllability and Observability 
The system response in the presence of input was given as 

   （2-41） 

   （2-42） 

Expressing them in terms of the transformed variables defined by (2-46) 

   （2-43） 

   （2-44） 

The state equations in the “normal form”(decoupled) may therefore be written as 

   （2-45） 

   （2-46） 

where 

 

Referring to Equation (2-49), if the  row of matrix  is zero, the inputs have 

no effect on the  mode. In such a case, the  mode is said to be uncontrollable. 

From Equation (2-46), we see that the  column of the outputs. If the column is 
zero, then the corresponding mode is unobservable. This explains why some poorly 
damped modes are sometimes not detected by observing the transient response of a few 
monitored quantities. 

The  matrix  is referred to as the model controllability matrix, 

and the  matrix  as the mode observability matrix. 
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By inspecting  and  we can classify modes into controllable and 
observable; controllable and unobservable; uncontrollable and observable; 
uncontrollable and unobservable. 

2.7 Characteristics of small-signal stability problems 

In large power systems, small-signal stability problems may be either local or 
global in nature. 

2.7.1 Local problems 
Local problems involve a small part of the system. They may be associated with 

rotor angle oscillations of single generator or a single plant against the rest of the power 
system. Such oscillations are called local plant mode oscillations. The stability 
problems related to such oscillations are similar to those of a single-machine infinite 
bus system. Most commonly encountered small-signal stability problems are of this 
category. 

Local problems may also be associated with oscillations between the rotors of a 
few generators close to each other. Such oscillations are called intermachine or 
interplant mode oscillations. Usually, the local plant mode and interplant mode 
oscillations have frequencies in the range of 0.7 to 2.0 Hz. 

Other possible local problems include instability of modes associated with controls 
of equipment such as generator excitation systems, HVDC converters, and static var 
compensators. The problems associated with control modes are due to inadequate 
tuning of the control systems [6]. In addition, these controls may interact with the 
dynamics of the turbine-generator shaft system, causing instability of torsional mode 
oscillations [7]. 

Analysis of local small-signal stability problems requires a detailed representation 
of a small portion of the complete interconnected power system. The rest of the system 
representation may be appropriately simplified by use of simple models and system 
equivalents. Usually, the complete system may be adequately represented by a model 
having several hundred states at most. 

2.7.2 Global Problems 
Global small-signal stability problems are caused by interactions among large 

groups of generators and have widespread effects. They involve oscillations of a group 
of generators in one area swinging against a group of generators in another area. Such 
oscillations are called interarea mode oscillations. 

Large interconnected systems usually have two distinct forms of interarea 
oscillations: 

'B 'C
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a) A very low frequency mode involving all the generators in the system. The system 
is essentially split into two parts, with generators in one part swinging against 
machines in the other part. The frequency of this mode o oscillation is on the order 
of 0.1-0.3Hz. 

b) Higher frequency modes involving subgroups of generators swinging against each 
other. The frequency of these oscillations is typically in the range of 0.4Hz to 0.7 
Hz. 

2.7.3 Factors influencing interarea modes of oscillation 
The characteristics of interarea modes of oscillation are very complex and 

significantly differ from the characteristics of local plant modes. Load characteristics, 
in particular, have major effect on the stability of interarea modes. The manner in which 
excitation systems affect interarea oscillations depends on the types and locations of 
the exciters, and on the characteristics of loads [2]. 

Speed-governing systems normally do not have a very significant effect on 
interarea oscillations. However, if they are not properly tuned, they may decrease 
damping of the oscillations slightly. In extreme situations, this may be sufficient to 
aggravate the situation significantly. In the absence of any other convenient means of 
increasing the damping, adjustment of blocking of the governors may provide some 
relief [4]. 

A mode of oscillation in one part of the system may interact with a mode of 
oscillation in a remoter part due to mode coupling. This occurs when the frequencies of 
the two modes are nearly equal [4]. Care should be exercised in interpreting results of 
analysis in such cases. 

The controllability of interarea modes with PSS is a complex function of many 
factors: 
l Location of unit with PSS 
l Characteristics and location of loads 
l Types of exciters on other units 

On some units, the PSS does not have the desired effect on the damping of 
interarea oscillations. Reference 24 presents results of detailed study of factors 
influencing PSS performance in damping interarea and interplant modes of oscillation. 

Other effective means of stabilizing interarea modes of oscillation include 
modulation of HVDC converter controls and static var compensator controls. 

Analysis of interarea oscillations requires detailed representation of the entire 
interconnected power system. Models for excitation system and loads, in particular 
should be accurate, and the same level of modelling detail should be used throughout 
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the system. 
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3   Test System Simulations 

3.1 Introduction 

In this Chapter, a two-area system, which is quite similar to the Kundur system, is 
studied with the DigSILENT PowerFactory software. According to the mode-based 
analysis theory presented in Chapter 2, eigenvalues and oscillation modes of the test 
system are calculated and identified.  

Since the thesis aims at validating the effectiveness of dynamic mode 
decomposition algorithm in electromechanical oscillations analysis, real-time 
measurements are required. In this Chapter, five load events, three short-circuit events, 
three generator events and two switch events are applied to the tested system. Selected 
variables in different scenarios are extracted, thereby giving a data base for dynamic 
mode decomposition algorithm. An additional Matlab script is used to simulate the 
stochastic load deviation in real time. 

3.2 Parameters of the test system 

In this section, we analyze the small-signal stability of a simple two-area system 
as shown in Figure 3.1. Parameters of the test system is quite similar to the classic 
Kundur system. However, several control devices, such as PSS, governors and AVRs 
are applied, which would influence the dynamic behavior of the system. 

 

Figure 3.1 two-area system 

 
The test system consists of two similar areas connected by two weak tie links. 

Each area consists of two coupled units, each having a rating power of 900MVA and a 
rating voltage of 20 kV. The generator parameters in per unit on the rated MVA and kV 
base are as follows: 

 

G1_Area1

G2_Area1

G1_Area2

G2_Area2

25 km10 km25 km 10 km
110 km110 km

230kV_Bus3_Area1 230kV_Bus3_Area2 230 kV/20 kV20 kV/230 kV

20 kV/230 kV 230 kV/20 kVLoad_Area1 Load_Area2

CC

230kV_Interarea_Bus

20kV_Bus1_Area1

20kV_Bus2_Area1 20kV_Bus2_Area2

20kV_Bus1_Area2
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Table 3.1 Parameters of synchronous machines 

Xd=1.8 Xq=1.7 Xl=0.2 X’
d=0.3 

X’’
d=0.25 X’’

q=0.25 X’
q=0.55 T’

d0=8.0 s 
T’’

d0=0.03 s T’
q0=0.4s T’’

q0=0.05s Kd=0 
H=6.5 (for G1 and G2) H=6.175 (for G3 and G4) 

Each step-up transformer with Yn/D connection, has an impedance of 0+j0.15 p.u., 
and an off-nominal ratio of 1.0. 

The transmission system nominal voltage is 230 kV. The line lengths are identified 
in Figure 3.1. The parameters of lines in per unitbase are as follows: 

Table 3.2 Parameters of transmission lines 

r=0.0001 pu/km xl=0.001pu/km bc=0.00175 pu/km 

The system is operating with area1 exporting 400MV to area2, and the generating 
units are loaded as follows: 

Table 3.3 Generating units and load 

Synchronous machine P/(MW) Q/(MVar) Et 

G1_Area1: 700 185 1.03 20.2° 

G2_Area1: 700 234 1.01 10.4° 

G1_Area2: 719 176 1.03 -6.8° 

G2_Area2: 700 MW 202 1.01 -17.0° 

The load and reactive power supplied (Qc) by the shunt capacitors at 
230kV_Bus3_Area1 and 230kV_Bus3_Area1 are as follows: 

Table 3.4 Load and reactive power supplied (Qc) 

Line PL QL Qc 

230kV_Bus3_Area1 967 MW 100 MVar 200 MVar 

230kV_Bus3_Area2 1767 MW 100 MVar 350 MVar 

3.3 Eigenvalues and mode shape of the test system  

The eigenvalues, frequencies, and damping ratios of rotor oscillation modes are 
here determined when all the four generators are equipped with PSS, governors and 
AVRs. Moreover, the active components of loads have constant current characteristics, 
and the reactive components of loads have constant impedance characteristics. The 
results are shown in Table 3.5. 

Figure 3.2 shows a plot of all eigenvalues on a complex plane. Table 3.5 

Ð

Ð

Ð

Ð
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summarizes the eigenvalues of the system state matrix. The first row represents the zero 
eigenvalue due to the redundant state variables. According to the theory [1]，the zero 

eigenvalue is due to lack of uniqueness of absolute rotor angle (there is no infinite bus, 
and the rotor angles are referred to a common reference frame).  

In Figure 3.2 and Table 3.6, we can see that the system is stable. To identify the 
critical modes of electromechanical oscillation, eigenvalues of modes with frequencies 
in the range of 0.1 Hz to 5 Hz are extracted. Figure 3.3 shows a plot of these eigenvalues 
on a complex plane. The box in the figure represents the modes of oscillation that 
mainly depend on △ω and △δ of four generators. Their mode shapes (normalized 

eigenvector components corresponding to rotor speeds) are shown in Figure 3.4.  

 
Figure 3.2 Eigenvalues of the system 

 
Figure 3.3 Modes of electromechanical oscillation 

 
 

Mode 23,24

Mode 21,22

Mode 26,27

Hz
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Table 3.5 Test system modes 

Eigenvalues Frequency 
(Hz) 

Damping 
Ratio Name Real part Imaginary part 

Mode 1 0.0000 - - - 
Mode 2 -95.1931 - - 1.0000 
Mode 3 -98.8498 - - 1.0000 
Mode 4 -97.8364 - - 1.0000 
Mode 5 -97.7063 - - 1.0000 
Mode 6 -50.5244 - - 1.0000 
Mode 7 -50.1216 - - 1.0000 
Mode 8 -50.2778 - - 1.0000 
Mode 9 -50.2260 - - 1.0000 

Mode 10,11 -17.7977 ±20.0546 3.1918 0.6638 
Mode 12,13 -33.2134 ±1.6476 0.2622 0.9988 

Mode 14 -31.6904 - - 1.0000 
Mode 15,16 -28.0529 ±0.6845 0.1089 0.9997 

Mode 17 -26.7544 - - 1.0000 
Mode 18 -20.7742 - - 1.0000 
Mode 19 -15.6368 - - 1.0000 
Mode 20 -12.0767 - - 1.0000 

Mode 21,22 -0.8797 ±6.7700 1.0775 0.1289 
Mode 23,24 -1.4478 ±7.1173 1.1328 0.1993 

Mode 25 -7.3389 - - 1.0000 
Mode 26,27 -0.1826 ±3.5402 0.5634 0.0515 

Mode 28 -4.2823 - - 1.0000 
Mode 29 -4.0563 - - 1.0000 
Mode 30 -3.5389 - - 1.0000 
Mode 31 -2.7235 - - 1.0000 

Mode 32,33 -0.3214 ±0.6628 0.1055 0.4363 
Mode 34 -0.0742 - - 1.0000 
Mode 35 -0.2462 - - 1.0000 
Mode 36 -0.2432 - - 1.0000 
Mode 37 -0.1014 - - 1.0000 
Mode 38 -0.1019 - - 1.0000 
Mode 39 -0.1017 - - 1.0000 
Mode 40 -0.2107 - - 1.0000 
Mode 41 -0.1939 - - 1.0000 
Mode 42 -0.1842 - - 1.0000 
Mode 43 -0.1848 - - 1.0000 
Mode 44 -0.1851 - - 1.0000 
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According to the mode shapes, the 1.077 Hz mode represents an electromechanical 
mode in area1, with G1 swinging against G2. The second electromechanical mode, with 
frequency of 1.133 Hz, is a local mode in area2. Finally, the 0.563 Hz mode is an 
interarea mode, in which the two generators in area 1 are swinging against those in area 
2. 

 

(a) Area 1 local mode f=1.077 Hz, ζ=0.1289 

 

(b) Area 2 local mode f=1.133 Hz, ζ=0.1993 

G1_Area1

G2_Area1

G1_Area2

G2_Area2
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(c) Interarea mode f=0.563 Hz, ζ=0.0515 

Figure 3.4 Mode shapes of rotor angle  

3.4 Stochastic Load Deviation Generation 

Irregular load fluctuation may cause risk for system operation, thus, it is necessary 
to involve the stochastic load deviation in our simulations. 

Typical load curve can be decomposed into three components as shown in 
Equation (3-1) 

   （3-1） 

where PLs refers to the short-term load component, whose changing period is within 
10s. The proportion of PLs is generally less than 1%. PLm refers to the load component 
with a changing period from 10s to several minutes. Its average changing range is more 
or less 2.5% of the peak load. PLf refers to the continuously varying load component 
with a long period.  

We are concerned about the real-time load fluctuation, only the component of very 
short period is taken into consideration. Therefore, we add a stochastic load deviation 
of 0.5%(less than 1%) to the given load in the two-area system. Since we cannot 
simulate stochastic load variations with Digsilent, a Matlab script for stochastic load 
generation is used. The codes are given as follows: 
 
Matlab code: 

G2_Area2
G1_Area2

G1_Area1
G2_Area1

+ +L Ls Lm LfP P P P=
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clear all 
clc 
%% Original data 
%Initial loads - kundur System - Set the initial values of the load 
 
La=967+1i*100;  
Lb=1767+1i*100; 
 
%Power Factor 
phi_La=atan(imag(La)/real(La)); %inductive, lagging, + 
phi_Lb=atan(imag(Lb)/real(Lb)); %inductive, lagging, + 
PF_La=cos(phi_La); % by doing this, the angle will be  
PF_Lb=cos(phi_Lb); % always the same 
 
%% Stochastic profile 
 
%Mean and deviation Stochastic load deviation: 0.5% 
mu_a=real(La); sig_a=5;  
mu_b=real(Lb); sig_b=10; 
 
%Sampling time 
samt=0.1; %10 samples per s 
simt=1000; %simulation time in s 
nums=simt/samt; %number of samples 
stvec=0:samt:simt; stvec(1)=[]; stvec=stvec'; 
 
%Generating the active power load profile following gaussian distr. 
% generates a random number from the normal distribution with mean parameter  
% mu and standard deviation parameter sigma. 
PLa=normrnd(mu_a,sig_a,[nums,1]); 
PLb=normrnd(mu_b,sig_b,[nums,1]); 
 
%Generating the reactive power load profile considering the PF constant 
QLa=PLa.*tan(phi_La);  
QLb=PLb.*tan(phi_Lb); 
 
%Matrices with time 
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Lavec=[stvec PLa QLa]; 
Lbvec=[stvec PLb QLb]; 
 
%% Saving 
 
% dlmwrite('myFile.txt',M,'delimiter','\t','precision',3) Write matrix M to a file, 
'myFile.txt',  
% delimited by the tab character and using a precision of x significant digits 
dlmwrite('PLa.txt',Lavec,'delimiter','\t','precision',7) 
dlmwrite('PLb.txt',Lbvec,'delimiter','\t','precision',7) 
disp('Saved') 
 

3.5 Description of scenarios generated as the data base of DMD 

We use DIgSILENT PowerFactory software in order to implement and study the 
stability of the test system. PowerFactory is a leading power system analysis software 
application for the analyses of generation, transmission, distribution and industrial 
systems. It covers the full range of functionality from standard features to highly 
sophisticated and advanced applications including wind power, distributed generation, 
real-time simulation and performance monitoring for system testing and supervision. 
PowerFactory offers a complete suite of functions for studying large interconnected 
power systems and addressing these emerging needs. Its fast and robust simulation 
algorithms can be applied to any AC or DC network topology and support the 
simulation of new technologies such as converter-based power generation, FACTS, 
voltage-sourced converters (VSC), HVDC cables and overhead lines, DC breakers, 
filters, and various types of MW- and Mvar-controllers and virtual power plants. 

3.5.1 Selected variables 
To verify the ability of dynamic mode decomposition algorithm, simulated 

measurements in different scenarios are required. The following variables of power grid 
are selected to form a data base. 
1) Frequency of busbars; 
2) Voltage magnitudes and angles of busbars; 
3) Currents on transmission lines; 
4) Speeds and rotor angles of synchronous machines. 

3.5.2 Working list 
The two-area system is simulated in the software as shown in Figure3.5 
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Figure 3.5 Test case in Power Factory: 

The simulation step size is set a 10ms for a total duration of 100s. Stochastic load 
deviations are selected as 0.5% of rated loads’ power. As listed in Table 3.6, five load 
events, three short-circuit events, three generator events and two switch events are 
applied to generate the data base.  

Table 3.6 Working list: 

Case No. Description 

Load Event 

1 Increase Area1_Load for 10% every 10s for three times; 
2 Decrease Area1_Load for 10% every 10s for three times; 
3 Increase Area2_Load for 10% every 10s for three times; 
4 Decrease Area2_Load for 10% every 10s for three times; 
5 Increase Area1_Load and Area2_Load both for 10% 

Short-circuit 
Event 

1 
3 phase short-circuit event on InterArea_L1a at 10s, clear the fault 

after 20ms 

2 
3 phase short-circuit event on InterArea_L2a at 10s, clear the fault 

after 20ms 

3 

3 phase short-circuit on Area1_G1 at 5s, after 20ms clear the fault. 
3 phase short-circuit on Area1_G2 at 25s, after 20ms clear the fault. 
3 phase short-circuit on Area2_G2 at 45s, after 20ms clear the fault. 
3 phase short-circuit on Area2_G1 at 65s, after 20ms clear the fault. 

Generator Event 

1 
Decrease Area1_G2 for 100MW and increase Area2_G2 for 

100MW at the same time (t=10s). Back to the initial condition at 
t=40s. 

2 
Decrease Area1_G2 for 300MW and increase Area2_G2 for 

300MW at the same time (t=10s). Back to the initial condition at 
t=40s. 

3 
Decrease Area1_G1 for 600MW and increase Area1_G2 for 
600MW at the same time(t=10s). Keep for 30s, then remove 

Area1_G1 at t=40s. 

Switch Event 
1 Open the switch on line Inter_Area_L1a at 10s 
2 Open the switch on line Inter_Area_L2a at 10s 
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3.6 Simulation results 

3.6.1 Element as Reference 
Taking a single-machine infinite system as an example, if the generator uses the 

classical second-order model, ignoring the dynamic process of the prime mover, the 
governor, and the excitation system [28].  

 

Figure 3.6 Single-machine infinite system 

The complete mathematical model of the system can be described as 

   （3-2） 

where, ω refers to the deviation between rotor speed and synchronous speed; δ refers 

the rotor angle; Pm=const. refers to the mechanical power; refers to the 

electromagnetic power; is the total reactance of the system between  the 

internal potential of the generator) and  (the voltage of infinite system), whereas 
the resistance is assumed zero. E and U are constant, M is the inertia time constant (TJ) 
of the generator. 

The Kinetic energy of the system Vk can be define as (note that ω is the deviation 
from the synchronous speed, in steady state Vk=0) 

   （3-3） 

Now, let us consider the energy function of a multi-machine system. Each 
generator is still described as a classical second-order model, ignoring the dynamic 
process of the prime mover, the governor, and the excitation system. A constant 
impedance model is used to represent the load, assuming that the load impedance and 
the generator impedance X’d are included into the node admittance array. In the system 
node admittance matrix, the load nodes and the network nodes are eliminated, only the 
inner nodes of the generators (the internal electromotive force nodes) are retained in the 
matrix. As shown in the figure below, for a n-machine system, the i-th generator can be 
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described as 

   （3-4） 

where Pmi=const., M, ω, δ, Pm, Pe have the same definition as in Formula (3-2), and 

 

 

are the elements of the admittance matrix[28]. 

 
Figure 3.7 Multi-machine system schematic 

If we define that EiEj=Cij, EiEjGij=Dij, and Cij=Cji, Dij=Dji, Pei in (3-4) can be 
described as 

   （3-5） 

Formula (3-4) and (3-5) form a complete dynamic model for the system. Similar 
to a single-machine infinite system, the kinetic energy can be defined as 

   （3-6） 

If a system is stably operating at a frequency which is higher than the synchronous 

speed after the disturbance, the kinetic energy of the system is still not zero, 

even that the system has reach a new steady state.  
In fact, the kinetic energy does not result in the power system losing 

synchronization. That means, in the synchronous coordinates, the transient energy 
contains some components that would not contribute to drop-out of step. If included in 
energy processing and analysis, it will inevitably affect the accuracy of stability analysis 
[28]. 
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3.6.2 Center of Inertia (COI) as Reference 
The center of inertia (COI) coordinates are widely used in actual analysis [28]. The 

equivalent rotor angle δCOI of COI is defined as the weighted average of all the rotor 
angles in the system. The weighted coefficient Mi is the inertia time constant of each 
generator, that is 

   （3-7） 

where 

   （3-8） 

Similarly, the equivalent speed of COI ωCOI is 

   （3-9） 

where, ωi is the deviation from synchronous speed. 
Obviously, 

   （3-10） 

The definitions of rotor angle and rotor speed in COI coordinate are given as 
follows: 

   （3-11） 

It’s easy to prove by the definition that 

   and  （3-12） 

Based on the abovementioned definitions, the inertia center motion equation can 
be derived as 

   （3-13） 

Formula (3-13) is the motion equations of COI, where PCOI refers to the 
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accelerating power. 
The motion equations of each machine (for example, the i-th machine) in COI 

coordinates are to be derived. Substituting  into Formula (3-4) and 

according to Formula (3-13), we can get 

   （3-14） 

where  

According to (3-12), 

   （3-15） 

The following equation can be derived from Formula (3-5) and Formula (3-11)  

   （3-16） 

where . 

Formulas (3-14), (3-15) and (3-16) are the motion equations for the i-th machine 
in COI coordinates. 

With the definitions in COI coordinates, we can get 

   （3-17） 

That is to say, in the COI coordinates, the kinetic energy of the system is 

 less than that in synchronous coordinates [28], which is precisely the kinetic 

energy that does not contribute to loss of synchronization. The use of COI coordinates 
can improve the accuracy of the stability analysis than synchronous coordinates. 

In the following section, simulation results in synchronous coordinates and in COI 
coordinates are simultaneously given for comparison. 

3.6.3 Simulation results of load events 
Figures from 3.8 to 3.12 display the simulation results of five load events.  
In Figure 3.8, we find that the bus voltages will drop and gradually transit to a new 

steady state, if Load_Area1 increases suddenly. It should be noted that new steady-state 
voltages of some busbars are larger than the initial ones. As the load increases in 
Load_Area1, the system frequency decreases. Currents inside each area increase, 
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nevertheless currents on the transmission lines interconnect the two areas decrease. In 
synchronous coordinates, the rotor angle of G1_Area2 is the reference of the system. 
The rotor angles of generators in Area1 change rapidly while those in Area2 remain 
basically unchanged. In the COI coordinates, the rotor angles of all the four generators 
change apparently. 
 

  

(a)Voltage magnitude under reference element (b)Voltage magnitude under reference COI 

  

(c)Voltage angle under reference element (d)Voltage angle under reference COI 

  

(e)Frequency under reference element (f)Frequency under reference COI 
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(g)Line current under reference element (h)Line current under reference COI 
 
 

 

(i) rotor angle and speed of synchronous machines under reference element 
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(j) rotor angle and speed of synchronous machines under reference COI 

Figure 3.8 Simulation results of load event 1 

 
According to Figure 3.9, voltages of the busbars will increase, if Load_Area1 

suddenly decreases. For some busbars, after the transient process of the load event, the 
steady-state voltages are lower than the initial values. When the load decreases, the 
system frequency increases, currents in each area decreases, and currents on the tie lines 
increases. The new steady-state frequency is higher than the initial value. 

 

  

(a)Voltage magnitude under reference element (b)Voltage magnitude under reference COI 
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(c)Voltage angle under reference element (d)Voltage angle under reference COI 

 

 

 

 

 

 

(e)Frequency under reference element (f)Frequency under reference COI 

 

 

 

 

 

 

(g)Line current under reference element (h)Line current under reference COI 
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(i) rotor angle and speed of synchronous machines under reference element 

 

(j) rotor angle and speed of synchronous machines under reference COI 

Fig 3.9 Simulation results of load event 2 
In Figure 3.10, voltages of the busbars will decrease, if Load_Area2 suddenly 
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increases. As the load in area2 increases, the system frequency decreases, and currents 
on the transmission line increase. G1_Area2 is the balanced generator of the system. In 
this case, the output of G1_Area2 increases obviously to make up the power shortage, 
and the rotor speed changes rapidly. In the synchronous coordinates, with G1_Area2 as 
a reference, rotor angles of the two generators in Area1 also change greatly. 

According to the figures, the system is obviously oscillating after  load_Area2  
is increased for three times. The operating status of the system is changed due to the 
severe overloading on the tie links. 

 
 

  

(a)Voltage magnitude under reference element (b)Voltage magnitude under reference COI 

 

 

 

 

 

 

(c)Voltage angle under reference element (d)Voltage angle under reference COI 
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(e)Frequency under reference element (f)Frequency under reference COI 

  

(g)Line current under reference element (h)Line current under reference COI 

 

(i) rotor angle and speed of synchronous machines under reference element 
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(j) rotor angle and speed of synchronous machines under reference COI 

Figure 3.10 Simulation results of load event 3 
In Figure 3.11, we can see that voltages of the busbars increase when Load_Area2 

suddenly decreases. The system frequency rises, and the transmission line currents 
decrease. The frequency in the new steady state is higher than the initial value. 

 

  

(a)Voltage magnitude under reference element (b)Voltage magnitude under reference COI 
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(c)Voltage angle under reference element (d)Voltage angle under reference COI 

 

 

 

 

 

 

(e)Frequency under reference element (f)Frequency under reference COI 

 

 

 

 

 

 

(g)Line current under reference element (h)Line current under reference COI 
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(i) rotor angle and speed of synchronous machines under reference element 

 

 

(j) rotor angle and speed of synchronous machines under reference COI 

Figure 3.11 Simulation results of load event 4 
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If Load_Area1 and Load_Area2 are increased by 10% at the same time, as shown 
in Figure 3.12, the changes of selected variables are similar to those in load event 3. 
Since Load_Area2 is much larger than Load_Area1, the simulation results are closer to 
the results of load event in area 2. 

 

 

 

 

 

(a)Voltage magnitude under reference element (b)Voltage magnitude under reference COI 

 

 

 

 

(c)Voltage angle under reference element (d)Voltage angle under reference COI 

  

(e)Frequency under reference element (f)Frequency under reference COI 
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(g)Line current under reference element (h)Line current under reference COI 
 
 
 

 

(i) rotor angle and speed of synchronous machines under reference element 
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(j) rotor angle and speed of synchronous machines under reference COI 

Figure 3.12 Simulation results of load event 5 

 

3.6.4 Simulation results of short-circuit events 
Figure 3.13 to Figure 3.15 display the simulation results of three short-circuit 

events. According to Figure 3.13 and Figure 3.14, when a three-phase short-circuit fault 
occurs at one of the interarea lines, voltages of the corresponding busbars drop to zero 
immediately, the frequency and currents on the transmission lines increase rapidly. The 
fault is removed at the zero crossing after a power frequency cycle (after more or less 
0.02s), and the system resumes steady-state operation after a short-term oscillation. 

  

(a)Voltage magnitude under reference element (b)Voltage magnitude under reference COI 
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(c)Voltage angle under reference element (d)Voltage angle under reference COI 

 

 

 

 

 

 

(e)Frequency under reference element (f)Frequency under reference COI 

 

 

 

 

 

 

(g)Line current under reference element (h)Line current under reference COI 
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(i) rotor angle and speed of synchronous machines under reference element 

 

(j) rotor angle and speed of synchronous machines under reference COI 

Figure 3-12 Simulation results of short circuit event 1 
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(a)Voltage magnitude under reference 
element 

(b)Voltage magnitude under reference COI 

  

(c)Voltage angle under reference element (d)Voltage angle under reference COI 

  

(e)Frequency under reference element (f)Frequency under reference COI 

 

 

 

 

 

 
  

(g)Line current under reference element (h)Line current under reference COI 
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(i) rotor angle and speed of synchronous machines under reference element 

 

(j) rotor angle and speed of synchronous machines under reference COI 

Figure 3.14 Simulation results of short circuit event 2 
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As shown in Figure 3.15, compared with transmission line short-circuit events, the 
system will experience a longer oscillation process if a three-phase short circuit occurs 
at a generator busbar. The fluctuations of voltages, frequency and currents are also 
larger. 

 

  

(a)Voltage magnitude under reference element (b)Voltage magnitude under reference COI 

 

 

 

 

(c)Voltage angle under reference element (d)Voltage angle under reference COI 

 

 

 

 

(e)Frequency under reference element (f)Frequency under reference COI 
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(g)Line current under reference element (h)Line current under reference COI 
 
 

 

(i) rotor angle and speed of synchronous machines under reference element 
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(j) rotor angle and speed of synchronous machines under reference COI 

Figure 3.15 Simulation results of short circuit event 3 

 
 
 

 

3.6.5 Simulation results of generator events 
Figure 3.16 to Figure 3.18 represent the simulation results of three generator 

events.  
It can be seen from Figure 3.16 and Figure 3.17 that decreasing the output power 

of G2 in area 1, meanwhile increasing the output power of G2 in area2 has little effect 
on the frequency. The currents on the   transmission lines that directly connected to 
G2_Area1 and G2_Area 2 change in the same trends with the output power. The voltage 
magnitudes of interarea busbars increase obviously. 

  

(a)Voltage magnitude under reference element (b)Voltage magnitude under reference COI 
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(c)Voltage angle under reference element (d)Voltage angle under reference COI 

 

 

 

 

 

 

(e)Frequency under reference element (f)Frequency under reference COI 

 

 

 

 

 

 

(g)Line current under reference element (h)Line current under reference COI 
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(i) rotor angle and speed of synchronous machines under reference element 

 

(j) rotor angle and speed of synchronous machines under reference COI 

Figure 3.16 Simulation results of generator event 1 
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(a)Voltage magnitude under reference element (b)Voltage magnitude under reference COI 

  

(c)Voltage angle under reference element (d)Voltage angle under reference COI 

  

(e)Frequency under reference element (f)Frequency under reference COI 

  

(g)Line current under reference element (h)Line current under reference COI 
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(i) rotor angle and speed of synchronous machines under reference element 

 

(j) rotor angle and speed of synchronous machines under reference COI 

Figure 3.17 Simulation results of generator event 2 
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In the third generator event, 600 MW active power is transferred from G1_Area1 
to G2_Area1 at t=10s. At this time, the output power of G1 and G2 are 100MW and 
1300MW respectively. After the system reaches a new operating state, G1_Area1 is cut 
off. Simulation results are shown in the Figure 3.18. 

After the removal of G1_Area1，the rotor speed of G1_Area1decreases to zero. 

The whole system runs out of step. The voltages of the busbars, the rotor angles and the 
currents on the transmission lines are oscillating.  In the synchronous coordinates，

the rotor angle of G1_Area2 is regarded as reference. The oscillation magnitude of the 
rotor angle of G2_Area2 is smaller than that of G2_Area1. In the COI coordinates, due 
to the resection of G1_Area1, the symmetry of the network and the center of inertia are 
changed. The remaining generators display apparent oscillations. 
 

  

(a)Voltage magnitude under reference element (b)Voltage magnitude under reference COI 

 

 

 

 

 

 

(c)Voltage angle under reference element (d)Voltage angle under reference COI 
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(e)Frequency under reference element (f)Frequency under reference COI 

  

(g)Line current under reference element (h)Line current under reference COI 
 

 

(i) rotor angle and speed of synchronous machines under reference element 
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(j) rotor angle and speed of synchronous machines under reference COI 

Figure 3.18 Simulation results of generator event 3 
 

3.6.6 Simulation results of switch events 
Figure 3.19 and Figure 3.20 represent the simulation results of two switch events. 

Due to the symmetry of the test system, simulation results of the removal of line 
Inter_area_L1a and line Inter_area_L2a are quite similar. All the selected variables are 
damped oscillating to reach a new steady state. 

  

(a)Voltage magnitude under reference element (b)Voltage magnitude under reference COI 
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(c)Voltage angle under reference element (d)Voltage angle under reference COI 

 

 

 

 

 

 

(e)Frequency under reference element (f)Frequency under reference COI 

 

 

 

 

 

 

(g)Line current under reference element (h)Line current under reference COI 
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(i) rotor angle and speed of synchronous machines under reference element 

 

(j) rotor angle and speed of synchronous machines under reference COI 

Figure 3.19 Simulation results of switch event 1 
 



3  Test System Simulations 

63 
 

  

(a)Voltage magnitude under reference element (b)Voltage magnitude under reference COI 

  

(c)Voltage angle under reference element (d)Voltage angle under reference COI 

  

(e)Frequency under reference element (f)Frequency under reference COI 

  

(g)Line current under reference element (h)Line current under reference COI 
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(i) rotor angle and speed of synchronous machines under reference element 

 

(j) rotor angle and speed of synchronous machines under reference COI 

Figure 3.20 Simulation results of switch event 2 
Equation Chapter (Next) Section 1 
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4   Validation of DMD algorithm 

4.1 Introduction 

Dynamic mode decomposition (DMD), a mathematical method that aims at 
finding a low dimensional approximate matrix of the system, is here presented. 
According to DMD theory, the electromechanical oscillation modes of the power 
system could be extracted from observational data. 

In this chapter, DMD algorithm is applied to identify oscillation modes in two 
typical events, on the basis of real-time measurement generated in Chapter 3. 
Comparisons between the results obtained by DMD algorithm and conventional mode-
based method validate the effectiveness of DMD algorithm in electromechanical 
oscillation modes identification. 

4.2 DMD Algorithm 

4.2.1 Background 
In recent years, the dynamic feature parameters extraction method based on multi-

channel dataset has been gradually developed. In order to determine the oscillation 
modes of the system, it is necessary to analyze the dynamic behaviors of the generator 
from a global perspective. 

Dynamic mode decomposition (DMD) algorithm was proposed by Schmid, using 
a linear finite-dimensional system to approximate the nonlinear finite-dimensional 
system. DMD algorithm is a low-dimensional approximation technique developed on 
the basis of Koopman operator theory [16]. 

The measurement dataset of actual systems is very large, resulting in a high-
dimensional system matrix that is difficult to analyze. Researchers hope to approximate 
the eigenvalues of the system matrix A using the eigenvalues of a low-dimensional 
approximation matrix. That is, the dynamic characteristics of the system can be studied 
by analyzing the low-dimensional approximation matrix, even if the precise matrix A 
is unknown. Specific steps of the dynamic mode decomposition algorithm is described 
below.  

Assume that  denotes an element of observation, 

where  is the  grid or measurement point, and  is the time at which the 

observations are made. To introduce the proposed method, define the data matrix , 

( ), , 1, , , 1, ,j ix v t j m i N= =! !

jv -thj it

1
NX
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as 

   （4-1） 

Whose l-th column is the observation sequence . 

Let now,  be a set of functions obtained from the data 

itself. 
Dynamic mode decomposition (DMD) is a global multiscale method that can 

approximate a few Koopman functions using two sets of time ordered sequences of 

data snapshots. More precisely, the method assumes that the data sequences or 

snapshots,	 in equation (4-1) are generated by a discrete-time linear dynamical system 

whose evolution is governed by the linear mapping[14]: 

   （4-2） 

where A is an unknown (time-independent) operator matrix of dimension m×m that 
captures the dynamics inherent in the data matrix and ηi is some noise process. This is 
a local approximation to system dynamics with a linear system: the eigenvalues and 
eigenvectors of A determine dynamic behavior of the mapping. 

Practical algorithms to estimate the linear operator A and its associated relevant 
eigenvalues and eigenvectors that do not require explicit knowledge of the mapping 
matrix are discussed below. 

In the noise-free case, use of formula (4-2) in (4-11) yields the Krylow sequences: 

   （4-3a） 

   （4-3b） 

   （4-3c） 

It can be proved that as more vectors xl+1=Alx1, l=0, are appended, the rank of the 
Krylov sequences increases until it reaches a maximal value [17]. For a sufficiently large 
number of snapshots, it can be assumed that the Nth snapshot can be expressed as a 
linear combination of the previous measurements, i.e., 

   （4-4） 
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where the ci’s are unknown expansion coefficients,  is a vector of residuals. 
Equation (4-4) can be rewritten in a more useful form as 

    

in which c=[c1 c2 c3 … cN-1]T is a vector of unknown coefficients. 
Multiplying (4-3b) A yields 

   （4-5） 

It can be easy to show that the data sequence  can be expressed as 

   （4-6） 

where eN-1=[0 0 0 … 1]∈   and use has been made of (4-4). 

Further in matrix form, formula (4-5) in connection with formula (4-6) can be 
written as 

   （4-7） 

where 

   （4-8） 

is a companion (or Frobenius) matrix associated with the DMD method. 
In light of this, the unknown matrix S can be determined by minimizing the 

residual r 

   （4-9） 

A solution to the optimization problem is given by , where the 

notation  denotes the Moore-Pen-rose pseudo-inverse. Once matrix S is 

determined, the DMD modes and eigenvalues are obtained by solving the eigenvalue 

problem . The quality of the estimation can then be computed 

from equation (4-4) and equation (4-7) as 

   （4-10） 
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With m being the number of sensors. DMD can be used to obtain low-dimensional 
spatial decomposition of a high-dimensional transient processes. Let m be the true rank 

of the data matrix . In analogy with POD analysis, the singular value 

decomposition (SVD) of matrix  is given by[17] 

   （4-11） 

where U is an m×m orthonormal matrix containing the left singular vectors, the columns 
of U are the eigenmodes; ∑ is an m×N matrix containing the singular values, σ, and W 
is an N×N matrix containing the right singular vectors.  

    

A truncated basis can be found by substituting formula (4-10) into formula (4-7). 
This yield a reduced model that approximates the original model equation (4-8) 

constructed by projecting onto  the vector field: 

   （4-12） 

Multiplying equation (4-11) by  from the left and by  (from the 

right), a representation of A in the basis spanned by POD modes of  is obtained 

as equation (4-6) and equation (4-7), 

   （4-13） 

Formula (4-12) constitutes the reduced companion matrix. Compared to equation 

(4-8), matrix  is of dimension m×m, (m<<N-1) and holds information of the modal 

spatial (U) and temporal structures ( ) as discussed below. 

4.2.2 Modal Decomposition 
An interesting interpretation of system dynamic behavior can be obtained from the 

eigen-decomposition of the low-dimensional system matrix, . 

Suppose that matrix  is diagonalizable with eigenvalue decomposition 

   （4-14） 
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where  is a diagonal matrix consisting of 

empirical Ritz eigenvalues , and  is the matrix of 

right eigenvectors, respectively. 
As discussed above, equation (4-14) determines a low-dimensional representation 

of the mapping A on the subspace spanned by the POD modes of . Substituting 

equation (4-14) into equation (4-13) yields 

   （4-15） 

From equation (4-15), it is straightforward to show that  can be 

approximated using a linear combination of the DMD modes. Multiplying equation (4-

15) from the left by U and from the right by , yields 

   （4-16） 

Equation (4-16) constitutes a reduced-order modal approximation of dimension 
m×N. Based on this idea, two distinct notions of this decomposition are established. 

A first useful interpretation is obtained by inserting equation (4-14) in equation (4-
16): 

   （4-17） 

or 

    

where matrix  is asymmetric with rank (m,N), of upper triangular structure and 
contains a subset of the eigenvalues of A. 

The following properties can easily be verified: 

1) The vectors  in matrix  are mutually orthogonal. 

2) The m row vector of  are orthogonal, i.e., . 

3) In analogy with 2), the temporal vectors ai(t) are ranked in descending order of 

energy, i.e., E1>E2>…Em, where . 
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4) When matrix  is an mth-order identity matrix, the DMD method reduces to the 
conventional POD-SVD method [15]. 

5) The coefficients of matrix  can be interpreted as weights that calibrate the 
importance of the temporal structures in determining the system response. 
This information is used in this research to determine various measures mode-state 

participations. 
A second interpretation is now obtained in terms of the SVD of the data matrix. 

Define 

   

   

   

From the previous discussion, it follows that the estimated data sequence, , 

can be expressed as 

   （4-18） 

The data matrix  can be now expanded in a linear combination of modal 

components as 

   （4-19） 

where the  are the temporal amplitudes, the  are the dynamic or spatial modes 

(DMD modes), and the  are the associated frequencies, with 

   （4-20） 
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It then follows that the importance of mode j at time t0 is given by , while the 

phase (mode shape) is given by its phase, . 

Several remarks are in order: 
l Remark 1: Compared to POD, the modal expansion in equation (4-19) decomposes 

the measured data into a combination of spatiotemporal functions weighted by the 
corresponding Ritz eigenvalues. Compared to the Koopman modal expansions, the 
DMD modal expansions are of dimension m<<N 

l Remark 2: As seen above, the dynamical modes,  corresponding to , 

provide the spatial coherent structure (spatial mode shape) of the corresponding 
oscillatory mode. 

4.3 Dynamic Mode Decomposition Analysis 

In this section, two typical events are selected from the database. Dynamic mode 
decomposition was performed on the transient stability data giving a set of modes that 
fully characterize system behavior. The subsequent analysis examines the ability of 
DMD to assess mode shapes of the system. Comparisons of the performance are made 
between conventional mode-based method and DMD analysis. 

4.3.1 Case 1: load event 3 
l Area2_Load is increased by 10% every 10s for three times, using COI as reference. 

In this case, the interarea transmission lines are overloaded, resulting in changes 
of system behavior. Oscillation modes are re-identified using mode-based method 
under this new operating state. Results show that one of oscillation modes is an inter-
area mode with a frequency of 0.407 Hz and damping ratio of 0.0184. It represents the 
swinging between generators in area 1 and area 2, as shown in Figure 4.1. 

For the DMD analysis, the frequency, the voltage angles of busbars and the 
generator speeds are selected as input data, in a specific time window. The extracted 
modes are sorting in a descending order of energy, as shown in Table 4.1, among which 
the dominant one is exactly the inter-area mode with a frequency of 0.39 Hz and a 
damping ratio of -0.0078. The mode damping is negative, which means the oscillations 
are slightly increasing over time. The negative frequencies in the table are due to the 
conjugate complex eigenvalues, thereby only the positive oscillation frequencies are 
concerned. The energies of the remaining modes are apparently less than the dominated 
one, these modes are fictitious modes generated by DMD to better approximate the 
evolution of the input signals. 

φ j

∠φ j

φ j=Uy j λ j
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Figure 4.1 Interarea mode f=0.407 Hz, ζ=0.0184 obtained by mode-based method 

 
Figure 4.2 displays the mode shapes of the voltage angle measurements. It can be 

seen that the voltage angles of the busbars in area1 are swinging against those in area2. 
The voltage angle of the interarea busbar situates exactly in the middle of the figure, 
whose amplitude is quite small. So, we can confirm that this event is an interarea event. 

 

 

Figure 4.2 Mode shape using the angle measurements: 

 
Table 4.1 DMD modes of Load event 3 

G1_Area1

G2_Area1G1_Area2
G2_Area2
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Damping ratio Frequency Energy 
1.0000 0 228.4490 

-0.0078 0.3936 84.9225 

-0.0078 -0.3936 84.9225 
0.6707 -0.3259 1.4085 
0.6707 0.3259 1.4085 
0.2582 -0.6142 0.4594 
0.2582 0.6142 0.4594 
0.1239 -4.4398 0.2844 
0.1239 4.4398 0.2844 
0.2188 -0.8667 0.2699 
0.2188 0.8667 0.2699 
0.1940 1.2361 0.1995 
0.1940 -1.2361 0.1995 
0.3959 -2.6645 0.1610 
0.3959 2.6645 0.1610 
1.0000 0 0.1462 
0.5543 25.0000 0.0546 
0.9844 -0.5097 0.0457 
0.9844 0.5097 0.0457 
0.8638 1.1241 0.0425 
0.8638 -1.1241 0.0425 
1.0000 0 0.0363 
1.0000 0 0.0073 
0.0618 18.0417 0.0070 
0.0618 -18.0417 0.0070 
1.0000 0 0.0004 
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Moreover, we can reconstruct the data using DMD and compare them with the 
original ones. As shown in figure 4.3, no filters were applied here, but DMD can easily 
reconstruct the noisy signals: reconstructed curves match with curves of measured data.  

 

 
Figure 4.3 Comparison of reconstructed data and original data 

 

4.3.2 Case 2: short-circuit event1 
l Three-phase short-circuit fault is applied to Inter_Area_L1a at t=10 s, and removed 

at zero crossing after a power frequency cycled (0.02s), using COI as reference. 
Similarly, the same variables are kept as inputs. The extracted modes are sorting 

in a descending order of energy, as shown in Table 4.2. The reason for negative 
frequencies is the same as mentioned in Case 1. In this case, the dominant mode is an 
inter-area mode with a frequency of 0.539 Hz and a damping ratio of 0.045. The mode 
damping is positive, which means the oscillations are decreasing over time. Still, the 
remaining modes are fictitious modes generated by DMD for a better approximation of 
the input signals. The frequency and damping ratio of the identified mode are quite 
close to the inter-area oscillation mode represented in Table 3.6, which is obtained by 
conventional modal analysis method.  

In Figure 4.4, the clusters of coherent generators are identified with rotor speeds. 
Both figures represent the interarea oscillation mode that generators in area 1 are 
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swinging against those in area 2. The coherent groups identified by DMD and mode-
based method are in good agreement with each other. 

 

 

Table 4.2 DMD modes of Short-circuit event 1 

Damping ratio Frequency Energy 
0.0450 -0.5392 32.8133 

0.0450 0.5392 32.8133 

-0.3394 0.0347 2.0657 
-0.3394 -0.0347 2.0657 
0.9828 5.1952 1.6860 
0.9828 -5.1952 1.6860 
0.1733 1.0193 1.1289 
0.1733 -1.0193 1.1289 
0.0938 1.0199 0.8266 
0.0938 -1.0199 0.8266 
0.4184 2.6673 0.2668 
0.4184 -2.6673 0.2668 
0.2602 1.8800 0.1741 
0.2602 -1.8800 0.1741 
1.0000 0 0.1735 
1.0000 0 0.1722 
1.0000 0 0.1673 
0.3878 -4.5316 0.1421 
0.3878 4.5316 0.1421 
0.9190 5.2166 0.1161 
1.0000 0 0.0855 
1.0000 0 0.0630 
0.8206 -3.1015 0.0476 
0.8206 3.1015 0.0476 
0.5690 25.0000 0.0203 
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(a) Mode shape using Digslient 
(b) Mode shape using the speed 

measurements 
Figure 4.4 Comparison of mode shape 

Similarly, we also reconstruct the noisy signals by DMD algorithm. In Figure 4.5, 
reconstructed curves are in coincident with curves of observable data, which also 
validate the ability of DMD.  

 

Figure 4.5 Comparison of reconstructed data and original data 
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5   Conclusions and Future Works 

5.1 Conclusions 

Conclusion 
In this thesis, the effectiveness of dynamic mode decomposition technique for modal 

analysis of large data sets is validated. 
Dynamic mode decomposition (DMD) is a mathematical method that aims at finding the 

low dimensional approximate matrix of the system to identify the oscillation modes and 
parameters. At this point, the underlying electromechanical oscillation modes of the power 
system could be extracted, without knowing the dynamic system matrix. 

Firstly, a two-area system is simulated in the DigSILENT PowerFactory software. 
According to mode-based analysis method, eigenvalues and oscillation modes of the test 
system are calculated and identified.  

Secondly, a perturbed dataset is generated for DMD analysis. Given the real-time load 
fluctuation, stochastic load deviations of 0.5% are added to the based loads. Five load events, 
three short-circuit events, three generator events and two switch events are applied to the tested 
system. Selected variables in different scenarios are extracted, simulating available 
measurements from PMUs in actual power systems. 

Lastly, DMD technique is applied to identify oscillation modes of two typical events, on 
the basis of simulated data base. The results obtained by DMD algorithm are in coincident 
with conventional method, which validates the ability of DMD algorithm in electromechanical 
oscillation modes identification. 

5.2 Future works 

Experience with simulated data shows that DMD analysis can be efficiently used to 
analyze large datasets from multiple sources. Several aspects of the theory deserve further 
investigation including the physical interpretation of dynamic structures, mode-state 
relationships and the analysis of structural properties of the model. The effect of noise 
contamination, trends and other artifacts of the dataset and the application to measured data is 
to be investigated in future research. 

 
 
 
 



 

 78 

 



REFERENCE 

79 
 

REFERENCE 

 
 

[1] Machowski J. Power system dynamics and stability[M]// Power system dynamics and stability /. 1997.. 
[2] Overschee P V, Moor B D. Subspace Identification for Linear Systems[M]. 1996.. 
[3] Pierre J W , Trudnowski D , Donnelly M , et al. Overview of System Identification for Power Systems 

from Measured Responses1[J]. IFAC Proceedings Volumes, 2012, 45(16):989-1000. 
[4] Iswadi H R , Best R J , Morrow D J . Identification of Small Signal Oscillation Mode Parameters from 

Simulated and Actual PMU Ringdown Data[C]// Powertech, IEEE Eindhoven. IEEE, 2016.  
[5] Marple S L J , Carey W M . Digital Spectral Analysis with Applications[J]. The Journal of the 

Acoustical Society of America, 1989, 86(5):2043. 
[6] Williams M, Kevrekidis I, Rowley C. Extending Dynamic Mode Decomposition: A Data--Driven 

Approximation of the Koopman Operator[C]// Meeting of the Aps Division of Fluid Dynamics. 2014. 
[7] Milanović J V, Duque A C S. Identification of electromechanical modes and placement of PSSs using 

relative gain array[J]. IEEE Transactions on Power Systems, 2004, 19(1):410-417.  
[8] Antonio D L O S J , Ramirez J M , Zamora Mendez A , et al. Identification of Electromechanical 

Modes Based on the Digital Taylor-Fourier Transform[J]. IEEE Transactions on Power Systems, 
2015:1-10. 

[9] Han S, Zheng X U, Huang H Y. Research on Coherence Tracking for Inter-area Oscillation: An 
Integrated Algorithm Using Refined Emperical Mode Decomposition and Correlation Analysis[J]. 
High Voltage Engineering, 2011, 37(8):2045-2052. 

[10] Vanfretti L, Dosiek L, Pierre J W, et al. Application of ambient analysis techniques for the estimation 
of electromechanical oscillations from measured PMU data in four different power systems[J]. 
International Transactions on Electrical Energy Systems, 2013, 21(4):1640-1656.. 

[11] Terms definitions I J F O S . Definition and Classification of Power System Stability[J]. IEEE 
TRANSACTIONS ON POWER SYSTEMS PWRS, 2004. 

[12] Leandro R B , E Silva A S , Decker I C , et al. Identification of the Oscillation Modes of a Large Power 
System Using Ambient Data[J]. Journal of Control, Automation and Electrical Systems, 2015, 
26(4):441-453. 

[13] Mohapatra S. Techniques for determining hidden properties of large-scale power systems[J]. 2015. 
[14] Sarmadi S A N , Venkatasubramanian V . Electromechanical Mode Estimation Using Recursive 

Adaptive Stochastic Subspace Identification[J]. IEEE Transactions on Power Systems, 2014, 
29(1):349-358.. 

[15] Khalilinia H , Zhang L , Venkatasubramanian V . Fast Frequency-Domain Decomposition for Ambient 
Oscillation Monitoring[J]. IEEE Transactions on Power Delivery, 2015, 30(3):1631-1633.  

[16] Trudnowski D J. Estimating Electromechanical Mode Shape From Synchrophasor Measurements[J]. 
IEEE Trans Power Syst, 2008, 23(3):1188-1195.  

[17] Vanfretti L , Dosiek L , Pierre J W , et al. Application of ambient analysis techniques for the estimation 



 

 80 

of electromechanical oscillations from measured PMU data in four different power systems[J]. 
International Transactions on Electrical Energy Systems, 2011, 21(4):1640-1656. 

[18] Wang X , Bialek J , Turitsyn K . PMU-Based Estimation of Dynamic State Jacobian Matrix and 
Dynamic System State Matrix in Ambient Conditions[J]. IEEE Transactions on Power Systems, 
2017:1-1.. 

[19] Eremia M, Shahidehpour M. Handbook of Electrical Power System Dynamics:Modeling, Stability, 
and Control[J]. Social Science Electronic Publishing, 2013, 1536(1):864-899. 

[20] Pai M A . Energy Function Analysis for Power System Stability[M]. Kluwer Academic Publishers, 
1989. 

[21] Petrov N I, Dermendjiev V N, Rompolt B. Internal motions and oscillatory phenomena in a quiescent 
prominence.[J]. 1998. 

[22] Tipping M E, Bishop C M. Probabilistic Principal Component Analysis[J]. Journal of the Royal 
Statistical Society, 2010, 61(3):611-622. 

[23] Shlens J . A Tutorial on Principal Component Analysis[J]. 2014. 
[24] Davis J L. Oscillatory Phenomena[J]. 1988. 
[25] Hatcher L , O'Rourke N . A Step-By-Step Approach to Using SAS System for Factor Analysis and 

Structural Equation Modeling[J]. International Statistical Review, 2013, 83(2):325-326. 
[26] Barocio E, Pal B C, Thornhill N F, et al. A Dynamic Mode Decomposition Framework for Global 

Power System Oscillation Analysis[J]. IEEE Transactions on Power Systems, 2015, 30(6):2902-2912. 
[27] Bai Z, Kaiser E, Proctor J L, et al. Dynamic mode decomposition for compressive system 

identification[J]. 2017. 
[28] Ni Yixin. Theory and Analysis of Dynamic Power System [M]. Tsinghua University Press, 2002. 
[29] Mohapatra S. Techniques for determining hidden properties of large-scale power systems[J]. 2015. 
[30] Schmid P J , Sesterhenn J . Dynamic Mode Decomposition of numerical and experimental data[J]. 

Journal of Fluid Mechanics, 2008, 656(10):5-28. 
[31] Schmid P J . Application of the dynamic mode decomposition to experimental data[J]. Experiments in 

Fluids, 2011, 50(4):1123-1130. 
[32] Schmid P J , Li L , Juniper M P , et al. Applications of the dynamic mode decomposition[J]. Theoretical 

& Computational Fluid Dynamics, 2011, 25(1-4):249-259. 
[33] Mezi’c I . Spectral Properties of Dynamical Systems, Model Reduction and Decompositions[J]. 

Nonlinear Dynamics, 2005, 41(1-3):309-325. 



 

 

 


