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Abstract

With the progression of technology, automatic functions implementations in
cars are becoming more common, reducing the human effort for basic actions
or manoeuvres getting closer to the realization of a fully autonomous car;
however, there are still a lot of issues to overcome before a fully autonomous
car could be used in practice without harming passengers and pedestrians.
Although many studies describe possible implementations of autonomous
car, not many focuses on mood of passenger during the drive.

The goal of this work is to develop a software system able to process col-
lected data during driving tasks and highlight possible stressing events oc-
curred such that future autonomous cars know in advance possible stressing
situations and behave accordingly, thus preventing passenger discomfort. To
reach this goal we used a properly modified car on which have been installed
cameras, Global Positioning System (GPS) and Light Detection and Ranging
(LiDAR) sensors driven in a urban environment and measuring sweating and
heart beat rate of the driver: the driver also wears an eye tracker in order to
contextualise data collected by the other sensors through information about
the observed objects during driving. Once data have been collected, we de-
veloped a software system that processes data and plots results on graphs to
show factors that could be related to a stressing event.
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Sommario

Il progetto Interaction between Driver, Road Infrastructure, Vehicle and
Environment (I.DRIVE) è un progetto interdisciplinare del Politecnico di
Milano il cui scopo è acquisire, analizzare e modellare l’interazione tra il
guidatore, il veicolo e l’ambiente circostante. All’interno di questo progetto
si è svolto il lavoro descritto in questa tesi. Infatti, abbiamo progettato e
sviluppato un sistema software in grado di elaborare i dati raccolti dai sensori
montati su un’automobile al fine di ricavare le differenze nei segnali fisiologici
durante eventi di stress; in questo modo siamo in grado di distinguere e
rilevare situazioni potenzialmente stressanti che possono verificarsi durante
la guida tradizionale o autonoma.

Questo perché in un veicolo completamente autonomo, il controllo è affi-
dato esclusivamente al veicolo stesso e non più al guidatore: questa perdita
del controllo sul veicolo, come mostrato in seguito, può causare insicurezza
e stress. Per incrementare la confidenza che un passeggero ha verso un’auto
autonoma, è importante comprendere le reazioni emotive di quest’ultimo du-
rante la marcia in modo da adattare il comportamento dell’auto autonoma
così che vengano evitate situazioni che possano generare stress nel passeg-
gero. Lo scopo di questo lavoro di tesi è quello di sviluppare un algoritmo
che estrae automaticamente gli indici di stress, evidenziando gli istanti in
cui è possibile si sia verificato un evento stressante per il passeggero; unendo
questi dati con le informazioni acquisite sull’ambiente circostante è possibile
dare un contesto allo stress rilevato.

Per raggiungere il nostro obiettivo, è necessario raccogliere più informa-
zioni possibili sul guidatore e sull’ ambiente esterno: per far ciò abbiamo
utilizzato dei sensori applicati sul guidatore per monitorare alcuni segnali fi-
siologici, e sensori installati sull’automobile, tra cui telecamere, per acquisire
informazioni sull’ambiente circostante. Per contestualizzare meglio i segnali
di stress, abbiamo poi elaborato le immagini tramite Deep Learning.

Una volta che i dati sono stati raccolti, salviamo quelli più rilevanti in file
rosbag, che sono particolari file accessibili sequenzialmente: questi file sono
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stati utilizzati per disegnare grafici e mostrare possibili misure di stress.
Durante lo sviluppo di questo progetto, abbiamo avuto modo di verificare i
risultati di altri paper che mostravano le diverse affidabilità di diversi segnali
fisiologici utilizzati come misure di stress.
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Chapter 1

Introduction

The I.DRIVE project is an interdisciplinary Politecnico di Milano project
which goal is to acquire, analyse, and model the interaction between driver,
vehicle and environment. The thesis work described in this paper was carried
out as part of the project. Indeed, we designed and developed a software sys-
tem in order to process data collected from the sensor system of a car to spot
differences in physiological signals trend during stressing events; the result-
ing information shows us the physiological differences whenever a stressing
event occurs. In this way we are able to distinguish and detect potential
stressing situations that can occur while being passenger in an autonomous
car.

This because in a fully autonomous car, the disengagement of the pas-
senger implies loss of control on the car and this, as we show later in this
work, causes insecurity and stress. So, in order to make people trust on
autonomous car, we must understand how does the passenger feels during
driving tasks and adapt the car’s behaviour: in this way, knowing in advance
possible stressing situations, is possible to avoid them making the trip more
comfortable.

The main goal of this work is to develop an algorithm that automat-
ically extracts stress indexes by process collected data, highlighting also
stress events and contextualise this information in order to understand which
could be the possible stressing situations. To achieve this goal, we need to re-
trieve as much information as possible about the driver to understand his/her
mood, while he/she drives in a urban context and the external environment,
to get possible uncomfortable situations or stressing events: to do this we
used some sensors attached to the driver to monitor some physiological sig-
nals, and other sensors, among which cameras, to get information about
the surrounding environment. We also used an eye tracker to see where the



driver was focused on, so to contextualise better the stressing event.
Once data have been collected, we store the relevant ones, that into

rosbag files, that are special sequentially accessible files: we used these files
to build graphs and show possible stress measurements to have a better view
of the overall situation and spot the stress event beginning moment.

During the work of this project, we were able also to verify the results
of papers which purpose was to demonstrate how reliable can be different
physiological signals to be used as stress measurement.

The structure thesis is the following:

• Chapter 2 lists some works that have been done during last years con-
cerning autonomous vehicles, describing also the topic of sensations,
trust, and feelings human may have in an autonomous car. Then, it
lists physiological stress indexes, some eye tracking implementations
and the applications in a car, and finally a section briefly describing
Deep Learning and Neural Network (NN) to explain how we performed
object detection to increase obtained information from cameras.

• Chapter 3 describes briefly the experimental car, including the sensors
mounted on the car and which data we get from them, the computer
hardware needed and used to process the data collected from the sensor
system.

• Chapter 4 focuses on the actual work of the thesis, describing the soft-
ware structure, acquisition protocol, the data processing we performed
to get the desired information and the software architecture, including
developed and installed third party software.

• Chapter 5 describes the experiment in details and shows the final result
of software execution.

• Chapter 6 lists conclusions of this work and possible future works that
can further improve the information acquired and which could be the
further steps for the I.DRIVE project.
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Chapter 2

State of art

In this chapter we see the state of art concerning autonomous driving: since
one of the possible evolution of I.DRIVE project is to develop an autonomous
car that cares about passenger’s mood, we analyse different works concerning
developed autonomous car technologies and how to measure stress level.

First of all we give an overview about autonomous driving, describing
the used technology and how it changed over the years, the different levels of
automation defined and which level is achieved today and focus also about
the financial impact of the autonomous car. Then we talk about human
factors and autonomous cars, mainly those factors that hinder the entrance
of autonomous car in the market and which solutions are proposed to ease
this entrance: related to this topic, we focus also about the possible driving
styles an autonomous car should adopt to drive the passenger comfortably.

To understand better which event have to be considered as a stressing
event, we should measure the stress level of a passenger, so we cover also
this topic by seeing the differences between physiological stress indexes in
terms of reliability and usability and see which of these stress indexes well
fits in our experiments. Since in our work we want to find causes of stress
level increase on the passenger, we used an eye tracker to understand if the
stress on the passenger was due to something he was looking at or not: we
describe different eye-tracking implementation and which are the advantages
of these implementations.

Finally, we conclude this chapter talking about Machine Learning (ML)
and Deep Learning as we performed this kind of elaboration to increase
information amount from the collected data.



2.1 Autonomous driving: levels of automated driv-
ing systems

Before describing the existing projects about autonomous driving, we have
to define what an autonomous car is.

In 2013, the US Department of Transportation’s National Highway Traffic
Safety Administration (NHTSA) defined five different levels of autonomous
driving differentiating how much control has the car or the driver:

• Level 0: No automation, the driver manages everything.

• Level 1: Most of functions are still controlled by the driver but one
can be controlled by the car like cruise control; this level is also known
as "driver assistance level".

• Level 2: The automated function disengage the driver from physically
operating the vehicle by having his or her hands off the steering wheel
AND foot off pedal at the same time like adaptive cruise control and
lane centering.

• Level 3: Many function are managed by the car, however the driver
is still present and has to intervene if necessary, but is not required to
monitor the situation in the same way it does for the previous levels.

• Level 4: Fully autonomous car are able to perform all critical and
safety manoeuvres and monitor roadway conditions in all the trip lim-
ited to the operational design domain

• Level 5: Fully autonomous system in any driving condition including
extreme ones

There are few cars in the market that implement different levels of autonomy
and at most they reach level 2 by implementing park assist or adaptive
cruise control. In some countries is possible to find autonomous vehicle with
research purpose only such as Google cars or Ford’s autonomous car (Figures
2.1b and 2.1a).

2.2 Autonomous driving overview

In general an autonomous car should drive without causing accidents; this is
translated in the realization of collision avoidance algorithms, bringing the
passenger to the destination, i.e. navigation. One of the first works about

4



(a) Ford autonomous car (b) Google car

(c) Uber autonomous car

Figure 2.1: Autonomous vehicles coming from different companies

autonomous car is Weisser et al. (1999) that developed a slow speed au-
tonomous driving system based on computer vision and Differential Global
Positioning System (DGPS) in which a robot was driving a van; the idea of
a robot is a bit far from today’s autonomous car concept, but it was neces-
sary since the vehicle was not electric and needed interaction with throttle,
brake pedal and shift: a further concept of that project is that it could be
implemented in all cars so they developed a modular system. With progres-
sion of technology, more recent implementation of autonomous car avoid the
construction of a robot by exploiting the drive-by-wire concept in a car in
which all the driver’s interactions are managed by a control unit.

Other popular works in the area of Autonomous Driving have, as main
goal, the reduction in car accidents, which naturally have an implication in
saving money and human lives. Although a huge progress has been done,
many of the experiments were performed on driving simulators or secured
environments that excluded from their model standard real world elements
like pedestrians and traffic lights thus limiting the possible direct implemen-
tations of the solutions found. As an example we have the work of Urmson
et al. (2008) (Figure 2.2a) during the DARPA Urban Challenge in which
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(a) BOSS

(b) Junior

Figure 2.2: DARPA Urban Challenge partecipants

autonomous cars had to drive 97km through a secured urban environment
interacting with the other vehicles and reaching predefined goals.

Although DARPA challenge brought interesting step forward in the au-
tonomous driving, the urban environment was highly restricted as mentioned
in the work, excluding cyclists, pedestrians, traffic lights and also some rules
of the Department of Motor Vehicles. Since the car needed to manage lot
of data in a short time, they used a parallel hardware architecture with 10
Core2Duo processors and 1TB of hard drives for logging.

Levinson et al. (2011) describes another work made for the DARPA Ur-
ban Challenge (Figure 2.2b) in which they had tackled the problem in an
optimal sense in order to take advantage of optimal control theory assert-
ing consistency in the choice of the best feasible trajectory over time. They
considered also the ride comfort as subject of study, described as the deriva-
tive of lateral or longitudinal acceleration. The sensors used in this case are
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quite the same of ones used in the previous described work, including sensors
for localisation and environment perception (LiDAR and GPS), so they can
apply all the robotic theory about Simultaneous Localisation and Mapping
(SLAM); in the paper they describe also a method for calibration of LiDAR
with an unsupervised intrinsic calibration to reduce sensor’s noise by opti-
mising parameters of each laser. About the computational power, they used
two on-board Xeon processors, multi-core architecture that well fit the prob-
lem due to multiple simultaneous input from many sensors. In their work,
they also faced the problem of object detection combining computer vision
and, in the case of traffic lights, prior information. Luckily this technology
has considerably improved in the last years and we focus on details later. In
our work, we are doing experiments in a non-modified urban environment so
that we know better the environment dynamics avoiding biased data.

2.2.1 Autonomous driving: economic benefits

In literature we can find many studies that focuses on the benefit on having
autonomous cars: Fagnant and Kockelman (2015) estimate benefit around
3.000$ per year per vehicle if considering the fuel optimisation (or energy
consumption in general with electric cars) and crash savings. Energy opti-
mization is not only considered on how the Artificial Intelligence (AI) manage
the throttle and brake, but also how managing the congestion in an inter-
section or a traffic roundabout can save time and energy.

In Fagnant and Kockelman (2015) study, a focus about car sharing is
also given; may be much more convenient by offering on-demand services
thus decreasing the on-road vehicles and the need of parking near malls;
as counterpart, the autonomous cars may provide mobility for those who
cannot effort it (too young/old to drive or disabilities) thus increasing the
traffic congestion bringing problems mainly during the rush hours in already
congested traffic roads.

Briefly, autonomous cars can increase safety, reduce congestion and need
of parking having an estimated benefits of about $196 billion with 90% au-
tonomous car market penetration rate, indeed this is the main obstacle to
overcome. Other problems that prevent the autonomous car entering the
market are discussed in Section 2.2.2.

2.2.2 Autonomous driving: human factors

Do people trust autonomous cars?
Recent studies focus on how much do people trust this technology by

searching for key factors that can increase trust. Kaur and Rampersad (2018)
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to achieve this goal made a survey in which they split the concept of trust in
order to understand more in detail which are the major influencing factors.
First, they divided the concept in trust the technology adoption and trust the
autonomous car; about the technology, the key factors are trust in technology
(placing the passenger in a vulnerable position with respect to the car),
performance expectancy (concerning safety and free time) and reliability,
limited only by the computational power.

About the autonomous car, the key factors are security meant as com-
puter security, road irregularities avoidance, privacy as loss of autonomy as
the car has a GPS may be subject to redirection aimed at targeted marketing
or law enforcement; moreover we must consider the need for communication
for intersection solving thus controlling cars each other and knowing the des-
tination of the others. The way the I.DRIVE project increase trust in the
technology concept, is mainly to avoid stressing condition to keep a "trust
level" at a good level.

Helldin et al. (2013) demonstrate that using a User Interface (UI) to in-
form the passenger about the uncertainty of sensors of an autonomous car
leads to a faster reaction in case of emergency thus avoiding accidents; in
general, keep control brings better confidence in an autonomous car. The
experiment was conducted in a simulated environment consisting of a fully
functional cockpit in which the participants drove the car simulator through
a snowed two-lane country-side road, with several sharp turns, but with no
other traffic. The study concluded that showing the level of system uncer-
tainty increases consciousness and trust in the passenger so that even if he
spent more time looking away, he actually was ready to react and get the
control on the vehicle in less time.

Inform the passenger about how and why the autonomous car is making
choices is important to increase the consciousness and knowledge about how
the system works hence the confidence a person gives to it. Koo et al. (2015)
focus on this topic by making considerations about how a feedback system
should be in order to make the human confident with an autonomous car;
at first, they assumed that a feedback message should include the action
the car is about to perform and then the reason of it. Again a secured
environment was used for the experiment in which the street was projected
in front of the driver: the projected road contain also some unexpected
events, in those cases the car automatically brakes while a recorded message
inform the passenger about the executed manoeuvre. During the experiment
there were used different kinds of vocal messages to understand which words
are better to use: the voice used was a standard American accent with no
particular mood avoiding biased reactions.
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After the experiment, the subjects filled a survey with questions about
the driver emotional valence and the machine acceptance: they concluded
that informing the passenger about "how and why" the autonomous car is
acting brings a worse emotional valence and machine acceptance with respect
to the only "why" message. This is explained by the fact that informing
with a "how and why" message, gives more information in a context in
which fast response time is required, thus increasing anxiety because more
information had to be processed: quite the same results are obtained in case
of simple "how" message because the passenger could not get the reason of
the autonomous car action. About the overall driving performance instead,
the "how and why" message brought better results, still less appreciated by
the passengers.

Another more recent approach to increase confidence in autonomous cars
is presented in Frison and Riener (2018) in which they suggest to inform the
passenger about the autonomous car behaviour by using augmented real-
ity approaches such as full-sized windscreen displays or contact lenses for
a better system understanding to the user. This work hypothesises is that
augmented reality assistance has the potential to increase user acceptance
and trust by communicating system decisions.

To prove this hypothesis they conducted two driving simulator studies;
in the first experiment, they evaluated whether augmenting traffic objects,
relevant for manoeuvre decisions, can increase trust in autonomous car by
driving the car in a simulated environment through a dense fog faster than
a human would do, so actually driving in such condition human could not
achieve without compromising safeness.

In the second experiment, participants were sitting on a rotating seat,
facing against the driving direction and participants were presented the up-
coming manoeuvres on a head-mounted display. The main idea of these
conditions is to hide important parts of the environment to the participants
so that creating augmented reality aids they can communicate system de-
cisions and let users anticipate upcoming driving manoeuvres. In the first
experiment, the car performed multiple overtaking manoeuvres with the car
coming in the opposite lane not visible but detected and a marker saying if
the manoeuvre was safe or not (a small triangle green or red).

For the first experiment, they concluded that augmenting traffic objects
relevant to a driving scenario can increase user trust: for this conclusion,
they measured different acceptance parameters. The second study shows
that even if faced backward, presenting the manoeuvre as the actual driving
direction rather than as perceived by the driver is much better and more
accepted by the participants.
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In conclusion, in the future, we can exploit augmented reality to show
passengers information about the upcoming manoeuvre in order to encounter
large acceptance and ease the entrance of the autonomous cars in the market.

Waytz et al. (2014) describe in a general way the design barriers engineers
face when creating a new technology that can substitute human operators
(in the paper, doctor’s mind in diagnosis and autonomous driving are used
as an example) and how anthropomorphism influences the perception of a
person.

Anthropomorphism is a process of inductive inference whereby people
attribute to non-humans agents distinctively human characteristic, particu-
larly the capacity for rational thought and conscious feeling, so is not just
adding superficial human characteristics, but rather attributing essential hu-
man characteristics to non-human agents; what Waytz et al. try to verify
in their work is if people would trust more an anthropomorphized technol-
ogy due to the common association between people’s perceptions of others’
mental states and competent actions.

To do this, they made trials with a normal car, autonomous car and an-
thropomorphic autonomous car giving the last one a name, gender, and a
human voice; since they supposed that anthropomorphism could also mit-
igate blame in case of undesirable outcome, they implemented a virtually
unavoidable accident during the driving simulation caused by another driver.

The results show that anthropomorphism is highly perceived and peo-
ple trusted more the anthropomorphic car than the normal one; still, only
55% of participants preferred the anthropomorphic setting than the non-
anthropomorphic car.

In general, the human factor is something we must consider in order
to ease the autonomous car market introduction. In the next section, we
discuss how a car should drive; although this concern human factor yet, it is
not about trust the autonomous car but how pleasant it could be the journey
by comparing common human driving styles and their reaction when they
are passengers and the car drove autonomously.

2.2.3 Autonomous driving: driving styles

The idea one can have about the driving style is that a car should drive as
the driver does; actually, this is not so straightforward and simple as Basu
et al. (2017) explain in their work.

The goal of that study is to see the differences between the driving style
of a driver and the driving style of the autonomous car with the same driver
as a passenger; at the beginning, they have hypothesised that users of au-
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tonomous cars prefer a driving style that is significantly different than their
own. To verify this hypothesis they build a simulation in which people where
asked to drive as they do as usual so to identify the driving style of the sub-
ject.

Then they set up four classes of driving style basing on the levels of de-
fensiveness: aggressive, defensive, own style, and a distractor style (driving
style of another test subject). Finally, each subject took place as a passenger
and the car drove according to some different style, of course without inform-
ing him/her about which style was following, and at the end the subject had
to answer three questions about the similarity of the perceived driving style
with the proper style and if the journey was enjoyable. The results suggest
that the car should drive in a safer way concerning the driver’s usual style
mainly because of the loss of control.

Going deeper on this topic, we can identify parameters affecting passen-
ger’s perception of autonomous car behaviour thus distinguish parameters
that influence passenger’s stress level and use them to develop an algorithm
that takes care of comfort. What Bellem et al. (2016) do in their work is
to identify physical parameters by performing two studies conducted one in
a rural and urban environment and the other one on a highway; first, they
identify 4 different manoeuvres:

• Decelerating to a moving target

• Accelerating from non-zero speed

• Lane change

• Following at constant speed

Knowing that human perception is highly sensitive to accelerations and
jerks, as pointed out in Bellem et al. (2016) paper, they measured the trends
of these measures during the manoeuvres performed in different driving
styles: comfortable, dynamic and every day trip. These driving styles were
chosen during the trip in random order by asking the driver to drive with
his/her idea of the specific driving style: in this way, they were able to mea-
sure physical differences between the driving styles thus showing the ones
with largest changes About decelerating to a moving target, they were not
able to obtain enough data so in the urban case this manoeuvre is excluded:
we show results in that environment since we are working in the same con-
ditions.

The results of the study show that according to the performed manoeu-
vre, it is possible quite always to find differences between dynamic and the
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Figure 2.3: This table summarise the results obtained in the urban environment showing
comparisons between the driving styles comfortable and dynamic driving

other driving styles; the only exception is "standard lane deviation" that did
not show marked differences between the driving styles.

Now that we can identify parameters that influence driving styles a ques-
tion may arise: is it possible to model a customized automated driving style?
An attempt to answer this question can be found in Scherer et al. (2015)
work, in which they try to classify a manual driving style as comfortable and
extracting different parameters, implementing an automated driving style.
In order to extract the driving features and understand which one impact
on the ride comfort, they used a driving simulator in which was installed a
handset control that allows the driver to evaluate continuously the perceived
comfort.

The experiment presented the same modalities as the previous ones cited,
a simulation environment in which participants drove first and then expe-
rienced an automated ride with the driving style of other (or themselves)
participants: the difference is in the handset control that allows the authors
to find which were the situations in which the drivers felt uncomfortable and
which were the comfort parameters; the main parameter was the longitudi-
nal control so they focused on it. By approximating the driving style as the
set of comfort parameters they were able to derive the optimized automated
driving profile providing a modular procedure to build a driving profile.

2.3 Physiological indexes of stress

In our work, we are also aiming to study the interaction between driving
styles and passengers by using an eye tracker trying to find a correlation be-
tween driver and environmental factors to identify the situations that impact
most on the driver’s stress level and successively on passenger’s stress level.

In order to classify stressing situations, we need a physiological index of
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the passenger’s stress level: in general, many studies show that the sym-
pathetic nervous system is activated in case of emergencies, giving more
blood to the brain to make quick decisions thus increasing Heart Beat Rate
(HBR) and sweating, hence, Galvanic Skin Response (GSR). What (Pedrotti
et al., 2014) do in their work, is to mention many other studies that focus
on the pupil dilation behaviour and on the reaction in the response of ex-
ternal stimuli like auditory, tactile, gustatory, olfactory, or noxious. Given
this knowledge, they tried to measure the stress level on a person in a driv-
ing environment by simulating a route in which at some time a stress event
occurred.

By maintaining a constant level of light, they were able to measure the
pupil dilatation in the instants when the stress event occurred, finding a
correlation between pupil diameter and stress event: finally, they built a NN
that was able to classify stress moments from the pupil diameter. Since we
are using the eye tracker to analyse driver gaze, we have information about
pupil diameter so we try to extract stress levels by analysing pupil diameter
trend.

Another physiological stress index known in literature is Heart Rate Vari-
ability (HRV), and in particular heart Low Frequencies (LF)/High Frequen-
cies (HF) ratio. We have found different studies with different results: instan-
taneous LF/HF ratio is a well-known estimator of sympathovagal balance as
described in Barbieri et al. (2018), citing other works that confirm this fact.
However the correlation between sympathetic and parasympathetic nervous
systems activation and LF/HF ratio depends on many other factors (Figure
2.4) as Billman (2013) demonstrates in their work, showing the assumptions
to be made in order to consider that ratio as a reflection of sympathovagal
balance. More specifically:

• cardiac sympathetic nerve activity is a major factor responsible of the
LF peak.

• cardiac parasympathetic is exclusively responsible of HF peak.

• disease or physiological challenges provokes reciprocal changes in both
sympathetic and parasympathetic activities still keeping a balance.

• there is a simple linear interaction between the effects of cardiac sym-
pathetic and cardiac parasympathetic nerve activity on HRV.

A review about HRV made by Shaffer et al. (2014) explains more precisely
how HBR varies and how this influences the different frequency components
of HRV signal. This review states that the sympathetic system does not
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Figure 2.4: A 3D representation of all possible combination of sympathetic and parasym-
pathetic activity with relative LF/HF ratio

appear to produce rhythms much above 0.1Hz, while the parasympathetic
system can be observed to affect heart rhythms down to 0.05Hz: however
during periods of slow respiration rates, vagal activity can easily generate
oscillations in the heart rhythms that crossover into the LF band; this means
that there is this third factor that can influence the LF component, alter-
ing the information about sympathetic - parasympathetic nervous system
balance hence the measured stress level.

The review says also that, in long-term ambulatory recordings (about 24
hours), the LF band fairly approximates sympathetic activity when increased
sympathetic activity occurs due to physical activity and also emotional stress
reactions: however this is not true in short-term recordings thus decreasing
the reliability of LF/HF ratio as stress index.

The paper concludes that psychological stress can also result in indepen-
dent changes in sympathetic and parasympathetic activity, activating them
simultaneously, confirming the fact that the relation between those nervous
systems is not linear but much more complex.

In our study we must then take this into account if we want to get reliable
indexes of stress: still we decided to measure HBR to see if in our dynamic
and stressful environment the HRV gives useful information anyway.
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Another stress index we can use is GSR; by applying a small electric
charge on the skin surface, we can measure its conductance, giving us a
sweating level of a person. Although sweating is the natural reaction to
reduce human body temperature, Villarejo et al. (2012) described in their
work how they built a galvanometer and which were the data collected in
relaxing or high effort situations such as mathematical calculation.

Matteucci et al. (2016) in their work computed also two features of GSR:
phasic GSR and tonic GSR. First, they compute the function describing the
skin sweat concentration as a consequence of a stressing event; this function
is named Bateman function. Then they deconvoluted the GSR signal with
the Bateman function to obtain a driver signal and convoluted with a Gaus-
sian filter to remove high-frequency noise. The result represents the Skin
Conductance (SC) signal composed by the sum of phasic GSR and tonic
GSR. By extracting local maxima, they obtained the phasic component as
a series of pulse: the sections not included in those local maxima, indicates
the absence of phasic component, thus representing the tonic one.

Finally, they interpolate data in these sections reconstructing tonic signal
where also the phasic component was present finding the complete tonic
component, then they subtract it to the original SC signal obtaining the
phasic component that is the more informative part since more related with
the sympathetic nervous system. Besides, they also developed a software
that computes the HRV feature, LF/HF ratio, and we exploit that software
for our purpose.

All previous physiological measurements have been used in Healey and
Picard (2005) study in which they measured stress level by collecting data
from GSR, Electrocardiogram (ECG), Electromyogram (EMG) and chest
cavity expansion sensor for breathing rate. This is one of the few works in
which the experiment was conducted in real-world and not in a simulated
environment by let people drive in urban roads and highways; the goal of
their study was in fact to find stress measures to monitor stress level in those
different situations by combining physiological signals.

They performed two kinds of analysis, to point out general stress levels
between the road sections and within a road section; the first kind of analysis
results in a stress recognition developed using features derived from 5 minutes
non-overlapping segments of data. More precisely the recognizer uses a total
of 22 features extracted from the sensors to measure stress level:

• 9 features based on normalization of mean and variance extracted from
respiration, heart rate, skin conductivity for both hand and foot and
normalized mean of electromyogram signal.
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Figure 2.5: An example of three orienting responses, computation is performed after
noise had been removed

• 4 features extracted from the breathing sensor in each of four bands
(0-0.1, 0.1-0-2, 0.2-0.3, 0.3-0.4Hz).

• 8 features computed from the GSR signal, more precisely 4 features
(the amount, the magnitude, the duration and estimated area) of the
orienting responses that indicates sudden rising of the signal for both
hand and foot

• 1 feature is the balance of sympathetic - parasympathetic nervous sys-
tems extracted from HRV by computing LF/HF

For the second analysis, which aims to get a piece of fine-grain infor-
mation about the stress, first Healey and Picard identified potential stress
factors as a list of observable actions and events by check the recorded video,
like gaze changes, head turning, stops or turning. Once stress factors have
been detected, they performed continuous calculations on physiological sen-
sor signals at 1s intervals in order to find the features that might describe
at best the stress level in the short period. Among all features, they also
considered Mid Frequencies (MF), computing (LF+MF)/HF with 100s and

16



Figure 2.6: example of a small camera used in car’s cockpit

300s windows advancing by 1s finding that the index calculated with the
first window had good confidence thus used as stress index.

The study concluded that heart rate and skin conductivity metrics pro-
vided the highest overall correlations with continuous driver stress levels and
that toll and urban roads had a higher stress level with respect to driving in
a highway.

2.4 Eye tracker: methods and implementations

What we are doing in our work is to find as many indexes as possible to find,
or validate, stress situations; to achieve this requirement we add the eye
tracker that gives us information about the driver’s gaze and pupil diameter.
In this way, we know where the driver is focused on and moreover, we can
try to correlate pupil diameter with other physiological features thus get a
new potential stress index, as Pedrotti et al. (2014) did.

Today, eye-tracking implementation in driving field aim to give support
during the driving task; to do this, the best way is to use the least invasive
system possible such as cockpit mounted cameras (Figure 2.6) pointing the
driver for fatigue monitoring and apply countermeasure like warning to bring
again attention to the driving task (Singh et al., 2011) or give the vehicle a
behaviour to avoid collision (Zutao Zhang and Jia-shu Zhang, 2006).

This kind of implementation however is very limited if we want to get
the information about what the driver is looking at; Ahlstrom and Kircher
(2017) made an important work about the analysis of the information re-
trieved by the eye-tracking system giving a semantic meaning; here the eye-
tracking data were acquired with a remote five-cameras eye-tracking system
and combining this with a 3D model of the car, they were able to say exactly
what cockpit’s component the driver was focused on.
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Figure 2.7: Single camera eye tracker

Of course, the system was enhanced with many other cameras to get infor-
mation inside the car and outside, so they could correlate driver’s behaviour
to external situations, as overcoming cars, but the information retrieved in
this case lacks in accuracy because they do not know exactly which external
object the driver is observing.

The other interesting point of Ahlstrom and Kircher (2017) work is how
the gaze sequences during the driving task change in various situations: with
this analysis they discover similar sequences in similar situations so detecting
behavioural patterns, then they could compute the average pattern time the
driver spends to get the desired information, e.g., what sequence of glances
and how much time do the driver need to get the speedometer value without
distracting too much from the main task.

Fisher et al. (2007) in their work used a headset eye-tracking system
(Figure 2.7) in a simulation environment to study the behaviour of the driver
and evaluate his ability to predict possible hazards during the driving task.
In particular, this headset was composed of an eye camera and a scene camera
mounted on safety glasses and by having the road projected in front of the
subject, they were able to see where the gaze was pointed in some hazardous
circumstances.

Before the experiments, some subjects were trained with the Risk Aware-
ness and Perception Training (RAPT-3) program developed at the University
of Massachusetts that shows different categories of hazardous scenarios, so
when the driver in the simulation encountered a similar scenario (or the same
since some routes were repeated), they expect that he looks in the Region
Of Interest (ROI) shown during the training. This was the indicator of how
the training was successful and the results had shown that the trained group
were focused more on the ROI thus able to anticipate hazard situations and
react better to any eventuality.

Another interesting usage of the eye tracker is presented by Cerf et al.
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(2008) in which they used the eye tracker to observe what object attract
attention the most by showing the subjects different images that can be
seen in an everyday situation, e.g., shops in a mall, a backpack with some
objects, stairs with people, etc. Mainly they compare the attraction level of
faces, text, meaningless scrambled text and smartphone, and the experiments
shows that faces attract the most attention and they used this information
to build a heatmap that could help prediction of scan path and the results
were pretty interesting as they were able to predict subject scan path with
a large confidence. For the experiment they used static images, so applying
a heatmap in our highly dynamic context may not bring many advantages;
however, we can exploit the information about faces that attract attention
for a better analysis of our data.

2.5 Object detection with Machine Learning

For the analysis of the images acquired with the world camera and in partic-
ular performing object detection, we have used ML; in this section, we give
a brief introduction to ML and Deep Learning, explaining differences and
which is the NN architecture we used to perform object detection.

ML is that branch of AI which deals with finding a mathematical model to
perform different tasks, e.g., explaining historical data to perform prediction
or finding a separating hyperplane to perform classification.

This last task is the one we required since we have to detect and classify
different objects we encounter during the drive and for this, Deep Learning is
well suited since it has a good performance on speech recognition and image
classification (Krizhevsky et al., 2012).

Schmidhuber (2015) presents a general overview of NN and Deep Learn-
ing, explaining the main applications, how generally works a NN, and which
are the most common architectures. In general, a NN takes the idea on how
a human brain works by simulating the behaviour of the neurons: dendrites
collect input charges from weighted excitatory and inhibitory synapses and
the axon fires the information once the charge is above a threshold. This
behaviour is implemented with the artificial perceptron in which the thresh-
old is implemented with an activation function and weighted synapses are
simply the weighted input.

The perceptron is a very simple concept that can be used for simple
linear separable input or the implementation of logical functions such as
AND and OR: by increasing the complexity of the logical function we need
to implement, we require more perceptron to work simultaneously, hence
creating the NN. The same concept is applicable in case of classification task
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Figure 2.8: YOLOv3 architecture used for object detection

and, by increasing the number of perceptrons and layers of the NN, it is
possible to distinguish many features of the input thus being more precise in
the classification; finding the hyperplane that separates the input into classes
requires training in which a loss function, most common the Least Squared
Error (LSE), is used to adjust the weights’ values.

There are some problems during the design of a NN; the most common is
overfitting. The input we give to a NN comes from the real world, thus sub-
ject to noise; a complex NN would be able to distinguish many features but
a too complex NN may consider noise as a feature, causing overfitting on the
training set thus correctly classifying the training images but misclassifying
all new images, making the NN useless. To achieve image classification we
need to build particular complex NN architectures thus implementing Deep
Learning: the idea of Deep Learning comes from cells found in the cat’s vi-
sual cortex that fire in response to certain properties of visual sensory inputs
like the orientation of the edges.

Girshick et al. (2016) discuss in their paper how Convolutional Neural
Network (CNN) is a proper solution for detection, different from image clas-
sification because detection requires multiple classifications in a single image:
the way CNN perform detection is simply implementing a sliding-window de-
tector thus performing classification in a different part of the image returning
probabilities of all possible objects. At first, they used the "recognition using
regions" paradigm, which consists of generating category-independent region
proposals and then extract the feature vector with a CNN: finally classifying
each region with linear Support Vector Machine (SVM).

More detail on how Deep Learning is used for visual understanding is
given by Guo et al. (2016) describing the most common Deep Learning algo-
rithms and explaining also the role of convolution operation in a CNN and
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Figure 2.9: A frame showing the information acquired by the eye tracker: we can
observe that even with objects partially covered, YOLOv3 is able to build a correct
bounding box, also for cars visible from the rear-view mirror

the general structure and functions implemented. The paper focuses also
on the roles of different layers inside a CNN and also why: in general the
first part implements convolutional and pooling layers to extract as many
features as possible. At last, we can find several fully connected layers that
perform further features representation until the last layer that performs
classification.

For our purpose, we used YOLOv3, a framework described in Redmon
et al. (2016) work. With this framework is possible to perform object de-
tection in real-time with enough computational power: since we do not have
it, the elaboration is performed offline leaving a door open for improvement
of the system with an online elaboration. YOLOv3 uses a convolutional ar-
chitecture with 24 layers followed by 2 fully connected layers (Figure 2.8);
the network is trained with ImageNet dataset and is able to classify more
than 100 types of objects and animals; in order to simplify our work, we just
consider classes of common objects can be encountered in an urban context.
Compared with other deep networks used for object detection, YOLOv3 per-
formances in terms of time and accuracy are better. in Figure 2.9 you can
observe an example of YOLOv3 result combined with the information of the
eye tracker (yellow spot): you can also see that markers for the definition of
a surface do not limit the visibility of the road.
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Chapter 3

Experimental vehicle

To achieve our goal, we have to collect as much information as possible about
the stress level of the driver and the surrounding environment; as previously
mentioned, many studies uses a simulated environment for their experiment
thus the equipment was usually consisted in half car cockpit and a specific
sensor for the study; to avoid biased data, our experiment took place in
a real urban environment. The car we used for this project is a "Tazzari
Zero" (Figure 3.1), a small electric citycar with an asynchronous brushless
engine that supply 15 KW power and max torque of 150 Nm The choice
of an electric car is due to the simplicity of the throttle/break management
algorithm since there is no need of shift and the electric engine can be easily
directly controlled. More details about the structure of the sensors system,
communication protocols, power consumption and acquisition and storing
methods are reported in Matteucci and Gabrielli (2015) work; below a review
of the sensors used for collecting data.

In this section we describe all the sensors by listing them according to
the returned information, and grouping them according to the context data
collected.

3.1 Environmental Sensors

In this section we describe the sensors we used to get information about
the surrounding environment, so to contextualise the situation and detect
potential stressing factors and avoid them, as driving close to the preceding
car or turning at a certain speed to reduce lateral acceleration.

The first sensor we introduce is the LiDAR sensor Velodyne HDL-32E
(Figure 3.2(a)); LiDAR is a technology that measures distance by lighting
a target with a laser and analyzing the reflected signal. Placed on top of



Figure 3.1: Tazzari zero without external sensors

(a) Velodyne HDL-32E (b) point cloud

Figure 3.2: An example of point cloud (b) generated by LiDAR (a)

the car, Velodyne HDL-32E has 32 vertical lasers to get the distance of
all the objects surrounding the vehicle in the vertical field of view between
+10.67° and -30.67° and thanks to the rotating head at maximum rotation
frequency of 20Hz and a sample rate of 700.000 samples/sec, it is able to
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Figure 3.3: External IMU with the relative reference system

get a 360° horizontal field of view, getting the information of all surrounding
environment between 1 m and 70 m far from the sensor with an accuracy of
± 2 cm.

Today is possible to find LiDAR with 64 or 128 levels in order to re-
construct better the surrounding environment but 32 levels are also good
enough. The Velodyne HDL-32E model we used is also equipped with an in-
ternal IMU consisting in three gyroscopes and three two-axis accelerometers
giving us also information about the dynamics of the vehicle during the driv-
ing task: this information could be useful for a more specific segmentation
of the road by looking at the dynamics of the vehicle.

We used also an external IMU Xsens MTi (Figure 3.3) module that
gives us more information with respect to the LiDAR’s built-in IMU. The
difference holds in the internal sensor of this unit: while LiDAR’s built-
in IMU consists of gyroscopes and accelerometer, while this one uses a 3D
magnetometer giving data of terrestrial magnetic field, a single 3D gyroscope,
and a 3D accelerometer. The maximum working frequency of the sensor is
100Hz and the information about the terrestrial magnetic field gives us the
orientation of the vehicle; data collected by the Velodyne HDL-32E are sent
to the on-board mini-pc through Ethernet cable, fast so can manage the
large amount of collected data, while Xsens MTi exploit the USB port of
the mini-pc.

The Velodyne LiDAR is equipped also with a Garmin 18LV GPS receiver.
Although the path was on a fairly busy road, the GPS (Figure 3.4) informa-
tion could be useful in order to retrieve possible environmental stress factors
by performing street segmentation and distinguish different kind of road like
intersections, straight roads, and turns; in this way we are able to associate
instantaneous stress level to the performed manoeuvre in a specific condi-
tion. For the segmentation, we have retrieved manually the coordinates of
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Figure 3.4: The GPS used for the acquisition

(a) (b)

Figure 3.5: Prosilica GC1020/650 (a) with Theia wide-angle optics (b)

beginning of each switch of type of road (straight line, turns, and campus),
then we process all the coordinates to get an association between timestamp
and type of road.

For a better view of what happens all around the car, we have also
installed an external camera (Prosilica GC1020 Figure 3.5(a)) with a Theia
wide-angle lens (Figure 3.5(b)) (125° horizontal field and 109° vertical field)
but a very low distortion. The acquisition rate of 30 fps allows us to acquire
enough data per second; resolution of 1024 x 768 is a good trade-off between
the level of detail for the camera purpose and storage optimization. The time
exposure of this camera was limited. To adjust the amount of light without
compromising the fps rate. Diaphragm and focus point are set physically.
In our acquisition we used those images to see the differences of the field
of view with respect to the driver and compare also with data got from the
LiDAR; in the future, with a proper setup, could be possible to combine eye
tracking with the external cameras.

We also have internal cameras to monitor what happens inside the car;
although these cameras are not strictly environmental, it can be useful to

26



Figure 3.6: Axis P13 camera

understand what is happening inside the car, so contextualising data. Two
Axis P13 (Figure 3.6) cameras are placed inside the car: one pointing to the
driver and the other placed between the seats framing the cockpit and the
windscreen; both cameras acquire data with resolution 800x600 @ 30fps. We
have included data acquired from these cameras for future implementation
like keep track of what happens inside an autonomous car, more specifically,
the driver’s camera frames could be used for Blood Volume Pulse (BVP)
measured non-intrusively by evaluating the amount of red refraction from
the skin of the driver; although very difficult, still is a way to get another
sympathetic-parasympathetic nervous system balance index.

Concerning the central camera, acquiring both internal and external sit-
uation, its first purpose was for report events during the driving task, more
precisely the car was going in a closed path many times and the passenger
was visibly notifying the event of a complete lap: for future works, getting
this kind of information could be useful to keep track of human behaviour
while being a passenger in a fully autonomous car.

3.2 Cognitive sensor: eye tracker

The eye tracker we used in our case is the Pupil Labs® (Kassner et al., 2014)
headset with 3 cameras, 1 for the world image and 2 for the eyes (Figure
3.7). It is the only sensor that actually can be used to get environmental
data, through the world camera, and physiological data, through the eye
cameras measuring the pupil diameter.

The world camera uses a wide-angle lens and is capable to acquire images
at different resolution and frame rate: 1920x1080 @30fps, 1280x720 @60fps,
640x480 @120fps. Since we need high quality for further elaboration, we
have chosen the 1280x720 @60fps configuration that is a good trade-off be-
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Figure 3.7: Pupil Labs® eye tracker with two cameras for the eyes and a front camera

tween sample frequency and resolution. The eye cameras can acquire the eye
images up to 200Hz with an infrared sensor so it can find easily the pupil in-
dependently from the colour of the iris; their default and used configuration
were 360x240 @120fps so to get enough information with a reduced workload
and storage. Other possible configurations are 1920x1080 @30fps, 1280x720
@60fps and 640x480 @120fps. Together with the headset, the company pro-
vides also software for the acquisition and execution of acquired data and
data exportation plus a USB(C) - USB 3.0 cable to easily connect the eye
tracker to the computer.

A feature implemented in the latest version of Pupil Labs® software is
the possibility to modify acquiring parameters to adapt images to the en-
vironmental light conditions thus increasing the quality of acquired images
and reducing noise. This functionality allows for example to adjust the expo-
sure time of camera sensors; actually, the setting is not fully manual because
in case of low exposure the values of sensor sensibility ISO is increased to
restore a good exposure level, indeed it was possible to notice some digital
noise with low exposure time. This influences the quality of the images and
the frame rate (longer exposure does not allow a quick frame rate); this pa-
rameter was adjusted for the world camera in order to get good visibility of
the images even in the light conditions imposed by the dynamic environment
we are working on.

Another important parameter that can be adjusted is image contrast: by
increasing the image contrast amount on eye cameras, the pupil results much
darker thus increasing the result confidence of the pupil detection algorithm.
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(a) Procomp Infiniti

(b) GSR electrodes (c) ECG unit for acquisition of HBR

Figure 3.8: Procomp Infiniti encoder (a) with GSR (b) and ECG (c) acquisition units

3.3 Physiological sensors

All sensors described below were used to get physiological indexes of the
driver to understand his stress level during the experiment. The sensors
used to get physiological signals were plugged to the Procomp Infiniti card
(Figure 3.8 (a)), an 8 channels encoder used for real-time data acquisition
that we used to synchronise and sample data from all the previous described
sensors. Two of the available acquisition channels sample at 2048 samples/sec
while the remaining at 256 samples/sec; after data are sampled, they are
transmitted through TT-USB interface to the computer, with optic fibre
cable ensuring fast elaboration and noise isolation.
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Figure 3.9: This schema describes the placement of the electrodes with an example of
the expected graph.

As described in the Chapter 2, the GSR is a well known method for mea-
suring the instantaneous stress level on a person; in our case we use a pair
of electrodes placed on index and middle fingers to measure the skin con-
ductance through sweating (Figure 3.8(b)) between a range of 0.01μSiemens
and 100μSiemens. This is the main measure we consider for the stress level:
the sensor is attached to the Procomp Infiniti port that samples at 256 sam-
ples/sec.

Three electrodes are placed on the driver’s body (Figure 3.9) to get the
ECG hence the heartbeat frequency and obtaining more information about
his general stress level computed in an interval of time; we have chosen this
setup because R-R peaks are much more evident with respect to other elec-
trodes placement, as. As in the previous chapter was mentioned the fact
that computing HRV may not reflect at best the balance of sympathetic and
parasympathetic nervous systems, still, we decided to compute this physi-
ological feature to confirm this statement. The control unit that measures
HBR is shown at Figure 3.8 (c) and is attached to the 2048 sample/sec
channel.

3.4 Car preparation

The car has been modified with cables to the battery to electrically supply
sensors and the on-board mini-pc "Shuttle slim" (Figure 3.10): then we
used modular aluminium profiles inside the car to be able to install internal
cameras, a USB hub to connect other components to the mini-pc. A second
structure built with modular aluminium profiles is used to place outside the
car GPS, LiDAR and two cameras.

Some markers stuck on doors and windscreen to identify different surfaces
allow us to get information about the surface observed; in Section 4.1.1 we
describe more this surface definition, giving detail about these markers and
their functioning.
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Figure 3.10: Shuttle slim mini-pc

Figure 3.11: A schema of the hardware architecture for data acquisition with processes
that run during the experiment and linked sensors.

The "Shuttle slim" mini-pc is equipped with an Intel Core i7-4790S with
4 cores in Hyperthreading (8 logical cores overall) and base clock frequency
of 3,2 GHz, 8GB of RAM and 64GB Solid State Drive (SSD) for OS and
750GB Hard Disk Drive (HDD) for storage. This mini-pc is equipped with
two network cards, one used for communication with cameras, the other
with LiDAR. The compact dimensions make the mini-pc very suitable for
our application also considering the limited available space inside the car
(having only 2 seats): the only drawback is that it is not equipped with an
nVidia Graphics Processing Unit (GPU) so to compute YOLOv3 detection
we need a different computer with a high-performance graphic card. In
Figure 3.11, you see a sketch of the hardware architecture, showing the two
computers used during the experiment with the attached sensors.

In general, object detection is performed by using Deep Learning which
is basically NN with a specific architecture generally with many hidden lay-
ers: performing object detection requires a large amount of computational
resources, luckily is highly parallelizable process and this is why GPUs are
highly suitable for this task: moreover, some developed scripts were designed
to support parallel execution.

With these considerations, the hardware we recommend to execute our
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Figure 3.12: This dependencies graph shows the order scripts are executed: white boxes
represent generated files while coloured boxes are the actual scripts.

script should include a multi-core architecture Central Processing Unit (CPU)
with at least 4 virtual cores, 8 GB RAM and a GPU with at least 6GB of
dedicated memory because YOLOv3 loads the entire network on memory for
fast computation; we tried a GPU with 1GB of dedicated memory but wasn’t
enough to load even half of the NN. The configuration we used consist of
a 8-virtual cores architecture CPU, 16GB of available RAM and an NVidia
GeForce RTX 2060 GPU with 6GB dedicated memory.

3.5 Software architecture

Since use ROS for data storing and the APIs are already available in Python
2.7 and C++, we decided to use Python2.7 also for ease of usage for image
elaboration thanks to the OpenCV module.

In order to maintain readability of software, we developed different scripts
that implement different functionalities; in Figure 3.12 is represented the
dependencies graph of the developed scripts showing input/outputs and
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mandatory parameters for the first execution: since many of them generate
files with the processed data, is possible then to call the scripts indepen-
dently. A script with an incoming arrow cannot be executed until the script
with the same arrow outgoing is executed.
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Chapter 4

Data acquisition and
elaboration

In this chapter we describe the activities we performed about data acquisi-
tion, going into detail on the operation we conduct before, during and after
the driving: in particular about the setting phase, so all parameters we had
set in order to increase the retrieved information from all the sensors, and
the protocol we create to allow repeatability of the experiment.

After a list of preliminary operations and data processing, we briefly
describe also the software architecture, including the developed, and the al-
ready available software for correctly use the eye tracker. Finally we show the
results of our experiment to test the effectiveness of our developed software.

4.1 Data acquisition

With the goal to standardise the acquisition process, we had defined an
acquisition protocol in order to increase repeatability of the experiment and
try to evidence as much as possible the unexpected events; moreover this
simplify future setups in case the car or some sensors changes.

4.1.1 Acquisition protocol

In this section we describe the acquisition protocol in terms of preliminary
operation to do to collect data correctly. This protocol illustrates in details
the following operations, listed in the order we performed them:

• Cockpit surfaces definition

• ECG electrodes placing



Figure 4.1: An example of detected surfaces: the right window is rarely visible unless
the driver is turning right.

• Eye tracker calibration

• GSR electrodes placing

• Eye tracker synchronization

• Computing biometric sensors baseline

In the following sections we show more details for each step of the set up
protocol.

4.1.1.1 Surface definition

To gain more information during the driving task, more specifically about
the direction the driver is looking with respect to the car orientation, we had
paste inside the car some markers specially created by Pupil Labs® (Figure
4.2) to define surfaces and study the behaviour of the gaze on them.

We used those markers to differentiate the surfaces of windscreen, plud
left and right windows (Figure 4.1): the script that generate the images
of markers can be retrieved from the Pupil Labs® website and by setting
some parameters we were able to print larger markers. This was necessary
because the original script produces very small markers that could not be
recognized if pasted on windscreen due to the long distance with respect to
the driver; moreover, the position of markers for windscreen detection was
carefully chosen in order to exclude the rear-view mirror thus avoid false
positives due to cars reflected on it.
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Figure 4.2: Example of markers used for surface definition

The markers recognition is a built-in feature of the eye tracker software,
so we had just to put the markers inside the car, start surface definition on
Pupil Capture software, look at the surface ensuring all markers are visible,
wait for recognition and name the different surfaces to identify them and
adjust surface shape in case of detection errors.

In this way, the capture software had also the ability to recognize surface-
gaze related events such as how long did the driver focus on a particular
surface and when the gaze moved from a surface to another; this can be
useful to determine shift of attention and the direction of the distraction
factor thus improving the information acquired. The surface definition do
not require eye calibration, so is performed at first, to reduce risk of moving
the headset after calibration thus compromising accuracy.

After surfaces have been defined, we can proceed with the placement of
electrodes for ECG signal as described in Section 3.3. Since the electrodes for
measuring GSR are a bit annoying due to the cables connecting the electrodes
to the processing unit, the first electrodes placed were for measuring ECG,
less annoying since not limiting the body movements.

4.1.1.2 Eye tracker calibration

The first operation on the eye tracker’s parameters is to set some parameters
for camera eyes in order to increase pupil detection confidence thus reduc-
ing noise. Due to the high variability of light conditions dependent from
weather, period of the year, the street and so on, there is not a setup that
works in all conditions so you may adjust parameters according to the light
conditions. Below a list of operations on parameters that influence pupil
detection confidence:

• Increasing the contrast on the acquired images from the eye cameras
makes pupil darker so easier to detect.

37



Figure 4.3: This figure shows approximately where the markers appear on the screen:
the markers are shown in sequence starting from the one in the centre then proceeding
clockwise from the top-left marker

• Setting minimum and maximum pupil diameters helps the detection
algorithm to reduce false positives.

• Low values of Pupil intensity range help to reduce false positives with
dark eyelashes.

All the above parameters can be adjusted from the Pupil Capture eye
UI: after setting all parameters and verifying that pupils are detected with
high confidence, we proceed with calibration.

Pupil Capture software default calibration method uses laptop’s screen
showing five calibration markers on centre and on the four corners of the
screen (Figure 4.3): the drawback of this method is that is optimized for
close range applications, unfeasible for our application in which gaze focus
is relatively far. However the software has the possibility of calibration for
long distance applications by using the manual calibration method in which
an operator holds a printed calibration marker shown in Figure 4.4 (a) while
the subject wearing the eye tracker focuses on the marker centre without
moving the head.

The operator moves the marker inside the field of view of the camera at a
fixed distance of 2 meters; a sound produced by the software informs about
the progress of the calibration task. Once over, the operator shows the end
calibration marker visible in Figure 4.4 (b) so that the system stops acquiring
data; then the driver must be careful to do not move the headset otherwise
the accuracy could be compromised: the entire procedure is performed in the
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(a) Calibration marker (b) End calibration marker

Figure 4.4: default markers used for manual calibration

lab to keep the computer plugged and for better manoeuvre space and static
light conditions. We are then ready to enter the car for the last operations.

4.1.1.3 Eye tracker synchronisation

Using different devices for acquiring the information, brings the problem
of timestamp synchronisation between computers. Since all on board sensor
were connected to the installed mini-pc through Ethernet cable or USB using
Procomp Infiniti encoder (see Chapter 3.3), the timestamp was based on the
on-board computer. We decided, since eye tracker’s software needed a great
computational power in order to avoid loss of data due to large workload, to
bring an external laptop.

So before start recording we had to synchronise the clock of laptop and
the on-board mini-pc by connect both to the car’s Local Area Network
(LAN). The synchronization method we used was the Network Time Pro-
tocol (NTP), setting a hierarchical structure in which on top we place the
trusted information source (in our case the GPS receiver); the information
is then propagated to the lower levels of the hierarchy with the client-server
paradigm in which top levels act as server while lower as client. This protocol
continuously synchronises the computers’ clock thus increasing reliability and
robustness in case of failure. More details about the protocol can be found
in Matteucci and Gabrielli (2015).

4.1.1.4 GSR electrodes placement

While waiting for the computers synchronization we finally placed the elec-
trode for measuring GSR: easy to wear since must be placed on index and
middle fingers with Velcro. Finally we do a brief visual check to ensure that
all the sensors were working properly.
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4.1.1.5 Biometric sensors baseline

Last step before start driving, is the creation of a baseline for the biometric
sensors so the driver must stay still for about 3 minutes trying to relax
as much as possible with closed eyes and in silence; this baseline is then
compared with the driving task giving us a measure on how stressing is this
task. Even if not required, we start getting data from the eye tracker through
Pupil Capture software during this baseline, mainly to have images from the
world camera: since eyes are closed, is impossible to retrieve data about gaze
and pupil diameter.

4.1.2 Drive acquisition

The route the driver had to travel was predefined in order to be sure to
include potentially stressing situation such as large and busy intersections
with possible presence of on-rail public transportation and pedestrian cross-
ing. Having a predefined route gives us the advantage of repeatability of the
experiment with different subjects and see how they react in the same poten-
tially stressing situations. Due to laws of the Italian highway code restriction
and car’s characteristics, we could not include highways so we focused on a
urban environment (Figure 4.5). During the driving, the passenger just check
the correct functioning of the data acquisition system without changing ac-
quisition parameters of the eye tracker.

4.2 Data processing

This section is about all kind of data processing we performed to get the
desired information, starting from preliminary operations to reduce noise
and outliers, to all the different processing to increase retrieved information,
store data, find stress indexes and perform data presentation.

4.2.1 Data cleaning

Once acquisition ended, we passed eye tracker data acquired from Pupil
Capture software to the Pupil Player software that computed the surface
positions from world camera images and the fixation points with its dura-
tion. After offline surface and fixation data computation ended, we selected
the confidence threshold of pupil detection algorithm to remove noisy data
and finally start export, generating csv files; we have used these files to
build rosbag files. Before creating rosbag files and start data elaboration,
data cleaning had to be done, mainly concerning the surface detection with
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Figure 4.5: This is the route of the first acquisition we performed, starting from blue cir-
cle and ending in the purple one; the route included intersections, pedestrian crossings,
traffic lights and a short path inside the Politecnico di Milano campus.

the eye tracker and the confidence of gaze position. The most noisy data
about surfaces regard the detection of the left window’s markers. Since the
surface position is close to the driver and its orientation is almost orthogonal
to the gaze direction in most of the time, the problem that arise is that some
markers are often not visible hence reducing the probability of surface detec-
tion; another problem is that in some unknown circumstances, the algorithm
fails to give the correct shape of the surface, by roto-translating it and over-
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Figure 4.6: A picture of the result of YOLOv3 elaboration during the first acquisition

lapping with the windscreen surface thus bringing error. Luckily a manual
correction of surface definition is available in Pupil Player software so, once
video has been recorded, we were able to adjust the surface definition to
minimize these errors.

About data collected by the eye tracker, cleaning was quite easy since
every feature had a confidence related, e.g. pupil diameter and gaze posi-
tion; for our studies we have chosen data with a confidence larger than 50%.
About pupil diameter we have exploited the Pupil Capture software capabil-
ity for blink detection to remove those data from the analysis, as blinks are
considered outlier in this context. Concerning data acquired by ECG, the
cleaning process aimed to remove power grid noise at 50Hz so was applies a
band cut filter while for GSR a low pass filter was applied to remove high
frequency noise. More details about the elaboration concerning these data
can be found at Matteucci et al. (2016).

4.2.2 YOLO elaboration

Once cleaning is completed, we proceeded with YOLOv3 data elaboration
(Redmon et al., 2016), a framework for Deep Learning that uses CNN to
perform object detection. We use object detection in order to gain more
information on what is happening during the driving task, trying to find
as much factors as possible that can increase the stress level of the driver.
Combining this with the gaze information we know what the driver is looking
at during the driving and get, in this way, an eventual index of distraction
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in case he is not paying attention to the road.
By default, YOLOv3 is trained to identify more than 100 classes of ob-

jects that can be encountered in a variety of situations: for our purpose we
distinguish only 8 classes of interest to simplify our analysis, including:

• car

• truck

• bus

• traffic light

• motorbike

• bicycle

• person

Anything else is referenced as "other". After elaboration was performed,
we proceeded with the cleaning of the output of YOLOv3 elaboration; more
precisely the shown bounding boxes have a confidence of more than 25% by
default and, although low confidence, the results were pretty accurate (see
Figure 4.6). The only problem we faced is that since the images acquired were
taken from inside the car, YOLOv3 detected most of the time the cockpit
classifying it as a car, so nullifying the information that could be derived
from this elaboration. To overcome this problem we simply excluded from
the analysis all the bounding boxes which dimension was greater than 60%
of the entire frame: the result is that no frame had detected the cockpit as
car excluding any false positive.

4.2.3 Light levels

A second elaboration came from the need of correlating GSR with pupil
diameter in order to validate it as stress measure: knowing that the pupil
main function is to regulate the amount of light that reaches the retina, being
in a dynamic environment brings us to be careful to correlate pupil diameter
and GSR. We do not have a luxmeter to measure the level of light, but since
we are interest more on identify the variation of light levels than the level
itself, we remedy to this problem by computing the average RGB values in
some region of the eye images where eyelashes and eyebrows were excluded
(Figure 4.7): the regions are chosen by considering different images so to
be sure to excluding eye lashes that could bring a misleading value with eye
movement. We then have a value between 0 and 255 indicating the level of
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(a) Left eye regions of interest (b) Right eye regions of interest

Figure 4.7: Two examples of region used for the computation of light level.

light: greyscale images simplify our work because RGB values are equals.
Finally we correlated light level with pupil diameter finding a correlation
of about 70%, good enough to state that beyond noise, this result evidence
that there could be other factors influencing the pupil diameter among which
stress level. In Subsection 4.2.6 we describe better the process we went
through to compute the correlation between pupil diameter, GSR and light
estimation.

4.2.4 Rosbag file creation

Once the acquisition session and data cleaning task terminates, we use the
Pupil Player software to export the interesting data: the output of the ex-
portation function is a set of csv files containing all data about eyes (pupil
diameter, pupil position, gaze position in 3D space, blinks, fixation points)
and surfaces (position and eye-related events). For a general better view of
all data, we exploit a tool in ROS, a framework used for robot simulation
that uses publisher/subscriber paradigm, and that allows us to store data in
an indexed file named "rosbag"; by using the timestamp based on the same
event as index, we had a perfect synchronization between all the sensors
(with computers’ clock already synchronized).

Data in rosbag files are referred as messages, hence we first build cus-
tomized messages that are simply files with .msg extension containing all
the information we want to store in the form of variables: then we write a
python script that gathers data from the csv files gave as output from the
export function of pupil player and build the rosbag files.

For presentation and debug purpose, we also decide to store all images
acquired from the eye tracker, hence right-eye, left-eye and frontal camera
images not processed with YOLOv3: so for each type of information we want
to store we create a topic and by cycling row by row the desired csv file, we
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fill the message and store in rosbag file. This is all about the data collected
by the eye tracker, concerning data stored in the on-board mini-pc first data
were stored in MongoDB a database for applications with heterogeneous data
able to automatically define the data model to be stored, avoiding to define
the model for each sensor. More details about rosbag file creation script in
Section 4.4

4.2.5 Mat file creation

Matteucci et al. (2016) work already had computed stress level by extracting
GSR and ECG features and storing data in mat file (LF/HF for ECG while
Integrated Skin Conductance Response (ISCR), phasic and tonic GSR): this
because data elaboration in that work was performed by using Matlab® and
mat extension is a default storing format. Although specific for that soft-
ware, is quite common file format and "Scipy" python module automatically
implements a function that import mat file content into a python list, that
could be easily transformed into a data frame. In the next section we focus
on GSR and ECG features.

4.2.6 Stress indexes identification

In order to understand the causes of stress of the driver, we try to find a
correlation between physiological and external factors. With the hypothesis
that GSR is a reliable stress index, we used Pearson Correlation Coefficient
(PCC) to see which of the others index can be used for validate stress level;
given two random variables X,Y PCC is computed with the following for-
mula:

ρXY =
σXσY
σXY

where σX and σY is the variance of the random variables and σXY is the
covariance between the random variables.

The first computation is performed in order to validate the stress level
given by the physiological factors, in particular we tried to find correlation
between GSR, pupil diameter and LF/HF. In general we expect to find large
correlation between different stress indexes and assuming that GSR is the
most reliable that we have, we developed a script that computes correla-
tion between different data, more details in Section 4.4.5. As mentioned in
Chapter 2, Pedrotti et al. (2014) demonstrate that pupil diameter can be
used to determine stress level of a person. However they were in a simula-
tion environment in which the light could be controlled; in our case we had
a dynamic environment, e.g. a route with trees and buildings so we had also
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to take care the amount of light: as already mention in Chapter 4.2.3 we
did not had any photometer inside the car, hence we proceeded by analysing
the image of the eyes given by the eye tracker and the greyscale image also
simplify our purpose so we had just to compute the RGB average values in
the areas around the eye excluding the eyelashes. This gave us knowledge
about the trend of light during the driving task, so we were able to relate
light with the pupil diameter thus get the information theoretically related
to the stress level.

Before computing the PCC between amount of light, pupil diameter and
galvanic skin response, we had to perform further computation since there
are different sampling frequencies between sensors. Since PCC needed the
same amount of data between signals, we had three choices: replicate or
interpolate data to bring lower sample rated sensor to higher sample rated,
or aggregate data from the higher sample rated sensor.

We actually tried all: replication simply, for each high sample rate data
timestamp, copy the value with closest timestamp from the smaller data
frame. Aggregation instead computes the average of chunks of high sam-
ple rate sensors values and associated to low sample rate sensors. Finally
interpolation computes linear interpolation to assign a more precise value
with respect to the replication, so we expect better results with this last
method. As we could imagine, the pupil diameter had a larger correlation
light estimation than with GSR so we applied an adaptive filter in order to
estimate the pupil diameter given light estimation; assuming that pupil di-
ameter depends only on stress events and light, the expected error computed
with both Normalized Least Mean Squared Error (NLMSE) and Recoursive
Least Squared Error (RLSE) should evidence stress events thus finding a
correlation with measured GSR.

As already mentioned in Section 2.3, another possible stress index could
be retrieved by computing LF/HF as it is a valid method for measuring
the sympathetic - parasympathetic systems balance. Actually, since there
are many factors that influence the nervous system balance is not always a
good idea to use LF/HF ratio: beyond that, the fact that this ratio consider
frequencies of a slow changing signal, in order to compute a good estimation
of stress we need to evaluate this index in a time range of at least two minutes,
making this index unfeasible for instantaneous stress level measuring but
theoretically good for average stress level in that time range.

However, according to the computation performed by the script devel-
oped by Matteucci et al. (2016) in which the index was computed within a
time range of 120 seconds, and knowing that at a certain point of the ac-
quisition a stressing event occurred, by looking at the ratio we observed a
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low level of computed stress close to that moment contrary to our expecta-
tions, so in the end we decided to consider only GSR as instantaneous stress
index: more details in Section 4.4. From the GSR data we can extract the
phasic and tonic components: those features could be used for average stress
level while other computed features as magnitude, duration and number of
orienting responses gives an instantaneous stress level within a time period.

4.2.7 Data visualization

Once all data were collected and cleaned, the idea of our work is to present
the result in a easily understandable way. To do this we plot all data concern-
ing GSR, ECG, observed objects, present objects, gaze position and pupil
diameter: in Section 4.4.8 is described the script that generate plots with all
the interesting information and how parameters affect the final result.

4.3 Pupil Labs® software

Here we describe briefly the eye tracker’s available software and the used
features; a complete description of both software and the user interface can
be found on the website https://docs.pupil-labs.com/. For our work we
installed version 1.11 of the software.

4.3.1 Pupil Capture

Pupil Capture is the software responsible for eye tracker calibration and
acquisition; in Figure 4.8 is possible to see a sketch of UI and more precisely:

• Panel 1 shows information about CPU utilization, FPS and eyes con-
fidence

• Panel 2 list the available hotkeys: calibration, test and recording are
default

• Panel 3 shows option of the selected functionality

• Panel 4 list all the available functionalities

From panel 4, we can select the plugin to use to get more specific information,
change image acquisition parameter, choose calibration method and more.
For the acquisition we activated Blink Detection, Fixation Detector and
Surface Tracker plugins: data about gaze and eyes are stored just after
recording ended. In case of acquisition from smartphone, to reduce the
workload, Pupil Capture software records only images from cameras without
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Figure 4.8: A sketch of pupil capture interface in which we can see the acquired
information.

further computation: to get information about gaze and eyes, Pupil Player
software allow to compute them offline from images by using computer vision
built-in algorithms.

4.3.2 Pupil Player

After the acquisition, we start Pupil Player software that automatically com-
putes surface position and fixation detection from the recording. The UI is
the same of Pupil Capture software so again from panel 4 (Figure 4.8) we
can choose the plugins to export the desired data: we selected Offline Surface
Tracker and Raw Data Exporter that generates csv files. Finally we press
the export button (Figure 4.8 panel 2 ) and can proceed with Python script
execution.

4.4 Developed Python scripts

In this section we show briefly the pipeline and role of the developed script;
the overall documentation is in Appendix B, describing more in detail the
implemented functions and the parameters of these scripts.
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4.4.1 Data elaboration.py

This is the first script we run just after the Pupil Player exportation task
terminates: the listed parameters in Figure 3.12 must be present in the first
execution in order to generate files required by the other script such as frames
from the eye tracker cameras read then from multidarkent.py script. It is
possible to add other parameters to execute Data elaboration, multidarknet,
Light and CSVtoBag scripts in the correct order thus increasing automation
of the execution. This implementation choice increases the robustness of the
scripts: in case of error of a called script, the caller could disable succeeded
script to reduce execution time avoiding redoing job pointlessly. In the case
of multiple acquisitions in a single day, this script can process data of all the
acquisitions separately to automatize more the entire process.

4.4.2 Multidarknet.py

This second script simply calls YOLOv3 detection method that returns for
each frame the list of all detected objects with centre, width, and height of
the corresponding bounding box; in this phase, we also remove all bound-
ing box larger than 60% of the frame resolution to avoid the cockpit to be
classified. In this script we also reduce the number of classes of detectable
objects by classifying as "other" whatever is not listed in a predefined dictio-
nary (that also corresponds to the list of class in the custom ROS message).
The output of the detection function is then saved into a .txt file so that
script "CSVyoBAG.py" has all information needed to build rosbag files. By
running this script with a specific parameter, enables a function that draw
on the images the computed bounding boxes, basically to check the correct
functioning of the CNN.

4.4.3 CSVtoBAG.py

This is one of the scripts with largest workload since has the role to merge
all the collected information and store into rosbag files. Data in rosbag files
are organized into ros messages with relative topic so they could be easily
retrieved: a topic is created for each kind of information, then a set of cus-
tom messages is created with the related information, filling the header of
each message with the correct timestamp to have synchronization between
all topics. Among all information, we also save as special messages also all
the frames of the three eye tracker’s cameras: this is the bottleneck that
slows down a lot the execution of the script. The script also computes au-
tomatically time alignment from pupil timestamp to Unix like timestamp so
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that data in bag files are already synchronized with data stored in MongoDB.

4.4.4 Light.py

This script performs light estimation as described in paragraph 4.2.3 saving
the results in a file, one for each eye, with just the values of light at location:

*date_of_recording > Output > Light_*acquisition number*

The script that takes in input those files automatically matches light value
to the diameter frame having a 1:1 correspondence and so easily associate
light estimation with the timestamp.

4.4.5 Correlation.py

This script computes the correlation between data, in particular, we used
it to correlate different stress indexes in order to validate them. Assuming
that the GSR is the most reliable stress measurement we have, we expect
to find large correlation with the other supposed stress indexes: the com-
puted correlation index was PCC. It must be launched after Light.py script
because we have to correlate pupil diameter with light estimation to retrieve
stress levels from it. More specifically we have to find a process that de-
creases the pupil diameter correlation with light estimation but increasing
pupil diameter with GSR otherwise we cannot distinguish which of those two
measures affect most the diameter hence we could not be sure of using it as
stress index. An issue we had to overcome was about the different amounts
of data between GSR signal and pupil diameter because PCC can be com-
puted only if two series have the same amount of it; we tackle this problem
with 3 approaches:

• Aggregate data, performing a sort of downsampling

• Replicate data thus performing upsampling

• Interpolation to upsample data and have a better estimation of the
result

For the aggregation, we computed the average value of light estimation and
pupil diameter and associate the result to a single timestamp; as expected,
since aggregating data brings a loss of information, the correlation showed
the lowest values so we decided to discard it. Concerning upsampling, we
tried interpolation that gives a good estimation of the halfway values but in-
creasing the time complexity of the algorithm by a constant. The replication
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solution was implemented mainly to reduce execution time still maintaining
a good correlation result but in the end we decided to perform interpolation
being more robust to noise and having better results overall.

4.4.6 Timestamps.py

Once on-board mini-pc and laptop clocks are synchronized, we noticed that
Pupil Capture acquires data starting from an internal event of the computer
while all the other sensors, since working with ROS, have all a Unix based
timestamp that is the number of seconds from 1 January 1970 00:00 UTC,
so before plot data, we have to align all the timestamps. Luckily when
the acquisition starts, a csv file with Unix based timestamp (tUnix) and
the timestamp of the internal event (tstart) is created so we could align
timestamps with this simple formula:

taligned = tacquisition – tstart + tUnix

This script save the elaboration in new csv files, in this way no further
elaboration is needed to plot aligned data.

4.4.7 Orienting responses.py

In a study described in Section 2.3 a feature extracted from GSR data were
the orienting responses, that are all quick changes on the value of GSR.
Before detecting each orienting response, all data are first filtered with a
low-pass Butterworth filter, reducing the probability of a false detection.
This script simply extract these orienting responses by saving into a csv the
initial timestamp, the duration, magnitude and estimated area (energy) of
all orienting responses detected, then the csv file is read by Plot results.py
script to see results directly on plots.

4.4.8 Plot results.py

This script reads data from created bag and MongoDB, more specifically
from the database read GSR and LF/HF, and plot all data that could be
used to understand the stress level of the driver and what causes this stress.
According to the parameter passed to the program, there are two kind of
output: plot of the whole acquisition (Figure 4.9) and plots for each road
section (Figure 4.10). By doing so, is possible to view data with different lev-
els of detail: specifically, in the image is possible to see 4 orienting responses
and see where and what the driver looks plus what object is detected in the
camera field of view. Moreover, is possible to choose which plot to show,
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with a combination of parameters and keyboard input depending on what
the user desire to check.

Due to a bug in the Pupil Capture software version used initially in which
the whole acquisition was loaded in memory, in case of long acquisition (more
than about 5 minutes) the system used all memory resources thus crashing
the Operating System. This forced us to stop and resume acquisition during
the drive and creating different bag files for a single acquisition so in the
final plots is possible to see blank spaces: this is not because we do not have
files but we generate different images for different bag as this, in sight of
future implementation, means different acquisitions with different subjects.
This bug has been solved in newer version of Pupil Capture software by
implementing the incremental load, so future acquisition can be as long as
we need.

4.4.9 Draw gaze point.py

This script simply draw on the multidarknet output images with bounding
boxes a dot in the gaze position computed by the eye tracker: this to show
the correct functioning of the system and eventually create a video clip with
all processed information. The result of the elaboration is visible in Figure
4.12: the laptop in figure is the one used to collect eye tracker data and is
actually ignored when that kind of data is store in rosbag file.
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Figure 4.9: This is an example of plot result script output: vertical lines represents
different road sections while blank spaces indicates that data are stored in other bag files.
The scatter plot representing orienting responses shows possible stressing moments,
confirmed by high values in GSR plot and contextualised by the other scatter plots.
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Figure 4.10: This plot shows an example of segmented plot: this gives a better view
of a single road section situation including surroundings objects, observed objects and
orienting responses.
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Figure 4.11: Comparing with Figure 4.9 you see that data enhance the content filling
some blank spaces without overlaps.
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Figure 4.12: In this figure is possible to view the result of the elaboration, giving the
idea of the available information that could be used for our elaboration.
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Chapter 5

Experiment description and
results

In this chapter, we describe the experiment and comment the obtained re-
sults also comparing them with the results described in other papers cited
previously.

In order to test the developed software, we conducted an experiment in
which we aimed basically to test and debug the developed software. Having
listed in Section 2.3 some possible physiological signals that evidence stress
levels, we tried them to confirm which of them best fits in our urban environ-
ment and since we have had a verified stressing event occurred during this
experiment, we are able also to verify the reliability of the different stressing
indexes.

So our first hypothesis is that HRV feature, LF/HF, is not a reliable
stress index during the driving task as stated in Billman (2013) and Shaf-
fer et al. (2014) works: this may clarify how this index behave in case of
short observation in urban environment driving and find other possible HRV
features that better describes stress level in this specific context.

Pedrotti et al. (2014) in their work was able to spot pupil diameter reac-
tion to stress events but in a simulated environment. We want to verify this
behaviour in a real urban environment in order to gain more information
thus having a more robust measure of stress: to extract stress level from
pupil diameter we have to find the pupil diameter signal component that is
independent of the light variation. So our second hypothesis is that by pro-
cessing the light signal with RLSE to predict the pupil diameter signal, the
output error corresponds to the stress component of pupil diameter signal.

Our last hypothesis is that GSR is a reliable index of stress during the
driving task as in Healey and Picard (2005) work is used in their experiments



computing orienting responses.

5.1 Experiment

The goal of the acquisition part of this work is to see how people react to
multiple stimuli that may happen during the driving task: with this require-
ment, we have chosen an urban busy road to increase the probability of
stressing events to occur and a minimum time of 20 minutes. For our exper-
iment, we had a great limitation due to legal issues concerning car insurance
and privacy, that constraint us to limit the number of drivers: in the end,
we acquired data from a single driver.

The acquisition we performed had also the goal to develop and test the
software system: this acquisition was taken with an old version of Pupil
Capture® with a bug that made the computer crash in case of long ac-
quisitions; this bug has been solved in more recent version of the software
but to complete the acquisition we split the experiment into smaller record-
ings to avoid computer memory problems and that’s why in Figure 5.1 plots
regarding eye tracker related information have blank spaces.

We were lucky that in this acquisition, we encounter a stressing event
so we were able to test the software also in that case, setting parameters
to detect orienting responses. More recent acquisition are not included in
this work due to some error that occurred during the experiment and low
functions of the on-board mini-pc.

Additionally, we included road intersection with traffic light and others
without them, both situation in which the driver had to turn left or right: in
some intersection without traffic lights, there was also a pedestrian crossing
trying to increase the workload of the driver (turning and paying attention
to the sides of the road). More precisely our experimental path includes five
intersections, three of them with traffic lights and a total of seven crosswalks,
one of them particularly busy to see the shift of focus in this situation.

Before start driving, we proceed to eye tracker’s calibration by following
the protocol described in Section 4.1.1, then we enter the car, switch on the
on board mini-pc, start the acquisition system without acquiring data to
check if all sensors are working properly and finally compute the baseline;
then the experiment started.

The driver then drove the car through a quite busy road near Politecnico
di Milano, Leonardo campus. With the hypothesis that intersections could
stress more than a straight road, we included them as much as possible,
performed by turning left and right with also pedestrian crossings: due to
the low amount of data acquired, we cannot state that this hypothesis is
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not verified since our data do not show evident differences in GSR signal
between road sections. After 20 minutes, the driver has to return the car
inside the campus: this is a driving particular case so we still acquire data
until the car is parked. Finally, we stop recording from Pupil Capture and
then from the on-board mini-pc; with a pen-drive, we get the acquired data
from the mini-pc and transfer to the laptop used for processing data, then
we can start executing scripts.

5.2 Results

As we described in Chapter 4, vertical lines represent road segmentation: due
to a lack of available space, adding the name of the road sections on plots
cause them to be more confused so to know the data of each road section, the
user must execute the script with - -segmented parameter and see the name
of the output image. We were lucky to have a verified stressing event with
a visible reaction of the driver and near that point, we can see an increasing
GSR signal and a presence of orienting responses larger with respect to the
rest of the experiment. Concerning LF/HF signal instead, it has a trend
that actually is not attributable to a stress level since no orienting response
occurs in correspondence of high values of this signal and vice-versa: low
values that should indicate low-stress level are instead concentrated in the
portion of the graph with many orienting responses and this confirms our
first hypothesis that this feature is not reliable for short acquisitions.

About the second hypothesis, we know that the pupil main function is
to govern the amount of light that reaches the retina, so in order to extract
the stress component from the diameter signal, we elaborate the signal as
described in Section 4.2.6 in order to remove the light component from the
pupil diameter signal: the correlation index, however, is showing values close
to 0 so demonstrating that the two signals are uncorrelated thus refuting our
second hypothesis.

In Figures 5.2 and 5.3 we plot the portion of data referring to the entrance
to the Politecnico campus that includes the stressing event moment. The
first image shows data about GSR, orienting responses and observed object:
notice that the first orienting response, that has the largest duration and
that correspond to the verified stress event, has low energy though. At that
moment as we can see from images, some people suddenly entered the field
of view of the driver.

We noticed moreover that the following three orienting responses were
related to the driver focus on the street so in Figure 5.3 we show all objects in
the scene discovering the presence of bicycles and people. The time elapsed
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between the orienting responses is quite short and by looking at the video
we see that bicycles are parked and the person that reappears are the same
as the first orienting response.

Another interesting point is at the beginning, when the baseline was
computed and the subject had to start driving, an orienting response has
been detected as can be seen in Figure 5.4. The first increase of GSR value
could be interpreted as an orienting response: actually, that increase is pretty
slow and was a distraction moment from baseline computation. By looking
at the images we see that the orienting response was detected during the
manoeuvres so probably stress due to high workload. Having a verified
stressing event and an increasing trend of GSR signal near that event shows
that between the three, GSR is the most reliable stressing index available.
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Figure 5.1: In this image is possible to see some important information collected during
the driving task and some processed data.
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Figure 5.2: This is the output of a single road section, in the specific case was the en-
trance in university campus showing GSR, orienting responses and the observed object.
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Figure 5.3: In this figure we show GSR tonic and phasic signal, orienting responses and
the visible objects in frame while entering the campus.
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Figure 5.4: This graph concern the first part of the acquisition: the baseline is visible
in the first half, then we start manoeuvres to exit the campus and the high workload
shows an increase of GSR.
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Chapter 6

Conclusions and future works

The developed software has simplified the elaboration task, extracting auto-
matically feature for stress level monitoring: software modularity also allows
to reduce execution time in case of data re-elaboration and simplifying also
the debug process. Results are stored as images so to see the elaboration re-
sults one just has to open images unless you need to see other data displayed
and other graphs, then a bit of re-elaboration is required.

Concerning stress indexes, by looking at the results described in the
previous chapter, we noticed that driving is, in general, a stressing task, es-
pecially in a busy urban environment where unexpected may happen quite
frequently so requesting focus and high attention by the driver. In such a
dynamic environment, using the pupil diameter as stress index is not as reli-
able as GSR due to non-static light condition: the elaboration we performed
with RLSE was not able to remove noise and correlate pupil diameter with
GSR; so pupil diameter was excluded for our analysis at the moment. The
same holds for ECG that shows totally different results with respect to GSR:
more specifically we used, as some papers in literature cited in Section 2.3,
LF/HF feature for sympathetic - parasympathetic nervous system balance
but as also stated in some paper cited in that section, is not always reliable
as in this case since the acquisition is not long enough.

To spot stressing events, we computed the orienting responses of GSR
signal; without suggested thresholds, we computed orienting responses with
gradient larger than 0.5 and noticed that near a stressing event, orienting
responses are more likely to be visible so in the end, GSR signal shows larger
reliability for stress measurement. A headset eye-tracking system improves
a lot the available information since we can automatically see where the
driver is focused on, specially if we combine eye tracker’s data with YOLOv3
elaboration. Due to the low amount of collected data is not possible to



extract more precise information about stress indexes and events: further
data acquisition may clarify this aspect by finding a reliable stress index.

6.1 Future Works

Here we list some possible future works that can be useful to increase and
improve the information obtained from the acquisition.

Since in an autonomous car we do not have the driver anymore but only
passengers, a useful work is to measure stress levels on the passenger, namely
a person without control on the car: this study could also give information
about the differences of stress level when a person is a driver and when is
a passenger. To spot these differences, after the driver had complete the
experiment can seat as a passenger still paying attention to the road and
wearing sensors. This stress evaluation can be also done in an operative fully
autonomous car thus testing if the planner act as desired with manoeuvres
that avoid stress to increase.

A way to increase the information gathered from external cameras is to
perform image segmentation. Actually, we tried this method but with a lot of
misclassification, probably due to network overfitting since with test images
the performance was very good while with our acquired images were awful.
So by finding a better NN with good performances with the acquired images,
it is possible to identify lanes and crosswalks and eventually find new stress
conditions like overtakes or sudden crossing pedestrian thus improving our
knowledge.

A possible future work, with the goal of simplifying the data acquisition,
is to implement a stress classifier. The main idea of this future work is to
recognize stress situations in an unobtrusively way: after having collected
enough data from physiological sensors to identify many stress conditions,
the further step is to recognize these conditions by only analysing images
processed with YOLOv3 or external sensors such as LiDAR. The critical
part is data acquisition for the supervised learning required to train a NN
able to recognize environmental stress conditions: to build a robust classifier
we need a lot of data about stressing events.

Due to insurance restrictions, we had a limitation in the number of sub-
jects that could drive the car: it could be interesting to repeat the experiment
with people confident in driving the electric car in an urban environment to
see if there are more differences between average stress level, and unforeseen
event stress reaction. With a lower average stress level it could be possible
to spot better peaks of stress levels thus having a more reliable measure.
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There are several body reactions to a stressing event one may have and
due to the high individuality of this factor, an interesting and useful future
work may be to verify if the stressing indexes present in the literature could
be used in the real world. In our work, in the end, we used only GSR but we
cited other works that say also BVP could be used by exploiting the already
mounted camera or respiration rate may add further information combined
with other stress indexes: individuality may show some indexes more reliable
with respect to the ones we used here and could be useful also to find human
features that affect an index to be more reliable.

Once an autonomous car is finally implemented, we could use internal
camera to monitor the situation inside the car. This can be a good way to
debug and check if the behaviour of the car is improving the user experience
or not by seeing their reactions, how much they check the car’s actions or
if they are able to do different tasks without paying attention to the road.
This noninvasive monitoring could measure stress levels also in the in-market
autonomous cars so continuously improving this technology.

The used eye-tracking headset has the possibility to acquire images from
a different camera beyond the default one installed on the headset: this could
increase the quality of information got from the eye tracker since we do not
frame the cockpit, we can perform a better image segmentation removing
noise and also get gaze point directly on those images without rototranslating
gaze point coordinates.

Another possible future work could exploit Deep Learning on point cloud
got from LiDAR in order to classify objects surrounding the car with their
distances; we can exploit this last information to see if distances also influence
stress on the passenger. This will not substitute YOLOv3 elaboration used
in this work since it will be impossible to detect what object the driver
is focused on but will give more information on the phase of testing the
autonomous car behaviour, capable to find a possible critical distance below
which the driver feels uncomfortable.

There are a lot of factors that can influence the stress level on the driver,
one of these can be how the driver is confident with the car. For this reason,
could be useful to give a survey before the experiment in which the subject
gives information about its routines trying to understand how much driving
our car on a busy road could stress the driver. A post-experiment survey may
also be useful to validate acquired data, asking in general how stressing was
the overall experiment and if there were some particular stressing situations,
verifying then if the software reveals orienting responses on those situations.

With enough computational power, is possible to perform real-time ob-
ject detection; this future work could help to reduce storage usage. The
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idea is to perform YOLOv3 detection while acquiring and store only the
information about bounding boxes, having also this information just after
the experiment ended. This could also be used for real-time gaze-related
stress event detection, so the driving planner will exploit this information to
promptly react to reduce driver stress level.

Having a way to monitor throttle-brake trend during the driving task may
further improve available information since we can also understand which
is the action performed whenever a stress level overcome a threshold or a
stressing event occur: this kind of knowledge could simplify the planner
development knowing which behaviour should adopt autonomous car in case
of danger. However, the autonomous car should not behave human-like
because we had already seen in literature, papers stating that the car should
drive in a safer way with respect to the usual driver driving style so this is
just a general guideline for planner developing.
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Appendix A

Software installation

Below a detailed description of the software system, including all third-party
Python modules.

A.1 Requirements

To execute the script correctly, we need the following software requirements
to be satisfied:

• Ubuntu Linux operating system version 16.04 LTS

• ROS framework Kinetic version

• Python 2.7 version (compatible with ROS version)

• Pupil Labs® software available at https://github.com/pupil-labs
/pupil/releases/tag/v1.11

• YOLOv3 available at https://pjreddie.com/darknet/yolo

A.2 Python modules

Below all the non-standard Python v2.7 modules that had to be installed:
modules concerning rosbag and YOLOv3 elaboration are automatically in-
stalled when installing YOLOv3 and ROS:

• Pymongo for MongoDB elaborations

• OpenCV v3.4.3 for image elaboration

• Pandas for data elaboration through data frames



• Mathplotlib for Matlab-like plot methods

• Scipy for mat file import and data filtering

• Padasip and Adaptfilt for data filtering and elaboration

• tzlocal for timestamp synchronization with GPS data

All above modules were installed using command:

pip install *module-name*

A.3 Custom ROS messages

In this section we will describe ROS message file creation, used to store infor-
mation in rosbag files. Basically, message files contain variables or structures
of them: the most common structure is the Header of a message, a built-
in structure used to store information about the message itself like times-
tamp or the id of the message; a list of the type of variable can be found
at http://wiki.ros.org/msg. Concerning the messages containing the ac-
quired video we used a function of OpenCV module that convert a single
frame object into a ROS Image message, so without creating customized
message. All other information needed a customized message, made up of
the Header part and the data part: the messages containing YOLOv3 infor-
mation contained also an enumerated type variable, to ensure the sub-classes
of detected objects. These msg files are located in the ROS workspace:

Home > catkin_ws > src > building_bag > msg

The name “building_bag” is mandatory because to import messages struc-
ture into python modules we refer to that directory: the final step is to
compile ROS with the new messages by running in the catkin workspace the
command catkin_make. Remember to put into .bashrc the command

source /catkin_ws/devel/setup.bash

In this way the script will be able to retrieve custom messages.
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Figure A.1: Yolo message: The variables with assigned values implements the enumera-
tion.

Figure A.2: Eyes message: variable “eye” indicate which eye the message refer.

A.3.1 Custom messages content

• yolo.msg (Figure A.1): This file contains the information about
YOLOv3 detection so the 9 classes, the detection confidence, center,
width and height of the bounding box.

• eyes.msg (Figure A.2): This file stores information about each eye,
the diameter of the pupil in pixel and millimetres and the coordinates
of pupil position.

• blinks.msg (Figure A.3): Here we store the beginning and final
timestamp and frame of the detected blink.

• fixation_on_surf.msg (Figure A.4): Contains the start and end
frames, the positions about fixation on a surface and the name of the
surface.

• gaze_on_surf.msg (Figure A.5): Store information about gaze
coordinates with respect to a surface: the “on_surface” variable con-
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Figure A.3: Blinks message with start and end timestamp and frame.

Figure A.4: In this message we exploit the built-in structure Pose2D for storing fixation
position.

Figure A.5: Gaze on surface message.

Figure A.6: Gaze position message.

tains “true” or “false” values; the choice of string and not a Boolean
was for simplicity of implementation because the value in csv file is
stored as a string.

• gaze_pos.msg (Figure A.6): Store information about gaze position
in the world frame: for better visibility, we exploit 3D points to store
all gaze position information.

• surface_position.msg (figureA.7): Contains the number of iden-
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Figure A.7: Surface position message.

Figure A.8: Surface event message.

tified markers for a surface and the roto-translation matrix from the
screen reference system to the surface and vice-versa: since matrices
are not allowed in ros messages, we built an array of 3D point of di-
mension 3 since we need a 3x3 matrix.

• surface_event.msg (Figure A.8): Store information on when the
gaze enters in a surface and what detected object is observing. The
event state if the gaze was entering or exiting the corresponding sur-
face: adding the enumeration variable we can match the object and
the surface, hence object and gaze position with respect to the car
orientation.

A.4 Python scripts download

All scripts are stored online on bitbucket and can be downloaded after reg-
istration and login with the command:

git clone
https://username@bitbucket.org/airlab-polimi/idrive_ros.git

By default, Pupil Capture software store recordings in the directory with the
following structure:
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Home > recordings > *date_of_recordings* > *three digits counter*

After download, scripts must be ran under the “recordings” directory, other-
wise will not be able to retrieve the required files for elaboration.

A.5 YOLOv3 setup

Although YOLOv3 has a website with a dedicated guide for installation, still
there are some operations to consider in order to make this framework work
properly. First of all, you have to download the proper weight file and store
in a “weight” folder inside “darknet” directory; then if the script rises the
exception “Cuda error: memory out of bound” you may have to change a bit
the configuration. To do that, inside “darknet/cfg” you can find “yolov3.cfg”
file; modify it by changing the first recurrence of variable "subdivisions" from
16 to 32 (or 64 if the error rises again). Last modification we had to do was
the python “darknet.py” script: once open, user must paste:

from os.path import expanduser
home = os.expanduser("∼")

thus defining variable home as path to home directory; then find and
uncomment line:

lib = CDLL(home+"/darknet/libdarknet.so", RTLD_GLOBAL)

and comment the next line; that command should retrieve “libdarknet.so”
file so in case of different location, the user should place the correct path.
After this, YOLOv3 should work without problems.

A.6 MongoDB installation

In this section we describe all steps to correctly install MongoDB for the
correct execution of the scripts:

• Download MongoDB community edition by following instruction in
the page. https://docs.mongodb.com/manual/tutorial/install-
mongodb-on-ubuntu/

• Create folder with read permission by using command sudo chown
-r mongodb:mongodb *folder path*

• Modify /etc/mongodb.conf by open it with root privilege and change
dbpath with the previous created folder.
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• Restart MongoDB with command sudo service mongodb restart

Now it is possible to import data acquired from the sensors into MongoDB.
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Appendix B

Scripts documentation

In this section, we describe in detail the developed software. The whole
software system is developed with the idea of maintaining good modularity:
the main reason is that this allows the user to resume pipeline execution
in case of error or to redo partial execution in case of new data processing,
avoiding to execute the whole pipeline thus reducing execution time.

For each script we describe the main function, required input, the imple-
mented function, the output of the script and the time complexity; finally,
we describe the possible parameters that could be passed and which is the
effect on the execution.

B.1 Data elaboration.py

This is the first script that has to be executed after the acquisition ended.
Its main function is to extract frames from the videos acquired by the three
eye tracker’s cameras, so make sure that all videos are correctly recorded. To
increase automation of this script still maintaining a good level of modularity,
is possible, according to the given parameters (details in next section), to
execute other scripts in the processing pipeline.

This video extraction is an important part because both YOLOv3 and
rosbag files take as input images and not videos. To perform this frame
extraction we used an available function in OpenCV that reads the whole
acquired video and then iterate it to extract all frames that are then stored:
so the time complexity of this algorithm is linear in the length of the eye
tracker’s cameras video.



B.1.1 Parameters

• path: required
Recording date in the format YYYY_MM_DD corresponding also to
the recording directory.

• vals: required
In the case of multiple acquisitions on the same date is possible to
select which recording to process; two integers are requested indicating
the first and the last acquisition to process. If only one acquisition has
been done, just pass "1 1".

• output: required
Destination folder in which store rosbag files.

• -f: optional
Enable the frame extraction functionality; mandatory the first time
you run this script to generate input files for the other scripts.

• -y: optional
Enable YOLOv3 detection by running “mutidarkent.py” script.

• -b: optional
Enable bag file creation by running “CSVtoBAG.py” script.

• -l: optional
Enable light amount estimation by running “Light.py” script.

• -t: optional
Enable timestamp shift by running “timestamps.py” script (Section
B.2).

• -debug: optional
Parameter passed to “multidarknet.py” script that save images with
printed bounding boxes on detected objects.

B.2 timestamp.py

This script computes Unix time shift for blinks, pupil positions, and gaze po-
sitions by reading the info.csv file of a recording that contains initial times-
tamp in Unix format: to avoid problems that could derive from overwriting
existing csv files, the script create new file with the same name of the original
but suffixing “_aligned” to distinguish the new file. The main purpose of
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this elaboration is to plot graphs of gaze position and pupil diameter aligned
with GSR graph; Knowing the files name and timestamp column position,
we decided to hardcode those information in the script. In case one needs
to compute Unix time shift on other csv files, it can just call the internal
function with the name of the file without its extension and the timestamp
column position.

This script changes the timestamp of pupil and gaze position so time
complexity is linear in the rows of those csv files that also correspond to the
number of eye frames, hence is linear in the eye frames.

B.2.1 Parameters

• path: required
Recording date in the format YYYY_MM_DD corresponding also to
the recording directory.

• vals: required
In the case of multiple acquisitions on the same date is possible to
select which recording to process; two integers are requested indicating
the first and the last acquisition to process. If only one acquisition has
been done, just pass "1 1".

B.3 Light.py

This script estimates the light amount by computing the average RGB value
in some hardcoded ROI chosen according to the eye image: since the frame
rate of the eye images is double with respect to the world image, the script
performs the average between pairs of images getting a 1:1 correspondence
with world image hence a light estimation for each world frame. For different
acquisitions with different subjects, chosen ROIs could not be suitable and
should be adjusted. The result of the computation are stored in “recording
date > Output > Light_*num of acquisition* ”. Trivially, this script is linear
in the number of eye frames since the ROIs are fixed so independently from
the input amount.

B.3.1 Parameters

• path: required
Recording date in the format YYYY_MM_DD corresponding also to
the recording directory.
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• vals: required
In the case of multiple acquisitions on the same date is possible to
select which recording to process; two integers are requested indicating
the first and the last acquisition to process. If only one acquisition has
been done, just pass "1 1".

• - -debug: optional
Store images in a sub-folder "r_ROI" or "l_ROI" according to the
processed eye and shows eye frames with the relative ROIs so to check
if can fit to the subject or must be changed.

B.4 Correlation.py

The role of this script is to compute the PCC in order to understand which
physiological features could be used as stress index; our hypothesis is that
GSR is the most reliable so we look for other features with high correlation
with it.

At the first release of this script, the computation was not optimized
hence the execution time was pretty long: to overcome this problem we im-
plemented the script such that at each execution checks if there are stored re-
sults, otherwise starts a new computation and after the most work-intensive
part, it stores partial results in:

YYYY_MM_DD/Output/Correlation

In that location you can find csv files named “[Left/Right]_aligned_GSR
*acquisition number*.csv” so further executions of the script will read directly
those files thus reducing execution time: in case one needs to recompute
partial results, files must be deleted manually. In a second time we optimized
this script reducing considerably the execution time of the first part but
maintaining the partial result storage for future works that could focus on
those data computing something more than simply correlation.

Going into details, the first part reads data from “tonic_phasic.mat” file,
containing GSR row data, tonic and phasic features and “pupil_positions
_aligned.csv” file, reading timestamp, confidence and diameter in millime-
ters. Then it stores all of this into a pandas data frame, join it with light
estimation of both eyes reading values from files, compute oversampling of
GSR by interpolating it thus having the same amount of data and finally
stores data.

The second part filters GSR, pupil diameter and light estimation data
and compute PCC: we tried different filtering methods, left as comments in
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the script in case one want to try them. Methods are moving average and
Butterworth filter, with low-pass or high-pass configuration depending on the
computation to perform; after this first operation have been applied we tried
to extract stress features from eyes pupil diameter by filtering signal with
NLMSE and RLSE and compare those results with GSR features. Finally
results concerning PCC are print on terminal while plots about diameter,
light and GSR, RLSE are shown.

Concerning time complexity, since we have to compute interpolation in
order to guarantee the same amount of data between ones collected from eye
tracker and GSR electrodes, we iterate among GSR data, interpolate between
2 points and compute new data for each timestamp of the eye tracker data.
So the overall complexity is the GSR amount, times the ratio between eye
frames and GSR; so linear in the amount of eye frames.

B.4.1 Parameters

• path: required
Recording date in the format YYYY_MM_DD corresponding also to
the recording directory.

• vals: required
In the case of multiple acquisitions on the same date is possible to
select which recording to process; two integers are requested indicating
the first and the last acquisition to process. If only one acquisition has
been done, just pass "1 1".

• time: required
Accept values “mean”, “begin” or “end” and is designed for continuous
stress level analysis: in our case was used to determine if LF/HF was
a proper stress index but the problem was to align it correctly with
GSR since computed after about 2 minutes of acquired data. This
parameter shift the signal at beginning, end or the centre of this time
interval, computed at run-time so adapting to different time intervals.

• filter_type: required
Select the type of applied filtering: “low” for low pass filtering, “high”
for high pass filtering; passing “no” avoids filtering of data.

B.5 multidarkent.py

This script computes YOLOv3 detection by importing the functions from
module “darknet.py” installed together with YOLOv3: after load network
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architecture and weights and classification data, we run the detecting func-
tion storing the results in a txt file in which each row represent different
detected object with related confidence, dimension and centre coordinates
of the bounding box. In case of -d parameter, a directory “frame_debug” is
created storing all resulting frames with the drawn bounding boxes: to com-
pute the position and coordinates of bounding boxes, you have to run this
script without the - -no_yolo parameter to generate txt file with all required
information; this to avoid recompute object detection every time.

YOLOv3 detect method allow also to choose in case of multiple GPUs,
in which of them to load the CNN and execute: simply we have to give
as parameter the index of the GPU we want to use (’0’ in case of a single
graphic card as in our case); this index is passed as parameter and can be
retrieved by running on terminal the command:

nvidia-smi

Each object detection is performed individually on each frame, so the overall
complexity depends on the amount of world camera frames.

B.5.1 Parameters

• directory: required
Working directory in the format YYYY_MM_DD/*acquisition num-
ber*.

• GPU: required
The GPU index you want to use for YOLOv3 detection.

• -d: optional
enable the generation of images with objects bounding boxes drawn on
them; available only if txt files of detected objects are generated.

• - -no_yolo: optional
Avoid execution of YOLOv3 allowing to create images without recom-
puting object detection; this parameter implies the presence of -d pa-
rameter otherwise the script terminates immediately.

B.6 draw_gaze_point.py

This simple script reads YOLOv3 processed images with bounding boxes
drawn and plot a fuchsia circle in the gaze position read from the gaze_position.csv
file. The resulting images could be used for a presentation video showing the
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available information and to check eventually correctness of processed data.
Although the elaboration modifies world camera frames, gaze position is
based on eye data so the complexity of this script is linear in the eye frames.

B.6.1 Parameters

• path: required
Recording date in the format YYYY_MM_DD corresponding also to
the recording directory.

• vals: required
In the case of multiple acquisitions on the same date is possible to
select which recording to process; two integers are requested indicating
the first and the last acquisition to process. If only one acquisition has
been done, just pass "1 1".

B.7 CSVtoBAG.py

This script takes as input the frames acquired from the eye tracker’s cam-
eras plus all csv files exported from Pupil Player software, computing auto-
matically time alignment. According to the processed information, a ROS
message is created, assigning a topic and the values read from the csv file:
these values are selected basing on our work, in case for future work there is
the need of process different data, one should change ROS message files and
how this script process them. Moreover file positions are hardcoded, assum-
ing that only one data exportation from Pupil Player software is performed
and that the user do not modify files: in case of multiple exports, the script
processes only export number "000" so need to rename folders for a correct
execution.

In case the bag file was already created, the script waits for user input to
overwrite the existing bag file or not; in case of negative response, the script
ends the execution immediately.

The time complexity depends on the amount of collected data and the
largest amount is collected by the eye frames so time complexity is linear
(but with very large constant) on eye frames.

B.7.1 Parameters

• date: mandatory
The directory that contains data we want to store in rosbag file, in the
form of *recording_date*/00*number of recording*: this format is the
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result of the intention of parallelizing the rosbag file creation so many
recordings in the same day could be executed in parallel to save time.

• work_dir: mandatory
The name of the output rosbag file, in recording_date_*number of
acquisition*.

• output_dir: mandatory
Destination directory to store rosbag files; we choose to use this pa-
rameter since rosbag are often large file so user can select the proper
file location.

B.8 orienting_responses.py

This script computes orienting responses features of GSR; as previously men-
tioned , the orienting response is a sudden increase of skin conductance, easily
attributable to a stressing event and they extracted four features:

• Number of orienting responses

• Sum of duration
∑

OD

• Sum of magnitude
∑

OM

• Sum of estimated area
∑ 1

2OD ∗OM

These features are computed within a time range so by dividing the acqui-
sition into regular time intervals, is possible to compare these features and
spot the stressing events.

In Healey and Picard (2005) actually they did not specified parameters
about the computation of the orienting responses such as minimum slope or
duration to consider an orienting response as valid so we had some trials in
order to find the combination that shows orienting responses at least when we
were sure about a stressing event: the final threshold we used concerned slope
greater than 0.5. The slope was simply computed with linear interpolation
between pairs of GSR points, then we compute the gradient of the line linking
these two points.

Finally we filter results by excluding all orienting responses with a mag-
nitude lower than 0.2; we tried first to filter result basing on energy but in
that case, quick reactions were excluded from the final results, even with
high magnitude. Once data have been computed, orienting_responses.csv
file with the result is created in the directory specified by parameters, and a
plot with GSR and the estimated area of all orienting responses is displayed:
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this feature shows high readability for stressing moment identification, hav-
ing relatively large values near the well-known stressing event. Input file
Skin conductance.csv, got from the sensor, is retrieved by the parameters
so must be placed in the correct directory “YYYY_MM_DD/00*acquisition
number*”. Time complexity of this script depends only on the dimension of
GSR data.

B.8.1 Parameters

• path: required
Recording date in the format YYYY_MM_DD corresponding also to
the recording directory.

• vals: required
In the case of multiple acquisitions on the same date is possible to
select which recording to process; two integers are requested indicating
the first and the last acquisition to process. If only one acquisition has
been done, just pass "1 1".

• - -show: optional
This parameter shows plots about GSR and the orienting responses for
debug purpose in order to find the slope that best describes trend of
signal.

B.9 plot_bag.py

This is the script that have to be executed at last, since is developed to read
data from different csv files, rosbag files and mat files and save results into
images; file locations must correspond to the acquisition one so:

YYYY_MM_DD/00*acquisition number*

As mentioned before, bag files are stored in a different location so it must be
passed as parameter to correctly retrive them. Moreover this script imple-
ments a function that reads from “gps_positions.csv” the coordinates of the
beginning of each road section, this allow to draw on plots vertical lines in
the exact moment in which the road section changes, obtaining path segmen-
tation. Since the number of graphs to show can be customized, the worst
case is when the user wants to plot all graphs, at most 7: in that case the
complexity is still linear in the input data and more precisely on bag file
amount of messages.
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B.9.1 Parameters

• rec_date: required
Recording date in the format YYYY_MM_DD corresponding also to
the recording directory: in this case is used to store result images.

• vals: required
In case of multiple acquisition in the same date is possible to select
which recording to process; two integer are request indicating the first
and the last acquisition to process. If only one acquisition have been
done, just pass "1 1": in this case is used to rename result images
avoiding overwriting.

• bag_path: required
Location in which retrieve rosbag files generated by previous scripts,
assuming are saved as YYYY_MM_DD_*acquisition number*.bag.

• - -segmented: optional
This parameter enables segmented elaboration, creating plot images
for all recognized road section giving a more precise view of the data
in that context. Without this parameter, the script generates a single
image per acquisition but dividing the whole graph per road sections
with vertical red lines for a general overview of stress levels.

• - -default: optional
This parameter let the user to store and plot default data that are:

– "pupil_eyes__left_diameter"

– "pupil_eyes__right_diameter"

– "pupil_gaze__norm_pos_x"

– "pupil_gaze__norm_pos_y"

– "pupil_driver_gaze__object"

– "pupil_yolo__object"

– "LF/HF"

– "GSR_tonic"

– "GSR_phasic"

– "GSR_raw"

So by default a plot image contains 4 graphs summarizing all previous
listed information. Without the parameter, the script prints the bag
topics available and the user must select which one he wants to plot:
the result is an image with only the desired graphs.
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• - -GSR: optional
This parameter extract the GSR data and features (tonic and phasic)
from the corresponding mat file and generate a new plot saved in the
same image.

• - -ECG: optional
This parameter extract LF/HF feature from heart mat file plotting the
result on a new plot, still in the same image for a more compact view.

• - -orienting: optional
This last parameter read orienting responses data from the correspond-
ing csv and create a scatter plot for a better view of the features of the
orienting responses

The script can be run with any combination of the optional parameters; pay
attention that files are written always in “plots > segmented_*acquisition
number* ” so multiple runs will overwrite the previous generated images:
this memory efficient design choice aim to automatically delete images with
uninteresting plots.
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